ACKIVOWLEDGEMENTS

My primary debt is to my supervisor, E.J.Hannan, for . inspiration and encouragement and for his patience and considerate advice.

I wish also to record my sincere thanks to Mrs.Joyce Radley for her masterly typing of this thesis, to my wife, Jenny, for her aid with the production of figures and tables, to the ANU Computer Centre and Printing Pool for their advice and services and to all others who have helped me through the stimulus of discussion and in other ways.

TABLE OF CONTENTS

I BRIEF THEORETICAL BACKGROUND
1.1 Introduction
1.2 Spectral Representation
1.3 Linear Filtering
1.4 Spectral Estimation
1.5 Prediction and Signal Extraction
1.6 Regression for Time Series
1.7 Time Series Regression Procedures in Small Samples
1.8 Serial Dependence Under the Null Hypothesis

II ESTIMATION AND INIERPRETATION OF SPECTRA ARISING FROM ECONOMIC DATA
2.1 Basic Spectral Estimators
2.2 Mean Correction of Covariances
2.3 Missing Observations
2.4 Preliminary Transformation of Economic Data
2. 5 Spectrum of a Controlled Variable

III NARROW BAND SPECTRAL REGRESSION PROCEDURES
3.1 Introduction
3.2 Stable Seasonal Model
3.3 Possible Regression Procedures
3.4 Comparisons of Efficiency
3.5 Efficiency Results and Conclusions
3.6 B.L.U. Procedure as a Bench Mark
3.7 Working Day Variation

SIGNAL EXTRACTION PROBLEMS

4.1 Seasonal Models and the Adjustment Problem
4.2 An Evolving Seasonal Pattern
4.3 Filtering Prior to Seasonal Extraction
4.4 Suitability of Seasonal Estimation for Optimal Procedures
4.5 Seasonal Extraction Model
4.6 Trend Extraction Procedure
4.7 Establishing Trend Estimates from the Optimal Response Function
4.8 Additional Value from the Response Function
4.9 Trend Estimation Formulae for Large v

V COMPUTATION OF SEASONAL AND TREND ESTTMATES AND THEIR PROPERTIES
5.1 Introduction
5.2 The Intermediate Segment Seasonal Estimates
5.3 The Upper and Lower Segment Seasonal Estimates
5.4 Trend Extraction Computations
5.5 Evaluating Response Functions of Optimal Filters
5.6 Characteristics of the Seasonal Estimates
5.7 Computing Procedure when ρ_{j} is not Assumed Equal to Unity

VI A RE-APPRAISAL OF THE NETHODS ADOPTED
6.1 Introduction
6.2 Possible Generalization of the Seasonal Model
6.3 Information on the Model Parameters from Seasonal Estimates
6.4 Demodulation and Modelling
6.5 Periodogram Estimates
6.6 An Overall Implicit Filter
6.7 Concluding Example

FIGURES

Fig. I Comparison of Spectra of Restricted and Unrestricted Variable for each Scheme.

Fig. II Correlograms of lst Order Autoregressions, Models, $\rho=.75$, .95, . 995.

Fig. III Correlograms of 2nd Order Autoregressions, Models, 1, 3, 5.

Fig. IV Spectra of 2nd Order Autoregressions, Models, 1 and 3.

Fig. V Functions Defined in (3.3.6), $N=36,48,60,72$.

Fig. VI Spectrum of Filtered $u(n),|B(\lambda)|^{2} f_{u}(\lambda)$, for Models 1 and 3 and Filter 4.

Fig. VII Spectrum of a Regressor in each Working Day Model.

Fig. VIII Response Function of 12 Month Moving Average and Intermediate Segment 'Trend' Extractor.

Fig. IX Response Function Given in (4.4.5) for λ_{1}, λ_{2} and λ_{3}.

Fig. X Iterative Updating of Estimates in the Upper and Lower Segments.

Fig. XI Intermediate Segment Seasonal Extractor Response Function.

Fig. XII Gain of Sum Over All Frequencies of (5.5.3): $v=0,20, \infty$.

Fig. XIII Gain of 'Trend' Extractor: Upper and Lower Segments: $\theta=15, v=0,6$.

Fig. XIV Evolution of $\hat{R}_{j}(n)$ for Each λ_{j}.
Fig. XV Graph of $\hat{\mathrm{s}}_{j}^{2}$ Against $\beta_{j}, j=1,2, \ldots, 6$.
Fig. XVI Response Function of the Demodulating Averages.
Fig. XVII 5 Term Average of Periodogram Ordinates for Residuals from a Stable Seasonal Pattern, i.e. $r(n)$. (a) Bank Advances

3 Term Average of Periodogram Ordinates of Original Data.

Fig. XIX 3 Term Average of Periodogram Ordinates of $y(n)$.
Fig. XX Normalized Spectral Density for Original Series, $M=24,36,48,60,72$.

Fig. XXI Coherence and Phase Between Original and Adjusted Series, $M=24,36,48,60,72$.

Table 1 Control Schemes I and II.
Table 2 Periodograms of $I_{\hat{x}}(\lambda)$ and $I_{\hat{x}}^{R}(\lambda)$, and Averages about each λ_{j}.

Table 3 Standard Deviations for Stable Seasonal Coefficients from Asymptotic Formula.

Table 4 Spectrum of Each Model Type.
Table 5 Trend Removing Filters.
Table 6 Generation of $\gamma_{u}(\tau), \tau=0,1, \ldots, M$.

Table 7
Ratio of Calculated Variance to Asymptotic Approximation.

Table 8
Overall Efficiency Indicators, E and E* for some Models.

Table 9
Functions Defined in $(3.3 .6)$ and $|B(\lambda)|^{2} f_{u}(\lambda)$ for Model 1 Filter (4), $N=36$.

Table 10

Table 11
Trend Extraction: One Sided Gain Values, $v=0,1,2,3,4,6,12,24,36,48, \infty$.

Table 12
One Sided Gain of the Sum Over All Frequencies of $(5.5 .3), v=0,1,2,6,12,30,48,60,72,84,96$.

Table 13
Estimates of $\left(\sigma_{j}^{2} / 2\right)$ and $2 \pi f_{x}\left(\lambda_{j}\right)$ Based on β_{j}
Couplets.
Table 14 Prediction Variances Using σ_{j}^{2} Estimates From Table 13 and $\beta_{j}=.96$.

Table 15 Estimates of ρ_{1}, τ_{1} and k_{1} Based on $\hat{\alpha}_{1}^{(0)}(n)$, $\hat{\beta}_{1}^{(0)}(n)$.

Table 16 Estimates of $\rho_{1}, \tau_{1}, k_{1}^{2}$ Based on $\hat{\alpha}_{1}^{(\infty)}(n)$, $\hat{\beta}_{1}^{(\infty)}(n)$.

Table 17 Estimates of ($\sigma_{1}^{2} / 2$) and $2 \pi f_{x}\left(\lambda_{1}\right)$ Using $\hat{\rho}_{1}, \hat{\tau}_{1}$, \widehat{k}_{1} From Table 16.

Table 18 Process Identification Statistics
(a) Centred 48 Term M.A. - Mean Corrected
(b) Repeated 24 Term M.A. - No Mean Correction
(c) Repeated 24 Term M.A. - Mean Corrected.

Table 19 Periodogram and Smoothed Periodograms of $y(n)$
(a) Motor Vehicles
(b) Bank Advances
(c) Wool.

APPENDICES

Appendix A: The Effect of Mis-Specification on Estimating the Disturbance Variance.

Appendix B: Periodogram Data for Figs. XVII and XVIII.
Appendix C: Program Output for Seasonal Model I and II.
Appendix D: Program Output for Cosine Filter and 12 Month Moving Average Filter.

1.1 Introduction

Because a stationary time series may be represented in spectral (or frequency) terms it has become apparent that certain areas of economic investigation can be effectively performed in this domain. This approach may arise because a priori information is most easily expressed in frequency terms or it may be that greater insight results from using spectral methods in conjunction with the more usual procedures developed for the time domain. A large area of empirical economics exists where data analysis in the frequency domain is not contemplated because of insufficient data. Nevertheless, where theoretical explanations are sought spectral methods may still be very useful.

The essential mathematical reasons for the introduction of spectral methods in data analysis will, it is hoped, appear from the discussion to follow. One misconception should however be mentioned here and dismissed. This is the notion that only where the idea of wave motion is present can these methods be expected to be useful. A typical expression of this viewpoint is:
'It is not the cyclical behaviour of an economy that is of interest to me but only the long term trend and so spectral methods are not relevant'. The reason for the usefulness of spectral methods is that they require only a general assumption of temporal homogeneity, which appears to be adequately fulfilled for most data discussed in this thesis. This assumption leads inexorably to spectral methods and this is no less truly so when the nature of the phenomena is such as to show no very marked oscillation. An examination of a monthly time series of economic data and for example an oceanographic record measured hourly over a period of a few days will not reveal any intrinsic differences which enable one to say one is a wave phenomenon and one is not.

Both series will show certain clear and nearly periodic oscillations (seasonal and tidal effects). Both will also show a large amount of fairly haphazard occasional fluxion. The fact that the term 'wave' occurs naturally in connection with the second phenomenon is a matter for historical explanation. In particular the later discussion will show, it is hoped, how relevant the spectral methods are to the measurement of trend as well as to the clearly oscillatory motion, called seasonal fluctuation.

Before developing applications of spectral methods in economic data analysis a general framework for this approach to time series analysis must be presented. This introductory chapter includes a sketch of underlying theory which is a necessary basis for discussion. In particular the results incorporated in 31.2-81.6 are well known - see for example Whittle [57], Grenander and Rosenblatt [18], Yaglom [59] and Hannan [19,20].
1.2 Spectral Representation

A series $x_{j}(n)$ is termed a second order stationary ${ }^{1}$ process if the second order moments depend only on t, i.e.

[^0]$\varepsilon\left(x_{j}(n) x_{k}(n+\tau)\right)=\gamma_{j k}(\tau) \quad j=1, \ldots, p ; n=0, \pm 1, \pm 2, \ldots$

In specifying stationarity it is assumed that $\varepsilon\left(x_{j}\right)=0$. This assumption will be used in presenting the theoretical background but will naturally be relaxed in Chapter II when the actual nature of economic data is given further consideration. If assumption (1.2.1) is valid the following relation may be derived
$\Gamma(\tau)=\left\{\gamma_{j k}(\tau)\right\}=\left\{\int_{-\pi}^{\pi} e^{i \tau \lambda \lambda^{d F}}{ }_{j k}(\lambda)\right\}$

$$
\begin{equation*}
=\int_{-\pi}^{\pi} e^{i \tau \lambda} d F(\lambda) \tag{1.2.2}
\end{equation*}
$$

where $F(\lambda)$ is the spectral distribution matrix and $\partial F(\lambda)$ a Hermitian, non-negative definite matrix. If $j=k$ then that element of the matrix is referred to as the cumulative power spectrum of the variable j. To develop greater understanding of the nature of the incremental spectral distribution matrix, $\mathrm{dF}(\lambda)$, the following properties of this matrix are stated and then employed

$$
\begin{equation*}
d F^{\prime}(\lambda)=d F^{\prime}(-\lambda)=\overline{d F(-\lambda)} \tag{1.2.3}
\end{equation*}
$$

i.e. $\quad \mathrm{dF}(-\lambda)=\overline{d F(\lambda)}$ or $d F^{\top}(-\lambda)=d F^{*}(\lambda)$.

The * on the $F(\lambda)$ matrix signifies the joint operation of transposition and conjugation. If the complex distribution function $F(\lambda)$ is rewritten as

$$
\begin{equation*}
F(\lambda)=\frac{1}{2}\{C(\lambda)-i Q(\lambda)\} \tag{1.2.4}
\end{equation*}
$$

where $C(\lambda)$ is a matrix composed of the real part of $F(\lambda)$ and $Q(\lambda)$ a matrix composed of the complex part of $F(\lambda)$, the expression (1.2.2) becomes
$\Gamma(\tau)=\int_{0}^{\pi}(\cos \tau \lambda d C(\lambda)+\sin \tau \lambda d Q(\lambda))$.

If it is assumed that $F(\lambda)$ is absolutely continuous and therefore

$$
d F(\lambda)=f(\lambda) d \lambda
$$

then

$$
\begin{equation*}
f(\lambda)=\frac{1}{2}\{c(\lambda)-i q(\lambda)\} \tag{1.2.6}
\end{equation*}
$$

where $c(\lambda)$ is the symmetric co-spectral density matrix and $q(\lambda)$ is the skew-symmetric quadrature spectral density matrix which leads to the rewriting of (1.2.5) as
$\Gamma(\tau)=\int_{0}^{\pi}(c(\lambda) \cos \tau \lambda+q(\lambda) \sin \tau \lambda) d \lambda$.

In (1.2.7) the second order moments of the series are represented in frequency terms. It is also illuminating to represent the series, rather than their moments, in this domain as follows

$$
\begin{align*}
x(n)=\left\{x_{j}(n)\right\} & =\left\{\int_{-\pi}^{\pi} e^{-i n \lambda^{d}} z_{j}(\lambda)\right\} \tag{1.2.8}\\
& =\int_{-\pi}^{\pi} e^{-i n \lambda} d z(\lambda)
\end{align*}
$$

where $Z(\lambda)$ is a vector such that

$$
\begin{align*}
\varepsilon\left(d Z\left(\lambda_{1}\right) d Z^{*}\left(\lambda_{2}\right)\right) & =0 & & \lambda_{1} \neq \lambda_{2} \tag{1.2.9}\\
& =d F(\lambda) & & \lambda_{1}=\lambda_{2}=\lambda .
\end{align*}
$$

The vector $Z(\lambda)$ is rewritten to make explicit its real part $U(\lambda)$ and its complex part $V(\lambda)$ as

$$
Z(\lambda)=\frac{1}{2}\{U(\lambda)+i V(\lambda)\}
$$

and a more illuminating expression for the series $x(n)$ is given by
$x(n)=\int_{0}^{\pi}\{\cos \lambda n d U(\lambda)+\sin \lambda n d V(\lambda)\}$
where the vectors $d U(\lambda)$ and $d v(\lambda)$ are such that
$\varepsilon\left\{\operatorname{dU}\left(\lambda_{1}\right) \mathrm{dU}^{\prime}\left(\lambda_{2}\right)\right\}=\varepsilon\left\{\operatorname{dv}\left(\lambda_{1}\right) \mathrm{dV}^{\prime}\left(\lambda_{2}\right)\right\}=\delta_{\lambda_{2}}^{\lambda_{1}} \mathrm{dC}\left(\lambda_{1}\right)$
$\varepsilon\left\{\operatorname{dU}\left(\lambda_{1}\right) \mathrm{dV}^{\prime}\left(\lambda_{2}\right)\right\}=\delta_{\lambda_{2}}^{\lambda^{I_{\mathrm{dQ}}}\left(\lambda_{1}\right)}$.

The symbol $\delta_{\lambda_{2}}^{\lambda_{1}}$ is unity where $\lambda_{1}=\lambda_{2}$ and zero otherwise. The representation of the vector series given in (1.2.10) lends itself most readily to interpretation, for a typical series $x_{j}(n)$ is a linear superposition of sinusoidal terms with random amplitudes and phases at each λ determined by $U_{j}(\lambda)$ and $V_{j}(\lambda)$.

If for the moment only two series $x_{j}(n)$ and $x_{k}(n)$ are considered then the correlation between the $n \lambda^{\text {th }}$ term for $x_{j}(n)$ in (1.2.10) and the $(n \lambda+\theta)^{\text {th }}$ term for $x_{k}(n)$ in (1.2.10) is maximized when

$$
\begin{equation*}
\theta_{j k}(\lambda)=\arctan \frac{\mathrm{dQ}_{j k}(\lambda)}{\mathrm{dC}_{j k}(\lambda)} \tag{1.2.12}
\end{equation*}
$$

and the value of this correlation is given by
$W_{j k}(\lambda)=\left\{\frac{d C_{j k}^{2}(\lambda)+d Q_{j k}^{2}(\lambda)}{d F_{j j}(\lambda) d F_{k k}(\lambda)}\right\}^{\frac{1}{2}}$.
The phase, $\theta_{j k}(\lambda)$, and the coherence, $W_{j k}(\lambda)$, are characteristics which measure the dependence of two time series, $x_{j}(n)$ and $x_{k}(n)$.

1.3 Linear Filtering

If the relation between two series is that the first series $y(n)$ is produced by the operation of a linear filter ${ }^{2}$ on the series $x(n)$ then a specific description of the dependence may be derived. To develop the filtering concept in more detail the transformation of a time series $x(n)\{n=0, \pm 1, \pm 2, \ldots \ldots\}$ to produce another series $y(n)\{n=0, \pm 1, \pm 2, \ldots \ldots$.$\} is known as linear digital filtering if$

2
A linear filter must have two properties. To economically express these requirements one defines L to be the operator which performs the filtering and U^{m} an operation which translates a variable m periods forward. The requirements of a linear filter are

$$
\begin{aligned}
& \text { (i) } I \sum \alpha_{j} x_{j}(n)=\sum_{j} \alpha_{j} L x_{j}(n) \\
& \text { and (ii) } L U^{m} x_{j}(n)=U^{m} L x_{j}(n) \text {. }
\end{aligned}
$$

$y(n)=\sum_{-\infty}^{\infty} b_{j} x(n-j) \quad n=0, \pm 1,+2, \ldots \ldots$.

The sequence of coefficients b_{j}, often restricted so that $\sum_{j}^{\infty}\left|b_{j}\right|<\infty$, is the impulse response of the filter. The essential condition that the b_{j} must satisfy is that $B(\lambda)$, defined below, must be square integrable with respect to $d F(\lambda)$. A more important function, derived from this sequence, is

$$
\begin{equation*}
B(\lambda)=\sum_{j^{-\infty}}^{\infty} j^{-i j \lambda} \tag{1.3.2}
\end{equation*}
$$

the frequency response function of the filter, which can obviously be complex for a real series b_{j}. The importance of this response function arises from its use in interpreting the action of the filter on an arbitrary series. It can be interpreted as the way in which an input of a complex harmonic, $e^{i \lambda n}$ will be modified at each frequency to provide an output, since the output procedure is $B(\lambda) e^{i \lambda n}$. This function is also valuable in relating the spectral distributions of the input and output series as follows,

$$
\begin{equation*}
d F_{y}(\lambda)=|B(\lambda)|^{2} d F_{x}(\lambda) \tag{1.3.3}
\end{equation*}
$$

Thus the spectral distribution of the filtered series is produced by multiplying the original spectral distribution function by $|B(\lambda)|^{2}$, where $|B(\lambda)|$ is known as the gain of the filter. When the input to the filter is a vector time series the relation between the input and output vector is

$$
\begin{equation*}
d F_{y}(\lambda)=B(\lambda) d F_{x}(\lambda) B^{*}(\lambda) \tag{1.3.4}
\end{equation*}
$$

where $B(\lambda)$ is now a matrix and is best comprehended by exhibiting its form when the most common form of filtering,

$$
\begin{equation*}
\underline{y}(n)=\sum_{j-\infty}^{\infty} B j \underline{x}(n-j), \tag{1.3.5}
\end{equation*}
$$

is used. If this situation, where \underline{y} and \underline{x} are vectors and the B_{j} are matrices, the matrix function $B(\lambda)$ in (1.3.4) is given by

$$
\begin{equation*}
B(\lambda)=\sum_{-\infty}^{\infty} B_{j} e^{i j \lambda} . \tag{1.3.6}
\end{equation*}
$$

Filtering of the above kind will, except for special circumstances, inevitably introduce phase shifts. The relative phase between the $j^{\text {th }}$ and $k^{\text {th }}$ series depends only upon the cross spectrum and even if $B(\lambda)$ was diagonal the cross-spectrum would be changed. If $B(\lambda)$ is diagonal and real this will not happen. In particular this will be so if $B_{j}=B_{-j}$ and the filter is therefore symmetric. But if a one sided filter (i.e. $B_{j} \equiv 0$ for either $j<0$ or $j>0$) is used it must introduce phase shifts.

1.4 Spectral Estimation

It would be rather pointless developing a representation of an economic time series vector in the frequency domain if the fundamental quantities in this representation, $f_{j k}(\lambda),{ }^{3}$ were not able to be estimated. The general estimation procedures are only briefly outlined as more detailed problems are set aside for further consideration in Chapter II.

In a statistical analysis of a time series $x(n)$ which is to concentrate on sources of variation the finite Fourier transform $w(\lambda)$ plays an important role. The finite Fourier transform is defined as
$w(\lambda)=\{1 / \sqrt{2 \pi N}\} \Sigma_{1}^{N} X(n) e^{i n \lambda}$
and is evaluated at the points $\lambda=\frac{2 \pi \mathrm{k}}{\mathrm{N}}$, for $\mathrm{k}=1,2, \ldots, N$, where \mathbb{N} is the number of observations in the realization. The quantity defined in (1.4.1) is very simply related to the periodogram $I(\lambda)$,

$$
\begin{equation*}
I(\lambda)=w(\lambda) w^{*}(\lambda) . \tag{1.4.2}
\end{equation*}
$$

The periodogram was the focal point of early studies of the source of variation in time series. The following expectation

[^1]$\varepsilon(I(\lambda))=\{1 / 2 \pi N\} \varepsilon\left|\Sigma_{1}^{N} X(n) e^{i n \lambda}\right|^{2}$
\[

$$
\begin{equation*}
=\{1 / 2 \pi\} \sum_{-\mathbb{N}+1}^{N-1}\left\{1-\left|\frac{n}{N}\right|\right\} \Gamma(n) e^{i n \lambda} \tag{1.4.3}
\end{equation*}
$$

\]

indicates that since $\varepsilon(I(\lambda))$ is equal to the Cesaro mean of $f(\lambda)$ it will converge to $f(\lambda)$ as N becomes large, if, for example, $f(\lambda)$ is continuous. It is well known however that $I(\lambda)$ is not a consistent estimate of $f(\lambda)$. This defect does not prevent the periodogram from being of use in the discussion of estimates of spectra and cross-spectra because it reappears in a modified form in the appropriate estimates of spectral quantities.

If in choosing an estimator for $f(\lambda)$ the choice is

restricted to a quadratic function of the observations, since the spectrum is itself a quadratic quantity, then the form of the estimator is

$$
\begin{equation*}
\hat{f}_{j k}(\lambda)=\sum_{m p} b_{m p}(\lambda) x_{i}(m) x_{j}(p) . \tag{1.4.4}
\end{equation*}
$$

It is natural in a context of stationarity to restrict the coefficients to depend only on the lag ($\mathrm{m}-\mathrm{p}$) and Grenander and Rosenblatt [18] have vindicated such a choice. Replacing $b_{m p}$ by $b_{m-p}(1.4 .4)$ can be rewritten as (see [18,p 123])
$\hat{\mathrm{f}}_{j k}(\lambda)=\frac{1}{2 \pi} \sum_{-\mathbb{N}+1}^{N-1} k_{n} e^{-i n \lambda}\left(\left.1-\frac{|n|}{N} \right\rvert\,\right) c_{j k}(n)$
where
$c_{j k}(n)=\frac{1}{N-n} \sum_{m^{1}}^{N-n} x_{j}(m) x_{k}(m+n)$.
The function k_{n} is interpreted as a covariance averaging kernel and its Fourier transform is,

$$
\begin{equation*}
K_{N}(\lambda)=\frac{1}{2 \pi} \sum_{-N_{+}+1}^{N-1} k_{n} e^{-i n \lambda} \tag{1.4.6}
\end{equation*}
$$

known as the spectral window. The use of the spectral window leads to a highly instructive expression for the estimator $\hat{f}_{j k}$,
i.e.
$\hat{f}_{j k}(\lambda)=\frac{\pi}{N} \sum_{-N+1}^{N-1} K_{N}\left(\lambda-\frac{\pi n}{N}\right) I_{j k}\left(\frac{\pi n}{N}\right)$

$$
\begin{equation*}
=\int_{-\pi}^{\pi} K_{N}(\lambda-\theta) I_{j k}(\theta) d \theta . \tag{1.4.7}
\end{equation*}
$$

It is not obvious that the two expressions in (1.4.7) are equal and it is surprising that the integral should exactly equal its approximate sum. The first relation in (1.4.7) is due to the orthogonality properties of $\phi_{k}(n)=\exp \{(i n \pi k) / N\}, n=-N+1, \ldots, N$. The latter is due to the orthogonality properties of $\phi_{k}(\lambda)=\exp \{\operatorname{in} \lambda\}$ as function of λ on $(-\pi, \pi)$. The representation of the estimator given in (1.4.7) clearly points out that estimators of the form chosen consist of a view of the periodogram ordinates. The nature of the view is determined by $K_{N}(\lambda)$, the spectral window.

1.5 Prediction and Signal Extraction

The techniques developed in this section relate mainly to any real world phenomena which generate an observed series which may be considered as a signal (another series) which is unobservable because it is obscured by a further unobservable (noise) series. The technique is also suitable for predicting the value of the signal series at some time point in the future. The information we do have about the phenomena is the spectral (or equivalent) properties of the signal and noise series.

An introduction to these topics could begin in either the time or frequency domain and ideally both approaches should be presented as they are complementary. As my object is merely to sketch the basis of techniques used later this can be done most economically by presenting the methods as an example of filtering methods.

If a predictor $\hat{x}(n)$ is to be based on either a finite number (say p) of past values of the variable x or the complete past history of x, then a linear predictor is of the form
$\hat{x}^{(p)}(n)=b_{1} x(n-1)+b_{2} x(n-2)+\cdots \cdots+b_{p} x(n-p)$
$\hat{x}(n)=b_{1} x(n-1)+b_{2} x(n-2)+\cdots \cdot \cdot$.
The spectral representation of $\hat{x}(n)$ (a scalar example of (1.2.8)) is

$$
\begin{equation*}
\hat{x}(n)=\int_{-\pi}^{\pi} e^{-i n \lambda} B(\lambda) d Z(\lambda) \tag{1.5.2}
\end{equation*}
$$

where

$$
B(\lambda)=b_{1} e^{i \lambda}+b_{2} e^{i 2 \lambda}+\cdots \cdots
$$

and $B^{(p)}(\lambda)=b_{1} e^{i \lambda}+b_{2} e^{i 2 \lambda}+\cdots \cdots+b_{p} e^{i p \lambda}$.

The residual or innovation is defined in terms of these quantities as $x(n)-\hat{x}(n)$. The spectral representation of the innovation is
$x(n)-\hat{x}(n)=\int_{-\pi}^{\pi} e^{-i n \lambda}\{1-B(\lambda)\} d z_{x}(\lambda)$
and therefore the mean square prediction error will be
$\varepsilon\left\{(x(n)-\hat{x}(n))^{2}\right\}=\int_{-\pi}^{\pi}|1-B(\lambda)|^{2} d F_{x}(\lambda)$.

This minimal mean square prediction error for a linear predictor may be shown to be
$\varepsilon\left\{(x(n)-\hat{x}(n))^{2}\right\}=\exp \left[\left(\frac{1}{2 \pi}\right) \int_{-\pi}^{\pi} \log \left(2 \pi f_{x}(\lambda)\right) d \lambda\right]$
and equation (1.5.6) therefore indicates that the prediction error depends only on the absolutely continuous part of the spectrum, for any term contributing to a jump would be perfectly predictable on the basis of the infinite past.

It is possible that an optimal predictor of $x(n)$ may not be expressible in the form (1.5.1) but instead one may have to define it by a sequence of predictors $\hat{X}^{(p)}(n)$ with p increasing indefinitely and the coefficients of $x(n-j)$ depending on p.

Two loose ends must be tied up. First, how is an appropriate $B(\lambda)$ decided upon? Second, can this formulation suitably handle problems of prediction and signal extraction. So far the predictor of $x(n)$ has been based on either a finite or infinite number of past values of x. The predictor $\hat{x}(n+v), v \geqq l$, is a prediction of $x(n+v)$ based on the values of x, up to and including IV. So we can represent $x(n+v)$ as follows

$$
\hat{x}(n+\nu)=\int_{-\pi}^{\pi} e^{-i n \lambda_{B}(\nu)}(\lambda) d z(\lambda)
$$

where $B^{(\nu)}(\lambda)=b_{0}^{(\nu)}+b_{1}^{(\nu)} e^{i \lambda}+b_{2}^{(\nu)} e^{i 2 \lambda}+\ldots .$. . Another time series $y(n)$ is introduced and it is assumed that $y(n)$ and $x(n)$ are jointly covariance stationary. For expositional convenience only, it is also assumed that both series have spectral representations containing only an absolutely continuous part. The cross covariance between the two series is therefore given by
$\varepsilon(x(m) y(n))=\int_{-\pi}^{\pi} e^{i \lambda(n-m)} f_{x y}(\lambda) d \lambda$.
If the series $y(n)$ is just the x series translated v periods forward, i.e. $y(n)=x(n+v)$, then (1.5.8) becomes (see (1.2.2))
$\varepsilon(x(m) x(n+\nu))=\int_{-\pi}^{\pi} e^{i \lambda(n-m)} e^{i \nu \lambda_{f x}}(\lambda) d \lambda$.
It is possible however to regard $y(n)$ as the signal series where a predictor of this series is to be obtained from the observed series $x(m)$. The prediction of $y(n)$, on the basis of $x(m), m \leqq n$, is

$$
\hat{y}(n)=c_{0} x(n)+c_{1} x(n-1)+\cdots \cdots
$$

and its spectral representation is

$$
\begin{equation*}
\hat{y}(n)=\int_{-\pi}^{\pi} e^{-i \lambda n} C(\lambda) d z_{x}(\lambda) \tag{1.5.11}
\end{equation*}
$$

with ${ }^{5}$

$$
\begin{equation*}
c(\lambda)=\sum_{j} c_{j} e^{i j \lambda} . \tag{1.5.12}
\end{equation*}
$$

The development of the determination of the c_{j} coefficients is that given by Whittle [57]. The frequency response (1.5.12) is written in terms of $z=e^{i \lambda}$ so that $C(z)$, often referred to as the transfer function, is

$$
\begin{equation*}
c(z)=\sum_{j} c_{j} z^{j} . \tag{1.5.13}
\end{equation*}
$$

The covariance generating functions $g_{x x}(z), g_{x y}(z)$ are assumed analytic in a region $\rho<z<\rho^{-1}(0<\rho<1)$ and so are represented as

$$
\begin{align*}
& g_{x x}(z)=\sum_{\tau-\infty}^{\infty} z^{\tau} c_{x x}(\tau) \tag{1.5.14}\\
& g_{x y}(z)=\sum_{\tau-\infty}^{\infty} z^{\tau} c_{x y}(\tau) .
\end{align*}
$$

If the c_{j} coefficients are chosen to minimize the mean square error, $\varepsilon(y(n)-\hat{y}(n))^{2}$, then the following relation between the covariances and the c_{j} coefficients must hold,
$\sum_{j}^{\infty}{ }^{\infty} c_{x x}(k-j) c_{j}=c_{x y}(k), \quad k=0,1,2, \ldots$.
If (1.5.15) is multiplied by z^{k} and added over all integral k then this expression becomes
$\sum_{K^{0}}^{\infty} \sum_{j} \sum_{0}^{-\infty} c_{x x}(k-j) c_{j} Z^{k}=\sum_{k}^{\infty} c_{x y}(k) z^{k}$
$\therefore \sum_{k}^{\infty}{ }^{0} \sum_{j}^{\infty}{ }_{0}^{c} x x(k-j) c_{j} z^{k-j} z^{j}=\sum_{k}^{\infty}{ }^{\infty} c_{x y}(k) z^{k}$.
The left hand side of (1.5.16) may be written as $g_{x x}(z) C(z)-h_{1}(z)$ where $h_{1}(z)$ involves only negative powers of z and similarly the right hand side can be thought of as $g_{x y}(z)-h_{2}(z)$ where again $h_{2}(z)$ contains only negative powers of z and thus (1.5.16) becomes

[^2]$$
g_{x x}(z) c(z)=h(z)+g_{x y}(z)
$$
where $h(z)=h_{1}(z)-h_{2}(z)$ is an expression in negative powers of z. If it is assumed that the prediction error is positive (see (1.5.6)) then $g_{x x}(z)$ may be factorized as follows,
\[

$$
\begin{align*}
& g_{x x}(z)=\sigma^{2}|\theta(z)|^{2}=\sigma^{2} \theta(z) \theta\left(z^{-1}\right), \\
& \theta(z)=1+\theta_{1} z+\theta_{2} z^{2}+\cdots \cdots, \tag{1.5.18}
\end{align*}
$$
\]

to provide what is termed a canonical factorization. ${ }^{6}$ If (1.5.17)
is divided by $\theta\left(z^{-1}\right)$ then it may be rewritten as

$$
\begin{equation*}
\sigma^{2} \theta(z) c(z)=\frac{h(z)}{\theta\left(z^{-1}\right)}+\frac{g_{x y}(z)}{\theta\left(z^{-1}\right)} . \tag{1.5.19}
\end{equation*}
$$

Because the term on the left hand side of (1.5.19) consists only of positive powers of z and because the first term on the right hand side consists only of negative powers then equating of like powers of z produces a solution for $C(z)$ of the form

6
To uniquely define the canonical factorization it is required that $\theta(z)$ has no zeros for $|z|<l$ for although

$$
\frac{1}{2 \pi}\left\{\frac{1}{1+\rho^{2}-2 \rho \cos \lambda}\right\}=\frac{1}{2 \pi}\left\{\frac{1}{(1-\rho z)\left(1-\rho z^{-1}\right)}\right\}=\theta(z) \theta\left(z^{-1}\right)
$$

it is also true that
$\frac{1}{2 \pi}\left\{\frac{1}{1+\rho^{2}-2 \rho \cos \lambda}\right\}=\frac{1}{2 \pi}\left\{\frac{1}{\rho^{2}\left(1-\rho^{-1} z\right)\left(1-\rho^{-1} z^{-1}\right)}\right\}=\frac{1}{2 \pi}\left\{\frac{1}{\left(\rho\left(1-\rho^{-1} z\right)\right)\left(\rho\left(1-\rho^{-1} z^{-1}\right.\right.}\right.$

$$
=\phi(z) \phi\left(z^{-1}\right)
$$

however the zero of $\phi(z)$ is within the unit circle.

$$
\begin{equation*}
(z)=\frac{1}{\sigma^{2} \theta(z)}\left[\frac{g_{x y}(z)}{\theta\left(z^{-1}\right)}\right]_{+} . \tag{1.5.20}
\end{equation*}
$$

As it may be shown [57, pp 67-8] that $\sum_{k^{0}}^{\infty} \sum_{j}^{\infty}{ }^{0}{ }^{C}{ }_{x x}(k-j) c{ }_{j} z^{k}$ has a
valid Laurent representation in an annulus including the unit circle, the symbol + indicates that only the positive terms in a Laurent expansion should be used. The formula given in (1.5.20) may be regarded as a general solution which may be shown to cover the following cases.
(a) Prediction v steps ahead is handled by setting $y(n)=x(n+v)$. This results in a simplification of the covariance generating function $g_{x y}(z)$ so that

$$
\begin{align*}
g_{x y}(z) & =z^{\nu} g_{x x}(z) \tag{1.5.21}\\
& =z^{\nu} \theta(z) \theta\left(z^{-1}\right) \sigma^{2}
\end{align*}
$$

The generating function given in (1.5.20) then becomes

$$
\begin{equation*}
C(z)=\frac{I}{\theta(z)}\left[\theta(z) z^{\nu}\right]_{+} . \tag{1.5.22}
\end{equation*}
$$

(b) Extraction of a signal series $s(n)$ at time point n, where the observed series $x(n)=s(n)+\epsilon(n)$ and $s(n)$ and $\epsilon(n)$ are independent. If $y(n)=s(n)$ then $g_{x y}(z)=g_{S S}(z)$, since $\epsilon(n)$ and $s(n)$ are independent so that the appropriate generating function is now

$$
\begin{equation*}
C(z)=\frac{1}{\sigma^{2} \theta(z)}\left[\frac{g_{S S}(z)}{\theta\left(z^{-1}\right)}\right]_{+} . \tag{1.5.23}
\end{equation*}
$$

(c) Prediction $v>0$ or Signal Extraction $v \leqq 0$ of $s(n)$ in similar circumstances to those given in (b). Now $y(n)=s(n+v)$ and therefore $g_{x y}(z)=z^{\nu} g_{S S}(z)$ and the generating function specializes to

$$
\begin{equation*}
C(z)=\frac{1}{\sigma^{2} \theta(z)}\left[\frac{g_{S S}(z) z^{\nu}}{\theta\left(z^{-1}\right)}\right]_{+} . \tag{1.5.24}
\end{equation*}
$$

In the above examples the formulae for the coefficients of the predictor $\hat{y}(n)$ are established. It is straightforward to attach an expression for the mean square prediction error, which for convenience is related to the general generating function (1.5.20). If $\log g_{x x}(z)$ has a valid Laurent expansion in the annulus $\rho<|z|<\rho^{-1}$ where $0<\rho<1$ (see again footnote 6) then $x(n)$ has both a moving average and autoregressive representation. Suppose the predictor is

$$
\begin{equation*}
\hat{y}(n)=\sum_{j}^{\infty} c_{j} x(n-j) \tag{1.5.25}
\end{equation*}
$$

then employing the moving average representation of x which is

$$
\begin{equation*}
x(n)=\sum_{k}^{\infty}{ }_{o}^{b_{k}} \epsilon(n-k) \tag{1.5.26}
\end{equation*}
$$

where the $\epsilon(n)$ are independently and identically distributed random variables with zero mean and variance σ^{2}, (I.I.D. (0, σ^{2})), the expression for the predictor in terms of the $\epsilon(n)$ is

$$
\begin{align*}
\hat{y}(n) & =C(z) B(z) \epsilon(n) \tag{1.5.27}\\
& =q(z) \epsilon(n)
\end{align*}
$$

with $B(z)=\sum_{k}^{\infty} o_{k} z^{k}$ and $q(z)=\sum_{j}^{\infty} q_{j} z^{j}$.
The mean square prediction error is given by

$$
\begin{align*}
\varepsilon(y(n)-\hat{y}(n))^{2} & =\operatorname{var}(y(n))+\varepsilon \hat{y}^{2}(n)-2 \varepsilon \hat{y}(n) y(n) \\
& =\operatorname{var}(y(n))+\sum_{j}^{\infty} q_{j}^{2}-\sum_{j}^{\infty} q_{j} k \tag{1.5.28}\\
& =\operatorname{var}(y(n))-\sum_{j}^{\infty} k_{j}^{2}+\sum_{j}^{\infty}\left(k_{j}-q_{j}\right)^{2}
\end{align*}
$$

where $k_{j}=\operatorname{cov}(y(n) \in(n-j))$.
The expression for the prediction error will be minimized if $q_{j}=k_{j}$ and the resulting prediction error is

$$
\begin{align*}
\varepsilon(y(n)-\hat{y}(n))^{2} & =\operatorname{var}(y(n))-\sum_{0}^{\infty} q_{j}^{2} \\
& =\operatorname{var}(y(n))-\hat{A}|q(z)|^{2} \tag{1.5.29}\\
& =\operatorname{var}(y(n))-\oiint|C(z) B(z)|^{2}
\end{align*}
$$

where
$A|q(z)|^{2}=\frac{1}{2 \pi i} \oint_{|z|=1} \frac{q(z) q\left(z^{-1}\right)}{z} d z$
and
$C(z) B(z)=\frac{1}{\sigma^{2}}\left[\frac{g_{x y}(z)}{B\left(z^{-1}\right)}\right]_{+} \cdot 7$

The prediction methods are now slightly extended to cover an area of obvious application when the signal is what is termed an accumulated process. Thus the signal is assumed to be a solution of

$$
\Delta^{p} s(n)=\eta(n)
$$

where $\eta(n)$ is a stationary process with covariance generating function $g_{\eta \eta}(z)$, which is analytic in an annulus including $|z|=1$. The nature of the process generated in this way is best understood by reference to the following autoregressive process

$$
\begin{equation*}
\sum_{j}^{p_{d}} s(n-j)=\eta(n) \tag{1.5.31}
\end{equation*}
$$

where $\eta(n)$ in this situation is an autocorrelated error term. For the process to be stationary and stable the zeros of $\sum d_{j} z^{j}$ must be outside the unit circle, thus a zero of order p at $z=1$ will result in an evolutive process. The evolution has two sources: a polynomial trend and the variance which is increasing with n.

The observation-signal-noise model is still

$$
\begin{equation*}
x(n)=s(n)+\epsilon(n) \tag{1.5.32}
\end{equation*}
$$

but now

$$
\begin{equation*}
(1-\phi(z))^{p} s(n)=\eta(n) \tag{1.5.33}
\end{equation*}
$$

7
The expression for $C(z) B(z)$ is easily obtained from (1.5.20) since (1.5.26) implies $g_{x x}(z)=B(z) B\left(z^{-1}\right) \sigma^{2}$ so that $B(z)=\theta(z)$.
with $\eta(n)$ having the properties given in $(1.5 .30)$ and $-1<\phi \leqq 1 . .^{8}$ If we employ the formulae already given for a prediction of $\hat{s}(n+v)$ in terms of the $x(n)$'s the coefficients for the predictor are obtained from

$$
\begin{equation*}
C(z)=\frac{1}{B(z)}\left[\frac{g_{S S}(z)}{z^{v_{B}\left(z^{-1}\right)}}\right]_{+} \tag{1.5.34}
\end{equation*}
$$

Application of the operator $(1-\phi z)^{p}$ to both sides of $(1.5 .32)$ gives

$$
\begin{align*}
(1-\phi z)^{p} x(n) & =\eta(n)+(1-\phi z)^{p} \in(n) \tag{1.5.35}\\
p(n) & =\eta(n)+(1-\phi z)^{p} \in(n)
\end{align*}
$$

i.e.
making the obvious substitution $p(n)=(1-\phi z)^{p} x(n)$. The new variable $p(n)$ is assumed to have the following canonical factorization

$$
\begin{equation*}
g_{p p}(z)=\sigma^{2} D(z) D\left(z^{-1}\right) \tag{1.5.36}
\end{equation*}
$$

and because there is the obvious relation

$$
\begin{equation*}
g_{x x}(z)=\frac{1}{|1-\phi z|^{2 p}} g_{p p}(z) \tag{1.5.37}
\end{equation*}
$$

then

$$
\begin{equation*}
B(z)=\frac{1}{|1-\phi z|^{p}} D(z), \tag{1.5.38}
\end{equation*}
$$

using the representation of $B(z)$ given in (1.5.38) and using (1.5 .33) to obtain an expression for $g_{S S}(z)$ in terms of the formula for the prediction coefficients given in (1.5.34), becomes

$$
\begin{equation*}
C(z)=\frac{(1-\phi z)^{p}}{D(z)}\left[\frac{g_{\eta \eta}(z)}{z^{\nu}(I-\phi z)^{p}\left(z^{-1}\right)}\right] \tag{1.5.39}
\end{equation*}
$$

[^3]Two comments on the utilization of (1.5.39) are called for. First the extraction of the canonical factor $D(z)$ is obtained from the relation between spectra or covariance generating functions implied by (1.5.35). Second, Whittle [57,p 93] rewrites the expression for $C(z)$ as follows
$C(z)=\frac{1}{D(z)}\left\{\Sigma_{0}^{p-1} \psi_{j}(1-\phi z)^{j}+\left[\frac{g_{\eta \eta}(z)}{z_{D}^{\nu}\left(z^{-1}\right)}\right]_{+}\right\}$
with the first term in the brackets arising from Taylor's
expansion of $\left[\frac{g_{\eta \eta}(z)}{z^{\nu} D\left(z^{-1}\right)}\right]_{-}$about ϕ^{-1}, i.e. from the representation
of $\left[\frac{g_{\eta \eta}(z)}{z_{D}\left(z^{-1}\right)}\right]_{-1}=Q_{-}$as a partial Taylor's expansion about ϕ^{-1}
of the following form,
$Q_{-}(z)=\sum_{j}^{p-1} \frac{\left(Q^{(j)}(z)-\phi^{-1}\right)}{j!}\left(z-\phi^{-1}\right)^{j}$.
This latter representation may facilitate the actual computations of the predictor.

1. 6 Regression for Time Series

Often the situation under consideration is one where the signal is actually known, rather than the situation considered in the previous section where the only knowledge available related to second order properties of the signal, i.e. the spectral distribution or covariance generating function. This section presents, without proof, well established results (see [18], [20]) which underpin the consideration of single equation regression procedures when the interdependence of observations at different points of time are essential to the model.

The single equation model is

$$
\begin{equation*}
z(n)=y(n) \delta+e(n) \tag{1.6.1}
\end{equation*}
$$

or in matrix notation is

$$
\begin{equation*}
z=Y \delta+e \tag{1.6.2}
\end{equation*}
$$

where e is an \mathbb{N} dimensional (non-observable) vector arising from a stationary process with zero mean and a covariance matrix, $\varepsilon\left(e^{\prime}\right)=\Gamma_{\mathbb{N}} \cdot Y$ is composed of r sequences of known constants and δ is an r dimensional vector of unknown constants, which are to be estimated. If the covariance matrix $\Gamma_{\mathbb{N}}$ is known then the Best Linear Unbiassed Estimator (B.L.U.E.) is

$$
\begin{equation*}
\tilde{\delta}=\left(Y^{1} \Gamma_{\mathbb{N}}^{-1} Y\right)^{-I} Y^{\prime} \Gamma_{\mathbb{N}}^{-1} Z \tag{1.6.3}
\end{equation*}
$$

with covariance matrix

$$
\begin{equation*}
\Gamma_{\tilde{\delta}}=\left(Y^{\mathbf{t}} \Gamma_{\mathbb{N}}^{-1} Y\right)^{-1} \tag{1.6.4}
\end{equation*}
$$

If the Least Squares Estimator (L.S.E.) is used in these circumstances then this estimator $\hat{\delta}$ is

$$
\begin{equation*}
\hat{\delta}=\left(Y^{\prime} Y\right)^{-1} Y^{\prime} Z \tag{1.6.5}
\end{equation*}
$$

with covariance matrix

$$
\begin{equation*}
\Gamma_{\hat{\delta}}=\left(Y^{\prime} Y\right)^{-1}\left(Y^{\mathbf{t}} \Gamma_{N} Y\right)\left(Y^{\prime} Y\right)^{-1} . \tag{1.6.6}
\end{equation*}
$$

If $\Gamma_{N}(\neq I)$ is unknown then any reasonably efficient procedure will be highly non-linear, involving an estimate of $\Gamma_{\mathbb{N}}$ before estimating of δ begins. The best one can hope to do then is to obtain some form of asymptotically good estimator and some asymptotic expansion, or perhaps the first term in one, for the limiting distribution. For this reason the $y_{j}(n)$ which make up the Y matrix, that is the regressor variables, must be invested with certain asymptotic properties. These properties are usually referred to as Grenander's conditions [18], and are:
(i) $\quad \lim _{\mathbb{N} \rightarrow \infty} \Sigma_{n^{1}}^{\mathbb{N}}{ }_{j}^{2}(n)=\lim _{\mathbb{H} \rightarrow \infty} d_{j}^{2}(\mathbb{N})=\infty$.

This condition ensures that consistent estimates of the parameters, δ, exist for otherwise the variance of $\hat{\delta}$ could not be expected to decrease as N increases. This assumption provides no practical difficulties.
(ii) $\lim _{\mathbb{N} \rightarrow \infty} \frac{y_{j}^{2}(\mathbb{N})}{a_{j}^{2}(\mathbb{N})}=0$.

The regressor variables, thus restricted, will not increase too fast, guaranteeing that end effects which are neglected are truly asymptotically negligible. It should be noted that an exponentially increasing (or decreasing) sequence does not satisfy Grenander's conditions. Special techniques would be needed for the exponentially increasing case since then the last few observations will never be negligible.
(iii) $\lim _{\mathbb{N} \rightarrow \infty}\left[\frac{\sum_{1}^{N} y_{j}(n) y_{k}(n+m)}{\alpha_{j}(\mathbb{N}) d_{k}(\mathbb{N})}\right]=\rho_{j k}(m)$ exists.

This condition in conjunction with (ii) ensures that

$$
\lim _{\mathbb{N} \rightarrow \infty}\left[\frac{\sum_{1}^{N-m_{y_{j}}}(n) y_{k}(n+m)}{\alpha_{j}(\mathbb{N}) \alpha_{k}(\mathbb{N})}\right]=\rho_{j k}(m)
$$

Consider a vector of the form

$$
x(n)=\sum_{j-\infty}^{\infty} A(j) \in(n-j)
$$

where the $\epsilon(\mathrm{n})$ are identically and independently distributed random vectors with zero means, finite fourth moments and $\Sigma\|A(j)\|<\infty$ where $\|A(j)\|$ is the norm of the matrix $A(j)$ j
(i.e. the smallest number m such that $|A x| \leqq m|x|$ for all vectors x, where $|x|$ is the length of the vector). Then it may be shown that $x(n)$ is stationary and satisfies (i), (ii), (iii). However, $x(n)$ could be modified by adding $\mu(n)$, where e.g. $\mu(n)=\Sigma \alpha_{j} n^{j}$ and the conditions would still hold. Similarly after addition of a finite number of terms of the kind $\alpha_{n}{ }^{j} \cos (n \theta+\phi)$ the sequence would still satisfy the properties. The sequences may therefore be evolving relatively rapidly but not exponentially. Defining
$R(m)=\left[\begin{array}{cccc}\rho_{11}(m) & \rho_{12}(m) & \cdots & \rho_{1 r}(m) \\ \vdots & \vdots & \vdots & \\ \vdots & \vdots & \vdots & \cdots \\ \rho_{r 1}(m) & \rho_{r 2}(m) & \cdots \cdots & \rho_{r r}(m)\end{array}\right]$
the spectral representation of the 'correlation' matrix is
$R(m)=\int_{-\pi}^{\pi} e^{i m \lambda} d M(\lambda)$
where $M(\lambda)$ is a matrix function with increments which are Hermitian, non-negative definite matrices, and, moreover, $d M(-\lambda)=\overline{d M(\lambda)}$ (since $\left.\rho_{j k}(m)=\rho_{k j}(-m)\right)$. Thus for the case of a polynomial regression of degree ($q-1$) the matrix $M(\lambda)$ is composed of elements $m_{j k}(\lambda)$ that are zero up to $\lambda=0$ and then jump by $(j+k+1)^{-1} \sqrt{(2 j+1)(2 k+1)}$ remaining at that value thereafter. In another case where $r=3, y_{1}(n) \equiv 1, y_{2}(n)=\cos \theta n$, $y_{3}(n)=\sin \theta n, \theta \neq 0, \pi$, there are three points of increase for $M(\lambda) ; \quad-\theta, 0, \theta$. The three increments are

If there were $2 \ell_{+} 1$ terms corresponding to the frequencies $0, \theta_{1}, \ldots, \theta_{l},\left(\theta_{1}, \ldots, \theta_{l} \neq 0, \pi\right)$ then $M(\lambda)$ would have $2 \ell_{4} 1$ points of increase at $t \theta_{j}, j=1, \ldots, l$ and at the origin. The increase at θ_{j} has zero elements except in the row and column corresponding to $\cos \theta_{j}, \sin \theta_{j}$ where the submatrix would be of the form of that in the last two rows and columns of the last matrix of increments displayed above. If cosTn is adjoined to the set there would be an additional jump at π which would be of the same nature as the jump at the origin. The allowable regressors do not restrict the model to consideration of only stationary z sequences as it is possible to introduce non-stationarity into the model through the mean.

It is useful to obtain an expression in spectral terms for the covariances of the B.I.U.E. and the L.S.E. when
(a) the regressors satisfy Grenander's conditions
(b) the spectral density of $e(n), f(\lambda)$, is continuous ${ }^{9}$
(c) $f(\lambda) \geqq \alpha>0, \quad \lambda \varepsilon[-\pi, \pi]$.

Defining $D_{\mathbb{N}}=\left[\begin{array}{cc}a_{1}(\mathbb{N}) & \\ a_{2}(\mathbb{N}) & 0 \\ 0 & a_{r}(\mathbb{N})\end{array}\right]$ the expressions required are
$\lim _{N \rightarrow \infty}\left\{D_{N} \varepsilon \in\left\{(\hat{\delta}-\delta)(\hat{\delta}-\delta)^{\prime}\right\} D_{N}\right\}=\left[R^{-1}(0)\left\{\int_{-\pi}^{\pi} 2 \pi f(\lambda) \operatorname{dM}(\lambda)\right\} R^{-1}(0)\right]^{-1}$
$\lim _{N \rightarrow \infty}\left\{D_{N} \varepsilon\left\{(\tilde{\delta}-\delta)(\tilde{\delta}-\delta)^{\prime}\right\} D_{N}\right\}=\left[\int_{-\pi}^{\pi}\left\{2 \pi f^{\prime}(\lambda)\right\}^{-1} \mathrm{dM}(\lambda)\right]^{-1}$.

To discuss the conditions which lead to equality of (1.6.9) and (1.6.10) it is helpful to define

$$
\begin{equation*}
\mathbb{N}(\lambda)=R^{-\frac{1}{2}}(0) M(\lambda) R^{-\frac{1}{2}}(0) \tag{1.6.11}
\end{equation*}
$$

so that $\mathbb{N}(\lambda)$ is also Hermitian with non-negative increments and $\mathbb{N}(-\pi)=0, \mathbb{N}(\pi)=I_{r}$. The set of points in $(-\pi, \pi)$ where $\mathbb{N}(\lambda)$ increases is denoted S and is termed the spectrum of the regressor set. S may be maximally decomposed into p (\leqq the number of regressors, r) disjoint sets E_{i}. The increments
$\mathbb{N}\left(E_{i}\right)=[R(0)]^{-\frac{1}{2}}\left\{\int_{E_{i}} d M(\lambda)\right\}[R(0)]^{-\frac{1}{2}}$
are Hermitian symmetric with

[^4]\[

$$
\begin{align*}
N\left(E_{i}\right) N\left(E_{j}\right) & =0 \quad i \neq j \tag{1.6.13}\\
& =N\left(E_{i}\right) i=j
\end{align*}
$$
\]

and

$$
\begin{equation*}
\sum_{i}{ }_{1}^{p} N\left(E_{i}\right)=I_{r} . \tag{1.6.14}
\end{equation*}
$$

The necessary and sufficient condition for $\hat{\delta}$ and $\tilde{\delta}$ to have the same asymptotic covariance matrix is that $f(\lambda)$ is constant on each set E_{i} (see [18],p 244). To attempt to illustrate the nature of the E_{i} a particular case, $r=p=2$, is considered. Roughly speaking $I(\lambda)$ is obtained from $M(\lambda)$ by a linear transformation of the $y_{j}(n)$. Now, replace the transformed $y_{j}(n)$ by two new complex linear combinations - the same combinations at each time point n - so that the newly formed regressor sequences, $\tilde{\mathrm{y}}_{1}(\mathrm{n})$ and $\tilde{\mathrm{y}}_{2}(\mathrm{n})$ are not merely incoherent but that their spectra (i.e. sets of points where their $f(\lambda)$ are non-zero) are disjoint. So the transformed sequences constitute, roughly speaking, two signals sent over completely different frequency bands. This situation is spectrally equivalent to that where all the regressors, $y_{j}(n)$, are solutions of a difference equation, $\Sigma \alpha_{k_{j}} y_{j}(n-k)=0$, whose characteristic roots lie on the unit circle. Such solutions are of the general form $n^{a} \cos \theta_{j} n, n^{a} \sin \theta_{j} n$, $0 \leqq a \leqq m_{j}-1$, where $\exp \left(i \theta_{j}\right)$ is a root of the equation of multiplicity m_{j}. Thus a deterministic evolving seasonal pattern would be included in the asymptotically efficient group.

In Chapter III comparisons will be made which will contrast actual and asymptotic efficiency.

The framework erected for the discussion of the previous theoretical results is also suitable for the discussion of an efficient estimation procedure when the $\Gamma(\mathrm{n})$ covariance matrix is unknown, but the conditions (a), (b) and (c) hold. To best comprehend the construction of efficient estimates in this situation (see [20]) one can consider a group of mutually exclusive band pass filters, passing bands, such that
$\mathrm{Uf}_{\mathrm{m}}=(0, \pi)$. The filtered series $\mathrm{z}^{(\mathrm{k})}(\mathrm{n}), \mathrm{y}_{\mathrm{l}}^{(\mathrm{k})}(\mathrm{n}), \mathrm{y}_{2}^{(\mathrm{k})}(\mathrm{n}), \ldots ., \mathrm{y}_{\mathrm{r}}^{(\mathrm{k})}$. and $e^{(k)}(n)$ are thus produced for $k=1,2,3, \ldots, m$. If the width of the filter bands could be chosen so that the band filtered series now had only minimal variation in power in $e(n)$ within bands then approximately efficient estimates could be made by using a L.S.E. for each band. The next task is to weight together the approximately efficient individual band estimates to obtain an overall estimate with efficiency at least as good as the lowest in any band. Although this method is not exactly available in practice it does indicate what is being striven for in the following calculations.

Spectra are computed at $\frac{\pi k}{m}, k=0,1,2, \ldots, m$ to form estimated quantities $\hat{\mathrm{f}}_{\mathrm{zz}}\left(\frac{\pi \mathrm{k}}{\mathrm{m}}\right), \hat{\mathrm{f}}_{\mathrm{yy}}\left(\frac{\pi \mathrm{k}}{\mathrm{m}}\right)$ and $\hat{\mathrm{f}}_{\mathrm{yz}}\left(\frac{\pi \mathrm{k}}{\mathrm{m}}\right)$. The estimates $\hat{\mathrm{f}}_{\mathrm{yz}}\left(\frac{\pi k}{m}\right)$ and $\hat{\mathrm{f}}_{\mathrm{yy}}\left(\frac{\pi k}{m}\right)$ may be formed even if $y(n)$ is not stationary. In the single equation situation described in (1.6.2) $\hat{\mathrm{f}}_{\mathrm{zz}}\left(\frac{\pi k}{m}\right)$ is a scalar, $\hat{\mathrm{f}}_{y y}\left(\frac{\pi \mathrm{k}}{\mathrm{m}}\right)$ an $r \times r$ matrix and $\hat{\mathrm{f}}_{\mathrm{yz}}\left(\frac{\pi k}{m}\right)$ an $\mathrm{r} \times I$ vector, all of which are evaluated at each k. Before setting out the estimation formulae it is worth digressing to the simple special case when $r=1$. As in this situation

$$
\begin{equation*}
f_{y z}\left(\frac{\pi k}{m}\right)=f_{y y}\left(\frac{\pi k}{m}\right) \beta \tag{1.6.15}
\end{equation*}
$$

an obvious estimate for each band is

$$
\begin{equation*}
b(k)=\hat{f}_{y y}^{-l}\left(\frac{\pi k}{m}\right) \hat{f}_{y z}\left(\frac{\pi k}{m}\right) \tag{1.6.16}
\end{equation*}
$$

which approximates the ideal of a L.S.E. based on a band of width $\frac{\pi}{m}$ located at $\frac{\pi k}{m}$. To weight together these estimates within bands it is necessary to obtain knowledge of the power of the noise or error term within each band because the optimal weighting entails the ratio of signal to noise power, i.e. the relative power in each band of $y_{l}^{(k)}(n)$ and $\tilde{e}^{(k)}(n)$. The proposed estimation in the case when $r=1$ is
$b=\left[\frac{1}{2 m} \sum_{-m+1}^{m} \tilde{f}_{e e}^{-1}\left(\frac{\pi k}{m}\right) \hat{f}_{y z}\left(\frac{\pi k}{m}\right)\right]\left[\frac{1}{2 m} \Sigma_{-m+1}^{m} \tilde{f}_{e e}^{-1}\left(\frac{\pi k}{m}\right) \hat{f}_{y y}\left(\frac{\pi k}{m}\right)\right]^{-1}$.

The discussion of the situation when $r=1$ is included only as a means of helping insight and is of course a special case of the following estimation formula when $r>1$
$b=\left[\frac{1}{2 m} \Sigma_{-m+1}^{m} \tilde{f}_{e e}^{-1}\left(\frac{\pi k}{m}\right) \hat{F}_{y y}\left(\frac{-\pi k}{m}\right)\right]\left[\frac{1}{2 m} \Sigma_{-m+1}^{m} \tilde{f}_{e e}^{-1}\left(\frac{\pi k}{m}\right) \hat{f}_{y z}\left(\frac{\pi k}{m}\right)\right]$.

To carry out the computation of the estimates, $\mathrm{b},(1.6 .18)$ can be simplified considerably [28]. A tilde is placed on the estimate of $f_{e e}\left(\frac{\pi k}{m}\right)$ to emphasize that this quantity is not directly measurable and therefore a first estimate must be obtained either from a calculation of the residuals using a L.S.E. or assuming that the y sequences are realizations from a stationary vector process and therefore using
$\tilde{f}_{e e}\left(\frac{\pi k}{m}\right)=\hat{f}_{z z}\left(\frac{\pi k}{m}\right)-\hat{f}_{z y}\left(\frac{\pi k}{m}\right) \hat{f}_{y y}^{-1}\left(\frac{\pi k}{m}\right) \hat{f}_{y z}\left(\frac{\pi k}{m}\right)$.
This latter method has the appeal that the estimate of $f e e\left(\frac{\pi k}{m}\right)$ use all effects from $y(n)$ and that vector's lagged values even if the postulated model is incorrect. There is also, of course, no need for a preliminary estimate of δ. However it has the drawback that it uses up more degrees of freedom (roughly one for each band if $r=1$) and has meaning only when $y(n)$ is stationary. The estimates used in the applications discussed will be based on the first procedure.

This section is completed with an example of the need for caution in claiming asymptotic efficiency for a least squares estimate. The condition for asymptotic efficiency given above may be restated as follows. If $M(\lambda)$ increases at a finite set of points θ_{j}, then to each θ_{j} in the set there must also be $-\theta_{j}$ since $R(m)$ is real. Adding together the increments in $M(\lambda)$ at $+\theta_{j}$ and $-\theta_{j}$ the resulting matrices may form a set of $p<r$ orthogonal idempotents, and if this is so, least squares is
asymptotically efficient. In the case of the Fourier series, discussed earlier, even before adding $+\theta_{j}$ and $-\theta_{j}$ the matrices were orthogonal idempotents. Of course the above condition is not necessary in order for least squares to be efficient even if the $e(n)$ are serially dependent. However, if least squares is to be efficient for any continuous spectral density function of the $e(n)$ sequence then the above condition must be fulfilled. It must be emphasized that the condition may be very nearly fulfilled and the result fail to be true. For example let $e(n)=\rho e(n-1)+\epsilon(n)$ and $y_{1}(n)=\rho y_{1}(n-1)+\eta(n)$ where $\epsilon(n)$ and $\eta(n)$ are serially independent sequences with zero mean and unit variance and totally independent of each other. If $y_{l}(n)$ is the only variable regressed upon then it is shown [31] that the asymptotic efficiency, i.e. ratio of the asymptotic variance of the B.I.U.E. to that of the L.S.E., is $\left(1-\rho^{2}\right) /\left(1_{+} \rho^{2}\right)$, which will be very low for ρ near 1 . However since $f_{y_{1}}(\lambda)$ is
$d M(\lambda)=f_{y_{1}}(\lambda) d \lambda=\frac{\left(1-\rho^{2}\right)}{2 \pi\left(1+\rho^{2}-2 \rho \cos \lambda\right)} d \lambda$
it approximates a delta function at the origin as ρ tends to 1. Thus $m(\lambda)$ is near to a function - indeed arbitrarily near - that jumps only at the origin, but the result is drastically not true. The reason is most easily explained in terms of the efficient regression procedure previously described. If $\delta y_{1}(n)$ is regarded as an amplitude modulated signal sent by a carrier wave in which each band of frequencies is represented in proportion to the area under $f_{y_{1}}(\lambda)$ and above the band then the efficient procedure has been stated to be to estimate δ from each of an increasingly large number of bands, and then to recombine each band estimate of δ using the weights $f_{y_{1}}(\lambda) / f_{e}(\lambda)$. In the example proposed $f_{y_{1}}(\lambda) / f_{e}(\lambda) \equiv 1$ so that all bands should be given equal weight however least squares does not give equal weight but weights according to $f_{y_{1}}(\lambda)$ only and for large $\rho f_{y_{1}}(\lambda)$ is very small away from the origin.

1.7 Time Series Regression Procedures in Small Samples

Previous sections have concentrated on time series regression problems for large samples of data; however a much more common situation is for the econometrician to be presented with a set of data which is too small for asymptotic procedures. A traditional approach to the task of estimating economic relationships in this context has been to employ the least squares procedure and then to test the residuals computed from the least squares regression for the presence of serial correlation [29]. To outline the methods of testing for serial correlation in the regression model

$$
\begin{equation*}
y(n)=\Sigma_{1}^{q_{i}} X_{j} x_{j}(n)+u(n) \quad n=1,2, \ldots, \mathbb{N} \tag{1.7.1}
\end{equation*}
$$

it is assumed that $x_{1}(n) \equiv 2$ and for later use y is a vector with $y(n)$ in the $n^{\text {th }}$ place. The situation which has received almost all of the attention is that where $x_{j}(n)$ are totally independent of the $u(n)$ sequence so that the $x_{j}(n)$ can be treated as fixed sequences of numbers. The symbol $x_{j}(n)$ will be used for such sequences. When $q=1$ and $u(n)$ are $\mathbb{N} . I . D .\left(0, \sigma^{2}\right)$ the problem was solved by von Neumann [53] who considered the 'von Neumann' ratio
$v=\frac{\sum_{2}^{\mathbb{N}}\{y(n)-y(n-1)\}^{2} / \mathbb{N}-1}{\sum_{1}^{\mathbb{N}}\{y(n)-\bar{y}\}^{2} / \mathbb{N}}$
the significance points of which were tabulated by Hart [32]. Another statistic which has been considered is the 'circular serial correlation'
$r_{1}^{\prime}=\frac{\Sigma_{1}^{N \hat{u}}(n) \hat{u}(n-1)}{\Sigma_{1}^{N}\{\hat{u}(n)\}^{2}}$
where $\hat{u}(n)$ is the residual from the calculated regression of $y(n)$ on the $\left.x_{j}(n)\right)^{10}$ Anderson [1] obtained the distribution of r_{1}^{\prime} when a mean correction only has been made and tabulated the significance points. Another case which has been studied is that of a fitted Fourier series, where
$x_{2 j}(n)=\frac{\cos 2 \pi j n}{q}, \quad x_{2 j+1}(n)=\frac{\sin 2 \pi j n}{q} \quad j=1,2, \ldots,[q / 2]$
and the term for $j=q / 2$ being omitted for the sine series if $j=q / 2$ is even. Anderson and Anderson [2] obtained the distribution of r_{1}^{\prime} and tabulated some significance points. A major work in relation to this problem was that of Durbin and Watson [13]. Replacing $y(n)$ with $\hat{u}(n)$ they considered, under the same assumption for $u(n)$ as previously specified, the statistic $d=\{(\mathbb{N}-1) v\} / \mathbb{N}$ which may be written as

$$
\begin{equation*}
\alpha=u^{\prime} Q A_{\mathrm{d}} Q u / u^{\prime} Q u . \tag{1.7.5}
\end{equation*}
$$

Here $Q=(I-P)=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}$ where X has $X_{j}(n)$ in row n and column j, u has $u(n)$ in row n, and the matrix A_{d} is

10
To complete the summation from 1 to \mathbb{N} in the numerator of (1.7.3) it is necessary to define $\hat{u}(0)$ as equal to $\hat{u}(n)$.

The statistics v and r_{1}^{\prime} can, of course, also be written in this form for a suitable matrix. If the non-zero eigenvalues of QA A^{Q} are $\mu_{j}, j=1, \ldots, N-1$, while those of A_{d} are $\lambda_{j}=2(1-\cos (\pi j / \mathbb{N})), j=1, \ldots, N-1$, then Durbin and Watson established the following bounds
$d_{l}=\frac{\sum_{1}^{N-q_{\lambda}} \lambda_{j} \xi_{j}^{2}}{\sum_{I}^{N-q_{\xi}}{ }_{j}^{2}} \leqq d=\frac{\sum_{1}^{N-1} \mu_{j} \xi_{j}^{2}}{\sum_{1}^{N-1} \xi_{j}^{2}} \leqq \frac{\sum_{1}^{N-q_{\lambda}} \lambda_{j+q-1} \xi_{j}^{2}}{\sum_{1}^{N-q_{\xi}}{ }_{j}^{2}}$.

They tabulated the significance points for d_{l} and d_{u} that are independent of X and that provided bounds for the true significance point to d. Durbin and Watson also showed how the moments of d of arbitrary order could be calculated and thus showed how an arbitrarily good approximation to the significance point for d could be obtained for example by the use of a sequence of beta distributions with the appropriate moments.

The cases of straight mean correction and the fitting of a finite Fourier Series are special in that for these it is possible to choose an appropriate matrix, i.e. one yielding a test having good powers against a simple Markov alternative for the process generating $u(n)$ and which has the vectors x_{j} (having $x_{j}(n)$ in the $n^{\text {th }}$ place) as eigenvectors. A somewhat similar circumstance was discussed by Hannan [26] who pointed out that to an order of accuracy higher than \mathbb{N}^{-1}, which is the magnitude of $d-d_{u}$ and $\mathrm{d}-\mathrm{d} \ell$, the upper bound to the significance point of d was appropriate for the case of certain regressors including that where $x_{j}(n)=n^{j}$ (see also McGregor [43]). A very similar observation was made by Theil and Nagar [50] who tabulated approximations to the significance point of d which they observed were close to those of d_{u}.

Much of the work which follows rests upon a simply proved result due to Grenander [17]. The result relates to $W_{\mathbb{N}}$, a sequence of matrices, the $\mathbb{N}^{\text {th }}$ of N rows and columns, with elements $\mathrm{w}_{\mathrm{jk}}(\mathrm{N})$ satisfying
$w_{j k}(\mathbb{N})=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(j-k) \lambda_{w}(\lambda) d \lambda}$
where $w(\lambda)$ is an even continuous function. Thus all elements down the same diagonal are independent of \mathbb{N}. If D_{N} is a diagonal matrix with $\alpha_{j}(\mathbb{N})$ in the $j^{\text {th }}$ place then Grenander [17] shows
$\lim _{\mathbb{N} \rightarrow \infty} D_{\mathbb{N}}^{-1} X^{\prime} W_{\mathbb{N}} X D_{\mathbb{N}}^{-1}=\int_{-\pi}^{\pi} w(\lambda) d M(\lambda)$
and it is apparent that a special case of (1.7.9) gives
$R(0)=\lim _{\mathbb{H} \rightarrow \infty} D_{N}^{-1} X^{\prime} X D_{\mathbb{N}}^{-1}$. As has been already noted when $q=1$,
i.e. only a mean correction is made, the situation is well understood and tabulations (Hart [32]) of v and (Anderson [1]) of r_{1}^{\prime} are available. It is worth adding that the statistic r_{1}, where the $j^{\text {th }}$ serial correlation is
$r_{j}=\frac{c_{j}}{c_{0}}, \quad c_{j}=\mathbb{N}^{-1} \Sigma_{l}^{N-j \hat{u}(n) \hat{u}(n+j)}$
has on the null hypothesis of serial independence for $u(n)$ a mean $-\mathbb{N}^{-1}$ and a variance $(\mathbb{N}-2)^{2} /\left\{\mathbb{N}^{2}(\mathbb{N}-1)\right\}=(\mathbb{N}+3)^{-1}-8 / \mathbb{N}^{3}+0\left(\mathbb{N}^{-4}\right)$.

Thus to an adequate approximation, when $\mathbb{N} \geqq 15$ certainly, $\left(r_{1}+\mathbb{N}^{-1}\right)$ has the variance of an ordinary correlation coefficient (with mean corrections) from ($\mathbb{N}+4$) pairs of serially independent Gaussian observatịons. As suggested by Watson [54] an examination of the significance points of the distribution of selected tabulated quantities shows this approximation to be quite adequate. Thus the statistics
$t=\frac{\left(r_{1}+\mathbb{N}^{-1}\right) \sqrt{N_{+}+2}}{\sqrt{\left\{1-\left(r_{1}+\mathbb{N}^{-1}\right)^{2}\right.}}$
is Student's t with $\mathbb{N}+2$ degrees of freedom and tests the serial independence of the data. The derivation of the mean and variance is quite straightforward and follows Durbin and Watson [13] but as it is a method that'is also employed for $q>l$ it is outlined in preparation for the later work. If one represents r_{1} as
$r_{I}=\frac{y^{\prime} Q W_{N N^{2 y}}}{y^{\prime} Q y}$
where $Q=I-N^{-1} I^{\prime}$ (1 being a vector composed entirely of units) and for r_{1} the matrix $2 W_{N}$ has units in the 2 diagonals bordering the main diagonal and zeros elsewhere. Then since r_{1} is independent of the denominator (see Pitman [47], Watson [54]) the $\mathrm{p}^{\text {th }}$ moment about the origin of r_{1} is
$\varepsilon\left(r_{l}^{p}\right)=\frac{\varepsilon\left\{\left[y^{\prime} Q W_{N} Q y\right]^{p}\right\}}{\varepsilon\left\{\left[y^{\prime} Q y\right]^{p}\right\}}$.
If we take y to be composed of $N \cdot I \cdot D .(0,1)$ variates and note that, for any symmetric matrix A,
$\varepsilon\left(\left[y^{\prime} \text { Ay }\right]^{p}\right)=\varepsilon\left\{\Sigma \Sigma \Sigma \ldots . \Sigma \alpha_{j_{1}} \ldots \alpha_{j_{p}} \xi_{j_{1}}^{2} \ldots \xi_{j_{p}}^{2}\right\}$
where the α_{j} are the eigenvalues of A and ξ_{j} are N.I.D. $(0, I)$. Following Durbin and Watson [13] and Kendall and Stuart [41, p 68] the relation between the $p^{\text {th }}$ moment of the quadratic form y^{\prime} Ay and its cumulants is given by
$\varepsilon\left\{\left[y^{\prime} A y\right]^{p}\right\}=\Sigma a(s, r) k_{s_{1}}{ }^{r_{1}}{ }_{s_{2}}{ }_{2} \ldots . k_{s_{m}}^{r_{m}}$
where k_{j} is the $j^{\text {th }}$ cumulant of $\sum \alpha_{j} \xi_{j}^{2}$; the summation is over all
$s_{1}, s_{2}, \ldots, s_{m}$, such that $s_{1} r_{1}+s_{2} r_{2}+\cdots+s_{m} r_{m}=p$,
$s_{1}<s_{2}<s_{3}<\ldots<s_{m}$ and
$a(s, r)=\frac{p!}{\left(s_{1}!\right)^{r_{1}}\left(s_{2}!\right)^{r_{2}} \ldots\left(s_{m}!\right)^{r_{m}}} \cdot \frac{1}{r_{1}!r_{2}!\cdots r_{m}!}$.
As the cumulant of the quadratic form y^{\prime} Ay is $k_{j}=\left\{2^{j-1}(j-1)!\right\} \operatorname{tr}\left\{A^{j}\right\}$ its $p^{t h}$ moment can be expressed directly in terms of trA ${ }^{j}$. Since
$\operatorname{tr}\left(Q^{p}\right)=\operatorname{tr} Q=N-1$,
$\operatorname{tr}\left(Q W_{\mathbb{N}} Q\right)=\operatorname{tr}\left(W_{\mathbb{N}} Q\right)=\operatorname{tr}\left(W_{N}\right)-\mathbb{N}^{-1} \operatorname{trlI^{\prime }} W_{\mathbb{N}}=-\mathbb{N}^{-1} I^{\prime} W_{\mathbb{N}} I=-(\mathbb{N}-I) / \mathbb{N}$
and

$$
\begin{align*}
\operatorname{tr}\left(\left[Q W_{N} Q\right]^{2}\right) & =\operatorname{tr}\left(Q W_{\mathbb{N}} Q W_{N}\right)=\operatorname{tr}_{N} W_{N}^{2}-2 \mathbb{N}^{-1} I^{\prime} W_{N} 1+N^{-2}\left(11^{\prime} W_{\mathbb{N}} 1\right)^{2} \tag{1.7.15}\\
& =\frac{1}{2}(N-1)-\mathbb{N}^{-1}(2 \mathbb{N}-3)+\mathbb{N}^{-2}(\mathbb{N}-1)^{2}
\end{align*}
$$

one finds moments about the origin,
$\varepsilon\left(r_{1}\right)=-N^{-1}, \quad \varepsilon\left(r_{1}^{2}\right)=\left(N^{2}-3 N+3\right) \mid\left(N^{2}(N-1)\right)$
and so the quoted results for the mean and variance of r_{1} hold. The above procedure has repeatedly made use of the fact that the trace of a product of two factors is independent of their order and this will again be used below. The techniques apply in general (see [13]) for any Q and the moments depend only upon the evaluation of $\operatorname{tr}\left[\left(Q W_{N} Q\right)^{p}\right]$. Here W_{N} is of the general form discussed above (see (1.7.8)). The trace in question is a linear combination of $\operatorname{tr}\left(W_{N}^{p}\right)$ and expressions of the form
 $\sum_{j} a_{j}=p$. For example if $p=3$ then in the expression of $\left[(I-P) W_{N}(I-P)\right]^{3}$ one obtains a term $W_{N} P W_{\mathbb{N}}^{2}$, however, $\operatorname{tr}\left[\mathrm{W}_{N} \mathrm{P} W_{N N}^{2}\right]=\operatorname{tr}\left[\mathrm{PW}_{\mathbb{N}}^{3}\right]$ which is of the required form. Now, repeatedly using the idempotency of P and the fact that $\operatorname{tr} A B=\operatorname{tr} B A \quad$ a general expression,

$$
\begin{align*}
& =\operatorname{tr}\left\{\begin{array}{l}
m \\
\pi
\end{array}\left[R^{-1}(0) \int_{-\pi}^{\pi}\{w(\lambda)\}^{a} j_{d M}(\lambda)\right]\right\}+O(1) \tag{1.7.17}\\
& =\operatorname{tr}\left\{\begin{array}{l}
m \\
I
\end{array} \int_{-\pi}^{\pi} w(\lambda)^{a} j_{d N}(\lambda)\right\}+O(1)
\end{align*}
$$

where $w(\lambda)$ is the generating function of the matrix $W_{\mathbb{N}}$. Thus the moments depend only upon the traces of products of matrices of the form $\int_{-\pi}^{\pi} w(\lambda)^{p} d N(\lambda)$. Since $\varepsilon\left(y^{\prime} Q y\right)^{p}=O\left(\mathbb{N}^{p}\right)$, the order of the error in the $j^{\text {th }}$ moment, corrected for the mean for $j>1$ - obtained by inserting the correct expression for $\operatorname{tr}\left(W_{N}^{p}\right)$ and approximations such as (1.7.17) in the other traces - is $O\left(N^{-j}\right)$.

A special case (where the L.S.E. is efficient) is that where $\mathbb{N}(\lambda)$ increases at S points in such a way that when these points are grouped together in pairs, symmetrically placed with respect to the origin, the resulting increments in $\mathbb{N}(\lambda)-\mathbb{N}_{j}$ being the sum of increments at points $+\theta_{j}$ and $-\theta_{j}$-are orthogonal idempotents, i.e. $\Sigma N_{j}=I, N_{j} N_{k}=\delta k_{j} N_{j}$. There cannot be more than q of these of course. Then in this case the expression in (1.7.16) becomes

$$
\begin{gather*}
\left.{ }_{I}^{m} \int_{-\pi}^{\pi}\{w(\lambda)\}^{a} j_{d N}(\lambda)={\underset{I}{I}}_{m}^{m} \sum_{k}\left\{w\left(\theta_{k}\right)\right\}^{a} j_{N_{k}}\right\} \tag{1.7.18}\\
=\sum_{k} w^{p}\left(\theta_{k}\right) N_{k}=\int_{-\pi}^{\pi} w^{p}(\lambda) d N(\lambda)
\end{gather*}
$$

and so one may write
$\operatorname{tr}\left\{\left[Q W_{N} Q\right]^{p}\right\}=\operatorname{tr}\left(W_{N}^{p}\right)-\operatorname{tr}\left\{\int_{-\pi}^{\pi}\{w(\lambda)\}^{p} \operatorname{dN}(\lambda)\right\}$
since the sum of the coefficients of the expression of
$\operatorname{tr}\left\{\left[\mathrm{QW}_{\mathbb{N}} \mathrm{Q}^{\mathrm{p}}\right\}\right.$ in terms of expressions such as $\operatorname{tr}\left\{\mathrm{PW}_{\mathbb{N}}{ }^{\mathrm{a}} 1_{\mathrm{PW}_{N}}{ }^{\mathrm{a}}{ }_{2} \ldots \mathrm{PW}_{\mathbb{N}}{ }^{a_{m}}\right\}$ is evidently zero. The right hand side of (1.7.18) may be written as
$\operatorname{tr}\left\{\left[Q W_{N} Q\right]^{p}\right\}=\operatorname{tr}\left(W_{N}^{p}\right)-\int_{-\pi}^{\pi} w^{p}(\lambda) \operatorname{dn}(\lambda)$
where $\operatorname{tr}(\mathbb{N}(\lambda))=n(\lambda)$ and this is thus a function which increases
by jumps of integral amounts at points θ_{j} to a value q.
Grenander and Rosenblatt have shown [18,p 103] in a much more general context that
$N^{-1} \operatorname{tr}\left\{W_{N}^{p}\right\}=(1 / 2 \pi) \int_{-\pi}^{\pi}\{w(\lambda)\}^{p} \lambda_{d+0}(1)$
so that $w(2 \pi j / \mathbb{N}), j=-[N / 2], \ldots,[(\mathbb{N}+1) / 2]$, are approximately the eigenvalues of $W_{\mathbb{N}}$. Thus (1.7.20) can be roughly interpreted as the removal from the spectrum of the eigenvalues $w\left(\theta_{j}\right)$ - repeated $\operatorname{tr}\left(\mathbb{N}_{j}\right)$ times - so that effect has been as if the q regressor vectors x_{j} had been eigenvectors of $W_{N T}$ for eigenvalues $w\left(\theta_{j}\right)$. of course the eigenvalues of $W_{\mathbb{N}}$ may not be repeated, but if \mathbb{N} is not small the eigenvalues will be very close together and there will be a number near any one $w\left(\theta_{j}\right)$. If $\mathbb{N}(\lambda)$ has a single jump at the origin, then the correction term due to regression in (1.7.19) is $\mathrm{q}\{\mathrm{w}(0)\}^{\mathrm{p}}$. Since $\mathrm{w}(\theta)$ is the function $\cos \theta$, the largest possible eigenvalues have been removed. If instead of r_{1}, d (see (1.7.5)) had been studied a similar result would be obtained. Although the matrix A_{d} is not quite of the form required, since the two end elements in the main diagonal differ from those elsewhere in that diagonal, this effect will be of an order of magnitude no larger than those already neglected. Now w(θ) is $2(1-\cos \theta)$ and the q smallest eigenvalues are being removed. Thus the upper bound to the test statistic will be appropriate to an order of approximation higher than \mathbb{N}^{-1}. It has already been pointed out (see [26] and [43]) that this will be the case, for example, when a trend has been eliminated by fitting a polynomial in n. Returning to the general case (no specification that would make the L.S.E. asymptotically efficient) straightforward but somewhat lengthy calculations show that mean and variance of r_{1} are

$$
\begin{align*}
& \varepsilon\left(r_{1}\right)=-\frac{1}{N-q} \int_{-\pi}^{\pi} w(\lambda) \operatorname{dn}(\lambda)+0\left(N^{-1}\right) \\
& \operatorname{var}\left(r_{1}\right)=\frac{2}{(N-q)(N-q+2)}\left\{\operatorname{tr} W_{N}^{2}-2 \int_{-\pi}^{\pi} w^{2}(\lambda) \operatorname{dn}(\lambda)\right. \tag{1.7.21}\\
& \left.\quad+\operatorname{tr}\left[\left(\int_{-\pi}^{\pi} w(\lambda) \operatorname{dN}(\lambda)\right)^{2}\right]+\frac{1}{2}\left[\operatorname{tr} \int_{-\pi}^{\pi} w(\lambda) \operatorname{diN}(\lambda)\right]\right\}-\left(\varepsilon\left(r_{1}\right)\right)^{2} .
\end{align*}
$$

Of course $w(\lambda)=\cos \lambda$ and $\operatorname{tr}\left(w_{\mathbb{N}}^{2}\right)=\frac{1}{2}(\mathbb{N}-1)$ for r_{1} but (1.7.21) is general in the sense that it applies for all $W_{\mathbb{N}}$ of the form specified in (1.7.8). Higher moments can be similarly expressed, though the expression quickly becomes quite complicated.

Consider a stationary $x(n)$ vector with serial correlations satisfying assumption (iii) of Bl.6. With economic data it is very likely that all $f_{j j}(\lambda)$ will be very concentrated at the origin (see [16]). If $w(\lambda)$ is fairly smooth near the origin, as is the case when $w(\lambda)=\cos \lambda$ or indeed is the case for any $\mathrm{w}(\lambda)$ likely to arise, then the terms in (1.7.21) may be approximated as follows

$$
\begin{align*}
& \int_{-\pi}^{\pi} w(\lambda) \operatorname{dn}(\lambda) \cong q w(0) \\
& \operatorname{tr}\left\{\left[\int_{-\pi}^{\pi} w(\lambda) \operatorname{div}(\lambda)\right]^{2}\right\}=\iint_{w}\left(\lambda_{1}\right) w\left(\lambda_{2}\right) \operatorname{tr}\left(d N\left(\lambda_{1}\right) \operatorname{dN}\left(\lambda_{2}\right)\right) \tag{1.7.22}\\
& \cong q w^{2}(0) .
\end{align*}
$$

So, in this case also, the lower moments again will be close to those which would obtain if the q eigenvalues nearest to w(o) are removed by the regression so that again for the Durbin Watson statistic, the smallest eigenvalues are being removed and the upper bound to the statistic is appropriate.

To summarize the effect of the regression on the significance point of d (or any selected statistic) depends substantially on the cross spectra of the regressor vector $x(n)$, i.e. upon $\mathbb{N}(\lambda)$. The most important effect is to reduce the mean by a quantity that is, to order $\mathbb{N}^{-1},-(N-q)^{-1} \int_{-\pi}^{\pi} w(\lambda) \operatorname{dn}(\lambda)$. If as is often
the case in economics, the spectrum of $x(n)$ is relatively very concentrated at the origin of frequencies the effect will be approximately allowed for by using the significance point for d_{u} as the true significance point. This procedure will be accurate to order \mathbb{N}^{-1}.

1.8 Serial Dependence Under the NuIl Hypothesis

Serial dependence in the disturbance term $u(n)$ in the relation (1.7.1) is so common-place that a more important problem from the point of view of the economist is that which arises when the null hypothesis is not serial independence for $u(n)$ as it was in B1. 7 but rather

$$
\begin{equation*}
u(n)=\rho u(n-1)+\epsilon(n) \tag{1.8.1}
\end{equation*}
$$

where the $\in(n)$ are N.I.D. $\left(0, \sigma_{u}^{2}\right)$ (see [29]). The alternative one has principally in mind is

$$
\begin{equation*}
u(n)+p_{1} u(n-1)+p_{2} u(n-2)=\epsilon(n) \tag{1.8.2}
\end{equation*}
$$

which becomes of the form (1.8.1) if $\rho_{2}=0$. The hypothesis $\rho_{2}=0$ is appropriately tested by means of a form of partial autocorrelation,

$$
\begin{equation*}
r_{02.1}=\frac{r_{2}-r_{1}^{2}}{1-r_{1}^{2}} \tag{1.8.3}
\end{equation*}
$$

where $r_{j}=c_{j} / c_{o}$ and the c_{j} are defined in (1.7.10). If, for notational convenience, $\sum_{j}^{q} \beta_{j} x_{j}(n)$ is set equal to $\mu(n)$ then the regression model (1.7.1) may be written

$$
\begin{equation*}
y(n)-\mu(n)=\rho\{y(n-1)-\mu(n-1)\}+\epsilon(n) . \tag{1.8.4}
\end{equation*}
$$

It is as well to distinguish clearly this model (1.8.4) from another often proposed in economics, i.e.

$$
\begin{equation*}
y(n)=\rho y(n-I)+\nu(n)+\epsilon(n) \tag{1.8.5}
\end{equation*}
$$

where $\nu(n)$ is some other linear combination of the $x_{j}(n)$, e.g. $\sum \beta_{j}^{\prime} x_{j}(n)$ as it would be very convenient if the treatment which will be proposed for (1.8.4) could also be used for (1.8.5).

The procedures suggested for (1.8.4) will only also be applicable to (1.8.5) if the vectors $x_{j}(n)$ are of a particular form. The nature of $x_{j}(n)$ required for this equivalence may be deduced by equating a general form of (1.8.4)

$$
\begin{equation*}
\Sigma p_{j}\left(y(n-j)-\beta^{i} x(n-j)\right)=u(n) \tag{1.8.6}
\end{equation*}
$$

to the general form of (1.8.5) i.e.

$$
\begin{equation*}
\Sigma \rho_{j} y(n-j)=\beta_{1}^{i x}(n)+u(n) \tag{1.8.7}
\end{equation*}
$$

where $x_{j}(n)$ are now treated in vector form. The solution requires that $\sum \rho_{j} \beta^{\prime} x(n-j)=\beta_{1}^{\prime} x(n)$ and therefore will have to be of the form $x(n)=n^{u} \cos \theta_{j} n$, since roots which are not on the unit circle are not acceptable. Thus the nature of the $x_{j}(n)$ vectors which would result in applicability of the methods to both (1.8.4) and (1.8.5) is in fact that the vectors be those for which the L.S.E. is always asymptotically efficient.

The definition of c_{j} adopted in (1.7.10) ensures that $\left|r_{02.1}\right| \leqq 1$. Indeed $\Sigma \Sigma \alpha_{j} \alpha_{k}{ }_{j-k}=\mathbb{N}^{-1} \hat{u}^{1} T \hat{u}$ where \hat{u} has $u(n)$ as its $n^{\text {th }}$ element and T has $\Sigma \alpha_{j}^{2}$ in the main diagonal, $\left(\alpha_{0} \alpha_{1}+\alpha_{1} \alpha_{2}\right)$ in the 2 diagonals adjacent to the main diagonal, and $\alpha_{0} \alpha_{2}$ in the next two diagonals. This is the covariance matrix of $\alpha_{1} \in(n)+\alpha_{2} \in(n-1)+\alpha_{3} \in(n-2)$ and thus is positive definite so that $\Sigma \Sigma \alpha_{j} \alpha_{k}{ }^{c}{ }_{j-k} \geqq 0$. Thus

is positive definite and this ensures that $\left(1-r_{1}^{2}\right)\left(1-r_{02.1}^{2}\right) \geqq 0$.
In the case where only a mean correction has been made there has been a detailed investigation of statistics of the type $r_{02.1}$ by Daniels [9], Jenkins $[35,36]$ and Watson [54]. The exact derivations have been based upon the use of a circular definition which replaces c_{j} by
$c_{j}^{\prime}=\mathbb{N}^{-1} \Sigma_{1}^{\mathbb{N}} \hat{u}(n) \hat{u}(n+j)$
where again to complete the summation from l to \mathbb{N} in c_{j}^{\prime} the definition $\hat{u}(n+j)=\widehat{u}(j)$ is employed. This means that all the matrices which occur both in c_{j}^{\prime} and the quadratic form in the exponent of the likelihood function are circulants and thus commute and may be simultaneously diagonalized. Unfortunately once something other than a mere mean correction, or a regression on the trigonometric functions considered by Anderson and Anderson [2] is made the advantages of this definition fade. If U^{j} is the circulant matrix which makes $c_{j}^{\prime}=N^{-1} \hat{u}^{\prime} U^{j} \hat{u}$ and Γ is the circulant covariance matrix of the $u(n)$ then the transition from u to $q u=\hat{u}$ means that we are concerned with a set of matrices $Q U^{j} Q, Q \Gamma Q$, that no longer necessarily commute and there is little point in adopting the circular definition.

The situation in which one wishes to test whether (1.8.1) or (1.8.2) is the appropriate form for the error in (1.7.1) is the same as testing whether the disturbance $\epsilon(\mathrm{n})$ in (1.8.4) is serially independent. The test statistic used will be the one already mentioned in $\delta 1.7, r_{02.1}$, however the $\widehat{u}(n)$ which are used in the definition of the c_{j} used in $r_{02.1}$ have to be those residuals resulting from the B.I.U.E. under the null hypothesis. A simple computing procedure involves searching over a grid in the range $-1<\rho<1$, computing for each grid value of ρ estimates, $\hat{\beta}_{j}(\rho)$ and $\hat{u}(p)$, and choosing that set of $\hat{u}(\rho)$ with minimum sum of squares (see [10]). In fact the method of computation of the $\hat{\beta}_{j}(\rho)$ and $\hat{u}(\rho)$ was to transform $y(n)$ and the $x_{j}(n)$ by an \mathbb{N} dimensional matrix M^{\prime},

for each ρ in the grid. The L.S.E. and the associated residuals were found for each transformation of the original data and the $\widehat{u}(\rho)$ used in the test statistic was the set with the minimum sum of squares.

An alternative to using the statistic $r_{02.1}$ would be to remove both the term $\mu(n)$ and $y(n-1)$ by regression and to use d for the resulting residuals. This does not seem quite appropriate since it gives a statistic that except for end effects will be $2\left(1+r_{1} r_{02.1}\right)$ and this is nearly 2 if r_{2} is near to r_{1}^{2} OR if r_{1} is near to zero. Thus a seems inappropriate for testing $\rho_{2}=\rho_{1}^{2}$ independently of the value of ρ_{1}.

It has already been established that $\left|r_{02.1}\right| \leqq 1$ and $r_{02.1}$ is simply expressed as a function of the c_{j}, i.e.

$$
\begin{equation*}
r_{02.1}=\frac{c_{0} c_{2}-c_{1}^{2}}{c_{0}^{2}-c_{1}^{2}} \tag{1.8.10}
\end{equation*}
$$

Expanding H as a function of (c_{0}, c_{1}, c_{2}) in a Taylor's series about ($1, \rho, \rho^{2}$) and following Cramer [8, pp 354-5] produce the expressions,
$\varepsilon\left(r_{02.1}\right)=\Sigma_{0}^{2} H_{u} \varepsilon\left(c_{u}-\rho^{u}\right)+\frac{1}{2} \Sigma \sum_{0}^{2} H_{u v} \varepsilon\left(c_{u}-\rho^{u}\right)\left(c_{v}-\rho^{v}\right)+O\left(N^{-1}\right)$
$\varepsilon\left(r_{02.1}^{2}\right)=\Sigma \Sigma H_{u} H_{v} \varepsilon\left\{\left(c_{u}-\rho^{u}\right)\left(c_{v}-\rho^{v}\right)\right\}+0\left(N^{-1}\right)$
where H_{u} are the first order derivatives evaluated at ($1, \rho, \rho^{2}$) and $H_{u v}$ are the second order derivatives similarly evaluated. These results follow from the arguments in the reference just cited, using the fact that the $k^{\text {th }}$ moment about the mean of c_{v}
is $O\left(N^{-k+l}\right), k>1$, while the bias is $O\left(\mathbb{N}^{-1}\right)$ so that
$\varepsilon\left(c_{u}-\rho^{u}\right)$ is $O\left(N^{-k+1}\right)$. Now
$\varepsilon\left(c_{j}\right)=\mathbb{N}^{-1} \varepsilon\left\{u^{t} Q W_{N}^{(j)} Q u\right\}$

$$
\begin{equation*}
=\mathbb{N}^{-1} \operatorname{tr}\left\{\operatorname{RQW}_{\mathbb{N}}(j)_{Q}\right\} \tag{1.8.12}
\end{equation*}
$$

where $W_{\mathbb{N}}^{(j)}$ is $N \times N$ with $\frac{1}{2}$ in the $j^{\text {th }}$ diagonal above and below the principle diagonal and zeros elsewhere, R has $\rho|j|$ everywhere in the $j^{\text {th }}$ diagonals above and below the main diagonals and var.u(n) is assumed equal to unity since $r_{02.1}$ is scale free. The elements of R are generated by (see (1.7.8))

$$
\begin{equation*}
f_{u}(\lambda)=\frac{\left(1-\rho^{2}\right)}{2 \pi\left(1+\rho^{2}-\dot{2} \rho \cos \lambda\right)} \tag{1.8.13}
\end{equation*}
$$

and those of $W_{N}^{(j)}$ are generated by $\left(\frac{1}{2 \pi}\right) \cos j \lambda$. Thus (1.8.12) becomes

$$
\begin{align*}
\varepsilon\left(c_{j}\right) & =\mathbb{N}^{-1} \operatorname{tr}\left\{R R W_{N}^{(j)}-\left(X^{\imath} X\right)^{-1} X\left(W_{N}^{(j)_{R+R W}^{N}}(j)\right) X^{\prime}\right. \\
& +\left(X^{\prime} X\right)^{-1} X R X^{\imath}\left(X^{\imath} X\right)^{-1} X W_{N}^{\left.(j)_{X^{\imath}}\right\}} . \tag{1.8.14}
\end{align*}
$$

Since $\operatorname{tr}\left\{R_{\mathbb{N}} W_{\mathbb{N}}^{(j)}\right\}=(N-j) \rho^{j}$ it is easily checked that
$\Sigma \mathrm{H}_{j} \operatorname{tr}\left\{\mathrm{RW}_{\mathrm{N}}(j)\right\}=(\mathrm{N}-j) \Sigma \mathrm{H}_{j} \rho^{j}=0$ and therefore only the last two expressions in $\varepsilon\left(c_{j}\right)$ need be considered. The last term gives

- to the order N^{-1} - a contribution to $\Sigma H_{u} \varepsilon\left(c_{u}-\rho^{u}\right)$ which is
$N^{-1} \operatorname{tr}\left\{\int_{-\pi}^{\pi} 2 \pi f(\lambda) \operatorname{dN}(\lambda) \int_{-\pi}^{\pi} \Sigma\left(\cos j \lambda H_{j}\right) \operatorname{dN}(\lambda)\right\}$
$=N^{-1} \operatorname{tr}\left\{\int_{-\pi}^{\pi} \frac{1-\rho^{2}}{1+\rho^{2}-2 \rho \cos \lambda} d N(\lambda) \int_{-\pi}^{\pi} \frac{\left(\rho^{2}-2 \rho \cos \lambda+\cos 2 \lambda\right)}{1-\rho^{2}} d N(\lambda)\right\} .(1.8 .15)$
The second term may be evaluated by replacing $W_{N}^{(j)} R$ (and $R W_{N}^{(j)}$) by a matrix $A_{N}^{(j)}$ whose elements are generated by $2 f(\lambda) \cos j \lambda$. For example the second term is not changed if $W_{\mathbb{N}}^{(j)} R$ is replaced by

The matrix (1.8.16) differs from the matrix $A_{N}^{(j)}$ only because of the elements in the first and last rows. For example the $\mathrm{k}^{\text {th }}$ element in the last row should have $\rho^{\mathbb{N}-\mathrm{k}_{+} \mathrm{l}}$ added to bring it to the form of $A_{N}^{(j)}$. The contribution to $X\left(W_{N}^{(j)} R+R W_{N}(j)\right) X^{\prime}$ from this missing last row is a matrix with $x_{j}(\mathbb{N}) \sum_{n=1}^{N} \rho^{N-n+l} x_{k}(n)$ in row j column k. Then it may be seen that the contribution to $\varepsilon\left(c_{j}\right)$ from this missing row is dominated by const. $\mathbb{N}^{-1} \sum_{j} \frac{\left|x_{j}^{(N)}\right|}{d_{j}(\mathbb{N})}=O\left(\mathbb{N}^{-1}\right)$.

A similar argument holds for other elements. To the same order of accuracy it is possible to show that
$\varepsilon\left(c_{j}-\rho^{j}\right)\left(c_{k}-o^{k}\right)=\left({ }^{2} / N^{2}\right) \operatorname{tr}\left\{R W_{N}(j)_{R W_{N}}(k)\right\}+0\left(\mathbb{N}^{-1}\right)$
and by direct but tedious manipulations to find
$\frac{1}{2} \sum_{0}^{2} \Sigma H_{u v} \varepsilon\left\{\left(c_{u}-\rho^{u}\right)\left(c_{v}-\rho^{v}\right)\right\}=-N^{-1}$
so that the final expressionsfor the mean and variance are
$\varepsilon\left(r_{02.1}\right)=-N^{-1}-2 N^{-1} \int_{-\pi}^{\pi} \frac{\rho^{2}-2 \rho \cos \lambda+\cos 2 \lambda}{1_{+} \rho^{2}-2 \rho \cos \lambda} \operatorname{dn}(\lambda)$
$+N^{-1} \operatorname{tr}\left[\int_{-\pi}^{\pi} \frac{\left(1-\rho^{2}\right)}{\left(1+\rho^{2}-2 \rho \cos \lambda\right)} d N(\lambda) \int_{-\pi}^{\pi} \frac{\rho^{2}-2 \rho \cos \lambda+\cos 2 \lambda}{\left(1-\rho^{2}\right)} d N(\lambda)\right]+0\left(N^{-1}\right)$
$\operatorname{Var}\left(\mathrm{r}_{\mathrm{OL} .1}\right)=\mathrm{N}^{-1}+\mathrm{O}\left(\mathrm{N}^{-1}\right)$
and so to order \mathbb{N}^{-1} only the mean is affected. It might be better to obtain the variance to a higher order of accuracy but this has not been done because of the labour involved. In case of a straight mean correction the results of Jenkins [36] suggest that neglecting terms of order \mathbb{N}^{-3}, the variance should be $I /(\mathbb{N}+2)$. In the case where $\mathbb{N}(\lambda)$ is a function that jumps only at points which may be put into pairs of symmetrically placed points (with respect to the origin) so that the corresponding sums of the pairs of jumps are orthogonal idempotents then $\varepsilon\left(r_{02.1}\right)$ in (1.8.19) reduces to
$-\mathbb{N}^{-1}\left(1+\int_{-\pi}^{\pi} \frac{\rho^{2}-2 \rho \cos \lambda+\cos 2 \lambda}{1+\rho^{2}-2 \rho \cos \lambda} d n(\lambda)+0\left(\mathbb{N}^{-1}\right)\right)$
and in particular if the only jump is at the origin the expectation becomes $-(q+1) / \mathbb{N}$, which to order \mathbb{N}^{-1} agrees with known results for a mean correction. If the $X_{j}(n)$ series have spectra which are relatively very concentrated at the origin this may again be a good approximation. So the test procedure if the $x_{j}(n)$ are of this nature is to use $\left(r_{02.1^{+}}(q+1) / \mathbb{N}\right)$ as an ordinary correlation from ($N+2$) pairs of observations. It may also be advisable to obtain higher order approximations to the lower moments of $r_{02.1}$. Higher order partial correlations need consideration in the same way. For example the next step logically would be to estimate the $\hat{\beta}_{j}$ and $\hat{u}(n)$ over a grid of values of ρ_{1} and ρ_{2} that are associated with stationary $u(n)$. The $\hat{u}\left(\rho_{1}, \rho_{2}\right)$ which were associated with the minimal sum of squares would then be used in forming $r_{03.12}$ to test an alternative hypothesis of a 3rd order autoregression for $u(n)$ against a null hypothesis assuming $u(n)$ is a second order autoregression.

II ESTTMATION AND INIERPRETATION OF SPECTRA ARISING FROM ECONOMIC DATA

2.1 Basic Spectral Estimators

It is again assumed, to simplify the discussion, that the spectral distribution matrix, $F(\lambda)$, is absolutely continuous so that the random vectors employed in (1.2.10), the spectral representation of $x(n)$, are therefore characterized by the matrices $c(\lambda)$ and $q(\lambda)$ defined in (1.2.6). It is apparent from (1.2.6) that an estimate of $f(\lambda)$, say $\hat{f}(\lambda)$, will be composed of estimates of these fundamental quantities, henceforth referred to as $\hat{c}(\lambda)$ and $\hat{q}(\lambda)$. In $\mathrm{B}_{1} .4$, in which the subject of estimation was briefly introduced, an expression was presented for the estimator of element in the $j^{\text {th }}$ row and $k^{\text {th }}$ column of $f(\lambda)$. It is necessary to expand on the expression (1.4.5) to extract the estimators of $c_{j k}(\lambda)$ and $q_{j k}(\lambda)$. First, we must relax the assumption that $x(n)$. has a zero mean vector and redefine the estimate of the cross covariance between the $j^{\text {th }}$ and $k^{\text {th }}$ elements of $x(n)$ as
$c_{j k}^{p}(n)=\frac{1}{N T-n} \sum_{m^{I}}^{N-n}\left(x_{j}(m)-\bar{x}_{j}\right)\left(x_{k}(m+n)-\bar{x}_{k}\right)$
where $\bar{x}_{j}=\sum_{m^{1}}^{N} X_{j}(m) / \mathbb{N}, j=1, \ldots, p$, and replace $c_{j k}(n)$ in (1.4.5)
by $c_{j k}^{1}(n)$. Now it is possible to represent $c_{j k}^{1}(n)$ as follows,
$c_{j k}^{\prime}(n)=o_{j k}(n)+E_{j k}(n)$
where
$O_{j k}(n)=\frac{1}{2}\left\{c_{j k}^{i}(n)-c_{j k}^{\prime}(-n)\right\}$
$E_{j k}(n)=\frac{1}{2}\left\{c_{j k}^{i}(n)+c_{j k}^{i}(-n)\right\}$
and since it is apparent from (2.1.1) that $c_{j k}^{i}(n)=c_{k j}^{p}(-n)$ another expression for $O_{j k}(n)$ and $E_{j k}(n)$ is
$O_{j k}(n)=\frac{1}{2}\left\{c_{j k}^{\prime}(n)-c_{k j}^{\prime}(n)\right\}$
$E_{j k}(n)=\frac{1}{2}\left\{c_{j k}^{p}(n)+c_{k j}^{p}(n)\right\}$.

When the expression for $c_{j k}^{1}(n)$, given in (2.1.2), is inserted in (1.4.5) we find
$\hat{f}_{j k}(\lambda)=\hat{c}_{j k}(\lambda)+\hat{q}_{j k}(\lambda)$
with

$$
\begin{align*}
\hat{c}_{j k}(\lambda) & =\frac{1}{2 \pi} \Sigma_{-N}^{N-1} \cos n \lambda k_{n}\left(1-\left|\frac{n}{N}\right|\right) E_{j k}(n) \tag{2.1.6}\\
& =\frac{1}{2 \pi} k_{0} E_{j k}(0)+\frac{1}{\pi} \Sigma_{1}^{N-1} \operatorname{cosn} \lambda_{n}\left(1-\left|\frac{n}{N}\right|\right) E_{j k}(n)
\end{align*}
$$

and

$$
\begin{align*}
\hat{q}_{j k}(\lambda) & =\frac{1}{2 \pi} \Sigma_{-N+1}^{N-1} \operatorname{sinn} \lambda k_{n}\left(1-\left|\frac{n}{N}\right|\right) 0_{j k}(n) \tag{2.1.7}\\
& =\frac{1}{\pi} \Sigma_{1}^{N-1} \operatorname{sinn} \lambda k_{n}\left(1-\left|\frac{n}{N}\right|\right) 0_{j k}(n)
\end{align*}
$$

The estimates defined in (2.1.6) and (2.1.7) are the basis of a spectral investigation of $x(n)$. From these quantities a number of characteristics are developed to aid in understanding the relation between the elements in the vector. Two of these have already arisen, the coherence $W_{j k}(\lambda)$ and the phase $\theta_{j k}(\lambda)$. The estimate of $W_{j k}(\lambda)$ is
$\hat{W}_{j k}(\lambda)=\left\{\frac{\hat{c}_{j k}^{2}(\lambda)+\hat{q}_{j k}^{2}(\lambda)}{\hat{\mathrm{f}}_{j j}(\lambda) \hat{\mathrm{f}}_{k k}(\lambda)}\right\}^{\frac{1}{2}}$
and the estimate of the phase, $\theta_{j k}(\lambda)$, is defined to avoid any ambiguity as follows,

$$
\begin{align*}
\theta_{j k}(\lambda) & =\tan ^{-1}\left(\frac{\hat{q}_{j k}(\lambda)}{\hat{c}_{j k}(\lambda)}\right) \text { if } c_{j k}(\lambda)>0 \tag{2.1.9}\\
& =\left\{\tan ^{-1} \frac{\hat{q}_{j k}(\lambda)}{\hat{c}_{j k}(\lambda)}+\pi \operatorname{sign} \hat{q}_{j k}(\lambda)\right\} \text { if } c_{j k}(\lambda)<0 .
\end{align*}
$$

The measure of coherence given in (2.1.8) should be treated cautiously for the following reason. If the phase angle between any two series j and $k, \theta_{j k}$ is changing rapidly then using (2.1.8) will probably lead to an under-estimate of coherence. The smoothing procedure necessary to reduce the sampling variability means that
$W_{j k}(\lambda)$ is being estimated from averages of the estimators $c_{j k}(\lambda)$, $q_{j k}(\lambda), f_{j j}(\lambda)$ and $f_{k k}(\lambda)$ over a band of frequencies, which will be designated $G(\lambda)$. Thus each coherency estimate $\hat{W}_{j k}(\lambda)$ might be represented as

$$
\begin{equation*}
\left|\int_{G(\lambda)} f_{j k}(\omega) e^{i \theta_{j k}(\omega)} d \omega\right| /\left\{f_{j j}(\lambda) f_{k k}(\lambda)\right\}^{\frac{1}{2}} \tag{2.1.10}
\end{equation*}
$$

where $f_{j j}($.$) and f_{k k}($.$) are assumed to change little over the$ band $G(\lambda)$ and therefore if $\left|f_{j k}(\omega)\right|$ is also almost constant over the band then the expression for $\hat{W}_{j k}(\lambda)$ becomes
$W_{j k}(\lambda)\left|\int_{G(\lambda)} e^{i \theta} j k(\omega) d \omega\right|$.
If $\theta_{j k}(\omega)$ is changing rapidly the second factor may well be close to zero and thus the bias in the coherence estimate may not be negligible. Although no attempt has been made in this work to allow for this problem it must be mentioned that because the bias in the phase is negligible it is possible to estimate $\theta_{j k}(\omega)$ and then to approximate it over the band $G(\lambda)$ as $\theta_{j k}(\lambda)+(\omega-\lambda) \theta_{j k}^{\prime}(\lambda)$ and then make a phase shift to eliminate the 2nd term. The work on proper estimation when the phase is changing rapidly (relative to the band $G(\lambda)$) still appears to be exploratory (see [3], [51]).

If for any two of the elements of the vector $x(n)$ it is thought that $x_{j}(n)$ may be explained by $x_{k}(n)$ then this would lead to the investigation of $B_{j k}(\lambda)$, the regression transfer function and $f_{j: k}(\lambda)$, the residual spectral density function. Both these functions may be expressed in terms of spectral estimators previously defined as

$$
\begin{align*}
B_{j k}(\lambda) & =\frac{\hat{f}_{j k}(\lambda)}{\hat{f}_{k k}(\lambda)}=\alpha_{j k}(\lambda)+i \beta_{j k}(\lambda) \\
& =\frac{c_{j k}(\lambda)}{f_{k k}(\lambda)}+\frac{q_{j k}(\lambda)}{f_{k k}(\lambda)} \tag{2.1.12}
\end{align*}
$$

and
$f_{j: k}(\lambda)=f_{j j}(\lambda)\left\{1-W_{j k}^{2}(\lambda)\right\}$.

The complex regression transfer function defined in (2.1.12)
is usually considered in the following polar form
$B_{j k}(\lambda)=G_{j k}(\lambda) e^{-i \theta} j k(\lambda)$.
The only new quantity in this expression is $G_{j k}(\lambda)$, usually referred to as the gain of the function, which is estimated by $\hat{G}_{j k}(\lambda)=\frac{\left|\hat{f}_{j k}(\lambda)\right|}{\hat{f}_{k k}(\lambda)}$

$$
\begin{equation*}
=\sqrt{\hat{c}_{j k}^{2}(\lambda)+\hat{q}_{j k}^{2}(\lambda)} / f_{k k}(\lambda) . \tag{2.1.15}
\end{equation*}
$$

The form of the covariance averaging kernel which has been used to obtain $\hat{f}_{j j}(\lambda), \hat{c}_{j k}(\lambda)$ and $\hat{q}_{j k}(\lambda)$ and which therefore underlies all quantities based on these estimates is due to Parzen and is

$$
\begin{array}{rlrl}
k\left(\frac{n}{m}\right) & =1-6\left(\frac{n}{m}\right)^{2}+6\left|\frac{n}{m}\right|^{3} & & \left|\frac{n}{m}\right| \leqq \frac{1}{2} \\
& =2\left(1-\left|\frac{n}{m}\right|\right)^{3} & \frac{1}{2} \leqq\left|\frac{n}{m}\right| \leqq 1 \tag{2.1.16}\\
& =0 & \left|\frac{n}{m}\right|>1
\end{array}
$$

where m is the number of autocovariances or cross-covariances included in the estimates. The spectral window (see (1.4.6)) for this weight function is
$K_{N}(\lambda)=\frac{1}{2 \pi}\left(\frac{3}{4} \frac{1}{m}\right)\left[\frac{\sin \left(\frac{m \lambda}{4}\right)}{\frac{1}{2} \sin \left(\frac{\lambda}{2}\right)}\right]^{4}\left\{1-\left(\frac{2}{3}\right)\left(\sin \left(\frac{\lambda}{2}\right)\right)^{2}\right\}$.
It is instructive also to consider the limiting form of this spectral window, i.e.
$\lim _{\mathbb{N} \rightarrow \infty}\left\{\frac{1}{2 \pi m} \sum_{n}^{N-1} k+1\left(\frac{n}{m}\right) e^{-i\left(\frac{n}{m}\right) \lambda}\right\}=K(\lambda)$

$$
\begin{equation*}
=\frac{1}{2 \pi} \int_{-\infty}^{\infty} k(x) e^{-i \lambda x} d x . \tag{2.1.18}
\end{equation*}
$$

$K(\lambda)$, for the weights given in (2.1.14), is given by
$K(\lambda)=\frac{3}{8 \pi}\left\{\frac{\sin \left(\frac{\lambda}{4}\right)}{(\lambda / 4)}\right\}$.
The choice of the Parzen weight function has not been based on a detailed study of this and competing functions with a view to minimizing mean square error as there appeared to be a rather small pay off in this sort of investigation.

The decision was based on computational ease and the fact that the associated spectral estimator of $f_{j j}(\lambda)$ is never negative.

If it is most appropriate for distributed lag relations to be estimated by spectral methods the bias in the estimates proposed (see [21]) will be minimized for large N if the truncated covariance averaging kernel is used. This weight function is

```
\(k\left(\frac{n}{m}\right)=1 \quad\left|\frac{n}{m}\right| \leqq 1\)
    \(=0 \quad\left|\frac{n}{m}\right|>1\)
```

so that the estimator of $f_{j j}(\lambda)$ is
$\hat{\mathrm{f}}_{j j}(\lambda)=\frac{1}{2 \pi} \sum_{n}^{m}\left(\left.1-\frac{n}{N} \right\rvert\,\right) c_{j j}^{p}(n) e^{i n \lambda}$
and the spectral window is
$K_{N}(\lambda)=\frac{1}{2 \pi} \frac{\sin \left(\frac{m+l}{2} \lambda\right)}{\sin \left(\frac{\lambda}{2}\right)}$
with the following limiting form,
$K(\lambda)=\frac{\sin \lambda}{\pi \lambda}$.

2.2 Mean Correction of Covariances

The programs which have been developed for spectral estimation had their starting point in a program proposed by Karreman [40]. As mentioned in 2.1 the spectral estimators computed are to be
based on the Parzen weight function and it is therefore desirable that the computation of the mean corrected covariances should be performed so that estimated spectra continue to be positive. To consider this problem in more detail we assume that $j=k$ and make the division \mathbb{N} in (2.1.1) so that the mean corrected covariance is
$c_{j j}^{\prime}(n)=\frac{1}{\mathbb{N}} \sum_{m^{1}}^{N-n}\left(x_{j}(m)-\bar{x}_{j}\right)\left(x_{j}(m+n)-\bar{x}_{j}\right)$
$=\frac{1}{\mathbb{N}}\left\{\sum_{m^{N}-n_{x_{j}}}(m) x_{j}(m+n)-(N-n)\left(\bar{x}_{j}-\overline{x_{j}}+\bar{x}_{j} \bar{x}_{j}^{u}-\bar{x}_{j}\right)\right\}$
where $\bar{x}_{j}^{l}=\sum_{m^{I}}^{N-n_{x_{j}}(m) /(N-n)}$ and $\vec{x}_{j}^{u}=\sum_{m^{I}}^{N-n_{x_{j}}}(m+n) /(N-n)$. If either form of (2.2.1) is used in the computations then there will be no problem with the positive nature of the estimated spectrum. The initial form of (2.2.1) would be used if all the data were passed through a detrending subroutine prior to spectral estimation where one of the detrending options would be the production of mean corrected series. This computational organization means that new series $y_{j}=x_{j}(n)-T_{j}(n)$ are the series which form the input to the spectral computation procedures. Although the latter form of (2.2.1) is susceptible to greater simplification for computing purposes, it is tempting to use the following approximation,

$$
\begin{align*}
c_{j j}^{*}(n) & =\frac{1}{\mathbb{N}} \sum_{m}^{N T-n} x_{j}(m) x_{j}(m+n)-(\mathbb{N}-n) x_{j}^{2} \tag{2.2.2}\\
& =\frac{\mathbb{N}-n}{\mathbb{N}}\left(c_{j j}(n)-x_{j}^{2}\right) .
\end{align*}
$$

11
The approximation suggested in [40] has a correction term $-\mathbb{N X}_{j}^{2}$ in the first form of (2.2.2) which does not appear to be correct and will accentuate the magnitude of possible negative estimators.

The obvious query is whether this approximation could lead to negative spectral estimators. The multiplicative factor $\frac{N-n}{N}$ will affect the nature of the bias and the variance of the spectral estimator but will not affect the presence or absence of negative estimates, only the magnitude of these estimates. The result that must be established is therefore what will be the nature of the estimator $\hat{f}_{j j}(\lambda)$ if $c_{j j}^{\prime}(n)$ is replaced by $\frac{\mathbb{N}}{(N-n)} c_{j j}^{*}(n)$ so that (1.4.5), with $j=k$, becomes $f_{j j}^{*}(\lambda)=\frac{1}{2 \pi} \sum_{n}^{m}\left\{\left.1-\frac{n}{N} \right\rvert\,\right\} c_{j j}^{\prime} e^{i n \lambda_{k}} k_{n}-\frac{1}{2 \pi} \sum_{n}^{m}\left\{1-\left|\frac{n}{N}\right|\right\} \bar{x}_{j}^{2} e^{i n \lambda_{k}} k_{n}$.

To evaluate (2.2.3) it is necessary to express the latter factor in terms of $I_{N N}(\lambda)$ (see (1.4.3)) as follows
$\frac{1}{2 \pi} \sum_{-m}^{m}\left(1-\left|\frac{n}{N}\right|\right) x_{j}^{2} e^{i n \lambda_{k}} n_{n}=\frac{1}{2 \pi} \sum_{-N+1}^{N-1} c_{j j}\left(1-\left|\frac{j}{N}\right|\right)\left[\sum_{n}^{m} e^{i n \lambda}\left(1-\left|\frac{n}{m}\right|\right) k\left(\frac{n}{m}\right)\right]$
$=\frac{1}{2 \pi} \sum_{-N+1}^{N-1} c_{j j}\left(1-\left|\frac{j}{N}\right|\right)\left[2 \pi \int_{-\pi}^{\pi} K_{N}(\lambda-\phi) \frac{\sin ^{2} \frac{\frac{N}{2} \phi}{2}}{2 \pi N \sin ^{2} \frac{\phi}{2}} d \phi\right]$
$=I_{N}(0) 2 \pi \int_{-\pi}^{\pi} K_{N}(\lambda-\phi) \frac{\sin ^{2}\left(\frac{N(\phi}{2}\right)}{2 \pi N \sin ^{2}\left(\frac{\phi}{2}\right)} d \phi$.
If the first term in (2.2.3) is expressed as proposed in (1.4.3)
then the estimate is written
$\hat{\mathrm{f}}_{j j}^{*}(\lambda)=\int_{-\pi}^{\pi}\left\{I_{N}(\theta) K_{N}(\lambda-\theta)-I_{N}(0) \int_{-\pi}^{\pi} K_{N}(\lambda-\phi) \frac{\sin ^{2}\left(\frac{N D}{2}\right)}{2 \pi N \sin ^{2}\left(\frac{\phi}{2}\right)} d \phi\right\} d \theta$
$=\int_{-\pi}^{\pi}\left[\left\{I_{N}(\theta) K_{N N}(\lambda-\theta)-I_{N}(0) K_{N}(\lambda-\phi)\right\} \frac{\sin ^{2} \frac{\mathbb{N} \phi}{2}}{2 \pi \mathbb{N} \sin ^{2}\left(\frac{\phi}{2}\right)}\right] d \theta d \phi$
$=\int_{-\pi}^{\pi}\left\{I_{N N}(\theta) K_{N N}(\lambda-\theta)-I_{N N}(0) K_{N}^{*}(\lambda)\right\} d \theta$
$=\int_{-\pi}^{\pi} I_{N N}(\theta) K_{N}(\lambda-\theta) d \theta-I_{N N}(0) K_{N N}^{*}(\lambda)$.

It must be noted that the expression
$K_{N}(\lambda) \neq K_{N}^{*}(\lambda)=\int_{-\pi}^{\pi} K_{N}(\lambda-\phi) \frac{\sin ^{2} \frac{N}{2} \phi}{2 \pi N \sin ^{2} \frac{1}{2} \phi} d \phi$, but that there is approximate equality if $\mathbb{N} \gg m$. It is apparent that if the amplitude of the periodogram at zero frequency is large relative to the amplitude at and around λ and the weight K_{N} is not small, then it is quite possible if m is not large that negative spectral estimates could occur. To completely avoid the possibility of negative spectral estimates the approximation $c_{j j}^{*}(n)$ was not used. Although some computing time is lost by this insurance it is possible to express the latter term in (2.2.1) in a more convenient form for computational purposes as follows

$$
\begin{align*}
& c_{j j}^{\prime}(n)=\frac{1}{N}\left\{\sum_{m}^{N-n} x_{j}(m) x_{j}(m+n)-(N-n) \bar{x}_{j}\left(x_{j}+\bar{x}_{j}^{u}-\bar{x}\right)\right\} \\
& =\frac{1}{N} \sum_{m^{N}}^{N-n} x_{j}(m) x_{j}(m+n)-\frac{(N-n)}{N} \bar{x}\left\{\frac{S_{1}+S_{2}}{(N-n)}+\frac{S_{2}+S_{3}}{N-n}-\frac{\left(S_{1}+S_{2}+S_{3}\right)}{N}\right\} \\
& =\frac{1}{N} \sum_{1}^{N-n} x_{j}(m) x_{j}(m+n)-\frac{(N-n)}{N} \bar{x}\left\{\frac{N S_{2}+n\left(S_{1}+S_{2}+S_{3}\right)}{N(N-n)}\right\} \tag{2.2.6}\\
& =\frac{1}{N} \sum_{1}^{N-n} x_{j}(m) x_{j}(m+n)-\frac{1}{N} \bar{x}\left\{N S_{2}+n \bar{x}\right\} \\
& =\frac{1}{N}\left\{\sum_{m^{N}}^{N-n} x_{j}(m) x_{j}(m+n)-\bar{x}\left\{N S_{2}+n \bar{x}\right\}\right\}
\end{align*}
$$

where
$S_{1}=\sum_{m^{n}}^{n} x(m), \quad S_{2}=\sum_{m^{N}+1}^{N-n} x(m) \quad$ and $\quad S_{3}=\sum_{m^{N}-n+1}^{N} x(m)$.

2.3 Missing Observations

Granger [15] has suggested a method of treating a single gap in the data when the series has no trend in the mean. It does seem that the treatment of missing observations must be expanded to handle the sort of situation which arises where, for example, prices are recorded on a weekly basis. The series of weekly wool prices (on an aggregated or type or quality basis) is an instance of a time series which is always incomplete for the following reasons. The custom of the wool trade is to close the Australian market at Easter, for 2-3 weeks, at Christmas again, for 3-4 weeks, and during the European summer for 5-6 weeks. The gap at Easter is naturally variable in its calendar location but the other two breaks are reasonably constant in calendar location. It may be tempting to close these gaps in the data, arguing that the market mechanism is not active or perhaps is less than usually active. This does not seem to be justified as the factors determining supply and demand for the commodity are still active in these periods so that while the Australian Wool Market is not registering a price in these periods, there may be in effect changes in the potential price of the commodity. Apart from the underlying feeling that the mechanism which determines prices does not halt during these gaps there is a purely practical difficulty if the gaps are closed in that the period of the oscillation thus obtained cannot be easily interpreted in relation to the normal concept of time. There is now market time and calendar time.

The procedure used was to fill in all missing observations with zeros, ${ }^{12}$ thus maintaining an equivalence between market and calendar time. It is obviously necessary to adjust the methods for computing autocovariances and cross-covariances so that the

12
There were no actual observations with zero value so that all zero observations or cross-products arose from missing observations.
only market generated information will be used in computing the covariances.

To attempt to fill in the theoretical background on this approach to missing observations the analogue of $I_{N}(\lambda)$, which is the sum of squares of regression of $x(n)$ on $\sin n \lambda$ and $\cos n \lambda$ divided by 4π, is considered. The sum of squares is

$$
\begin{equation*}
S S=\frac{1}{4 \pi} y^{1} A^{-1} y \tag{2.3.1}
\end{equation*}
$$

where
$y^{\prime}=\left(\Sigma^{\prime} x(n) \cos n \lambda, \Sigma^{\prime} x(n) \sin n \lambda\right)$
and
$A=\left(\begin{array}{ll}\Sigma^{\prime} \cos ^{2} n \lambda & \Sigma^{\prime} \cos n \lambda \sin n \lambda \\ \Sigma^{\prime} \cos n \lambda \sin n & \Sigma^{\prime} \sin ^{2} n \lambda\end{array}\right)$.

The symbol ' is to emphasize that the sum includes only those market generated values. Whether the A matrix will be close to orthogonality will depend on the distribution of the missing values over the time sequence $1, \ldots, \mathbb{N}$. If A is close to orthogonality then
$S S \cong \frac{1}{2 \pi} \frac{1}{N^{\prime}},\left|\Sigma^{\prime} x(n) e^{i n \lambda}\right|^{2}=I_{N}^{\prime}(\lambda)$
where N^{\prime} is the number of market generated observations, i.e.
N less the number of missing observations. The quantity that is
now to be used in estimating $\hat{\mathrm{f}}_{j j}(\lambda)$ is the periodogram computed
from data with missing values replaced by zeros, i.e. I' (λ).
To understand the implications in this redefinition it is useful
to express $I_{N}^{\prime}(\lambda)$ as follows
$I_{N}^{\prime}(\lambda)=\frac{1}{2 \pi} \Sigma_{-N^{\prime}+1}^{N^{\prime}-1} c^{\prime}(n) e^{-i n \lambda}$
and
$c^{\prime}(n)=\frac{1}{N^{\prime}}, \sum_{m=1}^{\mathbb{N}-n} x(m) x(m+n)$.

The estimator proposed will be

$$
\begin{align*}
\hat{f}_{j j}^{\prime}(\lambda) & =\frac{l}{2 \pi} \Sigma_{-m}^{m} c^{\prime}(n) e^{-i n \lambda} k\left(\frac{n}{m}\right) \tag{2.3.4}\\
& =\int_{-\pi}^{\pi} K(\lambda-\theta) I_{N}^{\prime}(\theta) d \theta
\end{align*}
$$

which will be non-negative for the Parzen spectral window. It is necessary also to introduce a double primed notation which means that in summing or counting between prescribed limits only non-zero cross products are included. The expected value of $I_{N}^{\prime}(\lambda)$ is then given by
$\varepsilon\left(I_{N}^{\prime}(\lambda)\right)=\frac{1}{2 \pi} \Sigma_{-N^{\prime}+1}^{N^{\prime}-1} \frac{N^{\prime \prime}(n)}{N^{t}} \gamma(n) e^{-i n \lambda}$
where $N^{\prime \prime}(n)$ is the number of cross-products entering the definition of each $c^{\prime}(n)$, so that the expected value of the proposed estimator is given by
$\varepsilon\left(f_{j j}^{\prime}(\lambda)\right)=\frac{1}{2 \pi} \Sigma_{-m}^{m} \frac{N^{\prime \prime}(n)}{N^{\dagger}} \gamma(n) k\left(\frac{n}{m}\right) e^{-i n \lambda}$.
The only situation where there will be much distortion, compared to the normal situation without missing observations, is when $\frac{N^{\prime \prime}(n)}{N^{t}}$ is small in relation to $\frac{N-n}{\mathbb{N}}$, for n such that $\gamma(n)$ is not small (i.e. small n).

The problem of mean correction arises again and as much of the detailed argument would be on lines similar to those given in 2.2 only a brief sketch of the details are given.

The mean correction may be made by a pre-filtering routine which produces new series $y_{j}^{\prime}(n)=x_{j}^{\prime}(n)-\bar{x}_{j}^{q}$ where $\bar{x}_{j}^{\prime}=\frac{\Sigma^{\prime} x_{j}(n)}{N^{\prime}}$. Alternatively the covariances for $x_{j}(n)$ may be obtained from $c_{j}^{\prime}(n)=\frac{1}{N^{\prime}} \Sigma_{l}^{(N-n)^{\prime \prime}}\left(x_{j}(m)-\bar{x}_{j}^{\prime}\right)\left(x_{j}(m+n)-\bar{x}_{j}^{\prime}\right)$.

If the covariances are obtained using (2.3.7) then the most convenient formula for computation is
$c_{j}^{\prime}(n)=\frac{1}{N}, \Sigma^{\prime \prime} x_{j}(m) x_{j}(m+n)-\bar{x}_{j}^{\prime}\left\{\Sigma^{\prime \prime} x_{j}(m)+\Sigma^{\prime \prime} x_{j}(m+n)-N_{j}^{\prime \prime}(n) \bar{x}_{j}^{\prime}\right\}$
and it is emphasized that the sums included in the second term are also performed only for non-zero cross products. ${ }^{13}$ The formula (2.3.8) provides the focal point for an auto-spectral estimation program when missing observations are present. An analogous formula for cross-spectral purposes has also been developed by merely setting $j=k$ in the second bracket in (2.3.7) and simplifying. The programs employ two counting procedures; one automatically totals the non-zero observations \mathbb{N}^{\prime}, and the other counts for each covariance or cross-covariance the non-zero cross products, $\mathbb{N}_{j k}^{\|}(n)$. It may seem even more tempting in these circumstances to use the approximation to $c_{j}^{\prime}(n)$ given by
$\tilde{c}_{j}^{\prime}(n)=\frac{1}{N^{\prime}} \Sigma^{\prime \prime} x_{j}(m) x_{j}(m+n)-\mathbb{N}_{j}^{\prime \prime}(n)\left(\bar{x}_{j}^{t}\right)^{2}$
but certain non-negativity of $\hat{\mathrm{f}}_{j j}(\lambda)$ would then be sacrificed. The only extra computing that (2.3.8) requires when compared to (2.3.9) is the upper and lower sums, $\Sigma " x_{j}(m)$ and $\Sigma " x_{j}(m+n)$.

13
The operation $\Sigma{ }^{\prime \prime} x_{j}(m)$ means that those elements usually in the lower sum which correspond to a zero cross-product are excluded from the sum. The reason for using the notation in the lst term on the right hand side of (2.3.8) needs a comment. Obviously it will not matter for the sum of cross-products whether the zero cross-products are added or not, but it does matter when correctly computing the sums in the second term on the right hand side of (2.3.8) and so the $\Sigma^{\prime \prime}$ notation is appropriate to (2.3.7) and to (2.3.8).

2.4 Preliminary Transformation of Economic Data

It is standard practice to examine a graph of the series under consideration, both as a means of 'editing' discrepant values and perhaps as a guide to suitable transformations of the data. It is not uncommon for logarithms of the data to be taken. There is little doubt that much economic data so transformed is closer to normality than in its original state. If the observed data is denoted $x(n)$ then it is assumed that $y(n)=\log _{e} x(n)$ is normally distributed and for expositional convenience that $\mu_{y}=0$ and $\sigma_{y}^{2}=1$. To establish a relation between the spectra of $y(n)$ and $x(n)$ it is necessary on several occasions to use the following result. If $y(n)$ is normally distributed with mean μ_{y} and variance σ_{y}^{2} (N.D. $\left(\mu_{y}, \sigma_{y}^{2}\right)$) then the expectation of $x(n)=e^{y(n)}$ is given by [15]
$\varepsilon(x(n))=\exp \left\{\sigma_{y}^{2} / 2+\mu_{y}\right\}$.
The lag covariance function of $x(n), \gamma_{x}(\tau)$, is
$\gamma_{x}(\tau)=\varepsilon(x(n) x(n+\tau))-\{\varepsilon(x(n))\}^{2}$
and
$\varepsilon(x(n) x(n+\tau))=\varepsilon\left(e^{y(n)+y(n+\tau)}\right)$
is derived from $(2 \cdot 4 \cdot 1)$ as $y(n)+y(n+\tau)$ is $N \cdot D \cdot\left(0,2\left(\sigma_{y}^{2}+\gamma_{y}(\tau)\right)\right)$.
So the first term in (2.4.2) is

$$
\begin{align*}
\varepsilon(x(n) x(n+\tau)) & =\exp \left\{\sigma_{y}^{2}+\gamma_{y}(\tau)\right\} \\
& =e \cdot e^{\gamma}(\tau) \tag{2.4.3}
\end{align*}
$$

and since $\mathcal{E}(x(n))=e^{\frac{1}{2}}$ from (2.4.1) the simple expression for $\gamma_{x}(\tau)$ is

$$
\begin{equation*}
\gamma_{x}(\tau)=e\left(e^{\gamma} y^{(\tau)}-1\right) . \tag{2.4.4}
\end{equation*}
$$

The variance of $x(n)$ is obtained directly from (2.4.4) with $\tau=0$, so that the lag correlation function for $\mathrm{x}(\mathrm{n})$ is
$\rho_{x}(\tau)=\frac{\left.e^{\left(e^{\gamma_{x}(\tau)}\right.}-1\right)}{e(e-1)}=\frac{e^{\gamma_{y}(\tau)}-1}{e-1}$.

As it has been assumed that $\gamma_{y}(0)=1$ the following relation holds between lag correlations
$\rho_{X}(\tau)=\frac{e^{\rho_{Y}(\tau)}-1}{e-1}$.
If the exponential terms in (2.4.6) are expanded in power series and then a weighted Fourier Transform is taken of each side of the equation we obtain the following relation between spectra
$f_{x}(\lambda)=\sum_{j=1}^{\infty} f_{y}^{* j}(\lambda) / j!/ \Sigma_{j=1}^{\infty}\left(\frac{1}{j!}\right)$
where $f_{y}^{* I}(\lambda)=f_{y}(\lambda)$ and $f_{y}^{* j}(\lambda)=\int_{-\pi}^{\pi} f_{y}^{*}(j-1)(\lambda-\theta) f_{y}(\theta) d \theta$
and $f_{y}^{* j}(\lambda)$ is referred to as the $j^{\text {th }}$ convolution of $f_{y}(\lambda)$.
To interpret (2.4.7) it is best to imagine starting with normal variable $y(n)$, which is exponentiated and then normalized. The spectrum of $x(n)$, in regular cases, will be much smoother than that of $f_{y}(\lambda)$ as it comprises a weighted average of $f_{y}(\lambda)$ and its convolutions. Of course if $y(n)$ has a very sharp peak in its spectrum, say at $\pm \theta$, then the convolution $f_{y}^{* 2}(\lambda)$ will have a peak at $\lambda=0, \pm 2 \theta, \mathrm{f}_{\mathrm{y}}^{* 3}(\lambda)$ at $\pm \theta, \pm 3 \theta$, and so on. Thus $\sum_{j^{1}}^{\infty} f_{y}^{* j}(\lambda)$ will tend to have peaks at all harmonics of $\pm \theta$. The fact that the convolution may still be regarded as smoother is less important than the recognition of how the convolving procedure redistributes a sharp peak of power at a particular frequency to its harmonics. To understand what will happen to a spectrum when logarithms are taken one merely has to imagine reversing the above explanation and the spectrum of the logarithm will be much more peaked at points of power.

In econometric work it is often the case that the dependent, independent or even all variables in the relation are in ratio form. It is useful to attempt to obtain some understanding of the nature of the spectrum of this type of variable in terms of the spectra of the numerator and denominator and to do this the typical ratio variable, $r(n)=\frac{c(n)}{y(n)}$ is investigated. As is the case with most economic variables it is assumed that
$\log _{e} c(n)=z(n) \sim \mathbb{N} \cdot D \cdot\left(\mu_{z}, \sigma_{z}^{2}\right)$ and $\log _{e} y(n)=u(n) \sim \mathbb{N} \cdot D \cdot\left(\mu_{u}, \sigma_{u}^{2}\right)$. The spectrum of $\log _{e} r(n)=w(n)$ is expressed in terms of the spectra of $u(n)$ and $z(n)$ as
$f_{W}(\lambda)=f_{z}(\lambda)+f_{u}(\lambda)-2 c_{z u}(\lambda)$
where $c_{z u}(\lambda)$ is the co-spectrum between $z(n)$ and $u(n)$ defined in (1.2.11) and estimated by (2.1.6).

If the variables $z(n)$ and $u(n)$ have similar spectral shapes (see [16]) then it would be expected that $f_{W}(\lambda)$ will contrast strongly with $f_{z}(\lambda)$ and $f_{u}(\lambda)$ in that it has much reduced power and is much flatter.

Attention should not be focussed only on the spectrum of $w(n)$, but rather on that of $r(n)$. Since $\log _{e} r(n)=w(n)$ and $w(n)$ is N.D. $\left(\mu_{z}-\mu_{u}, \sigma_{u}^{2}+\sigma_{z}^{2}-2 \sigma_{u z}\right)$ it is possible as before to exponentiate, normalize and thus express the spectrum of $r(n)$, i.e. $f_{r}(\lambda)$, as a weighted average of the convolutions of $f_{w}(\lambda)$. It is therefore clear in principle how the shape of $z(n)$ and $u(n)$ will be modified in $f_{W}(\lambda)$ and also how it will be further modified by the convolution operations.

The problem as it usually arises in economics is where a monetary value is deflated by a price index. A detailed investigation of this problem has not been considered because the variable in the denominator of the ratio, i.e. $y(n)$, is itself a ratio, with both the numerator and the denominator being sums of products. The development of the spectrum of $y(n)$ itself would therefore need a number of assumptions and an extension of the above approach.

2.5 Spectrum of a Controlled Variable

Examples are common in primary production of an authority being given the task of controlling some aspect of the market for particular commodities. The approach of this section acts on the presumption that the control procedure proposed is successful and no attempt is made to investigate the interaction of the control procedures and the behavioural relations in the market. The aim, therefore, is to see how the spectrum of the uncontrolled variable will be modified when subjected to successful control.

The type of control which is considered is the imposition of an upper and lower limit to the values the variable may take. The upper and lower limits on the original variable, which for expositional purposes will be taken to be a price variable, will be denoted a and b respectively. The situation where only an upper or lower limit is employed may be easily dealt with by using obvious special cases. The uncontrolled variable is assumed normally distributed with mean μ and serial covariances $\gamma(\mathrm{m})$. The controlled variable is then
$w(n)=\left\{\begin{array}{l}b \\ z(n) \\ a\end{array}\right.$
$z(n) \leqq b$
a $\quad z(n) \geqq a$.

If the uncontrolled variable $z(n)$ is standardized to form a new variable, $x(n)$ as follows
$x(n)=(z(n)-\mu) / \gamma(0)$,
then the standardized variable is $\mathbb{N} \cdot D .(0,1)$ with autocorrelations $\rho(\mathrm{m})=\gamma(\mathrm{m}) / \gamma(0)$. New standardized central limits, $\alpha=\frac{(\mathrm{a}-\mu)}{\gamma(\mathrm{o})}$ and $\beta=\frac{(b-\mu)}{\gamma(0)}$ are also established. The standardized controlled variable, $y(n)$, can then be defined as

$$
\begin{array}{rlr}
y(n)=f(x(n))= & \beta & x(n) \leqq \beta \\
& x(n) & \beta \leqq x(n) \leqq \alpha
\end{array}
$$

α

$$
x(n) \geqq \alpha .
$$

A description of the nature of the controlled variable, $y(n)$, can then be obtained from its spectrum. To establish this function a Taylor's expansion of $R^{\prime}(m)=\varepsilon(y(n) y(n+m))$ the expected value of the lag cross-products of the standardized controlled variable, is required. The Taylor's series expansion is in terms of the autocorrelations of $x(n)$ and is given by

$$
R^{\prime}(m)=\sum_{k=0}^{\infty} \frac{\rho^{k}(m)}{k!}\left\{\frac{a^{k} R^{\prime}(m)}{d_{\rho}(m)^{k}}\right\}_{\rho(m)=0}
$$

To proceed with this evaluation of $R^{\prime}(m)$ it is necessary to invoke the equality
$\frac{d^{j} \varepsilon(y(n) y(n+m))}{d_{p}(m)^{j}}=\varepsilon\left\{f^{(j)}(x(n)) f^{(j)}(x(n+m))\right\}$
given by Price [49]. The expression one obtains for the term $\varepsilon\left\{f^{(j)}(x(n)) f^{(j)}(x(n+m))\right\}$ may be denoted A_{j}^{2}. The calculation of the A_{j}^{2} is much simplified by special attention to the nature of the function $f(x(n))$ and its derivatives $f^{(j)}(x(n))$. Referring to (2.5.3) it is apparent that
and the general derivative $f^{(j)}(x(n))$ is
$f^{(j)}(x)=\delta^{(j-2)}(x-\beta)-\delta^{(j-2)}(x-\alpha), \quad j=2,3, \ldots$,
where δ is the Dirac delta function. Using the above expression
for $f^{(j)}$ the following table of A_{j}^{2} can be developed

$$
\begin{array}{cl}
0 & \left\{\beta \Phi(\beta)+\int_{\beta}^{\alpha} x \phi(x) d x+\alpha(1-\Phi(\alpha))^{2}\right\} \\
1 & \{\Phi(\alpha)-\Phi(\beta)\}^{2} \tag{2.5.8}\\
2,3, \ldots & \left\{(\phi(j-2)(x))_{x=\alpha}-(\phi(j-2)(x))_{x=\beta}\right\}
\end{array}
$$

where $\Phi(u)=\int_{-\infty}^{u} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x, \quad \phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}$ and $\phi^{(j)}(x)=\phi(x) H_{j}(x)(-1)^{j}$. The function $H_{j}(x)$ is the $j^{\text {th }}$ Hermite polynomial and is defined (see [8]) by
$\left(\frac{d}{d x}\right)^{j}\left\{e^{-\frac{x^{2}}{2}}\right\}=(-1)^{j_{H}} H_{j}(x) e^{-\frac{x^{2}}{2}}, \quad j=0,1,2, \ldots$.

Another approach to obtaining the expression which is proposed by Grenander and Rosenblatt [18,p 51 ff.] is introduced because it proves to be advantageous when considerations of computation efficiency arise. It is shown in [18] that
$R^{\prime}(m)=\sum_{j}^{\infty} A^{\prime}{ }_{j}^{2} \rho^{j}$
where the coefficient A_{j}^{\prime} are
$A_{j}^{!}=\int_{-\infty}^{\infty} \frac{1}{\sqrt{j!}} H_{j}(x) f(x) \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x$.
It is also shown in [18] that if $\rho=1$ then using the Parseval relation it follows immediately that an expression for the sum of the A_{j}^{2} coefficients is
$\sum_{j}^{\infty} A_{j}^{2}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f^{2}(x) e^{-\frac{x^{2}}{2}} d x$.

The weighted Fourier Transform of $R^{\prime}(m)$ will give a spectral representation of $y(n)$, denoted $f_{y}^{\prime}(\lambda)$ which consists of the following weighted average of convolutions of $f_{x}(\lambda)$
$f_{y}^{\prime}(\lambda)=\sum_{j}^{\infty} A_{j}^{\prime} f_{x}^{* j}(\lambda)$.
It is usual for the spectrum to be defined in terms of the covariances, so the weighted Fourier Transform should be applied to $R^{\prime}(m)-(\varepsilon(y(n)))^{2}$. As the mean, $\varepsilon(y(n))$, is easily expressed in terms of the A_{j}^{\prime} as A_{o}^{\prime}, the usually defined spectral density of $y(n)$ is $f_{y}(\lambda)$, with the prime omitted, and is calculated from $f_{y}(\lambda)=\sum_{j^{I}}^{\infty} A_{j}^{r}{ }^{2} f_{X}^{* j}(\lambda)$.

To illustrate how a spectral density will be modified in practice by this sort of control procedure a set of data on monthly price/lb of wool sold at auction, issued by the Council of Wool Selling Brokers, is used. Two general control schemes are proposed; the first has variable upper and lower limits and the second only a variable lower limit. Table l below sets out the limits used in each scheme in terms of the original and standardized variables.

TABL巴 1
CONTROL SCHEMES

Scheme I - Upper and Lower Restriction

		I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	I_{7}	I_{8}	I_{9}	I_{10}
Lower Limit	Original Variable Standardized Var.	$\begin{array}{r} 55 \\ -.72 \end{array}$	$\begin{array}{r} 53 \\ -.88 \end{array}$	$\begin{array}{r} 52 \\ -.97 \end{array}$	$\begin{gathered} 51 \\ -1.05 \end{gathered}$	$\begin{gathered} 49 \\ -1.22 \end{gathered}$	$\begin{array}{r} 55 \\ -.72 \end{array}$	$\begin{array}{r} 53 \\ -.88 \end{array}$	$\begin{array}{r} 52 \\ -.97 \end{array}$	$\begin{gathered} 51 \\ -1.05 \end{gathered}$	$\begin{gathered} 49 \\ -1.22 \end{gathered}$
Upper Limit	Original Variable Standardized Var.	$\begin{array}{r} 70 \\ .53 \end{array}$	$\begin{array}{r} 68 \\ .37 \end{array}$	$\begin{array}{r} 66 \\ .20 \end{array}$	$\begin{array}{r} 65 \\ .12 \end{array}$	$\begin{array}{r} 63.6 \\ 0 \end{array}$	$\begin{array}{r} 75 \\ .95 \end{array}$	$\begin{array}{r} 74 \\ .87 \end{array}$	$\begin{array}{r} 77 \\ 1.12 \end{array}$	$\begin{array}{r} 78 \\ 1.20 \end{array}$	$\begin{array}{r} 80 \\ 1.36 \end{array}$

Scheme II - Only Lower Restriction

		II_{1}	II_{2}	II_{3}	II_{4}	II_{5}	II_{6}	II_{7}	II_{8}	II_{9}	${ }^{\text {II }} 10$
Lower Limit	Original Variable Standardized Var.	$\begin{array}{r} 55 \\ -.72 \end{array}$	$\begin{array}{r} 53 \\ -.88 \end{array}$	$\begin{array}{r} 52 \\ -.97 \end{array}$	$\begin{array}{r} 51 \\ -1.05 \end{array}$	$\begin{array}{r} 49 \\ -1.22 \end{array}$	$\begin{array}{r} 57 \\ -.55 \end{array}$	$\begin{array}{r} 59 \\ -.38 \end{array}$	$\begin{array}{r} 61 \\ -.22 \end{array}$	$\begin{array}{r} 62 \\ -.13 \end{array}$	$\begin{array}{r} 63.6 \\ 0 \end{array}$
Upper Limit	Original Variable Standardized Var.	∞ ∞	\cdots	∞ ∞	\cdots	\cdots	- ${ }_{\infty}$	\cdots	¢	∞ ∞	∞ ∞

Sample Statistics $\quad \mathbb{V}=168, \quad \bar{X}=63.6, \quad S=12.02$.

The computation of the spectra of the price variable when subjected to the control of upper and lower limits suggested above is based on (2.5.12). The obvious dilemma with the expression for f_{y} given in that formula is how many terms in the infinite sum should be used. The following resolution of this problem follows the lines suggested by Grenander and Rosenblatt [18] and makes use of the fact that $f_{x}^{* j} \rightarrow \frac{1}{2 \pi}$ as j increases. If (2.5.13) is rewritten as

$$
\begin{align*}
f_{y}(\lambda) & =\sum_{j}^{p} A_{j}^{2} f_{x}^{* j}(\lambda)+\sum_{j}^{\infty} A^{\prime}{ }_{j}^{2} f_{x}^{* j}(\lambda) \\
& \cong \sum_{1}^{p} A_{j}^{2} f_{x}^{* j}(\lambda)+\frac{1}{2 \pi} \sum_{p+1}^{\infty} A_{j}^{\prime 2} \\
& \cong \sum_{1}^{p} A_{j}^{2}\left(f_{x}^{* j}(\lambda)-\frac{1}{2 \pi}\right)+\frac{1}{2 \pi} \sum_{0}^{\infty} A_{j}^{\prime 2}-\frac{A_{0}^{2}}{2 \pi}
\end{align*}
$$

then using the expression given in (2.5.12) for $\Sigma A_{j}^{r^{2}} f_{y}(\lambda)$ is expressed in a way which suggests a method of computation, that is $f_{y}(\lambda) \cong \sum_{1}^{p} A_{j}^{\prime}{ }_{j}^{2}\left(f_{x}^{* j}-\frac{1}{2 \pi}\right)+\frac{1}{(2 \pi)^{3 / 2}} \int_{-\infty}^{\infty} f^{2}(x) e^{-\frac{1}{2} x^{2}} d x-A_{0}^{t^{2}} / 2 \pi$.

If a small finite number of convolutions is calculated until the last is reasonably close to $\frac{l}{2 \pi}$ (in the example discussed $p=10$) an estimate of $f_{y}(\lambda)$ is obtained by adding the latter two terms. To facilitate computations it is necessary to express the terms
$\frac{1}{(2 \pi)^{3 / 2}} \int_{-\infty}^{\infty} f^{2}(x) e^{-\frac{1}{2} x^{2}} d x$ as follows,
$\frac{1}{(2 \pi)^{3 / 2}} \int_{-\infty}^{\infty} f^{2}(x) e^{-\frac{1}{2} x^{2}} d x=\beta^{2} \Phi(\beta)+\alpha^{2}(1-\Phi(\alpha))+\Phi(\alpha)-\Phi(\beta)+\beta e^{-\frac{1}{2} \beta^{2}}-\alpha e^{-\frac{1}{2} \alpha^{2}}$.

The spectra of the controlled variable for each scheme proposed in Table 1 are contrasted with the spectrum of the standardized variable $x(n)$ in Fig.I.

FIG. I

COMPARISON OF SPECTRA OF RESTRICTED AND UNRESTRICTED STANDARDIZED VARIABLES
......... RESTRETED UNRESTACTED

FIG. I

FIG. I

FIG. I

FIG.I

$100^{-2} \underbrace{\text { SCHEME III }} 10$

3.1 Introduction

This chapter is concerned with two problems, in each of which the model specifies exactly the signal (the regressor). To emphasize the point just made in this Chapter we consider estimation problems where the actual frequency properties of the carrier wave are known and one wishes to detect only the amplitude (or frequency) modulation. In contrast in Chapter IV we will begin considering signal extraction where the only characteristic of the signal which is known a priori is the signal's average spectral properties. Although the signal is known the method of analysis adopted will depend a great deal on the spectral nature of the signals included in each model.

The simpler of the two models is the basis for the estimation of a stable seasonal patterm. This discussion is a logical starting point as the nature of the spectrum of the regressor set is such that the L.S.E. is asymptotically efficient. A series with an extremely stable periodic pattern is used to obtain estimates of the seasonal coefficients and the asymptotic variances. As the L.S.E. is only asymptotically efficient some guidance is then sought on the loss in efficiency one may face from use of the L.S.E. rather than the B.L.U.E. in small to medium size samples.

Finally the model is extended to allow for the effects of working days. Estimation of the working day coefficients clearly illustrates how efficient regression procedures may be employed when the spectra of the signals (regressors) and the disturbance term are such that the L.S.E. is no longer even asymptotically efficient.

Although most economic time series seem to exhibit evolving seasonal patterns there are occasions when the estimation of a stable seasonal pattern is apposite. This position may prevail for two reasons; because the seasonal pattern is in fact
unchanging or more likely because the seasonal evolution is sufficiently slow for a stable pattern to be useful over short periods (say $4-8$ years) and therefore the slowly evolving pattern may be estimated by a moving stable regression procedure.

3.2 Stable Seasonal Model

The basis for discussion is the model
$\mathrm{w}(\mathrm{n})=\mathrm{p}(\mathrm{n})+\mathrm{s}^{*}(\mathrm{n})+\mathrm{u}(\mathrm{n})$
where $w(n)$ is the observed series, $p(n)$ is a 'trend' term, $s^{*}(n)$
is the seasonal component and $u(n)$ is a stationary residual with zero mean. The stationarity of $u(n)$ means that one may write
$\varepsilon(u(m) u(m+n))=\gamma_{u}(n)=\int_{-\pi}^{\pi} e^{i \lambda n_{f}} f_{u}(\lambda) d \lambda$
where ε is the expectation operator and the function $f_{u}(\lambda)$ is the spectrum of $u(n)$.

Only the case where the unit of time is one month is considered as the approach taken can be translated, perhaps with some change of emphasis, to any case where the time interval is some other known period.

Since $s^{*}(n)$ is assumed to be periodic with period twelve months it may be expressed in the form ${ }^{14}$
$s^{*}(n)=\Sigma_{1}^{6} s_{j}^{*}(n)=\Sigma_{1}^{6}\left(\alpha_{j}^{*} \cos \lambda_{j} n+\beta_{j}^{*} \sin \lambda_{j} n\right), \quad \lambda_{j}=\frac{2 \pi j}{12}, \quad j=1,2, \ldots, 6$.

The λ_{j} are called the seasonal frequencies.

14
An equivalent alternative formulation for the stable component is $s^{*}(n)=\Sigma_{1}^{12} a_{j} e_{j}(n), \quad \Sigma_{1}^{12} a_{j}=0$
where $e_{j}(n)$ is unity for $(n-j)$ divisible by 12 and is otherwise zero. The restriction on the a_{j} coefficients implies $\alpha_{0}=0$. This equivalent approach is fully described in Nerlove [44, pp 451-2].

The distinction that has been made between $p(n)$ and $u(n)$ is arbitrary. It could be argued that the distinction between all three components tends to be arbitrary in practice, but as a stable seasonal pattern is under consideration $s^{*}(n)$ can be clearly distinguished. Alternatively one could consider
$p(n)+u(n)=z(n)+\mu$
where μ is a constant and $\mathrm{z}(\mathrm{n})$ is taken to be stationary but with a very large concentration of power in $f_{z}(\lambda)$ close to the origin. An example would be $z(n)=\rho z(n-l)+\epsilon(n)$, where the $\epsilon(n)$ are serially independent with variance σ_{ϵ}^{2} and ρ is close to unity. The associated spectrum will be
$f_{z}(\lambda)=\frac{\sigma_{\epsilon}^{2}}{2 \pi\left\{1_{+\rho} \rho^{2}-2 \rho \cos \lambda\right\}}$
and will be very large close to the origin. Economic phenomena are of course not stationary but are evolving. Nevertheless a stationary process with a spectrum of the type just described would have an appearance which accords with what one would expect from an economic time series, over reasonable periods, and statistical procedures could well be based on such a model. It is however simpler and a little more realistic to work in terms of (3.2.1) although it is convenient on occasions to interpret the results of the following investigations in terms of the alternative just described.

The data is initially filtered by an operator which replaces w(n) by (see (1.3.1))
$y(n)=\Sigma_{-p^{q}}^{q} b_{k}^{w}(n-k)$.
The effect on $u(n)$ is to replace it by a new series, $x(n)$, with spectrum (see (1.3.3))
$\left|\Sigma_{-p}^{q} b_{k} e^{i \lambda_{k}}\right|_{f_{u}}(\lambda)=|B(\lambda)|^{2_{f}}(\lambda)=f_{x}(\lambda)$.

The function $B(\lambda)$ is the response function of the filter defined in (1.3.2). So far as $s^{*}(n)$ is concerned a modified series $s(n)$ is obtained with modified coefficients given by

$$
\begin{align*}
& \alpha_{j}=\alpha_{j}^{*} \Sigma^{q}-p_{k}^{b_{k}} \cos \lambda_{j} k-\beta_{j}^{*} \Sigma_{-p^{q}}^{\mathrm{b}} \sin \lambda_{j}^{k} \tag{3.2.8}\\
& \beta_{j}=\alpha_{j}^{*} \Sigma_{-p^{q}}^{b_{k}} \sin \lambda_{j}^{k-\beta_{j}^{*} \Sigma} \Sigma^{q} p_{k} \cos \lambda_{j} k .
\end{align*}
$$

The b_{k} are chosen so that $p(n)$ is made as small as practicable, i.e. so that in a model based on $z(n),|B(\lambda)|^{2} f_{z}(\lambda)$ no longer has a. large peak close to the origin. As $(p+q)$ observations are lost in such a filtering process, for simplicity it is assumed that after filtering the number of observations available, \mathbb{N}, is an integral multiple of 12. This is usually no restriction since the initial point for the analysis (i.e. the point to which one can return and still regard the seasonal as stable) is somewhat uncertain and may as well be chosen so that \mathbb{N} is an integral multiple of 12.

3.3 Possible Regression Procedures

Least Squares Estimates

The L.S.E. is obtained from the regression of $y(n)$ on $\operatorname{cosn} \lambda_{j}$ and $\operatorname{sinn} \lambda_{j}$ and provides estimators $\hat{\alpha}_{j}, \hat{\beta}_{j}$. The equations (3.2.8) with circumflexes inserted throughout to denote estimates, are then solved for $\hat{\alpha}_{j}^{*}, \hat{\beta}_{j}^{*}$. It is not necessary to proceed in this way. A precisely equivalent procedure is to average the $y(n)$ for each month of the year and then adjust these twelve averages to add to zero by subtracting their mean, thus obtaining regression estimates of the filtered a_{j} (see footnote (14)), which are denoted \hat{a}_{j} (see [II]). Now the original coefficients may be recovered from the \hat{a}_{j}^{1} by employing the following relations $\hat{a}_{j}=\sum_{k}^{12} \hat{a}_{k}^{\prime} g_{k-j}, \quad g_{k}=\frac{1}{12} \sum_{j}^{11} e^{i k \lambda_{j}-1}\left(\lambda_{j}\right)$
assuming that $B(0)=0$ and $B\left(\lambda_{j}\right) \neq 0$ for all $j \neq 0$. The g_{k} are defined to be periodic with period 12 and are always real. This
procedure is numerically equivalent to the one described earlier
in this section. There is nothing new or radical about this technique proposed by Hannan [22]; its virtue is merely that it enables any filter to be used, subject to the proposed
restrictions on $B(\lambda)$.
The variance of the estimates $\hat{\alpha}_{j}, \hat{\beta}_{j}$ satisfy (see [23])
$\lim _{I \rightarrow \infty} \operatorname{var} \hat{\alpha}_{j}=\lim _{\mathbb{I} \rightarrow \infty} \operatorname{var} \hat{\beta}_{j}=\frac{4 \pi}{N} f_{x}\left(\lambda_{j}\right) \quad j \neq 6$
$\lim _{\mathbb{N} \rightarrow \infty} \operatorname{var}\left(\hat{\alpha}_{6}\right)=\frac{2 \pi}{\mathbb{N}} f_{X}\left(\lambda_{6}\right)$
and the covariances approach zero as $\mathbb{N} \rightarrow \infty$. To employ these formulae one requires knowledge of $f_{x}(\lambda)$, or an estimate of this function. The series, Passenger Airline Reservations (see [7]) appears to be stable over the short period which has been chosen for analysis, i.e. the seven years, 1954-60. This series is used to illustrate how in practice one might obtain an estimate of the asymptotic variances of $\hat{\alpha}_{j}, \hat{\beta}_{j}$. It is argued in more detail later in the section that it is most unlikely that $f_{X}(\lambda)$ will be known so it is necessary to make an estimate of the spectrum at each λ_{j}. To produce this estimate the filtered residuals from the regression of $y(n)$ on $\cos n \lambda_{j}$ and $\operatorname{sinn} \lambda_{j}$, is formed using
$\hat{\mathrm{x}}(n)=y(n)-\sum_{j}\left(\hat{\alpha}_{j} \cos n \lambda_{j}+\hat{\beta}_{j} \sin n \lambda_{j}\right)$.
The periodogram, $I_{\hat{X}}(\lambda)$, is then calculated for equi-spaced frequency points between zero and π from the formula

$$
\begin{align*}
& I_{\hat{X}}(\lambda)=\frac{1}{2 \pi N}\left|\sum_{k^{1}}^{N_{\hat{X}}}(n) e^{-i n \lambda}\right|^{2} \tag{3.3.4}\\
& \quad \lambda=\lambda_{k}=\frac{2 \pi k}{N}, \quad k=0,1, \ldots,[N / 2]
\end{align*}
$$

which is itself derived directly from (1.4.2). To convert these periodogram ordinates of the residuals to values which are relevant to the coefficients of the original relation, i.e. $\alpha_{j}^{*}, \beta_{j}^{*}, I_{\hat{x}}(\lambda)$ must be recoloured by the factor

$$
\begin{equation*}
\left\{1-\frac{\sin 6 \lambda \sin \lambda}{24 \sin ^{2} \frac{1}{2} \lambda}\right\} \tag{3.3.5}
\end{equation*}
$$

to become $I_{\hat{X}}^{R}(\lambda)$, an estimate of the periodogram of the residuals in the original relation. It should be immediately mentioned that because of the narrow band regression that has been performed and because the factor enclosed in the curly bracket in (3.3.5) has zeros at all λ_{j} no meaning can be attached to the value of $I_{\hat{X}}^{R}(\lambda)$ at the exact points λ_{j}. Table 2 below presents the values of $I_{\hat{x}}(\lambda)$ and $I_{\hat{x}}^{R}(\lambda)$ that were obtained for the Airline Passenger Reservation series. The recoloured periodogram, $I_{\hat{x}}^{R}(\lambda)$, has been smoothed by a simple average to provide an estimate, $\hat{\mathrm{f}}_{\mathrm{x}}(\lambda)$, of the spectrum of $x(n)$ (see [38]). Two simple averages were used, a three term and a five term, ${ }^{15}$ and the results of this averaging are also included in Table 2 after the frequencies of interest, λ_{j}. These estimates of $f\left(\lambda_{j}\right)$ are then used in (3.3.2) to provide some indication of the significance of the $\hat{\alpha}_{j}^{*}, \hat{\beta}_{j}^{*}$. Some perspective on the relevance of this asymptotic variance estimate when $\mathbb{N}=72$ will be given in future sections of this chapter. Table 3 below presents the estimates $\hat{\alpha}_{j}^{*}, \hat{\beta}_{j}^{*}$ and the associated asymptotic variance estimates.

15
The middle term in either average has to be neglected because of the lack of meaning of the ordinate at λ_{j} so that in fact the average only involves either one or two terms each side of any λ_{j}.

TABLE 2

j $\lambda=\frac{\pi j}{36}$	$\mathrm{I}_{\hat{x}}(\lambda)$	${ }^{\underline{R}}{ }_{\hat{x}}(\lambda)$	omitting ($\pi j / 6$) 4 term av. 2 term av.
$\pi / 36$	$\begin{array}{lll}.13357 & 10\end{array}$	$.3970610{ }^{4}$	
,	$.3515910{ }^{1}$. 14634103	
3	. 30335100^{2}	. 22522103	
4 5	$\begin{array}{ll}.51653 & 10 \\ .21556 & 10\end{array}$	$\begin{array}{ll} .13481 & 10^{3} \\ .34892 & 10^{3} \end{array}$	
$6 \pi / 6$	$.39762 \quad 10^{-7}$	$\begin{array}{ll} .34892 & 10^{3} \\ .39762 & 10_{z}^{-7} \end{array}$	$\left.10^{3}\right\} .26586 \quad 10^{3}$
6	$.2392310{ }^{3}$	$.1827910{ }^{3}$	$\int .172310$
8	. $3270510{ }^{2}$	$.2294110{ }^{2}$	\checkmark
9	$.1070810^{2}$. $7423710{ }^{1}$	
10	. $3715110{ }^{2}$	$.2823910{ }^{2}$	
11	. 4255810^{2}	$.35820 \quad 10^{2}$	
$12 \pi / 3$	$.6117010^{-7}$	$.6117010^{-7}$. $\left.5554510^{2}\right\} .7334510^{2}$
13	. 97544100^{2}	. $1108710{ }^{3}$	
14	.38273102	. 47251102	
15	$.4152010{ }^{2}$	$.52300100^{2}$	
16	. 3787110	. 4493910^{2})
17	$.4415510^{2}$	$.4913210{ }^{2}$	
$18 \pi / 2$. 3612010^{-7}	. 3162010^{-7}	$\left..2415310^{2}\right\} .2578910^{2}$
19	$.2656110^{1}$. 2446210^{1}	
20	. 1066510°	$.9500010^{-1}$	
21	$.4155010^{-1}$	$.3660010^{-1}$	
22	. $2562510{ }_{1}^{1}$. 23331101	-
23	. 3690510^{1}	. 34786810^{1}	
$24^{2 \pi} / 3$	$.1173510^{-8}$	$.1173510^{-8}$	17255110^{1} \%.11718 10^{2}
25	. 1901110^{-2}	. 1995710	
26	. $30410 \quad 10{ }^{1}$. $32520 \quad 10{ }^{1}$	
27	. $1292710{ }^{1}$. $13880 \quad 100^{1}$	
28	. $1249910{ }^{2}$. $1314810{ }^{2}$	
29	. 2933710^{2}	. 3023710^{2}	
$30 \quad 5 \pi / 6$. 3676910^{-8}	. 3676910^{-8}	$\left.011 \quad 10^{2}\right\} .2438410{ }^{2}$
31	. 1890310^{2}	. $18530 \quad 10^{2}$	
32	. $1039210{ }^{2}$. $1013010{ }^{2}$	\cdots
33	. $1717210{ }^{2}$. $16800 \quad 10{ }^{2}$	
34	.39673101	.39200101	
35	$\begin{array}{lll}.24895 & 10^{-1}\end{array}$	$\begin{array}{ll} .24795 & 10 \\ \hline 10 \end{array}$	\} .31998 $11^{10^{1}}$ \} . 24795100^{1}
36π	$.1378510^{-7}$	$.1378510^{-7}$	

TABLE 3
STANDARD DEVIATIONS FOR STABLE SEASONAL COEFFICIENIS FROM ASYMPTOTIC FORMULA

α_{1}^{*}	β_{1}^{*}	α_{2}^{*}	β_{2}^{*}	α_{3}^{*}	β_{3}^{*}	α_{4}^{*}	β_{4}^{*}	α_{5}^{*}	β_{5}^{*}	α_{6}^{*}
Coefficients	54.47	29.02	-.63	30.57	-10.65	4.49	5.27	8.54	.67	-7.63
Standard Dev. from Asymptotic Formula	6.81	3.58	2.12	1.93						

If $f_{u}(\lambda)$, and therefore $f_{X}(\lambda)$, was known then α_{j} and β_{j} may be estimated by the B.L.U. regression procedure, that is a weighted regression on $\cos \lambda_{j} n$ and $\sin \lambda_{j} n$. This procedure has been advocated by Jorgensen [39]. It is almost inconceivable that $f_{u}(\lambda)$ should in fact be known so that the best that could be done would be to base a B.L.U.E. on an assumed $f_{u}(\lambda)$. In fact the B.I.U.E. is unlikely to be used for large samples as it is known the L.S.E. is asymptotically efficient if the effect of $p(n)$ is much diminished by filtering, as must be assumed. Moreover the subsequent sections will show that the L.S.E. will prove to be quite efficient for small IN provided $f_{X}(\lambda)$ is not markedly peaked. It should be emphasized that filtering is performed to attempt to reduce $p(n)+u(n)$ to a form approximating: a stationary process with a smooth spectrum which is not markedly peaked. If this attempt is successful it will become apparent that the L.S.E. is quite an acceptable procedure, particularly as information sufficiently precise to improve on it will not normally be available.

Jorgensen [39] has suggested the case of a pure regression procedure in which the term $p(n)$ is represented as a polynomial and $p(n)$ and $s^{*}(n)$ are simultaneously estimated by a B.I.U. regression procedure. Normally a known $f_{X}(\lambda)$ is not available ${ }^{16}$ and Jorgensen therefore recommends the use of an estimate of $f_{X}(\lambda)$, or parameters equivalent to it, from the residuals in an initial regression. This approach needs assumptions concerning $f_{X}(\lambda)$ which are equivalent to requiring it to be a polynomial in

16
If the disturbances were assumed to be independent then of course $f_{X}(\lambda)$ and the associated lag covariances would be known and the B.L.U. procedure would be available.
$\exp (i \lambda)$ and $\exp (-i \lambda)$ so that only a finite number of parameters are to be estimated. It is difficult to assert anything concerning the merits of this approximate procedure. The term neglected in approximating $f_{x}(\lambda)$ as suggested may be of similar magnitude to that involved in the comparison of efficiencies. Further, for $f_{x}(\lambda)$ to be approximated in this way it must be comparatively smooth so that the L.S.E. then has variances which approach the optimal values fairly rapidly.

Of course, one might assume $f_{x}(\lambda)$ to be constant (see footnote 16) and use the L.S.E. Indeed as N increases it is known, assuming $p(n)$ to be a polynomial in n, that the efficient estimation procedure tends not to depend on $f_{X}(\lambda)$. However, for a high degree polynomial N needs to be very large before this is so. Although regression is not technically a filtering technique it may be thought of as one which produces a response function highly concentrated at the origin. The degree of concentration decreases as the order of the polynomial increases. In terms of $z(n)$ the task is to modify the very large concentration of spectral mass at and near the origin, and a troublesome part of this mass may not be very near to the origin. Thus the degree of the polynomial may have to be very large. What is required is a flexible procedure which will modify $f_{u}(\lambda)$ not merely right at the origin. Polynomial regression is not well adapted to do this but filtering is. ${ }^{17}$

Before looking in detail at examples of the actual efficiency of the L.S.E. of α_{j} and β_{j} the case where α_{j} and β_{j} are assumed to be zero for $j \neq 1$ is considered for expositional purposes only. The exact variances of the L.S.E. of α_{1} and β_{1} (see [46]) are

[^5]\[

$$
\begin{array}{r}
\operatorname{var}\left(\hat{\alpha}_{1}\right)=\frac{4 \pi}{N} \int_{-\pi}^{\pi}\left[\left|S_{N}\left(\lambda-\lambda_{1}\right)\right|^{2}+\left|S_{N}\left(\lambda+\lambda_{1}\right)\right|^{2}+R\left\{S_{N N}\left(\lambda-\lambda_{1}\right) S_{N}\left(\lambda+\lambda_{1}\right)\right\}\right] \\
|B(\lambda)|^{2} f_{u}(\lambda) d \lambda \tag{3.3.6}
\end{array}
$$
\]

$$
\begin{array}{r}
\operatorname{var}\left(\hat{\beta}_{1}\right)=\frac{4 \pi}{N} \int_{-\pi}^{\pi}\left[\left|s_{N N}\left(\lambda-\lambda_{1}\right)\right|^{2}+\left|s_{N N}\left(\lambda+\lambda_{1}\right)\right|^{2}-R\left\{S_{N N}\left(\lambda-\lambda_{1}\right) s_{N}\left(\lambda+\lambda_{1}\right)\right\}\right] \\
|B(\lambda)|^{2} f_{u}(\lambda) d \lambda
\end{array}
$$

where $\mathbb{R}\{$.$\} means the real part of the indicated function, and the$ function $S_{N}(\lambda)$ and the square of its modulus are given by
$S_{N}(\lambda)=(1 / \sqrt{2 \pi N}) \Sigma_{1}^{N} e^{i \lambda n}, \quad\left|S_{N}(\lambda)\right|^{2}=\frac{\sin ^{2} \frac{1}{2} \lambda N}{2 \pi N \sin ^{2} \frac{1}{2} \lambda}$.
The last expression in (3.3.7) integrates to unity and is very concentrated at $\lambda=0$.

The B.L.U. procedure results in a variance which cannot be represented exactly in this form (see 3.4.2) but approaches $(4 \pi / \mathbb{N}) f_{x}\left(\lambda_{j}\right)$, as do the variances of $\hat{\alpha}_{1}$, $\hat{\beta}_{1}$ shown in (3.3.6). Indeed the approach to the limiting values is quite fast unless $f_{x}(\lambda)$ is very markedly peaked for the maxima of $\left|S_{N}\left(\lambda-\lambda_{1}\right)\right|$ are at $\lambda=\lambda_{1}$ and near points $\frac{3 \pi}{N}, \frac{5 \pi}{N}$, etc \ldots away from λ_{1}, but are much smaller than that at λ_{1}. Thus $f_{x}(\lambda)|B(\lambda)|^{2}$ has to be very different from its value at $\lambda=\lambda_{1}$ for a large contribution to arise from anywhere other than λ_{1}.

3.4 Comparison of Efficiency

To compare the regression procedures a number of situations with known $f_{u}(\lambda)$ are considered and the exact values of the variances and covariances of the B.L.U.E. and L.S.E. of α_{j} and $\beta_{j}, j=1, \ldots, 6$, are computed. The B.L.U. procedure is not put forward as one usually available in practice but rather as a benchmark for the L.S. procedure. For each case considered the number of observations after filtering is $\mathbb{N}=36,48,72$. It does not seem necessary to consider \mathbb{N} greater than 72 because of (3.3.2)
and because the assumption of a stable seasonal patterm becomes less tenable as \mathbb{N} is increased. The main purpose of the comparisons is to consider how the behaviour of $u(n)$ and the method of filtering may influence the efficiency of the L.S.E. of the parameters in a stable seasonal pattern.

The possible generating models for the disturbances are limited to the three following types:
(a) an independently and identically distributed random variable with mean zero and unit variance (i.i.d. $(0,1)$),
(b) a stationary first order autoregressive process

$$
u(n)-\alpha u(n-1)=\epsilon(n),
$$

(c) a stationary second order autoregressive process

$$
u(n)+\alpha_{1} u(n-1)+\alpha_{2} u(n-2)=\epsilon(n) .
$$

The random variable $\epsilon(n)$ is i.i.d. $\left(0, \sigma_{\epsilon}^{2}\right)$, where σ_{ϵ}^{2} is selected for each choice of parameter(s) so that the variance of $u(n)$ is always unity. The values considered for α were $\alpha=.75, .85, .90, .95, .99$ and .995 . The correlograms for $\alpha=.75, .95$ and .995 are shown in Fig. II. For the second order process the following six sets of parameters for α_{1}, α_{2} were investigated,

2nd Order Model No.	1	2	3	4	5	6
α_{1}	1.0	-.5	-1.0	-1.1	-1.25	-.75
α_{2}	.75	.5	.75	.3	.3	-.20

The first three sets produce complex roots; the first and third have the same amplitude but differ in that the first set produces oscillations in the correlogram with a much higher frequency than the third set. The most noticeable characteristic of the second set is the much lower amplitude of its roots and consequently the correlogram dumps out much more rapidly. The remaining sets have both roots positive and real and the only difference between them is the rate at which the lag correlations decay to zero. The rate of decay is greatest for the fourth set and declines successively for the remaining two sets. In Fig. III the correlogram is shown for the second order models Nos. (1), (3) and (5).

FIG. II
CORRELOGRAM OF 1St ORDER AUTOREGRESSIONS, MODELS $P=.75, .95, .995$

CORRELOGRAM OF 2nd ORDER AUTOREGRESSIONS, MODELS $1,3,5$

The three model types and their different parameter values produce thirteen different covariance structures for the disturbances prior to filtering. The spectrum associated with each model type is set out in Table 4 below.

TABLE 4

Model Type	$f_{u}(\lambda)^{\text {Spectrum }} \lambda \varepsilon(-\pi, \pi)$
Independent Residuals	$\frac{1}{2 \pi}$
Ist Order Autoregression -	$\left(1-\alpha^{2}\right) /\left\{2 \pi\left(1+\alpha^{2}-2 \alpha \cos \lambda\right)\right.$
Parameter	
2nd Order Autoregression -	$\left(1-\alpha_{2}\right)\left\{\left(1+\alpha_{2}\right)^{2}-\alpha_{1}^{2}\right\}$
Parameters	

There is considerable scope for choice of filtering routines to be applied to the original observations. The filters investigated are presented in Table 5 and have been limited to those most commonly used. The table shows the filter coefficients, b_{k}, as described in $(3.2 .6)$ and also the square of the gain of each filter. ${ }^{18}$

18
An underlined b_{k} coefficient indicates the middle term in a symmetric set of coefficients. For Filters (3) and (4) the first b_{k} coefficient is b_{n} and the last coefficient b_{n-q}.

TABLE 5
'TREND' REMOVING FILTERS

Description and Filter Number	b_{k} Coefficients	Gain Squared $\|B(\lambda)\|^{2}$
(1) Subtraction of 12 month moving average	$\left\{-\frac{1}{24},-\frac{1}{12},-\frac{1}{12},-\frac{1}{12},-\frac{1}{12},-\frac{1}{12}, \frac{11}{12} \ldots\right\}$	$1-\frac{\sin \lambda \sin 6 \lambda}{24 \sin ^{2} \frac{1}{2} \lambda}$
(2) Subtraction of Spencer ${ }^{\text {'s }}$ 21 pt. moving average	$\begin{gathered} \frac{1}{350}\{1,3,5,5,2,-6,-18,-33,-47,-57,290 \\ \ldots \ldots\} \end{gathered}$	$\begin{gathered} 1-\left(\frac{1}{350}\right)(2+2 \cos \lambda-2 \cos 3 \lambda) \\ \cdot\left(\frac{\sin ^{2} \frac{5 \lambda}{2} \sin \frac{7 \lambda}{2}}{\sin ^{3} \frac{\lambda}{2}}\right) \end{gathered}$
(3) lst Quasi-differences	$\{1,-.9\}$ $\{1,-.7\}$	$\begin{aligned} & 1.81-1.80 \cos \lambda \\ & 1.5625-1.50 \cos \lambda \end{aligned}$
(4) 2nd Quasi-differences	$\begin{aligned} & \left\{1,-2(.9),(.9)^{2}\right\} \\ & \left\{1,-2(.7),(.7)^{2}\right\} \end{aligned}$	4.8961-6.516cos $\lambda+1.62 \cos 2 \lambda$ $3.5664-4.6875 \cos \lambda+1.125 \cos 2 \lambda$

A notationally economic comparison of the two estimation procedures is most easily given if the model is presented in matrix terms. y is an \mathbb{N} dimensional vector of the filtered observations. The $\mathbb{N} \times 11$ matrix of regressors, S, is the matrix

$\hat{\beta}$ and $\tilde{\beta}$ are the L.S.E. and the B.L.U.E. of the eleven seasonal constants in vector form. The focus of interest is not so much the estimates themselves but rather their respective variance-covariance matrices, denoted $\Gamma_{\hat{\beta}}$ and $\Gamma_{\tilde{\beta}}$ and given by [18, p 234]
$\Gamma_{\hat{B}}=\left(S^{\prime} S\right)^{-1}\left(S^{\prime} \Gamma_{N} S\right)\left(S^{\prime} S\right)^{-1}$
and
$\Gamma_{\tilde{\beta}}=\left(S^{\prime} \Gamma_{\mathbb{N}}^{-1} S\right)^{-1}$
where $\Gamma_{\mathbb{N}}$ is the variance-covariance matrix of $x(n)$, the filtered residual. As the matrix $S^{\prime} S$ is diagonal with the first ten diagonal terms $N / 2$ and the last diagonal term \mathbb{N}, the inverse $\left(S^{\prime} S\right)^{-1}$ is simply obtained.

To create the elements of $\Gamma_{\mathbb{N}}$ (denote them by $\gamma_{X}(\tau)$, $\tau=1,2, \ldots, \mathbb{N})$ one must first generate the covariances $\gamma_{u}(\tau)$, $\tau=1,2, \ldots, M$, where M is of course greater than \mathbb{N} by the number of terms lost in filtering. Table 6 below indicates the method of generation of $\gamma_{u}(\tau)$ for the parameter (s) chosen.

TABLE 6

Generation of $\gamma_{u}(\tau)$	
Model type	$\gamma_{u}(\tau) \quad \tau=0,1, \ldots, M$
Independent	$\{1,0,0, \ldots, 0,0\}$
lst order	
autoregression	
2nd order	
autoregression	$\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{M}\right\}$
	$\left\{1,-\left\{\alpha_{1} /\left(1+\alpha_{2}\right)\right\},-\alpha_{1} \gamma_{u}(0)-\alpha_{2} \gamma_{u}(1)\right.$,
	$\ldots,-\alpha_{1} \gamma_{u}(M-1)-\alpha_{2} \gamma_{u}(M-2)$

Once the $\gamma_{u}(\tau)$ have been generated the lag covariances of $x(n)$ of which Γ_{N} is composed are simply obtained from the relation
$\gamma_{x}(\tau)=\sum_{k}^{q}-\mathrm{p} \sum_{j}^{q}-p^{q} j_{j} b_{k} \gamma_{u}(\tau-j+k), \quad \tau=0,1, \ldots, \mathbb{N}$
and from the property $\gamma_{u}(\tau)=\gamma_{u}(-\tau), \tau=0,1, \ldots, M$.
A compact way of exhibiting the comparative efficiency of the B.I.U.E. and the L.S.E. is to follow the procedure suggested by Watson [55] and to present the ratio of the determinants of the variance-covariance matrices given in (3.4.1) and (3.4.2)
$E\left(\Gamma_{\hat{\beta}}: \Gamma_{\tilde{B}}\right)=\left|S^{\prime} S\right|^{2} /\left\{\left|S^{\prime} \Gamma S\right|\left|S^{\prime} \Gamma^{-1} S\right|\right\}$
which provides a measure of the efficiency of the L.S.E. relative to the B.L.U.E. For computational purposes it proved preferable to slightly redefine the S matrix, and to rename it S_{*} so that the ratio of determinants becomes
$E\left(\Gamma_{\hat{\beta}}: \Gamma_{\tilde{\beta}}\right)=1 /\left\{\left|S_{*}^{1} \Gamma_{N} S_{*}\right|\left|S_{*}^{t} \Gamma_{N}^{-1} S_{*}\right|\right\}$
where

It has been suggested [48] that the ratio of determinants exaggerates differences and that a good case may be made for using a measure such as
$E^{*}\left(\Gamma_{\hat{\beta}}: \Gamma_{\tilde{B}}\right)=I /\left\{11 \sqrt{\left|S_{*}^{:} \Gamma_{N} S_{*}\right|\left|S_{*}^{:} \Gamma_{N}^{-1} S_{*}\right|}\right\}$.
Both E and E* (see Table 8) are measures of efficiency which depend on the efficiency obtained for every element of the variance-covariance matrix of the parameters and because of this it is possible that an isolated very poor result may be obscured. What may be of interest to the investigator is an indication of how inefficient the L.S. procedure could be in estimating any particular α_{j} or β_{j}. In summarizing the rather detailed results this latter question of efficiency for particular α_{j} or β_{j} has been placed in a secondary position so that a more compact presentation of the results is possible. It is however not difficult to obtain a measure of this 'individual coefficient' efficiency for any situation considered by forming the ratio of the value for any α_{j} or β_{j} in the B.L.U. column to the value for the same α_{j} or β_{j} in the L.S. column of Table 7. In this Table a further characteristic of both procedures which is studied is the relation of the actual variances, that is the diagonal elements $\Gamma_{\hat{\beta}}(i, i)$, $\Gamma_{\tilde{\beta}}(i, i), i=1,2, \ldots, l l$, to the appropriate asymptotic variances $\frac{4 \pi}{N} f\left(\lambda_{j}\right)$ (for $i=1,2$ the appropriate λ_{j} is of course λ_{1}). The only purpose in presenting this final comparison (see Table 7) is to give some indication of how effective an approximation the asymptotic value will be for various values of N.

3.5 Efficiency Results and Conclusions

The cases presented below are necessarily selective and have been chosen to include typical as well as unusual results. To further reduce the volume of results Filter No.3, the lst quasi-difference, is only tabled for the one differencing parameter, .7, and Filter No.4, the 2nd quasi-difference, is also limited to one differencing parameter, in this case .9 .

The results for the first order autoregressive processes do not differ very much at all for the range of the parameter considered and the overall efficiencies as measured by either E or E^{*} are high for $\alpha=.75$ and become higher as α increases to .995. The behaviour of the ratio of actual to asymptotic variance exhibits only a minor improvement as α increases, but there is evidence that the choice of filter will influence the way in which the ratio approaches unity. The independent residuals model gives results for both the overall efficiency indicators and for the individual variance ratios which are quite as would be expected for all filters except the second quasi-difference where for the L.S. procedure it is apparent that even for $\mathbb{N}=72$ the use of the asymptotic formula would be misleading, particularly for α_{1}.

The three second order autoregressive models presented provide a contrast between themselves and with respect to other methods of generation. Model (5) which has a spectrum and a correlogram of a more similar nature to the first order autoregression (c.f. Model (1), see Fig. IV) performs very well on overall efficiency grounds and also when the ratio of actual to asymptotic variances is studied. Model (1) is a contrast to all other models for the disturbances (see Fig. IV). The overall efficiencies are quite disappointing and the ratios in Table 7 indicate the complete unsuitability of the asymptotic variance, particularly when the second quasi-difference filter is employed. To provide a contrast to the poor performance of Model (l) it is interesting to look at Model (3) and to note that the efficiencies are improved, although still less satisfactory than the other generating models; but most noticeable is the removal of the very large ratios of actual to asymptotic ratios associated with Model (1).

FIG. IV

SPECTRA OF 2nd ORDER AUTOREGRESSIONS, MODELS 1 AND 3

An explanation of the poor performance of Model (1) of the 2nd order autoregressions proves also to be a suitable vehicle for obtaining some understanding of the way the two estimation methods work. Returning to the discussion of L.S. in 3.3 and in particular to the expression in square brackets given in (3.3.6), ${ }^{19}$ one may regard the L.S. variances for α_{1} and β_{1} as resulting (approximately) from the multiplication of the kernel (Fig. V) by the spectrum of the filtered disturbance, $|B(\lambda)|^{2} f_{u}(\lambda)$, followed by integration over the specified range. This interpretation of the L.S.E. is valuable in suggesting how it may differ radically from the asymptotic value, which depends only on the value of the filtered disturbance at λ_{1}. To illustrate this approach the filtered spectrum of the disturbance for Model (1) and Model (3) of the second order autoregressions, where the filter is second quasi-differences with differencing parameter equal to .9, is presented in Fig. VI. The effect of the 2nd differencing filter has been to accentuate peak of power at high frequency in Model (l) and although the lobes of the kernel diminish in magnitude at higher frequencies it is apparent from Table 9 that the product of the kernel and the filtered spectrum in this model still has significant magnitude well away from λ_{1} and this produces the large L.S. variance.

19

The expression in square brackets is depicted in Fig. V for $\mathbb{N}=36-72$. The difference in shape of the function shown for α_{1} and β_{1} is obviously due only to the different sign for the third term in the bracket.

FIG. II
SPEGTRUM OF FILTERED $U(n),|B(\lambda)|^{2} f_{u}(\lambda)$, FOR MODELS 1 AND 3 ANO FILTER 4

TABLE 9
KERNEL FUNCTIONS DEFINED IN (3.3.6) AND $|B(\lambda)|^{2} f_{1}(\lambda)$ FOR MODFL 1 - FILTER 4; N $=36$

Two further comments seem pertinent. The variation in the performance of the variance of α_{j} and β_{j} in Table 7 is explained by the shape of the appropriate $f_{x}(\lambda)$ and in particular by the difference in the shape of the kernel for α_{j} and β_{j} (see footnote (19)). For instance in Model (1) it is to be expected on the above reasoning that the variance ratios in Table 7 would be worst for α_{1} and β_{1}, the more so for smaller \mathbb{N}. The relation between the variance ratios for α_{2} and β_{2} still shows α_{2} with the higher ratio but the difference is much less marked and reflects the change in the kernel due to its central location now being at λ_{2}. At λ_{3} the α_{j} and β_{j} kernel is identical. For λ_{j} such that $j>3$, there are only minor differences in the ratios of variances (the values have not been tabled) because for these λ_{j} although the relation of the α_{j} and β_{j} kernel is just the reverse of that for $j<3$ there is no great concentration of power in the low frequencies for the filtered disturbances to accentuate the greater relative magnitude of the β_{j} kernel in this region.

The final comment is more general and is that the case of the second differencing filter in this context could be most inappropriate unless the analyst is confident that the true disturbances are not generated by a process which has a spectrum with strong power concentration in the higher frequencies. However, it should be pointed out that if the disturbances were generated by a model which had a peak at high frequencies and a 2nd difference filter was employed then the filtered data would be dominated by high frequency oscillations (obviously recognisable) which would provide an obvious warning as to the inappropriateness of the filter.

3.6 B.L.U. Procedure as a Benchmark ${ }^{20}$

In the examples discussed in the previous sections the place of the B.L.U.E. has been as a benchmark against which to judge the L.S. procedure. Some doubts as to the ability of the B.I.U. procedure to fulfil this role must have been raised by Lovell's proposal [42] of several axioms that seasonal adjustment procedures should satisfy and more particularly the further assertion [42,p 800] that the B.L.U. procedure does not satisfy all of these axioms in generally accepted models of a seasonal economic time series.

The series of axioms that Lovell proposed and which he requires a seasonal adjustment procedure to satisfy are given in full in the cited reference [42, pp 994-5]. Amongst these axioms are:
'Property I: An Adjustment Procedure is said to PRESERVE SUMS if and only if

$$
x_{t}^{a}+y_{t}^{a}=\left(x_{t}+y_{t}\right)^{a} \quad \text { for } a l l t
$$

where x_{t} and y_{t} are the original observations on any pair of time series and $x_{t}^{\text {a }}$ and y_{t}^{a} are the adjusted observations ${ }^{\prime}$, and
'Property III: An Adjustment Procedure is ORTHOGONAL if for any time series

$$
\left(x_{t}-x_{t}^{a}\right) x_{t}=0^{\prime}
$$

Lovell also shows (see Theorem 3.1 [42, p 996]) that any procedure which satisfies I and III and also satisfies
'Property IV: The Adjustment Procedure is IDEMPOTENT if

$$
\left(x_{t}^{a}\right)^{a}=x_{t}^{a} \quad \text { for all } t^{\prime},
$$

20
The notation used by Lovell in describing his axioms has been maintained in this presentation and therefore in this section only x is a vector of observations.
reduces to a least squares regression of the observed vector x , consisting of \mathbb{N} observations x_{t}, on S, an appropriate matrix of k columns (and assumed to be of full rank) with \mathbb{N} observations in each. At this point a different approach is used to prove the result previously presented by Lovell [42]. It is of interest to show how this result may be obtained without the use of Property IV. Property I implies that the vector x may be written $x_{t}=q_{t}(x)$ i.e. as an additive functional of the vector x. Now if the vector x \& V , where V is a finite dimensional vector space, then it follows that

$$
\begin{equation*}
q_{t}(x+y)=q_{t}(x)+q_{t}(y) \tag{3.6.1}
\end{equation*}
$$

where both x and y \& V . Further, if the vector x and the scalar α are rational then the property

$$
\begin{equation*}
q_{t}(\alpha x)=\alpha q_{t}(x) \tag{3.6.2}
\end{equation*}
$$

may also be established and so linearity follows. In fact unless the functional q_{t} is quite pathological (3.6.2) may be established and in any case this property always holds if $q_{t}(x)$ is bounded (i.e. $q_{t}(x) \leqq A<\infty$) when $|x|<a$ where a and A are finite constants. Another way of establishing this result is to assume that $q_{t}(x)$ is a measurable and additive function of x and this implies that $q_{t}(x)$ is a continuous function and so the functional is both linear and bounded. Thus the expression is a linear functional if it is measurable or bounded [34, p 24] and therefore $x_{t}^{a}=q_{t}^{1} x$ where q_{t} is a vector of N components. The vector of adjusted values, x^{a}, then satisfies $x^{2}=Q x$ where Q has q_{t}^{\prime} as the $t^{\text {th }}$ row. Property III implies that

$$
\begin{equation*}
x^{\prime} Q^{\prime}(I-Q) x=0 \tag{3.6.3}
\end{equation*}
$$

and that this is so for all x. Thus $Q^{\prime}=Q^{\prime} Q$ and Q^{\prime} is symmetric. Therefore $Q=Q^{2}$ and Q is idempotent and a perpendicular projector. If the column of S span the space on which Q projects then x^{a} is obtained by regression on these columns.

Before going further let it be said that these properties or axioms seem unacceptable on general grounds. First, it would be extraordinary if the vast array of techniques for signal detection and measurement, which have been developed over the last half century, could be reduced to the simpler problem of regression analysis. More particularly, the axioms exclude non-linear procedures and this of itself seems unacceptable. It is easy to construct examples where maximum likelihood procedures are non-linear and it would be hard to envisage realistic formulations where this was not the case. Most importantly, perhaps, Axiom or Property III must be unequivocably rejected. The statement by Lovell following this axiom [42,p 995], 'How can a nonorthogonal seasonal adjustment procedure be regarded as satisfactory? After all, if such a procedure correctly defines the seasonal movement the fact that the seasonal correction terms are correlated with the adjusted series implies that some seasonality remains in the data', elevates a particular inner product, $(x, y)=x^{\prime} y$, into a premier place in relation to the vector space in which x lies. If this inner product is elevated to a premier place it can only be on the basis of prior assumptions. Appropriate prior grounds might be a model for the original observations of the form

$$
\begin{equation*}
x-D \delta-S \sigma=\epsilon \tag{3.6.4}
\end{equation*}
$$

where σ is a vector of k seasonal constants, $D^{\prime} \delta$ is null and ϵ is composed of identically and independently distributed variables with mean zero and unit variance (i.i.d. $(0,1)$). The matrix D is of full rank with columns representing the non-seasonal deterministic variables and δ is the associated set of constant coefficients. If the condition on ϵ or that on S and D is not satisfied then Lovell axioms will prove to be hardly acceptable. Suppose that it is assumed that $\mathfrak{E}\left(\epsilon \epsilon^{\prime}\right)=\Gamma$ then it will be shown that the B.I.U.
procedure is the same as the I.S. procedure of regression on S alone when and only when S and D are such that $S^{\boldsymbol{1}} \Gamma^{-1} D$ is null and also the k columns of S are linear combinations of k eigenvectors
of Γ. The argument proceeds as follows. A sufficient condition for $\left(S^{\prime} S\right)^{-1} S^{\prime} x$ to be a B.L.U.E. of σ is that $D^{\prime} S=0$ and also that the space spanned by the columns of S (call it $\mathcal{M}(S)$) is spanned by eigenvectors of Γ. (See Watson [56]). If the L.S. regression of x on S is to be the B.L.U.E. it is certainly necessary that $D^{\mathbf{\prime}} \mathrm{S}=0$ since the expected value of the L.S.E. is given by
$\varepsilon\left(\left(S^{\mathbf{\prime}} \mathrm{S}\right)^{-1} S^{\mathbf{\prime}} \mathrm{X}\right)=\left(S^{\prime} S\right)^{-1} S^{\mathbf{\prime}} D \delta+\sigma$
and so $S^{\prime} D$ must equal zero if the expectation is to equal σ for all δ. Now consider a row vector λ^{\top},

$$
\begin{equation*}
\lambda^{\prime}=\left(0: \lambda_{2}^{\prime}\right) \tag{3.6.6}
\end{equation*}
$$

with columns corresponding to the partitioned matrix $\binom{D^{\prime}}{S^{\prime}}$.
Form the unbiassed estimator $\lambda_{2}^{\prime}\left(S^{\prime} S\right)^{-1} S^{\prime} x$ of $\lambda_{2}^{\prime} \sigma$ and let $\lambda^{\prime} A x$ be another unbiassed estimate of $\lambda_{2}^{\prime} \sigma$. The latter estimator may be denoted $L^{\prime} x$, where $L^{\prime}=L_{1}^{i}+L_{2}^{i}$ and $I_{2} \varepsilon M(S)$, $L_{1} \perp M(S)$. Now the estimator L'x may be written as
$I^{\prime} x=L_{1}^{\prime} D \delta+L_{1}^{\prime} S \sigma+L_{1}^{\prime} \epsilon+L_{2}^{\prime} x$

$$
=I_{1}^{r} D \delta_{+} I_{2}^{r} x+I_{1}^{\prime} \epsilon \quad\left(I_{1} \perp M(s)\right)
$$

and so the expectation becomes

$$
\begin{equation*}
\varepsilon\left(L^{\prime} x\right)=I_{1}^{\prime} D \delta+\mathcal{E}\left(L_{2}^{\prime} x\right) . \tag{3.6.7}
\end{equation*}
$$

Since $L^{\prime} x$ is unbiassed and the expectation does not involve δ this implies $\mathrm{I}_{1}^{1} D=0$ and further as the expectation, $\mathcal{E}\left(\mathrm{I}_{2}^{1} x\right)$, is given by
$\varepsilon\left(I_{2}^{\mathbf{y}} x\right)=I_{2}^{\prime} S \sigma=\lambda_{2}^{\prime} \sigma \quad$ (since $I_{2} \varepsilon M(S)$ and $\left.S^{\mathbf{t}} D=0\right)$
and so
$L_{2}^{\prime} S \sigma=\lambda_{2}^{\prime}\left(S^{\prime} S\right)^{-1} S^{\prime} S \sigma$
i.e. $\quad\left(\lambda_{2}^{\prime}\left(S^{\prime} S\right)^{-1} S^{\prime}-L_{2}^{\prime}\right) S \sigma=0$
i.e. $\quad \lambda_{2}^{\prime}\left(S^{\prime} S\right)^{-1} S^{\prime}=L_{2}^{\prime}$.

The variance-covariance estimator of the estimator L'x is
$L^{\prime} \Gamma L=L_{2}^{1} \Gamma L_{2}+L_{2}^{i} \Gamma L_{1}+L_{1}^{\prime} \Gamma L_{1}+L_{1}^{\prime} \Gamma L_{2}$
and using (3.6.8) this expression becomes
$I^{\prime} \Gamma L=\lambda_{2}^{\prime}\left(S^{\prime} S\right)^{-1} S^{\prime} \Gamma S\left(S^{\prime} S\right)^{-1} \lambda_{2}+\lambda_{2}^{\prime}\left(S^{\prime} S\right)^{-1} S^{\prime} \Gamma L_{1}+L_{1}^{\prime} \Gamma L_{1}+L_{1}^{\prime} \Gamma S\left(S^{\prime} S\right)^{-1} \lambda_{2}$
and therefore if $L_{2}^{\prime} x$ is the B.L.U.E. then this implies that
$\lambda_{2}^{\prime}\left(S^{\prime} S\right)^{-1} S^{\prime} \Gamma L_{1}=0$. Further as $I_{1} \perp M_{(S)}$ then $\lambda_{2}^{\prime}\left(S^{\prime} S\right)^{-1} S \Gamma$ belongs to $M\left(S^{\prime}\right)$ and consequently $T S\left(S^{\prime} S\right)^{-1} \lambda_{2}$ belongs to $M(S)$. As this is true for all ($\left.S^{\prime} S\right)^{-1} \lambda_{2}$ then TS belongs to $\Pi(S)$ and so I transforms a vector in a k dimensional subspace into a vector also in that subspace (invariant transformation) and S will be spanned by k eigenvectors of (see [56]).

The only circumstances when this condition is at all likely to hold is where Γ is a scalar matrix (a numerical multiple of the identity matrix) and D is composed of a single column of units while S has columns composed of (for monthly data) $\cos \frac{2 \pi j}{12} n$, $\sin \frac{2 \pi j}{12} n$, for suitable values of j. Experience in seasonally adjusting economic data would lead one to believe that either D must be expanded to include other explanatory vectors as well as the unit vector or the generating process for the disturbance must be more broadly specified. For example we might have
$\epsilon(n)=\rho \epsilon(n-1)+\eta(n)$ where $\eta(n)$ is i.i.d. $(0,1)$ and ρ is close to unity but $|\rho|<1$. Indeed it may be necessary to accept both these respecifications.

It seems therefore that Lovell's axiomatic basis for seasonal adjustment must be rejected and that a theory of seasonal adjustment must instead rest on much more elaborate techniques of signal detection and measurement.

3.7 Working Day Variation

Economic time series which register a flow of some kind over either monthly or weekly intervals may exhibit a source of variation which is not seasonal and therefore ranks for separate consideration. The original model (3.2.1) is augmented in this section to include a further signal, which on a priori grounds one could readily expect to occur. The interesting point which arises in this section is that when the signal generated by working days is incorporated in the above model its nature requires one to use a spectral regression procedure to obtain more efficient estimates than L.S.

This additional source of variation may be included if the model given in (3.2.1) is extended as follows
$w(n)=p(n)+s^{*}(n)+\sum_{l^{1}}^{\top} \alpha_{\ell^{u}} \ell_{\ell}(n)+u(n)$
with $u_{\ell}(n)$ the number of days of the $\ell^{t h}$ type in the $n^{\text {th }}$ month. In (3.7.1) it is assumed that each working day makes a specific additive contribution to the series. It may be, however, that the variation depends on the composition of the "extra days" in any month, that is those in excess of twenty eight. For example, it may not be that the Monday effect will be the same in a month ending Saturday, Sunday, Monday as it would be in a month ending Monday, Tuesday, Wednesday. An alternative model is therefore proposed which can account for certain interactions between the days in each group of "extra days". The more general model is
$w(n)=p(n)+s^{*}(n)+\sum_{l_{m}^{2}}^{2} \sum_{1}^{\top} \alpha_{\ell_{m}} \ell_{m}(n)+u(n)$
where the variables $u_{\ell_{m}}(n)$ cover the fourteen possible two and three "extra days" effects. ${ }^{21}$ At each time point n, one of the variables $u_{\ell m}(n)$ will be unity and the remainder zero. Both models (3.7.1)

[^6]and (3.7.2) are suitable for the use of regression methods to estimate the proposed effects. Before dealing with appropriate regression procedures it is instructive to look at the spectra of the possible regressors, $u_{\ell}(n)$ and $u_{\ell_{m}}(n)$, examples of which are given in Fig. VII. Certain implications are apparent. The peaks of power in the spectra of these regressors are found quite close to several seasonal frequencies.

The method of estimating the independent daily effects in (3.7.1) which has been proposed previously (see [52]) is to regress the original series on the $u_{\ell}(n)$ after trend and seasonal has been subtracted. This method will be more appropriate if the model for $s^{*}(n)$ is a stable one as proposed in (3.2.3). However, if as will be suggested in the next chapter, it is believed that the seasonal pattern is slowly evolving and the method of seasonal estimation is changed accordingly then at certain frequencies it is apparent that the seasonal estimates will be influenced by the working days power. Thus in a situation where the seasonal pattern is evolving it is necessary to either estimate the working days effect after only trend removal and before seasonal estimation or to waive explicit consideration of the working days effect. ${ }^{22}$

Least squares regression of $w(n)$ on $u \notin(n)$ or $u\}_{m}(n)$ (where the change in symbols to $w(n), u_{l}^{\prime}(n)$ and $u_{m}(n)$ indicate that trend removal filtering has been carried out) will provide estimates of the required parameters. The simple least square procedure is not however the most efficient. The filtered regression variables are

22
The reason for second possibility is easily seen when in the next chapter the response function for the evolving seasonal extraction is given and it is apparent that this will incorporate some working day power.

FIG. VII
spectrum of a regressor in Each

close to linear dependence and so the matrix of filtered regressors is close to singularity. The appropriate one of the following restrictions,

$$
\begin{align*}
& \Sigma_{l^{7}}^{7} \alpha_{l}(n)=0 \\
& \mathrm{w} \Sigma_{1}^{7} \alpha_{1 m}+(1-\mathrm{w}) \Sigma_{1}^{7} \alpha_{2 m}=0 \quad \mathrm{w}=\frac{4}{11}
\end{align*}
$$

is employed to reduce by one the parameters to be estimated.
A more fundamental change in the method of estimation which will further improve the efficiency is to use the methods discussed in 81.6 , in particular employing the estimator given in (1.6.18). In using (1.6.18) the regressand and the regressors are decomposed into their contributions at each frequency band and then the regression coefficients for each band are optimally weighted together to give an efficient estimate of each coefficient. To employ this method most effectively it is necessary to restrict the set of frequency bands used to produce estimates to those where the regressors power is obviously non-zero as inclusion of bands where the power of the signal is effectively zero will not influence the estimates and will involve a greater computational expense. As the spectra of the regressors in the "Excess Days" model have more than one major peak the gain in efficiency from using the regression procedure which decomposes variables into their contribution at each frequency band should be more marked than for the "Individual Days" model where the regressor spectra have only one major peak (see Fig. VII).

Estimates were made for the following series:
Australian Total Exports of Merchandise
Australian Total Imports of Merchandise Feb. 49-May 67. ${ }^{23}$

23
The source of both series of data is Commonwealth Bureau of Census and Statistics (Aust.), Monthly Review of Business Statistics.

A tabular summary of estimates employing both models on each of the series is given in Table 10. In the "Individual Days" model for both series there is only one significant coefficient. It is apparent that in this model the only significant effect discernible is the obvious negative effect associated with Sundays. The pattern of working day activity is much more apparent in the interaction "Excess Days" model and these estimates have significantly large mid week three day excesses as well as significantly small near weekend excesses. It should be noted that some of the negative effects found in the two day excesses may be influenced by the number of public holidays which can occur on Mondays in the 30 day months. Australia always has a Monday public holiday in June and April can have as many as two Monday public holidays.

The concentration of Monday holidays in two of the four 30 day months may have produced some distortion of the effects. 24 The significance of some of the excess-day coefficients does suggest it is most necessary to carry out working day corrections to series which are likely to exhibit this variation particularly if a stable seasonal pattern has been fitted. Failure to make these corrections could mislead policy makers in their assessment of recent trends in exports and imports.

24

Some distortion will obviously arise if public holidays occur during the month on any day because the excess days will not be determined only by those in excess of twenty-eight. More detailed work could obviously be done on this point but it has not been pursued here.

A somewhat disquieting feature of the "Excess Days" Model for Exports (although one recognizes the distorting effects of Monday holidays in the 30 day months) is that it produces a significantly negative response for Mon-Tues whereas Sun-Mon is not significantly negative. A similar situation exists for Imports in that Sun-Mon is significantly negative whereas Sat-Sun is not.

FIG. ¥

TABLE 7
ratio of calculated variance to asymptotic approximation

INDEPENDENT										FIRST ORDER AUTOREGRESSIONS															
										$\alpha=0.75$								$a=0.995$							
FILTER	N	L. S.				B.L.U.				L. S.					B.L.U.			L. S .				B.L.U.			
		${ }_{1}$	β_{1}	a_{2}	${ }^{3} 2$	${ }^{\text {a }}$	${ }^{\alpha_{1}}$	${ }^{1} 2$	${ }^{3}$	${ }^{1}$	α_{1}	${ }^{1} 2$	${ }^{8}$	α_{1}	${ }_{1}$	${ }^{\beta_{2}}$	B_{2}	α_{1}	${ }^{\alpha_{1}}$	${ }^{1}$	${ }^{\beta} 2$	α_{1}	${ }^{\alpha_{1}}$	β_{2}	${ }^{\beta}{ }_{2}$
1	36	1.01	. 92	1.01	1.01	. 89	. 86	. 99	. 99	. 92	. 91	1.03	1.08	. 88	. 85	. 99	1.02	. 92	. 93	1.04	1.10	. 89	. 89	1.00	1.03
	48	1.01	. 94	1.00	1.01	. 91	. 89	. 99	. 99	. 94	. 93	1.02	1.06	. 91	. 87	. 99	1.01	. 94	. 94	2.03	1.08	. 91	. 91	1.00	1.02
	60	1.01	. 95	1.00	1.01	. 93	. 91	. 99	. 99	. 95	. 94	1.02	1.05	. 92	. 89	. 99	1.01	. 95	, 95	1.02	1.06	. 93	. 93	1.00	1.02
	72	1.00	. 96	1.00	1.01	1.01	. 92	1.00	. 99	. 96	. 95	1.01	1.04	. 94	. 91	. 99	1.01	. 96	. 96	1.02	1.05	. 94	. 94	1.00	1.01
2	36	1.42	1.06	. 98	. 97	. 81	. 89	. 94	. 92	1.08	. 94	. 97	. 98	. 78	. 85	. 95	. 94	1.05	. 93	. 97	. 99	. 85	. 85	. 95	. 95
	48	1.32	1.04	. 99	. 98	. 85	. 89	. 95	. 94	1.06	. 96	. 98	. 99	. 82	. 88	. 96	. 95	1.04	. 95	. 98	. 99	. 89	. 88	. 96	. 96
	60	1.25	1.03	. 99	. 98	. 87	. 90	. 96	. 95	1.05	. 97	.98	. 99	. 86	. 90	.96	. 95	1.03	. 96	. 98	. 99	. 90	. 90	. 97	. 96
	72	1.21	1.03	. 99	. 98	. 89	. 91	. 97	. 95	1.04	. 97	. 99	. 99	. 88	. 91	. 97	. 96	1.02	. 97	. 99	. 99	. 91	. 91	. 97	. 97
3	36	1.27	1.00	1.05	1.00	1.07	. 98	1.01	. 98	1.0	1.0	1.0	1.0	1.0	1.0	1.0	2.0	1.03	1.40	2.04	1.11	1.01	1.10	1.01	1.03
	48	1.21	1.00	1.04	1.00	1.05	. 98	1.00	. 98	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.03	1.39	1.03	1.10	1.00	1.07	1.01	1.02
	69	1.16	1.00	1.03	1.00	1.04	. 99	1.00	. 99	1.0	1.0	1.0	1.0	1.0	2.0	1.0	1.0	1.03	1.38	1.03	1.10	1.00	1.06	1.00	1.01
	72	1.14	1.00	1.03	1.00	1.04	. 99	1.00	. 99	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.03	1.37	1.03	1.10	1.00	1.05	1.00	1.01
4	36	4.19	1.36	1.25	1.08	. 95	1.05	. 96	. 97	1.43	1.01	1.06	1.00	. 98	. 26	. 98	. 97	1.33	1.00	2.05	1.00	1.07	0.97	1.00	. 98
	48	3.39	1.27	1.18	1.06	. 96	1.03	. 97	. 98	1.32	1.01	1.04	1.00	. 99	. 97	.99	. 97	1.25	1.00	1.04	1.00	1.05	. 98	1.00	. 98
	60	2.91	1.21	1.15	1.05	. 97	1.02	. 97	. 98	1.26	1.01	1.04	1.00	. 99	. 98	. 99	. 98	1.20	1.00	1.03	1.00	1.04	. 98	1.00	. 98
	72	2.59	1.18	1.12	1.04	. 97	1.02	. 98	. 99	1.22	1.00	1.03	1.00	. 99	. 98	. 99	.98	1.17	1.00	1.03	1.00	1.03	. 99	1.00	. 99

table 7
RATIO OF CALCULATED VARIANCE TO ASYMPTOTIC APPROXIMATION

											SECOND		ORDER	AUTOREGRESSIONS											
		MODEL 1								MODEL 3								MODEL 5							
		$\alpha_{1}=1.00$								$\alpha_{2}=-1.00$				$\alpha_{2}=0.75$				$\alpha_{1}=-1.25$				$\alpha_{2}=0.3$			
FILTER	N	L.S.				B.L.U.								B.L.U.				L.S.				B.L.U.			
		α_{1}	β_{1}	α_{2}	B_{2}	α_{1}	β_{1}	${ }^{a_{2}}$	B_{2}	α_{1}	${ }^{B} 1$	a_{2}	${ }^{B} 2$	${ }^{\alpha_{1}}$	${ }^{3} 1$	${ }^{\alpha_{2}}$	B_{2}	${ }^{\alpha}$	β_{1}	${ }^{\text {a }}$?	${ }^{B_{2}}$	${ }^{\alpha} 1$	${ }^{\beta_{1}}$	${ }^{\circ}$	β_{2}
1	36	1.80	1.01	1.51	1.21	. 89	. 92	1.04	1.03	1.27	1.04	. 96	1.00	. 88	. 88	. 80	. 83	. 91	. 23	1.07	1.15	. 86	. 88	. 99	1.03
	48	1.60	1.01	1.38	1.16	. 91	. 94	1.03	1.02	1.20	1.03	. 97	1.00	. 90	. 91	. 84	. 86	. 93	. 94	1.05	1.11	. 89	. 91	. 99	1.02
	60	1.48	1.00	1.31	1.13	. 92	. 95	1.02	1.01	1.16	1.03	. 98	1.00	. 92	. 92	. 87	. 38	. 95	. 96	1.04	1.09	. 91	. 92	. 99	1.01
	72	1.40	1.00	1.26	1.11	. 93	. 96	1.02	1.01	1.24	1.02	. 98	1.00	. 93	. 93	. 89	. 90	. 95	. 96	1.03	1.08	. 92	. 93	. 99	1.01
2	36	5.41	1.48	1.50	1.19	. 88	. 89	. 99	. 99	2.22	1.44	. 92	. 94	. 83	. 88	. 77	. 77	1.01	. 91	. 98	1.00	. 81	. 82	. 94	. 95
	48	4.30	1.36	1.37	1.14	. 89	. 89	. 99	. 99	1.91	1.33	. 94	. 96	. 86	. 88	. 82	. 81	1.01	. 94	. 98	1.00	. 85	. 86	. 95	.96
	60	3.63	1.29	1.30	1.11	. 92	. 91	. 99	. 99	1.73	1.26	. 95	. 96	. 88	. 88	. 85	. 84	1.01	. 95	. 99	1.00	. 88	. 88	. 96	. 96
	72	3.20	1.24	1.25	1.09	. 94	. 94	1.00	1.00	1.61	1.22	. 96	. 97	. 90	. 88	. 87	. 86	1.00	. 96	. 99	1.00	. 90	. 90	. 96	. 97
3	36	8.31	1.66	2.58	1.64	1.11	1.06	1.04	1.05	1.55	1.15	. 90	. 91	1.08	1.02	. 81	. 88	. 99	1.17	1.01	1.07	. 97	1.07	1.00	1.03
	48	6.46	1.49	2.18	1.48	1.08	1.04	1.03	1.04	1.41	1.12	. 92	.93	1.06	1.01	. 85	. 86	. 99	1.13	1.01	1.06	. 98	1.04	1.00	1.02
	60	5.36	1.40	1.94	1.38	1.06	1.03	1.02	1.03	1.33	1.09	. 94	.95	1.05	1.01	. 88	. 88	. 99	1.06	1.01	1.05	. 98	1.04	1.00	1.01
	72	4.64	1.33	1.79	1.32	1.05	1.02	1.02	1.02	1.27	1.08	. 95	. 96	1.04	1.00	. 89	. 90	. 99	1.03	1.01	1.04	. 99	1.03	. 98	1.0.1
4	36	103.	10.3	6.19	3.13	1.01	1.11	1.00	1.02	3.16	1.66	. 88	. 89	. 97	1.07	. 81	. 80	1.14	. 97	1.01	. 98	1.03	. 95	. 99	.9'7
	48	77.0	7.93	4.87	2.59	1.01	1.05	1.00	1.01	2.61	1.50	. 91	. 92	. 97	1.05	. 85	. 83	1.11	. 98	1.01	. 99	1.02	.96	. 99	. 918
	60	61.8	6.54	4.10	2.27	1.01	1.05	1.00	1.01	2.29	1.40	. 93	. 93	.98	1.03	. 87	. 86	1.08	. 98	1.01	. 99	1.02	. 96	. 99	.918
	72	51.6	5.62	3.58	2.06	1.01	2.05	1.00	1.01	2.07	1.33	. 94	. 94	. 98	1.03	. 89	. 88	1.07	. 99	1.00	. 99	1.01	. 97	1.00	.918

table
OVERALL EFFICIENCY INDICATOPS, E and E*, FOR SOME MODELS

FILIER	N			1ST ORDER AUTOREGRESSION				2ND ORDER AUPIOREGRESSION					
		INDEP ENDENT		$\alpha=0.75$		$\alpha=0.995$		$\alpha_{1}=-1.25, \quad \alpha_{2}=0.3$		$\alpha_{1}=1.00, \alpha_{2}=0.75$		$\alpha_{1}=-1.00, \alpha_{2}=0.75$	
		E	E*										
1	36	. 761	. 976	. 721	. 971	. 726	. 971	. 522	. 943	. 199	. 863	. 171	. 852
	48	. 799	. 980	. 757	. 975	. 762	. 976	. 571	. 950	. 257	. 884	. 221	. 872
	60	. 827	. 983	. 787	. 978	. 793	. 979	. 614	. 957	. 309	. 899	. 267	. 887
	72	. 848	. 985	. 811	. 981	. 817	. 982	. 651	. 962	. 352	. 910	. 310	. 899
2	36	. 392	. 918	. 544	. 946	. 627	. 959	. 532	. 944	. 059	. 774	. 078	. 793
	48	. 466	. 933	. 607	. 956	. 686	. 966	. 595	. 954	. 034	. 736	. 1124	. 821
	60	. 527	. 943	. 660	.963	. 722	. 971	. 648	. 961	. 121	. 825	. 150	. 841
	72	. 580	. 952	. 701	. 968	. 750	. 974	. 690	. 967	. 155	. 844	. 184	. 857
3	36	. 738	. 973	1.00	1.00	. 676	. 965	. 772	. 977	. 058	. 772	. 385	. 917
	48	. 782	. 978	1.00	1.00	. 654	. 962	. 798	. 980	. 075	. 794	. 451	. 930
	60	. 814	. 982	1.00	1.00	. 645	. 961	. 822	. 982	. 099	. 811	. 506	. 940
	72	. 838	. 984	1.00	1.00	. 641	. 960	. 843	. 985	. 120	. 825	. 552	. 947
4	36	. 144	. 839	. 551	. 947	. 696	. 968	. 823	. 983	. 002	. 566	. 151	. 842
	48	. 193	. 861	. 623	. 958	. 742	. 973	. 857	. 986	. 003	. 521	. 206	. 866
	60	. 238	. 878	.676	. 965	. 778	. 978	. 880	. 988	. 005	. 617	. 257	. 884
	72	1. 279	. 890	. 715	. 970	. 806	. 981	. 897	. 990	. 006	. 629	. 304	. 897

TABLE 10a
Working Day Effects
Individual Day Effects
Exports

Day	Sun	Mon	Thes	Wed	Thu	Fri	Sat
Regression Coefficient	-3.681	4.574	-2.333	3.308	4.134	.792	-6.794^{*}
Standard Error	2.8	2.7	2.6	2.8	2.7	2.7	2.6

Two and Three Day Month Ending Effects

Ending	Sun Mon	Mon Tues	Thes Wed	Wed Thu	$\begin{aligned} & \text { Thu } \\ & \text { Fri } \end{aligned}$	$\begin{aligned} & \text { Fri } \\ & \text { Sat } \end{aligned}$	$\begin{aligned} & \text { Sat } \\ & \text { Sun } \end{aligned}$	Sun Mon Tues	Mon Tues Wed	Tues Wed Thu	Wed Thu Fri	$\begin{aligned} & \text { Thu } \\ & \text { Fri } \\ & \text { Sat } \end{aligned}$	Fri Sat Sun	Sat Sun Mon
Coefficient	5.85	-12.41*	-7.71	5.16	3.63	-6.45	-13.61*	-. 19	12.60*	12.63*	4.79	. 36	-6.78	-8.81*
Standard Error	5.4	5.6	5.4	5.3	5.4	5.4	5.6	3.8	4.0	3.8	4.0	4.0	3.9	4.0

Note: The ${ }^{*}$ indicates the significant coefficients.

TABLE 1Ob
Working Day Effects
Individual Day Effects
Imports

Day	Sun	Mon	Thes	Wed	Thu	Fri	
Regression Coefficient	-5.508^{*}	1.013	.312	4.499	3.392	-1.389	-2.319
Standard Error	2.328	2.313	2.309	2.360	2.263	2.324	2.274

Two and Three "Excess Days" Effects

- Ending	Sun Mon	Mon Thes	Tues Wed	Wed Thu	$\begin{aligned} & \text { Thu } \\ & \text { Fri } \end{aligned}$	$\begin{aligned} & \text { Fri } \\ & \text { Sat } \end{aligned}$	Sat Sun	Sun Mon Tues	Mon Tues Wed	Tues Wed Thu	$\begin{aligned} & \text { Wed } \\ & \text { Thu } \\ & \text { Fri } \end{aligned}$	$\begin{aligned} & \text { Thu } \\ & \text { Fri } \\ & \text { Sat } \end{aligned}$	$\begin{aligned} & \text { Fri } \\ & \text { Sat } \\ & \text { Sun } \end{aligned}$	$\begin{aligned} & \text { Sat } \\ & \text { Sun } \\ & \text { Mon } \end{aligned}$
Coefficient	-10.729*	-6.602	1.393	5.463	1.508	-9.667	-5.770	-2.879	11.990*	9.733*	7.542	. 232	-7.318	-5.355
Standard Error	5.301	5.431	5.158	5.167	5.167	5.158	5.273	4.494	4.690	4.550	4.690	4.648	4.593	4.680

Note: The * indicates the significant coefficients.

IV SIGNAL EXIRACIION PROBLEMS

4.1 Seasonal Models and the Adjustment Problem

In this chapter the problem area is again that of seasonal adjustment, but there is no longer an exactly specified signal. Rather we begin with a priori ideas about the changing nature of the signal (amplitude and possibly phase modulation) and summarize these ideas on change in the spectral properties of the signal. This method appears particularly appropriate to a model of the seasonal component which must surely be represented as a sum of six narrow frequency band signals. The only extension that is proposed is to regard each signal as being amplitude modulated. Of course the seasonal signal will be superimposed on noise, however the narrow band nature of the signals means that only the average noise level over these narrow bands is of great concern. Consequently a spectral treatment of the noise will require the introduction of relatively few parameters and more detailed models will probably add very little in efficiency, while increasing the risk of invalid analysis.

The main difficulty in effecting adequate seasonal adjustment arises from the fact that the seasonal pattern may be changing. The problem of estimating such a changing seasonal pattern is an aspect of one of the most important of all scientific problems. The difficulty is simple to perceive but must be understood. If an estimation procedure is developed which is sensitive to changes in the seasonal component then the procedure will also be sensitive to chance fluctuations or noise effects. An optimal solution may be derived on the basis of an initial model. This optimal solution may be of value both for its own sake and as a standard of comparison for ad hoc procedures, but uncritical acceptance of the solution as best would be unwise as no model on which optimization procedures are based is likely to represent the truth. In any case the optimum criteria may be deficient because it fails to reflect subjective elements which are difficult to quantify, such as the
reluctance of an official institution to employ methods which may entail substantive later revisions of first estimates.

There is a further point which deserves discussion in this introduction. The treatment presented is based on a model of the data, possibly after logarithmic transformation, which consists of seasonal plus 'noise', where 'noise' is all the remaining variation. It has been pointed out (see Whittle [58]) that it would be preferable to use a model in which the seasonal component is properly integrated as a part of the whole mechanism generating the series and is not merely 'stuck on' as an additional but separate component. It is as well to point out however that the use of certain seemingly more complex models leads to the additive model we have used. For example, a model of the form

$$
\begin{equation*}
\sum_{j}^{q} \gamma_{j} w(n-j)=e(n) \tag{4.1.1}
\end{equation*}
$$

where $e(n)$ contains a component, $g(n)$, with seasonally oscillating properties is no generalization. For if one writes $e(n)=g(n)+h(n)$, where $g(n)$ produces seasonal oscillations then the general nature of the solution is

$$
w(n)=p(n)+s^{*}(n)+u(n)
$$

where $p(n)$ is the solution of the homogenous equation obtained from (4.1.1). Similarly $s^{*}(n)$ and $u(n)$ are the respective solutions of (4.1.1) when first $g(n)$ and then $h(n)$ replace $e(n)$. Thus the additive nature of the seasonal is maintained.

The model adopted for the seasonal alone in this chapter and Chapter V could be thought of in the following terms.

$$
s^{*}(n) \text { is a solution of an expression of the form (4.1.1) with }
$$

$q=1$,

$$
\begin{equation*}
y_{j}(n)=\rho_{j} e^{i \lambda^{\prime}} j_{y_{j}}(n-1)+g^{*}(n) \quad j= \pm 1, \pm 2, \ldots, \pm 5,6 \tag{4.1.2}
\end{equation*}
$$

in which $g^{*}(n)$ produces oscillations with frequency λ_{j} and with amplitude depending on the variances of the random terms $\epsilon_{j}(n)$ and $\eta_{j}(n)$ (see (4.2.3)). The advantage of the procedure adopted
here is that the components $p(n)$ and $u(n)$ are not tied to generation by the same mechanism. Further, one obtains no generality if the polynomial, $\sum_{j}^{q} \gamma_{j} z^{j}$, is required merely to have certain roots on or very near to the unit circle and with 'argument' corresponding to the seasonal frequencies. Once again the solution of (4.1.1) is no more than a sum involving $p(n)$ and $s^{*}(n)$ obtained in exactly the same manner as described above and again the model would be more restrictive rather than more general. One can propose essentially different models, such as one in which the γ_{j} oscillate periodically but apparently no work has yet been done on models of this nature.

The difficulty is not that of building such models, but rather of building adequate ones. Economic inter-relations are sufficiently complex so that the policy maker may be unwilling to commit himself entirely, for example, to one generating model for all components and so he would prefer to view key series with perhaps a model in mind but not restricted to it. The policy maker will want to survey series with as little done to them as possible, except for seasonal adjustment and he will probably not be prepared to use uncritically a projection of a series or a set of series, the projection having been made purely on the basis of the past of the series. This leaves an important role for seasonal corrections based on an additive model of the type presented in (3.2.1).

4.2 An Evolving Seasonal Pattern

The main task is the formulation of a suitable model and consequent statistical treatment for the case of an evolving seasonal pattern. The case considered here will be where the change in the seasonal pattern is gradual and continuous. Separate consideration should be given to the situation where sudden changes occur at randomly distributed points in time. This form of analysis is unlikely to proceed purely on the basis of the history of the data but will depend on additional related information which will be available and should be incorporated in a more complex formulation. This approach is not pursued.

As indicated in the introduction to this chapter the model of the data which is used is given in (3.2.1), but now $u(n)+p(n)$ will often be referred to as the 'noise' component (see 3.2 - in particular the discussion associated with (3.2.4)). The traditional model for the seasonal pattern is that of a strictly periodic or stable sequence and this model has been discussed in 83.2 and in particular is characterized by $(3,2 \cdot 3)$. A simple and obvious modification is to make α_{j}^{*} and β_{j}^{*} depend on n so that
$s^{*}(n)=\sum_{j}^{6} s_{j}^{*}(n)=\sum_{j}^{6}\left(\alpha_{j}^{*}(n) \cos n \lambda_{j}+\beta_{j}^{*}(n) \sin n \lambda_{j}\right)$.
Of course $\alpha_{j}^{*}(n)$ and $\beta_{j}^{*}(n)$ will need to change slowly with n otherwise the notion of a seasonal pattern fades. Deterministic variation of the $\alpha_{j}^{*}(n)$ and $\beta_{j}^{*}(n)$ sequences is not considered here (see [23], [33]), but it is preferred to treat them as determined by chance. The autocorrelation of each sequence must however be high if it is to show the smooth variation required of a reasonable model. Perhaps the simplest model is one of the form

$$
\begin{align*}
& \alpha_{j}^{*}(n)=\rho_{j} \alpha_{j}^{*}(n-1)+\epsilon_{j}(n) \tag{4.2.2}\\
& \beta_{j}^{*}(n)=\rho_{j} \beta_{j}^{*}(n-1)+\eta_{j}(n)
\end{align*}
$$

where $\epsilon_{j}(n)$ and $\eta_{j}(n)$ have variance σ_{j}^{2} and zero mean and all correlations between ϵ and η, for any two time points and for differing values of j vanish.

Before considering in detail the stochastic properties of the model used in further work an attempt is made to give some perspective for this choice. For this purpose we define the seasonal at each frequency λ_{j} as

$$
s_{j}^{*}=\xi_{j}(n)+\bar{\xi}_{j}(n)
$$

where

$$
\begin{align*}
\xi_{j}(n)=\bar{\xi}_{-j}(n)=\frac{1}{2}\left\{\alpha_{j}^{*}(n)-i \beta_{j}^{*}(n)\right\} e^{i \lambda_{j} n} \\
\xi_{-j}(n)=\bar{\xi}_{j}(n)=\frac{1}{2}\left\{\alpha_{j}^{*}(n)+i \beta_{j}^{*}(n)\right\} e^{-i \lambda_{j} n} \\
j=1,2, \ldots, 5
\end{align*}
$$

and

$$
\dot{\xi}_{6}(n)=\alpha_{6}^{*}(n) e^{i \lambda} \sigma^{n}
$$

and the complex variable $\xi_{j}(n)$ is written in summary form as

$$
\begin{equation*}
\xi_{j}(n)=\zeta_{j}(n) e^{i \lambda_{j} n} \quad j= \pm 1, \pm 2, \ldots, \pm 5,6 \tag{4.2.5}
\end{equation*}
$$

where the nature of the complex random variable $\zeta_{j}(n)$ is obvious from the definition given in (4.2.4). Using (4.2.2) it is straightforward to derive the autoregression in the complex variable

$$
\begin{equation*}
\zeta_{j}(n)=\rho_{j} \zeta_{j}(n-1)+\psi_{j}(n) \tag{4.2.6}
\end{equation*}
$$

where $\psi_{j}(n)$ is a complex random variable defined by

$$
\psi_{j}(n)=\frac{1}{2}\left\{\epsilon_{j}(n)-i \eta_{j}(n)\right\}
$$

If one re-represents the complex random variable, $\zeta(n)$, as

$$
\begin{equation*}
\zeta_{j}(n)=\left|\zeta_{j}(n)\right| e^{i \theta(n)} \tag{4.2.8}
\end{equation*}
$$

with $\left|\zeta_{j}(n)\right|$ and $\theta(n)$ the modulus and argument of $\zeta_{j}(n)$ then by considering in more detail the nature of $\theta(n)$ one can see the range of possibilities this formulation offers. A mixture of frequency and amplitude modulation occurs when $\theta(n)$ is of the form $n \phi(n)$ since then the signal becomes $\left|\zeta_{j}(n)\right| e^{i n\left(\lambda_{j}+\phi(n)\right)}$. A slowly changing $\phi(n)$ provides what has been referred to as frequency modulation provided that $\phi(n)$ does not decay to zero with n. The inclusion of frequency modulation means that the wave form changes not only because of the changing amplitude $\left|\zeta_{j}(n)\right|$ but also because the underlying band of frequencies in the signal is slowly changing.

However, the argument $\theta(n)$ in (4.2.8) may contain no part which may be written as $n \phi(n)$ - where $\phi(n)$ is changing slowly but instead the signal may be $\left|\zeta_{j}(n)\right| e^{i \lambda} j^{n} e^{i \Theta(n)}$, where now $\Theta(n)$, the phase angle, is the slowly changing part. When the variation in the wave form arises not only from amplitude modulation due to $\left|\zeta_{j}(n)\right|$ but also from the slowly changing factor $\Theta(n)$ the model (4.2.8) provides a mixture of phase and amplitude modulation.

Of course it could be that $\theta(n)$ was of the form that could be partitioned into two parts; one that is of the form $n \phi(n)$ and another of the form $\Theta(n)$ so that the model would include amplitude, phase and frequency modulation.

In special circumstances (4.2.8) will produce 'pure' amplitude modulation. For if (4.2.8) becomes

$$
\begin{equation*}
\zeta_{j}(n)=\left|\zeta_{j}(n)\right| e^{i \theta} \tag{4.2.9}
\end{equation*}
$$

and (4.2.9) is used for $\zeta_{j}(n)$ and $\zeta_{j}(n-1)$ in (4.2.6) one derives the relation
$\left|\zeta_{j}(n)\right|-\rho_{j}\left|\zeta_{j}(n-1)\right|=\psi_{j}(n) e^{-i \theta}$.
Assume as well a particular form for $\psi_{j}(n)$, namely,

$$
\begin{equation*}
\psi_{j}(n)=a(n) \cos \theta+i a(n) \sin \theta \tag{4.2.11}
\end{equation*}
$$

where θ is uniformly distributed on $(-\pi, \pi)$ and is independent of $a(n)$, a sequence of independent positive random variables. If $\varepsilon\left(a^{2}(n)\right)=\sigma^{2}$ then it immediately follows that
$\varepsilon(a(n) \cos \theta)=\varepsilon(a(n) \sin \theta)=0$
$\varepsilon\left(a^{2}(n) \cos ^{2} \theta\right)=\varepsilon\left(a^{2}(n) \sin ^{2} \theta\right)=\sigma^{2} / 2$
$\varepsilon(a(n) \cos \theta \cdot a(n) \sin \theta)=0$.
Now the model as specified originally with $\psi_{j}(n)$ as defined in (4.2.7) will then correspond to pure amplitude modulation if one puts $\frac{1}{2} \epsilon_{j}(n)=a(n) \cos \theta$ and $\frac{1}{2} \eta_{j}(n)=a(n) \sin \theta$, otherwise there will be phase modulation as well. When $\epsilon_{j}(n)$ and $\eta_{j}(n)$ are in fact as prescribed for pure amplitude modulation they cannot be Gaussian random variables since they are uncorrelated but not in general independent. Thus in this model there may be more information obtainable from higher than second order moments.

When postulating in (4.2.2) the model which generated $\alpha_{j}^{*}(n)$ and $\beta_{j}^{*}(n)$ correlation between the random variables $\epsilon_{j}(n)$ and $\eta_{j}(n)$ was specifically excluded. The reason for this restriction is that if we allow correlation between $\epsilon_{j}(n)$ and $\eta_{j}(n)$ (call it $r_{\in \eta}$) then the lag covariance for $s_{j}^{*}(n)$ is $\varepsilon\left(s_{j}^{*}(m) s_{j}^{*}(m+n)\right)=\frac{\sigma_{j}^{2}}{1-\rho_{j}^{2}} \rho_{j}^{n}\left\{\cos n \lambda_{j}+r_{\epsilon \eta} \sin (2 m+n) \lambda_{j}\right\}$
so that the seasonal component would not be stationary. If however as is assumed in $(4.2 .2) r_{\epsilon \eta}=0$ then $s^{*}(n)$ becomes a stationary process with a covariance function,
$\gamma_{s^{*}}(n)=\varepsilon\left(s^{*}(m) s^{*}(m+n)\right)=\sum_{j}^{6} \frac{\sigma_{j}^{2}}{1-\rho_{j}^{2}} \rho_{j}^{n} \cos n \lambda_{j}$.
It is apparent from (4.2.3) that ρ_{j} will have to be large for the autocorrelation sequence of $s_{j}^{*}(n)$ is now $\rho_{j}^{n} \operatorname{cosn} \lambda_{j}$ and even for $\rho_{j}=.98$ and $n=60$ the autocorrelation is approximately .3 so that seasonal patterns five years could differ quite radically. It is more illuminating to express the second order properties of $s^{*}(n)$ and the $s_{j}^{*}(n)$ in terms of the spectrum. In this case the spectrum is related to the autocovariances by
$\gamma_{s^{*}}(n)=\sum_{j} \gamma_{j}(n)=\sum_{j} \int_{-\pi}^{\pi} e^{i n \lambda_{f}}(\lambda) d \lambda$
Where the spectrum, $f_{j}(\lambda)$, is the Fourier Transform of $\gamma_{j}(n)$, the autocovariance sequence for $s_{j}^{*}(n)$, and is given by
$f_{j}(\lambda)=\frac{\sigma_{j}^{2}}{4 \pi}\left\{\frac{1}{1+\rho_{j}^{2}-2 \rho_{j} \cos \left(\lambda-\lambda_{j}\right)}+\frac{1}{1+\rho_{j}^{2}-2 \rho_{j} \cos \left(\lambda+\lambda_{j}\right)}\right\}$.
The relation (4.2.4) may be rewritten as
$\gamma_{s *}(n)=\sum_{j} \int_{0}^{\pi} \operatorname{cosn} \lambda \frac{\sigma_{j}^{2}}{2 \pi\left(1_{+} \rho_{j}^{2}-2 \rho_{j} \cos \left(\lambda-\lambda_{j}\right)\right.} d \lambda$
but it is found that the complex form of (4.2.4) is easier to work with. If ρ_{j} is near to l then $f_{j}(\lambda)$ is very concentrated at $\pm \lambda_{j}$ which corresponds to the fact that $s_{j}^{*}(n)$ is, over short periods, much like a sinusoidal oscillation with frequency λ_{j}.

The model initially adopted is of the form given in (4.2.2) but with all $\rho_{j} \equiv 1$. The reason for this has already been raised and is that the ρ_{j} must be very near to unity in any case. Since it is most difficult to determine ρ_{j} accurately from the data and the model is unlikely to be correctly specified this simplification is adopted initially. One could, of course, go further and adopt a more elaborate scheme in place of that proposed in (4.2.2), for example one involving second or higher differences for $\alpha_{j}^{*}(n), \beta_{j}^{*}(n)$, or generalizing in the fashion suggested in 84.1 one might consider $s^{*}(n)$ to be generated by a relation of order $q, q>1$, such as

$$
\begin{equation*}
\sum_{j}^{q} \gamma_{j} s^{*}(n-j)=u(n) \tag{4.218}
\end{equation*}
$$

where the characteristic equation of $(4.2 .18)$ is $\sum_{j}^{q} \gamma_{j}^{z^{j}}$ and has all of its roots on or outside of the unit circle and $u(n)$ is a stationary time series with known spectra (see [24]).

In principle the technique proposed (see [24] and [57]) can deal with such extensions but in practice the computational and algebraic complications become large and the additional work does not seem justified, although in connection with trend removal a second order difference scheme is dealt with. It should be noted that when $\rho_{j} \equiv l$ the seasonal component $s^{*}(n)$ ceases to be stationary.

4.3 Filtering Prior to Seasonal Extraction

It should be remembered that in the introductory discussion of the evolving seasonal model that the noise can include what would usually be called trend. Thus a high proportion of its variance will be explained by very low frequency components and so it is necessary to filter $w(n)$ to eliminate the trend. After
trend elimination it is assumed that the new noise term $x(n)$ is stationary with spectrum $f_{x}(\lambda)$. Filtering replaces $w(n)$ by $y(n)$ (see (3.2.6)),
$y(n)=\Sigma_{-p}^{q} b j^{w}(n-j) \quad n=1, \ldots, N$
and also therefore replaces $s^{*}(n)$ and $u(n)$ by $s(n)$ and $x(n)$,
$s(n)=\sum_{j}^{q}-p^{b} j^{*}(n-j)$
$x(n)=\sum_{j-p}^{q} b_{j} u(n-j) \quad n=1, \ldots, \mathbb{N}$
where N is the number of observations remaining after filtering.
The coefficients $\alpha_{j}^{*}(n)$ and $\beta_{j}^{*}(n)$ become $\alpha_{j}(n)$ and $\beta_{j}(n)$ after filtering. For any of the trend-removing filters mentioned in 84.6 the small difference between the properties of the starred and unstarred coefficients may be disregarded. One of the traditional methods of forming $y(n)$, discussed in Chapter III, is the subtraction of a centred 12 months moving average from $w(n)$. A thorough consideration of an appropriate trend-removing filter is even more important in the present case than in Chapter III where $s^{*}(n)$ was assumed stable for the method adopted will now have to allow frequencies well below λ_{1}, say, to influence the estimate of $s_{1}(n)$ and correspondingly this estimate would be badly affected by a trend if this was inadequately removed.

4.4 Suitability of Seasonal Estimation for Optimal Procedures

The technique used to obtain an estimate of the seasonal component is founded on the use of optimal methods for the extraction of a signal, the seasonal, which were briefly sketched in Si.5. These methods have been extended to allow for a non-stationary signal (see [57] and [24]). The method is quite general and has the following virtues. It allows the data up to the latest moment to be used to estimate the seasonal component, but as well this estimate may be revised as more information comes
to hand. This is important for if the seasonal is allowed to change it must be recognized that at time n a large part of the information available for the estimation of the seasonal at that time point has yet to eventuate. Second, insofar as there is a stable seasonal component, or indeed if a more elaborate model is used, a seasonal component changing according to a sufficiently simple deterministic law, this component will be exactly represented in the estimate. Thirdly, only one unknown parameter is involved at each of the seasonal frequencies, this being of the nature of a signal to noise ratio. The level at which this parameter is set reflects the compromise to be effected between a quick response, resulting in quite a variable estimate of seasonal, and the damping out of noisy fluctuations. In principle this parameter should be determined from the data.

The actual methods used involve some compromises. The first issue arises in connection with the pre-seasonal extraction filtering. In all three techniques have been used but discussion of two of these is delayed temporarily. One of the two does in fact substantially eliminate the problem now discussed while the other (see section 4) is used because it enables estimates to be made using all the data up to the current time point and does not lose us the last six observations, as does the subtraction of a centred 12 months moving average. The remaining method is the simple device of removal of a centred 12 months moving average.

As is apparent from Fig. VIII, removing a centred 12 months moving average does not affect a stable seasonal but it will do so for a changing one. The effect may be judged by considering the model arising from $(4.2 .1)$ and $(4.2 .2)$ when $\left|\rho_{j}\right|<1$. It was indicated in §I. 3 that the effect of filtering is to multiply the spectral densities $f_{s^{*}}(\lambda), f_{u}(\lambda)$ by the factor $|B(\lambda)|^{2}$. $B(\lambda)$ is the frequency response function, and for the subtraction of a centred 12 months moving average is given by
$B(\lambda)=\left\{1-\frac{1}{24} \frac{\sin \lambda \sin 6 \lambda}{\sin ^{2} \frac{1}{2} \lambda}\right\}$.

The effect is considered at the seasonal frequency where it will usually be greatest, namely λ_{1}. It is $B(\lambda)$ which is more relevant than $|B(\lambda)|^{2}$ for $B(\lambda)$ is the factor multiplying the component at frequency λ, whose variance is $f_{s^{*}} d \lambda$. Investigating $B(\lambda)$ in the range of frequencies in which the bulk of the spectral mass of the signal lies allows an assessment of the degree of distortion of the signal caused by filtering to remove the trend.

A good approximation to the value of a, such that $\left[\lambda_{j}-a, \lambda_{j}+a\right]$ contains a proportion p, of the total mass under the curve given in (4.2.16) is, for ρ_{j} near to unity and $p<1$,

$$
\begin{equation*}
a=-\log _{j} \tan \frac{\pi p}{2} \tag{4.4.2}
\end{equation*}
$$

Indeed the proportion is very near to
$\frac{1}{2 \pi} \int_{-a}^{a} \frac{1-\rho_{j}^{2}}{1+\rho_{j}^{2}-2 \rho_{j} \cos \lambda} d \lambda$
$=\frac{1}{2 \pi} \int_{-a}^{a} \sum_{-\infty}^{\infty} \rho_{j}^{|k|} e^{i k \lambda} d \lambda$
$=\frac{1}{\pi} \sum_{-\infty}^{\infty} \rho_{j}^{|k|} \frac{\text { sinak }}{k}$
$\cong \frac{2}{\pi} \int_{0}^{\infty} e^{-\alpha x} \frac{\sin x}{x} d x$
$=\frac{2}{\pi} \arctan \left(\frac{-a}{\log _{j}}\right)$
where $\alpha=\frac{l}{a} \log _{j}$ and the approximation is adequate if a is small and ρ_{j} near to unity. For $\rho_{j}=.98, p=.90$ the value of a is 0.127 and for $p=.50, \rho_{j}=.98$ the value is .0203 . The value of the response function, (4.4.1), is given at the relevant points frequency (λ) $\quad \lambda_{1}-0.127 \quad \lambda_{1}-0.020 \quad \lambda_{1}+0.020 \quad \lambda_{1}+0.127$

$$
\begin{array}{lllll}
B(\lambda) & .714 & .960 & 1.036 & 1.170
\end{array}
$$

This indicates that the effects of the filtering will be slight. Over the range in which 50% of the spectral mass of $s_{1}^{*}(n)$ lies the effect on the signal will be negligible. Over the remainder of the range considered the signal will be slightly diminished below λ_{1} and slightly augmented above λ_{1}. The resulting relocation of the signal affects only 5% of the total mass. As it seems appropriate to ignore the effects of this filtering $s(n)$ and $s^{*}(n)$ are no longer notationally distinguished. In any case if the next suggestion for simplification is adopted these effects are reduced even further.

The second simplification is to adopt a technique which treats each $s_{j}(n)$ separately. The methods proposed are filtering processes and the justification for this simplification is the narrow band nature of the signal, i.e. the seasonal, for this assumes, for a given noise level, that there will be little interference between the six signals. This point is discussed in detail in Hannan [24]. To illustrate this point the responses of the seasonal extraction filters are calculated and presented in Chapter V. It will be seen that the filter used to elicit $s_{j}(n)$ will hardly be affected by the $s_{k}(n), k \neq j$, because its response will be very substantially concentrated at λ_{j}. If, however, there was concern about possible interference another procedure could be used which eliminates both trend and $s_{k}(n)$, $k \neq j$, to a substantial degree. This is the procedure mentioned at the end of the preceding paragraph. In this approach one forms $y_{j}(n)=\left(2-\delta_{j}^{6}\right) \sum_{k}^{6}-\sigma_{k}{ }^{W}(n-k) \cos \lambda_{j} k$
where δ_{j}^{6} is unity if $j=6$ and is otherwise zero and a_{k} are the coefficients in a centred 12 months moving average. This produces a filter with response
$\frac{\sin 6\left(\lambda-\lambda_{j}\right) \sin \left(\lambda-\lambda_{j}\right)}{24 \sin ^{2} \frac{1}{2}\left(\lambda-\lambda_{j}\right)} \frac{\sin 6\left(\lambda+\lambda_{j}\right) \sin \left(\lambda+\lambda_{j}\right)}{24 \sin ^{2} \frac{1}{2}\left(\lambda+\lambda_{j}\right)}$
which by elementary manipulations is reduced to

$$
\begin{equation*}
\frac{\sin \lambda \sin 6 \lambda}{6\left(\cos \lambda-\cos \lambda_{j}\right)} \tag{4.4.5}
\end{equation*}
$$

The expression (4.4.5), which is illustrated in Fig. IX for $j=1,2$ and 3, has a zero at $\lambda=0$ of the same order as is obtained when a centred 12 months moving average is subtracted. Whereas the response of this latter filter is like $6 \lambda^{2}$ at $\lambda=0$ that of $(4.4 .5)$ is like $\lambda^{2}\left(1-\cos \lambda_{j}\right)^{-1}$, which since $\left(1-\cos \lambda_{j}\right)^{-1}$ is larger than 6 only for $j=1$ shows that the filter with response (4.4.5) tends to remove the trend better than the moving average subtraction when $j>1$, and not much worse for $j=1$. Of course at $\lambda_{k}, k \neq j,(4.4 .5)$ has zero response so that $s_{k}(n), k \neq j$, is substantially removed. At $\lambda_{j},(4.4 .5)$ is unity and tends to have a flatter, and therefore better, shape than the moving average subtraction filter has for j small, though the reverse is true for j near 6. The small $j, j=1,2$ in particular, are most likely to be the important seasonal frequencies. Experience with practical applications has suggested that the refinement involved in the use of the filter with response (4.4.5) is not needed, (see Appendix D), particularly as it loses six observations at the end of the series.

In principle it is not necessary to take each λ_{j} separately any more than it is necessary to adopt a first difference scheme in representing $\epsilon_{j}(n)$ and $\eta_{j}(n)$ in terms of $\alpha_{j}(n)$ and $\beta_{j}(n)$. In practice, however, the problem of computing the optimal coefficients becomes very great unless these things are done, as high order polynomials have to be factored. Computing each $\hat{s}_{j}(n)$ separately has one result which must be mentioned, namely that, unless the prefiltering by means of filter (4.4.4) is carried out, it is not quite true that an additional stable seasonal component will be perfectly represented. This is because the part of the stable

FIG. VIII

seasonal due to the term $\alpha_{j} \cos \lambda_{j} n$ and $\beta_{j} \sin \lambda_{j} n$ will contribute not only to $\hat{s}_{j}(n)$ but also to $\hat{s}_{k}(n)$ for $k \neq j$. The effect will be slight however as can be judged from the response function of the filter used to compute $\hat{\mathrm{s}}_{j}(\mathrm{n})$, which is shown in Chapter V (see Fig. XII).

The final simplification is that the noise level, i.e. $f_{x}(\lambda)$, is treated as a constant value $f_{x}\left(\lambda_{j}\right)$ when designing the filter to produce an estimate of $s_{j}(n)$. The justification for this step is of the same nature as that for the previous simplification, namely that the response of the filter designed to produce the estimate of $s_{j}(n)$ will be very concentrated at λ_{j} so that assuming $f_{x}(\lambda)$ constant at its mid band value, for the band where the filter is concentrated, will have no great effect. In this regard, any other procedure is hardly conceivable as sufficiently precise knowledge necessary to warrant a more exact treatment is unlikely to be available.

Thus the procedures will begin with a prefiltering of $w(n)$, either by removing a centred 12 months moving average, by use of the filter (4.4.4) or by a trend removal procedure outlined below in 8.6 , to produce $y_{j}(n)$.

4.5 Seasonal Extraction Model

For each j the model
$y_{j}(n)=s_{j}(n)+x_{j}(n) \quad j=1,2, \ldots, 6$
is considered, wherein $s_{j}(n)$ is as defined in (4.2.1) and (4.2.2) but with $\rho_{j} \equiv 1$ and $x_{j}(n)$ to be serially uncorrelated and uncorrelated with $s_{j}(m)$, for all m, and with variance $2 \pi f_{x}\left(\lambda_{j}\right)$. This is fictitious as previously explained but not in a way which should seriously affect the results. The optimal filter is now chosen to estimate $s_{j}(n)$ based on the procedures for extracting a signal immersed in noise which were outlined in fl. The derived filter depends only upon the ratio $\left\{\sigma_{j}^{2} / 2 \pi f_{x}\left(\lambda_{j}\right)\right\}$, which
is a form of signal to noise ratio. Some discussion of estimation of this ratio will be given below, in 6.3. The estimate $\hat{s}_{j}^{(\nu)}(n)$, of $s_{j}(n)$, using observations up to time $(n+v), v \geqq 0$, is then calculated, where $(n+v)$ is the latest time point available. The estimates for each seasonal frequency are then combined to obtain
$\hat{s}^{(v)}(n)=\sum_{j}^{6} \hat{s}_{j}^{(v)}(n)$.
The derivation of the formulae for $\hat{\mathrm{s}}_{\mathrm{j}}^{(\nu)}(\mathrm{n})$ using the model (4.5.1) is not given here (see [57] and [24], [25]) but a sketch of the main results is given only as a basis for later discussion (see Chapter V) of the implementation of these procedures and development of the estimates' characteristics.

$$
\begin{align*}
& \text { Let } \beta_{j} \text { be the root, of less than unit modulus, of } \\
& 1+\theta_{j}(1-z)\left(1-z^{-1}\right)
\end{align*}
$$

where $\theta_{j}=2 \pi f_{x}\left(\lambda_{j}\right) /\left(\sigma_{j}^{2} / 2\right)$ and z is as defined in 81.5 . This root is $\left(2 \theta_{j}\right)^{-1}\left\{1+2 \theta_{j}-\sqrt{\left(1+4 \theta_{j}\right)}\right\}$. Then form (see [25])
$u_{j}(n)=\left(1-\beta_{j}\right) \sum_{m}^{\infty} \beta_{j}^{m} y(n-m) \operatorname{cosm} \lambda_{j}$
$v_{j}(n)=\left(1-\beta_{j}\right) \sum_{m}^{\infty} \beta_{j}^{m} y(n-m) \sin m \lambda_{j}$.
If u_{j} and v_{j} are computed for some initial time point they are simply obtained thereafter from the following recursive relations
$u_{j}(n+1)=\beta_{j}\left\{u_{j}(n) \cos \lambda_{j}-v_{j}(n) \sin \lambda_{j}\right\}+\left(1-\beta_{j}\right) y(n+1)$
$v_{j}(n+1)=\beta_{j}\left\{u_{j}(n) \sin \lambda_{j}+v_{j}(n) \cos \lambda_{j}\right\}$.

Then the seasonal estimate at each point n, based only on past observations is obtained from ${ }^{25}$

25
It should be noted that calculation of the ${ }{ }_{j}$ defined in (4.5.4) is only necessary where the recursive formulae in (4.5.5) are used to obtain $u_{j}(n)$ and $v_{j}(n)$ for each time point, because (4.5.6) shows $\hat{s}^{(0)}(n)$ is based only on the $u_{j}(n)^{\prime} s$.
$\hat{\mathrm{s}}^{(0)}(n)=\Sigma_{I}^{6}\left(2-\delta_{j}^{6}\right) u_{j}(n)=\Sigma_{I}^{6} \hat{s}_{j}^{(0)}(n)$.
To obtain $\hat{\mathrm{s}}^{(\nu)}(\mathrm{n})$, for v values >0, one can proceed
iteratively by means of

$$
\begin{equation*}
s^{(\nu+1)}(n)=s^{(\nu)}(n)+\sum_{j}^{6}\left\{(1 - \beta _ { j }) \beta _ { j } ^ { \nu } \left(y(n+\nu+1) \cos (\nu+1) \lambda_{j}-u_{j}(n+\nu+1) \cos (\nu+1) \lambda_{j}\right.\right. \tag{4.5.7}
\end{equation*}
$$

$$
\left.\left.-v_{j}\left(n+v_{+}-1\right) \sin \left(v_{+} 1\right) \lambda_{j}\right)\left(2-\delta_{j}^{6}\right)\right\}
$$

Thus as new data comes to hand $\hat{\mathbf{s}}^{(v)}(n)$ is updated. The $j^{\text {th }}$ summand in the second term is the adjustment to $\hat{\mathrm{s}}_{\mathrm{j}}^{(v)}(\mathrm{n})$ required to obtain $\hat{\mathrm{s}}_{\mathrm{j}}^{(\nu+1)}(\mathrm{n})$. As mentioned above, this successive modification of an estimate is essential for any efficient method for a changing seasonal as future observations contain relevant information for a correct estimate of the seasonal.

4.6 Trend Extraction Procedure

TWo ways of eliminating $p(n)$, the low frequency component of w(n), have already been discussed, one by subtracting a centred 12 months moving average and one by the use of the filter (4.4.4). Both methods have the disadvantage of producing a trend reduced series which stops 6 terms short of the end of the original series. In this section a technique is derived which is designed to remove trend which can be carried up to the last observation. Again the approach adopted is to propose a model and, thence, to obtain a trend representing filter which can be iteratively calculated. The model employed is not regarded as representing the truth but rather it is believed that the filter resulting will do its task reasonably well. Support of this belief is provided below.

The model is of the form

$$
\begin{equation*}
w(n)=p(n)+v(n) \tag{4.6.1}
\end{equation*}
$$

where

$$
\begin{equation*}
p(n)-2 p(n-1)+p(n)=\epsilon(n) \tag{4.6.2}
\end{equation*}
$$

and $\epsilon(n)$ is serially independent with zero mean and constant variance σ_{ϵ}^{2}. This model produces a $p(n)$ which is the sum of a linear trend and a random component which is the result of two successive partial summations of the $\epsilon(n)$ series, i.e. of the form N n $\Sigma \quad \Sigma \epsilon(u)$. As already indicated this model is only a convenient $\mathrm{n}=0 \quad \mathrm{u}=0$
basis on which to work. This must be borne in mind when considering the rationale for an assumption that $v(n)$ has a constant spectrum. Clearly for estimation of $p(n)$ it is $s^{*}(n)+u(n)$ which is the noise and this sum certainly has not a uniform spectrum. The problem of solving the equations necessary to obtain an optimal filter for representing $p(n)$ when $v(n)$ is more general is a difficult one and has been avoided. The main cost will be the production of a filter with a non-zero response at the points λ_{j} so that the subtraction of their estimate of $p(n)$ from $w(n)$ to produce $y(n)$ will affect $s^{*}(n)$. However a parameter occurs in this problem, of the same nature as the θ_{j} occurring in the seasonal model of 84.5 , which reflects the ratio of the variance $v(n)$ to that of $\epsilon(n)$. It is referred to as θ^{2}. By making θ^{2} larger the response of the filter concentrates near to $\lambda=0$ and thus reduces the effect of the removal of the estimate of $p(n)$ on $s^{*}(n)$. The reason why (4.6.2) involves second differencing, rather than just first differencing, is that only then does one obtain a filter for removing $p(n)$ which at the origin has a root of the same order as the other methods proposed above and experience suggests a root of this order is needed.

Canonical Factorization

The optimal filter may be obtained from a generating function of the form given in (1.5.37) and is written

$$
\begin{equation*}
C^{(v)}(z)=\frac{(1-z)^{2}}{D(z)}\left\{\frac{g_{\epsilon \epsilon}(z)}{z^{v}(1-z)^{2} D\left(z^{-1}\right)}\right\}_{+} \tag{4.6.3}
\end{equation*}
$$

where $g_{\epsilon \epsilon}(z)=\sigma_{\epsilon}^{2} / 2 \pi$ and the function $D(z)$ is defined, using (1.5.33) and (1.5.34), as
$D(z) D\left(z^{-1}\right)=g_{\epsilon \epsilon}(z)+|1-z|^{4} f_{V}(0)$
with $f_{V}(0)$ being the spectrum at zero of the noise $v(n)$. The σ^{2} term included in (1.5.34) has now been included in $D(z)$ and $D\left(z^{-1}\right)$. By using the definition of θ^{2} previously stated $C^{(\nu)}(z)$ may be redefined using the functions $F(z)$ and $F\left(z^{-1}\right)$ arising from
$F(z) F\left(z^{-1}\right)=1+\theta^{2}|1-z|^{4}$
so that the generating function for the optimal filter now is
$C^{(\nu)}(z)=\frac{(1-z)^{2}}{F(z)}\left[\frac{1}{z^{\nu}(1-z)^{2} F\left(z^{-1}\right)}\right]_{+}$
remembering that for signal extraction $v \leqq 0$ (see C in $\delta 1.5$).
To progress towards an optimal prediction the canonical factors $F(z)$ and $F\left(z^{-1}\right)$ must be found so the expression (4.6.5) must be set equal to zero and solved. To facilitate this solution (4.6.5) is simply rewritten as
$1+\theta^{2}(1-z)^{2}\left(1-z^{-1}\right)^{2}$.
If $\lambda=\rho e^{i \phi}$ is a solution of (4.6.7) then so also is $\bar{\lambda}, \lambda^{-1}$ and $\bar{\lambda}^{-1}$. In finding the roots of (4.6.7) it is most convenient to work with

$$
\begin{equation*}
\lambda^{*}=\lambda+\lambda^{-1} \tag{4.6.8}
\end{equation*}
$$

as defining this new variable allows (4.6.7) to be represented by the following quadratic

$$
\begin{equation*}
\lambda^{*^{2}}+4+\frac{1}{\theta^{2}}-4 \lambda^{*}=0 \tag{4.6.9}
\end{equation*}
$$

i.e. $\left(\lambda^{*}-2\right)^{2}+\frac{1}{\theta^{2}}=0$.

The solutions for λ^{*} from (4.6.9) are

$$
\begin{equation*}
\lambda^{*}=2 \pm i \frac{1}{\theta} \tag{4.6.10}
\end{equation*}
$$

Now the decision as to whether

$$
\begin{align*}
& \lambda^{*}=2+i \frac{l}{\theta} \tag{4.6.11}\\
& \bar{\lambda}^{*}=2-i \frac{l}{\theta}
\end{align*}
$$

or

$$
\begin{align*}
& \lambda^{*}=2-i \frac{1}{\theta} \tag{4.6.12}\\
& \bar{\lambda}^{*}=2+i \frac{1}{\theta}
\end{align*}
$$

is chosen as the appropriate pair of roots turns on whether the modulus of λ, i.e. ρ, is made greater or less than 1 . As the case of interest must be where $\rho<1$, (4.6.12) is the operative solution. Using $\lambda=\rho e^{i \phi}$ and (4.6.8), the definition of λ^{*}, the solutions chosen may be written

$$
\begin{align*}
& \rho e^{i \phi}+\rho^{-1} e^{-i \phi}=2-i \frac{1}{\theta} \tag{4.6.13}\\
& \rho e^{-i \phi}+\rho^{-1} e^{i \phi}=2+i \frac{1}{\theta} .
\end{align*}
$$

By first adding the second expression in (4.6.13) to the first and then subtracting the second from the first one obtains

$$
\begin{align*}
& \rho \cos \phi+\rho^{-1} \cos \phi=2 \\
& \rho \sin \phi-\rho^{-1} \sin \phi=-\frac{1}{\theta} . \tag{4.6.14}
\end{align*}
$$

Multiplying the first equation in (4.6.14) by ρ a quadratic is obtained and the solutions for ρ are in fact solutions for ρ and ρ^{-1}, since multiplying (4.6.14) by ρ^{-1} gives the same quadratic expression in powers of ρ^{-1}. The solution used is
$\rho=\frac{1-\sin \phi}{\cos \phi}, \quad \rho^{-1}=\frac{1+\sin \phi}{\cos \phi}$
although in fact $\rho=(1 \pm \sin \phi) / \cos \phi$, and therefore solutions for ρ^{-1} of exactly this form may of course also be found. The choice exhibited in (4.6.15) is based on a desire for a pair of solutions for ρ and ρ^{-1} with the property that ρ and ρ^{-1} must be positive and ρ smaller than ρ^{-1}. This choice means that ϕ will be a small positive angle if ρ is close to 1 . The product $\rho \rho^{-1}$ will equal unity.

From the second equation in (4.6.14) and the definition of ρ and ρ^{-1} in (4.6.15) the following relation between ϕ and θ may be established,

$$
\begin{equation*}
\sin \phi\left(\rho-\rho^{-1}\right)=-\frac{1}{\theta} \tag{4.6.16}
\end{equation*}
$$

i.e. $\left(-2 \sin ^{2} \phi\right) /(\cos \phi)=-\frac{1}{\theta}$.

Once a value of θ^{2} is specified then ϕ may be simply deduced from (4.6.16) and ρ from (4.6.15).

If a particular value of θ^{2} is chosen, say θ_{0}^{2}, then using the steps suggested in the previous paragraph a root $z_{o}=\rho_{0} e$ may be simply obtained. The remaining roots are of course \bar{z}_{o}, \bar{z}_{0}^{-1} and z_{o}^{-1}. It is useful for the latter development of the response function to represent (4.6.7) explicitly in terms of its roots and thus to derive an equivalence which is required for the canonical factorization into $F(z)$ and $F\left(z^{-1}\right)$ as follows

$$
\begin{align*}
\theta^{2}\left(\frac{1}{\theta^{2}}+(1-z)^{2}\left(1-z^{-1}\right)^{2}\right) & =\theta^{2}\left(1-z_{0} z\right)\left(1-\bar{z}_{0} z\right)\left(1-z_{0}^{-1} z\right)\left(1-\bar{z}_{0}^{-1} z\right) z^{-2} \\
& =\theta^{2}\left(1-z_{0} z\right)\left(1-\bar{z}_{0} z\right)\left(z^{-1}-z_{0}^{-1}\right)\left(z^{-1}-\bar{z}_{0}^{-1}\right) \\
& =\theta^{2}\left(1-z_{0} z\right)\left(1-\bar{z}_{0} z\right) \frac{\left(z^{-1} z_{0}-1\right)}{z_{0}} \frac{\left(z^{-1} \bar{z}_{0}-1\right)}{\bar{z}_{0}} \tag{4.6.17}\\
& =\frac{\theta^{2}}{z_{0} \bar{z}_{0}}\left(1-z_{0} z\right)\left(1-\bar{z}_{0} z\right)\left(1-z_{o} z^{-1}\right)\left(1-\bar{z}_{0} z^{-1}\right) \\
& =\frac{\theta^{2}}{\rho^{2}}\left(1-z_{0} z\right)\left(1-\bar{z}_{0} z\right)\left(1-z_{0} z^{-1}\right)\left(1-\bar{z}_{0} z^{-1}\right)
\end{align*}
$$

Since the roots of $\left(\frac{1}{\theta^{2}}+(1-z)^{2}\left(1-z^{-1}\right)^{2}\right)$ are of course the same as the roots of the expression given on the left hand side of (4.6.17), the factor θ^{2} has been extracted and finally $z_{0} \bar{z}_{o}=\rho^{2}$ has been used to redefine a new multiplicative factor, $\theta^{\prime 2}$, where $\theta^{\prime}=\theta / \rho$, so
that the power series in $F(z)$ has leading coefficient of unity.
The canonical factor is easily deduced from (4.6.17) and is given by

$$
\begin{equation*}
F(z)=\theta / \rho\left(1-z_{o} z\right)\left(1-\bar{z}_{0} z\right) \tag{4.6.18}
\end{equation*}
$$

and this implies directly that

$$
\begin{equation*}
\frac{\theta}{\rho}\left(1-z_{0}\right)\left(1-\bar{z}_{0}\right)=1 . \tag{4.6.19}
\end{equation*}
$$

4.7 Establishing Trend Estimates from the Optimal Response Function

Using the canonical factorization from the previous section the response function may now be written
$C^{(\nu)}(z)=\frac{(1-z)^{2}}{\theta^{\prime}\left(1-z_{0} z\right)\left(1-\bar{z}_{0} z\right)}\left[\frac{1}{z^{\nu}(1-z)^{2} \theta^{\prime}\left(1-z_{0} z\right)\left(1-\bar{z}_{0} z\right)}\right]_{+}$
where the term in the square bracket is the positive terms in a Laurent expansion in a specified annulus. It is necessary therefore to first obtain an expression for the square bracket of the form

$$
\begin{equation*}
\sum_{j}^{\infty} z^{j} a_{j} \tag{4.7.2}
\end{equation*}
$$

where the individual coefficients a_{j} can be obtained by contour integration within the specified annulus from

$$
a_{j}=\frac{1}{2 \pi i} \oint_{\Gamma} \frac{1}{\theta^{\prime} z^{v}(1-z)^{2}\left(1-z_{0} z^{-1}\right)\left(1-\bar{z}_{0} z^{-1}\right) z(j+1)} d z
$$

The circle around which integration occurs is such that $\left|z_{0}\right|<|z|<\Gamma<1$. The generating function requires a general evaluation of the expression (4.7.2) and this is obtained from substituting (4.7.3) in (4.7.2) to give

$$
\Sigma_{0}^{\infty} z^{j} \frac{1}{\theta^{1} 2 \pi i} \oint_{\Gamma} \frac{1}{\zeta^{v}(1-\zeta)^{2}\left(1-z_{0} \zeta^{-1}\right)\left(1-\bar{z}_{0} \zeta^{-1}\right) \zeta^{(j+1)}} d \zeta
$$

$$
\begin{equation*}
=\frac{1}{\theta^{1} 2 \pi i} \oint_{\Gamma} \frac{1}{\zeta^{(v+1)}(1-\zeta)^{2}\left(1-z_{0} \zeta^{-1}\right)\left(1-\bar{z}_{0} \zeta^{-1}\right)\left(1-\zeta^{-1} z\right)} d \zeta \tag{4.7.4}
\end{equation*}
$$

$=\frac{1}{\theta^{1} 2 \pi i} \oint_{\Gamma} \frac{1}{\zeta^{(\nu-2)}(1-\zeta)^{2}\left(\zeta-z_{0}\right)\left(\zeta-\bar{z}_{0}\right)(\zeta-z)} d \zeta$.

Since (4.7.4) has poles z, z_{o} and \bar{z}_{0} within Γ it therefore may be evaluated from
$K=\frac{z_{0}^{(-v+2)}}{\left(1-z_{0}\right)^{2} \theta^{\prime}\left(z_{0}-\bar{z}_{0}\right)\left(z_{0}-z\right)}-\frac{\bar{z}_{0}^{\left(-v_{+} 2\right)}}{\left(1-\bar{z}_{0}\right)^{2} \theta^{\prime}\left(z_{0}-\bar{z}_{0}\right)\left(\bar{z}_{0}-z\right)}+\frac{z^{\left(-v_{+}\right)}}{(1-z)^{2}\left(z-z_{0}\right)\left(z-\bar{z}_{0}\right)}$.

Using the expression (4.7.5) for the term in square brackets in (4.7.1) the generating function required is
$C^{(v)}(z)=\frac{(1-z)^{2} K}{\theta^{\prime}\left(1-z_{0} z\right)\left(1-\bar{z}_{0} z\right)}$.
Now if $\nu=0$ the first and second term in K may be shown to be $\frac{\theta^{\prime} \rho^{2}\left(1-\rho^{2}\right)+z\left(1-\theta^{\prime}\left(1-p^{2}\right)\right)}{\left(z_{0}-z\right)\left(\bar{z}_{0}-z\right)}$
by using elementary algebraic manipulations and the property that $\left(1-z_{o}\right)\left(1-\bar{z}_{o}\right)=\frac{1}{\theta}$, . The addition of the third term in K to (4.7.7) produces the expression

with a numerator which is a cubic in z having complex roots z_{o} and \bar{z}_{0} and is therefore divisible by $\theta^{\prime}\left(z_{0}-z\right)\left(\bar{z}_{0}-z\right)$. Carrying out the suggested division and then incorporating the expression outside the square bracket one obtains
$C^{(0)}(z)=\frac{\left(1-\rho^{2}\right)+z\left(\frac{1}{\theta^{1}}-\left(1-\rho^{2}\right)\right)}{\left(1-z_{0} z\right)\left(1-\bar{z}_{0} z\right)}$.
A similar procedure is employed when $v=1$ to establish the expression
$C^{(1)}(z)=\frac{\left\{\left(1-\rho^{2}\right)-\frac{1}{\theta},\right\}+z\left\{\frac{2}{\theta^{\prime}},-\left(1-\rho^{2}\right)\right\}}{\left(1-z_{0} z\right)\left(1-\bar{z}_{0} z\right)}$.

The generating function for $\hat{p}^{(0)}(n)$ is $z^{-n} C(0)(z)$ and one identifies z^{-n+j} with the observation $w(n-j)$. As the two bracketed terms in the denominator may be simply expressed in terms of ρ and ϕ the expression $z^{-n_{C}}(0)(z)$ becomes $\hat{\mathrm{p}}^{(0)}(\mathrm{n})-2 \rho \cos \phi \hat{\mathrm{p}}^{(0)}(\mathrm{n}-1)+\rho^{2} \hat{\mathrm{p}}^{(0)}(\mathrm{n}-2)=\left\{\left(1-\rho^{2}\right)+z\left(\frac{1}{\theta^{\prime}},-\left(1-\rho^{2}\right)\right)\right\} z^{-n}$

$$
\begin{equation*}
=\left(1-\rho^{2}\right)\{w(n)-w(n-1)\}+\frac{1}{\theta}, w(n-1) . \tag{4.7.11}
\end{equation*}
$$

In general, the generating function for $\hat{p}^{(\nu)}(n)$ is $z^{-n-v_{C}(\nu)}(z)$ (if $\nu=-1,-\infty, \hat{p}^{(\nu)}(\mathrm{n})$ is written $\hat{\mathrm{p}}^{(-\nu)}(\mathrm{n})$ to simplify presentation); for $v=-1$ it is
$\hat{p}^{(1)}(n)=2 \rho \cos \phi \hat{p}^{(1)}(n-1)-\rho^{2} \hat{p}^{(1)}(n-2)+\left(1-\rho^{2}-\frac{1}{\theta},\right)(w(n+1)-w(n))+\frac{1}{\theta}, w(n)$.

The recursive relations in $n,(4.7 .11)$ and (4.7.12), must clearly have two starting values. Rather than guessing two values, which could be done reasonably effectively, it is possible to find exact starting values at two starting points, say ($n-1$) and ($n-2$), by noting that the denominator of (4.7.9) may be written as follows

$$
\begin{align*}
\frac{1}{\left(1-z_{o} z\right)\left(1-\bar{z}_{o} z\right)} & =\frac{1}{\left(z_{o}-\bar{z}_{o}\right)}\left\{\frac{z_{o}}{\left(1-z_{o} z\right)}-\frac{\bar{z}_{o}}{\left(1-\bar{z}_{o} z\right)}\right\} \\
& =\frac{1}{2 i \rho \sin \phi} \sum_{j}^{\infty}\left(z_{o}^{j+1}-\bar{z}_{o}^{j+1}\right) z^{j} \tag{4.7.13}\\
& =\sum_{j}^{\infty} \rho^{j} \frac{\sin (j+1) \phi}{\sin \phi} z^{j} .
\end{align*}
$$

Thus the summations,

$$
\begin{gather*}
\hat{p}^{(0)}(n)=\left(1-\rho^{2}\right) \sum_{j}^{\infty} \rho^{j} \frac{\sin (j+1) \phi}{\sin \phi} w(n-j)+\left\{\frac{1}{\theta},-\left(1-\rho^{2}\right)\right\} \sum_{j}^{\infty} \rho^{j} \frac{\sin (j+1) \phi}{\sin \phi} w(n-j-1) \\
\hat{p}^{(1)}(n)=\left\{\left(1-\rho^{2}\right)-\frac{1}{\theta},\right\} \sum_{j}^{\infty} \rho^{j} \frac{\sin (j+1) \phi}{\sin \phi} w(n+1-j)+\left\{\frac{2}{\theta^{\prime}}-\left(1-\rho^{2}\right)\right\} \quad(4 \cdot 7 \cdot 14) \tag{4.7.14}\\
\sum_{j}^{\infty} \rho^{j} \frac{\sin (j+1) \phi}{\sin \phi} w(n-j)
\end{gather*}
$$

provide an explicit evaluation of $\hat{p}^{(1)}(n)$ and $\hat{p}^{(0)}(n)$.

The expression $z^{-n-v_{C}}(\nu)(z)$ which generates the coefficients for $\hat{p}^{(v)}(n)$ is obtained from (4.7.6) and is

$$
\begin{align*}
z^{-n-v_{C}(v)}(z) & =\frac{z^{-n}}{\theta^{\prime}\left(1-z_{o} z\right)\left(1-\bar{z}_{o} z\right) \theta^{\prime}\left(1-z_{o} z^{-1}\right)\left(1-\overline{z_{o}} z^{-1}\right)} \\
& +\frac{z^{-n-v}(1-z)^{2}}{\left(z_{0}-\bar{z}_{o}\right) \theta^{\prime 2}\left(1-z_{o} z\right)\left(1-\bar{z}_{o} z\right)} \tag{4.7.15}
\end{align*}
$$

$\left\{\frac{z_{0}^{(v+2)}}{\left(1-z_{0}\right)^{2}\left(z_{0}-z\right)}-\frac{\bar{z}_{0}^{(v+2)}}{\left(1-\bar{z}_{0}\right)^{2}\left(\bar{z}_{0}-z\right)}\right\}$.

If (4.7.15) is used to form
$z^{-n-v_{C}}(\nu)(z)-2 z^{-n-v_{+}} C_{C}(\nu-1)(z)+z^{-n-\nu+C_{C}(\nu-2)}(z)$ which produces $\hat{p}^{(\nu)}(n)-2 \hat{p}^{(\nu-1)}(n)+\hat{p}^{(\nu-2)}(n)$, then after some simplification one obtains

$$
z^{-n-v_{C}(\nu)}(z)-2 z^{-n-v_{+1} 1_{C}(\nu-1)}(z)+z^{-n-v_{+} 2_{C}(\nu-2)}(z)=\frac{z^{-n-v}(1-z)^{2}}{\left(1-z_{0} z\right)\left(1-\bar{z}_{0} z\right)} .
$$

$$
\begin{equation*}
\left\{\frac{z_{0}^{(\nu+1)}\left(1-\bar{z}_{0}\right)^{2}-z_{0}^{-\nu+1}\left(1-z_{0}\right)^{2}}{\left(z_{0}-\bar{z}_{0}\right)}-\frac{z\left(z_{0}^{v}\left(1-\bar{z}_{0}\right)^{2}-\bar{z}_{0}^{v}\left(1-z_{0}\right)^{2}\right)}{\left(z_{0}-\bar{z}_{0}\right)}\right\} \tag{4.7.16}
\end{equation*}
$$

$=z^{-n-v}\left[\frac{(1-z)^{2}}{\left(1-\bar{z}_{0} z\right)\left(1-z_{0} z\right)}\{a+b z\}\right]$,
where,

$$
\begin{equation*}
a=\rho^{\nu}\left(1-\rho^{2}\right) \cos \nu \phi, \quad b=\rho^{\nu-1}\left(1-\rho^{2}\right) \cos (\nu-1) \phi . \tag{4.7.17}
\end{equation*}
$$

From the formula for $C^{(0)}(z)$ given in (4.7.9) it may be deduced that the difference between the observation at time point $(n+v)$ and the estimated trend based on observations prior to $(n+v)$ at the same time point is generated by
$w(n+v)-\hat{p}^{(0)}(n+v)=z^{-(n+v)}\left\{1-\frac{\left(1-\rho^{2}\right)+\left(\frac{1}{\theta^{\prime}}-\left(1-\rho^{2}\right)\right) z}{\left(1-z_{0} z\right)\left(1-\bar{z}_{0} z\right)}\right\}$
which may be further simplified by using $\rho^{2}=z_{0} \bar{z}_{o}$ and $\frac{1}{\theta},=\left(1-z_{0}\right)\left(1-\bar{z}_{0}\right)$ to become
$w(n+v)-\hat{p}^{(0)}(n+v)=\frac{z^{-(n+v)} \rho^{2}(1-z)^{2}}{\left(1-z_{0} z\right)\left(1-\bar{z}_{0} z\right)}$.

Since the generating function when lagged one time period is given by
$w(n+\nu-1)-\hat{p}^{(0)}(n+\nu-1)=\frac{z^{-(n+\nu)} \rho^{2}(1-z)^{2} z}{\left(1-z_{0} z\right)\left(1-\bar{z}_{0} z\right)}$
it is obvious that the equivalence
$\frac{a}{\rho^{2}}\left(w(n+v)-\hat{p}^{(0)}(n+v)\right)+\frac{\hat{b}}{\rho^{2}}\left(w(n+v-1)-\hat{p}^{(0)}(n+v-1)\right)=\frac{z^{-(n+v)}(1-z)^{2}(a+b z)}{\left(1-z_{0} z\right)\left(1-\bar{z}_{0} z\right)}$
holds and that by using the left hand side of (4.7.16) and the right hand side of (4.7.21) the following iteration on v is derived,

$$
\begin{gather*}
\hat{p}^{(\nu)}(n)=2 \hat{p}^{(\nu-1)}(n)-\hat{p}^{(\nu-2)}(n)+\rho^{\nu-2}\left(1-\rho^{2}\right) \cos \nu \phi\left\{w(n+\nu)-\hat{p}^{(0)}(n+\nu)\right\} \\
-\rho^{\nu-3}\left(1-\rho^{2}\right) \cos (\nu-1) \phi\left\{w(n+\nu-1)-\hat{p}^{(0)}(n+\nu-1)\right\} . \tag{4.7.22}
\end{gather*}
$$

4.8 Additional Value from the Response Function

The response functions established in 34.7 are the source of estimating relations for the trend based on the model (4.6.1) and (4.6.2). Because of the generative properties of these response functions they provide valuable insight into the effects of the optimal filter they represent on a complex harmonic. The gain, the square of the modulus of the response function, provides information on how the spectrum of the observations has been affected by the optimal filters. To develop convenient formulae for the responses for varying values of v it is necessary to return to (4.7.15). For simplicity only, the response function is obtained for the time point $n=0$, although generalization to any time point n merely requires multiplication by z^{-n}. The general response function for $\hat{p}^{(\nu)}(0)$ is therefore
$h_{0}^{(v)}(z)=z^{-v} C{ }^{(v)}(z)=\frac{1}{\theta^{\prime}\left(1-z_{0} z\right)\left(1-\bar{z}_{0} z^{2} \theta^{\prime}\left(1-z_{0} z^{-1}\right)\left(1-\bar{z}_{0} z^{-1}\right)\right.}$

$$
\begin{equation*}
+\frac{z^{-v}(1-z)^{2}}{\theta^{2}\left(1-z_{0} z\right)\left(1-\bar{z}_{0} z\right)\left(z_{0}-\bar{z}_{0}\right)} \tag{4.8.1}
\end{equation*}
$$

$\left\{\frac{z_{0}^{(\nu+2)}}{\left(1-z_{0}\right)^{2}\left(z_{0}-z\right)}-\frac{\bar{z}_{0}^{(\nu+2)}}{\left(1-\bar{z}_{0}\right)^{2}\left(\bar{z}_{0}-z\right)}\right\}$.

It is convenient to simplify (4.8.1) considerably by elementary algebraic manipulations to obtain
$\frac{1+\theta^{2} z^{-(\nu+2)}(1-z)^{2}\left\{\rho^{\nu+1}\left(1-\rho^{2}\right)(\rho \cos v \phi-z \cos (\nu+1) \phi)\right\}}{\theta^{2}\left(1-z_{o} z\right)\left(1-\bar{z}_{o} z\right)\left(1-z_{o} z^{-1}\right)\left(1-\bar{z}_{o} z^{-1}\right)}$.

As v becomes large it is apparent that the second term in (4.8.2) will become very small as ρ is less than one and the response will then be closely approximated by
$h_{0}^{(\infty)}(z)=\frac{1}{\theta^{1}\left(1-z_{0} z\right)\left(1-\bar{z}_{0} z\right)\left(1-z_{0} z^{-1}\right)\left(1-\bar{z}_{0} z^{-1}\right)}$
which on employing (4.6 .17) becomes
$h_{0}^{(\infty)}(z)=\frac{1}{1+\theta^{2}(1-z)^{2}\left(1-z^{-1}\right)^{2}}=\frac{1}{1+\theta^{2}\left(2(1-\cos \lambda)^{2}\right.}=\frac{1}{1+16 \theta^{2} \sin ^{4} \frac{1}{2} \lambda}$.

To evaluate the response at any v value which is not large (4.8.2) is best rewritten as

$$
\begin{equation*}
h_{0}^{(v)}(z)=\frac{1+\theta^{2} z^{-(\nu+2)}(1-z)^{2}(c+\alpha z)}{1+16 \theta^{2} \sin ^{4} \frac{1}{2} \lambda} \tag{4.8.5}
\end{equation*}
$$

where the constants c and d are defined by
$c=\rho^{\nu+2}\left(1-\rho^{2}\right) \cos \nu \phi, \quad \alpha=\rho^{\nu+1}\left(1-\rho^{2}\right) \cos (\nu+1) \phi$.

As the expression (4.8.5) is complex it is best to consider the gain of the optimal filter which is
$\left|h_{0}^{(\nu)}(z)\right|^{2}=\frac{\left|1+\theta^{2} z^{-}(\nu+2)(1-z)^{2}(c+d z)\right|^{2}}{1+16 \theta^{2} \sin ^{4} \frac{1}{2} \lambda}$.
An example of this function, when $\theta=15$, is given in Table 11 in Chapter V.

4.9 Trend Estimation Formulae for Large V

It is convenient to leave the derivation of formulae for estimating a trend value at a time point which is both preceded by and followed by a reasonably large number of observations until this juncture because these formulae are most easily deduced from the expression (4.8.3). From the symmetry of (4.8.3) it is apparent that its expression in partial fractions must be of the form
$\frac{1}{\theta^{\prime}}\left\{\frac{c+d z}{\left(1-z_{0} z\right)\left(1-\bar{z}_{0} z\right)}+\frac{c+d z^{-1}}{\left(1-z_{0} z^{-1}\right)\left(1-\bar{z}_{0} z^{-1}\right)}+e\right\}$.

On simplifying and equating like terms it is found that $c=-e$. By setting the term in z or z^{-1} equal to zero the equivalence
$c=-\alpha\left(1+z_{o} \bar{z}_{0}\right) / z_{o} \bar{z}_{o}\left(z_{0}+\bar{z}_{0}\right)$
may be established. Further, the equating of constant terms provides the following expression in c alone,
$I=2 c+2 c \frac{\left(z_{0} \bar{z}_{0}\right)\left(z_{0}+\bar{z}_{0}\right)^{2}}{I_{+} z_{0} \bar{z}_{0}}-c\left(I_{+}\left(z_{0} \bar{z}_{0}\right)^{2}+\left(z_{0}+\bar{z}_{0}\right)^{2}\right)$.
Elementary manipulations of (4.9.2) and (4.9.3) result in the following expressions for c and d, which depend only on ρ and ϕ,
$c=\frac{1+\rho^{2}}{\left(1-\rho^{2}\right)\left(1+\rho^{2}+2 \rho \cos \phi\right)\left(1+\rho^{2}-2 \rho \cos \phi\right)}$
$a=\frac{-\rho^{2}(2 \rho \cos \phi)}{\left(1-\rho^{2}\right)\left(1+\rho^{2}+2 \rho \cos \phi\right)\left(1+\rho^{2}-2 \rho \cos \phi\right)}$.

Thus if (4.9.1) is rewritten to include the values of c and d given in (4.9.4) it becomes

$$
\frac{1}{\theta^{2}\left(1-\rho^{2}\right)\left(1+\rho^{2}+2 \rho \cos \phi\right)\left(1+\rho^{2}-2 \rho \cos \phi\right)}
$$

$$
\begin{equation*}
\left\{\frac{C-D z^{-1}}{\left(1-z_{o} z^{-1}\right)\left(1-\bar{z}_{o} z^{-1}\right)}+\frac{C-D z}{\left(1-z_{o} z\right)\left(1-\bar{z}_{o} z\right)}-\left(1-\rho^{2}\right)\right\} \tag{4.9.5}
\end{equation*}
$$

where new constants $C=1+\rho^{2}$ and $D=\rho^{2}(2 \rho \cos \phi)$ have been employed. The expression (4.9.5) allows decomposition of the generating function so that the trend estimate $\hat{p}(0)$ may be considered as having three parts. One component involves observations prior to the time point of estimate and is denoted $\hat{\mathrm{p}}^{\prime \prime}(0)$. Another component involves observations after the time point of the trend estimate and is denoted $\hat{p}^{\prime}(0)$. The last component merely weights the observations at the same time point as the required trend estimate. The term which produces $\hat{p}^{\prime}(0)$ is the one on which attention is first focussed. It is simply expressed in partial fractions as follows,

$$
\begin{align*}
& \frac{C-D z^{-1}}{\left(1-z_{0} z^{-1}\right)\left(1-\bar{z}_{o} z^{-1}\right)}=\frac{\gamma}{\left(1-z_{0} z^{-1}\right)}+\frac{\delta}{\left(1-\bar{z}_{0} z^{-1}\right)} \\
& \text { where } \gamma=\frac{C z_{0}-D}{z_{0}-\overline{z_{0}}} \text { and } \delta=\frac{D-C z}{z_{0}-\overline{z_{o}}} .
\end{align*}
$$

Expanding each term on the right hand side of (4.9.6) in a geometric series, collecting like terms and rewriting z_{o} and \bar{z}_{o} in terms of ρ and ϕ, one obtains the following simplification of (4.9.6)

$$
\begin{equation*}
\frac{C-D z^{-1}}{\left(1-z_{o} z^{-1}\right)\left(1-\overline{z_{o}} z^{-1}\right)}=C \sum_{m}^{\infty} \rho^{m} \frac{\sin (m+1) \phi}{\sin \phi} z^{-m}-D \sum_{m}^{\infty} \rho^{m-1} \frac{\sin \phi}{\sin \phi} z^{-m} . \tag{4.9.7}
\end{equation*}
$$

In an exactly analogous manner it is found that the expression generating $\hat{\mathrm{p}}^{\prime \prime}(\mathrm{o})$ may be simplified to become
$\frac{C-D z}{\left(1-z_{o} z\right)\left(1-\bar{z}_{o} z\right)}=C \sum_{D_{0}}^{\infty} \rho^{m} \frac{\sin (m+1) \phi}{\sin \phi} z^{m}-D \sum_{D^{\rho}}^{\infty} \rho^{m-1} \frac{\sin \phi}{\sin \phi} z^{m}$.

The expressions in (4.9.7) and (4.9.8) may be generalized simply to relate to estimates at any time point, say n, and when applied to the relevant observation give the following component estimates,
$\hat{p}^{\prime}(n)=C \sum_{\rho^{\circ}}^{\infty} \rho^{m} \frac{\sin (m+1) \phi}{\sin \phi} w(n+m)-D \sum_{D^{\circ} \rho^{\rho}}^{m-1} \frac{\sin m \phi}{\sin \phi} w(n+m)$
$\hat{p}^{\prime \prime}(n)=C \Sigma_{0}^{\infty} \rho^{m} \frac{\sin (m+1) \phi}{\sin \phi} w(n-m)-D \Sigma_{0}^{\infty} \rho^{m-1} \frac{\sin \phi}{\sin \phi} w(n-m)$.

The overall estimate $\hat{\mathrm{p}}^{(\infty)}(\mathrm{n})$ is obtained by recombining the component parts according to (4.9.5) to give
$\hat{p}^{(\infty)}(n)=\frac{\left\{\hat{p}^{\prime}(n)+\hat{p}^{\prime \prime}(n)-C w(n)\right\}}{\theta^{2}\left(1-\rho^{2}\right)\left(1+\rho^{2}+2 \rho \cos \phi\right)\left(1+\rho^{2}-2 \rho \cos \phi\right)}=\frac{\left\{\hat{p}^{\prime}(n)+\hat{p}^{\prime \prime}(n)-C w(n)\right\}}{\theta^{\prime}\left(1-\rho^{2}\right)\left(1+\rho^{2}+2 \rho \cos \phi\right)}$. (4.9.10)

AND THEIR PROPERTIES

5.1 Introduction

The calculations described are those necessary for the deseasonalizing of an economic time series, when it is important for the whole series to be adequately adjusted. If it is only necessary to have adequate adjustment for the latter part of the data available some savings in computer storage and processing time may easily be had.

The series $y(n)$ is assumed to be available for $n=1, \ldots, N$. To aid in the description of the computations to be carried out the available sequence of filtered observations is divided into three parts, from 1 to $\mathrm{M}+1, \mathrm{M}+1$ to $\mathbb{N}-\mathrm{M}$ and $\mathbb{N}-M$ to \mathbb{N}. These divisions will henceforth be referred to as the lower, intermediate and upper segments of the series. To proceed with the explanation of M it is necessary to return to the definition of the seasonal $s_{j}(n)$ in terms of $\xi_{j}(n)$ and $\xi_{-j}(n)$, first introduced in (see (4.2.3) and 84.2). In the next section a formula is proposed for estimating $\xi_{j}(n)$ and the time point M will be chosen so that the estimate $\hat{\xi}_{j}(M)$ can be regarded as being only negligibly influenced by observations at the beginning of the series. Similarly the estimate, $\hat{\xi}_{j}(\mathbb{N}-M)$, is chosen so that it is only influenced in a minor way by observations at the end of the series.

5.2 The Intermediate Segment Seasonal Estimates

So far in the discussion of signal extraction formulae the point of signal extraction has been located by the parameter $v \geqq 0$. Thus by using a procedure discussed by Hannan [25] and Whittle [57] the estimation of $\xi_{j}^{(v)}(\mathbb{N}-v)$, the signal at a time point v observations from the end of the filtered sequence, is given by

$$
\begin{equation*}
\hat{\xi}_{j}^{(\nu)}(N-\nu)=H \sum_{m=0}^{\infty}\left\{\beta_{j}^{|m-\nu|}+\beta_{j}^{m+\nu+1}\right\} e^{i(m-\nu) \lambda} j_{y(N-m)} \tag{5.2.1}
\end{equation*}
$$

where $H=\left(1-\beta_{j}\right) /\left(1+\beta_{j}\right)$. This expression is easier to develop if a change of variable $m=k+v$ is made so that (5.2.1) may be rewritten as
$\hat{\xi}_{j}^{(v)}(\mathbb{N}-v)=H \sum_{k=-v}^{\infty}\left\{\beta_{j}^{|k|}+\beta_{j}^{k+2 v+1}\right\} e^{i k \lambda} j_{y}(\mathbb{N}-k-v)$.

As v becomes large the second term in braces becomes negligible and the estimator is then denoted
$\hat{\xi}_{j}^{(\infty)}(N-v)=H \sum_{k=-\infty}^{\infty} \beta_{j}^{|k|} e^{i k \lambda} j_{y}(N-k-v)$.
Estimates of $\xi_{j}^{(\infty)}(n)$ at time points in the intermediate segment are obtained using the formula (5.2.3) for all λ_{j},
$j= \pm 1, \pm 2, \ldots, \pm 5,6$. Of course, the limits of the summation in (5.2 .3) are in practice 1 and N, but if M is appropriately chosen the difference between the actual and theoretical limits on the summation will result in only an insignificant mis-specification. For ease of exposition of the computational procedure (5.2.3) may be rewritten as ${ }^{26}$
$\hat{\xi}_{j}(n)=\hat{\xi}_{j}^{\prime}(n)+\hat{\xi}_{j}^{\prime \prime}(n)-H y(n)$
where
$\hat{\xi}_{j}^{\prime}(n)=H \sum_{0}^{\infty} \beta_{j}^{m} e^{i m \lambda} j_{y}(n-m)$
$\hat{\xi}_{j}^{\prime \prime}(n)=H \sum_{0}^{\infty} \beta_{j}^{m} e^{-i m \lambda} j_{y}(n+m)$.

26
The upper parenthesis (∞) attached to $\hat{\xi}_{j}(n)$ in (5.2.3) emphasizes the theoretical number of observations assumed to be available between n and \mathbb{N}. Henceforth an upper parenthesis is attached only if (∞) is not the appropriate one.

The real and complex parts of $\hat{\xi}_{j}^{\prime}(n)$ and $\hat{\xi}_{j}^{\prime \prime}(n)$ are easily obtained from (5.2.5) and are
$u_{j}^{\prime}(n)=H \Sigma_{0}^{\infty} \beta_{j}^{m} y(n-m) \cos \lambda_{j}^{m}$
$v_{j}^{\prime}(n)=H \Sigma_{o}^{\infty} \beta_{j}^{m} y(n-m) \sin \lambda_{j} m$
$u_{j}^{\prime \prime}(n)=H \Sigma_{0}^{\infty} \beta_{j}^{m} y(n+m) \cos \lambda_{j} m$
$v_{j}^{\prime \prime}(n)=H \sum_{o}^{\infty} \beta_{j}^{m} j_{j}^{y}(n+m) \sin \lambda_{j}^{m}$.
The quantities detailed in (5.2.6) may be evaluated at $n=M+l$ and $N-M$ to provide a basis for the evaluation of the same quantities for all time points in the intermediate segment. As each quantity, for each time point in the intermediate segment, would involve a separate summation from 1 to \mathbb{N} computing time is minimized by developing an iterative relation starting from the value obtained at $M+1$. It should be added that if the iterative approach is not adopted there would be no need to calculate $v_{j}^{\prime}(n)$ and $v_{j}^{\prime \prime}(n)$ because the estimate of the seasonal at each frequency does not involve these quantities. ${ }^{27}$

To establish the recursive relations needed for iterative evaluation of the quantities in (5.2.6) it is easiest to first obtain a recursion for $\hat{\xi}_{j}^{\prime}(n)$ and $\hat{\xi}_{j}^{\prime \prime}(n)$ of the form ${ }^{28}$
$\hat{\xi}_{j}^{\prime}(n+1)=H \beta_{j} e^{i \lambda} \hat{j}_{j}^{\prime}(n)+H y(n+1)$
$\hat{\xi}_{j}^{\prime \prime}(n-1)=H \beta_{j} e^{-i \lambda_{j}} \hat{\xi}_{j}^{\prime \prime}(n)+H y(n-1)$.

27
The reason for this comment will become evident as the seasonal estimate $\hat{s}_{j}(n)$, given in (5.2.10), is expressed in terms of $u_{j}^{\prime}(n), u_{j}^{\prime \prime}(n)$ and $y(n)$.

28
A recursion for $\hat{\xi}_{j}^{\prime \prime}(n+1)$ in terms of $\hat{\xi}_{j}^{\prime \prime}(n)$ and $y(n)$ may be obtained but is difficult to use for computer tabulation because the factor multiplying $\hat{\xi}_{j}^{\prime \prime}(n)$ involves β_{j}^{-1} and any errors are greatly magnified.

On substituting for the complex quantities $\hat{\xi}_{j}^{\prime}(n)$ and $\hat{\xi}_{j}^{\prime \prime}(n)$ using the expressions
$\hat{\xi}_{j}^{\prime}(n)=u_{j}^{\prime}(n)+i v_{j}^{\prime}(n)$
$\hat{\xi}_{j}^{\prime \prime}(n)=u_{j}^{\prime \prime}(n)-i v_{j}^{\prime \prime}(n)$
one can equate the real and complex parts in both equations in (5.2.7) to give the following iterative relations
$u_{j}^{\prime}(n+l)=\beta_{j}\left\{u_{j}^{\prime}(n) \cos \lambda_{j}-v_{j}^{\prime}(n) \sin \lambda_{j}\right\}+H y(n+l)$
$v_{j}^{\prime}(n+1)=\beta_{j}\left\{u_{j}^{\prime}(n) \sin \lambda_{j}+v_{j}^{\prime}(n) \cos \lambda_{j}\right\}$
$u_{j}^{\prime \prime}(n-1)=\beta_{j}\left\{u_{j}^{\prime \prime}(n) \cos \lambda_{j}-v_{j}^{\prime \prime}(n) \sin \lambda_{j}\right\}+\operatorname{Hy}(n-1)$
$v_{j}^{\prime \prime}(n-1)=\beta_{j}\left\{u_{j}^{\prime \prime}(n) \sin \lambda_{j}+v_{j}^{\prime \prime}(n) \cos \lambda_{j}\right\}$.
and $N-M$
The relations in $(5.2 .9)$ and the value calculated at $n=M+1$ may be used to produce values for $n=M+2$ up to $N-M$. The associated estimated seasonal for this segment is then obtained from inserting the estimated quantities in (4.2.3) to give

$$
\begin{align*}
\hat{s}_{j}(n) & =\hat{\xi}_{j}(n)+\hat{\xi}_{-j}(n) \tag{5.2.10}\\
& =\left(2-\delta_{j}^{6}\right)\left(u_{j}^{\prime}(n)+u_{j}^{\prime \prime}(n)-H y(n)\right) .
\end{align*}
$$

5.3 The Upper and Lower Segment Seasonal Estimates

Attention is now focussed on the upper or most recent segment of data, where the estimate of the seasonal extracted will depend more on past and less on future observations as the point of estimation approaches $N .{ }^{29}$ The estimate $\hat{\xi}_{j}(\mathbb{N})$ has no future observations on which it could be based. To begin the calculations

29
Past and future is defined in relation to the time point at which the estimate is being made.
for this segment an estimate is made for each n therein which is based only on information from time points which precede n. These estimates are obtained from
$\hat{\xi}_{j}^{(0)}(n)=\sum_{0}^{\infty}\left(1-\beta_{j}\right) \beta_{j}^{m} e^{i m \lambda} j_{y}(n-m)$.
The real and imaginary parts of these estimates are the $u_{j}(n)$ and $v_{j}(n)$ defined in (4.5.4) and are obtained from the recursive relations (4.5.5). To begin these iterative procedures one can use the values $u^{\prime}(N-M)$ and $v^{\prime}(N-M)$ after multiplication by $\left(I_{+} \beta_{j}\right)$. The estimate of the seasonal for each frequency λ_{j} based only on the past is
$\hat{s}_{j}^{(0)}(n)=\hat{\xi}_{j}^{(0)}(n)+\hat{\xi}_{-j}^{(0)}(n)$.
Although $\hat{s}_{j}^{(0)}(n)$ is the best estimate one can obtain at \mathbb{N} it is apparent that for other points of time one should make use of future observations as well. In particular at $N-v$ there are v future observations available. It is therefore possible to obtain $\hat{s}_{j}^{(v)}(N-v)$ for $v=0,1, \ldots, M$ and this estimate can be obtained by employing the iterative relation which is
$\hat{s}_{j}^{(\nu)}(n)=\hat{s}_{j}^{(\nu-1)}(n)+\left(2-\delta_{j}^{6}\right)\left(1-\beta_{j}\right) \beta_{j}^{(\nu-1)}\left\{y(n+\nu) \cos \lambda_{j}^{\nu}\right.$

$$
\left.-u u_{j}(n+\nu) \cos \lambda_{j} \nu-v_{j}(n+\nu) \sin \lambda_{j} v\right\}
$$

$$
v=1, \ldots, M ; \quad n=\mathbb{N}-M, \ldots, \mathbb{N} ; \quad j=1,2, \ldots, 6 .
$$

This recursion in v, when summed over j, is just the recursion presented in (4.5.7). To start the iteration based on (5.3.3) the quantities $\hat{s}_{j}^{(0)}(n), u_{j}(n)$ and $v_{j}(n)$ are needed. Figure X illustrates that $(M+1)$ values of $\hat{s}_{j}^{(o)}(n), u(n)$ and $v(n)$ produce, through (5.3.3), M values of $\hat{s}_{j}^{(l)}(n)$. Each step of the iterative procedure provides estimates at one less time point. The estimate at any time point $\mathbb{N}-v$ containing most information is the value $\hat{\mathrm{S}}^{(\nu)}(\mathbb{N}-v)$, marked in the figure by a cross. This method has the virtue of not only reducing computer processing time but also of allowing a view of the way in which the estimates of the seasonal at each point of time stabilize.

FIG. \bar{X}
iterative upoating of estimates in the
UPPER AND LOWER SEGMENTS

FIG. XI

If computer storage is a constraining factor and one is
willing to forgo the advantage of following the effect of additional information on the estimate then a more direct estimate may be obtained from
$\hat{\mathrm{s}}_{\mathrm{j}}^{(\nu)}(\mathbb{N}-\nu)=\hat{\xi}_{j}^{(\nu)}(\mathbb{N}-\nu)+\hat{\xi}_{-j}^{(\nu)}(\mathbb{N}-\nu)$
where

$$
\begin{array}{r}
\hat{\xi}_{j}^{(\nu)}(N-v)=H \sum_{m^{0}}^{\infty}\left\{\beta_{j}^{|m-v|}+\beta_{j}^{m+v+l}\right\} e^{i(m-v) \lambda_{j}} j_{y(N-m)} \tag{5.3.5}\\
v=0,1, \ldots, M .
\end{array}
$$

As this approach requires a separate summation for each estimate it will therefore increase processing time; however the storage space needed is reduced.

The lower segment of the time series must now be considered.
To estimate each seasonal component over this period we may imagine the time axis is reversed and the set of procedures for the upper segment will now apply to the upper section of the reversed series. To start the estimation of this segment one forms
$u_{j}^{*}(M+1)=\left(1-\beta_{j}\right) \Sigma_{0}^{\infty} \beta_{j}^{m} y(M+1+m) \operatorname{cosm} \lambda_{j}$
$v_{j}^{*}(M+l)=\left(1-\beta_{j}\right) \Sigma_{0}^{\infty} \beta_{j}^{m} y(M+1+m) \sin m \lambda_{j}$.

These values need not however be obtained ab initio as
$u_{j}^{*}(M+1)=\left(1+\beta_{j}\right) u_{j}^{\prime \prime}(M+1)$ and $v_{j}^{*}(M+1)=\left(1+\beta_{j}\right) v_{j}^{\prime \prime}(M+1)$. In a completely analogous manner to that described for the upper segment, estimates based only on the future, with respect to the original definition of the time axis, are obtained from the iterative formulae

$$
\begin{align*}
& u_{j}^{*}(n-1)=\beta_{j}\left\{u_{j}^{*}(n) \cos \lambda_{j}-v_{j}^{*}(n) \sin \lambda_{j}\right\}+\left(1-\beta_{j}\right) y(n-1) \\
& v_{j}^{*}(n-1)=\beta_{j}\left\{v_{j}^{*}(n) \cos \lambda_{j}-u_{j}^{*}(n) \sin \lambda_{j}\right\} \\
& n=M+1, \ldots, 2
\end{align*}
$$

and from

$$
\begin{align*}
\hat{s}_{j}^{(0)}(n) & =\hat{\xi}_{j}^{(0)}(n)+\hat{\xi}_{-j}^{(0)}(n)=\left(2-\delta_{j}^{6}\right) u_{j}^{*}(n) \tag{5.3.8}\\
j & =1,2, \ldots, 6 ; \quad n=1, \ldots, M+1 .
\end{align*}
$$

Exactly the same updating procedure in v (see 5.3.3) is carried out to obtain estimates for each time point using successively more past information until each estimate is based on as many past observations as possible. The recurrence relation (5.3.3) allows construction of a table similar to that shown in Fig. X except that the time scale on the extreme left of the figure now runs from l to M rather than from N to $N-M$.

5.4 Trend Extraction Computations

In 84.6 a method was proposed for "trend extraction". The calculations necessary to implement this method closely resemble those that have been discussed in the last two sections of this chapter. The series is divided into three segments as before and evaluation is begun either by making a guess at the trend value at $\mathrm{M}, \mathrm{M}-1, \mathrm{~N}-\mathrm{M}$ and $\mathrm{N}-\mathrm{M}+1$ or by carrying out the summations detailed in and (4.9.8) (4.9.7) i.e. evaluating $\hat{p}^{\prime}(n)$ at $n=\mathbb{N}-M, N-M+l$ and $\hat{p}^{\prime \prime}(n)$ at $\mathrm{n}=\mathrm{M}, \mathrm{M}-1$. To economically compute the values in the intermediate segment, i.e. $n=M+1, \ldots, N-M-1$ two simple recursive formulae may be used. In section 4.9 the generating function of $\hat{p}^{\prime}(0)$ was presented in (4.9.6). If the trend estimate considered is now generalized to refer to the time point n then the left hand side of (4.9.6) implies the following recursive relation
$\hat{p}^{\prime}(n)-2 \rho \cos \phi \hat{p}^{\prime}(n+1)+\rho^{2} \hat{p}^{\prime}(n+2)=C y(n)-D y(n+1)$.
Similarly, the left hand side of (4.9.8) may be used to obtain recursion for $\hat{\mathrm{p}}^{\prime \prime}(\mathrm{n})$,

$$
\begin{equation*}
\hat{p}^{\prime \prime}(n)-2 \rho \cos \phi \hat{p}^{\prime \prime}(n-1)+\rho^{2} \hat{p}^{\prime \prime}(n-2)=C y(n)-D y(n-1) . \tag{5.4.2}
\end{equation*}
$$

Once the values of $\hat{p}^{\prime}(n)$ and $\hat{p}^{\prime \prime}(n)$ have been established for all n in the intermediate segment then the trend estimate for all points is derived from (4.9.10).

Trend estimation of the upper segment of the series requires an evaluation of both the summation in (4.7.14) at $n=\mathbb{N}-\mathrm{M}, \mathrm{N}-\mathrm{M}+\mathrm{l}$ to start the recurrence relation in time for $v=0$ given in (4.7.11) and for $v=1$ given in (4.7.12). The values of $\hat{p}^{(0)}(n)$ and $\hat{p}^{(1)}(n)$ when they have been calculated for the complete upper segment (it should be noticed that $\hat{p}^{(1)}(n)$ can only be obtained up to $N-1$) provide the basis for a further iteration in v using (4.7.22). This iteration is used to build a triangle of estimates similar in form to that depicted in Fig. X and discussed in 85.3. The body of this figure allows investigation of how rapidly the trend estimate stabilizes as v increases.

The filtered observations $y(n)$ are obtained from $w(n)-\hat{p}^{(\nu)}(n)$, using the largest v possible, and naturally these observations are input to the seasonal extraction procedure. As new data comes to hand there must be a revision of past $y(n)$ and therefore of already computed values such as $\hat{\mathrm{s}}^{(\nu)}(\mathrm{n})$. Of course the trend should soon stabilize so that the updating may only have to be carried back for a few steps, perhaps 12 to 15 . Such recalculations must be made if adequate estimates of the seasonal are to be made for the most recent data points because any trend correction at these points must be incorporated as further very relevant information comes to hand.

To obtain the estimated "trend" for the lower segment the methods just described for the upper segment are available if once again it is imagined that the time series is temporarily reversed. The formulae, (4.7.11), (4.7.12) and (4.7.22) are then applied to the variables $\hat{q}^{(\nu)}(n)$ and $r(n)$ where these newly defined variables are $r(n)=y(N+l-n)$ and $q^{(v)}(n)=p^{(v)}(N+l-n)$ for $n=N-M, \ldots, N$.

5.5 Evaluating Response Functions of Optimal Filters

To evaluate how effectively the 'optimal' procedure is extracting the seasonal signal it is necessary to obtain an expression for the response function of the seasonal extraction procedure and to evaluate this function for various values of v. To accomplish this one can obtain the following expression for $\hat{\mathrm{s}}_{j}^{(\nu)}(\mathbb{N}-\nu)$ by substituting in (5.3.4) using the definition given in (5.3.5),
$\hat{s}_{j}^{(\nu)}(N-\nu)=H \sum_{m^{o}}^{\infty}\left\{\beta_{j}^{|m-\nu|}+\beta_{j}^{m+\nu+l}\right\}\left(e^{i(m-v) \lambda_{j}}+e^{-i(m-\nu) \lambda_{j}}\right) y(N-m)$.

As the expression for $\hat{s}_{j}^{(v)}(\mathbb{N}-v)$ in (5.5.1) is a filtering of $y(N-m)$ to produce $\hat{S}_{j}^{(\nu)}(N-v)$ and is of the form $\Sigma_{0}^{\infty} a{ }_{j}^{(\nu)}(m) y(N-m)$ the response function is given by
$\sum_{0}^{\infty} a_{j}^{(\nu)}(m) e^{i \lambda m}=h_{j}^{(\nu)}\left(\lambda-\lambda_{j}\right) e^{i v \lambda_{j}}+h_{j}^{(\nu)}\left(\lambda+\lambda_{j}\right) e^{-i v \lambda} j$
where
$h_{j}^{(\nu)}(\lambda)=\frac{1-\beta_{j}}{\left(1-\beta_{j} e^{i \lambda}\right)}\left\{e^{i v \lambda}+\beta_{j} \frac{\left(e^{i \nu \lambda}-\beta_{j}^{\nu}\right)\left(1-e^{i \lambda}\right)}{e^{i \lambda}-\beta_{j}}\right\}, \quad \nu \geqq 0$.
In Fig. XI the response function (5.5.2) is depicted for the first three seasonal frequencies for $\beta_{j}=.96$ and for $v=\infty$. The figure reveals in the shape of the filter just how well the signal (and the power) at each individual frequency is reproduced by the estimation procedure in the intermediate segment. It should be noted however that only when in Fig. XII the modulus of the sum over all seasonal frequencies is graphed for $v=\infty$ is it apparent from the values of this gain function how adequately the overall seasonal will be reproduced. In particular, the effectiveness is very poor when $v=0$, as is shown by the gain of the sum over all frequencies in Fig.XII; however the performance is quite adequate when $\nu=20$ as can be seen from Fig. XII. A detailed tabulation

FIG. XII

FIG. XIII

of the gain in question shows that after $\nu=20$ the reproduction of the overall signal is probably adequate (see Table 12). It is also rather obvious that the shape of the gain function will depend on β_{j}. For the present $\beta_{j}=.96$ is used for all j and the matter of discussing an appropriate choice of β_{j} will be postponed until Chapter VI.

Before one can use the response functions (4.8.3) for the intermediate segment and (4.8.2) for the upper and lower segments, to throw some light on the efficiency of the 'trend' extractor some decision must be made on the value of one of the parameters ρ, ϕ or θ^{2}. The procedure adopted was to graph several possible values of θ^{2}. Then the choice of θ^{2} is decided on two counts. First, on how well the gain or response function for a particular θ^{2} performs in relation to the response associated with the removal of a centred twelve months moving average. Second, on how the shape near to $\lambda=0$ and at λ_{j} conforms to broad a priori ideas on the required shape for a trend extraction. As θ^{2} increases the shape at the origin is less acceptable because the width of effective extraction decreases whereas the value at λ_{j} differs by less from zero. These comparisons are illustrated by the graphing of the function relevant to the intermediate segment for $\theta=15, v=\infty$ in Fig. VIII. To indicate the effect of v on the shape of the function it is also graphed for $v=0,6$ in Fig. XIII when $\theta=15$ (see also Table 11). Even for $v=6$, the point at which the filter used for comparison is last available, it is clear that the shape of the filter is quite suitable for its purpose and will not cause much distortion of the seasonal signal. As is previously indicated, the trend extraction response, unlike removal of the twelve months moving average, is non zero at the seasonal frequencies. However in comparing the relative merits of each response it must be borne in mind that the seasonal component is now represented by a band of power about each j and thus each filter will cause minor distortion.

5.6 Characteristics of the Seasonal Estimates

The estimate proposed at each λ_{j} is $\hat{s}_{j}^{(\infty)}(n)$ in the intermediate segment and $\hat{s}_{j}^{(\nu)}(n)$ for the largest v available in the other segments. This seasonal estimate is free to evolve and the nature of this evolutionary pattern is depicted by presenting an estimate of the amplitude (and phase) for each point of time. As is apparent from the signal at λ_{j} as given in (4.2.4) an estimate of the amplitude of $s_{j}(n)$ depends only on $\hat{\alpha}_{j}(n)$ and $\hat{\beta}_{j}(n)$, the estimates of the real and complex parts of the amplitude of $\xi_{j}(n)$. If $\xi_{j}(n)$ is replaced by its estimate for the highest v available in (5.1.2) the logical estimate for $\alpha_{j}(n)$ and $\beta_{j}(n)$ is $\hat{\alpha}_{j}(n)=R\left(\hat{\xi}_{j}^{(v)}(n) e^{-i \lambda_{j} n}\right)\left(2-\delta_{j}^{6}\right)$
$\hat{\beta}_{j}(n)=\mathscr{S}\left(\hat{\xi}_{j}^{(v)}(n) e^{-i \lambda_{j} m}\right)\left(2-\delta_{j}^{6}\right)$.

In the intermediate segment these estimates may be obtained from quantities already calculated for the seasonal estimation procedure. By using in (5.6.1) either the expression for $\hat{\xi}_{j}(n)$ given in (5.2.3), or rather more conveniently the further decompositions presented in (5.2.4) and (5.2.6) one finds the following expression for $\hat{\alpha}_{j}(n)$ and $\hat{\beta}_{j}(n)$,
$\hat{\alpha}_{j}(n)=\hat{s}_{j}(n) \cos n \lambda_{j}+\left(2-\delta_{j}^{\sigma}\right)\left(v_{j}^{\prime}(n)-v_{j}^{\prime \prime}(n)\right) \sin n \lambda_{j}$
$\hat{\beta}_{j}(n)=\hat{s}_{j}(n) \operatorname{sinn} \lambda_{j}-\left(2-\delta_{j}^{\sigma}\right)\left(v_{j}^{\prime}(n)-v_{j}^{\prime \prime}(n)\right) \cos n \lambda_{j}$.

Before estimates of $\hat{\alpha}_{j}(n)$ and $\hat{\beta}_{j}(n)$ may be obtained for the other two segments it must be emphasized that the $\hat{s}_{j}(n)$ for these periods are obtained from an iterative formula (5.3.3) involving only the real part of $\hat{\xi}_{j}^{(v)}(n)$, since $\hat{s}_{j}^{(v)}(n)=\left(2-\delta_{j}^{\sigma}\right) Q\left(\hat{\xi}_{j}^{(v)}(n)\right)$. As is apparent from (5.6.1) both $\hat{\alpha}_{j}(n)$ and $\hat{\beta}_{j}(n)$ will depend on $\mathscr{O}\left(\hat{\xi_{j}}(\nu)(n)\right)$ it is therefore necessary to evaluate $\mathcal{H}_{\left(\hat{\xi}_{j}(\nu)\right.}^{(n))}$
for every time point in both segments. The optimal seasonal estimate at a given time point with $\left(\nu_{+} 1\right)$ additional observations available after the time point of estimate is related to the estimate at the same time point when only v extra observations are available by the formula given in Hannan [25, p 1075]. By equating imaginary parts in this relation an iteration in v of the following form is obtained

$$
\begin{gather*}
\boldsymbol{\mathscr { S }}\left(\xi_{j}^{(\nu)}(n)\right)=\boldsymbol{f}\left(\xi_{j}^{(\nu-1)}(n)\right)-\left(1-\beta_{j}\right) \beta_{j}^{(\nu-1)}\left\{\left(y(n+\nu)-u_{j}(n+\nu)\right) \sin v \lambda_{j}\right. \\
\left.+v_{j}(n+\nu) \cos v \lambda_{j}\right\}, \quad v=1,2, \ldots, M+1 . \tag{5.6.3}
\end{gather*}
$$

Now defining the quantity

$$
\overline{\hat{s}(\nu)(n)}=\left(2-\delta_{j}^{6}\right) \mathcal{F}\left(\hat{\xi_{j}}(\nu)(n)\right) \text { then }
$$

$\hat{\alpha}_{j}(n)$ and $\hat{\beta}_{j}(n)$ are obtained from
$\hat{\alpha}_{j}(n)=\hat{s}_{j}^{(\nu)}(n) \cos n \lambda_{j}+\overline{\hat{s}_{j}^{(\nu)}(n)} \operatorname{sinn} \lambda_{j}$
$\hat{\beta}_{j}(n)=\hat{s}_{j}^{(\nu)}(n) \sin n \lambda_{j}-\overline{\hat{s}_{j}^{(\nu)}(n)} \cos n \lambda_{j}$

$$
n=1,2, \ldots, M+1 \text { and } N-M, \ldots, N
$$

for the upper and lower segments.
The reason for constructing the values of $\hat{\alpha}_{j}(n)$ and $\hat{\beta}_{j}(n)$ over the whole history of the series (see Fig. XIV) is to depict the evolutionary nature of the signal at each seasonal frequency. The characteristic used to focus attention on this evolution is $\hat{R}_{j}(n)$, an estimate of the amplitude of the $j^{\text {th }}$ seasonal frequency at a point of time, and $\hat{\theta}_{j}(n)$ a measure of the changing phase at the $j^{\text {th }}$ seasonal frequency at a point of time. The estimates of $R_{j}(n)$ and $\theta_{j}(n)$ are simply
$\hat{R}_{j}(n)=\sqrt{\hat{\alpha}_{j}^{2}(n)+\hat{\beta}_{j}^{2}(n)}, \quad n=1,2, \ldots, I V$
$\hat{\theta}_{j}(n)=\arctan \frac{\hat{\beta}_{j}(n)}{\hat{\alpha}_{j}(n)}, \quad n=1,2, \ldots, \mathbb{N}$.

FIG. XIV

5.7 Computing Procedure when ρ_{j} is not assumed equal to Unity

To generalize our estimation procedure to allow ρ_{j} to vary (i.e. $-1 \leqq \rho_{j} \leqq 1$) we write following Whittle [57] and Hannan [25]
$\hat{\xi}_{j}^{(v)}(\mathbb{N}-v)=\sum_{\mathrm{m}_{0}^{\infty}}^{\mathrm{y}}(\mathbb{N}-\mathrm{m}) a_{j}^{(\nu)}(\mathrm{m})$
where

$$
\begin{align*}
& a_{j}^{(\nu)}(m)=\left(1-\rho_{j}^{-1} \beta_{j}\right) \rho_{j}^{-\nu} \beta_{j} e^{i(m-v) \lambda_{j}} \quad v \leqq 0 \tag{5.7.2}\\
&=\frac{\left(1-\rho_{j}^{-1} \beta_{j}\right)}{\left(1-\beta_{j}^{2}\right)}\left\{\left(1-\rho_{j} \beta_{j}\right) \beta_{j}^{|m-\nu|}+\left(\rho_{j}-\beta_{j}\right) \beta_{j}^{m+v_{+} 1}\right\} e^{i(m-v) \lambda_{j}} \\
& v \geqq 0
\end{align*}
$$

The $a_{j}^{(v)}(m)$ coefficients appropriate to the seasonal (signal) extraction procedure are for $\nu \geqq 0$ and thus one may easily generalize (5.2.1) to include the less restrictive assumptions on ρ_{j} so that the signal estimate is now

$$
\hat{\xi}_{j}^{(v)}(N-v)=\frac{\left(1-\rho_{j}^{-1} \beta_{j}\right)}{\left(1-\beta_{j}^{2}\right)} \sum_{\mathrm{m}}^{\infty}\left\{\left(1-\rho_{j} \beta_{j}\right) \beta_{j}^{|m-v|}+\left(\rho_{j}-\beta_{j}\right) \beta_{j}^{(m+v+1)}\right\} .
$$

If as was done in $\delta 5.2$ the change of variable $m=k+v$ is made then (5.7.3) becomes (cf. (5.2.2))

$$
\begin{gather*}
\hat{\xi}_{j}^{(\nu)}(\mathbb{N}-\nu)=\frac{\left(1-\rho_{j}^{-1} \beta_{j}\right)}{\left(1-\beta_{j}^{2}\right)} \sum_{k=-\nu}^{\infty}\left\{\left(1-\rho_{j} \beta_{j}\right) \beta_{j}^{|k|}+\left(\rho_{j}-\beta_{j}\right) \beta_{j}^{\left(k+2 v_{+} 1\right)}\right\} . \\
e^{i k \lambda_{y}(\mathbb{N}-k-v)}
\end{gather*}
$$

which, as v becomes large, may be written (cf. (5.2.3))

$$
\begin{align*}
\hat{\xi}_{j}^{(\infty)}(\mathbb{N}-\nu) & \cong \frac{\left(1-\rho_{j}^{-1} \beta_{j}\right)\left(1-\rho_{j} \beta_{j}\right)}{\left(1-\beta_{j}^{2}\right)} \sum_{k-\infty}^{\infty} \beta_{j}^{|k|} e^{i k \lambda} j_{y}(\mathbb{N}-\nu-k) \\
& \cong \frac{\left(1-\rho_{j}^{-1} \beta_{j}\right)\left(1-\rho_{j} \beta_{j}\right)}{\left(1-\beta_{j}^{2}\right)} H^{-1}\left[H \Sigma_{k^{-\infty} \beta_{j}|k|} e^{i k \lambda} j_{y}(\mathbb{N}-\nu-k)\right] \tag{5.7.5}\\
& \cong \frac{\left(1-\rho_{j}^{-1} \beta_{j}\right)\left(1-\rho_{j} \beta_{j}\right)}{\left(1-\beta_{j}\right)^{2}}\left[H \sum_{k-\infty}^{\infty} \beta_{j}^{|k|} e^{i k \lambda} j_{y}(\mathbb{N}-\nu-k)\right]
\end{align*}
$$

Now, it is convenient for computations in the intermediate segment to express the estimates with variable ρ_{j} in terms of the quantities used for computation when $\rho_{j} \equiv 1$, thus (5.7.5) is re-expressed as

$$
\begin{aligned}
\hat{\xi}_{j}^{(\infty)}(n) & \cong K\left\{\hat{\xi}_{j}^{\prime} \hat{\xi}_{j}^{\prime \prime}-H y(n)\right\} \\
& \cong K\left\{u_{j}^{\prime}(n)+u_{j}^{\prime \prime}(n)-H y(n)\right\}+i K\left\{v_{j}^{\prime}(n)-v_{j}^{\prime \prime}(n)\right\}
\end{aligned}
$$ where $K=\frac{\left(1-\rho_{j}^{-1} \beta_{j}\right)\left(1-\rho_{j} \beta_{j}\right)}{\left(1-\beta_{j}^{2}\right)}$ and the quantities $\hat{\xi}_{j}^{\prime}(n), \hat{\xi}_{j}^{\prime \prime}(n), u_{j}^{\prime}(n)$, $u_{j}^{\prime \prime}(n), v_{j}^{\prime}(n)$ and $v_{j}^{\prime \prime}(n)$ are defined in (5.2.5) and (5.2.6). The seasonal estimate for the intermediate sector will then be (cf. (5.2.10)) $\hat{s}_{j}(n)=\left(2-\delta_{j}^{6}\right) K\left\{u_{j}^{\prime}(n)+u_{j}^{\prime \prime}(n)-y(n)\right\}$. (5.7.7)

If now one turns to the general expression (5.7.3) and begins as was done in 5.2 with the estimator based only on the past observations with respect to each time point one obtains

$$
\begin{align*}
\hat{\xi}_{j}^{(o)}(n) & =\frac{\left(1-\rho_{j}^{-1} \beta_{j}\right)}{\left(1-\beta_{j}^{2}\right)} \sum_{m}^{\infty}\left\{\left(1-\rho_{j} \beta_{j}\right) \beta_{j}^{|m|}+\left(\rho_{j}-\beta_{j}\right) \beta_{j}^{m+1}\right\} e^{i m \lambda} j_{y}(n-m) \\
& =\frac{\left(1-\rho_{j}^{-1} \beta_{j}\right)\left(1-\beta_{j}^{2}\right)}{\left(1-\beta_{j}^{2}\right)} \sum_{m}^{\infty} \beta_{j}^{m} e^{i m \lambda} j_{y(n-m)} \\
& =\frac{\left(1-\rho_{j}^{-1} \beta_{j}\right)}{\left(1-\beta_{j}\right)}\left[\left(1-\beta_{j}\right) \sum_{m}^{\infty} \beta_{j}^{m} e^{i m \lambda} j_{y}(n-m)\right] \tag{5.7.8}\\
& =L\left[\left(1-\beta_{j}\right) \sum_{m}^{\infty} \beta_{j}^{m} e^{i m \lambda} j_{j_{y}(n-m)}\right] \\
& =L\left\{u_{j}(n)+i v_{j}(n)\right\}
\end{align*}
$$

where $L=\left(1-\rho_{j}^{-1} \beta_{j}\right) /\left(1-\beta_{j}\right)$, and where $u_{j}(n)$ and $v_{j}(n)$ were defined in (4.5 .4) and may be obtained for all time points from the recursive formulae, ($4 \cdot 5 \cdot 5$). The details of starting off the recursion are exactly as given in 55.3. The seasonal estimate based only on the past is exactly as given in (5.3.2) but we would now use (5.7.8) to compute $\hat{\xi}_{j}^{(0)}(n)$ and $\hat{\xi}_{-j}^{(0)}(n)$.

To complete the seasonal calculations, with ρ_{j} not restricted to the value unity, a recurrence relation developed by Hannan [25] is used in the same way as is suggested in 5 .3 (cr. ($5 \cdot 3.3$)). The iterative relation employed is
$\hat{\xi}_{j}^{(\nu)}(n)=\hat{\xi}_{j}^{(\nu-1)}(n)+\left(\beta_{j}-\rho_{j}\right) \beta_{j}^{(\nu-1)} e^{-i \nu \lambda} j\left(\hat{\xi}_{j}(n+\nu)-y(n+\nu)\right)$
and taking real and imaginary parts and simplifying we obtain the following two recursions for $\hat{\mathrm{s}}_{j}^{(\nu)}(\mathrm{n})$ and $\overline{\hat{\mathrm{s}}_{j}^{(v)}(\mathrm{n})}$ (see 5.6 for their definition) which involves only quantities already computed and constants, (cf. (5.3.3) and (5.6.3))

$$
\begin{align*}
\hat{s}_{j}^{(\nu)}(n)=\hat{s}_{j}^{(\nu-1)}(n)+\left(2-\delta_{j}^{6}\right)\left(\rho_{j}-\beta_{j}\right) \beta_{j}^{(\nu-1)}[& y(n+\nu) \cos v \lambda_{j}-L\left(\cos v \lambda_{j} u_{j}(n+\nu)\right. \\
& \left.\left.+\sin \nu \lambda_{j} v_{j}(n+\nu)\right)\right]
\end{align*}
$$

$$
\begin{array}{r}
\overline{\hat{s}_{j}^{(v)}(n)}=\overline{\hat{s}_{j}^{(\nu-1)}(n)+}\left(2-\delta_{j}^{\sigma}\right)\left(\rho_{j}-\beta_{j}\right) \beta_{j}^{(\nu-1)}\left[y(n+\nu) \sin v \lambda_{j}-L\left(\sin v \lambda_{j} u_{j}(n+v)\right.\right. \\
\left.\left.-v{ }_{j}(n+v) \cos v \lambda_{j}\right)\right] .
\end{array}
$$

The second recursion in (5.7.10) is not required for computation of the seasonal estimates but is required for the calculation of the seasonal characteristics, $\hat{\alpha}_{j}(n), \hat{\beta}_{j}(n)$, for the non-intermediate segment. The procedures given in formulae (5.6.4) are still appropriate although now the quantities $\hat{s}_{j}^{(v)}(n)$ and $\overline{\hat{s}_{j}^{(v)}(n)}$ must be obtained from (5.7.10), not from (5.3.3) and (5.6.3).

The intermediate segment $\hat{\alpha}_{j}(n)$ and $\hat{\beta}_{j}(n)$ are very simply computed for (5.7.6) shows that the only difference in the seasonal estimate for this segment is a constant multiple K. This means that all that is necessary is for the quantities obtained using (5.6.2) to be multiplied by the factor K .

As a final comment it is worth presenting formulae for the variance of estimate of the signal extraction procedure which is a function of v and which is given by Hannan [25, p 1075-6]
$\operatorname{var} \hat{\xi}_{j}^{(\nu)}(n)=\frac{\sigma_{j}^{2}}{2\left(1-\beta_{j}^{2}\right)}\left\{\beta_{j} \rho_{j}^{-1}+\frac{\left(1-\rho_{j}^{-1} \beta_{j}\right)}{\left(1-\rho_{j} \beta_{j}\right)} \beta_{j}^{2 v_{+}}\right\}$
which must be doubled at each frequency to become the appropriate variance for $\hat{\mathrm{s}}_{j}^{(v)}(\mathrm{n})$. It is also argued (see [25, p 1075-6]) that because the filter is highly concentrated about each λ_{j}, that $\varepsilon\left(s_{j}^{(\nu)}(n) s_{k}^{(\nu)}(n)\right) \cong 0, j \neq k$, and so one could compute an approximate prediction variance for $\hat{\mathrm{S}}^{(\nu)}(\mathrm{n})$ from the expression,
$\operatorname{var}\left(\hat{s}^{(\nu)}(n)-s(n)\right)=\sum_{j}^{6} \frac{\sigma_{j}^{2}}{\left(1-\beta_{j}^{2}\right)}\left\{\beta_{j} \rho_{j}^{-1}+\frac{\left(1-\rho_{j}^{-1} \beta_{j}\right)}{\left(1-\rho_{j} \beta_{j}\right)} \beta_{j}^{2 \nu_{+} 2}\right\} \cdot(5 \cdot 7 \cdot 12)$
Now it is worth setting out two special cases of (5.7.11) for $v=0$ and $v=\infty$. Thus we have

$$
\begin{align*}
\operatorname{var} \hat{\mathrm{g}}_{j}^{(0)}(n) & =\frac{\sigma_{j}^{2}}{2\left(1-\beta_{j}^{2}\right)}\left\{\beta_{j} \rho_{j}^{-1}+\frac{\left(1-\rho_{j}^{-1} \beta_{j}\right)}{\left(1-\rho_{j} \beta_{j}\right)} \beta_{j}^{2}\right\} \\
& =\frac{\sigma_{j}^{2}}{2} \frac{1}{\left(1-\beta_{j}^{2}\right)}\left\{\beta_{j} \rho_{j}^{-1}-\beta_{j}^{2}+\beta_{j}^{2}-\rho_{j}^{-1} \beta_{j}^{2}\right\} \tag{5.7.13}\\
& =\frac{\sigma_{j}^{2}}{2} \frac{\beta_{j} \rho_{j}^{-1}}{\left(1-\rho_{j} \beta_{j}\right)}
\end{align*}
$$

which in the special case of $\rho_{j} \equiv 1$ become
$\operatorname{var} \hat{\xi}_{j}^{(0)}=\frac{\sigma_{j}^{2}}{2} \frac{\beta_{j}}{\left(1-\beta_{j}\right)}$
$\operatorname{var} \hat{\xi}_{j}^{(\infty)}=\frac{\sigma_{j}^{2}}{2} \frac{\beta_{j}}{\left(1-\beta_{j}^{2}\right)}$.

These variances are not put forward as anything but a rough guide for after all the model was only really proposed as a basis for a filtering routine.

TABLE 11

I*PI/96:

ONE SIDED GAIN OF THE SUM OVER ALL FREQUENCIES OF (5.5.3)
$v=0,1,2,6,12,30,48,60,72,84,96, \beta=.96$

A RE--APPRAISAL OF THE METHODS ADOPIED

6.1

Introduction
In 4.1 a brief excursion was made to extend the seasonal model used for estimation purposes to incorporate phase modulation. In this chapter there are two aims. The first is to reconsider the model generating the α_{j}, β_{j} and further to reconsider the estimating procedure for these constants with a view to improving these estimates. The source of this improvement will be additional information on the parameters of the generating model for the seasonal, ρ_{j} and σ_{j}^{2}, and also an estimate of the spectral power of the non-seasonal frequencies. The second task is much dependent on the results of the first and is an attempt to give some indication of the accuracy of the seasonal estimates. The use of cross-spectral techniques for summarizing the efficiency of the seasonal extraction techniques is also considered.

6.2 Possible Generalization of the Seasonal Model

In 4.2 the seasonal generation model was extended sufficiently to consider models which included both amplitude and phase modulation. It is necessary to consider and then dismiss a further generalization of the model which was introduced in 4.2 . In 4.2 a Markov relation is given for the complex variable $\zeta_{j}(n)$ and the parameter ρ_{j} in this relation is a real constant. An obvious extension is to consider the relation
$\zeta_{j}(n)=\mu_{j} \zeta_{j}(n-I)+\psi_{j}(n)$
Where $\mu_{j}=\rho_{j}-i \tau_{j}, \rho_{j}$ and τ_{j} are both real parameters, and $\left|\mu_{j}\right|<1$. The seasonal, using the definition given in (5.1.1) is therefore given by
$s_{j}(n)=\zeta_{j}(n) e^{i n \lambda_{j}}+\bar{\zeta}_{j}(n) e^{-i n \lambda} j$
and for $s_{j}(n)$ to be stationary it is required that
$Q_{R}\left(\varepsilon\left(\zeta_{j}(n) \zeta_{j}(n-m) e^{i(2 n-m) \lambda_{j}}\right)=\phi(m)\right.$,
that is the expression described in (6.2.3) only depends on m. Using (6.2.1) it is straight forward to establish that the lag covariance or order m of $\zeta($.$) is given by$
$\varepsilon\left(\zeta_{j}(n) \zeta_{j}(n-m)\right)=\frac{\varepsilon\left(\psi_{j}^{2}(m)\right) \mu_{j}^{m}}{1-\mu_{j}^{2}}$
so that the requirement of (6.2.3) implies that $\varepsilon\left(\psi_{j}^{2}(m)\right)=0$. Two direct consequencies of this latter equality are that the variance of the residuals $\epsilon_{j}(n)$ and $\eta_{j}(n)$ must be equal and have zero covariance, i.e.

$$
\left.\begin{array}{rl}
\varepsilon\left(\epsilon_{j}^{2}(n)\right)= & \varepsilon\left(\eta_{j}^{2}(n)\right)=\sigma^{2} \\
& \varepsilon\left(\epsilon_{j}(n) \eta_{j}(n)\right)=0 \tag{6.2.5}
\end{array}\right\}
$$

and also that $\varepsilon\left(\zeta_{j}(n) \zeta_{j}(n-m)\right)$ is equal to zero for all m. A further implication is derived from the special case $m=0$ of the latter equality; since $\varepsilon\left(\zeta_{j}^{2}(n)\right)=0$ equating of real and complex parts provide the following restrictions,
$\varepsilon\left(\alpha_{j}^{2}(n)\right)=\varepsilon\left(\beta_{j}^{2}(n)\right)$

The model presented in (6.2.1) may be more informatively presented. By equating real and complex parts the model is shown to be a bivariate autoregressive process in $\alpha_{j}(n)$ and $\beta_{j}(n)$ of the following form,

$$
\binom{\alpha_{j}(n)}{\beta_{j}(n)}=\left(\begin{array}{cc}
\rho_{j} & \tau_{j} \tag{6.2.7}\\
-\tau_{j} & \rho_{j}
\end{array}\right)\binom{\alpha_{j}(n-1)}{\beta_{j}(n-1)}+\binom{\epsilon_{j}(n)}{\eta_{j}(n)} .
$$

The complex Markov process, (6.2.1), may be solved in terms of current and lagged $\psi_{j}(n)$ to give the following expression for $\zeta_{j}(n)$, $\zeta_{j}(n)=\sum_{k=0}^{\infty} \mu_{j}^{k_{j}} \psi_{j}(n-k)$.

Formula (6.2.8) is conjugated and the expression
$\varepsilon\left(\zeta_{j}(n) \bar{\zeta}_{j}(n)\right)=\varepsilon\left(\alpha_{j}^{2}(n)\right)+\varepsilon\left(\beta_{j}^{2}(n)\right)=\frac{2 \sigma^{2}}{1-\left|\mu_{j}\right|^{2}}$
is simply derived. An analogous procedure allows the derivation of the recursion
$\varepsilon\left(\zeta_{j}(n) \bar{\zeta}_{j}(n-1)\right)=\mu_{j} \varepsilon\left(\xi_{j}(n) \bar{\xi}_{j}(n)\right)=\frac{\left(\rho_{j}-i \tau_{j}\right) 2 \sigma_{j}^{2}}{1-\left(\rho_{j}^{2}+\tau_{j}^{2}\right)}=\gamma_{j} e^{-i \theta}$
and this suggests the definition of a new variable $\Lambda_{j}(n)$, which is related to $\zeta_{j}(n)$ by the expression
$\Lambda_{j}(n)=\zeta_{j}(n) e^{i n \theta}$
and which has a lag covariance given by

$$
\begin{align*}
\varepsilon\left(\Lambda_{j}(n) \bar{\Lambda}_{j}(n-1)\right) & =\varepsilon\left(\zeta_{j}(n) e^{i n \theta_{\bar{\zeta}}^{j}}\right. \tag{6.2.12}\\
& \left.(n-1) e^{-i n \theta}\right) \\
& =\gamma_{j} .
\end{align*}
$$

The expression for $s_{j}(n),(6.2 .2)$, when rewritten in terms of $\Lambda_{j}(n)$ thus becomes

$$
\begin{align*}
s_{j}(n) & =\Lambda_{j}(n) e^{-i n \theta} e^{i n \lambda_{j}}+\bar{\Lambda}_{j}(n) e^{i n \theta} e^{-i n \lambda_{j}} \\
& =\Lambda_{j}(n) e^{+i n\left(\lambda_{j}-\theta\right)}+\bar{\Lambda}_{j}(n) e^{-i n\left(\lambda_{j}-\theta\right)} \tag{6.2.13}
\end{align*}
$$

and it is therefore apparent that a model of greater generality (see (6.2.1) or (6.2.7)) will result in frequency modulation. As it seems unwise on a priori grounds to entertain a scheme which allows the local peak to be at other than the seasonal frequency this more general model will not be pursued.

6.3 Information on the Model Parameters from Seasonal Estimates

This discussion is based on the estimates of seasonal introduced in Chapter V and in particular the expression for $s_{j}(n)$ in terms of $\xi_{j}(n)$ and $\bar{\xi}_{j}(n)$ given in $(4.2 .3)$ and (4.2.4). An estimate of $\xi_{j}(n)$ is presented in $(5.2 .2)$ and if the estimate is based only on past observations it was defined in (5.3.1) as

$$
\begin{align*}
\hat{\xi}_{j}^{(o)}(n) & =\sum_{m^{o}}^{\infty}\left(1-\beta_{j}\right) \beta_{j}^{m} e^{i m \lambda} j_{y(n-m)} \\
& =u_{j}(n)+i v_{j}(n) . \tag{6.3.1}
\end{align*}
$$

Now consider the expression
$\Delta\left\{\hat{\xi}_{j}^{(0)}(n) e^{-i n \lambda} j\right\}$
where Δ is the first differencing operator.
The estimate in $(6.3 .1)$ is not much affected by $s_{k}(n)$, $k \neq j$, particularly if the filter proposed in (4.4.4) is employed to obtain the filtered series. In any case since the response of the filter with output $\hat{\xi}_{j}^{(0)}(n)$ is $\frac{1-\beta_{j}}{1-\beta_{j} e^{i\left(\lambda_{+} \lambda_{j}\right)}}$ and is confined to a fairly narrow band around $-\lambda_{j}$, if β_{j} is near to unity, then whether or not the filter suggested in (4.4.4) is used $\hat{\xi}(0)(n)$ will be mainly affected by $\xi_{j}(n)$ and not by $\xi_{k}(n)$. Thus $\hat{\xi}_{j}^{(0)}(n)$ may be regarded as having been obtained from an input $\xi_{j}(n)+x_{j}(n)$ where $x_{j}(n)$ has a constant spectrum $f_{x}\left(\lambda_{j}\right)$. The quantity put forward for consideration in (6.3.2) then has a spectrum, relocated at the origin of frequencies, given by
$\frac{2\left(1-\beta_{j}\right)^{2}}{2 \pi\left(1+\beta_{j}^{2}-2 \beta_{j} \cos \lambda\right)}\left\{\frac{\sigma_{j}^{2}}{4}+2 \pi f_{x}\left(\lambda_{j}\right)(1-\cos \lambda)\right\}$.
If the statistic,
$s_{j}^{2}=\frac{1}{N} \Sigma\left|\Delta\left\{\hat{\xi}_{j}^{(o)}(n) e^{-i n \lambda} j\right\}\right|^{2}$,
is formed this estimates the variance obtained by integration from (6.3.3), which is
$\frac{2\left(1-\beta_{j}\right)^{2}}{\left(1-\beta_{j}^{2}\right)}\left\{\frac{\sigma_{j}^{2}}{4}+2 \pi I_{x}\left(\lambda_{j}\right)\left(1-\beta_{j}\right)\right\}$.
The computations defined in (6.3.4) are carried out most conveniently by using the quantities $u_{j}(n)$ and $v_{j}(n)$ defined in (4.5.4) to obtain expressions for $\hat{\alpha}_{j}^{(0)}(n)$ and $\hat{\beta}_{j}^{(0)}(n)$. From the definition (4.2.4) and the estimator (5.3.1) the following equivalences
$\hat{\xi}_{j}^{(0)}(n) e^{-i n \lambda} j=\frac{1}{2}\left(\hat{\alpha}_{j}^{(0)}(n)-i \hat{\beta}_{j}^{(0)}(n)\right)$
and
$\frac{1}{2}\left(\hat{\alpha}_{j}^{(0)}(n)-i \hat{\beta}_{j}^{(0)}(n)\right)=\left(u_{j}^{\left.(n)+i v_{j}(n)\right) e^{-i n \lambda} j}\right.$

30 It should be noted that the spectrum of $\hat{\xi}_{j}^{(0)}(n)$, relocated at the origin, is
$\frac{\sigma_{j}^{2}}{2} \frac{1}{2 \pi} \frac{1}{\left(1+\rho_{j}^{2}-2 \rho_{j} \cos \lambda\right)} \frac{\left(1-\beta_{j}\right)^{2}}{\left|1-\beta_{j} e^{i \lambda}\right|^{2}} \frac{f_{x}\left(\lambda_{j}\right)\left(1-\beta_{j}\right)^{2}}{\left|1-\beta_{j} e^{i \lambda}\right|^{2}}$,
and that $f_{x}\left(\lambda_{j}\right)$ is the spectrum of the noise at all λ_{j},
$j= \pm 1, \pm 2, \ldots, \pm 5,6$. This requires a slight modification of the
definition of α_{j} used for calculation of the optimal β_{j} (see (6.3.15))
to produce compatibility with the computations in Chapter V.
are derived. ${ }^{31}$ By equating real and complex parts in the latter equivalence the expressions for $\hat{\alpha}_{j}^{(0)}(n)$ and $\hat{\beta}_{j}^{(0)}(n)$ as simple functions of already computed quantities are
$\hat{\alpha}_{j}^{(0)}(n)=\left(2-\delta_{j}^{6}\right)\left(u_{j}(n) \cos n \lambda_{j}+v_{j}(n) \operatorname{sinn} \lambda_{j}\right)$
$\hat{\beta}_{j}^{(0)}(n)=\left(2-\delta_{j}^{6}\right)\left(u_{j}(n) \sin n \lambda_{j}-v_{j}(n) \cos n \lambda_{j}\right)$.
For convenience the actual statistic computed is
$\hat{s}_{j}^{2}=\frac{1}{2}\left(\frac{1+\beta_{j}}{1-\beta_{j}}\right) s_{j}^{2}$
which estimates $\sigma_{j / 4+2 \pi f_{x}}^{2}\left(\lambda_{j}\right)\left(1-\beta_{j}\right)$. of course one must use values of β_{j} close to unity and indeed as β_{j} approaches unity one obtains an estimate of $\sigma_{j}^{2} / 4$ alone, while the slope of a graph of \hat{s}_{j}^{2} against different β_{j} values will estimate $-2 \pi f_{x}\left(\lambda_{j}\right)$. Also by varying β_{j} one may obtain estimates of both σ_{j}^{2} and $2 \pi \mathrm{f}_{\mathrm{x}}\left(\lambda_{j}\right)$; however the results of adopting this procedure were unsatisfactory as for most estimates made with these β_{j} couplets varying between .95 and .99 the estimate of $\sigma_{j}^{2} / 4$ was negative. It was therefore decided to make $\hat{\xi}_{j}^{(\nu)}(n)$, for larger ν, the basis of further efforts because there was a better chance of obtaining some meaningful estimates of $\sigma_{j}^{2} / 4$ and $2 \pi I_{x}\left(\lambda_{j}\right)$. The virtue of taking larger v is that the response function which replaces the factor outside the bracket in $(6.3 .3)$ is more concentrated and will therefore better justify the assumptions on the nature of the input. The value of v used is infinite, and although this is not computable it is clear from the tabulated examples (see Table 12) that there is little change in the estimates as ν increases above a moderate value, say 12 .

31
The differencing operation in (6.3.4) could more simply have been carried out on expressions which are simply functions of $\cos n \lambda_{j}$, $\operatorname{sinn} \lambda_{j}, u_{j}(n)$ and $v_{j}(n)$; however as the $\hat{\alpha}_{j}^{(0)}(n)$ and $\hat{\beta}_{j}^{(0)}(n)$ are needed for later investigations an expression for these quantities is developed.

To be ultra-cautious the calculations were based only on the estimates obtained from the intermediate segment (see $\mathbf{B}_{5} 5.2$). Naturally as β_{j} varies the number of observations included in the intermediate segment also varies, i.e. the value of M, introduced in 55.1 depends on β_{j}. If $(5.2 .3)$ is rewritten as
$\hat{\xi}_{j}^{(\infty)}(n)=\left(\frac{1-\beta_{j}}{1+\beta_{j}}\right) \Sigma_{-\infty}^{\infty} y(n-m) \beta_{j}^{|m|} e^{i m \lambda_{j}}$

$$
\begin{equation*}
n=M, M+l, \ldots, N-M \tag{6.3.8}
\end{equation*}
$$

then one is led to form the quantity,
$\Delta\left\{\hat{\xi}_{j}^{(\infty)}(n) e^{-i n \lambda} j\right\}$
which has the spectrum (approximately),
$2\left(\frac{1-\beta_{j}}{1+\beta_{j}}\right) \frac{\left(1-\beta_{j}^{2}\right)}{\left(1+\beta_{j}^{2}-2 \beta_{j} \cos \lambda\right)^{2}} \frac{1}{2 \pi}\left\{\frac{\sigma_{j}^{2}}{4}+2 \pi f_{x}\left(\lambda_{j}\right)(1-\cos \lambda)\right\}$
integrating to
$2\left(\frac{1-\beta_{j}}{1+\beta_{j}}\right)^{2}\left(\frac{1+\beta_{j}^{2}}{1-\beta_{j}^{2}}\right)\left\{\frac{\sigma_{j}^{2}}{4}+2 \pi f_{x}\left(\lambda_{j}\right) \frac{\left(1-\beta_{j}\right)^{2}}{\left(1+\beta_{j}^{2}\right)}\right\}$.

Using the $\mathbb{N}-2 M$ values of $\Delta\left\{\hat{\xi}_{j}^{(\infty)}(n) e^{-i n \lambda} j\right\}$ the statistic,
$\tilde{s}_{j}^{2}=\frac{1}{2}\left(\frac{1+\beta_{j}}{1-\beta_{j}}\right)^{2} \frac{\left(1-\beta_{j}^{2}\right)}{\left(1+\beta_{j}^{2}\right)} \frac{1}{N-2 M} \Sigma\left|\Delta\left\{\hat{\xi}_{j}^{(\infty)}(n) e^{-i n \lambda_{j}}\right\}\right|^{2}$
is constructed and estimates $\sigma_{j}^{2} / L_{4}+2 \pi f_{x}\left(\lambda_{j}\right) \frac{\left(1-\beta_{j}\right)^{2}}{\left(1+\beta_{j}^{2}\right)}$. Again the simplest way to compute the expression to be differenced is to write it as

$$
\begin{align*}
& \hat{\xi}_{j}^{(\infty)}(n) e^{-i n \lambda_{j}}=\hat{\alpha}_{j}^{(\infty)}(n)-i \hat{\beta}_{j}^{(\infty)}(n) \tag{6.3.13}\\
& =\left[u_{j}^{?}(n)+u_{j}^{\prime \prime}(n)-\frac{1-\beta_{j}}{1+\beta_{j}} y(n)+i\left(v_{j}^{\prime}(n)-v_{j}^{\prime \prime}(n)\right)\right]\left[\cos n \lambda_{j}-i \sin n \lambda_{j}\right]
\end{align*}
$$

(where this construction and the quantities involved are developed in (5.2.3) - (5.2.6)) and to use the final representation in (6.3.13). However as the $\hat{\alpha}_{j}^{(\infty)}(n), \hat{\beta}_{j}^{(\infty)}(n)$ are needed for further investigation they are derived using (5.6.1) and the first representation in (6.3.13) is actually the basis of the computations of \tilde{s}_{j}^{2}. The values of \tilde{s}_{j}^{2} are plotted against a number of large β_{j} (e.g. $\beta_{j}=.95, .96, \ldots, .99$). Given a marked change in the downward slope as β_{j} approaches unity this could suggest that the extraction procedure was omitting some signal and therefore implying that a β_{j} has been reached for which the model is no longer appropriate.

The graph of \tilde{s}_{j}^{2} against β_{j}, shown in Fig. XV, does not provide a completely satisfactory clue as to an appropriate value of β_{j} although it does seem that $\beta_{j}=.99$ is too severe except possibly for $j=5$ and 6 . In Table 13 all possible couplets of β_{j}, for $\beta_{j}=.95, .96, .97, .98, .99$, are presented together with the implied estimate of $\sigma_{j / 2}^{2}$ and $2 \pi f_{x}\left(\lambda_{j}\right)$ resulting from the estimated \tilde{s}_{j}^{2} for the series Bank Advances. The table also included for each couplet an estimate of the optimal β_{j} assuming $\rho_{j} \equiv 1$ (see (6.3.14) below). This estimate is a direct application of the procedure suggested by Whittle and Hannan (see [57], [25]) which shows that the optimal value of the coefficient β_{j} in a signal extraction problem similar to that proposed for the seasonal is given by
$\beta_{j}=\frac{1+\theta_{j}\left(1+\rho_{j}^{2}\right)-\triangle_{j}}{2 \theta_{j} \rho_{j}} \leqq \rho_{j} \leqq I$
where

$$
\left.\begin{array}{rl}
\Delta_{j} & =\sqrt{1+2 \theta_{j}\left(1+\rho_{j}^{2}\right)+\theta_{j}^{2}\left(1-\rho_{j}^{2}\right)^{2}} \\
\theta_{j} & =\left(2 \pi f_{x}\left(\lambda_{j}\right)\right) /\left(\sigma_{j}^{2} / 2\right) \\
& =\pi f_{x}\left(\lambda_{6}\right) / \sigma_{6}^{2}
\end{array} r+1,+2, \ldots,+5\right)
$$

FIG. XV
GRAPH of \hat{S}_{j}^{2} Against $\beta_{j}, j=1,2, \ldots, 6$

ESTIMATES OF σ_{j}^{2} AND $2 \pi \mathrm{I}_{\mathrm{x}}\left(\lambda_{j}\right)$ BASED ON β_{j} COUPLETS

		λ_{1}			λ_{2}			λ_{3}			λ_{4}			λ_{5}			λ_{6}		
β_{j}	β_{k}	σ_{1}^{2}	$2 \pi \mathrm{f}_{\mathrm{x}}\left(\lambda_{1}\right)$	β_{1}	σ_{2}^{2}	$2 \pi f_{x}\left(\lambda_{2}\right)$	B_{2}	$\sigma_{3}^{2} \quad 1$	$2 \pi \mathrm{f}_{\mathrm{x}}\left(\lambda_{3}\right)$	β_{3}	$\sigma_{4}^{2} \quad{ }^{1}$	$2 \pi f_{x}\left(\lambda_{4}\right)$	β_{4}	σ_{5}^{2}	$2 \pi f_{x}\left(\lambda_{5}\right)$	β_{5}	σ_{6}^{2}	$2 \pi f_{x}\left(\lambda_{6}\right)$	B_{6}
. 99	. 98	. 798	859.9	. 988	. 161	181.5	. 988	. 0040	48.7	. 996	. 0356	56.2	. 990		N.A.			N.A.	
. 99	. 97	1.05	470.7	. 981	. 196	126.7	. 984	. 0043	48.2	. 996	. 0469	38.3	. 986		N.A.			N.A.	
. 99	.96	1.15	312.1	. 976	. 206	111.4	. 983	. 0033	49.8	. 997	. 0511	31.7	. 984		N.A.			N.A.	
. 99	. 95	1.19	245.9	. 973	. 207	110.0	. 982		N.A.		. 0521	30.2	. 984		N.A.			N.A.	
. 98	. 97	2.39	240.5	. 961	.385	94.32	. 975	. 0059	47.9	. 996	. 1085	27.75	. 975		N. A.			N.A.	
. 98	. 96	2.55	178.2	. 953	.385	94.23	. 975	. 0004	50.1	. 999	. 1137	25.73	. 974		N.A.			N.A.	
. 98	. 95	2.59	161.0	. 951	. 370	100.1	. 976		N.A.		. 1115	26.58	. 975		N.A.		. 2536	3.412	. 897
. 97	. 96	3.01	134.4	. 942	.386	94.17	. 975		IN.A.		. 1286	24.31	. 971		N.A.			N.A.	
. 97	. 95	2.99	136.7	. 943	. 341	101.8	. 977		N. A.		. 1174	26.23	. 974		N. A.			N.A.	
. 96	. 95	2.96	138.4	. 943	. 245	107.7	. 981		N.A.		. 0932	27.69	. 977		N.A.			N.A.	

Although several couplets are rejected as inadmissible, because they produce negative variances, some guidance is obtained on the possible magnitude of $\sigma_{j / 2}^{2}$ and $2 \pi f_{x}\left(\lambda_{j}\right)$. It seems likely that one should place most confidence in those couplets involving high values of β_{j} for then the assumptions as to the nature of the input to the filter will be closer to correct. A choice along these lines is made (see Table 14) and the values of $\sigma_{j}^{2} / 2$, $j=1,2, \ldots, 6$, are used to approximate the prediction variance for the intermediate seasonal estimates.

Another point suggests a slightly different approach. The assumption that $\rho_{j} \equiv 1$ is unlikely to be exactly correct. A more appropriate assumption may be that $\alpha_{j}(n)$ and $\beta_{j}(n)$ are still generated by (4.2.2) but not with ρ_{j} equal to unity as stipulated in 54.5 , and as used in the computations discussed in Chapter V. Indeed as was mentioned in 4.2 the reason for choosing $\rho_{j} \equiv 1$ was that although it was unknown it must nevertheless, in the model considered, be very close to unity. If $\rho_{j}<1$, the approach must be somewhat amended and this relaxation results, as ρ_{j} differs more from l, in a smaller concentration of spectral mass in $s(n)$ at each λ_{j}

Consider first the case of $v=0$. On the same basis as was used earlier in this section the spectral properties of $\hat{\xi}_{j}^{(0)}(n)$ may be found, with $\xi_{j}(n)$ now being given by a relation of the form (4.2.2). The spectra of $\hat{\alpha}_{j}^{(0)}(n)$ and $\hat{\beta}_{j}^{(0)}(n)$ are then approximately $\frac{\sigma_{j}^{2}}{2} \frac{2}{2 \pi} \frac{\left(1-\beta_{j}\right)^{2}}{\left|1-\rho_{j} e^{i \lambda}\right|^{2}\left|1-\beta_{j} e^{i \lambda}\right|^{2}}+\frac{f_{x}\left(\lambda_{j}\right)\left(1-\beta_{j}\right)^{2}}{\left|1-\beta_{j} e^{i \lambda}\right|^{2}}$
and these spectra are approximately incoherent, that is all lag correlations vanish. The spectrum in (6.3.16) is that of a mixed autoregressive-moving average process, second order autoregression, first order moving average (A.R.-M.A. 2:1), which may be more revealingly represented as

TABLE 14
PREDICTION VARIANCES USING σ_{j}^{2} ESTIMATES FROM TABLE 13 AND $\beta_{j}=.96$

Freq．	Max．σ_{j}^{2} From Table 13		Min $\cdot \sigma_{j}^{2}$ From Table 13		Best Guess σ_{j}^{2} From Table 13	
	$\operatorname{var}\left(\hat{\mathrm{s}}_{\mathrm{j}}^{(0)}(\mathrm{n}) \mathrm{)}\right.$	$\operatorname{var}\left(\hat{\mathrm{s}}^{(\infty)}{ }^{(\infty)} \mathrm{n}\right) \mathrm{l}$	$\operatorname{var}\left(\hat{s}^{(0)}{ }^{(0)}\right.$ ）	$\operatorname{var}\left(\hat{\mathrm{s}}_{j}^{(\infty)}(\mathrm{n}) \mathrm{)}\right.$	$\operatorname{var}\left(\hat{\mathrm{s}}_{j}^{(0)}(\mathrm{n}) \mathrm{)}\right.$	$\operatorname{var}\left(\hat{s}_{j}^{(\infty)}(\mathrm{n}) \mathrm{)}\right.$
λ_{1}	72.24	36.86	19.15	9.77	57.36	29.27
λ_{2}	9.26	4.73	3.86	1.97	9.24	4.71
λ_{3}	． 142	． 072	． 010	． 005	． 142	． 072
λ_{4}	3.09	1.58	． 854	． 436	2.60	1.33
λ_{5}	N．A．＊	N．A．	N．A．	N．A．	IN．A．	IN．A．
λ_{6}	－	－	－	－	3．04＊	1.55

＊One σ_{6}^{2} estimate only is given in Table 13 and N．A．indicates

$$
\text { there are no estimates of } \sigma_{5}^{2} \text { in Table } 13 \text {. }
$$

$\frac{1}{2 \pi} \frac{\kappa_{j}^{2}\left|I-\tau e^{i \lambda}\right|^{2}}{\left|I-\rho_{j} e^{i \lambda}\right|^{2}\left|1-\beta_{j} e^{i \lambda}\right|^{2}}$
where the relation between the parameters in (6.3.16) and (6.3.17) is given by
$k_{j}^{2} \tau j=2 \pi f_{x}\left(\lambda_{j}\right) \rho_{j}\left(1-\beta_{j}\right)^{2}$
i.e. $\quad 2 \pi f_{x}\left(\lambda_{j}\right)=k_{j}^{2} \frac{\tau_{j}}{\rho_{j}} \frac{1}{\left(1-\beta_{j}\right)^{2}}$
and
$\kappa_{j}^{2}\left(1+\tau_{j}^{2}\right)=2\left(\frac{\sigma_{j}^{2}}{2}\right)\left(1-\beta_{j}\right)^{2}+2 \pi f_{x}\left(\lambda_{j}\right)\left(1-\beta_{j}\right)^{2}\left(1+\rho_{j}^{2}\right)$
i.e. $\quad 2\left(\frac{\sigma_{j}^{2}}{2}\right)\left(1-\beta_{j}\right)^{2}=k_{j}^{2}\left(1+\tau_{j}^{2}\right)-k_{j}^{2} \frac{\tau_{j}}{\rho_{j}}\left(1+\rho_{j}^{2}\right)$

$$
=\frac{\kappa_{j}^{2}}{\rho_{j}}\left(\rho_{j}-\tau_{j}\right)\left(1-\rho_{j} \tau_{j}\right)
$$

The unknown parameters in $(6.3 .17)$, i.e. ρ_{j}, κ_{j}^{2} and τ_{j} may be estimated by the methods proposed by Box and Jenkins [6] and [7] or alternatively by methods suggested by Durbin [12] or Hannan [27]. Preliminary estimates of ρ_{j}, τ, j and k_{j}^{2} based on $\hat{\alpha}_{j}^{(0)}(n)$ and $\hat{\beta}_{j}^{(0)}(n)$ were attempted using the latter methods. As can be seen from (6.3.18) if one accepts on a priori grounds that ρ_{j} must be positive then for acceptable estimates of σ_{j}^{2} and $f_{x}\left(\lambda_{j}\right) \tau_{j}$ must also be positive and the inequality $\rho_{j}>\tau_{j}$ holds. The failure of all estimates but those for λ_{l} to meet these restrictions stimulated the following approach. Since the estimates of $\hat{\alpha}_{j}^{(0)}(n)$ and $\hat{\beta}_{j}^{(0)}(n)$ have been formed using a particular chosen value of β_{j} the parameter estimation may be simplified somewhat if weighted partial sums of the $\hat{\alpha}_{j}^{(o)}(n)$ and $\hat{\beta}_{j}^{(0)}(n)$ are formed as follows
$S \hat{\alpha}_{j}^{(0)}(n)=\sum_{k_{0}^{n-M}}^{n} \beta_{j}^{k} \hat{\alpha}_{j}^{(o)}(n-k)$
$S \hat{\beta}_{j}^{(o)}(n)=\sum_{k}^{n} M_{i}^{M}{ }_{j}^{k} \hat{\beta}_{j}^{(o)}(n-k) \quad n=M, \ldots, N$.

Of course if the $\hat{\alpha}_{j}^{(0)}(n)$ and $\hat{\beta}_{j}^{(0)}(n)$ were available for the whole period $n=1, \ldots, N$ then the upper summation limit is ($n-1$). The spectra of the weighted partial sum sequences of $\hat{\alpha}_{j}^{(0)}(n)$ and $\hat{\beta}_{j}^{(0)}(n)$ are of the form of a mixed first order autoregression - first order moving average process (A.R.-M.A. (l:l)) and the estimates of ρ_{j}, τ_{j} and k_{j} thus obtained may be the basis of the estimates of $\sigma_{j}^{2} / 2$ and $2 \pi f_{x}\left(\lambda_{j}\right)$.

The chosen value of β_{j} could also be used in the recursive representation of $\epsilon(n)$,
$\epsilon(n)=\hat{\alpha}_{j}^{(0)}(n)-\left(\beta_{j}+\rho_{j}\right) \hat{\alpha}_{j}^{(0)}(n-1)+\beta_{j} \rho_{j} \hat{\alpha}_{j}^{(0)}(n-2)+\tau_{j} \epsilon(n-1)$ to compute a sequence of $\epsilon(n)$ for each admissible value of ρ_{j} and τ_{j}. The sum of squares for each grid point in the ρ_{j}, τ_{j} plane is then scanned for the minimal sum of squares given the restrictions on ρ_{j} and τ_{j} and the associated estimate of ρ_{j}, τ_{j}. It was quite clear from investigating the grid in the ρ_{j}, τ_{j} plane that the model was unsatisfactory for frequencies other than λ_{1}. The data does not support the restrictions and values for ρ_{j} and τ_{j} are insignificant. In fact even for λ_{1} the estimates of ρ_{1}, τ_{1} are not a satisfactory support for a priori ideas, on the value of ρ_{l} in particular, as can be seen from Table 15.

There will of course be two estimates of each of these constants one from $\hat{\alpha}_{l}^{(0)}(n)$ and one from $\hat{\beta}_{l}^{(0)}(n)$ - and these estimates may be averaged to produce better estimates.

TABLE 15
ESTIMATES OF $\rho_{1}, \tau_{1}, K_{1}$ BASED ON $\hat{\alpha}_{1}^{(0)}(n) \hat{\beta}_{1}^{(0)}(n)$

	ρ_{1}	${ }^{\tau} 1$	k_{1}^{2}
From $\hat{\alpha}_{1}^{(0)}(\mathrm{n})$.56	.001	.92
	.60	.001	.66

Rather than proceed with the task of attempting to improve the estimates based on $\hat{\alpha}_{1}^{(0)}(n)$ and $\hat{\beta}_{1}^{(0)}(n)$ it was thought more effective to direct attention to the possibility of obtaining better estimates from $\hat{\alpha}_{j}^{(\infty)}(n), \hat{\beta}_{j}^{(\infty)}(n)$. The narrower response function used in producing $\hat{\xi}_{j}^{(\infty)}(n)$ will make the specified signal plus noise model more appropriate and thus the estimates arising from these quantities more suitable. It is quite simple to consider estimates of $\alpha_{j}(n), \beta_{j}(n)$ from the intermediate segment. The spectra of $\hat{\alpha}_{j}^{(\infty)}(n)$ and $\hat{\beta}_{j}^{(\infty)}(n)$ are approximately
$\frac{\sigma_{j}^{2}}{2 \pi} \frac{1}{\left|1-\rho_{j} e^{i \lambda}\right|^{2}} \frac{\left(1-\beta_{j}\right)^{4}}{\left\{11-\left.\beta_{j} e^{i \lambda}\right|^{2}\right\}^{2}}+\frac{2 \pi f_{x}\left(\lambda_{j}\right)}{2 \pi} \frac{\left(1-\beta_{j}\right)^{4}}{\left\{\left|1-\beta_{j} e^{i \lambda}\right|^{2}\right\}^{2}}$
which may be rewritten as
$\frac{\sigma_{j}^{2}\left(1-\beta_{j}\right)^{4}+2 \pi f_{x}\left(\lambda_{j}\right)\left(1-\beta_{j}\right)^{4}\left(1+\rho_{j}^{2}-2 \rho_{j} \cos \lambda\right)}{2 \pi\left\{\left|1-\beta_{j} e^{i \lambda}\right|^{2}\right\}^{2}\left|1-\rho_{j} e^{i \lambda}\right|^{2}}$.
The expression in (6.3.20) represents a mixed moving average autoregressive process, but it is (A.R.-M.A. (3:1)). However, using again the known value of β_{j} one forms weighted partial double summations as follows
$D S \hat{\alpha}_{j}^{(\infty)}(n)=\sum_{k^{1}}^{n-T}(k+1) \beta_{j}^{k} \hat{\alpha}_{j}^{(\infty)}(n-k)$
$\operatorname{DS} \hat{\beta}_{j}^{(\infty)}(n)=\sum_{k^{1}}^{n-T}(k+1) \beta_{j}^{k} \hat{\beta}_{j}^{(\infty)}(n-k)$
where T may be set at some value $<M$ (e.g. 20). It has already been noted that at say $v=20$ the response of the extraction procedure is not markedly different from the intermediate response i.e. $v=\infty$, and so the (∞) notation here includes the estimates $\hat{\alpha}_{j}^{(v)}(n), \hat{\beta}_{j}^{(\nu)}(n)$ using the maximum v available for time points
$\mathrm{n}=\mathrm{T}, \ldots, \mathrm{M}$ and $\mathrm{n}=\mathrm{N}-\mathrm{M}, \ldots, \mathrm{N}-\mathrm{T}$. As before the upper summation limit would be $(n-1)$ if the $\hat{\alpha}_{j}^{(\infty)}(n), \hat{\beta}_{j}^{(\infty)}(n)$ were available for $n=1, \ldots, N$.

The most convenient procedure is to form a sequence of $\epsilon(n)$ for each ρ_{j}, τ_{j} couplet in the region $-1<\rho_{j}, \tau_{j}<1$ and to select the estimate of ρ_{j}, τ_{j} as the values which produce the minimum sum of squares, $\Sigma \epsilon^{2}(n)$. The minimum is however chosen subject to the restrictions on the ρ_{j}, τ_{j} plane which are derived from ($6 \cdot 3.21$) below. If the optimal ρ_{j}, τ_{j} and k_{j}^{2} are to produce positive estimates of σ_{j}^{2} and $2 \pi f_{x}\left(\lambda_{j}\right)$ then as for the previous search when ρ_{j} is assumed positive a priori ${ }^{\tau}{ }_{j}$ must also be positive and as well ρ_{j} must be greater than τ_{j}. As β_{j} is known the $\epsilon(n)$ are obtained recursively for each $\rho_{j},{ }^{\tau}{ }_{j}$ using
$\epsilon(n)=\tau_{j} \epsilon(n-1)+\hat{\alpha}_{j}^{(\infty)}(n)-\left(\rho_{j}+2 \beta_{j}\right) \hat{\alpha}_{j}^{(\infty)}(n-1)+\left(2 \beta_{j} \rho_{j}+\beta_{j}^{2}\right)$

$$
\hat{\alpha}_{j}^{(\infty)}(n-2)-\beta_{j}^{2} \rho_{j} \hat{\alpha}_{j}^{(\infty)}(n-3)
$$

Otherwise the estimation problem may again be reduced to that of estimating an (A.R.-M.A. (I:I)) process by the above partial sum procedures. The equivalences between the parameter estimates obtained from the above (A.R.-M.A. (3:1)) process and $\sigma_{j / 2}^{2}$, $2 \pi f_{x}\left(\lambda_{j}\right)$ are
$2 \pi f_{x}\left(\lambda_{j}\right)=\frac{\tau_{j}}{\rho_{j}} \frac{k_{j}^{2}}{\left(1-\beta_{j}\right)^{4}}$
and

$$
\begin{equation*}
\sigma_{j}^{2}=\left\{k_{j}^{2}\left(1+\tau_{j}^{2}\right)\right\} /\left(1-\beta_{j}\right)^{4}-\left(l_{+\rho_{j}}^{2}\right) 2 \pi f_{x}\left(\lambda_{j}\right) \tag{6.3.21}
\end{equation*}
$$

$$
=\frac{k_{j}^{2}}{\rho_{j}\left(1-\beta_{j}\right)^{4}}\left(\rho_{j}-\tau_{j}\right)\left(1-\rho_{j} \tau_{j}\right)
$$

and these equivalences are used to turn the parameter estimates for ρ_{1}, τ_{1} and k_{1}^{2} in Table 16 below into the estimates of σ_{1}^{2} and $2 \pi f_{x}\left(\lambda_{1}\right)$ in Table 17 .

TABLE 16
ESTIMATES OF ρ_{1}, τ_{1} AND κ_{1}^{2} BASED ON $\hat{\alpha}_{1}^{(\infty)}(n), \hat{\beta}_{1}^{(\infty)}(n)$

	ρ_{1}	τ_{1}	κ_{1}^{2}
From $\hat{\alpha}_{1}^{(\infty)}(n)$.80	.01	.048
From $\hat{\beta}_{1}^{(\infty)}(n)$.66	.01	.006

Basing the estimates on $\hat{\alpha}_{j}^{(\infty)}(n)$ and $\hat{\beta}_{j}^{(\infty)}(n)$ has somewhat improved the estimates of ρ_{j} for frequency λ_{l}, but has also confirmed that the data does not support the restrictions for the other frequencies. It is apparent that the model is useful only for the first seasonal frequency, which from $F i g$. $X X$ can be seen to provide the major portion of seasonal power. In fact with the benefit of hindsight it is clear that it would be very difficult to obtain the parameters for the signal plus noise model in the latter seasonal frequencies for Bank Advances as these frequencies have so little power.

The estimates of σ_{1}^{2} and $2 \pi f_{x}\left(\lambda_{1}\right)$ based on ρ_{1}, τ_{1} and k_{1}^{2} from Table 16 are presented below and could be used (see however 66.7) to guess at a possible choice of the optimal β_{1}.

TABLE 17

ESTIMATES OF σ_{1}^{2} AND $2 \pi f_{x}\left(\lambda_{1}\right)$ USING $\hat{\rho}_{1}, \hat{\tau}_{1}$ AND \widehat{K}_{1}^{2} FROM TABLE 16

σ_{1}^{2}	$2 \pi f_{x}\left(\lambda_{1}\right)$
18000	
1500	284
35	

To obtain the prediction variance $\varepsilon\left\{s_{j}(n)-\hat{s}_{j}^{(\nu)}(n)\right\}^{2}$ when $s_{j}(n)$ or rather the components $\xi_{j}(n)$ and $\bar{\xi}_{j}(n)$ are generated by (4.2.3) but the estimation procedure is based on $\rho_{j} \equiv 1$, the prediction variance $\varepsilon\left\{\xi_{j}(n)-\hat{\xi}_{j}^{(v)}(n)\right\}^{2}$ is found from the expression,
$\int_{-\pi}^{\pi}\left\{\left|1-h_{j}^{(\nu)}\left(\lambda-\lambda_{j}\right)\right|^{2}\left\{\frac{\sigma_{j}^{2}}{2} \frac{1}{2 \pi} \frac{1}{\left|1-\rho_{j} e^{i \lambda}\right|^{2}}\right\}+\left|h^{(\nu)}\left(\lambda-\lambda_{j}\right)\right|^{2} f_{x}\left(\lambda_{j}\right)\right\} d \lambda$
which becomes when relocated at the origin
$\int_{-\pi}^{\pi}\left\{\left|1-h_{j}^{(\nu)}(\lambda)\right|^{2}\left\{\frac{\sigma_{j}^{2}}{2} \frac{1}{2 \pi} \frac{1}{\left|1-\rho_{j} e^{i \lambda}\right|^{2}}\right\}+\left|h^{(\nu)}(\lambda)\right|^{2} f_{x}\left(\lambda_{j}\right)\right\} d \lambda$.

If $\nu=0$ then $h_{j}^{(0)}(\lambda)=\frac{\left(1-\beta_{j}\right)}{1-\beta_{j} e^{i \lambda}}$ and by straight forward contour integration one obtains the expression,

$$
\begin{equation*}
\varepsilon\left\{\xi_{j}(n)-\hat{\xi}_{j}^{(o)}(n)\right\}^{2}=\frac{\sigma_{j}^{2}}{2}\left\{\frac{2 \beta_{j}^{2}}{\left(1-\rho_{j} \beta_{j}\right)\left(1+\beta_{j}\right)\left(1+\rho_{j}\right)}+\frac{2 \pi f_{x}\left(\lambda_{j}\right)\left(1-\beta_{j}\right)^{2}}{\left(\sigma_{j}^{2} / 2\right)\left(1-\beta_{j}^{2}\right)}\right\} \tag{6.3.24}
\end{equation*}
$$

The prediction variance in $(6.3 .24)$ may be related to that given in $\sigma_{5.7}$ for $\varepsilon\left(s_{j}(n)-\hat{s}_{j}(0)\right)^{2}$, where of course $\rho_{j} \equiv 1$, by recalling (see (4.2.3)) that $s_{j}(n)=\xi_{j}(n)+\bar{\xi}_{j}(n)$ and by setting ρ_{j} to unity in $(6.3 .24)$. Then, by noting that $\left\{2 \pi f_{x}\left(\lambda_{j}\right) /\left(\sigma_{j}^{2} / 2\right)\right\}$ is equal to θ_{j} and that θ_{j} may be rewritten in terms of β_{j} as (see (4.5.3))
$\theta_{j}=-\frac{1}{\left(1-\beta_{j}\right)\left(1-\beta_{j}^{-1}\right)}=\frac{\beta_{j}}{\left(1-\beta_{j}\right)^{2}}$
if the optimal β_{j} is used, (6.3.24) is equivalent to (5.7.15). If $v=\infty$ then $h_{j}^{(\infty)}(\lambda)=\frac{\left(1-\beta_{j}\right)^{2}}{\left|1-\beta_{j} e^{i \lambda}\right|^{2}}$ and again contour integration followed by simple but lengthy algebraic manipulations provide the following prediction variance,

$$
\begin{gather*}
\varepsilon\left(\xi_{j}(n)-\hat{\xi}_{j}^{(\infty)}(n)\right)^{2}=\frac{2 \pi f_{x}\left(\lambda_{j}\right)\left(1-\beta_{j}\right)\left(1+\beta_{j}^{2}\right)}{\left(1+\beta_{j}\right)^{3}} \\
+\frac{\sigma_{j}^{2}}{2} \frac{1}{\left(1-\rho_{j}^{2}\right)}\left\{1+\frac{2 \rho_{j} \beta_{j}\left(1-\beta_{j}\right)^{2}}{\left(1-\rho_{j} \beta_{j}\right)^{2}\left(1+\beta_{j}\right)^{2}}+\frac{\left(1-\beta_{j}\right)\left(1+\beta_{j}^{2}\right)\left(1+\rho_{j} \beta_{j}\right)}{\left(1+\beta_{j}\right)^{3}\left(1-\rho_{j} \beta_{j}\right)}\right. \tag{6.3.26}\\
\left.-\frac{2\left(1-\beta_{j}\right)\left(1+\rho_{j} \beta_{j}\right)}{\left(1+\beta_{j}\right)\left(1-\rho_{j} \beta_{j}\right)}\right\} .
\end{gather*}
$$

Again the cumbersome expression in (6.3.26) may be reduced to the very simple expression (5.7.15) by using the same expression for θ_{j} in terms of $\beta_{j}(6.3 .25)$ and by letting $\rho_{j} \rightarrow l$ and applying L'Hospital's rule to the second term.

6.4 Demodulation and Modelling

There must of course be a good deal of uncertainty as to whether the model proposed in (4.2.3) is a suitable one. Before going into detail on the points to be examined the demodulation procedure will be briefly sketched. The technique of investigating a particular frequency, or more correctly a narrow band about a particular frequency has a long history. Two recent discussions of this approach are Granger [15] and Bingham [5]. The demodulated series is composed of a real and a complex part and one of the purposes of this section is to investigate what sort of stochastic processes might generate the real and complex parts.

One begins with the original observations w(n) and as will be the general approach in this section the removal of long term, low frequency, power will be carried out by subtracting a twelve month moving average from $w(n)$ giving the series $y(n)$. The demodulated series results from a further filtering of $y(n)$ and the success of this operation depends on the choice of coefficients in the filter. The filtering of $y(n)$ proceeds as follows to give

$$
\begin{align*}
& A_{j}(n)=\sum_{k-\mathbb{T}^{b} k^{T}} e^{-i(n-k) \lambda} j_{y}(n-k) \tag{6.4.1}\\
& \quad n=6+\mathbb{T}+1, \ldots, \mathbb{N}-6-\mathbb{T} ; \quad j=1,2, \ldots, 6
\end{align*}
$$

which is a sequence of complex numbers. How narrow a band about λ_{j} is represented by the sequence depends of course on the chosen b_{k} coefficients. Perhaps the simplest method is to choose the b_{k} as a centred moving average, that is to first form
$M_{j}(n)=\sum_{-T}^{T}(1 /(2 T+1)) e^{-i(n-k) \lambda_{j}} j_{y}(n-k)$
and then to centre the $M_{j}(n)$ values at integral time points if this is not so by then forming
$A_{j}(n)=\frac{1}{2}\left\{M_{j}\left(n-\frac{1}{2}\right)+M_{j}\left(n+\frac{1}{2}\right)\right\}$.
The frequency response of the b_{k} coefficients associated with
$A_{j}(n)$ as defined in $(6 \cdot 4.3)$ is, when $(2 T+1)=48$,
$B(\lambda)=\left(\frac{1}{96}\right) \frac{\sin 24 \lambda \sin \lambda}{\sin ^{2} \frac{1}{2} \lambda}$.
The success of the demodulation depends on how effectively the response function of the chosen b_{k} represents only the desired narrow band about λ_{j}. To attempt to improve the result another set of filter coefficients was used. These coefficients represent the repetition of a moving average and may be represented as

$$
\left.\begin{array}{rl}
A_{j}(n) & =\sum_{k}^{M}-M \\
\sum^{M}-M
\end{array} \frac{1}{2 M+1}\right\}^{2} e^{-i(n-k-l) \lambda_{j}(n-k-l)} j_{j}(n) y(n-k) .
$$

where if one selects $2 M=24$ then the number of terms lost in demodulating will be approximately the same as in (6.4.3) and the response function is
$B(\lambda)=\frac{1}{(25)^{2}}\left\{\frac{\sin 25 / 2 \lambda}{\sin \frac{1}{2} \lambda}\right\}^{2}$.

A comparison of the response functions of the two proposed demodulating averages is given in Fig. XVI. Now the quantities which will be the subject of further investigation are $Q\left(A_{j}(n)\right)$, the real part of $A_{j}(n)$, and $\oint\left(A_{j}(n)\right)$, the imaginary part, and which are given by
$\mathscr{R}\left(A_{j}(n)\right)=\mathbb{R}\left\{e^{-i n \lambda} j\left[\sum_{k}^{T} T_{k} b^{i k \lambda} j_{y}(n-k)\right]\right\}$
$=\cos n \lambda_{j_{k}}^{\sum_{k}^{T} T^{b}}{ }_{k}^{\cos k \lambda_{j} y(n-k)+\operatorname{sinn} \lambda_{j} \sum_{k}^{T}-T^{b_{k}} \sin k \lambda_{j} y(n-k)}$
and by
$\mathscr{\Psi}\left(A_{j}(n)\right)=\oint\left\{e^{-i n \lambda} j\left[\sum_{k}^{T}-T_{k} b_{k} e^{i k \lambda} j_{y}(n-k)\right]\right\}$
$=\operatorname{sinn} \lambda_{j_{k}}^{\Sigma^{T}-T^{b}}{ }_{k}^{\cos k \lambda_{j}} y(n-k)-\cos n \lambda_{j} \Sigma_{k}^{T}-T^{b}{ }_{k} \sin k \lambda_{j} y(n-k)$.

The quantities calculated using (6.4.7) and (6.4.8) are slightly modified to produce
$\tilde{\alpha}_{j}(n)=Q\left(A_{j}(n)\right)\left(2-\delta_{j}^{6}\right)$
$\tilde{\beta}_{j}(n)=\mathscr{S}\left(A_{j}(n)\right)\left(2-\delta_{j}^{6}\right)$
and one may then easily contrast what is being done in this section with the approach based on a model which specifies the probabilistic development of the $\alpha_{j}(n)$ and $\beta_{j}(n)$. To do this the expressions in the first line of $(6.4 .7)$ and $(6.4 .8)$ should be compared with those given in (5.6.1), assuming v is set equal to infinity. Now $\hat{\xi}_{j}^{(\nu)}(n)$ and $\hat{\xi}_{-j}^{(\nu)}(n)$ are given by (5.2.3) (except that $N-v$ is set equal to n) and so
$\hat{\xi}_{j}^{(\infty)}(n)=H \sum_{-\infty}^{\infty} \beta_{j}|k| e^{i k \lambda} j_{y(n-k)}$.

FIG. XII

The reason for repeating the expression for $\hat{\xi}_{j}^{(\infty)}(n)$ in (6.4.10) is to emphasize that the quantities to be studied, $\tilde{\alpha}_{j}(n), \tilde{\beta}_{j}(n)$, differ from $\hat{\alpha}_{j}(n), \hat{\beta}_{j}(n)$ only in that the b_{k} term in the square bracket in (6.4.7) and (6.4.8) do not spring from a specific a priori assumption as to the nature of the stochastic process generating $\alpha_{j}(n), \beta_{j}(n)$.

To obtain guidance as to the kind of process by which $\alpha_{j}(n)$ and $\beta_{j}(n)$ might be generated the quantities were tested in the following manner. The procedure adopted here follows closely the identification approach put forward by Box and Jenkins [6]. The autocorrelations of $\tilde{\alpha}_{j}(n)$ and $\tilde{\beta}_{j}(n)$ were formed from the following expressions

$$
\begin{aligned}
& C_{\alpha}(\tau)=(1 /(N-\tau)) \sum_{n^{1}}^{N-\tau}\left(\tilde{\alpha}_{j}(n)-\bar{\alpha}_{j}\right)\left(\tilde{\alpha}_{j}(n+\tau)-\bar{\alpha}_{j}\right) \\
& C_{\beta}(\tau)=(1 /(N-\tau)) \sum_{n^{1}}^{N-\tau}\left(\tilde{\beta}_{j}(n)-\bar{\beta}_{j}\right)\left(\tilde{\beta}_{j}(n+\tau)-\bar{\beta}_{j}\right) \\
& \bar{\alpha}_{j}=\left(\frac{I}{N}\right) \sum_{n^{1}}^{N} \tilde{\alpha}_{j}(n) \\
& \bar{\beta}_{j}=\left(\frac{1}{N}\right) \sum_{n^{1}}^{N} \tilde{\beta}_{j}(n)
\end{aligned}
$$

and similar quantities $C_{\alpha}^{(0)}(\tau), C_{\beta}^{(0)}(\tau)$ were also formed where the superscript (0) indicates that no mean correction was made. To further the identification task the partial autocorrelations of the uncorrected and mean corrected quantities are obtained as follows. If R_{p}^{α} is a $p \times p$ matrix,

$$
\left(\begin{array}{ccccc}
1 & R_{\alpha}(1) & \ldots \ldots & R_{\alpha}(p-2) & R_{\alpha}(p-1) \\
R_{\alpha}(1) & 1 & \ldots \ldots & R_{\alpha}(p-3) & R_{\alpha}(p-2) \\
\vdots & \vdots & & \vdots & \vdots \\
R_{\alpha}(p-2) & \vdots & \ldots \ldots & i & R_{\alpha}(1) \\
R_{\alpha}(p-1) & R_{\alpha}(p-2) & \ldots \ldots & R_{\alpha}(1) & 1
\end{array}\right)
$$

where $R_{\alpha}(\tau)=\left\{C_{\alpha}(\tau) / C_{\alpha}(0)\right\}$ and if r is the vector
$\left\{R_{\alpha}(1), R_{\alpha}(2), \ldots, R_{\alpha}(p)\right\}$ then a vector of estimates
$\phi^{\alpha}=\left\{\phi_{p 1}, \phi_{p 2}, \ldots, \phi_{p p}\right\}$ is obtained from
$\phi^{\alpha}=\left(R_{p}^{\alpha}\right)^{-1} r$.
To interpret ϕ^{α} it should be understood that $\phi_{p j}$ is the $j^{\text {th }}$ autoregressive parameter in a process of order p, and in particular the partial autocorrelation of order p is $\phi_{p p}$. The simultaneous equations (6.4.13) may be solved by using the recursive relations given by Durbin [12]

$$
\begin{align*}
& \phi_{\tau+1, j}=\phi_{\tau, j}{ }^{-\phi_{\tau+1}, \tau+1}{ }_{\tau, \tau-j+1} \quad j=1, \ldots, \tau \\
& \phi_{\tau+1, \tau+1}=\frac{R(\tau+1)+\sum_{j}^{\tau} \phi \tau, j^{R(\tau+1-j)}}{1+\sum_{j}^{\tau} \phi \tau, j^{R(j)}}, \quad \phi_{11}=-R(1) \tag{6.4.14}
\end{align*}
$$

to obtain the partial autocorrelations for $\tilde{\alpha}_{j}(n), \tilde{\beta}_{j}(n)^{32}$ The statistics $R(\tau)$ and $\phi_{\tau, \tau}$ are suitable for the identification of moving average and autoregressive processes. For example if the $\tilde{\alpha}_{j}(n)$ are generated by a moving average of order k it is well known that the theoretical autocorrelation beyond k will be zero. To aid identification then one would compare $R(k)$ with its standard error on the assumption that the process is a moving average of order (k-1). In this case for τ values less than k one would expect $R(\tau)$ to be large in relation to its standard error. The variance of $R(k)$ when it is assumed that the process is of order ($k-1$) is given by the following formula proposed by Bartlett [4]

32
The equations in (6.4.14) have dropped the superscript, α, to give a less cluttered formulation. Of course it is also the case that $(6.4 .12),(6.4 .13)$ and $(6.4 .14)$ are used also for $\beta_{j}(n)$.
$\operatorname{var}\{R(k)\}=\left(\frac{1}{N}\right)\left\{1+2\left(\rho^{2}(1)+\rho^{2}(2)+\cdots \cdot+\rho^{2}(k-1)\right)\right\}$
where the $\rho(\tau)$ are the population lag correlation coefficients. It is usually necessary in practice to use instead of $\rho(\tau)$ the $R(\tau)$ values from the sample of size N. The statistic tabled in Table 18 is
$N_{k}=\{R(k) / \sqrt{\operatorname{var} R(k)}\} \quad k=1,2, \ldots, 24$
which is approximately a standard normal variate.
Identifying a purely autoregressive process on the basis of the autocorrelations may be based on a judgement that the autocorrelation function "tails off" in contrast to the situation for the moving average process of order k where as has been pointed out the autocorrelations after the $k^{\text {th }}$ "cut off". It is very much simpler however to instead concentrate on the partial autocorrelations for it may be shown that for an autoregression of order k that the partial autocorrelations "cut off", and that the point of "cut off" will be the order of the autoregression. The test statistic which is computed on the basis of the partial autocorrelations to aid in identifying the "cut off" point is
$M_{k}=\left\{\phi_{k, k} / \sqrt{N-k}\right\} ; \quad k=1,2, \ldots, 24$
where M_{k} is a standard normal variate, since the variance of $\phi_{k, k}$, if the process is autoregressive of the order ($k-1$) is $\operatorname{var} \phi_{k, k}=\{I /(N-k)\}$.

Tables of demodulated values of $\tilde{\alpha}_{j}(n), \tilde{B}_{j}(n)$ are presented in Table 18 for the two filtering methods and mean corrected $\tilde{\alpha}_{j}(n)$, $\tilde{\beta}_{j}(n)$ are based on only one filter, that given in (6.4.5). The tabulations are most space consuming so the latter seasonal frequencies, λ_{4}, λ_{5} and λ_{6} are omitted. It is however already apparent in λ_{3} that a simple first order autoregression model is
not the appropriate one for that frequency and similar results obtain for the latter frequencies. In fact as the frequencies after λ_{2} are for many series quite low in spectral power ${ }^{33}$ and therefore their contribution to the total seasonal variation is quite minor it seems possible to justify the following approach. Suppose that for these latter frequencies there is a stable seasonal coefficient which would thus produce a spike in the spectrum for these λ_{j}. This spike will then be approximated by using the model proposed in (4.2.3), and further assuming that $\rho_{j} \equiv 1$ for $j=3,4,5,6$, as was done for all λ_{j} previously.

A rather general point is inserted before discussing in more detail the problems of identification. The series which is used for the modelling in identification procedures is "Bank Advances" and this series has characteristics which do indicate it is evolving (see Fig. XIV). For any series under consideration it is only sensible to do some preliminary investigation to establish whether the series is in fact evolving before attempting to establish the nature of the evolution. A fairly obvious indication can be obtained from the study of a periodogram of residuals after regressing off a stable seasonal pattern as will be suggested in the next section.

Returning to the constructed series $\tilde{\alpha}_{j}(n), \tilde{B}_{j}(n)$, which are to form the basis of an enquiry into three simple generating models
(a) $\alpha_{j}(n)=m_{j}+\epsilon_{j}(n)$
(b) $\alpha_{j}(n)=\rho_{j} \alpha_{j}(n-I)+\epsilon_{j}(n)$
(c) $\left(\alpha_{j}(n)-m_{j}\right)=\rho_{j}\left(\alpha_{j}(n-1)-m_{j}\right)+\epsilon_{j}(n)$

33
The normalized spectra for wool presented in $\overline{5} 6.7$ does seem to have an unusual make-up of spectral power. (See Fig. XX).
where $\epsilon_{j}(n)$ is a random disturbance which is I.I.D. $(0,1)$ and m_{j} is the population mean of $\alpha_{j}(n) \cdot{ }^{34}$ It proves to be convenient in certain contexts to consider (c) in the form
$\alpha_{j}(n)=m_{j}\left(l-\rho_{j}\right)+\rho_{j} \alpha_{j}(n-1)+\epsilon_{j}(n)$.
To reiterate the variables which form the basis of tables are $\tilde{\alpha}_{j}(n), \tilde{\beta}_{j}(n), \tilde{\alpha}_{j}(n)-\bar{\alpha}_{j}$ and $\tilde{\beta}_{j}(n)-\bar{\beta}_{j}$ and the estimate of ρ_{j}, denoted $\hat{\rho}_{j}$, is the first autocorrelation for both the mean corrected and non-mean corrected data in Table 18. If it was the case that (a) was the correct model but that the estimate of $\hat{\rho}_{j}$ was based on model (b) then it is easily shown that the probability limit of \hat{p}_{j} is

$$
\begin{equation*}
\operatorname{plim} \hat{\rho}_{j}=\frac{1}{\left\{\frac{\sigma_{\epsilon}^{2}}{m_{j}^{2}}+1\right\}}=\frac{1}{\left\{1+\frac{1}{m_{j}^{2}}\right\}} \tag{6.4.21}
\end{equation*}
$$

and so unless m_{j}^{2} was very small one would expect $\hat{\rho}_{j}$ to be close to unity. On the other hand if model (a) is true and a procedure to estimate ρ_{j} appropriate to model (c) is employed then the probability limit of $\hat{\rho}_{j}$ is
$\operatorname{plim} \hat{\rho}_{j}=0$.
As the samples are reasonably large (always greater than 100) and the ρ_{j} estimates do not differ markedly depending on whether or not mean corrections are made and the estimates of ρ_{j} are quite large it appears unlikely that (a) is the appropriate model. In any case if a process of (a) type was generating $\alpha_{j}(n)$ and $\beta_{j}(n)$ it is a priori much more likely that the disturbance will not be

[^7]independent (see footnote 34). So in this rather restricted set of models attention is now centred on (b) and (c) as formulated in (6.4.20). If model (c) is the true model and the estimation procedure is based on model (b) then there is a bias in the estimate of $\hat{\rho}_{j}$, which is for large N equal to
$\left(1-\rho_{j}\right) /\left\{\frac{\sigma_{\alpha_{j}}^{2}}{m_{j}^{2}+1}\right\}$
where $\sigma_{\alpha_{j}}^{2}$ is the population variance of $\alpha_{j}(n)$. Thus with ρ_{j} values close to 1 the asymptotic expression for this bias will be small. Another possibility is if model (b) is true but the estimate of ρ_{j} is appropriate to model (c). In those circumstances there is no bias in the estimate of ρ_{j}, however there is a loss of efficiency in the estimate of ρ_{j}. The variance for $\hat{\rho}_{j}$ in the true model is
$\sigma_{\epsilon}^{2}\left\{\sum_{n=1}^{N} \alpha_{j}^{2}(n)\right\}^{-1}$
and for the assumed model is
$\sigma_{\epsilon}^{2}\left\{\sum_{n=1}^{\mathbb{N}} \alpha_{j}^{2}(n)-\frac{\left(\sum \alpha_{j}(n)\right)^{2}}{\mathbb{N}}\right\}^{-1}$
and so the loss of efficiency for estimating ρ_{j} using the incorrect model will be given by
$\left\{1-\left\{\left(\sum_{n=1}^{N} \alpha_{j}(n)\right)^{2} /\left(\mathbb{N} \sum_{n=1}^{N} \alpha_{j}^{2}(n)\right)\right\}\right\}$.
So far only the influence of the choice of an incorrect model on the parameter ρ_{j} has been considered but as is apparent from the discussion of an optimal β_{j} (see (6.3.14)) the effect of incorrect model specification on σ_{ϵ}^{2} is also important. We consider again the case when (c) is true and (b) is employed. The estimate of $\sigma_{\epsilon_{j}}^{2}$ is based on the vector of calculated residuals, $\tilde{\epsilon}$, where
$\tilde{\epsilon}=\tilde{\alpha}_{j}(n)-\hat{\rho}_{j} \tilde{\alpha}^{(n-1)}$
and is given by,
$\tilde{\sigma}_{\epsilon}^{2}=\{\tilde{\epsilon} \boldsymbol{\prime} \tilde{\epsilon} /(\mathbb{N}-1)\}$
which as is shown in App. A is not an unbiassed estimate of $\sigma_{\epsilon_{j}}^{2}$. The bias is presented for the general situation in App. A and in the above situation is given by,
\[

$$
\begin{align*}
& m_{j}^{2}\left(1-\rho_{j}\right)^{2}\left\{(N /(N-1))-\left(\Sigma \alpha_{j}(n-1)\right)^{2} /\left((N-1) \Sigma \alpha_{j}^{2}(n-1)\right)\right\} \\
& \quad=m_{j}^{2}\left(1-\rho_{j}^{2}\right)\left\{\left(N \Sigma \alpha_{j}^{2}(n-1)-\left(\Sigma \alpha_{j}(n-1)\right)^{2}\right) /(N-1) \Sigma \alpha_{j}^{2}(n-1)\right\} \tag{6.4.29}
\end{align*}
$$
\]

and the asymptotic expression for this bias is,
$m_{j}^{2}\left(1-\rho_{j}^{2}\right)\left\{1-\frac{m_{j}^{2}}{\sigma_{\alpha_{j}}^{2}+m_{j}^{2}}\right\}$
which will be small if m_{j} is small or if ρ_{j} is close to l. If model (b) is true and (c) is used again one finds there is no bias in the estimate of $\sigma_{\epsilon_{j}}^{2}$, but the variance of the estimate is larger than would be the case if the true model was employed. (See App. A).

The estimates of $\sigma_{\epsilon_{j}}^{2}$ actually obtained for each situation is the first figure given in the variance of residuals now in Table 18 and it is quite clear that the estimates do depend substantially on whether a mean correction is appropriate or not. As the question of whether a mean correction should be made must therefore be faced a test of whether the parameter m_{j} in model (c) is significantly different from zero must be considered. As has been noted this is exactly the same as testing whether m_{j} is significantly different
from zero in model (a) if $\epsilon_{j}(n)$ is replaced by $\eta_{j}(n)$ defined in footnote 34. The testing procedure can be expressed as an extremely simple regression problem, where the only regressor is the unit vector but where the variance-covariance matrix of residuals is the familiar one associated with a first order autoregressive disturbance with parameter ρ_{j}. Thus if ρ_{j} is as expected close to l it will be difficult to find a significant constant term since its variance is given by 35
$\operatorname{var} \bar{\alpha}_{j}=\frac{\hat{\sigma}_{\epsilon}^{2}}{N} \frac{1}{\left(1-\hat{\rho}_{j}\right)^{2}}=\frac{\hat{\sigma}_{\alpha_{j}}^{2}}{N} \frac{\left(1-\hat{\rho}_{j}^{2}\right)}{\left(1-\hat{\rho}_{j}\right)^{2}}$
where $\hat{\sigma}_{\alpha_{j}}^{2}$ is the variance of $\tilde{\alpha}_{j}(n)$, where the generalized least squares estimate of m_{j} is just $\bar{\alpha}_{j}$, and where the second expression merely employs the population relation between the variance of $\alpha_{j}(n)$ and the variance of $\epsilon_{j}(n)$.

Only rather tentative conclusions on the nature of the parameters needed to develop the "optimal" model can be drawn. It appears that the estimates of $\hat{\rho}_{j}$ and σ_{ϵ}^{2} obtained from $\tilde{\alpha}_{j}(n)$ and $\tilde{B}_{j}(n)$ are useful only for $j \quad 1,2$, -which are usually the main sources of power. As mentioned before the values of ρ_{j} are not very much different whether mean corrections are made or not but the estimates of $\sigma_{\epsilon_{j}}^{2}$ are quite different so that unless one is able to decide with some certainty whether $m_{j}=0$ a range of σ_{ϵ}^{2}. values would have to be considered. The latter frequencies, $j \geqq 2$, do not appear to be easily handled by the models proposed

35
It may be more convenient on occasions to use the spectral representation of the variance of $\bar{\alpha}_{j}$ which is given by $\operatorname{var} \bar{\alpha}_{j}=\frac{2 \pi f(0)}{\mathbb{N}}$ where $f(\lambda)$ is the spectrum of $\eta_{j}(n)$.
and short of extending the models under consideration a rather familiar approach has to be adopted - partly justified by the usually minor role of the latter seasonal frequencies. It is assumed that the ρ_{j} for these frequencies are identically equal to unity and thus an estimate of σ_{j}^{2} will be made from the first differences of the $\tilde{\alpha}_{j}(n)$ and $\tilde{\beta}_{j}(n)$ for $j=2,3,4,5,6$.

6.5 Periodogram Estimates

To make further progress with the task of establishing the quantities on which the "optimal" method of signal (seasonal) extraction depends it is necessary to know something of the nature of the process generating the "non-seasonal". At least one must have some idea of the "non-seasonal" power or magnitude, if as is suggested in Chapter IV the simplifying assumption is made that the level of non-seasonal power or 'noise' is a constant over a band at each seasonal frequency. A crude estimate of this power will be derived from an analysis of the periodogram ordinates of $y(n)$ - the trend removed series. This section also includes a discussion of the periodogram ordinates of the original observations, $w(n)$ (see (3.2.1)), and of the residual series after a stable seasonal pattern has been removed, $r(n)$.

The value in inspecting the periodogram ordinates of $r(n)$ is easily demonstrated. Before beginning the detailed work of developing an evolving seasonal estimation procedure as suggested in Chapters IV and V it is as well to attempt some assessment of whether a stable pattern is adequate. A quick guide to the adequacy of the stable pattern is to graph the periodogram ordinates of $r(n)$ and to note whether significant power remains in frequencies in a band about any λ_{j}. This has been done for two series:

```
All (Australian) Cheque Paying Banks: Loans, Advances and Bills
    Discounted $m (Bank Advances) September 1945 to May 1967
    inclusive }3
```

Number of bales of greasy wool sold in Australia 000 (Wool)
July 1948 to June 1967 inclusive 37
and in Figs. XVII a, b, the periodogram ordinates, these ordinates
after smoothing by a three term average, and after smoothing by a
five term average are shown. For those averages which include an
ordinate which is $\{\pi j / 6\}, j=1,2,3,4,5,6$, that term is omitted from
the average and the denominator reduced by unity. It is quite clear
that a considerable amount of power remains close to the seasonal
frequencies. For each of the series this is most marked for λ_{1};
however there are also other seasonal frequencies where it does
appear that the extraction of the power in a band about λ_{j} would
remove some of the peaks close to these seasonal frequencies in the
spectrum of $r(n)$.

A further useful enterprise is the consideration of the periodogram of four original series, the two previously introduced above and Registrations of New Motor Vehicles in Australia (Motor Vehicles) and Production of Electricity in Australia (Electricity) ${ }^{36}$ (the logarithm of the published series is $w(n)$). It was conjectured that careful scrutiny of the periodogram for each series might indicate appreciable differences in band width at seasonal frequencies for different series. To make this comparison the series were all restricted to the most recent 204 observations and thus to the same number of periodogram ordinates. It is possible to

36

The source of these series is the Monthly Review of Business Statistics (Commonwealth Bureau of Census and Statistics, Canberra, Australia).

37
The source of this series is the National Council of Wool Selling Brokers.

FIG. 80112

FIG. XVII b
TERM AVERAGE OF PERIODOGRAM ORDINATES FOR RESIDUALS FROM A STABLE SEASONAL PATTERN
b) $W O O L$

recognize the difference between the series Bank Advances and
Wool on the basis of the bandwidth of the seasonal signals (see Fig. XVIII). It was however particularly difficult to find any of the series which over a period as long as 17 years produced a periodogram with seasonal spikes.

To complete the search for parameters necessary to help in the development of an 'optimal' seasonal extraction procedure one must at least estimate the power of $x(n)$, i.e. the non-seasonal noise after trend has been removed, in a band about each λ_{j}. A guiding estimate of these quantities may be obtained from the periodogram of $y(n)$, which is defined by (see 4.3) $y(n)=s(n)+x(n)$.

The periodogram ordinates of $y(n)$ are then used to form equally weighted averages of either three or five terms. Once again averages involving ordinates at (or adjacent to) λ_{j} should omit those ordinates in the averaging procedure and the denominator of such averages adjusted accordingly ${ }^{38}$ (see Table 19). A freehand line is now used to "fit" the averaged periodogram ordinates, which are now of course an estimate of the spectrum of the non-seasonal noise when trend has been removed (see Fig. XIX). The value of the "fitted" line at λ_{j} is used as a rough estimate of the non-seasonal power required.

38
There is a need here to compare the approximate spectral shape obtained if one varies the number of ordinates omitted, that is begin by just omitting the ordinate at λ_{j} and one either side and then try λ_{j} and two either side and perhaps even the next step of three either side of λ_{j} being omitted.

FIG. XIX

FIG. XIX

Now that estimates of $\rho_{j}, \sigma_{\epsilon_{j}}^{2}$ and $f_{x}\left(\lambda_{j}\right)$ are available it would be possible to use the seasonal estimation procedures outlined in 55.7 where ρ_{j} is not identically equal to unity and the choice of β_{j} is based on the series to be seasonally adjusted. It is recognized that the demodulated series for each λ_{j} is based on the seasonal component and the noise component of the original series; this is almost certainly the reason for the latter frequencies not being easy to model. To make much progress with this task of modelling at each λ_{j} more specific assumptions will have to be made about the generating models for both signal and noise.

6.6 An Overall Implicit Filter

The methods used to estimate trend and seasonal are linear filtering methods and it is therefore possible to give a response function for the optimal extraction at each time point. This means that there is not one response for the extraction operation that for example takes the original series into the trend series or the trend free series into a seasonal series but that there is a separate response for each point in the sample. Fig. XII indicates however that there is little difference in these functions once the time point considered is more than say 12 observations from either end of the sample period. To illustrate the overall response function, meaning the total effect resulting from the use of both the "optimal" seasonal and trend extraction appropriate to each time point, the approach employed by Nerlove [45] is introduced. The situation considered by Nerlove was of course quite different in that the B.L.S. procedure was a non-linear one and therefore not easily describable by a theoretical response function. An implicit response function derived from the cross-spectrum was the only practical guide to the overall effect of the B.I.S. procedure. The cross-spectrum under consideration
is between the original series and that series after subtraction of a seasonal estimate, i.e. an adjusted series.

To briefly outline what was done the symbols T and S denote the operations of trend and seasonal extraction, where extraction is synonomous with estimation and not with removal. The trend is therefore estimated from the original series by Iw (n). Seasonal extraction is then performed on the trend removed series, (1-T)w(n); an additional operation produces a seasonal estimate, $S(1-T) w(n)$, and the adjusted series is therefore

$$
\begin{align*}
a(n) & =w(n)-S(1-T) w(n) \\
& =(1-S) w(n)+S T w(n) . \tag{6.6.1}
\end{align*}
$$

The extent to which the estimate of the gain from the cross-spectrum between $a(n)$ and $w(n)$ approximates the gain of the filtering operation (l-S), which should we know from Fig. XII have a shape very close to that sought for by Nerlove [45] and Fishman [14], depends on two rather straightforward points. The first is the extent to which one has been able to design a trend extraction filter with a response function which does not have a significant overlap with the response function of the seasonal extraction filter. Thus an effectively designed seasonal filter will fail to produce an implicit response function with acceptable gain and phase characteristics if the trend filter is poorly designed.

It would be very difficult indeed to produce a trend filter which had no overlap problems and if overlap does exist then the extent to which the implicit function fails to represent the gain of the operation (1-S) depends on the power of $w(n)$ around points of significant overlap. Quite apart from the consideration of what the implicit response is actually measuring there are practical difficulties in adequately estimating a frequency response function, especially when there are peaks in the spectrum as there will be
at or close to zero frequency and at the seasonal frequencies (see [37]). As the presence of peaks in the spectrum will result in smudged cross spectral estimates the estimation was repeated for an increasing number of spectral points. This is described as "window closing" [37] and if as the number of points increase there is little change in the gain and phase, an indication is obtained that little "smudging" of the cross-spectral estimate is taking place. 39

IWo series, Bank Advances and Wool, and their respective adjusted series, are subjected to cross-spectral analysis; the number of lag covariances, m, used in the estimates are allowed to vary as follows: $m=24,36,48,60,72$. A measure of the relative distribution of power in each original series is obtained by normalizing the spectral quantity at each frequency by dividing by the sum of the spectral power over all frequencies. It is plotted in Fig. XX for each m. Both series have been restricted to the most recent 216 observations and it could be argued that one should preclude from serious consideration those spectra and cross-spectra based on larger m than 48. The wool graphs certainly seem to support this argument and so the gain and phase for $m=48$ is focusssed on (see Fig. XXI). There is no significant phase change introduced by the filtering procedures as the maximum phase change is approximately $\frac{\pi}{12}$ at λ_{1} and as

39

It might be argued in this section that it may also be sensible to use a different covariance averaging kernel such as the Tukey-Hanning kernel since the presence of negative spectra and then removal as m increases may be an effective way of recognizing the disappearance of excessive blurring.
coherence at this frequency is .044 the variance of the phase estimate would be large at this frequency. ${ }^{40}$ No attempt will be made to explain in detail the failure of the gain to reproduce the complement of the gain given in Fig. XII. The only comment is that if as is suggested most of the smudging effects have been minimized then there remains a minor distortion which can be ascribed to the design of the filtering routine piece by piece, which in practical terms seems to be the only way to proceed.

In the Bank Advances series one might consider the spectra based on 60 lag covariances as there is no indication of oscillations in the spectral and cross-spectral quantities until $m=72$. Even with this large number of spectral bands the gain of the implicit response does not clearly represent the complement of the gain of the seasonal extraction operation (see Fig. XII). The largest phase change indicated is a change of approximately $\pi / 6$ at $\frac{39 \pi}{60}$ - a time lag of about one quarter of a month. Again however the coherence at $39 \pi / 60$ is .038 and little significance should be attached to this change. It would be surprising if this coherence was not small as $39 \pi / 60 \cong \frac{2 \pi}{3}$ i.e. a harmonic of the frequency $\pi / 6$.

It should also be noted that even with the same number of observations in each series the implicit response produced is far from identical. Some of the differences are due to chance variation but some may also be due to the different spectral structure of the series (compare Figs. on normalized spectra with gain for each series).

40
Since the estimate of the phase can be shown to be asymptotically normal with mean $\theta_{i j}(\lambda)$ and variance
$\frac{M}{2 N}\left[\int_{-\infty}^{\infty} k^{2}(x) d x\right]\left\{\frac{1}{W_{i j}^{2}(\lambda)}-\frac{\left\{c_{i j}^{2}(\lambda)-q_{i j}^{2}(\lambda)\right\}^{2}}{\left\{c_{i j}^{2}(\lambda)+q_{i j}^{2}(\lambda)\right\}^{2}}\right\}$.

6.7 Concluding Example

Chapters IV and V dealt with a special model of the seasonal signal and presented methods for a detailed analysis of a set of data using this special model. Chapter VI has suggested ways in which one might use the same set of data with a slightly more general and efficient model. The modifications to the model derive from further analysis of the data and are used to re-estimate the seasonal component in a fashion suggested in 85.7 .

As an illustrative example the series Bank Advances is first seasonally adjusted on the basis of Model I in which $\rho_{j} \equiv 1$ and $\beta_{j}=.96$ for all λ_{j} and subsequently on the basis of Model II where

	λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{5}	λ_{6}
ρ_{j}	. 99	1.0	1.0	1.0	1.0	1.0
β	. 93	. 99	. 98	. 99	. 99	. 98

The results of the deseasonalizing procedures based on Models I and II are printed out in full detail in Appendix C. Model II involves parameter estimates derived from the demodulation approach suggested in 86.4 and from the periodogram ordinates of $y(n)$. It is relatively easy to support the decision to use these estimates notwithstanding the difficulties associated with this approach which are discussed in 86.4. However as the estimates in Tables 16 and 17 are unsuitable for further use some explanation for the obvious inability to recover satisfactory estimates of ρ_{j}, τ_{j} and k_{j}^{2} from the $\hat{\alpha}_{j}(n), \hat{\beta}_{j}(n)$ is necessary. The approximate spectrum of the $\hat{\alpha}_{j}^{(\infty)}(n), \hat{\beta}_{j}^{(\infty)}(n)$ presented in (6.3.20) is equated to the general formula for the appropriate mixed moving average autoregression, i.e.
$\frac{k_{j}^{2}\left|I-\tau e^{i \lambda}\right|^{2}}{\left\{\| 1-\left.\beta_{j} e^{i \lambda}\right|^{2}\right\}^{2}\left\{\left|1-\rho_{j} e^{i \lambda}\right|^{2}\right\}}$
to derive the relations given in (6.3.21).
As a satisfactory method for estimating the parameters of (6.7 .1), subject to the necessary inequality constraints, is not Q.vailable the search procedure on ρ_{j} and τ_{j} outlined in 86.3 was employed. The values in Tables 16 and 17 for $\hat{\tau}_{1}, \hat{\sigma}_{1}^{2}$ and $2 \pi \hat{f}_{x}\left(\lambda_{1}\right)$ are a reflection of the fact that the plotted likelihood changes very little in magnitude as τ_{1} is varied - indicating of course a very high variance for $\hat{\tau}_{1}$. As a consequence of the wide range in which τ_{I} may lie the associated estimates of σ_{1}^{2} and $2 \pi f_{x}\left(\lambda_{1}\right)$ will also have large variances.
A. possible reason for the likelihood discriminating so poorly with respect to τ_{1} is the invalidity of the assumption that the noise level is constant over the band considered. It is almost certain however that the real cause is that one is trying to estimate the shape of a sharply changing spectrum over a very narrow frequency band. Very many sets of parameter values will do almost equally as well with the information available so that the likelihood function is extremely flat in the neighbourhood of its maximum.

TABLE 18a
CENTRED 48 TERM M.A. - MEAN CORRECTED

TABLE 18a
CENTRED 48 TERM M.A. - MEAN CORRECTED
a_{3}

TABLE 18b
REPEATED 24 TERM M.A. - NO MEAN CORRECTION
a_{1}

TABLE 18 b
REPEATED 24 TERM M.A. - NO MEAN CORRECTION
B_{1}

TABLE 18b
REPEATED 24 TERM M.A. - NO MEAN CORRECTION
α_{2}

TABLE 18b
REPEATED 24 TERM M.A. - NO MEAN CORRECTION
β_{2}

TABLE 18b
REPEATED 24 TERM M.A. - NO MEAN CORRECTION
α_{3}

$\begin{array}{rlr} \text { AUTUCORRELATIOVS } \\ \text { •84 } \\ .641 & 0.319 & .218 \end{array}$	0.762	$\begin{aligned} & 0.795 \\ & 0.564 \end{aligned}$	$\begin{aligned} & 0.841 \\ & 0.591 \end{aligned}$	$\begin{aligned} & 0.763 \\ & .531 \end{aligned}$	$\begin{aligned} & 0.694 \\ & 0.480 \end{aligned}$	$\begin{aligned} & 0.714 \\ & .481 \end{aligned}$	$\begin{aligned} & 0.677 \\ & 0.439 \end{aligned}$	$\begin{array}{r} 0.674 \\ 0.44 \mathrm{c} \end{array}$	0.751
VARIANCE OF RESIDUALS $\begin{array}{llll} : 4458 E & 1 & 0131 E & 1 \\ : 3765 E & 1 & 0410 & C 1 \end{array}$	$0.7486 E$ 0.4456 0.3708	$\begin{array}{ll}01 & 0 \\ 1 & 7 \\ & 0.3\end{array}$		$0.3954 E$ 0.4075 E 0.3001 E	$\begin{array}{ll}1 & 0 \\ 1 & \\ 1 & 0\end{array}$	$23 E$ 75 9 O	$0.5344 E$ $0.4505 E$ $.3595 E$	$i_{1} \quad 0$	年 64501
VARIANCES OF AUTOCORRELATICNS $\begin{array}{lll} .005 & .012 & .015 \\ .075 & .077 & .083 \end{array}$	$\begin{aligned} & \text { C. } 025 \\ & 0.886 \end{aligned}$	$\begin{array}{r} 031 \\ 0.089 \end{array}$	0.837	0.044	0.050	$\begin{aligned} & 0.055 \\ & 0.101 \end{aligned}$	C.U50	0.165	0.065
$\begin{array}{rlrl} \text { SIG. STATISTIC } \\ 11 \cdot 767 & 7.451 & 5 \cdot 974 \\ 2.345 & 2.175 & 2.377 \end{array}$	4.786 1.825	$\begin{aligned} & 4.501 \\ & 1.890 \end{aligned}$	4.344 1.948	3.620 1.716	$\begin{aligned} & 3.093 \\ & 1.529 \end{aligned}$	3.041 1.516	2.700	2.650	2.856 1.502
AUTOREGR.COEFFS. $\begin{array}{rrr} -0.438 & -0.463 & -0.054 \\ 0.074 & -0.274 & .154 \end{array}$	0.28t	-0.135 -0.150	-0.520	3.127	0.572 .158	-0.140 -0.030	-0.330 -0.139	0.152	-0.029 -0.06
PARTIAL AUTOCDRRELS. $\begin{array}{rrrr} .844 & 0.363 & .283 \\ -0.223 & .011 & -131 \end{array}$	0.022	$\begin{aligned} & 0.264 \\ & .148 \end{aligned}$	$\begin{aligned} & 0.366 \\ & 0.119 \end{aligned}$	-0.173 -0.05	-0.4305	0.118	0.212	-0.115	0.182
VARIANCES OF PARTIAL AUTUGRPRE $\begin{array}{lll}0.05 & 0.005 & 025 \\ 0.05 & 05\end{array}$	$\begin{aligned} & \text { FLS } \\ & \text { C.OO5 } \end{aligned}$	C.005	0.005	0.005	-0.005	0.005	0.005	0.005	C.CC5
$\begin{array}{rlrrr} \text { SIG. STATISTIC } & & \\ & 1.967 & .197 & 3.322 & - \\ -3.055 & 0.145 & -1.784 & - \end{array}$	- 2.312	$3 \cdot 701$	5.1110	-2.403 -0.748	-5.773	1.834 0.706	2.934	$-1.4 \leq \frac{3}{}$	2.501

TABLE 18b

REPEATED 24 TERM M.A. - NO MEAN CORRECTION
B_{3}

AUTDCORRELATIONS $\begin{array}{lll} 0.825 & 0.812 & .803 \\ 0.055 & 0.633 & .061 \end{array}$	$\begin{aligned} & C .733 \\ & 6.587 \end{aligned}$	c.730	$\begin{aligned} & 0.308 \\ & 0.034 \end{aligned}$	$\begin{array}{r} 0.770 \\ 0.598 \end{array}$	0.710	$\begin{aligned} & 0.750 \\ & 0.565 \end{aligned}$	$\begin{aligned} & C .740 \\ & C .542 \end{aligned}$	0.732	$\begin{aligned} & 0.837 \\ & 0.629 \end{aligned}$
VARIANCE OF RESICUALS	$0.9315 E$ $0.5290=$ $C .33095$	$\begin{array}{ll}01 & 0 \\ C 1 & 0\end{array}$	$265 E$ $21 E$ 774 1	$0.8301 E$.4460 .37205	$\begin{array}{ll}1 & 0 \\ 1 & 7 \\ 01 & :\end{array}$	$677 E$ 444 $643 E$	U.7577E .4094 $.3043 E$	$\begin{array}{ll}01 & C \\ 01 & C\end{array}$	$602 E$ 421 $42 C E$ 621
VARIANCES OF AUTOCJRRELATIONS $\begin{array}{lll}0.075 & 0.012 & .018 \\ 0.077 & 0.082\end{array}$	0.025	$\begin{aligned} & C .030 \\ & C .034 \end{aligned}$	0.036 0.098	3.043	0.147	$\begin{aligned} & 0.054 \\ & 0.109 \end{aligned}$	0.059 0.112	O.065	0.070
$\begin{array}{lll} \text { SIG. STATISTIC } & \\ 11.702 & 7.494 & 5.335 \\ 2.518 & 2.402 & 2.245 \end{array}$	$4.68 t$ 1.45	4.556 2.449	4.240 2.022	3.720 1.868	3.210 1.600	3.237 1.719	3.039	2.878 1.550	3.1. 1.85
AUTOREGR.CIEFFS. $\begin{array}{rrr} -0.381 & -0.35 t & -0.09 \\ 0.133 & -0.241 & .215 \end{array}$	0.333 0.366	$\begin{array}{r} -0.234 \\ 0.044 \end{array}$	-0.417	0.067	0.3330	-0.138	-0.405 $-C .111$	0.124	-0.13
PARTIAL AUTOCORRELS. $\begin{array}{rrr} .825 & .412 & -0.261 \\ -0.322 & -067 & -081 \end{array}$	-0.071 -0.172	0.323 -0.15	0.295 0.093	-0.067	-0.359 -.172	.290 .120	0.329 0.143	-0.132 0.069	0.228
VARIANCES OF DARTIAL AUTJCORR $\begin{array}{lll} 0.005 & 0.005 & .005 \\ 0.005 & 005 \end{array}$	$\begin{array}{r} \text { RELS } \\ 0 \subset 5 \\ . O C 5 \end{array}$	C. 005	0.005	0.005	0.005	0.005	C.005	0.065	$\begin{aligned} & 0 . \operatorname{cc} 5 \\ & C . C C E \end{aligned}$
$\begin{array}{rlr} S I G \cdot & \text { STATISTIC } \\ & 11.7 C 2 & -806 \\ & -4.557-0.968 & -3.331 \end{array}$	-1.002 -2.017	4.522 -4.250	4.125	0.817 -0.955	-4.383 -2.313	4.020	4.552 1.918	$-1.82 t$	3.132

TABLE 18 c
REPEATED 24 TERM M.A. - MEAN CORRECTED

TABLE 18 C
REPEATED 24 TERM M.A. - MEAN CORRECTED
β_{1}

TABLE 18c
REPEATED 24 TERM M.A. - MEAN CORRECTED
α_{2}

TABLE 18c
REPEATED 24 TERM M.A. - MEAN CORRECTED
β_{2}

REPEATED 24 TERM M.A. - MEAN CORRECTED

TABLE 18c
REPEATED 24 TERM M．A．－MEAN CORRECTED
B_{3}

DERI ODOGRAM AND SMOOTHED DERIODOGRAMS CF $\mathbf{y}(\mathrm{n})$
OERIJOOGRAM URUINATES FOR 192 ORSERVATIONSOF MOTOR VEHICLE REGISTRATIONS SER IES

K	$(\pi+(k-1) 5 \pi)^{\prime} \quad 76$	$(2 \pi+(x-1) 5 \pi) / 96$	$13 \pi+(k-1) 5 \pi$)/ 96	$(4 \pi+(K-1) 5 \pi) / 96$	$(5 \pi+(k-1) 5 \pi) / 96$
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 6 \\ & 8 \\ & 8 \\ & 10 \\ & 10 \\ & 112 \\ & 113 \\ & 114 \\ & 15 \\ & 17 \\ & 17 \\ & 17 \\ & 19 \\ & 20 \end{aligned}$					
THREE-TER 1 AVERAGES					
k	$(2 \pi+(K-1) 5 \cdot 3 \pi) / 96$	$(5 \pi+(k-1) 5 \cdot 3 \pi) / 90$	$(8 \pi+(k-1) 5 \cdot 3 \pi) / 96$	$(11 \pi+(k-1) 5 \cdot 3 \pi) / 96$	$14 \pi+(k-1) 5.3 \pi) / 96$
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{array}{ll} 0.53073 E & 01 \\ 3.34771 F & 03 \\ 0.47480 E & 02 \\ 0.95099 E & 02 \\ 0.162577 & 02 \\ 0.37770 & 02 \\ 0.30715 E & 0 ? \end{array}$		$\begin{array}{lll} 0.45466 \mathrm{E} & 02 \\ 0.47457 E & 02 \\ 0.44030 & 02 \\ 0.48173 E E & 01 \\ 0.19752 E & 03 \\ 0.3411 E & 02 \end{array}$	$\begin{array}{lll} 0.58027 \mathrm{E} & 02 \\ 0.66429 E & 02 \\ 0.16474 \mathrm{E} & 02 \\ 0.12393 E & 02 \\ 0.26958 \mathrm{E} & 02 \\ 0.24510 E & 02 \end{array}$	$\begin{array}{ll} 0.38318 \mathrm{E} & 02 \\ 0.32212 \mathrm{E} & 02 \\ 0.156511 \mathrm{E} & 02 \\ 0.14938 \mathrm{E} & 02 \\ 0.275311 & 02 \\ 0.23844 \mathrm{E} & 02 \end{array}$
FIVE-TERY AVERAGES					
K	$(3 \pi+(k-1) 5.5 \pi) / 96$	$(8 \pi+(K-1) 5.5 \pi) / 96$	$(13 \pi+(k-1) 5 \cdot 5 \pi) / 96$	$(18 \pi+(k-1) 5.5 \pi) / 96$	$(23 \pi+(K-1) 5.5 \pi) / 96$
$\begin{aligned} & 1 \\ & \frac{1}{2} \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 9: 81467 E \\ & 301 \\ & 0: 298023 \\ & 0.16383 E \\ & 0.02 \end{aligned}$	$\begin{array}{lll} 0.44013 E & 02 \\ 0.30070 E & 02 \\ 33337 E & 02 \\ 0.27671 E & 32 \end{array}$	$\begin{array}{lll} 0.51594 E & 02 \\ 0.237377 E & 02 \\ 0.13040 & 02 \\ 3.25105 E & 0 ? \end{array}$	$\begin{array}{lll} 0.24705 E & 03 \\ 0.199100 E & 02 \\ 0.12524 & 03 \\ 0.24277 E & 02 \end{array}$	$\begin{array}{lll} 0.93024 E & 02 \\ 0.573466 \mathrm{E} & 02 \\ 0: 26493 \mathrm{E} & 02 \\ 0.0 \end{array}$

TABLE 19
DERI ONJGRAM ANO SMOJTHFN PERIONOGRAMS OF $\mathrm{y}(\mathrm{n})$

		(2T+(k-115 5 (120	ERVATIONSOF EAVK ADV	SER	
k	$\pi+(k-1) 5 \pi / 1120$	$(2 \pi+(k-1) 5 \pi / 120$	$(3 \pi+(k-1) 5 \pi) / 120$	$(4 \pi+(k-1) 5 \pi) / 120$	$(5 \pi+(k-1) 5 \pi) / 120$
$\frac{1}{2}$	$\begin{aligned} & 0.33553 E \\ & 0.35044 E \\ & 03 \end{aligned}$	$0.22041 E \quad 01$	$0.12081=02$	$0.56793 E 02$	0.2904 OF 03
3	$0 \cdot 31227 E 02$	O: 2123 E 03	0. 01820 F 03	0.11267804	O. $42086 E \quad 03$
$\stackrel{4}{5}$	O.60373E 03	0.70558 C	$0.15915{ }^{0}$	$0.48314 E 03$	O. $22074 \mathrm{E}^{\text {O3 }}$
	J. 3 344885E 04	$0 . E 064$ TE 33	0.15532E 03	O.08294E 03	0. $57 \times 9 \mathrm{CE} 04$
	0.49796F 0 ?	$0.11354{ }^{\text {a }}$	O. 25043 E O3	0.53139 E 02	0.30353 E 03
	9.27314F 0 ?	0.84937 01	$0: 27003 \mathrm{~F}$	0.58942 E2	$0 \cdot 13607 E$ O2
10	0.37341F 03	0. 82313 E 02	$0.14534=03$	0.12040 F 03	0.1702 OE 04
11	0.30745 E 02	$0.50825=01$	$0.14428=-01$	0.44881 E 01	0.62928E 02
	0.17379 - 01	C.11404E J2	0.43536E O2	0.18003 E 02	0.1127 EE 02
14	$0 \cdot 68374501$	0.26552 E 02	0.19336E 02	$0.14025{ }^{\text {e }}$	0. $27931 E 03$
15	0.12181 C	$0: 423170$	3.27912E 02	0.56667E 01	$0 \cdot 95632 \mathrm{El}$
17	0.27253502	O:55573E 00	U:11934 02	0.16833 E 01	$0 \cdot .55752$ F 01
19	0.2775250	0.17317501	0.65575 E 00	$0 \cdot 55162 \mathrm{~F}$	0.30804 E 03
19	$0 \cdot 17042=01$	$0 \cdot 8743$ O 01	J. 24094 F 02	$0 \cdot 202245^{02}$	O.74507E 01
20	0. 22699 E 02		9. 3274 OU	0.18441 E 00	0.50361 E 01
21	0.56467 O1	0.11162 O2	$0.46723=02$	$0.14905 \mathrm{E} \quad 02$	0.46417 O2
$\begin{aligned} & 22 \\ & 23 \end{aligned}$		$0 \cdot 89141501$	0.40623 E 01	$0.35655{ }^{0} 01$	0.25775 E 01
24	0.78549 E O1	0.14379E 02	0.37263E 01	0.23059 E 02	$0 \cdot 20871 E 02$
K	$(2 \pi+(k-1) 5 \cdot 3 \pi) / 120$	$(5 \pi+(k-1) 5.3 \pi) / 120$	$(3 \pi+(k-1) 5 \cdot 3 \pi) / 120$	$(11 \pi+(k-1) 5 \cdot 3 \pi) / 120$	
	O.15980E 0?	$0.22924 E 03$			($14 \pi+(k-1) 5 \cdot 3 \pi) / 120$
$\frac{2}{3}$	O. 512 SV2E 03	0.20055 E 34	0.64073 E O3	0.42481 E 03	0.2639 CE O3
	0.59380F 0.502	0.33237502	0.14168 E 03	$0.21823 E 03$	0.10153 E
5	0.48422E O2		O.11362E 02	$0 \cdot 81399 \mathrm{E} 01$	O. 1117 P2E 03
	?.13251E 02	$0.80011=02$	$0 \cdot 21036$ O2	0.64880 E 01	$\begin{array}{ll}0.29902 E ~ & 02 \\ 0.15742 E & 02\end{array}$
9	0.37955 $0.17064{ }^{\text {a }}$	0.93005 F J1	0.22073 E O2	0.74723 F Ol	0. 2199 GE O2
			0.13888 E 02	0.58910 F 01	$\begin{array}{ll} 0.78813 \mathrm{E} \\ 0.14389 E & 01 \end{array}$
FIVE-TERM AVERAGES					
K	$(3 \pi+(k-1) 5 \cdot 5 \pi) / 120$	$(3 \pi+(k-1) 5 \cdot 5 \pi) / 120$	$(13 \pi+(k-1) 5 \cdot 5 \pi / 1) 20$	$(19 \pi+(k-1) 5.5 \pi) / 120$	$(23 \pi+(k-1) 5.5 \pi) / 120$
	$0.77044=02$				
2	$0 \cdot 13115=03$	$\begin{aligned} & 0.54070 E O 3 \\ & 0.50+39 E O 2 \end{aligned}$	0.32706 E 03	0.22205E 04	O. 55623 E 03
3	0.15222 E 02	$0: 72945=02$	1.45235E 03	0.14854 E 03	0.94853E 01
4	$0.10201=03$	0.32501E 02	O.34177E O2	0.14590 O2	$0.12728 \mathrm{E} \quad 02$
5	J.80905E 01	0.17070E 02	j:11020 E O2	$0.33215=01$	$0.38932 E 02$

TABLE 19 c
PERIORGGRAM AND SMOgTHED PERIODOGRAMS OF $y(n)$

<	$(\pi+(k-1) 5 \pi / 103$	$(2 \pi+(n-1) 5 \pi) / 108$	$(3 \pi+(k-1) 5 \pi / 108$	$(4 \pi+(k-1) 5 \pi) / 108$	$(5 \pi+(k-1) 5 \pi) / 109$
$\begin{aligned} & 1 \\ & \frac{1}{2} \\ & 3 \\ & 3 \\ & 4 \\ & 7 \\ & 3 \\ & 7 \\ & 3 \\ & 7 \\ & 17 \\ & 11 \\ & 12 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 17 \\ & 178 \\ & 12 \\ & 20 \\ & 21 \\ & 22 \end{aligned}$					
THRFE-TニRM A VEFAGES					
K	$(2 \pi+(k-1) 5 \cdot 3 \pi) / 103$	$(5 \pi+(k-1) 5 \cdot 3 \pi) / 108$	$(0 \pi+(k-1) 5 \cdot 3 \pi) / 109$	$(11 \pi+(K-1) 5 \cdot 3 \pi) / 108$	$(14 \pi+(k-1) 5 \cdot 3 \pi) / 108$
$\begin{aligned} & 1 \\ & \frac{1}{2} \\ & 3 \\ & 4 \\ & 5 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$		$\begin{array}{lll} 0.19024 E & 0 ? \\ 010249 E & 04 \\ 0 & 43955 & 03 \\ 03143 E & 03 \\ 0 & 0311 E E & 04 \\ 0 & 115359 E & 03 \\ 0 & 1539 \end{array}$		$\begin{array}{ll} 0.31645 E & 02 \\ 0: 439311 & 03 \\ 0: 25943 & 03 \\ 0: 39775 E & 03 \\ 0: 40370 E & 03 \\ 0: 41020 & 03 \\ 0.50789 E & 03 \end{array}$	$\begin{array}{lll} 0.31795 \mathrm{E} & 03 \\ 0.62 & 074 \mathrm{E} & 03 \\ 0: 43270 \mathrm{E} & 03 \\ 0: 13044 E & 03 \\ 0 & 169811 \mathrm{E} & 04 \\ 0 & 955888 \mathrm{E} & 03 \\ 0.1596 C E & 04 \end{array}$
FIVE-TE24 AVERACES					
κ	$(3 \pi+(k-1) 5 \cdot 5 \pi) / 108$	$(8 \pi+(\alpha-1) 5 \cdot 5 \pi) / 108$	$(13 \pi+(k-1) 5.5 \pi) / 108$	$(18 \pi+(\mathrm{K}-1) 5 \cdot 5 \pi) / 108$	$(23 \pi+(k-1) 5 \cdot 5 \pi) / 108$
1 3 3 + +	$\begin{array}{lll} 0 .+8112 E & 01 \\ 0 & 53070 E & 03 \\ 0345 & 03 \\ 0 & 76140 E & 03 \\ 0.11501 F & 0+4 \end{array}$	$\begin{array}{lll} 0: t 5917 E & 02 \\ 0: 30012 e & 03 \\ 0: 01125 & 03 \\ 0: 279330 & 03 \\ 0 & 04 \end{array}$	$\begin{array}{lll} 0.20694 E & 03 \\ 0: 65920 & 03 \\ : 5559 & 03 \\ 0: 23262 E & 03 \end{array}$	$\begin{array}{lll} 0.94861 E & 03 \\ 0: 30917 & 03 \\ 0: 54240 E & 03 \\ 0.11124 & 04 \end{array}$	$\begin{array}{lll} 0.55884 E & 03 \\ 0: 43327 E & 03 \\ 0: 14787 E & 04 \\ 0.60514 E & 03 \end{array}$

FIG. $X X$
NORMALIZED SPECTRAL DENSITY FOR ORIGINAL SERIES
BANK ADVANCES

FIG. XXI

FIG. \bar{X} I

FIG. XXI

COHERENCE

WOOL

APPENDIX A EFFECTS OF MIS-SPECIFICATION OF MODEL ON ESTIMATE OF σ_{ϵ}^{2}

Case I

The mis-specification involves only erroneous inclusion or exclusion of explanatory variables. Initially

$$
\begin{array}{ll}
\text { Assumed Model: } & y=X_{1} \beta_{1}+\eta \tag{A.1}\\
\text { True Model: } & y=X_{1} \beta_{1}+X_{2} \beta_{2}+\epsilon
\end{array}
$$

and the data matrix in the true model is $\mathbb{N} \times K$ and may be partitioned as follows, $X=\left(X_{1}, X_{2}\right)$, where X_{1} is $\mathbb{N} \times L$ and X_{2} is $\mathbb{N} \times(K-L)$. The disturbance term \in is $\mathbb{N} . I . D . ~\left(0, \sigma_{\epsilon}^{2}\right)$. If the residuals from the true model were computed, denote them $\hat{\epsilon}$, then the mean of the statistic $\hat{\epsilon}^{\prime} \hat{\epsilon} /(N-K)$ is $\varepsilon\left(\hat{\epsilon}^{\prime} \hat{\epsilon} /(N-K)\right)=\sigma_{\epsilon}^{2}$. The residuals from the assumed model, denote them $\hat{\eta}$, are obtained from
$\hat{\eta}=y-X_{1} \tilde{B}_{1}$, where $\tilde{\beta}_{1}=\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} y$
and may be written as

$$
\begin{align*}
\hat{\eta} & =X_{1} \beta_{1}+X_{2} \beta_{2}+\epsilon-X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{1} \beta_{1}-X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2} \beta_{2}-X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} \epsilon \\
& =\left(I-P_{1}\right)\left(X_{2} \beta_{2}+\epsilon\right) \tag{A.3}
\end{align*}
$$

where $P_{1}=\left(X_{1}\left(X_{1}^{1} X_{1}\right)^{-1} X_{1}^{\prime}\right)$.

The statistic $\left(\hat{\eta}^{\rho} \hat{\eta}\right) /(\mathbb{N}-L)$, easily obtained using (A.3), is
$(N-L)^{-1} \hat{\eta}^{\prime} \hat{\eta}=\left(X_{2} \beta_{2}+\epsilon\right)^{\prime}\left(I-P_{1}\right)\left(X_{2} \beta_{2}+\epsilon\right)(N-L)^{-1}$
and the mean of (A.4) is
$\varepsilon\left((N-L)^{-1} \hat{\eta}^{\prime} \hat{\eta}\right)=\sigma_{\epsilon}^{2}+\beta_{2}^{\prime} \frac{\left\{X_{2}^{\uparrow} X_{2}-X_{2}^{\uparrow} X_{1}\left(X_{1}^{\dagger} X_{1}\right)^{-1} X_{1}^{\prime} X_{2}\right\}}{(N-L)} \beta_{2}$.

The second term in (A.5) is a positive definite quadratic form in β_{2} and so the estimate $\hat{\eta}^{\prime} \hat{\eta}(\mathbb{N}-L)^{-1}$ has a mean which over estimates σ_{ϵ}^{2} by an amount which depends on the degree of correlation between the sets of variables in X_{1} and X_{2}

Case II

Here one considers the case of erroneous inclusion of variables, i.e.

$$
\begin{array}{ll}
\text { Assumed Model: } & y=X_{1} \beta_{1}+X_{2} \beta_{2}+\eta \\
\text { True Model: } & y=X_{1} \beta_{1}+\epsilon .
\end{array}
$$

The residuals from the assumed model are again $\hat{\eta}$ and are
$\hat{\eta}=y-X \tilde{\beta}$, where $\tilde{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$.
On using the estimate of $\tilde{\beta}$ given in (A.6) $\hat{\eta}$ becomes,
$\hat{\eta}=y-X\left(X^{\prime} X\right)^{-1} X^{\prime} y$

$$
\begin{align*}
& =X_{1} \beta_{1}+\epsilon-X\left(X^{\prime} X\right)^{-1} X^{\prime} X\binom{\beta_{1}}{\because 0}-X\left(X^{\prime} X\right)^{-1} X^{\prime} \epsilon \tag{A.7}\\
& =(I-P) \epsilon
\end{align*}
$$

where $P=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}$.
The statistic $\hat{\eta}^{\prime} \hat{\eta}(N-K)^{-1}$ has a mean which is,
$\varepsilon\left(\hat{\eta}^{\prime} \hat{\eta}(N-K)^{-1}\right)=\sigma_{\epsilon}^{2}$
and so will give an unbiassed estimator of σ_{ϵ}^{2}.
Turning to the residuals from the true regression, and denoting them $\hat{\epsilon}$ one can simply show that
$\hat{\epsilon}^{\prime} \hat{\epsilon}=\epsilon^{\prime}\left(I-P_{I}\right) \epsilon$
and so deduce that $\hat{\epsilon}^{\ell} \hat{\epsilon} / \sigma_{\epsilon}^{2} \sim X_{\mathbb{N}-L}^{2}$. Thus the statistic $\hat{\epsilon}^{\ell} \hat{\epsilon}(\mathbb{N}-L)^{-1}$ has a mean and variance given by
$\varepsilon\left(\hat{\epsilon}^{\prime} \hat{\epsilon}(N-L)^{-1}\right)=\sigma_{\epsilon}^{2}$
$\operatorname{var}\left(\hat{\epsilon}^{\prime} \hat{\epsilon}(N-L)^{-1}\right)=2\left(\sigma_{\epsilon}^{2}\right)^{2}(N-L)^{-1}$.
However the statistic based on the residuals from the assumed relation, $\hat{\eta}^{\prime} \hat{\eta} / \sigma_{\epsilon}^{2}$, is distributed as $\chi_{\mathbb{N}-K}^{2}$ and so while $\varepsilon\left(\hat{\eta} \hat{\eta}(N-K)^{-1}\right)=\sigma_{\epsilon}^{2}$ the variance is, $\operatorname{var}\left(\hat{\eta}^{\prime} \hat{\eta}(N-K)^{-1}\right)=2\left(\sigma_{\epsilon}^{2}\right)^{2}(N-K)^{-1}$.

The second case gives an unbiassed estimate of σ_{ϵ}^{2} unlike the first but the efficiency will be given by the expression $\left(\frac{\mathbb{N}-\mathbb{K}}{\mathbb{N}-\mathbb{L}}\right)$.
APPENOIX B
PERIOONSRAM AND SMOOTHED PFRIODOGRAM OF CRIGINAL OBSERVATIJVS ○ERIJOOGRAM QRUINATES FOR $20+$ OBSERVATIOVS OF BAVK AJVANCES
$(4 \pi+(\kappa-1) 5 \pi) / 102$

$11 \pi+(k-1) 5 \cdot 3 \pi) / 102$
$0.39318 \mathrm{E} \quad 05$
$\begin{array}{ll}0.71047 E & 04 \\ 0.29142 E & 04 \\ 0.17219 E & 04 \\ 0.11269 E & 04 \\ 0.9351 E & 03 \\ 0 & 10445=\end{array}$
$(18 \pi+(K-1) 5 \cdot 5 \pi) / 102$
$\begin{array}{lll}0.19714 E & 05 \\ 0.27915= & 04 \\ 0.15077 & 04 \\ 0.10797 E & 04\end{array}$
$(5 \pi+(k-1) 5 \pi) / 102$ O. $27602 E$
0.31
$0.27 E$
$0.27752 E$

$(14 \pi+(k-1) 5 \cdot 3 \pi) / 102$

- 0.27143 E 05
$\begin{array}{lll}0.4829 E E & 0 \\ 0.26013 \mathrm{E} & 0 \\ 0.18764 \mathrm{E} & 04\end{array}$
$0.11823 E \quad 04$
03
$(23 \pi+(k-1) 5 \cdot 5 \pi) / 102$
$\begin{array}{ll}0.77262 E & 04 \\ 0.228715 & 04 \\ 0.11485 E & 04 \\ 0.10607 E & 04\end{array}$

APPENDIX 3
DERIODOGRAM AND SMOOTHE PEFIODOGRAM OF ORIGINAL OBSFPVATIJVS PERIJDGGRAM ORDINATES FOR 204 CRSERVATIONS OF WOUL

$$
r(n)
$$

$$
\begin{aligned}
& \text { ATI NSOF EAIK A } \\
& \pi+(K-1) 5 \pi) / 120
\end{aligned}
$$

RIES

$$
(4 \pi+(\langle-1) 5 \pi) / 1<0
$$

APPFNDIX
$r(n)$

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

BIBLIOGRAPHY

[1] Anderson, R.L. "Distribution of the serial correlation coefficient", Ann. Math. Statist., 13 (1942) 1-13.
[2] Anderson, R.L. "Distribution of the circular serial and Anderson, T.W. correlation for residuals from a fitted Fourier series", Ann. Math. Statist., 21 (1950) 59-81.
[3] Akaike, H. "Some Problems in the Application of the Cross-Spectral Method", in Advanced Seminar on Spectral Analysis of Time Series edited by Bernard Harris, John Wiley, New York, 1967.
[4] Bartlett, M.S. "On the theoretical specification and sampling properties of autocorrelated time series ${ }^{n}$, J. R. Statist. Soc. (Suppl.), I (1946) 27-41.
[5] Bingham, C., Godfrey, M.D. and J.W.Tukey "Modern Techniques of Power Spectrum Estimation", IEFE Transactions on Audio and Electroacoustics Volume AU-15 (June 1967) 56-66.
[6] Box, G.E.P. "Models for Prediction and Control, IV and Jenkins, G.M. Model Identification", Technical Report No.4, Dept. of Systems Engineering, Univ. of Lancaster, May 1966.
[7] Box, G.E.P., G.M.Jenkins and D.W.Bacon "Models for Forecasting Seasonal and Non-Seasonal Time Series", in B.Harris, ed., Advanced Seminar on Spectral Analysis of Time Series (New York, John Wiley, 1967) 271-311.
[8] Cramér, H. Mathematical Methods of Statistics, Princeton University Press, Princeton 1961.
[9] Daniels, H.E. "The approximate distribution of serial correlation coefficients", Biometrika, 43 (1956) 169-185.
[10] Dhrymes, P.J. "On the treatment of certain recurrent non-linearities in regression analysis", The Southern Economic Journal XXXIII (October, 1966) 187-196.
[11] Durbin, J. "Trend elimination for the purpose of estimating seasonal and periodic components of time series", in Time Series Analysis edited by M.Rosenblatt, John Wiley, New York (1963) 3-16.
[12] Durbin, J. "The fitting of time series models", Rev. Int. Inst. Stat., 28 (1960) 233-243.
[13] Durbin, J.
"resting for serial correlation in least and Watson, G.S. squares regression I", Biometrika, 37 (1950) 409-428.
[14] Fishman, G.S. "Spectral Methods in Econometrics", The Rand Corporation, Santa Monica, 1968.
[15] Granger, C.W.J. with the assistance of M.Hatanaka, "Spectral Analysis of Economic Time Series", (Princeton, Princeton University Press, 1964).
[16] Granger, C.W.J. "The typical spectral shape of an economic variable", Econometrica, 34 (1966) 150-161.
[17] Grenander, U. "On the estimation of the regression coefficients in the case of an autocorrelated disturbance", Ann. Math. Statist., 25 (1954) 252-272.
[18] Grenander, U. "Statistical Analysis of Stationary Time and Rosenblatt, M. Series", John Wiley, New York, 1957.
[19] Hannan, E.J. "Notes on Time Series Analysis", Parts I and II, Dept. of Statistics, The Johns Hopkins University, Maryland, 1964.
[20] Hannan, E.J. "Regression for Time Series", in Time Series Analysis edited by M.Rosenblatt, John Wiley, New York, (1963) 17-37.
[21] Hannan, E.J. "The estimation of a lagged regression relation", Biometrika, 54 (1967) 409-418.
[22] Hannan, E.J. "The estimation of seasonal variation in economic time series", J. Amer. Statist. Assoc., LVIII (1963) 31-44.
[23] Hannan, E.J. "The estimation of seasonal variation", Aust. J. Statist., II (1960) 1-15.
[24] Hannan, E.J. "Measurement of a wandering signal amid noise", J. of Appl. Prob., IV (1967) 90-102.
[25] Hannan, E.J. "The estimation of a changing seasonal pattern", J. Amer. Statist. Assoc., LIX (1964) 1063-1077.
[26] Hannan, E.J. "Testing for serial correlation in least squares regression", Biometrika, 44 (1957) 57-66.
[27] Hannan, E.J. "The estimation of mixed moving average autoregressive systems", Biometrika, 56 (1969) 315-330.
[28] Hannan, E.J. and B.V.Hamon
"Estimating relations between time series", J. Geophys. Research, 68 (1963) 6033-6041.
[29] Hannan, E.J. and R.D.Terrell
"Testing for serial correlation after least squares regression", Econometrica, 36 (1968) 133-150.
[30] Hannan, E.J., R.D.Terrell and N.E.Tuckwell "The seasonal adjustment of economic time series", forthcoming International Economic Review.
[31] Hannan, E.J. and
"Serial correlation in regression G.S.Watson analysis II", Biometrika, 43 (1956) 436-448.
[49] Price, R. "A usef"ul theorem for non-linear devices having Gaussian inputs", I.R.E. Trans. P.G.I.I., IT-4 (1958) 69-72.
[50] Theil, H, and "Testing the independence of regression Nagar, A.L. disturbances", J. Amer. Statist. Assoc., 56 (1961) 793-806.
[51] Tick, L.J. "Estimation of Coherency", in Spectral Analysis of Time Series, edited by Bernard Harris, John Wiley, New York, 1967.
[52] U.S. Bureau of the Census "Estimating Trading Day Variation in Monthly Economic Time Series", Technical Paper No. 12. U.S. Government Printing Office, Washington D.C., 1965.
[53] von Neumann, J. "Distribution of the ratio of the mean square successive difference to the variance", Annals of Mathematical Statistics, 12 (1941) 367.
[54] Watson, G.S. "Serial correlation in regression analysis", Thesis submitted to the Faculty of North Carolina State College, 1951.
[55] Watson, G.S. "Serial correlation in regression analysis I", Biometrika, 42 (1955) 327-341.
[56] Watson, G.S. "Linear least squares regression", Ann. Math. Statist., 38 (1967) 1679-1699.
[57] Whittle, P. "Prediction and Regulation", London, English Universities Press, 1963.
[58] Whittle, P. "Recursive relations for predictors of
, non-stationary processes", J. Roy. Statist. Soc., Series B, XXVII, No.3, (1965) 523-532.
[59] Yaglom, A.M. "Theory of Stationary Random Functions", Prentice Hall, New Jersey, 1965.

[^0]: 1
 It is usual to begin with strictly stationary processes, but as the restriction on the series necessary for this property to hold would be far more wide-reaching, unless the data is Gaussian, only the restriction of second order or wide sense stationarity is imposed. It must be emphasized however that the assumption of second order stationarity is all that is necessary for the development of spectral, prediction and filtering theory but that if distributional results for spectral estimation and regression procedures are to be established then stronger assumptions will be needed.

[^1]: 3
 For convenience of exposition only it is assumed that $d F(\lambda)$ is absolutely continuous and in future comment in this section $f_{j k}(\lambda)$, the element in the $j^{\text {th }}$ row and $k^{\text {th }}$ column of $f(\lambda)$, is considered.

[^2]: 5
 For economy of presentation the repetition of the finite and infinite case is discontinued. The upper summation limit is therefore left open.

[^3]: In Whittle [57] it is assumed $|\phi|<1$ and the accumulated process is handled by allowing ϕ to tend to 1 from below. Hannan has shown $[24]$ that the following presentation may be used for $\phi=1$.

[^4]: 9
 $f(\lambda)$ could be piecewise continuous providing there are no discontinuities at the 'jumps' in $M(\lambda)$.

[^5]: 17
 With a high order polynomial, regression often becomes unwieldy and results in a loss of degrees of freedom. Against this must be set any loss of observations at the ends of the series due to filtering.

[^6]: 21 No attempt has been made to estimate the "extra days" effect associated with leap year February, as this event occurs too infrequently either to give reliable estimates or to be important. All February observations are included with a zero regressor vector so that the lag correlations (and therefore the spectra) of the regressor variables are interpretable in actual time.

[^7]: 34
 If in model (a) the disturbance $\epsilon_{j}(n)$ was replaced by a disturbance $\eta_{j}(n)$ such that $\eta_{j}(n)=\rho_{j} \eta_{j}(n-1)+\epsilon_{j}(n),\left|\rho_{j}\right|<1$, then model (a) and model (c) are identical.

