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1L BRIEF THEORETICAL BACKGROUND

1l.1 Introduction

Because a stationary time series may be represented in spectral
(or frequency) terms it has become apparent that certain areas of
economic investigation can be effectively performed in this domain.
This approach may arise because g priori information is most easily
expressed in frequency terms or it may be that greater insight
results from using spectral methods in conjunction with the more
usual procedures developed for the time domain. A large area of

empirical economics exists where data analysis in the frequency

domain is not contemplated because of insufficient data.

Nevertheless, where theoretical explanations are sought spectral

methods may still be very useful.

The essential mathematical reasons for the introduction of
spectral methods in data analysis will, it is hoped, appear from
the discussion to follow. One misconception should however be
mentioned here and dismissed. This is the notion that only where
the idea of wave motion is present can these methods be expected
to be useful. A typical expression of this viewpoint is:

'Tt is not the cyclical behaviour of an economy that is of
interest to me but only the long term trend and so spectral
methods are not relevant'. The reason for the usefulness of
spectral methods is that they require only a general assumption
of temporal homogeneity, which appears to be adequately fulfilled
Tfor most data discussed in this thesis. This assumption leads
inexorably to spectral methods and this is no less truly so when
the nature of the phenomena is such as to show no very marked
oscillation. An examination of a monthly time series of economic
data and for example an oceanographic record measured hourly over

a period of a few days will not reveal any intrinsic differences

which enable one to say one is a wave phenomenon and one is not.




Both series will show certain clear and nearly periodic
oscillations (seasonal and tidal effects). Both will also show
a large amount of fairly haphazard occasional fluxion. The fact
that the term 'wave' occurs naturally in connection with the
second phenomenon is a matter for historical explanation. In
particular the later discussion will show, it is hoped, how
relevant the spectral methods are to the measurement of trend as
well as to the clearly oscillatory motion, called seasonal
fluctuation.

Before developing applications of spectral methods in
economic data analysis a general framework for this approach to
time series analysis must be presented. This introductory
chapter includes a sketch of underlying theory which is a
necessary basis for discussion. In particular the results
incorporated in Bl.2 - 81.6 are well known - see for example
Whittle [57], Grenander and Rosenblatt [18], Yaglom [59] and

Hannan [19,20].

1.2 Spectral Representation

- - : il
A series xj(n) is termed a second order stationary  process

if the second order moments depend only on t, i.e.

1
[ It is usual to begin with strictly stationary processes, but
as the restriction on the series necessary for this property to
‘ hold would be far more wide=-reaching, unless the data is Gaussian,
i only the restriction of second order or wide sense stationarity is
i imposed. It must be emphasized however that the assumption of
second order stationarity is all that is necessary for the
development of spectral, prediction and filtering theory but that
if distributional results for spectral estimation and regression
procedures are to be established then stronger assumptions will be
needed.
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€ <%j(n)xk(n+r)> = 7jk(T) Tm Ly sy @ o= O,L, ¥2, ... (1.2.1)
In specifying stationarity it is assumed that 8(xj) =00 s
assumption will be used in presenting the theoretical background
but will naturally be relaxed in Chapter II when the actual
nature of economic data is given further consideration. If
assumption (1.2.1) is valid the following relation may be derived
. LEETSY
Ph)z%ﬁéﬂ}:{/qe dﬂkQ%
J J J
=T
{r.a.2)

=L/ﬁﬂéiTxdF(x)
-

where F(A) is the spectral distribution matrix and ar(\) a
Hermitian, non-negative definite matrix. If j = k then that
element of the matrix is referred to as the cumulative power
spectrum of the variable j. To develop greater understanding of
the nature of the incremental spectral distribution matrix, dF(p),

the following properties of this matrix are stated and then employed

dF(A) = aF' (-A) = a@F (-A)
(1.2.3)

el aF (-A) = dF (A) or dF'(-A) = dF*()).
The * on the F(\) matrix signifies the joint operation of
transposition and conjugation. If the complex distribution

function F(\) is rewritten as

(M) = %{c(x)-mm} (1.2.4)

where C(A) is a matrix composed of the real part of F()\) and Q(\) a
matrix composed of the complex part of F(x), the expression (1.2.2)

becomes

r'(t) =L/~W <c05TAdC(%)+sinT%dQ(%)> . (1-2.5)

O
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If it is assumed that F(A) is absolutely continuous and therefore
ar(A\) = £(A\)ax
then
i I %<{C(%)-iq(x)}' (1.2.6)
where c(A\) is the symmetric co-spectral density matrix and q()) is
the skew-symmetric quadrature spectral density matrix which leads
to the rewriting of (1.2.5) as
T
r(t) = /ﬁ <;(A)COSTA+q(%)SinTx> dn. (1.2.7)
=Q
In (1.2.7) the second order moments of the series are
represented in frequency terms. It is also illuminating to
represent the series, rather than their moments, in this domain
as follows
r T .
x(n) =-ix.(n)}'= k/n e lnxdz.(%)
J - J
(1.2.8)
DR
- [ etz ()
Y=
where Z(\) is a vector such that
7% -
e <&z(xl)du (A2)> 0 At A
(1.2.9)
= aF (\) A=A, = A
The vector Z(A) is rewritten to make explicit its real part u(n)
and its complex part V(A) as
z(\) = 3 {U(%)JriV(x)}
and a more illuminating expression for the series x(n) is given by
o 1
x(n) =k/ﬁ -{cos%ndU(%)+sin%ndV(%)j- {1.2.10)
o}
where the vectors dU(A) and dV(A) are such that
Al
1 - |} -
£ {dU(?\l)dU (%2 )} =€ {dV(?\l)dV (7\2 )} = 67\2@[0 (xl)
(1L.2.11)

[e A 7\;|_
e-idU(%l)dV’(%g)j-= 6x2dQ(A1)
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The symbol & is unity where Al = AQ and zero otherwise. The
representation of the vector series given in (1.2.10) lends itself

2

most readily to interpretation, for a typical series xj(n) is a
linear superposition of sinusoidal terms with random amplitudes
and phases at each A\ determined by Uj(x) and Vj(k).

If for the moment only two series xj(n) and xk(n) are
considered then the correlation between the nkth term for xj(n)
in (1.2.10) and the (nx+e)th term for xk(n) in (1.2.10) is
maximized when

aqQ,, ()

ij(%) = arctan aa%—zi7 (1.2.12)
Jk
and the value of this correlation is given by
ac®. (\)+dgs. () 1
w.. (\) = it Jx
3k &, T (V)

(1.2.13)

The phase, ij(%), and the coherence, ij(%), are characteristics

which measure the dependence of two time series, xﬁ(n) and xk(n).

1.3 Linear Filtering

If the relation between two series is that the first series
y(n) is produced by the operation of a linear filter2 on the series
x(n) then a specific description of the dependence may be derived.
To develop the filtering concept in more detail the transformation
of a time series x(n) {n = 0,+1,%+2,....... } to produce another series

y(n) {n = 0,t1,%2,.......} ies known as linear digital filtering if

2
A linear filter must have two properties. To economically express
these requirements one defines L to be the operator which performs

the filtering and " an operation which translates a variable m
periods forward. The requirements of a linear filter are
(i) 1Za.x,(n) = Zo.Ix.(n)
j Jd J 3 J J

and (ii) LUij(n) = Umij(n).




y(n) = szbjx(n-j) n=0,%,%, ...,...

(1.3.1)

The sequence of coefficients bj’ often restricted so that

walbjl < », is the impulse response of the filter. The

J

essential condition that the bj must satisfy is that B(A),

defined below, must be square integrable with respect to dF ().

A more important function, derived from this sequence,

B(A) = 2" be

-00

J

is

AL AL

the frequency response function of the filter, which can

obviously be complex for a real series bj' The importance of this

response function arises from its use in interpreting the action

of the filter on an arbitrary series. It can be interpreted as the

way in which an input of a complex harmonic, e17\n will be modified

at each frequency to provide an output, since the output procedure

is B(K)ei%n.

This function is also valuable in relating the

spectral distributions of the input and output series as follows,

ar () = [30\)|ar, (V).

(i 53

Thus the spectral distribution of the filtered series is

produced by multiplying the original spectral distribution

function by |B(A)|2, where |B(A)| is known as the gain
filter. When the input to the filter is a vector time
relation between the input and output vector is

@ () = B(A)aF, (M)B* ()
where B(\) is now a matrix and is best comprehended by
its form when the most common form of filtering,

y(n) = mesz(n-j),
5|

is used. If this situation, where y and x are vectors

of the

series the

(1.3.4)

exhibiting

(155%5)

and the Bj

are matrices, the matrix function B(A) in (l.}.h) is given by

ijk.

B(A) = zmeje

(@)
"

(5.3,




of the above kind will, except for special circumstances,
inevitably introduce phase shifts. The relative phase between the

jA' and k= series depends only upon the cross spectrum and even

if B(A) was diagonal the cross-spectrum would be changed. If B(A)

is diagonal and real this will not happen. In particular this will
be so if Lﬁ = B—j and the filter is therefore symmetric. But if a

one side

Q

filter (i.e. Bj = O for either j < 0 or j > 0) is used

T it must introduce phase shifts.

.
=
(@]
)
cT

ctral Estimation

It would be rather pointless developing a representation of
an economic time series vector in the frequency domain if the
fundamental quantities in this representation, fjk(%),3 were
not able to be estimated. The general estimation procedures are
only briefly outlined as more detailed problems are set aside for
further consideration in Chapter II.

In a statistical analysis of a time series x(n) which is to
concentrate on sources of variation the finite Fouriler transform
w(\) plays an important role. The finite Fourier transform is

‘ defined as

S '
w(A) :«{l/«f?ﬁN&ka(n)eln% (L.k4.1)

J

= : k
and is evaluated at the points A = 3%—, for k = 1,2,...,N,
N is the number of observations in the realization. The

quantity defined in (1.4.1) is very simply related to the

periodogram I(A),
IA) = w\)w*(A). (1.4.2)
The periodogram was the focal point of early studies of the source

of variation in time series. The following expectation

of exposition only it is assumed that dF(A) is
utely continuous and in future comment in this section f.K(K),

-, . .o Lth th . e
C] Eilie nt in the J row and k column of f(%), is considered.




e <I (x)> _ {l/gm} 8|Z¥X(n)ein?\|2

= (€ :
i {l/ar} 5N-1 fu- 2l 1 puyeten

N4l

(1.4.3)

indicates that since €(I(A)) is equal to the Cesaro mean of f(})
it will converge to f(k) as N becomes large, if, for example, £f(n)
is continuous. It is well known however that I(A) is not a
consistent estimate of f(A). This defect does not prevent the
periodogram from being of use in the discussion of estimates of
spectra and cross-spectra because it reappears in a modified form
in the appropriate estimates of spectral quantities.

If in choosing an estimator for f(A) the choice is
restricted to a quadratic function of the observations, since the
spectrum is itself a quadratic quantity, then the form of the

estimator is

fjk(x) = iibmp(%)xi(m)xj(p). (1.4.4)

It i1s natural in a context of stationarity to restrict the
coefficients to depend only on the lag (m-p) and Grenander and
Rosenblatt [18] have vindicated such a choice. Replacing bmp by

bm—p (L.4.4) can be rewritten as (see [18,p 123])

A _ 1 _N-1, -inA,, _ |n] ; }
fjkO\) = 57 2 1 Fa® (1 o )cjk(n) (1.5.5)

il N-n
Cjk(n) s il xj(m)xk(m+n).

The function kp is interpreted as a covariance averaging kernel

and its Fourier transform is,

D R
KN(A) T Z—N.l.]_kne t/ (l.h.()

known as the spectral window. The use of the spectral window

2

leads to a highly instructive expression for the estimator fj

k




”
=L/1WKN(?\-6)IJK(6)C19.

It is not obvious that the two expressions in (1.L4.7) are equal

and it is surprising that the integral should exactly equal its
approximate sum. The first relation in (1L.4.7) is due to the
orthogonality properties of ¢k(n) = exp{ (inmk)/N}, n = -N4l,...,N.
The latter is due to the orthogonality properties of mk(x) = exp{in)}
as function of A on (-T,mT). The representation of the estimator
given in (1.4.7) clearly points out that estimators of the form
chosen consist of a view of the periodogram ordinates. The nature

of the view is determined by KN(A), the spectral window.

1.5 Prediction and Signal Extraction

The techniques developed in this section relate mainly to any
real world phenomena which generate an observed series which may be
considered as a signal (another series) which is unobservable because
it is obscured by a further unobservable (noise) series. The
technique is also suitable for predicting the value of the signal
series at some time point in the future. The information we do
have about the phenomena is the spectral (or equivalent) properties
of the signal and noise series.

An introduction to these topics could begin in either the
time or frequency domain and ideally both approaches should be
presented as they are complementary. As my object is merely to
sketch the basis of techniques used later this can be done most
economically by presenting the methods as an example of
filtering methods.

If a predictor g(n) is to be based on either a finite number

(say p) of past values of the variable x or the complete past

history of x, then a linear predictor is of the form




10

(n) = blx(n—l)+b2x(n—2)+ ...... +bpx(n—p)

~

x(n) = hlx<b-l)+b2X(n—2)+...... -

The spectral representation of Q(n) (a scalar example of (1.2.8)) is

g R -inA\
x(n) = [ e""B(N\)az(n) (1.5.2)
Vo
where
AT .| i2A
B(A) = bie 4byeT L
! (1.5.3)
(p) in L, 12 1P\
and B (A= b 02T T s e o b e ;
(\) 18 +beT Ty b

4

The residual or innovation is defined in terms of these quantities
NP 0 - - . -
as x(n)-x(n). The spectral representation of the innovation is

|

| (il
x(n)-%(n) = f & inA QL]‘_B(?\)} dZX(7\) (1.5.4)
Vo

and therefore the mean square prediction error will be

: ’
I x
(

1
\
N

£

-2
f)-v—f‘(,w.)>2} = [ |l-ﬁ»(7\)[2dFX(7\). (1.5,
oy

This minimal mean square prediction error for a linear predictor

may be shown to be

@ .{(,,/‘{(:)_f(ml)>2} - exp [(}2—7;) u/w;log <2ﬂ‘fx (7\)> d?\“ (1,

1
~

and equation (1.5.6) therefore indicates that the prediction error
depends only on the absolutely continuous part of the spectrum, for

any term contributing to a jump would be perfectly predictable on

the basis of the infinite past.
)}

is possible that an optimal predictor of x(n) may not be

ible in the form (1.5.1) but instead one may have to define

it by a sequence of predictors x(p)(n) with p increasir
indefinitely and the coefficients of x(n-j) depending on p.
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Two loose ends must be tied up. First, how is an appropriate
B(\) decided upon? Second, can this formulation suitably handle
problems of prediction and signal extraction. So far the predictor
of x(n) has been based on either a finite or infinite number of
past values of x. The predictor Q(n+v), Vv 2 1, is a prediction
of x(n+v) based on the values of x, up to and including N. So we

can represent x(nt+V) as follows

A 4 -inA_ (v)
x(n+v)=fe B "/ (A\)dz (M) (1.5.7)
-
where B(V)(R) = bév)+b£v)ei%+bév)ei2k+...... . Another time series

y(n) is introduced and it is assumed that y(n) and x(n) are jointly
covariance stationary. ZFor expositional convenience only, it is
also assumed that both series have spectral representations
containing only an absolutely continuous part. The cross

covariance between the two series is therefore given by

e <x(m)y(n)> :f_:e“(“'m)fxy(mdx. . (1.5.8)

If the series y(n) is just the x series translated v periods

forward, i.e. y(n) = x(nt+v), then (1.5.8) becomes (see (1.2.2))

& g <X(m)x(n+V)> =f_:em(n'm)eiwfxx(7\)d7\. (1.

U1
O
~

It is possible however to regard y(n) as the signal series where
\
1 a predictor of this series is to be obtained from the observed

| series x(m). The prediction of y(n), on the basis of x(m), m =< n, is
v(n) = cox(n)+clx(n—l)+...... (1.5.10)

and its spectral representation is

i
S = [ e ez, () (1.5.11)
-




with”’

o(N) = = c oM, {34 5512)
o
J

The development of the determination of the cj coefficients is that

given by Whittle [57]. The frequency response (1.5.12) is written
in terms of 2z = elk so that C(z), often referred to as the transfer

function, is
c(z) = = c.zv. (1.5.13)
ikt

The covariance generating functions gxx(z), gXV(z) are assumed

o

-1
analytic in a region p <z <p = (0 < p < 1) and so are

represented as

g (&) &2 2ep )
(1.5.14)
By (2) = 2 s, ().

i the cj coefficients are chosen to minimize the mean square error,
. AT N ;
B(y(n)-y(n)) , then the following relation between the covariances

and the Cj coefficients must hold,

o 3 - O P
;chx(ka)oj = cxy(k), ) SEEIE o M iR~ RN (1.5.15)

If (1.5.15) is multiplied by zk and added over all integral k then

this expression becomes

zﬁ z;”cxx(k-J)c.zk = ZZCX_(k)zk
K 3 J KO XV
(1.5.16)
ool (ke3)e, 2 ded = 5l (k).
k J XX d X v

The left hand side of (1.5.16) may be written as gXX(z)C(z)—hl(z)
where hl(z) involves only negative powers of z and similarly the
right hand side can be thought of as gxy(z)—he(z) where again hg(z)

contains only negative powers of z and thus (1L.5.16) becomes

[~
J

For economy of presentation the repetition of the finite and
infinite case is discontinued. The upper summation limit is
therefore left open.
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8., (2)C(z) = h(Z)+gxy(Z) (15,17}

where h(z) = hl(z)-hg(z) is an expression in negative powers of z.
If it is assumed that the prediction error is positive (see (1.5.6))

then gxx(z) may be factorized as follows,

g (2) = 0°16(2)|% = 60 (2)e(z™),

(1.5.18)
2
6(z) = l+912+922 Loy e

to provide what is termed a canonical factorization.6 I (1.5.17)

is divided by 9(2_1) then it may be rewritten as

gxy(Z)

6°0(2)C(z) = h(z)

L (1.5.19
e(z'l) + e(z'l) ;

Because the term on the left hand side of (1.5.19) consists only of
positive powers of z and because the first term on the right hand
side consists only of negative powers then equating of like powers

of z produces a solution for C(z) of the form

6
To uniquely define the canonical factorization it is required
that 6(z) has no zeros for |z| < 1 for although

%ﬁ-{ l+02-;pcosk }-: %F—{ (l—OZ)tl-pz'l) }'= (O aE

it is also true that

_12;[

L

%F-{ 1:;§ji;;g;;'}‘: %F'{ pe(l-p'li)(l-p-lz—l) }—: .{(p(l-p-lZ§)(o(l-p_lZ

= olzlsz™")

however the zero of ¢(z) is within the unit circle.




g, . (2)
(B} = = e ; (1.5.20
y a6 (z) [ e(z_l) J+ )

As it may be shown [57,pp 67-8] that 5 e (k—j)c.zk has a
10 G0 xx J

valid Laurent representation in an annulus including the unit
circle, the symbol 4 indicates that only the positive terms in a
Laurent expansion should be used. The formula given in (Lrssen)
may be regarded as a general solution which may be shown to cover
the following cases.

(a) Prediction v steps ahead is handled by setting y(n) = x(nsv).
This results in a simplification of the covariance generating

function gxy(z) so that

£, (2) = 26, (2)

zve(z)e(z_l)cg.

]

The generating function given in (1.5.20) then becomes

c(z) = ézéjx[e(z)zv } : (1.5.22)
+

(o) Extraction of a signal series s(n) at time point n, where

the observed series x(n) = s(n)+e(n) and s(n) and e(n) are
independent. If y(n) = s(n) then ng(z) - gss(z), since e(n) and
s(n) are independent so that the appropriate generating function is

now

g (z)
olz) = - L y (1.5.23)
029(2) [ Q(Z_l) }+

(c) Prediction v > O or Signal Extraction v £ 0 of s(n) in similar

circumstances to those given in (b). Now y(n) = s(n4v) and

therefore g y(z) - zvgss(z) and the generating function specializes
to
Vv
1 gss(z)z
¢(z) = - =) ’ (L. 521k
o 6(z) ale™ Y. Y4
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Tn the above examples the formulae for the coefficients of
the predictor §(n) are established. It is straightforward to
attach an expression for the mean square prediction error, which
for convenience is related to the general generating function
{1.5.20) If | Log gxx(z) has a valid Laurent expansion in the
annulus p < |z| < p-l where 0 < p < 1 (see again footnote ©)
then x(n) has both a moving average and autoregressive representation.

Suppose the predictor is

y(n) = §§cjx(n—j) (1.5.25)

then employing the moving average representation of x which is
x(n) = =°b, e(n-k) (1.5.26)
ok
k
where the €(n) are independently and identically distributed

2
random variables with zero mean and variance ¢, (I.I.D (0,02)),

the expression for the predictor in terms of the e(n) is

F(n) = c(z2)B(z)e(n) 0
= q(z)e(n)
. 0, k 0 i
with B(z) = iobkz and q(z) = goquJ.

The mean square prediction error is given by

€ <y(n)-§(n)>2

var (y(n) }+€5° (n)-265 (n)y (n)

2 Y

Var(y(n))+2°;qj-2°gqjkj (1.5.28)
J i

var(y (n)) =7k,
ey

3 2
s (k.-q.
+2 ( ; qJ)

where kj = cov(y(n)e(n-3)).
The expression for the prediction error will be minimized

alail qj = kj and the resulting prediction error is

2
€ <y(n)-§(n)> = var(y(n))-qui
- var(y(n))-Rla(z)|? (1.5.29)

= var(y(n))-j?lc(Z)E(z)le
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where
2 1 J“ ggz)ggz‘lg
S%IQ(Z)I = §szj e dz
|z|=1

and
@) = | ?ﬁ"—(—l] !

z Zy = .

02 B(Z_l) o

The prediction methods are now slightly extended to cover
an area of obvious application when the signal is what is termed
an accumulated process. Thus the signal is assumed to be a

solution of

A°s(n) = n(n) (1.5.30)
where n(n) is a stationary process with covariance generating
function gnn(z), which is analytic in an annulus including Izl = 1.
The nature of the process generated in this way is best understood

by reference to the following autoregressive process

?des(n-j) =1 (n) (5 L)

where n(n) in this situation is an autocorrelated error term.

For the process to be stationary and stable the zeros of Zdsz

must be outside the unit circle, thus a zero of order p at z = 1
will result in an evolutive process. The evolution has two
sources: a polynomial trend and the variance which is increasing
with n.

The observation-signal-noise model is still

x(n) = s(n)+e(n) (L5 52)
but now
b
<i-¢(z)> s(n) = n(n) (de5:2%)

T

The expression for C(z)B(z) is easily obtained from (1.5.20)
since (1.5.26) implies gxx(z) = B(Z)B(z-l)q2 so that B(z) = 6(z).




with 1 (n) having the properties given in (1.5.30) and -1 < ¢ < i,
If we employ the formulae already given for a prediction of

A s i " P W T ° o L
s(n+v) in terms of the X(K) s the coefficients for the predictor

are obtained from

et s
. 1 Bss'\Z/ T iy
(.;(Z) = 'B(Z) 'i ZV_B(Z_]_) ,,,+‘ (l./.Jl\L}

Application of the operator (1w®z)p to both sides of (1.5.32) gives

(1-¢z)px(n) ﬂ(u)+(l—¢z)pa(h)

(Z.5

N
~—

s p(n) = n(n)+(l=¢z)ps(n)

making the obvious substitution p(n) = (1-62)Px(n). The new
variable p(n) is assumed to have the following canonical

factorization

S oD (2)D(=™") (1.5.36)

and because there is the obvious relation

s .
g N R e S O z) (1. ’\
DX_X( ) ll,@z‘gp L,pp( y

then

flp) = e Bfa),

|l-¢zlp

—
-

using the representation of i(z} given in (1.5.38) and using
(1.5.33) to obtein an expression for g__(z) in terms of the

formula for the prediction coefficients given in (1.5.34), becomes

ola) = (1-02 )% L

(1.5.39)

&y (2)
D(z) ‘

zv(l-¢z)pn(z'l) i

o

8

In Whittle [57] it is assumed |¢| < 1 and the accumulated process
is handled by allowing ¢ to tend to 1 from below. Hannan has showt
[24] that the following presentation may be used for ¢ = 1.
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Two comments on the utilization of (1,5.59) are called for.
First the extraction of the canonical factor D(z) is obtained
from the relation between spectra or covariance generating
functions implied by (1.5.35). Second, Whittle [57,p 93] rewrites

the expression for C(z) as follows

] (z)
_ p-1 T f’:m =
c(z) = 5(z) {ﬁo wj(l 0z)Y 4 { o) }+ }- (1.5.40)

with the first term in the brackets arising from Taylor's

(z)
expansion of [ —%ﬂﬂ——I— } about ¢ l, i.e., from the representation
z'D(z ") J-

(z)
of [ —fﬂﬂ————-} = Q as a partial Taylor's expansion about ¢_1
Vo, =1 -
z' D(z ~) J-1
of the following form,
(3) -1 :
Q_(z) = zg'l (e g?)'q’ ) (z-0~1)d, (1.5.41)

J

This latter representation may facilitate the actual computations

of the predictor.

1.6 Regression for Time Series

Often the situation under consideration is one where the
signal is actually known, rather than the situation considered in
the previous section where the only knowledge available related to
second order properties of the signal, i.e. the spectral
distribution or covariance generating function. This section
presents, without proof, well established results (see [18], [20])
which underpin the consideration of single equation regression
procedures when the interdependence of observations at different
points of time are essential to the model.

The single equation model is

z(n) = y(n)d4e(n) (1.6.1)

or in matrix notation is

z = Yote (1.6.2)
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where e is an N dimensional (non-observable) vector arising from
a stationary process with zero mean and a covariance matrix,

€(ee') = I'_. Y is composed of r sequences of known constants

N
and 8 is an r dimensional vector of unknown constants, which are
to be estimated. If the covariance matrix FN is known then the

Best Linear Unbiassed Estimator (B.L.U.E.) is

5 = WW&%ﬂJYTg% (1.6.3)

with covariance matrix

T, = (Y'P&lY)_l- (1.6.4)

If the Least Squares Estimator (L.S.E.) is used in these

S
circumstances then this estimator © is

§ = (1) "yt (1.6.5)

with covariance matrix
1y ) =Lyt 1vy-L Z
Pg S (Y Y=ty PNY)(Y i (1.6.6)

If FN,(+ I) is unknown then any reasonably efficient procedure will
be highly non-linear, involving an estimate of PN before estimating
of & begins. The best one can hope to do then is to obtain some
form of asymptotically good estimator and some asymptotic expansion,
or perhaps the first term in one, for the limiting distribution.
For this reason the yj(n) which make up the Y matrix, that is the
regressor variables, must be invested with certain asymptotic
properties. These properties are usually referred to as
Grenander's conditions [18], and are:
(1) lim.Z?&?(n) = lim d?(N) = o0,

M0 n o0
This condition ensures that consistent estimates of the parameters,
0, exist for otherwise the variance of g could not be expected to

decrease as N increases. This assumption provides no practical

difficulties.
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2
(N
(ii) 1lim Xiﬁ—z = 0.
e d- (V)

e MO

The regressor variables, thus restricted, will not increase too
fast, guaranteeing that end effects which are neglected are
truly asymptotically negligible. It should be noted that an
exponentially increasing (or decreasing) sequence does not
satisfy Grenander's conditions. Special techniques would be
needed for the exponentially increasing case since then the

last few observations will never be negligible.

217 ; (07, (4m)

(344 ;iz [ dj(N)dk(N) } - pjk(m) exists.

This condition in conjunction with (ii) ensures that

N=-m
Z] yj(n)yk(n+m)

T [ T, (M, () ] =P gefm)e

Consider a vector of the form

x(a) = =2 A(3)e (a-3)
J

where the e(n) are identically and independently distributed
random vectors with zero means, finite fourth moments and

Z|A(3)]| < » where ||[A(j)|| is the norm of the matrix A(j)
J' g
(i.e. the smallest number m such that |Ax| = m|x| for all

vectors x, where |x| is the length of the vector). Then it may
be shown that x(n) is stationary and satisfies (i), (ii), (iii).
However, x(n) could be modified by adding u(n), where e.g.

uin) = Zajnj and the conditions would still hold. Similarly

after addition of a finite number of terms of the kind

J

on“cos (né+¢ ) the sequence would still satisfy the properties.

The sequences may therefore be evolving relatively rapidly but

not exponentially. Defining
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pyy (@) o @) ..en. oy (m)

R(m) = ceeee doeael (1.6.7)

* s e e
" s e s e

o () o @) eeee o, (m)

e ——

the spectral representation of the 'correlation' matrix is
S imA

R(m) =k/ﬁ e dM(n) (1.6.8)
=7

where M(A\) is a matrix function with increments which are

Hermitian, non-negative definite matrices, and, moreover,

am(-A) = aM(A) (since pjk(m) = pkj(-m)). Thus for the case of

a polynomial regression of degree (q-1) the matrix M()\) is

composed of elements mjk(%) that are zero up to A = O and then

jump by (j+k+l)—l'J(2j+l)(2k+l) remaining at that value thereafter.
In another case where r = 3, yl(n) € 1, ye(n) = cos6bn,
yB(n) = Sintn, 6 + 0,m, there are three points of increase for

M(A); -6, 0, 6. The three increments are

) T R s
0 ) 0 11, 0 0 O 0 0
gt 50 LT e e gt mod-gpimtits indys
o s 5 Die Dt O 0 ity ik
=N o i o e

If there were 2{+l terms corresponding to the frequencies

0,85 ++256p, (615.+.,6p % 0O,m) then M(N) would have 2441 points

of increase at tej, i o= l,...,{/and at the origin. The increase
at ej has zero elements except in the row and column corresponding
to cosej, sin6 ., where the submatrix would be of the form of that
in the last two rows and columns of the last matrix of

increments displayed above. If cosmn is adjoined to the set

there would be an additional jump at m which would be of the same
nature as the jump at the origin. The allowable regressors do

not restrict the model to consideration of only stationary z

sequences as it is possible to introduce non-stationarity into

the model through the mean.
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It is useful to obtain an expression in spectral terms for

the covariances of the B.L.U.E. and the L.S.E. when

(a) the regressors satisfy Grenander's conditions

(b) the spectral density of e(n), £(A), is continuous9

(c) £(A\) 2 a > 0, A e [-T,m].
T
dl(h) ;
Defining Dy = dg(N) the expressions required are ‘
0 dr(N) g

e {oe {01600} b b=t { f ore (VJ(n)} ¥ 1(0)1'l

(1.6.9)

11m-{ i‘s -5)(5-8) }- N_}— [ /ﬂ {erf (\)) dM(K)}-l. (1.6.10)

To discuss the conditions which lead to equality of (1.6.9)

and (1.6.10) it is helpful to define

Mk):R%%ﬂMQMf%w) (1.6.11) ﬂ@
so that N(A) is also Hermitian with non-negative increments and ¢
N(-T) = 0, N(m) = I.. The set of points in (<r,m) where N(A)
increases is denoted S and is termed the spectrum of the regressor
set. S may be maximally decomposed into p (= the number of

regressors, r) disjoint sets Ei' The increments

N(Ei) = [R(o)]‘% { /; dM(%i} [R(o)]-% (1.6.12)
i

are Hermitian symmetric with

£(\) could be piecewise continuous providing there are no
discontinuities at the 'jumps' in M(\).
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N(E, )N(E.) = O o
i (1.6.13)
= N(Ei) i = §
and
D =
?lN(Ei) = 1. (1.6.14)

The necessary and sufficient condition for g and & to have the
same asymptotic covariance matrix is that f(\) is constant on
each set E, (see [18],p 24k). To attempt to illustrate the
nature of the Ei g 'particular ease, r ='p =2, is considered.
Roughly speaking N(A\) is obtained from M(A) by a linear
transformation of the yj(n). Now, replace the transformed yj(n)
by two new complex linear combinations - the same combinations

at each time point n - so that the newly formed regressor
sequences, }l(n) and §2(n) are not merely incoherent but that
their spectra (i.e. sets of points where their f(\) are non-zero)
are disjoint. So the transformed sequences constitute, roughly
speaking, two signals sent over completely different frequency
bands. This situation is spectrally equivalent to that where all
the regressors, yj(n), are solutions of a difference equation,
Zakyj(n-k) = 0, whose characteristic roots lie on the unit circle.
Such solutions are of the general form nacosejn, nasinejn,
0=as mj-l, where exp(iej) is a root of the equation of

multiplicity mj. Thus a deterministic evolving seasonal

pattern would be included in the asymptotically efficient group.
In Chapter ITII comparisons will be made which will contrast
actual and asymptotic efficiency.

The framework erected for the discussion of the previous
theoretical results is also suitable for the discussion of an
efficient estimation procedure when the I'(n) covariance matrix
is unknown, but the conditions (a), (b) and (c) hold. To best
comprehend the construction of efficient estimates in this

situation (see [20]) one can consider a group of mutually

exclusive band pass filters, passing bands, such that
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ur_ = (0,m). The filtered series z(k)(n),yik)(n),yék?(n),.....,yﬁk?

and e(k)(n) are thus produced for k = 1,2,3,....,m. If the width

of the filter bands could be chosen so that the band filtered series
now had only minimal variation in power in e(n) within bands then
approximately efficient estimates could be made by using a L.S.E.
for each band. The next task is to weight together the
approximately efficient individual band estimates to obtain an
overall estimate with efficiency at least as good as the lowest

in any band. Although this method is not exactly available in
practice it does indicate what is being striven for in the

following calculations.

Spectra are computed at E%% ER=ROsEEs et te S orm

Tk 3
_m); 1

LTE)
yy m

: hig S AN AT
estimated quantities f and f (=). The
22 yz' m

estimates f 025) and f ([E) may be formed even if y(n) is not
yz' m yy' m

stationary. In the single equation situation described in

Pl

(165 2) fZZ(EE) is a scalar, f (E%) an r x r matrix and

i

§yzd%§) an r X 1 vector, all of which are evaluated at each k.
Before setting out the estimation formulae it is worth digressing

to the simple special case when r = 1. As in this situation
Tk Tk o e
£ gl = B AR (1.6.15)
an obvious estimate for each band is

v(k) = f;; T—%)?yz(%) (1.6.16)

which approximates the ideal of a L.S.E. based on a band of width
T Tk : 4 s :

o located at 57, To weight together these estimates within bands
it is necessary to obtain knowledge of the power of the noise or
error term within each band because the optimal weighting entails

the ratio of signal to noise power, i.e. the relative power in

(k)

y (n) and e k)(n). The proposed estimation in the

each band of y

case when r = 1 is
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1 m Z-lak\d ok 1 m  s-lakd ke ]t
is [55 2 nifee T/ Tys 'aﬂ [55’ Beaifent 0 -Eﬂ BT
The discussion of the situation when r = 1 is included only as a
means of helping insight and is of course a special case of the
following estimation formula when r > 1

1 m =1,k =Tk Lo oomi ==l amie ATk
53 [Em Z-m+lfee m)Fyy m )] [Em Z-m+lfee( m)fyz( m)}' (1'6'18?
To carry out the computation of the estimates, b, (1.6.18) can be
simplified considerably [28]. A tilde is placed on the estimate
of fee(%%) to emphasize that this quantity is not directly
measurable and therefore a first estimate must be obtained
either from a calculation of the residuals using a L.S.E. or
assuming that the y sequences are realizations from a stationary
vector process and therefore using
=~ (Tk ARy 2 EA\A=L MTENDS Ak
£ almm) 1l polr =) sy o(52)0 e (2. (1.6.19)

ee' m zz'*m’ “zy'm T yy' myz' m

This latter method has the appeal that the estimate of fee(E%)
use all effects from y(n) and that vector's lagged values eveﬁ

if the postulated model is incorrect. There is also, of course,
no need for a preliminary estimate of &. However it has the
drawback that it uses up more degrees of freedom (roughly one for
each band if r = 1) and has meaning only when y(n) is stationary.
The estimates used in the applications discussed Qill be based on
the first procedure.

This section is completed with an example of the need for
caution in claiming asymptotic efficiency for a least squares
estimate. The condition for asymptotic efficiency given above
may be restated as follows. If M(A) increases at a finite set
of points Gj, then to each 6, in the set there must also be -ej
since R(m) is real. Adding together the increments in M(A) at

+6‘j and -ej the resulting matrices may form a set of p<r

orthogonal idempotents, and if this 1s so, least squares is
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asymptotically efficient. In the case of the Fourier series,
discussed earlier, even before adding +ej and -ej the matrices
were orthogonal idempotents. Of course the above condition is
not necessary in order for least squares to be efficient even
if the e(n) are serially dependent. However, if least squares
is to be efficient for any continuous spectral density function
of the e(n) sequence then the above condition must be fulfilled.
It must be emphasized that the condition may be very nearly
fulfilled and the result fail to'be true. For example let

e(n) = pe(n-1)+e(n) and yl(n) = pyl(n—l)+n(n) where e(n) and
n(n) are serially independent sequences with zero mean énd unit
variance and totally independent of each other. If yl(n) is the
only variable regressed upon then it is shown [31l] that fhe
asymptotic efficiency, i.e. ratio of the asymptotic variance of

the B.L.U.E. to that of the L.S.E., is (1-p2)/(1+p2), which will

be very low for p near 1. However since fy (A) is
1

2
aM(A) = £ (A)an = (159 ) an
I1 21 (Lo~ -2pcosh)

it approximates a delta function at the origin as p tends to 1.
Thus m(A) is near to a function - indeed arbitrarily near - that
Jumps only at the origin, but the result is drastically not true.
The reason is most easily explained in terms of the efficient
regression procedure previously described. If Byl(n) is

regarded as an amplitude modulated signal sent by a carrier wave
in which each band of frequencies is represented in proportion to
the area under fy (A\) and above the band then the efficient

L
procedure has been stated to be to estimate & from each of an

increasingly large number of bands, and then to recombine each
band estimate of & using the weights fyl(x)/fe(x). In the example
proposed fyl(x)/fe(x) = 1 so that all bands should be given equal
weilght however least squares does not give equal weight but

weights according to fy (A\) only and for large p fy (A) is
1 .

1

very small away from the origin.
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1.7 Time Series Regression Procedures in Small Samples
P

Previous sections have concentrated on time series
regression problems for large samples of data; however a
much more common situation is for the econometrician to be
presented with a set of data which is too small for asymptotic
procedures. A traditional approach to the task of estimating
economic relationships in this context has been to employ the
least squares procedure and then to test the residuals computed
from the least squares regression for the presence of serial
correlstion [29]. To outline the methods of testing for serial

correlation in the regression model
y(n) = Z%ijj(n)+u(n) n=1,2,...,N (AT k)

it is assumed that xl(n) = 1 and for later use y is a
vector with y(n) in the o place. The situation which has
received almost all of the attention is that where xj(n) are
totally independent of the u(n) sequence so that the xj(n)
can be treated as fixed sequences of numbers. The symbol‘
Xj(n) will be used for such sequences. When q = 1 and u(n)
are N.I.D.(Q,cg) the problem was solved by von Neumann {Sﬁj who

considered the 'von Neumann' ratio

£ (y (n)-y (n-1))" /-1

A (1.7.2)

N -2

2 {y(n)-y} /N
the significance points of which were tabulated by Hart [32].
Another statistic which has been considered is the 'circular
serial correlation’
\J ~

Liﬁ(u Ju (n-l)

r! = (L.T.%)

L Z?{a(n)}g




where ﬁ(n) is the residual from the calculated regression of
yv(n) on the xj(n).lo Anderson [1l] obtained the distribution
of ri when a mean correction only has been made and tabulated

the significance points. Another case which has been studied

is that of a fitted Fourier series, where

_ cos2ljn AL sin2mjn _— o]

and the term for j = 3/2 being omitted for the sine series
i = q/2 is even. Anderson and Anderson [2] obtained the

! and tabulated some significance points.

distribution of rl

A major work in relation to this problem was that of
Durbin and Watson [13]. Replacing y(n) with u(n) they
considered, under the same assumption for u(n) as previously

specified, the statistic d = {(N-1)v} /N which may be written as

d

u' QA Qu/u' Qu.

Here Q = (I-P) = I-X(X'X)—IX' where X has xj(n) in row n and

column j, u has u(n) in row n, and the matrix Ad is

1 -1 0] ceeey 0 0

-1 2 -1 3OS 0] 0]

0 -1 2 eratere 0] 0]
Ad = . . oo

0 0 0 srele s 2 -1

@) ©) Ol L leveies -1 it
10

28

(1.7.4)

(8.7 .5)

(1.7.6)

To complete the summation from 1 to N in the numerator of (LT 5) )

it is necessary to define u(o) as equal to u(n).
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The statistics v and ri can, of course, also be written in this
form for a suitable matrix. If the non-zero eigenvalues of
QAdQ are “j’ Jes Ay e =1, whillethose of Ad are
7‘3‘ = 2(1-cos(mj/N)), § = 1,...,N-1, then Durbin and Watson
established the following bounds
= - 2 [- 2
s L pUSLIEEEA) ploty "
e R [ g PR et P O T G
dyp = £4 = < . (sra7)
ZN-q§2 >:N-lge ZN-qu
14974 T 1 edd

They tabulated the significance points for d{/and du that are
independent of X and that provided bounds for the true
significance point to d. Durbin and Watson also showed how the
moments of d of arbitrary order could be calculated and thus
showed how an arbitrarily good approximation to the significance
point for d could be obtained for example by the use of a
sequence of beta distributions with the appropriate moments.

The cases of straight mean correction and the fitting of a
finite Fourier Series are special in that for these it is possible
to choose an appropriate matrix, i.e. one yielding a test having
good powers against a simple Markov alternative for the process
generating u(n) and which has the vectors X (having xj(n) in the
nth place) as eigenvectors. A somewhat similar circumstance was
discussed by Hannan [26] who pointed out that to an order of
accuracy higher than N—l, which is the magnitude of d-du and
d-d{; the upper bound to the significance point of d was appropriate
for the case of certain regressors including that where
x.(n) = nd (see also McGregor [43]). A very similar observation

J
was made by Theil and Nagar [50] who tabulated approximations to

the significance point of d which they observed were close to
those of a4 .
u
Much of the work which follows rests upon a simply proved
result due to Grenander [17]. The result relates to W

sequence of matrices, the Nth of N rows and columns, with

N’

elements ij(N) satisfying
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T .t
wjk(N) = %FL/N el(J-k)KW(%)d% (1.7.8)
=T .

where w(A) is an even continuous function. Thus all elements
down the same diagonal are independent of N. If DN is a diagonal
matrix with dJ(N) in the jth place then Grenander [17] shows

w7l 23] i
Lim D X'W XD =f w(n)am(n) (1.7.9)
IPo0 ~Ir
and it is apparent that a special case of (1.7.9) gives

R(o) = lim D&lX'XD&l. As has been already noted when q = 1,
>0

i.e. only a mean correction is made, the situation is well
understood and tabulations (Hart [32]) of v and (Anderson [1])
of ri are available. It is worth adding that the statistic r

where the jth serial correlation is

l)

c. )
= El . cj = N_l Zﬁ_Ju(n)u(n+j) (L.7.1¢)
o

has on the null hypothesis of serial independence for u(n) a

e e (N-E)g/{NE(N—l)} (N+3)-l-8/N5+C(N_h).

]

Thus to an adequate approximation, when N = 15 certainly,

(rI+N-l) has the variance of an ordinary correlation coefficient
(with mean corrections) from (N+4) pairs of serially independent
Gaussian observations. As suggested by Watson [54] an examination
of the significance points of the distribution of selected
tabulated quantities shows this approximation to be quite adequate.

Thus the statistics

(rl+N-l)~JN+2
t = (.7 .01)
«E—(rﬁN-l)g '

is Student's t with N+2 degrees of freedom and tests the serial

independence of the data. The derivation of the mean and
variance is quite straightforward and follows Durbin and Watson

[13] but as it is a method that'is also employed for q > 1 it is

outlined in preparation for the later work. If one represents ry as




Sl
v QW Qy
R (1.7.12?

s

where Q = I-N 11! (l being a vector composed entirely of units)

and for Ty the matrix EWN has units in the 2 diagonals bordering

the main diagonal and zeros elsewhere. Then since rl ig independent

of the denominator (see Pitman [47], Watson [54]) the pth moment

about the origin of ry alfs!

oy Elly' @]
S(rl) = 5 : (1.7.13)
e{ly'ql™) :

If we take y to be composed of N.I.D.(0,l) variates and note

that, for any symmetric matrix A,

1 Py _ 2 2
€ <[y Ay] > = & {zzz...zajl...ajpgjl...gjp}

where the aj are the eigenvalues of A and gj are N.I.D.(O,l).
Following Durbin and Watson [13] and Kendall and Stuart [41,p 68]
the relation between the pth moment of the quadratic form y'Ay
and its cumulants is given by

r

b L
e {[y'Ay]p} = Za(s,r)kslksg. o » .ksm (L.7.14)
i m )

where kj is the jth cumulant of zajgﬁ; the summation is over all
S12505 2385 such that 8 T +Sp ke - o4 T = D,

sl < s2 o s3 0 i, ol sm and

p! 1
r i o e el sy ]
] m L) m
(sl!) (821)

a(s,r) =

2...(sm!)

As the cumulant of the quadratic form y'Ay is

kj = {2j_l(j-l)!}tr{AJ] its pth moment can be expressed directly

in terms of trAJ. Since
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tr(QP) = trq = N-1,

L i

tr(QwNQ) = tr(wNQ) = tr(wN)-N' tril'w, = -N LWl = -(N—l?/N

and

tr ([, 2

tr(QV. QW) = tro-2n t1ty N_g(l'w 1) ‘
= %(N-l)-N-l(QN-B)+N-2(N—l)2 :

one finds moments about the origin,

e(ry) = 05, e(x)) = (F-3m3)| (P (n-1)) (1.7.16)

and so the quoted results for the mean and variance of ry holid’,
The above procedure has repeatedly made use of the fact that
the trace of a product of two factors is independent of their
order and this will again be used below. The techniques apply
in general (see [13]) for any Q and the moments depend only
upon the evaluation of tr[(QWNQ)p]. Here WN is of the general

form discussed above (see (1.7.8)). The trace in question is a

linear combination of tr(wﬁ) and expressions of the form

2 a a
-1
)

el PW ™) where as before P = X(X'X

N X' and

Zaj = p. For example if p = 3 then in the expression of

[(I-P)WN(I-P)]5 one obtains a term WNPwi, however,
tr[WNPwi] = tr[PWi] which is of the required form. Now,
repeatedly using the idempotency of P and the fact that
trAB = trBA a general expression,

a a a a a
1 W 2 my A B LR 1 il
tr(PwN o ) = tr(X(X'X) L Wy X e XMW )

a a
= T ORI B o)
- 1 1 2
= tr (D, (X'X) lDNDN X'W, XDy ...Dle WNmXDN )

o tr-{ ? [R-l(o)L/z:{w(%)}ade(%)} }-+ o(1)

= tr-{ %k/::w(x)ade(xi} § o(l)

07 am)
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where w(%) is the generating function of the matrix WN' Thus
the moments depend only upon the traces of products of matrices

i
of the form L/ﬁ w(A\)Pan(n). since e(y'qy)® = o(1®), the order

of the error in the jth moment, corrected for the mean for j > 1
- obtained by inserting the correct expression for tr(Wﬁ) and
approximations such as (1.7.17) in the other tracegs - is.O(N-j).
A special case (where the L.S.E. is efficient) is that |
where N(%) increases at S points in such a way thaf when these
points are grouped together in pairs, symmetrically placed with
respect to the origin, the resulting increments in N(A) - Nj
being the sum of increments at points +Oj and -ej-are orthogonal

ddempotente, i8¢ ZN. =1Ly N.N. = 5§Nj. There cannot be more than

J el £

q of these of course. Then in this case the expression in (1.7.16)

becomes

ﬁfvi () danta) Irril{z{ 8,)} }
W = w

1J e &

(1.7.18)

- swP (6. )N —fwwp(%)dN(%)
AL g

and so one may write

tr {[QWNQ]P} & tr(wﬁ)-tr {f;{w(?\)}pdN(x)} (1-7-19)

since the sum of the coefficients of the expression of

a; 8, a,
tr[[QWNQ]p] in terms of expressions such as tr{PWNlPWN R LA }
is evidently zero. The right hand side of (1.7.18) may be

written as

r T
tr i[QWNQ]p} = tr(Wﬁ) —f_va(x)dn(x) (1.7.20?

where tr(N(A)) = n(A) and this is thus a function which increases
by Jumps of integral amounts at points ej to a value q.
Grenander and Rosenblatt have shown [18,p 103] in a much more

general context that
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% . & p
N tr(Wp) = (1/2n)k/j {w(A\)}an+0(1)
- -

so that w(erj/w), j = -[n/2],...,[ (Ns1) /2], are approximately
the eigenvaluesvof WN. Thus (1.7.20) can be roughly interpreted
as the removal from the spectrum of fhe eigenvalues w(ej)

- repeated tr(Nj) times - so that effect has been as if the qQ
regressor vectors xj had been eigenvectors of WN for
eigenvalues w(ej). Of course the eigenvalues of WN may not
be repeated, but if N is not small the eigenvalues will be
very close together and there will be a number near any one
w(ej). If N(\) has a single jump at the origin, then the
correction term due to regression in (1.7.19) is q{w(0)}%.
Since w(6) is the function cos@, the largest possible |

eigenvalues have been removed. If instead of r d (see

l)
(L.7.5)) had been studied a similar result would be obtained.
Although the matrix Ad is not quite of the form required, since
the two end elements in the main diagonal differ from those
elsewhere in that diagonal, this effect will be of an order of
magnitude no larger than those already neglected. Now w(g) is
2(l-cosf) and the q smallest eigenvalues are being removed;

Thus the upper bound to the test statistic will be appropriate
to an order of approximation higher than N_l. It has already
been pointed out (see [26] and [43]) that this will be the case,
for example, when a trend has been eliminated by fitting a
polynomial in n. Returning to the general case (no
specification that would make the L.S.E. asymptotically

efficient) straightforward but somewhat lengthy calculations

show that mean and variance of rl are
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-
e(ey) = - g |00
T
Var(rl) = (N-q)Y%-q+2) trwi—EL/q we(x)dn(x) (L:7.21)

—'n' - E

i Kf;wmmm)e |42 [wf}(x)am(m} }- ety

Of course w(A) = cos) and tr(wi) = 3(N-1) for r, but (1.7.21)

1L
is general in the sense that it applies for all WN of the form

specified in (1.7.8). Higher moments can be similarly expressed,
though the expression quickly becomes quite complicated.
Consider a stationary x(n) vector with serial correlations
satisfying assumption (iii) of B1l.6. With economic data it is
very likely that all fjj(x) will be very concentrated at the
origin (see [16]). If w(A) is fairly smooth near the origin,

as is the case when w(\) = cos) or indeed is the case for any
w(\) likely to arise, then the terms in (1.7.21) may be

approximated as follows

)
f wl\an(h) = gnlo)

=1

e { {[Zw(?x)dN(’A)T}

1l

[feta g yer@ntaanty)) (1.7.22)

& qwg(o).
So, in this case also, the lower moments again will be close to
those which would obtain if the g eigenvalues nearest to w(o)
are removed by the regression so that again for the Durbin |
Watson statistic, the smallest eigenvalues are being removed
and the upper bound to the statistic is appropriate.

To summarize the effect of the regression on the significance
point of d@ (or any selected statistic) depends substantially on
the cross spectra of the regressor vector x(n), i.e. upon N(A).
The most important effect is to reduce the mean by a quantity.

, T
that is, to order N'l, -(N-q)-lk/q w(A)an(A\). If as is often
_'TI' 3
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the case in economics, the spectrum of x(n) is relatively very
concentrated at the origin of frequencies fhe effect will be
approximately allowed for by using the significance point for du
as the true significance point. This procedure will be accurate

to order N-l.

1.8 Serial Dependence Under the Null Hypothesis

Serial dependence in the disturbance term u(n) in the
relation (1.7.1) is so common-place that a more imﬁortant
problem from the point of view of the economist is that which
arises when the null hypothesis is not serial independence for
u(n) as it was in B1.7 but rather

u(n) = pu(n-1)+e(n) (L)

where the e(n) are N.I.D.(O,ci) (see [29]). The alternative
one has principally in mind is

u(n)+plu(n-l)+p2u(n-2) = e(n) {1.6.2)

which becomes of the form (1.8.1) if p, = 0. The hypothesis

p, = O is appropriately tested by means of a form of partial
2

autocorrelation,

L = = S (1.8.5)

where vy = cj/cO and the c, are defined in (1.7.10). If, for

notational convenience, Z%Bjxj(n) is set equal to p(n) then the

regression model (1.7.1) may be written
y()u) =p {?(n-l)-u(n—li} + €(n). (1.8.4)

Tt is as well to distinguish clearly this model (1.8.L4) from
another often proposed in economics, i.e. |

y(n) = py(n-1)+v(n)+e(n) (1.8,5)
where v(n) is some other linear combination of the xj(n), 8. g |
ZBij(n) as it would be very convenient if the treatmen£ which

will be proposed for (1.8.4) could also be used for (d.8:5):
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The procedures suggested for (1.8.4) will only also be applicable
to (1.8.5) if the vectors xj(n) are of a particular form. The
nature of xj(n) required for this equivalence may be deduced
by equating a general form of (1.8.4)

Zp <Y(n-J)-B’X(n-J)> = u(n) (1.8.6)
to the general form of (1.8.5) i.e.

Zoy(a-3) = Byx(n)su(n) (1.8.7)

where xj(n) are now treated in vector form. The solution requires
that ijB'x(n—j) = Bix(n) and therefore will have to be of the form
x(n) = nucosejn, since roots which are not on the unit circle are
not acceptable. Thus the nature of the xj(n) vectors which would
result in applicability of the methods to boﬁh (1.8.4) and (1.8.5)
is in fact that the vectors be those for which the L.é.E. is alwa&s
asymptotically efficient.
The definition of cj adopted in (1.7.10) ensures that
o T OMEE ahere © hag u(n) as its

lr Indeed XFo.0n c.

.1l =1 %8 5k

0" element snd T bas Zaﬁ in the main diagonal, (abal+ala2) in
the 2 diagonals adjacent to the main diagonal, and abaé in the
next two diagonals. This is the covariance matrix of

ale(n)ymge(n—l)#%Be(n-Q) and thus is positive definite so that

>
Zzajakcj-k =10, Thus

i rl T
rl il rl
r2 rl 1L

2 2
is positive definite and this ensures that (l-rl)(l—r02 l) = {0,

In the case where only a mean correction has been made there
has been a detailed investigation of statistics of the type
rop .y 0y Daniels [9], Jenkins [35,36] and Watson [54]. The exact

derivations have been based upon the use of a circular definition

which replaces cj by
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gL Nt Zlfﬁ(n)a(n+,j) (1.8.8)

where again to complete the summation from 1 to N in c3 the
definition U(ns#j) = u(J) is employed. This means that all the
matrices which occur both in CB and the quadratic form in the
exponent of the likelihood function are circulants and thus
commute and may be simultaneously diagonalized. Unfortunately
once something other than a mere mean correction, or a
regression on the trigonometric functions considered by
Anderson and Anderson [2] is made the advantages of this
definition fade. If Uj is the circulant matrix which makes

- =lAy g - : . :
Cj = N "u'U%u and T’ is the circulant covariance matrix of the
u(n) then the transition from u to Qu = U means that we are
concerned with a set of matrices QUJQ, QrQ, that no longer
necessarily commute and there is little point in adopting the
circular definition.

The situation in which one wishes to test whether (1.8.1)
or (1.8.2) is the appropriate form for the error in (1.7.1) ié
the same as testing whether the disturbance e(n) in (l.8.hj is
serially independent. The test statistic used Qill be the-one
already mentioned in Bl.7, Top 1s however the @(n) which
are used in the definition of the cj used in rOE.i have to be
those residuals resulting from the B.L.U.E. under the null
hypothesis. A simple computing procedure involves searching over
a grid in the range -1 < p < 1, computing for each grid value of
o estimates, 'éj (o) and 4(p), and choosing that set of U(p) with
minimum sum of squares (see [10]). In fact the method of.
computation of the éj(p) and 1(p) was to transform y(n) and the

xj(n) by an N dimensional matrix M',
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(@)

-

-
\.I-—‘ o) SN @)
ke

0
M = e doaatidan.t. L ., (1.8.9)

for each p in the grid. The L.S.E. and the associated residuals
were found for each transformation of the original data and the

A
u(p) used in the test statistic was the set with the minimum sum

of squares.

An alternative to using the statistic r would be to

@23

remove both the term pu(n) and y(n-1) by regression and to use
d-for the resulting residuals. This does not seem quite
appropriate since it gives a statistic that except for end

effects will be 2(lt+r ) and this is nearly 2 if r. is near

jigdc - 2

to ri OR if rl is near to zero. Thus d seems inappropriate for

testing Py = pi

It has already been established that |r

independently of the value of Py

02.l| < 1 and

I is simply expressed as a function of the c 5ol

02.1 bk

CC-02
o2 1

g2y " 2 = L
@Ml

(1.8.10)

1oy

Expanding H as a function of (Co’cl’CQ) in a Taylor's series
about (l,p,pg) and following Cramer [8,pp 354-5] produce
the expressions,

2

e Uy 1 u v -1
ZOHuS(cu-p )+§ZOZHuV€(cu 0 )(cV 0 )+0(N )

1l

e(rgp.1)
(1.8.11)

STRRTFSY (A B

2
vhere H_are the first order derivatives evaluated at (1,p,p")
and HuV are the second order derivatives similarly evaluated.
These results follow from the arguments in the reference just

cited, using the fact that the kth moment about the mean of e
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1
is o(n” k¥ ), k > 1, while the bias is O(N~ ) so that

S(C -0 ) is o(N~ k+l Now

S(cj) =N e{ QW Qu}
= v lr {RQWISIJ) Q}

where WéJ) is N x N with £ in the 5* diagonal sbove and below

(1.8.12)

the principle diagonal and zeros elsewhere, R has pl‘j| everywhere
in the jth diagonals above and below the main diagonals and
Var.u(n) is assumed equal to unity since rO2.l is scale free.

The eleﬁents of R are generated by (see (1.7.8))

2
£ (N) = (1-2 ) (1.8.13)
- 2m(L4+p"-2pcosh) .

and those of WéJ) are generated by (%F)cosj%. Thus (1.8.12)

becomes
s(cj) - Nty {Rwlgj)-(X'X)'lx(wéj)mmlgj)}x'

+(X'X)'l>CRX' (X'X)_]‘leg‘j )X'} )

(1.8.14)

Since tr{RNW§J)} = (N-3)pY it is easily checked that

ZHJ.tr{RWISIJ)] = (N-j)ZHJ.pJ = 0 and therefore only the last two
expressions in 8(cj) need be considered. The last term gives

~ to the order N-l - a contribution to ZHus(cu-pu) which is

N~ tr{f 2t (A) dN(x)f_W

T ¢ 2 =
= N ter { ——P-—— an(n) (o 'EDCOS;"*CO”EM dN(A)}. (1.8.15)
=T L+p =2pCOSA =TT 1-p . .

(COSJAH Yan(n)
(e }

(a'))

The second term may be evaluated by replacing W§J>R (and RWN _

(3)

whose elements are generated by 2f(x)coij. For

(3)

by a matrix A

example the second term is not changed if W 'R is replaced by
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(1.8.16)

The matrix (1.8.16) differs from the matrix AéJ) only because

of the elements in the first and last rows. For example the

b : N-kgl

element in the last row should have p added to bring it

P BRI, 9 0 S N X(WIETJ>R+RWISTJ?)X' from
U N-ngl,
this missing last row is a matrix with X (N) = p xk(n) in row
=1 :

j column k., Then it may be seen that the contrlbutl?n to S(c )

J

from this missing row is dominated by const.N 4 2 —E_?ﬁ_

J

= o(N~ )

A similar argument holds for other elements. To the same order of

accuracy it is possible to show that
' k 2 7)o (k) =L
S(cj-p'])(ck-p ) = CAF tr {RWIETJ)RWIST )J&+ o(N"") (1.8.17)
and by direct but tedious manipulations to find
€ -1
iz ZH eJL(c -p )(c -0 )} = =N {1:8:18)

so that the final expressionsfor the mean and variance are

T

8(r02 l) W -N‘l-eN"lf -
] -T  lyp~ -2pcosh

p2-2pcosk+cos2k

dn ()

2 2
v loe [ [ —(o0T) gy [ e-BecosheosBh gyiy |, ol
: [f-ﬁ (Lpp=-2pcosh) -f-v (1-02) } +

‘ ’ (1.8.19)

Var(r = N-l+O(N-l)

02.1)
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and so to order N_l only the mean is affected. It might be better
to obtain the variance to a higher order of accuracy but this has
not been done because of the labour involved. In case of a straight
mean correction the results of Jenkins [36] suggest that neglecting

5, the variance should be 1/(iz2). TIn the case

terms of order N
where N(%) is a function that jumps only at pointe which may be
put into pairs of symmetrically placed points (with respect to

the origin) so that the corresponding sums of the pairs of Jjumps

) in (1.8.19) reduces to

T 2
e <1 + f P '2"2037“*”527‘ dn ()40 (N‘l)> (1.8.20)
=T 1+ p~-2PpcosA : '

are orthogonal idempotents then E(r02 J

and in particular if the only jump is at the origin the expectation

becomes -(Q+l)/N, which to order N-l agrees with known results
for a mean correction. If the xj(n) series have spectra which

are relatively very concentrated at the origin this may again be

a good approximation. So the test procedure if the xj(n) are of
this nature is to use (r02'1+(q+l)/N) as an ordinary corfelation
from (I+2) pairs of observations. It may also be advisable to
obtain higher order approximations to the lower moments of rOE.l'
Higher order partial correlations need consideration in the same
way. For example the next step logically would be to estimate the
éj and a(n) over a grid of values of o1 and s that are associated
with stationary u(n). The ﬁ(pl,pg) which were associated with the
minimal sum of squares would then be used in forming rO}.lE to
test an alternative hypothesis of a 3rd order autoregression for

u(n) against a null hypothesis assuming u(n) is a second order

autoregression.



W3

IT ESTIMATION AND INTERPRETATION OF SPECTRA ARISING FROM
ECONOMIC DATA

2.1 Basic Spectral Estimators

It is again assumed, to simplify the discussion, that
the spectral distribution matrix, F(%), is absolutely continuous
so that the random vectors employed in (1.2.10), the spectral
representation of x(n), are therefore characterized by the
matrices c(A) and q(A) defined in (1.2.6). It is apparent from
(1.2.6) that an estimate of f£(A\), say ?(k), will be composed of
estimates of these fundamental quantities, henceforth referred to

~ A
as c(A) and q(A). In @l.h, in which the subJject of estimation was
briefly introduced, an expression was presented for the estimator
: .th th :

oifiNeilemenvasgtiesy) row and k= column of £(A). It is necessary
to expand on the expression (1.4.5) to extract the estimators of
cjk(K) and qjk(%). First, we must relax the assumption that x(n)

has a zero mean vector and redefine the estimate of the cross

covariance between the jth and ' elemente of x(n) as

cgk(n) = ﬁ%g-Zﬁ_n(xj(m)-Ej)(xk(m+n)-§£) (20 1L)

where Eﬁ = Z?kj(m)/N, j=1,...,p, and replace cjk(n) in (1.4.5)
m A -

by cék(n). Now it is possible to represent csk(n) as follows,

cgk(n) = Ojk(n)+Ejk(n) (2-1-2?

where

N
Ojk(n) = %-{cék(n)-cgk(-n)j
(2.2,5)

= L 1 3 i .
Ejk(n) = 2-{cjk(n>+cjk( ni}
and since it is apparent from (2.1.1) that Cﬁk(n) = cij(-n) another

expression for Ojk(n) and Ejk<n) is

Ojk(n) = %-{cgk(n)-cij(ni}

(2.3.%)
Ejk(n) = %-{cgk(n)+c£j(ni} .
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When the expression for cgk(n), given in (2.1.2), is inserted
in (1.4.5) we find
A A N
fjko\) = cjkO\)Jqu.k(x) (2.1.5)
with
5 oy o LGl |zl
cjk(k) =i Z_N+lcosn%kn(l- m }Ejk(n)
: (2.1.6)
_ L 1,01 |z '
= 5= kOEJk( )+ zl cosm\kn(l- - )Ejk(n)
and
~ O S L S |n|
qjko\) = 57 ¥y Sinmak (1-1 )ojk(n)
(2.1.7)
1. M |
==, 31nn7\kn(l- — )ojk(n).
The estimates defined in (2.1.6) and (2.1.7) are the basis
of a spectral investigation of x(n). From these quantities a
number of characteristics are developed to aid in understanding
the relation between the elements in the vector. Two of these
have already arisen, the coherence ij(%) and the phase ejk(x).
The estimate of wJ.kO\) is
~2 ~2
g r cjk@\)+qjk(7\) z
wjk(?\) = = ~ (2.1.8)
ij(x)fkkO\) :
and the estimate of the phase, ij(%), is defined to avoid any
ambiguity as follows,
1 q L N)
B (M) = ) >0
: (x)
(2.1.9)
() A '
ol <L —15;——-+ msigng.. A\)F if c.. (A) < O.
~ Jk Jk
Cjk(?\) : .

The measure of coherence given in (2.1.8) should be treated
cautiously for the following reason. If the phase angle between

any two series J and Kk, ejk is changing rapidly then using (2.1.8)
will probably lead to an under-estimate of coherence. The smoothing

procedure necessary to reduce the sampling variability means that
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ij(k) is being estimated from averages of the estimators cjk(%),
qjk(A), fjj(A) and fkk(%) over a band of frequencies, which will
be designated G(A). Thus each coherency estimate ﬁjk(x) might be

represented as

ie.k(w) %
| G(ijk(w)e IE g /{fjj(x)fkk(x)} (2.1.10)

where £,.(.) and f

33 kk(.) are assumed to change little over the

band G(A) and therefore if |fijm)| is also almost constant over
the band then the expression for ﬁjk(k) becomes

16, (@)
W () | / St S etk (2.1.11)
’ Je(n) :

If 6 w) is changing rapidly the second factor may well be close

jk(
to zero and thus the bias in the coherence estimate may not be
negligible. Although no attempt has been made in this work to
allow for this problem it must be mentioned that because the bias
in the phase is negligible it is possible to estimate ejk(w) and
then to approximate it over the band G(7) as ejk(%)+(m-%)95£(%)
and then make a phase shift to eliminate the 2nd term. The wofk
on proper estimation when the phase is changing rapidly (relative
to the band G(A)) still appears to be exploratory (see [3], [51]).
If for any two of the elements of the vector x(n) it is |
thought that *s (n) may be explained by xk(n) then this would
lead to the investigation of Bjk(k), the regression transfer
function and fj:k(k)’ the residual spectral density function.

Both these functions may be expressed in terms of spectral

estimators previously defined as

~

£ p 6
sl B, ()R (R)

los)
i
=
—
=
1]

(2.1.12)
fkko\) fkk(ﬂ

20N = 2550 {1-w§k(x)} . (2.1.13)
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The complex regression transfer function defined in (2.1.12)

is usually considered in the following polar form

-19.k(K)
B, (A) = ij(x)e J . (2.1.1k)

The only new quantity in this expression is G (k), usually

referred to as the gain of the function, which is estimated by
FaCH
B0l

£ (M)

|

A
ij(

(2.1.15)

1]

&, (0482, /2, 0)

The form of the covariance averaging kernel which has been
used to obtain fjj(%), gjk(K) and ajk(%) and which therefore
underlies all quantities based on these estimates is due to

Parzen and is

2
k(®) = 1-6(E)26]2|

|
|
N~

IIA
-

1]

2(1-12])° 1< |y (2.1.16)

= 0 5] > 1
m

where m is the number of autocovariances or cross-covariances
included in the estimates. The spectral window (see (1.4.6)) for

this weight function is

0 - & @5 _(g) ' {-@r ey} @17)

It is instructive also to consider the limiting form of this

spectral window, i.e.

-1

( &) ) \)
P m —grlisl o =N
—— 21mm -N+l j

N

BB
~—r
=

it “ -iAx
= EFL/:mk(x)e dx. (2.1.18)
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K(A), for the weights given in (2.1.1L4), is given by
SN
3 51n(H)
K(A) = <= i : (2.1.19)
| (*/u) »
The choice of the Parzen weight function has not been based
on a detailed study of this and competing functions with a view
to minimizing mean square error as there appeared to be a rather
small pay off in this sort of investigation.
The decision was based on computational ease and the fact
that the associated spectral estimator of fjj(k) JERneven
negative.
If it is most appropriate for distributed lag relations to
be estimated by spectral methods the bias in the estimates
proposed (see [21]) will be minimized for large N if the
truncated covariance averaging kernel is used. This weight
function is
k() = 1 =] =1
(2.1.20)
=0 |5 > 1 '
m
so that the estimator of fjj(k) is
2 TR ]nl . inA 5. 1.5
fjj(K) = 27T_Z_m(l i )cjj(n)e (2L ?
and the spectral window is
1 sin(E%£ ) ( )
= = —— 222
KN(X) = sin (%) :
2
with the following limiting form,
Bl = fEL (2.1.23)

™ °

2.2 Mean Correction of Covariances

The programs which have been developed for spectral estimation
had their starting point in a program proposed by Karreman [40].

As mentioned in 2.1 the spectral estimators computed are to be
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based on the Parzen weight function and it is therefore desirable
that the computation of the mean corrected covariances should

be performed so that estimated spectra continue to be positive.
To consider this problem in more detail we assume that j = k

and make the division N in (2.1.1) so that the mean corrected

covariance is

1 (n) = %nzllff (xj (m)-;j> (XJ. (m+n)-§j>
(2.2.1)

N-n - L —-=u-p
-{ z, xj(m)xj(m+n)-(N—n)(xj-xj+xjxj-xji}

where §§'= Zﬁ-nxj(m)/(N-n) and §§ = Zy—nxj(m+n)/(N-n). If either
m m ’

form of (2.2.1) is used in the computations then there will be no
problem with the positive nature of the estimated spectrum. The
initial form of (2.2.1) would be used if all the data were passed
through a detrending subroutine prior to spectral estimation where
one of the detrending options would be the production of mean
corrected series. This computational organization means that new
series ¥y = xj(n)—Tj(n) are the series which form the input to the
spectral computation procedures. Although the latter form of
(2.2.1) is susceptible to greater simplification for computing
purposes, it is tempting to use the following approximation,

c*.(n) =

N=n
Jd 1

!
=]
B M

(2.2.2)H

1Lk
The approximation suggested in [4O] has a correction term

-NE? in the first form of (2.2.2) which does not appear to be

correct and will accentuate the magnitude of possible negative
estimators.
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The obvious query is whether this approximation could lead to
negative spectral estimators. The multiplicative factor -ﬁﬁ
will affect the nature of the bias and the variance of the
spectral estimator but will not affect the presence or absence
of negative estimates, only the magnitude of these estimates.

The result that must be established is therefore what will be

the nature of the estimator f (%) gj(n) is replaced by

i)
N=-n

* |z L .m nfl ZBoinh
5, = { }JJ k_ 2,[Ti_m{l T

To evaluate (2.2.3) it is necessary to express the latter

cgj(n) so that (1.4.5), with j = k, becomes

(2.2.3)
factor in terms of IN(X) (see (1.4.3)) as follows

1 |n| yz2 1nn,

= ALL girel .(1-'%') [ z‘fmeink(l-lr%' )k(%)}

2 No

= Jepliel FIR [ f fn_:_d] 2.2k
= 57 T 10518 Ky (A-0) Al ? ¢ ( )

: Né
sin (—5

m
IN(O)E'ITL/l]TK.N(.)\-‘P) ST e do

2rNsin (5)

If the first term in (2.2.3) is expressed as proposed in (1.4.3)

then the estimate is written

%‘33(7\ / {I (6)k, (A-6)-T (o)f K (A-0) ;r;s:—i—) d¢} de

2 No
sin 5

T

_ff[ {IN(Q)KN(x—e)-TN(o Ky, (A- ¢)} Sy } -
-

sz {IN(G)KN(A—G)-IN(O)K;G(M} a6
=T

=f7r IN'(9 (7\ 6)ae-I, (O)K*O\)
=T

(2.2.5)
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It must be noted that the expression

sin2 N o}

&
K.(A) 4 KEQN) =f_7TKN(x-¢) -

5 d¢, but that there is
- 2mNsin %¢

approximate equality if N >> m. It is apparent that if the
amplitude of the periodogram at zero frequency is large relative

to the amplitude at and around A and the weight K_ is not small,

N
then it is quite possible if m is not large that negative spectral
estimates could occur. To completely avoid the possibility of
negative spectral estimates the approximation ng(n) was not

used. Although some computing time is lost by this.insurance

it is possible to express the latter term in (2.2.1) in a more

convenient form for computational purposes as follows

ct.(n) = %~{ iy-nxj(m)xj(m+n)-(N-n)§j(§§;§§-§i}

kJy
S. 48 S48 (8.48,48.)
_ 1 N-n (Ren) =] 1% 2. 273 e
- N il =5 (m)xj (m4n) - == x w—n) * N ~ N }
NS +n (S, +5,4+55)
_ o), = 2 2
@ % Z? rlxj(m)xj(m+n) - (NNn)x—{ N(N-i) 5 }- (2.2.6?

m

I
= L

N-n = =
il xj(m)xj(m+n) =i x-{NSE+n%}

it N-n = =
= N.{ il xj(m)xj(m+n) - x-{ﬁ82+n%}i}
where
n N=n N
8, = le(m), 8, = Zn+lx(m) and 85 = ZN_n+lx(m).

m m m
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2.5 Missing Observations

Granger [15] has suggested a method of treating a single
gap in the data when the series has no trend in the mean. It
does seem that the treatment of missing observations must be
expanded to handle the sort of situation which arises where,
for example, prices are recorded on a weekly basis. The series
of weekly wool prices (on an aggregated or type or quality basis)
is an instance of a time series which is always incomplete for
the following reasons. The custom of the wool trade is to close
the Australian market at Easter, for 2-35 weeks, at Christmas
again, for 3-4 weeks, and during the European summer for 5-6
weeks, The gap at Easter is naturally variable in its calendar
location but the other two breaks are reasonably constant in
calendar location. It may be tempting to close these gaps in
the data, arguing that the market mechanism is not active or
perhaps is less than usually active. This does not seem to be
Jjustified as the factors determining supply and demand for the
commodity are still active in these periods so that while the
Australian Wool Market is not registering a price in these
periods, there may be in effect changes in the potential price
of the commodity. Apart from the underlying feeling that the
mechanism which determines prices does not halt during these
gaps there is a purely practical difficulty if the gaps are
closed in that the period of the oscillation thus obtained
cannot be easily interpreted in relation to the normal concept
of time. There is now market time and calendar time.

The procedure used was to fill in all missing observations
with zeros,12 thus maintaining an equivalence between market and
calendar time. It is obviously necessary to adjust the methods

for computing autocovariances and cross-covariances so that the

2
There were no actual observations with zero value so that all

zero observations or cross-products arose from missing observations.
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only market generated information will be used in computing the
covariances.

To attempt to fill in the theoretical background on this
approach to missing observations the analogue of IN(A), which is
the sum of squares of regression of x(n) on sinn)\ and>cosnx
divided by Lm, is considered. The sum of squares is

se lrv y'A'ly (2.3.1)
where
y! = <%’x(n)cosn%, Z'X(n)sinnx>
and

1 2 .

P < 'cos n\ Z'cosgA51nnk > .

Z'cosnAsinnA Z'sin nX
The symbol ' is to emphasize that the sum includes only those
market generated values. Whether the A matrix will be close to
orthogonality will depend on the distribution of the missing
values over the time sequence 1,...,N. If A is close to
orthogonality then
SS = 15 %. |z x(n)e™M® = Iy(\) (2'5‘2?
where N' is the number of market generated observations, i.e.
N less the number of missing observations. The quantity that is
now to be used in estimating fjj(k) is the periodogram computed
from data with missing values replaced by zeros, i.e. Iﬁ(%).
To understand the implications in this redefinition it is ﬁseful
to express Iﬁ(%) as follows
) = 2= st T et (n)e T (23.3)
and

&, sl=n

Il

c!(n) i Zm lx(m)x(m+n).
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The estimator proposed will be
o LE gl =ink, sn
fjj(K) il (n)e k(m)
(2.3.4)

qr
=f K(A-e)ll'q(s)de

=T
which will be non-negative for the Parzen spectral window. It
is necessary also to introduce a double primed notation which
means that in summing or counting between prescribed limits
only non-zero cross products are included. The expected value

of I&(%) is then given by

l Nf_l mn -2
e (Iﬁ(M) - Lt ) (o)en i (23.5)

where N"(n) is the number of cross-products entering the
definition of each c'(n), so that the expected value of the

proposed estimator is given by

e <f"jj(7\)> Ll gn N(n) 7(n)k(1%)e-in7\. (2.5.6?

2m T-m N'

The only situation where there will be much distortion, compared

to the normal situation without missing observations, is when

t
N"(n

2L 15 small in relation to B for n such that y(n) is not

N’
small (i.e. small n).
The problem of mean correction arises again and as much of
the detailed argument would be on lines similar to those given in

2.2 only a brief sketch of the details are given.

The mean correction may be made by a pre-filtering routine
3 »'x.(n)
F P

which produces new series yé(n) = xg(n)-ig where x5 = o

Alternatively the covariances for xj(n) may be obtained from

vty = & 208" (e -7y (v, o) Ry ) 23.7)

If the covariances are obtained using (2.3.7) then the most

convenient formula for computation is
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cg(n) = %, Z"xj(m)xj(m+n)-§s {é"xj(m)+2"xj(m+n)-N3(n)§}}- (2.3.8)

and it is emphasized that the sums included in the second term
are also performed only for non-zero cross products.l5 The
formula (2.3.8) provides the focal point for an auto-spectral
estimation program when missing observations are present. An
analogous formula for cross-spectral purposes has also been
developed by merely setting jJ = k in the second bracket in (2.5.7)
and simplifying. The programs employ two counting procedures; |
one automatically totals the non-zero observations N', and the
other counts for each covariance or cross-covariance the non-zero

cross products, Ngk(n). It may seem even more tempting in these

circumstances to use the approximation to cé(n) given by

Es(n) = %, Z"xj(m)xj(m+n)-N3(n)(§S)2 (2.3.9)

but certain non-negativity of fjj(A) would then be sacrificed.
The only extra computing that (2.3.8) requires when compared to

(2.3.9) is the upper and lower sums, Z"xj(m) and Z"xj(m+n).

15

The operation Z"xj(m) means that those elements usually in the

lower sum which correspond to a zero cross-product are excluded
from the sum. The reason for using the notation in the lst term
on the right hand side of (2.3.8) needs a comment. Obviously it
will not matter for the sum of cross=-products whether the zero
cross-products are added or not, but it does matter when correctly
computing the sums in the second term on the right hand side of
§2.3.8) and so the =" notation is appropriate to (2.3.7) and to
2.5.8)
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2.4 Preliminary Transformation of Economic Data

It is standard practice to examine a graph of the series
under consideration, both as a means of 'editing' discrepant
values and perhaps as a guide to suitable transformations of
the data. It is not uncommon for logarithms of the data to be
taken. There is little doubt that much economic data so
transformed is closer to normality than in its original state.
If the observed data is denoted x(n) then it is assumed that
y(n) = logex(n) is normally distributed and for expositional
convenience that “y = 0 and c§ = 1. To estgblish a relation
between the spectra of y(n) and x(n) it is necessary on several
occasions to use the followling result. If y(n) is normally

distributed with mean . and variance oi (N'D'(Hy’ci)) then

v (n)

the expectation of x(n) = is given by [15]

€ <%(ni> - exp-{§§/2+u¥} g (2.&.1)

The lag covariance function of x(n), 7X(T), is

7X(T) =€ <¥(n)x(n+r)> - {é <’x(n)>}-2 (2.&.2?

and

& <X(n)x(n+,[ )> Ao <ey(n)+y(n+T )>

2
is derived from (2.4.1) as y(n)+y(n+t) is N.D.(O,2(cy+7y(r))).

So the first term in (2.4.2) is

€ (%(n)X(n+Ti> eXP-{0§+7y(Ti}

= e. eyy(T) (2.4.3)

A
and since €(x(n)) = €2 from (2.4.1) the simple expression for

7X(T) is

7, (1) = e <e7y(T)-l> ] (e.u,u)
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The variance of x(n) is obtained directly from (2.4.L) with
T = 0, so that the lag correlation function for x(n) is
G5 T
(v) = ) (2.4.5)
Px ' e(e-1) T e-l ) e
As it has been assumed that 7y(o) = 1 the following relation
holds between lag correlations
p_(7)

() = e -1 (2.4.6)
Px - e-l1 i Sl
If the exponential terms in (2.4.6) are expanded in power series
and then a weighted Fourier Transform is taken of each gide of the
equation we obtain the following relation between spectra

0 j 0 1l
£ = *J sl (s L
LA =2 B2M/E ) (2.4.7)

*l E *. B 'TT*(._l)
where fy () = fy(%) and ny(K) —L/:ny J (%-G)fy(e}de

and f§3(%) is referred to as the jth convolution of fy(x).

To interpret (2.4.7) it is best to imagine starting with
normal variable y(n), which is exponentiated and then normalized.
The spectrum of x(n), in regular cases, will be much smoother
than that of fy(%) as it comprises a weighted average of fy(x)
and its convolutions. Of course if y(n) has a very sharp peak
in its spectrum, say at 6, then the convolution f§2(x) will have
a peak at A = 0, *26, f§5(x) at t6, +36, and so on. Tﬁus

£*J(\) will tend to have peaks at all harmonics of *6. The

;1 i

J

fact that the convolution may still be regarded as smoother is
less important than the recognition of how the convolving procedure
redistributes a sharp peak of power at a particular frequency to
its harmonics. To understand what will happen to a spectrum when
logarithms are taken one merely has to imagine reversing the above

explanation and the spectrum of the logarithm will be much more

peaked at points of power.
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In econometric work it is often the case that the dependent,
independent or even all variables in the relation are in ratio
form. It is useful to attempt to obtain some understanding of
the nature of the spectrum of this type of variable in terms
of the spectra of the numerator and denominator and to do this
the typical ratio variable, r(n) = 5{%% is investigated. As is
the case with most economic variables it is assumed that
logec(n) = z(n) ~ N.D.(pz,ci) and logey(n) = u(n) ~ N.D.(uu,ci)-
The spectrum of loger(n) = w(n) is expressed in terms of the |

spectra of u(n) and z(n) as

£,(\) = £, A+ (\)-2c, (M) (2.4.8)

where czu(%) is the co-spectrum between z(n) and u(n) defined
in (1.2.11) and estimated by (2.1.6). | |

If the variables z(n) and u(n) have similar spectral cshapes
(see [16]) then it would Be expected that fw(k) will contrast
strongly with fz(k) and fu(%) in that it has much reduced power
and is much flatter.

Attention should not be focussed only on the spectrum of
w(n), but rather on that of r(n). Since loger(n) = w(n) and
w(n) is N.D.(u_—u ,02+02-20 ) it is possible as.before-to

z " wl u B uz
exponentiate, normalize and thus express the spectrum of r(n),
1.0, fr(%), as a weighted average of the convolutions of fw(X).
It is therefore clear in principle how the shape of z(n) and |
u(n) will be modified in fw(%) and also how it will be further
modified by the convolution operations.

The problem as it usually arises in economics is where a
monetary value is deflated by a price index. A detailed
investigation of this problem has not been considered because
the variable in the denominator of the ratio, i.e. y(n), is
itself s ratio, with both the numerator and the denomiﬁator being
sums of products. The development of the spectrum of y(n) itself

would therefore need a number of assumptions and an extension of

the above approach.




2.5 Spectrum of a Controlled Variable

Examples are common in primary production of an authority
being given the task of controlling some aspect of the market
for particular commodities. The approach of this section acts
on the presumption that the control procedure proposed is
successful and no attempt is made to investigate the interaction
of the control procedures and the behavioural relations in the
market. The aim, therefore, is to see how the spectrum of the
uncontrolled variable will be modified when subjected to
successful control.

The type of control which is considered is the imposition
of an upper and lower limit to the values the variable may take.
The upper and lower limits on the original variable, which for
expositional purposes will be taken to be a price variable, will
be denoted a and b respectively. The situation where only an
upper or lower limit is employed may be easily dealt with by
using obvious special cases. The uncontrolled variable is
assumed normally distributed with mean p and serial covariances

y(m). The controlled variable is then

IIA
(oF

b z(n)
w(n) = -{ z(n) b = z(n)

a z(n)

IIA
o

(2.5.:1)

1\%
Y

If the uncontrolled variable z(n) is standardized to form a new

variable, x(n) as follows

x(e) = (a(2) ) /10), (2.5.2)

then the standardized variable is N.D.(O,l) with autocorrelations
p(m) = y(m)/y (o). New standardized central limits, o = ﬁ%%%%

and B = ﬁgi%%-are also established. The standardized controlled

variable, y(n), can then be defined as
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y(n) = £ <¥(n)> =P x(n) = B
' x(n) B = x(n) = (&5
(o4 x(n) = a. -

A description of the nature of the controlled variable, y(n), can
then be obtained from its spectrum. To establish this func£iOn

a Taylor's expansion of R'(m) = €(y(n)y(n4m)) the expected value
of the lag cross-products of the standardized controlled variable,
is required. The Taylor's series expansion is in terms of the

autocorrelations of x(n) and is given by

k ?
R' (m) = 5 g (m),{ dkR (m) }_( : O' (2.5.4)
p\m)= i

k=0 k! k
dp (m)

To proceed with this evaluation of R'(m) it is necessary to invoke

the equality

dJe(Y(n)Y(n+m)) 2o {%(j)(x(n))f(j)(x(n+m)i} (2.5.5)

dp (m)?

given by Price [49]. The expression one obtains for the term

€{f(J)(X(n))f(J)(x(n+m))] may be denoted A?. The calculation of
Ehe Ai is much simplified by special attention to the nature of the
function f(x(n)) and its derivatives f(J)(x(n)). Referring to

(2.5.3) it is apparent that

0 x(n) = B
lxlo)) Mz -1 psxl)s (2.5.6)
0 x(n) =z '
and the general derivative f(j)(x(n)) ig
£ ) - 802 g 60D (x),  5=2,3..0 (2.5.7)

where ® is the Dirac delta function. Using the above expression

for f(j) the following table of Ai can be developed
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; 2
. AT
BTSN [
0 2
0 b8 6 + [ xeweua(r-T @) }
B . |
2
1 {356} (2.5.8)
- o
25 oo {(49(‘] )(x)> - <¢ (J 2)(x)> }
xX=C /x=B
where § (u) = B dx, ¢(x)=-—Le2X and
-00 \[2"' A}2-n-
¢(J)(x) = ®(x)HJ_ (x)(-1)Y. The function Hj (x) is the jth Hermite
polynomial and is defined (see [8]) by
2 2
o g
ELon 2 j 2
G {e® fe e, s-onz.. (2.5.9)
Another approach to obtaining the expression which 1s
propesed by Grenander and Rosenblatt [18,p 51 ff.] is introduced
because it proves to be advantageous when considerations of
computation efficiency arise. It is shown in [18] that
1 ®, 42 J
R'(m) = zoAj 0 (2.5.10)
j A
where the coefficient AB are
) 1.2
i ik -=X
Al =f — H.(x)f(x) = e 2" dx. (2.5.11)
J _w@ dJ [ i
Tt is also shown in [18] that if p = 1 then using the Parseval
relation it follows immediately that an expression for the sum of
the ABE coefficients is
2
%
- LT
Z°O°A3 = ——f £(x)e © dx. (2.5.12)
J Very —o :
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The weighted Fourier Transform of R'(m) will give a spectral
representation of y(n), denoted f&(x) which consists of the

following weighted average of convolutions of fX(K)

o .2 i
f&(%) = §OA3 f;J(x). (2.5.15)
It is usual for the spectrum to be defined in terms of the
covariances, so the weighted Fourier Transform should be applied
to R'(m) - (8(y(n)))2. As the mean, €(y(n)), is easily expressed
in terms of the A3 as Aé, the usually defined spectral density of

y(n) is fy(x), with the prime omitted, and is calculated from

fy(x) = ?TABef;j(k). (2.5.1&)
To illustrate how a spectral density will be modified in practice

by this sort of control procedure a set of data on monthly

price/lb of wool sold at auction, issued by the Council of Wool
Selling Brokers, is used. Two general control schemes are

proposed; the first has variable upper and lower limits and the
second only a variable lower limit. Table 1 below sets out the

limits used in each scheme in terms of the original and

standardized variables.




TABLE 1

CONTROL SCHEMES

Scheme I - Upper and Lower Restriction

Il I2 I5 Ih I5 I6 IT 18 I9 IlO
Lower Original Variable 55 53 52 Sl Lo 55 55 52 Gill 49
Limit Standardized Var. -.T2 -.88 -.97 -1.05 -1.22 -.72 -.88 -.97 -1.05 -1.22
Upper Original Variable 70 68 66 65 63.6 75 h i 78 8o
Limit Standardized Var. G50) A .20 o2 0 .95 87 102 L.20 1.3%6
Scheme II - Only Lower Restriction
IIl II2 II5 IIh II5 II6 IIT 118 II9 IIlO‘
Lower Original Variable 55 55 52 51 49 57 59 61 62 63.6
Limit Standardized Var. =-.72 -.88 -.97 -1.05 -1.22 -.55 -.38 -.22 -.13 0
Upper Original Variable o o 0 00 o) 00 o) © o) o)
Limit Standardized Var. 0 0 0o ) 0 0 o 0 ) 0
Sample Statistics N=168, X-=63.6, 5 =12.02.

c9




63
The computation of the spectra of the price variable when
subjected to the control of upper and lower limits suggested
above is based on (2.5.12), The obvious dilemma with the
expression for fy given in that formula is how many terms in
the infinite sum should be used. The following resolution of
this problem follows the lines suggested by Grenander and
Rosenblatt [18] and makes use of the fact that f;J - %F as J
increases. If (2.5.13) is rewritten as
£ (A) = ZParfexd (n)m2arexd ()
¥ jl J X P J X%
" [e)
= Z‘.pA'.ef*JO\) st R (2.5.15)
g % e J
P+l ~
5
e J i L o2 Ao
~ 1 * - e = ! - —
iy (fx () - 5 > tor Xty T Er
then using the expression given in (2.5.12) for ZA32 fy(x) is
expressed in a way which suggests a method of computation, that is
2
. ) 2 Al
N N P . 1 /ﬂ 2 —Lx o/
£ (A) = Z2AYV (£2° - = f (x)e & dx - 2T .
y() lJ(X 2ﬂ')+(217.)3.2k_00()
(2.5.16)
If a small finite number of convolutions is calculated until the
last is reasonably close to %F (in the example discussed p = 10)
an estimate of fy(%) is obtained by adding the latter two terms.
To facilitate computations it is necessary to express the terms
o0 1 2
_—_2;7F'L/ﬁ f'2(x)e-§X dx as follows,
(2m)?/2 J o
00 1. 2 ik 2 1 =
i 2 ~=X 2 2 -= 10
o f £ (x)e ™2 ax = 8% §B)o” (1-3())+3()-B(B)+pe =" -2 .
(2ﬂ') 2 J o ) X ;
E.5:1T)

The spectra of the controlled variable for each scheme
proposed in Table 1 are contrasted with the spectrum of the

standardized variable x(n) in Fig.I.
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ITT NARROW BAND SPECTRAL REGRESSION PROCEDURES

Di.iles Intreoduechion

This chapter is concerned with two problems, in each of which
the model specifies exactly the signal (the regressor). To
emphasize the point just made in this Chapter we consider
estimation problems where the actual frequency properties of the
carrier wave are known and one wishes to detect only the
amplitude (or frequency) modulation. In contrast in Chapter IV
we will begin considering signal extraction where the only
characteristic of the signal which is known a priori is the
signal's average spectral properties. Although the signal is
known the method of analysis adopted will depend a great deal on
the spectral nature of the signals included in each model.

The simpler of the two models is the basis for the estimation
of a stable seasonal pattern. This discussion is a logical
starting point as the nature of the spectrum of the regressor

set is such that the L.S.E. is asymptotically efficient. A series

with an extremely stable periodic pattern is used to obtain
estimates of the seasonal coefficients and the asymptotic
variances. As the L.S.E. is only asymptotically efficient some
guidance is then sought on the loss in efficiency one may face
from use of the L.S.E. rather than the B.L.U.E. in small to medium
size samples.

Finally the model is extended to allow for the effects of
working days. Estimation of the working day coefficients clearly
illustrates how efficient regression procedures may be employed when
the spectra of the signals (regressors) and the disturbance term
are such that the L.S.E. is no longer even asymptotically efficient.

Although most economic time series seem to exhibit evolving
seasonal patterns there are occasions when the estimation of a
stable seasonal pattern is apposite. This position may prevail

for two reasons; because the seasonal pattern is in fact
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unchanging or more likely because the segsonal evolution is
sufficiently slow for a stable pattern to be useful over short
periods (say 4-8 years) and therefore the slowly evolving pattern

may be estimated by a moving stable regression procedure.

5.2 Stable Seasonal Model

The basis for discussion is the model
w(n) = p(n)+s*(n)+u(n) (5.2.1)
where w(n) is the observed series, p(n) is a 'trend' term, =¥*(n) |
is the seasonal component and u(n) is a stationary residual |
with zero mean. The stationarity of u(n) means that one may
write
T
€ <¥(m)u(m+n)> = 7u(n) =L/n elxnfu(k)dx (3.2.2)
- . .
where € is the expectation operator and the function fu(%) is
the spectrum of u(n). :
Only the case where the unit of time is one month is
considered as the approach taken can be translated, perhaps
with some change of emphasis, to any case where the time interval
is some other known period.
Since s*(n) is assumed to be periodic with period twelve

1k
months it may be expressed in the form

s¥(n) = Zisg(n) = Zf(agcos%jn+ﬁgsinkjn), AL = gﬂly 3 =Ana ., 6

The Kj are called the seasonal frequencies.

1k
An equivalent alternative formulation for the stable component is
12 12
* = =
S (n) = Zl ajej(n) , Zl aj 0

where ej(n) is unity for (n-j) divisible by 12 and is otherwise
zero, The restriction on the a.j coefficients implies @ = (), sl

equivalent approach is fully described in Nerlove [4h, pp L51-2].
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The distinction that has been made between p(n) and u(n) is
arbitrary. It could be argued that the distinction between all
three components tends to be arbitrary in practice, but as a stable
seasonal pattern is under consideration s*(n) can be clearly
distinguished. Alternatively one could consider
p(n)ru(n) = z(n)w (3.2.4)
where p is a constant and z(n) is taken to be stationary but
with a very large concentration of power in fz(x) close to the
origin. An example would be z(n) = pz(n-1l)+e(n), where the e(n)
are serially independent with variance ci and p is close to unity.
The associated spectrum will be

2
o
€

2
2m{ L+p =2pcosi}

£,() = (3.2.5)

and will be very large close to the origin. Economic phenomena
are of course not stationary but are evolving. DNevertheless a
stationary process with a spectrum of the type just described
would have an appearance which accords with what one would expect
from an economic time series, over reasonable periods, and
statistical procedures could well be based on such a model.

It is however simpler and a little more realistic to work in
terms of (%.2.1) although it is convenient on occasions to
interpret the results of the following investigations in terms

of the alternative Jjust described.

The data is initially filtered by an operator which replaces

w(n) by (see (1.3.1))

y(n) = z‘}pbkw(n-k). (3.2.6)

The effect on u(n) is to replace it by a new series, x(n), with

spectrum (see (1.3.3))

iA
22 pe” K%, 00 = 13001, 0 = £, 0. (3.2.7)
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The function B(A) is the response function of the filter defined
in (1.3.2). So far as s*(n) is concerned a modified series s(n)
is obtained with modified coefficients given by
a, = a*2® b cosh.k-p%22 b, sinh.k

N S e g R
(3.2.8)
2 q < _ q .

Bj = a?z_pbk31n%jk B?Z_pbkcos%jk.

The bk are chosen so that p(n) is made as small as practicable,
i.e. so that in a model based on z(n), IB(K)]ng(A) no longer has
a large peak close to the origin. As (p+q).observétions are lost
in such a filtering process, for simplicity it is assumed that
after filtering the number of observations available, N, is an
integral multiple of 12, This is usually no restriction since
the initial point for the analysis (i.e. the point to which one
can return and still regard the seasonal as stable) is somewhat
uncertain and may as well be chosen so that NN is an integral

multiple of 12.

5«3 Possible Regression Procedures

Least Squares Estimates

The L.S.E. is obtained from the regression of y(n) on
cosn7\j and sinn')\j and provides estimators &j’ §j. The.equations
(5.2.8) with circumflexes inserted throughout to denote estimates,
are then solved for &?, é?. It is not necessary to proceed in
this way. A precisely equivalent procedure is to average the y(n)
for each month of the year and then adjust these twelve averages -
to add to zero by subtracting their mean, thus obtaining regression
estimates of the filtered a5 (see footnote (14)), which are denoted
gg (see [11]). Now the original coefficients may be recovered from
the 23 by employing the following relations
leelejB_l(kj) (3.3.1)

-
870
3

AgIEvEE "wfisu? soBl T

assuming that B(o) = O and B(Kj) 4 0 forall j 4 0. The g, are

defined to be periodic with period 12 and are always real. This
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Procedure is numerically equivalent to the one described earlier
in this section. There is nothing new or radical about this

technique proposed by Hannan [22]; its virtue is merely that it

enables any filter to be used, subject to the proposed
restrictions on B(A).
The variance of the estimates &j’ §j satisfy (see [23])
lim vard, = lim varf, = 18 TN jt6
o I e 9 N XV

(3.3.2)
lim var(&6) = %E fX(K6) '
oo
and the covariances approach zero as N - «. To employ these
formulae one requires knowledge of fx()), or an estimate of this
function. The series, Passenger Airliné Reservations (see [T])
appears to be stable over the short period which has been chosén
for analysis, i.e., the seven years, 1954-60. This series is used
to illustrate how in practice one might obtain an estimate of the
asymptotic variances of &j’ §j. It is argued in more detail later
in the section that it is most unlikely that fX(')\) will be known so
it is necessary to make an estimate of the spectrﬁm at each kj. To
produce this estimate the filtered residuals from the regression of
y(n) on cosn7\j and sinnkj, is formed using

2(n) = y(n) - £(Q,cosnh.+B.sinmh.). (3.3.3)
3 J Ji J

The periodogram, IQ(K), is then calculated for equi-spaced

frequency points between zero and T from the formula

~ -l 2
(V) = 5 |ill“x(n)e i (5:5.4)
= 21k, k = 0,1,...,[N/2]

N

which is itself derived directly from (1.4.2). To convert these

A = Kk

periodogram ordinates of the residuals to values which are
relevant to the coefficients of the original relation, i.e.

ag, Bg, Ig(%) must be recoloured by the factor




Th
-{l B sin6k;in% }_ (3.5.5)
2hsin %%

to become Ig(k), an estimate of the periodogram of the residuals
in the original relation. It should be immediately mentioned

that because of the narrow band regression that has been performed
and because the factor enclosed in the curly bracket in (3.3.5)
has zeros at all Aj no meaning can be attached to the value ofA
IS(K) at the exact points %j. Table 2 below presents the values
of IQ(K) and Ig(%) that were obtained for the Airline Passenger
Reservation series. The recoloured periodogram, Ig(k), has been
smoothed by a simple average to provide an estimate, ??(k), of

the spectrum of x(n) (see [38]). Two simple averages were used,

15

a three term and a five term, and the results of this averaging
are also included in Table 2 after the frequencies of interest,
%j. These estimates of f(kj) are then used in (3.3.2) to provide
some indication of the significance of the &3&, 63?. Some
perspective on the relevance of this asymptotic variance estimate
when N = 72 will be given in future sections of this chapter.

Table 3 below presents the estimates &3, g? and the associated

asymptotic variance estimates.

15
The middle term in either average has to be neglected
because of the lack of meaning of the ordinate at %j so that

in fact the average only involves either one or two terms each
side of any Aj.
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TABLE 3

STANDARD DEVIATIONS FOR STABLE SEASONAL COEFFICIENTS
FROM ASYMPTOTIC FORMULA

i a || o S A - T - B B
Coefficients 54,47 | 29.02 -.63 30.57 | =10.65 4,49 ST 8.54 .67 -7.63 .96
Standard Dev.
from Asymptotic 6.61 3.58 2,12 1.43 2.06 ’55

Formula

9L
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Best Linear Unbiased Procedure

g fu(k), and therefore fX(K), was known then aj and Bj may
be estimated by the B.L.U. regression procedure, that is a
weighted regression on coskjn and sinkjn. This procedure has
been advocated by Jorgensen [39]. It is almost inconceivable
that £ (A) should in fact be known so that the best that could
be done would be to base a B.L.U.E. on an assumed fu(x). In
fact the B.L.U.E. is unlikely to be used for large samples as
it is known the L.S.E. is asymptotically efficient if the effect
of p(n) is much diminished by filtering, as must be assumed.
Moreover the subsequent sections will show that the L.S.E. will
prove to be quite efficient for small N provided fX(A) is not
markedly peaked. It should be emphasized that filtering is
performed to attempt to reduce p(n)+u(n) to a form approximating
a stationary process with a smooth spectrum which is not markedly
peaked. If this attempt is successful it will become apparent
that the L.S.E. is quite an acceptable procedure, particularly
as informastion sufficiently precise to improve on it will not
normally be available.

Jorgensen [39] has suggested the case of a pure regression
procedure in which the term p(n) is represented as a polynomial
and p(n) and s*¥(n) are simultaneously estimated by a B.L.U.
regression procedure. Normally a known fx(k) is not availablel
and Jorgensen therefore recommends the use of an estimate of
fX(K), or parameters equivalent to it, from the residuals in an
initial regression. This approach needs assumptions concerning

fx(K) which are equivalent to requiring it to be a polynomial in

16
If the disturbances were assumed to be independent then of
course fx(A) and the associated lag covariances would be known and

the B.L.U. procedure would be available.
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exp(iA) and exp(-i)\) so that only a finite number of parameters
are to be estimated. It is difficult to assert anything concerning
the merits of this approximate procedure. The term neglected in
approximating fx(k) as suggested may be of similar magnitude to
that involved in the comparison of efficiencies. Further, for
fx(K) to be approximated in this way it must be comparatively
smooth so that the L.S.E. then has variances which approach the
optimal values fairly rapidly.

Of course, one might assume fx(k) to be constant (see
footnote 16) and use the L.S.E. Indeed as N increases it is
known, assuming p(n) to be a polynomial in n, that the efficient
estimation procedure tends not to depend on fx(k). However, for
a high degree polynomial N needs to be very large before this is
so. Although regression is not technically a filtering technique
it may be thought of as one which produces a response function
highly concentrated at the origin. The degree of concentration
decreases as the order of the polynomiel increases. In terms of
z(n) the task is to modify the very large concentration of spectral
mass at and near the origin, and a troublesome part of this mass
may not be very near to the origin. Thus the degree of the
polynomial may have to be very large. What is required is a
flexible procedure which will modify fu(K) not merely right at the
origin. Polynomial regression is not well adapted to do this but
filtering is.t!

Before looking in detail at examples of the actual efficiency
of the L.S.E. of aj and Bj the case where aj and Bj are assumed

to be zero for J + 1l is considered for expositional purposes only.

The exact variances of the L.S.E. of o and B (see [46]) are

17

With a high order polynomial, regression of'ten becomes
unwieldy and results in a loss of degrees of freedom. Against
this must be set any loss of observations at the ends of the

series due to filtering.
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i
var(@) = %EL/:F [|SN(x-xl)|2+|5N(k+xl)|2+(RJ{SN(x-Al)SN(%+xli} }
130V |7, ()
(3.3.6)
W
var(8) = 2L f & [ISN(x-xl)|2+|sN(ml)lg—@u{sN(x-xl)sN(ml)} ]

130V %2, (\)an

where GL{.} means the real part of the indicated function, and the

function SN(%) and the square of its modulus are given by

. o
sy, (A) = (1/ 2mm) zﬁelxn, |sN()\)|2 - -532—2%2— . (3.3.7)
Lo
2rNsin SA

The last expression in (3.3.7) integrates to unity and is very
concentrated at A = O.

The B.L.U. procedure results in a variance which cannot be
represented exactly in this form (see 3.4.2) but approaches

(MN/N)fX(%j), as do the variances of & él shown in (3.3.6).

l’

Indeed the approach to the limiting values is quite fast unless

fx(%) is very markedly peaked for the maxima of ]SN(K-kl)I are

3m 5T
N’ N’

much smaller than that at A;. Thus fx(7\)|B(7\)|2 has to be very

at A = %l and near points etc... away from A;, but are

different from its value at A = %l for a large contribution to

arise from anywhere other than %l.

3.4 Comparison of Efficiency

To compare the regression procedures a number of situations
with known f_(A) are considered and the exact values of the
variances and covariances of the B.L.U.E. and L.S.E. of aj and
Bj’ j=1,...,6, are computed. The B.L.U. procedure is not put
forward as one usually available in practice but rather as a
benchmark for the L.S. procedure. For each case considered the
number of observations after filtering is N = 36, 48, 72. It does

not seem necessary to consider N greater than T2 because of (3.3.2)
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and because the assumption of a stable seasonal pattern becomes
less tenable as N is increased. The main purpose of the comparisons
1s to consider how the behaviour of u(n) and the method of filtering
may influence the efficlency of the L.S.E. of the parameters in a
stable seasonal pattern.

The possible generating models for the disturbances are
limited to the three following types:

(a) an independently and ldentically distributed random
variable with mean zero and unit variance (i.1.d4.(0,1)),

(b) a stationary first order autoregressive process

u(n)-au(n-l) = e(n),
(¢) a stationary second order autoregressive process

u(n)+alu(n-l)+a2u(n-2) = e(n).

The random variable e(n) ie i.i.d.(O,ci), where ci is selected
for each choice of parameter(s) so that the variance of u(n) is
always unity. The values considered for & were

o

.75, .85, .90, .95, .99 and .995. The correlograms for

6/

]

.75, .95 and .995 are shown in Fig. II. For the second
order process the following six sets of parameters for & 5 aé
were investigated,

2nd Order Model No. i 2 3 i 5 6

a, | 1.0 -.5 =1.0 =-l.1 -1.25 =-.T5
oy :75 5 5 -3 3 =20

The first three sets produce complex roots; the first and third

have the same amplitude but differ in that the first set produces
oscillations 1n the correlogram with a much higher frequency than
the third set. The most noticeable characteristic of the second

gset is the much lower amplitude of its roots and consequently the
correlogram dumps out much more rapidly. The remaining sets have
both roots positive and real and the only difference between them
is the rate at which the lag correlations decay to zero. The rate
of decay is greatest for the fourth set and declines successively

for the remaining two sets., In Fig. III the correlogram is shown

for the second order models Nos. (1), (%) and (5).
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The three model types and their different parameter values produce
thirteen different covariance structures for the disturbances
prior to filtering. The spectrum associated with each model type
is set out in Table 4 below.
TABLE 4
Spectrum
Model Type
= £, () Ae (-mm)
Independent Residuals -
em
1lst Order Autoregression - (lﬂag)/{2ﬁ(l+a2-2acos%)
Parameter
2 e
(L-a, ) { (110, )" -0y}
2nd Order Autoregression - 55
Parameters 2W(Lg12)(l+al+oé+2al(l+aé)cosx+2a20052x).

There is considerable scope for choice of filtering routines
to be applied to the original observations. The filters
investigated are presented in Table 5 and have been limited to
those most commonly used. The table shows the filter coefficients,

b, , as described in (3.2.6) and also the square of the gain of each

k’
filter.l8

18

An underlined bk coefficient indicates the middle term in a

symmetric set of coefficients. For Filters (3) and (4) the first

b, coefficient is bn and the last coefficient bn

k -q°




Description and

TABLE 5

'TREND' REMOVING FILTERS

bk Coefficients

Gain Squared

Filter Number |B(>\)|2
(l)Subtractior of g X L 1 1 L ) I 1 sinAsin6\
! 1 = O E TEE T g S S 0 gBE T TEY s g
12 month moving average 2k = e = & ek 2hsin2%%
2 2 [1,3;5,5,8, -6, ~185-53, -7, 257,290 1 (d ) (24 2008h-2o0a7h)
Subtraction of Spencer's 350 TS s e 2 2 2 === 250 5 5\ ™
21 pt. moving average ceess) sin” 5= sin 5=
( )
Qin5 A
- 2
(3)
1lst Quasi-differences {1,-.9} 1.81-1.80cos A
{1,-.7} 1.5625-1.50cos A
(%) 2
2nd Quasi-differences {1,-2(.9) (.9)2} 4.8961-6.516c0s A+l.62cos2 A
f1,=20.7), (.T)3 3.,5664-4.6875c0s Apl.125c0s2 A
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A notationally economic comparison of the two estimation
procedures is most easily given if the model is presented in
matrix terms. y is an N dimensional vector of the filtered

observations. The N X 11 matrix of regressors, S, is the matrix

»

—

cos7\l ,sin%l ,cosxe ,sin?\2 D 00 I 005%5 ,sinA5 , =1
cos?%l,siHQXl,COSEKE,sin2K2,....,. cos2%5,sin2x5, 1

------

o B o 90 00 .

cosNAl,sinN%l,cosNXE,sinNAE, ...... cosN%S,sinNKS,(ul)h

é and E are the L.S.E. and the B.L.U.E. of the eleven seasonal
constants in vector form. The focus of interest is not so much
the estimates themselves but rather their respective
variance-covariance matrices, denoted I'ga and T'x and given by

B B
[18,p 234]

1ay Lot 1ay-L
rg = b8 Y o (8 PNS)(S s)

(B, 0.0 )

and

~1gy-1

i (3.4.2)

Iy = (5'D

where FN is the variance-covariance matrix of x(n), the filtered
residual. As the matrix S'S is diagonal with the first ten
diagonal terms N/2 and the last diagonal term N, the inverse
(s's)'l is simply obtained.

To create the elements of FN (denote them by yX(T),
T=1,2,...,N) one must first generate the covariances 7u(r),
T=1,2,...,M, where M is of course greater than N by the number
of terms lost in filtering. Table 6 below indicates the method of

generation of yu(r) for the parameter(s) chosen.
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TABLE 6
Generation of /U(T>
Model type 7u(r) T =0,1,...,M
Independent {1,005 4,00}
1st order = M
autoregression e, . 50 )
2nd order {l] -{Ozl/(l+oz'2)},-Oél'yu(o)-agyu(l),
autoregression
,,,,—alyu(Mwl)»agyu(M-Q)
Once the 7u(r) have been generated the lag covariances of x(n) of
which TN is composed are simply obtained from the relation
y (t) = 2% =% b0y (v-3+k), T = 0,1,...,N (3. 0.7)
X k-p j-.p J k’u /2 g0 3 .
and from the property 7u(T) = 7u(-T), =0, Tya ;M
A compact way of exhibiting the comparative efficiency of the
B.L.U.E. and the L.S.E. is to follow the procedure suggested by
Watson [55] and to present the ratio of the determinants of the
variance-covariance matrices given in (3.4.1) and (3.4.2)
2 =1t
E(Tl'a:Tx) = |S'S S'Tsl s’ s Jhh)
(rgery) = 15517/ {1s'rs||s'r s} G
which provides a measure of the efficiency of the L.S.E. relative
to the B.L.U.E. For computational purposes it proved preferable
to slightly redefine the S matrix, and to rename it Sy, so that the
ratio of determinants becomes
g e 21
. = 1 =
E‘,(Pé\.l“é) =1/ ﬂs TSl 1850y Sl (3.4.5)

where

]

NEY cosh_, Vo/N simhy, ... , N2/ simhg, -N1/N
N2/N cos2\, N2/N sin2hy, ..., N2/ sinh, + N1/

aaaaaa

qqqqqq

. i




It has been suggested [48] that the ratio of determinants
exaggerates differences and that a good case may be made for

using a measure such as

% (1 crm=La
E*(rg:Tg) = 1/ {11 \[]s;rNs*Hb*iN u*l} ; (3.4.6)

Both E and E* (see Table 8) are measures of efficiency which

depend on the efficiency obtained for every element of the
variance-covariance matrix of the parameters and because of this

it is possible that an isolated very poor result may be obscured.
What may be of interest to the investigator is an indication of how
inefficient the L.S. procedure could be in estimating any particular
aj or Bj. In summarizing the rather detailed results this latter
question of efficiency for particular aj o Bj has been placed in

a secondary position so that a more compact presentation of the
results is possible. It is however not difficult to obtain a
measure of this 'individual coefficient' efficiency for any
situation considered by forming the ratio of the value for any

aj or Bj in the B.L.U. column to the value for the same aj or Bj

in the L.S. column of Table 7. In this Table a further
characteristic of both procedures which is studied is the relation
of the actual variances, that is the diagonal elements Té(i,i),

Fé(i,i), i=12,...,11, to the appropriate asymptotic variances

%E f(%j) (for i = 1,2 the appropriate KJ is of course Al). The
only purpose in presenting this final comparison (see Table T7) is
to give some indication of how effective an approximation the

asymptotic value will be for various values of N.

3.5 Efficiency Results and Conclusions

The cases presented below are necessarily selective and have
been chosen to include typical as well as unusual results. To
further reduce the volume of results Filter No.3, the lst
quasi-difference, 1is only tabled for the one differencing
parameter, .7, and Filter No.l4, the 2nd quasi-difference, is

also limited to one differencing parameter, in this case .9.




The results for the first order gutoregressive processes

do not differ very much at all for the range of the parameter
considered and the overall efficiencies as measured by either E
or E* are high for & = .75 and become higher as o increases to
.995. The behaviour of the ratio of actual to asymptotic
variance exhibits only a minor improvement as Q& increases, but
there is evidence that the choice of filter will influence the
way in which the ratio approaches unity. The independent
residuals model gives results for both the overall efficiency
indicators and for the individual variance ratios which are

quite as would be expected for all filters except the second
quasi-difference where for the L.S. procedure it is apparent that
even for N = 72 the use of the asymptotic formula would be
misleading, particularly for . .

iL

The three second order autoregressive models presented
provide a contrast between themselves and with'respect Lo oLher
methods of generation. Model (5) which has a spectrum and a
correlogram of a more similar nature to the first order
autoregression (c.f. Model (1), see Fig. IV) performs very well
on overall efficiency grounds and also when the ratio of actual
to asymptotic variances is studied. Model (1) is a contrast to
all other models for the disturbances (see Fig. IV). The overall
efficiencies are quite disappointing and the ratios in Table T
indicate the complete unsuitability of the asymptotic variance,
particularly when the second quasi-difference filter is employed.
To provide a contrast to the poor performance of Model (1) it is
interesting to look at Model (3) and to note that the efficiencies
are improved, although still less satisfactory than the other
generating models; but most noticeable is the removal of the very

large ratios of actual to asymptotic ratios associated with Model (1).
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An explanation of the poor performance of Model (1) of the
2nd order autoregressions proves also to be a suitable vehicle for
obtaining some understanding of the way the two estimation methods
work. Returning to the discussion of L.S. in £3%.3% and in particular
I

to the expression in square brackets given in (3.3.6), one may

regard the L.S. variances for &, and Bl as resulting (approximately)

1
from the multiplication of the kernel (Fig. V) by the spectrum of
the filtered disturbance, |B(k)|2fu(k), followed by integration
over the specified range. This interpretation of the L.S.E. is
valuable in suggesting how it may differ radically from the
asymptotic value, which depends only on the value of the filtered
disturbance at kl. To illustrate this approach the filtered
spectrum of the disturbance for Model (1) and Model (3) of the
second order autoregressions, where the filter is second
quasi-differences with differencing parameter equal to .9, is
presented in Fig. VI. The effect of the 2nd differencing filter
has been to accentuate peak of power at high frequency in Model (l)
and although the lobes of the kernel diminish in magnitude at
higher frequencies it is apparent from Table 9 that the product

of the kernel and the filtered spectrum in this model still has

significant magnitude well away from %l and this produces the

large L.S. variance.

i
The expression in square brackets is depicted in Fig. V for
N = 36~72. The difference in shape of the function shown for

al and Bl is obviously due only to the different sign for the

third term in the bracket.
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Two further comments seem pertinent. The variation in the
prerformance of the variance of aj and Bj in Table 7 is explained
by the shape of the appropriate fx(x) and in particular by the
difference in the shape of the kernel for aj and Bj (see footnote
(19)). For instance in Model (1) it is to be expected on the
above reasoning that the variance ratios in Table 7 would be
worst for O, and Bl, the more so for smaller N. The relation

I

between the variance ratios for a2 and 52 still shows Oé with
the higher ratio but the difference is much less marked and
reflects the change in the kernel due to its central location
now being at kg. At %3 the aj and Bj kernel is identical. For
Xj such that j > 3, there are only minor differences in the
ratios of variances (the values have not been tabled) because
for these %j although the relation of the aj and Bj kernel is
Jjust the reverse of that for j < 3 there is no great concentration
of power in the low frequencies for the filtered disturbances to
accentuate the greater relative magnitude of the Bj kernel in this
region.

The final comment is more general and is that the case of
the second differencing filter in this context could be most
inappropriate unless the analyst is confident that the true
disturbances are not generated by a process which has a spectrum
with strong power concentration in the higher frequencies. However,
it should be pointed out that if the disturbances were generated by
a model which had a peak at high frequencies and a 2nd difference
filter was employed then the filtered data would be dominated by

high frequency oscillations (obviously recognisable) which would

provide an obvious warning as to the inappropriateness of the filter.
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3.6 B.L.U. Procedure as a benchmarxé

In the examples discussed in the previous sections the
place of the B.L.U.E. has been as a benchmark against which to
Judge the L.S. procedure. §Some doubts as to the ability of the
B.L.U. procedure to fulfil +this role must have been raised by
Lovell's proposal [42] of several axioms that seasonal adjustment
procedures should satisfy and more particularly the further
assertion [42,p 800] that the B.L.U. procedure does not satisfy
all of these axioms in generally accepted models of a seasonal
economic time series.

The series of axioms that Lovell proposed and which he
requires a seasonal adjustment procedure to satisfy are given
in full in the cited reference [42,pp 994-5]. Amongst these

axioms are:

=

RVI

wn
=

'"Property I: An Adjustment Procedure is said to PRES

>)

SUMS if and only if

a _a _ L \a ¥ D
X 4V = (Xt+Jt) for all t,

9

where x, and y, are the original observations on any pair of
]

t

time series and x¥* and y* are the adjusted observations',

G 2
and

'Property III: An Adjustment Procedure is ORTHOGONAL if

for any time: series
a Nt
(xt Xt)xt = 0'.

Lovell also shows (see Theorem 3.1 [42, p 996]) that any procedure
which satisfies I and III and also satisfies
'Property IV: The Adjustment Procedure is IDEMPOTENT if

a\a a . it
(x7)" = x for all t',

20

The notation used by Lovell in describing his axioms hag been
maintained in this presentation and therefore in this section only
x is a vector of observations.
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reduces to a least squares regression of the observed vector x,

consisting of N observations x on S, an appropriate matrix of

t}
k columns (and assumed to be of full rank) with N observations in
each. At this point a different approach is used to prove the
result previously presented by Lovell [42]. It is of interest to
show how this result may be obtained without the use of Property IV.
Property I implies that the vector x may be written X, = qt(x)

i1.e. as an additive functional of the vector x. Now if the vector
x & V, where V is a finite dimensional vector space, then it follows
that

q, () = q; (x)+a, (v) (3.6.1)

where both x and y & V. Further, if the vector x and the scalar
O are rational then the property

g, (ox) = ag, (x) (3.6.2)

may also be established and so linearity follows. In fact unless
the functional q, is quite pathological (3.6.2) may be establiched
and in any case this property always holds if qt(x) is bounded
(i.e. qt(x) = A < w) when |x| < a where a and A are finite
constants. Another way of establishing this result is to assume
that qt(x) is a measurable and additive function of x and this
implies that qt(x) is a continuous function and so the functional
is both linear and bounded. Thus the expression is a linear
functional if it is measurable or bounded [34,p 24] and therefore
xi = q%x where 9y is a vector of N components. The vector of

adjusted values, xa, then satisfies x° = Qx where Q has qé as the

t*" row. Property IIT implies that

x'Q' (I-Q)x = O (3.6.3)
and that this is so for all x. Thus Q' = Q'Q and Q' is symmetric.
Therefore Q = Q2 and Q is ldempotent and a perpendicular projector.

a

If the columns of S span the space on which Q projects then x 1is

obtained by regression on these columns.
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Before going further let it be said that these properties or
axioms seem unacceptable on general grounds. First, it would be
extraordinary if the vast array of techniques for signal detection
and measurement, which have been developed over the last half
century, could be reduced to the simpler problem of regression
analysis. More particularly, the axioms exclude non-linear
procedures and this of itself seems unacceptable. It is easy to
construct examples where maximum likelihood procedures are
non-linear and it would be hard to envisage realistic formulations
where this was not the case. Most importantly, perhaps, Axiom or
Property ITII must be unequivocably rejected. The statement by
Lovell following this axiom [42,p 995], 'How can a nonorthogonal
seasonal adjustment procedure be regarded as satisfactory? After
all, if such a procedure correctly defines the seasonal movement
the fact that the seasonal correction terms are correlated with
the adjusted series implies that some seasonality remains in the
data', elevates a particular inner product, (x,y) = x'y, into a
premier place in relatvion to the vector sgpace in which x lies. If
this inner product is elevated to a premier place it can only be on
the basis of prior assumptions. Appropriate prior grounds might be
a model for the original observations of the form

x-D8-S0 = € (3.6.4)
where o is a vector of k seasonal constants, D'® is null and € is
composed of identically and independently distributed variables with
mean zero and unit variance (i.i.d4.(0,1)). The matrix D is of full
rank with columns representing the non-seasonal deterministic variables
and ® is the associated set of constant coefficients., If the
condition on € or that on S and D is not satisfied then Lovell
axioms will prove to be hardly acceptable. Suppose that it is
assumed that €(ee') = T then it will be shown that the B.L.U.
procedure is the same as the L.S. procedure of regression on S
alone when and only when S and D are such that S'F-lD is null and

also the k columns of S are linear combinations of k eigenvectors




96
of I'. The argument proceeds as follows. A sufficient condition
-1
for (S'S) "S'x to be a B.L.U.E. of ¢ is that D'S = O and also that
the space spanned by the columns of S (call it T(S)) is spanned
by eigenvectors of I'. (See Watson [56]). If the L.S. regression
of x on S is to be the B.L.U.E. it is certainly necessary that
D'S = O since the expected value of the L.S.E. is given by
1oy~ Lar ray~Lat c
g (s's)™"s'x )= (s'S) " S'Dé4a (3.6.5)
and so S'D must equal zero if the expectation is to equal g for
all d. Now consider a row vector A',
NI (O:?\é) (3.6.6)
DY
with columns corresponding to the partitioned matrix e ke
ST
Form the unbiassed estimator xé(s's)’ls'x of Ao and let \'Ax be
another unbiassed estimate of Aéa. The latter estimator may be
denoted L'x, where L' = Li+Lé and L, e M(s), Lle‘TnfS). Now
the estimator L'x may be written as
1 = 1 1 1 Yivs
T = LlD6+LlSU+Ll€+L2x
= 1 1 1 T a
= LIDB+LAx+Lle (t; L M)
and so the expectation becomes
e(L'x) = L'1D6+8(Léx). (3.6.7)
Since L'x is unbiassed and the expectation does not involve & this
implies LiD = O and further as the expectation, S(Léx), is given by
1 = 1 — 1 i = g :11' - )
S(Lgx) = L1So = Mo (since Ly e M(s) and S'D = 0)
and so
'S0 = 7\’(0'8)"18'80
2 2
5L 1 ‘lol 1
i.e. ()\2(8 8) "8'-Li)Se = O
(3.6.8)
-1
{{ 1 1 1
i.e. xg(s s) s' = L}.




F
The variance-covariance estimator of the estimator L'x is
1 = l-—\ lr-,w I,YTT,
L = L2 L2+L l R
and using (3.6.8) this expression becomes
, e o ) el : zl
L'TL = AL (S'8) "s'rs(s's) L\,ﬁ-)\ (S'8) 718" TL 4L TL s LTS (S'8) A,
(3.6.9)
and therefore if Léx is the B.L.U.E. then this implies that

=0 -
7\é (s's) S'I‘Ll = 0. Further as L, L ‘m(a) then A} (8*s) Lar
belongs to M (S') and consequently T'S(S'S) l% belongs to M(s).

-LAE then T'S belongs to M (S) and so

As this is true for all (S'S)
I’ transforms a vector in a k dimensional subspace into a vector
also in that subspace (invariant transformation) and S will be
spanned by k eigenvectors of (see [56]).

The only circumstances when this condition is at all likely

to hold is where T’ is a scalar matrix (a numerical multiple of the

identity matrix) and D is composed of a single column of units

while S has columns composed of (for monthly data) cos _i% n
i : o s 2 : .
sin ——J-n, for suitable values of j. Experience in seasonally

162

adjusting economic data would lead one to believe that either D
must be expanded to include other explanatory vectors as well as the
unit vector or the generating process for the disturbance must be
more broadly specified. For example we might have
e(n) = pe(n-1)4n(n) where n(n) is i.1.d.(0,1) and p is close to
unity but |p| < 1l. Indeed it may be necessary to accept both
these respecifications.

It seems therefore that Lovell's axiomatic basis for seasonal
adjustment must be rejected and that a theory of seasonal ad justment
must instead rest on much more elaborate techniques of signal

detection and measurement.




3.7 Working Day Variation

Economic time series which register a flow of some kind over
either monthly or weekly intervals may exhibit a source of
variation which is not seasonal and therefore ranks for separate
consideration. The original model (3.2.1) is augmented in this
section to include a further signal, which on a_priori grounds
one could readily expect to occur. The interesting point which
arises in this section is that when the signal generated by
working days is incorporated in the above model its nature
requires one to use a spectral regression procedure to obtain
more efficient estimates than L.S.

This additional source of variation may be included if the

model given in (3.2.1) is extended as follows

w(n) = p(n)+s*(n)+%lg%yﬁﬁn)+u(t) (i)

with u{fn) the number of days of the {Fh type in the nth month.
In (3.7.1) it is assumed that each working day makes a specific
additive contribution to the series. It may be, however, that the
variation depends on the composition of the "extra days" in any
month, that is those in excess of twenty eight. For example, it
may not be that the Monday effect will be the same in a month
ending Saturday, Sunday, Monday as it would be in a month ending
Monday, Tuesday, Wednesday. An alternative model is therefore
proposed which can account for certain interactions between the

days in each group of "extra days". The more general model is

L

w(n) = p(n)+s*(n)+%§Z;a£mu{m(n)+u(n) (5 T2}

where the variables u{m(n) cover the fourteen possible two and three

il

"extra days" effects. At each time point n, one of the variables

u{m(n) will be unity and the remainder zero. Both models (3.7.1)

E& No attempt has been made to estimate the "extra days" effect

associated with leap year February, as this event occurs too
infrequently either to give reliable estimates or to be important.
All February observations are included with a zero regressor vector
so that the lag correlations (and therefore the spectra) of the
regressor variables are interpretable in actual time.




and (3.7.2) are suitable for the use of regression methods to
estimate ﬁhe proposed effects. Before dealing with appropriate
regression procedures it is instructive to look at the spectra
of the possible regressors, u{(n) and u{m(n), examples of which
are given in Fig. VII. Certain implications are apparent. The
peaks of power in the spectra of these regressors are found quite
close to several seasonal frequencies.

The method of estimating the independent daily effects in
(3.7.1) which has been proposed previously (see [52]) is to
regress the original series on the u{xn) after trend and seasonal
has been subtracted. This method will be more gppropriate nEeGhe
model for s*(n) is a stable one as proposed in +(3.2.3). However,
if as will be suggested in the next chapter, it is believed that
the seasonal pattern is slowly evol&ing and the method of seasonal
estimation is changed accordingly then at certain frequencies it is
apparent that the seasonal estimates will be influenced by the
working days power. Thus in a situation where the seasonal pattern
is evolving it is necessary to either estimate the working days
effect after only trend removal and before seasonal estimation or
to waive explicit consideration of the working days effect.22

Least squares regression of w(n) on qh(n) or u%m(n) (where the
change in symbols to w(n), u%‘n) and u%m(n) indicate that trend
removal filtering has been carried out) will provide estimates of
the required parameters. The simple least square procedure is not

however the most efficient. The filtered regression variables are

22

The reason for second possibility is easily seen when in the
next chapter the response function for the evolving seasonal
extraction is given and it is apparent that this will incorporate
some working day power.
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close to linear dependence and so the matrix of filtered
regressors is close to singularity. The appropriate one of

the following restrictions,

is employed to reduce by one the parameters to be estimated.

A more fundamental change in the method of estimation which
will further improve the efficiency is to use the methods
discussed in §l.6, in particular employing the estimator given
in (1.6.18). 1In using (1.6.18) the regressand and the regressors
are decomposed into their contributions at each frequency band
and then the regression coefficients for each band are optimally
weighted together to give an efficient estimate of each coefficient.
To employ this method most effectively it is necessary to restrict
the set of frequency bands used to produce estimates to those where

the regressors power is obviously non-zero as inclusion of bands

where the power of the signal is effectively zero will not
influence the estimates and will involve a greater computational
expense. As the spectra of the regressors in the "Excess Days"
model have more than one major peak the gain in efficiency from
using the regression procedure which decomposes variables into
‘their contribution at each frequency band should be more marked
than for the "Individual Days" model where the regressor spectra
have only one major peak (see Fig. VII).

Estimates were made for the following series:

Australian Total Exports of Merchandise

Australian Total Imports of Merchandise Feb. 49-May 67.25

23

The source of both series of data is Commonwealth Bureau of

Census and Statistics (Aust.), Monthly Review of Business Statistics.
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A tabular summary of estimates employing both models on each of
the series is given in Table 10. In the "Individual Days" model
for both series there is only one significant coefficient. It is
apparent that in this model the only significant effect
discernible is the obvious negative effect associated with
Sundays. The pattern of working day activity is much more

" model and these

apparent in the interaction "Excess Days
estimates have significantly large mid week three day excessges
as well as significantly small near weekend excesses. It should
be noted that some of the negative effects found in the two day
excesses may be influenced by the number of public holidays which
can occur on Mondays in the 30 day months. Australia always has
a Monday public holiday in June and April can have as many as
two Monday public holidays.

The concentration of Monday holidays in two of the four
30 day months may have produced some distortion of the effects.
The significance of some of the excess-day coefficients does
suggest it is most necessary to carry out working day corrections
to series which are likely to exhibit this variation particularly
if a stable seasonal pattern has been fitted. Failure to make

these corrections could mislead policy makers in their assessment

of recent trends in exports and imports.

2k

Some distortion will obviously arise if public holidays occur
during the month on any day because the excess days will not be
determined only by those in excess of twenty-eight. More detailed
work could obviously be done on this point but it has not been
pursued here.
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A somewhat disquieting feature of the "Excess Daye" Model
for Exports (although one recognizes the distorting effects of
Monday holidays in the 30 day months) is that it produces a
significantly negative response for Mon-Tues whereas Sun-Mon is
not significantly negative. A similar situation exists for Imports

in that Sun-Mon is significantly negative whereas Sat-Sun ie not.
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TABLE 7
RATIO OF CALCULATED VARIANCE TO ASYMPTOTIC APPROXIMATION

FIRST ORDER AUTOREGRESSIONS
INDEPENDENT a = 0.75 a = 0.995
FILTER | N Lo S B.L.U. ) 1 . B.L.U, Ls. Ss B.L.U. ]
ul Bl 02 32 ey ul :i_, 82 al a 82 82 a uE al (42 82 ul a1 8.2 82 ul ul 82 R 2
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72|1.00 [ .96 | 1.00] 2.01 11.01 .92 [1.00 99 .96 [ .95( 1,01 | 1.04| .9k 91| .99 1.01| .96 .96|1.02|1.05| .94| .94|1.00| 1.01
a 36[1.42 | 1.06 | .98| .97 | .81| .89 94 | .92/1.08 | .94 | .97 98| .78 85 955 9k, 058l L .93 el 2ggil & 85i1F .85 .qsf .95
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3 }ns§1.21 1.00 | 1.04| 1.00 [1.05| .98 [1.00 98(1.0 |1.0 ;Tg | 1.0 1~5'—-1.o 1.0, |20 | 2.03 {1139 [ X503 1,10/} 1.00| T.07 | L.01| 1.02
69 (1.16 [ 1.00 | 1.03 | X.00 [1.04| .99 |1.00 | .99(1.0 [1.0 1.6> 1.0 {2.0 (1.0 [1.,0 |1.0 |2.,03(2.38{1,031.10| 1.00( 1.,06| 1.00| 1,01
T2 1.1k 1,00 [M.031] 2s00 [Eaok|T .99 11,00 990 Aol Rso (P10 2.0 Lol e e 03 L 3T 1L 03 | AL 1e 1001, 050 200 1,01
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TABLE 10a
Working Day Effects
Individual Day Effects

Exports
Day Sun \ Mon Tues Wed Thu 1l Sat
Regression Coefficient =3.681 b 5Tl -2.333 3.308 L.134 .792 -6.79h*
Standard Error 2.5 2.7 276 2:8 2T 2T 2.6
Two and Three Day Month Ending Effects
d Sun Mon Tues Wed Thu Fri Sat e Hen s ng 2%9 ?r} Eat
Ending Mor Fues. Wed Thu Fri Sat Sun Mon Tues Wed Thu Fri Sat Sun
= ' 3 . - - Tues Wed Thu Fri Sat Sun Mon
Coefficient 5.85 =12 hi%. 7. 7 5.16 3.63 -6.45 -13.61% -.19 12.60% 12.63* L.79 <56 ~6. 80 =8.51%
Standard - = - = = = = a ,
ki 5. S Sl 5o Sk 5l 5.6 5.8 e Sis 4.0 4.0 3.9 4.0

Note: The * indicates the significant coefficients.
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TABLE 10b
Working Day Effects
Individual Day Effects

Imports
Day Sun Mon Tues Wed Thu Fri Sat
Regression Coefficient| -5.508% ik sty .312 4,499 3.302 -1.389 -2.319
Standard Error 2,328 2,313 2.309 2.360 2.263 2.32) 2.27k

Two and Three "Excess Days" Effects

. : Sun Mon Tues . Wed Thu Fri Sat
- e Sun Mon Tues Wed Thu Fri Sat . : : G =
Ending - . A = Mon Tues Wed Thu Fri Sat Sun
Mon Tues Wed Thu Fri Sat Sun Tues Wed Thu Fri Sat Sur ek
1 0 1 14

Coefficient [-10.T729% -6.602 1.393
Standard
Brror

463 1.508 -9.667 -5.770 -2.879 11.990* 9.733* T.5h2  .232 -7.318 -5.355
5.50L. 5. h3n 5658% 516 SHL6T & 5358 — 540915 L Lok 4.690 L4.550 L4.690 L4.648 4.593 4 .680

\J1

o)
|

Note: The * indicates the significant coefficients.
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IV  SIGNAL EXTRACTION PROBLEMS

4,1 Seasonal Models and the Adjustment Problem

In this chapter the problem area is again that of seasonal
adjustment, but there is no longer an exactly specified signal.
Rather we begin with a priori ideas about the changing nature of
the signal (amplitude and possibly phase modulation) and summarize
these ideas on change in the spectral properties of the signal.
This method appears particularly appropriate to a model of the
seasonal component which must surely be represented as a sum of
six narrow frequency band signals. The only extension that 1is
proposed is to regard each signal as being amplitude modulated.

Of course the seasonal signal will be superimposed on noise,
however the narrow band nature of the signals means that only the
average noise level over these narrow bands is of great concern.
Consequently a spectral treatment of the noise will require the
introduction of relatively few parameters and more detailed models
will probably add very little in efficiency, while increasing the
risk of invalid analysis.

The main difficulty in effecting adequate seagonal adjustment
arises from the fact thap the seasonal pattern may be changing.

The problem of estimating such a changing seasonal pattern is an
aspect of one of the most important of all scientific problems.

The difficulty is simple to perceive but must be understood. Iae

an estimation procedure is developed which is sensitive to changes
in the seasonal component then the procedure will also be sensitive
to chance fluctuations or noise effects. An optimal solution may
be derived on the basis of an initial model. This optimal solution
may be of value both for its own sake and as a standard of comparison
for ad hoc procedures, but uncritical acceptance of the solution as
best would be unwise as no model on which optimization procedures
are based is likely to represent the truth. In any case the
optimum criteria may be deficient because it fails to reflect

subjective elements which are difficult to quantify, such as the
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reluctance of an official institution to employ methods which may
entail substantive later revisions of first estimates.

There is a further point which deserves discussion in this
introduction. The treatment presented is based on a model of the
data, possibly after logarithmic transformation, which consiste of
seasonal plus 'noise', where 'noise' is all the remaining variation.
It has been pointed out (see Whittle [58]) that it would be
preferable to use a model in which the seasonal component is
properly integrated as a part of the whole mechanism generating
the series and is not merely 'stuck on' as an additional but
separate component. It is as well to point out however that the

use of certain seemingly more complex models leads to the additive

model we have used. For example, a model of the form

ﬁgij(n-j) - e(n) (4.1.1)

where e(n) contains a component, g(n), with seasonally oscillating
properties is no generalization. For if one writes e(n) = g(n)+h(n),
where g(n) produces seasonal oscillations then the general nature of
the solution is

w(n) = p(n)+s*(n)+u(n)
where p(n) is the solution of the homogenous equation obtained from
(4.1.1). Similarly s*(n) and u(n) are the respective solutions of
(4.1.1) when first g(n) and then h(n) replace e(n). Thus the
additive nature of the seasonal is maintained.

The model adopted for the seasonal alone in this chapter and
Chapter V could be thought of in the following terms.

s*(n) is a solution of an expression of the form (4.1.1) with

AN

() = p4e Jyj(n-l)+g*(n) R s BEUSE s (k.1.2)
in which g*(n) produces oscillations with frequency %j and with
amplitude depending on the variances of the random terms ej(n)

and nj(n) (see (4.2.3)). The advantage of the procedure adopted
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here is that the components p(n) and u(n) are not tied to generation
by the same mechanism. Further, one obtains no generality if the
polynomial, ;gyjzj, is required merely to have certain roots on or
very near tthhe unit circle and with 'argument' corresponding to
the seasonal frequencies. Once again the solution of (4.1.1) is no
more than a sum involving p(n) and s*(n) obtained in exactly the same
manner as described above and again the model would be more
restrictive rather than more general. One can propose essentially
different models, such as one in which the 7j oscillate periodically
but apparently no work has yet been done on models of this nature.
The difficulty is not that of building such models, but rather
of building adequate ones. Economic inter-relations are sufficiently
complex so that the policy maker may be unwilling to commit himeelf
entirely, for example, to one generating model for all components
and so he would prefer to view key series with perhaps a model in
mind but not restricted to it. The policy maker will want to survey
series with as little done to them as possible, except for seasonal
adjustment and he will probably not be prepared to use uncritically
a projection of a series or a set of series, the projection having
been made purely on the basis of the past of the series. This leaves
an important role for seasonal corrections based on an additive model

of the type presented in (3.2.1).

4,2 An Evolving Seasonal Pattern

The main task is the formulation of a suitable model and
consequent statistical treatment for the case of an evolving seasonal
pattern. The case considered here will be where the change in the
seasonal pattern is gradual and continuous. Separate consideration
should be given to the situation where sudden changes occur at

18

mn

randomly distributed points in time. This form of analysi
unlikely to proceed purely on the basis of the history of the data
but will depend on additional related information which will be

available and should be incorporated in a more complex formulation.

This approach is not pursued.
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As indicated in the introduction to this chapter the model of
the data which is used is given in (3.2.1), but now u(n)4+p(n) will
often be referred to as the 'noise' component (see 83.2 - in particular
the discussion associated with (3.2.4)). The traditional model for
the seasonal pattern is that of a strictly periodic or stable
sequence and this model has been discussed in 83.2 and in particular
is characterized by (3.2.3). A simple and obvious modification is
to make ag and Bé depend on n so that

6 6 :
s¥(n) = ?isg(n) = ?l <&§(n)eosnkj+8§(n)sinn%j> : (L2, 1)

Of course ag(n) and Bg(n) will need to change slowly with n otherwise
the notion of a seasonal pattern fades. Deterministic variation of
the aé(n) and Bg(n) sequences is not considered here (see [23], [33]),
but it is preferred to treat them as determined by chance. The
autocorrelation of each sequence must however be high if it is to
show the smooth variation required of a reasonable model. Perhaps

the simplest model is one of the form

]

Olf]?(n) ijth? (n—l)+ej (n)

(4.2.2)

Bjj*(n) ojB§(n-l)+ﬂj(n)

where ej(n) and nj(n) have variance o? and zero mean and all
correlations between € and m, for any two time pointes and for
differing values of j vanish.

Before considering in detail the stochastic properties of the
model used in further work an attempt is made to give some

perspective for this choice. For this purpose we define the

seasonal at each frequency %J as

8y = éj(n)+Ej(n) (k.2.3)

where
be 17!
) = By () = 3 {arC)-appa} o 0
(4.2.4)
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and
. iAn
éé(ﬂ) = O(’é(n)e
and the complex variable gj(n) is written in summary form as
AT
E,j(n) = gj(n)e J J = Bl e 50 (4.2.5)
where the nature of the complex random variable gj(n) is obvious
from the definition given in (4.2.4). Using (4.2.2) it is
straightforward to derive the autoregression in the complex
variable
(n) = p.t.(n-1)+V. (z . 2.6
6,(n) = o, (n-1)sv,(n) (b.2.6)

where wj(n) is a complex random variable defined by
Vv.(n) = 3 <e.(n)-in.(n)pr . (4.2.7)
J J J
If one re-represents the complex random variable, C(ﬁ), as

¢, (n) = |gj(n>|ei9(“) (4.2.8)

with |§j(n)| and 6(n) the modulus and argument of Cj(n) then by

considering in more detail the nature of 9(n) one can see the range

of possibilities this formulation offers. A mixture of frequency and

amplitude modulation occurs when 6(n) is of the form né (n) since

in(A.4+¢(n))

then the signal becomes |§j(n)|e J * A slowly changing

¢ (n) provides what has been referred to as frequency modulation

provided that ¢ (n) does not decay to zero with n. The inclusion

of frequency modulation means that the wave form changes not only

because of the changing amplitude ]gj(n)l but also because the

underlying band of frequencies in the signal is slowly changing.
However, the argument 6(n) in (4.2.8) may contain no part

which may be written as né¢(n) - where ¢(n) is changing slowly -
i?\.l’l 1@(1’1)

but instead the signal may be lgj(n)le J e , where now 8(n),

the phase angle, is the slowly changing part. When the variation

in the wave form arises not only from amplitude modulation due to

ICj(n)l but also from the slowly changing factor @(n) the model

(4.2.8) provides a mixture of phase and amplitude modulation.




116

Of course it could be that 6(n) was of the form that could be
partitioned into two parts; one that is of the form né¢(n) and
another of the form ©(n) so that the model would include
amplitude, phase and frequency modulation.

In special circumstances (4.2.8) will produce 'pure'

amplitude modulation. For if (4.2.8) becomes
16
Qj(n) = lgj(n)|el (4.2.9)

and (4.2.9) is used for gj(n) and gj(n-l) in (4.2.6) one derives
the relation

-i6

Assume as well a particular form for Wj(n), namely,
wj(n) = a(n)cosb+ia(n)sing (L.2,11)

where 6 is uniformly distributed on (-m,T) and is independent of
a(n), a sequence of independent positive random variables. If

8(&2(n)) = 02 then it immediately follows that

e ( a(n)cosé> =€ <%(n)siné> =0

€ <§2(n)cosgé> =€ <%2(n)sit2é> = 02/2 (L.2.18)

e <;(n)cose : a(n)siné> = 0.

Now the model as specified originally with wj(n) as defined in -
(M.E.?) will then correspond to pure amplitude modulation if one
puts %ej(n) = a(n)cosd and %ﬂj(n) = a(n)sin®, otherwise there will
be phase modulation as well. When ej(n) and nj(n) are in fact as
prescribed for pure amplitude modulation they cannot be Gaussian
random variables since they are uncorrelated but not in general

independent. Thus in this model there may be more information

obtainable from higher than second order moments.
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When postulating in (4.2.2) the model which generated
a?(n) and Bg(n) correlation between the random variables ej(n)
and nj(n) was specifically excluded. The reason for this
restriction is that if we allow correlation between ej(n) and

nj(n) (eallidt ren) then the lag covariance for sg(n) is

2
o,
e <%§(m)s§(m+n)> = l-:g pg-{cosn%j+r€nsin(2m+n)%j }- (h.2.13%)
J

so that the seasonal component would not be stationary. If
however as is assumed in (4.2.2) ren = 0 then s*(n) becomes a

stationary process with a covariance function,

75*(n) SN <é*(m)s*(m+n)> = ?i 1_22 QECOSHXJ. (4.2.14)
J

Tt is apparent from (4.2.3) that os will have to be large for the
autocorrelation sequence of sg(n) is now p?cosnkj and even for

Py = .98 and n = 60 the autocorrelation is approximately .3 so that

seasonal patterns five years could differ quite radically. It is

ct

more illuminating to express the second order properties of s*(n)
and the sg(n) in terms of the spectrum. In this case the spectrum

is related to the autocovariances by

fﬂ.ink
7geln) =Z y5(n) =2 | g, (\)an (4.2.15)
j 3

J v

where the spectrum, fj(k), is the Fourier Transform of 7j(n), the

autocovariance sequence for sg(n), and is given by

2
fj(?\) = i—#{ = + = = } : (4.2.16)

2
l+p.=-2p .cos(A=-A. 1+0--2p.cos (AN ) ~
+0 5720 ( J) +0 5720 (O ;

The relation (4.2.4) may be rewritten as

2
077

3
7 o(n) =2 f cosn\ J an (4.2.17)
S " =2
j Yo 2W(l+pj-2pjcos(%-Kj)
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but it is found that the complex form of (4.2.4) is easier to work
withe If Py is near to 1 then fj(%) is very concentrated at f%j
which corresponds to the fact that S?(H) is, over short periods,
much like a sinusoidal oscillation with frequency xj'

The model initially adopted is of the form given in (4.2.2)

1. The reason for this has already been raised

Il

but with all pj
and is that the pj must be very near to unity in any case. Since
it i1s most difficult to determine pj accurately from the data and
the model is unlikely to be correctly specified this simplification
is adopted initially. One could, of course, go further and adopt
a more elaborate scheme in place of that proposed in (4.2.2), for
example one involving second or higher differences for a?(n), BS(R);
or generalizing in the fashion suggested in 84.1 one might consider

s*¥(n) to be generated by a relation of order q, q > 1, such as

?%yjs*(n-j) = u(n) (4.2 18)

where the characteristic equation of (4.2.18) is Z%’yjzJ and

has all of its roots on or outside of the unit circle and u(n)
is a stationary time series with known spectra (see [24]).

In principle the technique proposed (see [24] and [57])
can deal with such extensions but in practice the computational
and algebraic complications become large and the additional work
does not seem justified, although in connection with trend removal

a second order difference scheme is dealt with. It should be noted

that when pj = 1 the seasonal component s*(n) ceases to be stationary.

4,3 Filtering Prior to Seasonal Extraction

Tt should be remembered that in the introductory discussion
of the evolving seasonal model that the noise can include what
would usually be called trend. Thus a high proportion of its
variance will be explained by very low frequency components and

so it is necessary to filter w(n) to eliminate the trend. After
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trend elimination it is assumed that the new noise term x(n) is
stationary with spectrum fx(%). Filtering replaces w(n) by y(n)
(see (3.2.6)),

y(n) = Z%ijw(n-j) n=1,...,N (4.3.1)
and also therefore replaces £*(n) and u(n) by s(n) and x(n),
s(n) = 2% b.s*(n-j)

=P J

J

(k.3.2)

x(n) = 2% v.u(n-3) n=1,...,N

j‘P J

where N is the number of observations remaining after filtering.
The coefficients a?(n) and 5§(n) become aj(n) and Bj(n) after
filtering. For any of the trend-removing filters mentioned in
B4.6 the small difference between the properties of the starred
and unstarred coefficients may be disregarded. One of the
traditional methods of forming y(n), discussed in Chapter III, is
the subtraction of a centred 12 months moving average from w(n).
A thorough consideration of an appropriate trend-removing filter
is even more important in the present case than in Chapter IIT
where s*(n) was assumed stable for the method adopted will now
have to allow frequencies well below Al, say, to influence the
estimate of sl(n) and correspondingly this estimate would be

badly affected by a trend if this was inadequately removed.

4.4 Suitability of Seasonal Estimation for Optimal Procedures

The technique used to obtain an estimate of the seasonal
component is founded on the use of optimal methods for the
extraction of a signal, the seasonal, which were briefly sketched
in B1.5. These methods have been extended to allow for a
non-stationary signal (see [57] and [24]). The method is quite
general and has the followiﬁg virtues. It allows the data up to
the latest moment to be used to estimate the seasonal component,

but as well this estimate may be revised as more information comes




to hand. This is important for if the seasonal is allowed to
change it must be recognized that at time n a large part of the
information available for the estimation of the seasonal at that
time point has yet to eventuate. Second, insofar as there is a
stable seasonal component, or indeed if a more elaborate model

is used, a seasonal component changing according to a sufficiently
simple deterministic law, this component will be exactly
represented in the estimate. Thirdly, only one unknown parameter
is involved at each of the seasonal frequencies, this being of the
nature of a signal to noise ratio. The level at which this
parameter is set reflects the compromise to be effected between

a quick response, resulting in quite a variable estimate of
seasonal, and the damping out of noisy fluctuations. In principle
this parameter should be determined from the data.

The actual methods used involve some compromises. The first
issue arises in connection with the pre-seasonal extraction
filtering. In all three techniques have been used but discussion
of two of these is delayed temporarily. One of the two does in
fact substantially eliminate the problem now discussed while the
other (see seéction 4) is used because it enables estimates to be
made using all the data up to the current time point and does not
lose us the last six observations, as does the subtraction of a
centred 12 months moving average. The remaining method is the
simple device of removal of a centred 12 months moving average.

As is apparent from Fig. VIII, removing a centred 12 months
moving average does not affect a stable seasonal but it will do so
for a changing one. The effect may be Jjudged by considering the
model arising from (4.2.1) and (4.2.2) when ijl < 1l. It was
indicated in B1.3 that the effect of filtering is to multiply the
spectral densities fs*(x), fu(7\) by the factor ]B(7\)|2. B(A) is
the frequency response function, and for the subtraction of a

centred 12 months moving average is given by
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a8 Dhat toe
B(A) = {1 = Sﬂ%—@} . (4.4.1)

sin 5
The effect is considered at the seasonal frequency where it will
'usually be greatest, namely %1. Tt is B(A) which is more relevant
than |B(7\)|2 for B(A) is the factor multiplying the component at
frequency A, whose variance is fs*dk. Investigating B(A) in the
range of frequencies in which the bulk of the spectral mass of the
signal lies allows an assessment of the degree of distortion of the
signal caused by filtering to remove the trend.
A good approximation to the value of a, such that [Kj~a,%j+a]

contains a proportion p, of the total mass under the curve given in
(4.2.16) is, for p4 near to unity and p < 1,

o TP
a = logpjtan = (4.4.2)

Indeed the proportion is very near to

2
1 a l_pj
'é,—rrf dA

2
-a 14p.-2p .COSA
. pJ pJ

a .
%ﬁb/ﬂ o p[klelkxd%

R

I Ik[ sinak
= W‘Z-w pj e (4.4.3)

(o]
2 -Ox si
—f e X l_nxdx
T & X

=N =Sgire NEe
T logpj

&
a

3

Where Cii= logpj and the approximation is adequate if a is small
‘and pj near to unity. For Py = .98, p = .90 the value of a is
0,127 and for p = 50, pj = .98 the value is .0203. The value
of the response function, (4.4.1l), is given at the relevant points

frequency (A) %1-0.127 kl-0.02O %l+0.020 %l+O.127

B(\) STLh .960 1.036 W oo




This indicates that the effects of the filtering will be slight.
Over the range in which 50% of the spectral mass of s{(n) lies
the effect on the signal will be negligible. Over the remainder
of the range considered the signal will be slightly diminished
below Al and slightly augmented above kl. The resulting relocation
of the signal affects only 5% of the total mass. As it seems
appropriate to ignore the effects of this filtering s(n) and
s*(n) are no longer notationally distinguished. In any case if
the next suggestion for simplification is adopted these effects
are reduced even further.

The second simplification is to adopt a technique which
treats each sj(n) separately. The methods proposed are filtering
processes and the Jjustification for this simplification is the
narrow band nature of the signal, i.e. the seasonal, for this
assumes, for a given noise level, that there will be little
interference between the six signals. This point is discussed
in detail in Hannan [24]. To illustrate this point the responses
of the seasonal extraction filters are calculated and presented
in Chapter V. It will be seen that the filter used to elicit

sj(n) will hardly be affected by the s (n), k + j, because its

k
response will be very substantially concentrated at kj. IR

however, there was concern about possible interference another
procedure could be used which eliminates both trend and sk(n),

k + j, to a substantial degree. This is the procedure mentioned

at the end of the preceding paragraph. In this approach one forms

6, _6
. ” = SLE
yj(n) (2 63) i_éakw(n k)coskjk (4

6 )
where aj is unity if j = 6 and is otherwise zero and 8, are the
coefficients in a centred 12 months moving average. This produces

a filter with response
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sin6(k—%3)sin(K-AJ) sin6(%+Aj)sin(A+XJ)

2
2hsin %(k—kj) 2hsin2%(K+Kj)
which by elementary manipulations is reduced to

sinAsin6bA
6(cosk—cos%j) : (4.4.5)

The expression (4.4.5), which is illustrated in Fig. IX for
Jd =1, 2 and 3, has a zero at A = O of the same order as is
obtained when a centred 12 months moving average is subtracted.
Whereas the response of this latter filter is like 6%2 at A = 0
that of (4.4.5) is like Ag(l—coskj)_l, which since (l-cos7\j)_l is
larger than 6 only for j = 1 shows that the filter with response
(4.4.5) tends to remove the trend better than the moving average
subtraction when j > 1, and not much worse for j = 1. Of course at
A k 4 3, (4.4.5) has zero response so that sk(n), k 4+ J, is
substantially removed. At Aj’ (4.4.5) is unity and tends to have
a flatter, and therefore better, shape than the moving average
subtraction filter has for j small, though the reverse is true for
j near 6. The small j, j = 1,2 in particular, are most likely to
be the important seasonal frequencies. Experience with practical
applications has suggested that the refinement involved in t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>