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I BRIEF THEORETICAL BACKGROUND 

1.1 Introduction 

Because a stationary time series may be represented in spectral 

(or frequency) terms it has become apparent that certain areas of 

economic investigation can be effectively performed in thi s domain. 

This approach may arise because a priori information is most easily 

expressed in frequency terms or it may be that greater insight 

results from using spectral methods in conjunction with the more 

usual procedures developed for the time domain. A large area of 

empirical economics exists where data analysis in the frequency 

domain is not contemplated because of insufficient data. 

Neverthe less, where theoretical explanations are sought spectral 

methods may still be very useful. 

The essential mathematical reasons for the introduction of 

spectral methods in data analysis will, it is hoped, appear from 

the discussion to follow. One misconception should however be 

mentioned here and dismissed. This is the notion that only where 

the idea of wave motion is present can these methods be expected 

to be useful. A typical expression of this viewpoint is: 

'It is not the cyclical behaviour of an economy that is of 

interest to me but only the long term trend and so spectral 

methods are not relevant'. The reason for the usefulness of 

spectral methods is that they require only a genera l assumption 

of temporal homogeneity, which appears to be adequately ful filled 

for most data discussed in this thesis . This assumption leads 

inexorably to spectral methods and this is no less truly so when 

the nature of the phenomena is such as to show no very marked 

oscillation. An examination of a monthly time series of economic 

data and for example an oceanographic record measured hourly over 

a period of a few days will not reveal any intrinsic differences 

which enable one to say one is a wave phenomenon and one is not. 

1 



Both series will show certain clear and nearly periodic 

oscillations (seasonal and tidal effects ). Both will also show 

a large amount of fairly haphazard occasional fluxion. The fact 

that the term 'wave' occurs naturally in connection with the 

second phenomenon is a matter for historical explanation. In 

particular the later discussion will show, it is hoped, how 

relevant the spectral methods are to the measurement of trend as 

well as to the clearly oscillatory motion, called seasonal 

fluctuation . 

Before developing applications of spectral methods in 

economic data analysis a general framework for this approach to 

time series analysis must be presented. This i ntroductory 

chapter includes a sketch of underlying theory which is a 

necessary basis for discussion. In particular the results 

incorporated in §1.2 - §1.6 are well known - see for example 

Whittle [57] , Grenander and Rosenblatt [18], Yaglom [59] a nd 

Hannan [19,20]. 

1.2 Spectral Representation 

A series x.(n) is termed a second order stationaryl process 
J 

if the second order moments depend only on t, i.e. 

1 
It is usual to begin with strictly stationary processes, but 

as the restriction on the series necessary for this property to 
hold would be far more wide-reaching, unless the data is Gaussian, 
only the restriction of second order or wide sense stationarity is 
imposed. It must be emphasized however that the assumption of 
second order stationarity is all that is neces sary for the 
development of spectral, prediction a nd filtering theory but that 
if distributional results for spectral estimation and regression 
procedures are to be established then stronger assumptions will be 
needed. 

2 
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j 1, ... ,p; n = 0, "!:"1,t2, ... (1.2.1) 

In specifying stationarity it is assumed that e(x.) = O. This 
J 

assumption will be used in presenting the theoretical background 

but will naturally be relaxed in Chapter II when the actual 

nature of economic data is given further consideration. If 

assumption (1.2.1) is valid the following relation may be derived 

(1.2.2 ) 

where F(A) is the spectral distribution matrix and dF(A) a 

Hermitian, non- negat ive definite matrix. If j = k then that 

element of the matrix is referred to as the cumulative power 

spectrum of the variable j. To develop greater understanding of 

the nature of the incremental spectral distribution matrix, dF(A), 

the following properties of this matrix are stated and then employed 

dF(A) = dF' (-A) = dF(-A) 

Le. dF(-A) = dF(A) or dF' (-A) = dF*(A). 

The * on the F(A) matrix signifies the j oint operation of 

transposition and conjugation. If the complex distribution 

function F(A) is rewritten as 

(1. 2.4 ) 

where C(A) is a matrix composed of the real part of F(A) and Q(A ) a 

matrix composed of the complex part of F (A), the expression (1. 2 .2) 

becomes 
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If it is assumed that F(A) is absolutely continuous and therefore 

dF(A) = f(A)dA 

then 

(1. 2.6) 

where C(A) is the symmetric co-spectral density matrix and q(A) is 

the skew-symmetric quadrature spectral density matrix which leads 

to the rewriting of (1.2.5) as 

I n (1.2.7) the second order moments of the series are 

represented in frequency terms. It is also illuminating to 

represent the series, rather than their moments, in this domain 

as follows 

(1.2. 8) 

where Z(A) is a vector such that 

e (dZ(Al )dZ*(A2 )) = 0 

(1.2.9) 
= dF (A) 

The vector Z(A) is rewritten to make explicit its real part U(A) 

and its complex part V(A) as 

and a more illuminating expression for the series x(n) is given by 

where the vectors dU(A) and dV(A) are · such that 

e {dU(A1ldU' (A2l} ~ e {dV(AlldV'(A2l} ~ 5~~dC (All 
( "I Al 

e ldU(Al)dV' (A2 )j = 5
A2

dQ(Al ) . 

(1.2.11 ) 



Al 
The symboloA is unity where Al = A2 and zero otherwise. The 

2 
representation of the vector series given in (1.2.10) lends itself 

most readily to interpretation, for a typical series x.(n) is a 
J 

linear superposition of sinusoidal terms with random amplitudes 

and phases at each A determined by u. (A) and V. (A) . 
J J 

If for the moment only two series xj(n) and xk(n) are 

cons~dered then the correlation between the nAth term for x.(n) 
J 

th in (1. 2 .10 ) and the (nA+e) term for xk(n) in (1.2.10 ) is 

maximized when 

5 

d Qjk (A) 
e (A) - arctan -

jk - dCjk(A) 
(1.2.12) 

and the value of this correlation is given by 

(1.2.13) 

The phase, ejk(A), and the coherence, Wjk(A), are characteristics 

which measure the dependence of two time series, xj(n) and xk(n). 

1.3 Linear Filtering 

If the relation between two series is that the first series 

y (n ) is produced by the operation of a linear filter2 on the series 

x (n ) then a specific description of the dependence may be derived. 

To develop the filtering concept in more detail the transformation 

of a time series x(n) {n = O,tl,t2, ....... } to produce another series 

y(n ) {n = 0,tl,~2, .•...•. } is known as linear digital filtering if 

2 
A linear filter must have two properties. To economically express 

these requirements one defines L to be the operator which performs 

the filtering and ~ an operation which translates a variable m 
periods forward. The reqUirements of a linear filter are 

and (ii ) 

LEa: .x . (n) = I:a: .Lx . (n) 
j J J j J J 

L~x. (n) = ~x. (n ). 
J J 
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y(n) = ~oo b.x(n-j) 
-00 J 

n 0, :1, ::2, ...... . (1.3.1) 

The sequence of coefficients b., often restricted so that 
J 

~oo lb.! < 00, is the impulse response of the filter. The 
• -00 J 
J 

essential condition that the b. must satisfy is that B(A), 
J 

defined below, must be square integrable with respect to dF(A). 

A more important function, derived from this sequence, is 

B(A) ~oo b .e -ijA 
• -00 J 
J 

the frequency response function of the filter, which can 

(1.3.2) 

obviously be complex for a real series b .. 
J 

The importance of th~s 

response function arises from its use in interpreting the ac tion 

of the filter on an arbitrary series. It can be interpreted as the 

way in which an input of a complex harmonic, e iAn will be modified 

at each frequency to provide an output, since the output procedure 

is B(A)e
iAn

. This function is also valuable in relating the 

spectral distributions of the input and output series as follows, 

Thus the spectral distribution of the filtered series is 

produced by mul tiplying the origina l spectral distribution 

function by !B(A)!2, where IB(A)! is known as the gain of the 

filter. When the input to the filter is a vector time series the 

relation between the input and output vector is 

dF (A) = B(A)dF (A)B*(A) y x (1. 3 .4) 

where B(A) is now a matrix and is best comprehended by exhibiting 

its form whe n the most common form of filtering, 

z(n) = ~oo B.x (n-j), 
• -00 J-
J 

is used. If thi s situation, where y a nd ~ are vectors and the B. 
J 

are matrices, the matrix function B(A) in (1.3.4) is given by 

(1. 3.6 ) 



Fil tering of the above kind will, except for special circumstance s, 

inevitab l y introduce phase shifts. The relative phase bet ween the 

.th d kth . d d 1 th t d J an serles epen s on y upon e cross spec rum a n even 

if B(A ) was diagonal t he cross-spectrum would be cha nged. I f B(A) 

is diagonal and rea l this will not happen. I n particular t his will 

be so if B. = B . and the filter is therefore symmetric. But if a 
J - J 

one sided filter (i.e. B. = 0 for either j < 0 or j > 0) is used 
J 

it must introduce phase shifts. 

1.4 Spectral Estimation 

I t would be rather pointless developing a representation of 

an economic time series vector in the frequency domain if t he 

fundament a l quantities in this representation, f jk (A),3 were 

not ab l e to be estimated. The general estimation procedures are 

only briefly out l ined as more detailed problems are set aside for 

further consideration in Chapter II. 

I n a statistical analysis of a time series x(n) which is t o 

concentrate on source s of variation the finite Fourier transf orm 

W(A ) plays an important role. The finite Fourier transform i s 

defined a s 

7 

(1. 4 .1) 

and is eva l uated at t he point s A = ~k, for k = 1,2, ... , N, 

where N is the number of observations i n t he reali zat ion . The 

quantity defined in (1.4.1) is very simply relat ed to the 

periodogram I(A ), 

I (A ) = w (A )w* (A) . (1. 4.2) 

1~e periodogram was t he focal point of early studi es of the source 

of variati on in time series. The following expectat i on 

3 
]'or convenience of exposition only it is assumed t hat dF(A) is 

absolute l y cOlltinu us a nd i n future comment i n this section fjk(A ), 

the element in the jth row a nd kth column of f(A), is cons i de r ed . 
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(1.4.3) 

i ndicates that since e (I (A)) is equal to the Cesaro mean of f(A) 

it will converge to f (A) as N becomes large, if, for example, f(A) 

is continuous . It is well known however that I(A) is not a 

consistent estimate of fCA ). This defect does not prevent t he 

periodogram from being of use i n the discussion of estimates of 

spectra a nd cross - spectra because it reappears i n a modified form 

i n the appropriate estimates of spectral quantities . 

If i n choosing a n estimator for f (A) the choice is 

restricted to a quadratic function of the observations, since t he 

spectrum is itself a quadratic quantity, t hen the form of the 

estimator i s 

f 0k (A) = D:b (A)x o (m)x ° (p ). 
J mp l J mp 

(1.4 . 4) 

It is natural i n a context of st ationarity to rest r ict the 

coeffi cients to depe nd onl y on the lag (m- p ) a nd Grena nder a nd 

Rose nblatt [ l S] have vindicated such a choice . Replacing b by mp 

b (1 .4 . 4 ) can be rewritten as (see [lS,p 123] ) 
m- p 

where 

The function k is i nterpreted as a covariance averagi ng ke rne l 
n 

a nd its Fourier transform is, 

(1.4. 6) 

known as t he spectral window. The use of the spect ral window 

A 

leads t o a hi ghly i nstructive expression for the estimator f jk, 
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i.e. 

= fIT KN (A- e )I ok (e )de ° 
-7f J 

It is not obvious that the two expressions in (1. 4.7 ) are equal 

a nd it is surprising that the integral should exact l y equal its 

approximate sum. The first r elation in (1. 4 .7 ) is due to the 

orthogonality properties of ¢k (n ) = exp{(i~k )/N} , n 

The latter is due to the orthogonality properties of ¢k (A) = exp{inA} 

as function of A on (-7f,IT). The representation of the estimator 

given i n (1. 4 .7 ) ~learly points out that estimators of the form 

chosen consist of a v~ew of the periodogram ordinates. The nature 

of the view is determined by KN (A), the spectral window. 

1.5 Prediction a nd Signal Extraction 

The techniques developed i n this section relate mainl y to any 

real world phenomena which generate an observed series which may be 

considered as a signal (another series ) which is unobservable because 

it is obscured by a further unobservable (noise) series . The 

technique is also suitable for predicting the value of the signal 

series at some time point i n the future. The information we do 

have about the phenomena is the spectral (or equivalent ) properties 

of the signal and noise series. 

An introduction to these topics could begin in either the 

time or freque ncy domain a nd ideally both approaches should be 

presented as they are compl ementary . As my object is mere l y to 

sketch the basis of techniques used late r this can be done most 

economically by present i ng the methods as an example of 

fi l tering methods . 

If a predictor ~ (n ) is to be based on either a finite number 

(say p ) of past values of the variable x or the complete past 

history of x, then a linear predictor is of the form 
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,,(p) 
x (n) = b l x(n- l )+b2x (n -2 )+ .... . . +bpx (n-p ) 

~(n ) = b l x (n-l)+b2x (n- 2 )+ ... .. . • 

4 
(1. 5 .1) 

The spectral representation of ~ (n ) (a scalar example of (1. 2 .8)) i s 

(1.5.2) 

where 

(1.5.3 ) 

a nd 

The residual or innovation is defined in terms of these quantitie s 

as x(n) -~(n ). The spectra l representation of the innovation is 

(1.5.4) 

and therefore the mean square prediction error will be 

This minima l mean square prediction error for a linear predictor 

may be shown to be 

a nd equation (1. 5 . 6 ) therefore indicates that the prediction e rror 

depends onl y on the absol utely continuous part of the spectrum, for 

a ny term contributing to a jump would be perfectly predictable on 

the basis of the infinite past. 

4 
It is possible that an optimal predictor of x(n ) may not be 

expressible in the form (1. 5 . 1) but instead one may have to define 

it by a sequence of predictors ~(p ) (n ) with p i ncreasing 
indefinitely a nd the coefficients of x(n-j) depending on p . 



Two loose ends must be tied up. First, how is an appropriate 

B(A) decided upon? Second, can this formulation suitably handle 

problems of prediction and signal extraction. So far the predictor 

of x(n ) has been based on either a finite or infinite number of 

past value s of x . The predictor x(n+v), V ~ 1, is a prediction 

of x(n+V) based on the va l ues of x, up to and including N. So we 

can represent x(n+V) as follows 

where B(V )(A) = b~V)+biV)eiA+b~V )ei2A+ .••••.• Another time series 

y en ) is introduced and it is assumed that yen ) and x(n) are jointly 

covariance stationary. For expositional convenience only, it is 

also assumed that both series have spectral representations 

containing only an absolutely continuous part. The cross 

covariance between the two series is therefore give~ by 

11 

(1. 5 . 8 ) 

If the series yen) is just the x series translated V periods 

forward, i.e. yen) = x(n+v), then (1. 5. 8 ) becomes (see (1.2.2)) 

(1.5.9) 

It is possible however to regard yen) as the signal series where 

a predictor of this series is to be obtained from the observed 

series x(m). The prediction of y en ), on the basis of x(m), m ~ n, is 

(1. 5 .10) 

and its spectral representation is 

(1. 5 .11) 
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ij7\ . 
c (7\) = L: c.e . 

jO J 
(1. 5 .12 ) 

The development of the determinati on of t he c . coefficient s is that 
J 

given by Whittle [57]. The freque ncy response (1.5.12) is written 

i7\ in terms of z = e so that C(z), often referred to as the transfer 

function, is 

C(z) 
j = l:: c.z . 

. 0 J 
J 

The covariance generating functions g (z), g (z) are assumed xx xy 

analytic i n a region p < z < p- l (0 < P < 1) and so are 

represented as 

(1. 5 .14) 

If the c. coefficients are chosen to mi.nimi ze the mean square error, 
J 

e(y(n )_y(n ))2, then the followi ng r elat ion between t he covariance s 

and t he c. coefficients must hold, 
J 

L:ooc (k-j)c. = c (k), 
. 0 xx J xy 
J 

k= 0,1,2, .•• 

k If (1.5.15) is multiplied by z and added over all i nte gral k t hen 

this expression become s 

00 -00 ( ") k 00 () k L: L: c k-J c.z = L: c k z 
kO jO xx J kO xy 

00 00 ( ) k-j j 00 () k L: L: c k-j c.z z = L: c k z • 
kO jO xx J kO xy 

The left hand side of (1.5.16 ) may be written as gxx(z) C(z)-hl(Z) 

where hl(Z) i nvolves only ne gative powers of Z a nd similarly the 

right hand side can be thought of as gxy(Z)-h2 (Z) where a gain h2 (z) 

contains only negative powers of z a nd thus (1 . 5 .16 ) becomes 

5 
For economy of presentation the r epetition of t he finite and 

i nfinite case is discontinued . The upper summation limit is 
therefore left open . 
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g (z)C(z) = h(z)+g (z) xx xy 

where h(z) = hl (z)-h2 (Z) is an expression in negative powers of z. 

If it is assumed that the prediction error is positive (see (1. 5 . 6 )) 

then g (z) may be factorized as fo llows, 
xx 

21 2 2 -1 g (z) = cr e (z)1 = cr e(z)e(z ), 
xx 

2 e(z) = 1+el z+e2z + .•.•. , 

to provide what is termed a canonical factorization. 6 If (1. 5 .17 ) 

is divided by e(z-l) then it may be rewritten as 

2 cr e(z)c(z) 

Because the term on the left ha nd side of (1.5.19) consists only of 

positive powers of z and because the first term on the right ha nd 

side consists only of negative powers then equating of like powers 

of z produces a solution for C(z) of the form 

6 
To uniquely define the canonical factorization it is required 

that e(z) has no zeros for Izl < 1 for although 

1 { 1 } 1 { 27r 2 = 27r 
l+P -2pcos/\ 

1 l} = e (z) e (z-l) 
(l-pz)(l-pz- ) . 

it is also true that 

~ { 2 1 } = ~ { 2 ( _1
1 

( -1 -1 } = ~ {-( -( --_1"..-1-)-(-( ---"="1---=--1 
l+p -2pcos/\ p l-p z) l-p z ) P l-p z) p l-p z 

however the zero of ¢(z) is within the unit circle. 
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(z) (1.5.20 ) 

As it may be shown [ 57,pp 67 - 8] that L
oo 

LooC (k_j)c.z
k 

has a 
kO jO xx J 

valid Laurent representation i n a n a nnulus i ncluding the unit 

circle , the symbol + indicates that onl y the positive terms in a 

Laurent expansion should be used. The formula given in (1. 5 .20 ) 

may be regarded as a general solution which may be shown to cover 

the fo llowing cases. 

(a) Prediction V steps ahead is ha ndled by setting y en ) = x (n+V). 

This results i n a simplification of the covariance gene rat ing 

function g (z) so that xy 

V ( (-1 2 zez)ez )0'. 

The generating function given i n (1. 5 .20 ) then becomes 

c(z) = e(;) [e(z )zV ] . 
+ 

(1. 5 .22) 

(b) Extraction of a signal series s en ) at time point n, where 

the observed series x (n ) = s (n )+E(n ) and sen) a nd E(n ) are 

independent. If y en ) = sen ) then g (z) = g (z), since E(n ) and xy ss 

sen ) are independent so that the appropriate generating function is 

now 

_-:-l~_ [ gss (z) 
c (z) = 

2 () e (z-l) 0' e z 
] . 
+ 

(c) Prediction V > 0 or Signal Extraction V ~ 0 of sen ) in similar 

circumstances to those given in (b). Now y en ) = s(n+v) and 

therefore g (z) xy 

to 

ZVg (z) and the generating function specialize s 
ss 

~l~_ [ _gs_s_(_z )_z_V ] . 

ie(z ) e(z-l) + 



I n the above examples the f ormulae f or the coeffi ci e nt s of 

t he predictor y(n ) are establi shed. It is st raightforward t o 

attach a n expression for the mean square prediction error, whi ch 

for convenience is relat ed t o the general generating functi on 

(1. 5 .20 ). If log g (z) has a vali d Laurent expan s i on in the 
xx 

annulus p < Izl < p-l where 0 < P < 1 (see a gain footnot e 6) 

15 

then x(n ) has both a moving average and autoregress ive representat i on . 

Suppose t he predict or is 

y(n ) = ~ooc.x(n -j) 
. 0 J 
J 

then employi ng t he movi ng average representa t ion of x which i s 

(1. 5 .26) 

where the E(n ) are i ndepende ntly a nd identically dis t r ibut ed 

2 2 
random variables with zero mean and variance cr, (I.I. D (O,cr )), 

the expression for the predict or i n t erms of the E(n ) i s 

y(n ) = C(Z)B(z)E(n ) 

q(z)E(n ) 

with B(z) 
00 j 

~ q.z . 
. 0 J 
J 

The mean square predi ction error i s gi ven by 

A A2 A 

( )

2 
e y (n )-y (n ) = var(y (n ))+ey (n )-2ey (n )y (n ) 

where k. = cov (y (n )E(n-j)). 
J 

The expression for t he prediction error wi ll be minimi zed 

if q. = k. and the resulting prediction error i s 
J J 

var(y (n ))-~lq(z)1 2 

= var(y(n ))-$fl c (z)B(z)1
2 
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where 

stlq(z)1 2 = ~i~ g(Z)~(Z-l) dz 

Izl=l 

and 

1 [ gxy (z) ] 
C(z)B (z) = :2 -1 • 

cr B(z) + 

7 

The prediction methods are now slightly extended to cover 

an area of obvious application when the signal is what is termed 

an accumulated process. Thus the signal is assumed to be a 

solution of 

where ~(n) is a stationary process with covariance generating 

function ~~(z), which is analytic in an annulus including Izl = 1. 

The nature of the process generated in this way is best understood 

by reference to the following autoregressive process 

(1.5.31) 

where ~(n) in this situation is an autocorrelated error term. 

For the process to be stationary and stable the zeros of ~d.zj 
J 

must be outside the unit circle, thus a zero of order p at z = 1 

will result in an evolutive process. The evolution has two 

sources: a polynomial trend and the variance which is increasing 

with n. 

The observation-signal-noise model is still 

but now 

7 
The expression for C(z) B(z) is easily obtained from (1.5.20) 

since (1.5.26) implies g (z) = B(Z)B( z-1) cr2 so that B(z) = e(z) . 
xx 
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with Tj(n) having the properties given i~l (1. 5 .30 ) and -1 < ¢ ~ 1.
8 

If we employ the formulae already gi ven f or a prediction of 

~(n+V) in terms of the x(n)'s the coefficients for the predictor 

are obtained from 

(1. 5 .34) 

Application of the operator (l-¢z)P to both sides of (1. 5.32) gives 

making the obvious substitution pen) = (l -¢ z)Px(n ). The new 

variable pen) is assumed to have the following canonical 

factorization 

2 . 1 = cr D(z)D(z- ) 

and because there is the obvious relation 

then 

1 
gxx(z) = ---2-p gpp(z) 

Il-h l 

B(z ) = _.;;;;.1_ D(z), 
Il-¢z I p 

using the representation of B(z) given in (1.5.38 ) and using 

(1.5.33) to obtain a n expression for g (z) in terms of the ss 

(1. 5 .35 ) 

(1. 5 .36 ) 

(1. 5 .37 

formula for the prediction coefficients given in (1.5.34 ), becomes 

(1. 5.39 ) 

8 
In Whittle [57] it is assumed I¢I < 1 and the accumulated process 

is handled by allowing ¢ to tend to 1 from below . Hannan has shown 
[24] that the following presentation may be used for ¢ = 1. 
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Two comments on the utilization of (1. 5 .39) are called for. 

First the extraction of the canonical factor D(z) is obtained 

from the relation between spectra or covariance generating 

functions implied by (1.5.35 ). 
, 

Second, Whittle [57,p 93] rewrites 

the expression for C(z) as follows 

(1.5.40) 

with the first term in the brackets arising from Taylor's 

expansion of about ~ -l," f th t t" ~ l .e. rom e represen a lon 

of 
-1 

as a partial Taylor's expansion about ¢ 

of the following form, 

Q_(z) = ~~-l (Q~j)J~)_¢-l) (z_¢-l)j. 

J 

This latter representation may facilitate the actual computations 

of the predictor. 

1.6 Regression for Time Series 

Often the situation under consideration is one where the 

signal is actually known, rather than the situation considered i n 

the previous section where the only knowledge available related to 

second order properties of the signal, i .e. the spectral 

distribution or covariance generating function. This section 

presents, without proof, well established results (see [18], [20]) 

which underpin the consideration of single eqhation regression 

procedures when the interdependence of observations at different 

points of time are essential to the model. 

The single equation model is 

(1. 6 .1) 

or i n matrix notation is 

(1. 6 .2) 



where e is an N dimensional (non -observable) vector arising from 

a stationary process with zero mean and a covariance matrix, 

e(ee') = r
N

. Y is composed of r sequence s of known constant s 

and 0 is an r dimensional vector of unknown constants, which are 

to be estimated. If the covariance matrix rN is known then the 

Best Linear Unbiassed Estimator (B. L.U.E .) is 

with covariance matrix 
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(1. 6.4) 

If the Least Squares Estimator (L. S .E.) is used i n these 

A 

circumstances then this estimator 0 is 

with covariance matrix 

(1. 6.6) 

If rN (+ r) is unknown then any reasonabl y efficient procedure will 

be highly non-linear, involving a n estimate of rN before es timat i ng 

of 0 begins. The best one can hope to do then is to obtain some 

form of asymptotically good estimator and some asymptotic expansion, 

or perhaps the first term i n one, for the limiting distribution . 

For this reason the y. (n ) which make up the Y matrix, that is the 
J 

regressor variables, must be i nvested with certain asymptotic 

properties. These properties are usually referred to as 

Grenander 's conditions [18], a nd are: 

lim ~~y~ (n ) = lim d~(N ) = 00, 

N+-oo n J N+-oo J 

This condition ensures that consistent estimates of the parameters, 
A 

0, exist for otherwise the variance of 0 could not be expected t o 

decrease as N increases. This assumption provides no practical 

difficulties. 



(ii) lim 
N+oo 

2 
y. (N) 

J o. 

The regressor variables, thus restricted, will not i ncrease too 

fast, guaranteeing that end effects which are neglected are 

truly asymptotically negligible. It should be noted that a n 

exponentially i ncreasing (or decreasing ) sequence does not 

satisfy Grenander's conditions. Special techniques would be 

needed for the exponentially increasing case since then the 

last few observations will never be negligible. 

lim [ 
N+oo 

P jk (m) (iii) exists. 

This condition in conjunction with (ii) ensures that 

lim 
N+oo 

Consider a vector of the form 

where the E(n) are identically a nd independent l y distributed 

random vectors with zero means, finite fourth moments and 

L:IIA (j) II < 00 where IIA (j) II is the norm of the matrix A ( j ) 
j 

(i.e. the smallest number m such that IAxI ~ mlxl for all 

vectors x, where Ixl is the length of the vector). Then it may 

be shown that x(n) is stationary a nd satisfies (i), (ii), (iii). 

However, x(n ) could be modified by adding ~(n), where e. g . 

~(n ) = L:a. nj a nd the conditions would still hold. Si milarly 
J 

after addition of a finite number of terms of the kind 

anjcos(ne+~) the sequence would still satisfy the propertie s. 

The sequences may therefore be evolving relatively rapidly but 

not exponentially. Defining 

20 
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R(m) 

the spectral representation of the 'correlation ' matrix is 

(1. 6.8) 

where M(A) is a matrix function with increments which are 

Hermitian, non-negative definite matrices, and, moreover, 

dM(-A) = dM(A) (since Pjk(m) = Pkj(-m)). Thus for the case of 

a polynomial regression of degree (q-l) the matrix M(A) is 

composed of element s mjk(A) that are zero up to A = 0 a nd then 

jump by (j+k+l)-l J (2j+l) (2k+l) remaini ng at that value thereafter. 

In another case where r = 3, Yl(n) = 1, Y2(n ) = cosen, 

Y3(n) = sinen, e + o,~, there are three points of increase for 

M(A); -e, 0, e. The three increments are 

o 
o 
o 

o 

1 
"2 

, 
1 

o 
o 

o 
o 
o 

o 
o 
o 

o 
o 
o 

0 0 
1 i /2 "2 

_i i2 1 
"2 

If there were 2~1 terms corresponding to the frequencies 

o,e l , .•. ,e{; (el , .•. ,e~ + o,~) then M(A) would have 2~1 points 

of i ncrease at te., j = 1, ... ,t a nd a t the origin . The increase 
J 

at e. has zero element s except i n the row and column corresponding 
J 

to cose., Sine . where the submatrix wou l d be of the form of tha t 
J J 

in the last two rows and columns of the last matrix of 

increments displayed above. If cos~ is adjoined t o the set 

there would be an additional jump at ~ which would be of the same 

nature as the jump at the origi n. The allowable regressors do 

not restrict the model to consideration of onl y stationary z 

sequences as it is possible to i nt roduce non-stationarity into 

the model through the mean . 
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It is useful to obtain an expression i n spect ral t erms for 

the covariances of the B.L. U.E. a nd the L . S .E. when 

(a) the regressors satisfy Grena nder's conditions 

(b) the spectral density of e(n ), f(A), is continuous 9 

(c) f (A) ~ a > 0 , A s [-tr,tr]. 

Defining DN = ° the expressions required are 

° d (N) r 

;;: he {(S-5)(S-5)'} DN } " [R-
1

(O) {f: 2Jrf(A)dM(A)} R-
1(of 

(1. 6 .9) 

(1. 6 .10) 

To discuss the conditions which lead t o equality of (1. 6 .9) 

a nd (1.6.10 ) it is helpful to define 

1 1 

N(A) = R:2(o)M(A)R:2(o) (1. 6 .11) 

so that N(A) is also Hermitian with non- negative i ncrement s and 

N(-tr) = 0, N(tr) = I. The set of points i n (-tr,tr) where N(A) 
r 

i ncreases is denoted S and is termed the spectrum of the regressor 

set. S may be maximally decomposed i nto p (~ the number of 

regressors, r) disjoint sets E.. The i ncrements 
1 

are Hermitian symmetric with 

9 
f(A) could be piecewise continuous providing there are no 

discontinuities at the 'jumps' in M(A). 

(1. 6 .12) 
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N(E. )N(E .) 0 i + j J. J (1.6.13) 
::: N(E. ) i ::: j J. 

and 

~iN(Ei ) ::: I . r (1. 6.14) 
J. 

A -The necessary and sufficient condition for 0 and 0 to have the 

same asymptotic covariance matrix is that f(A) is constant on 

each set E. (see [18],p 244). To attempt to illustrate the J. 

nature of the E. a particular case, r ::: p ::: 2, is considered. 
J. 

Roughl y speaking N(A) is obtained from M(A) by a linear 

transformation of the y.(n). Now, replace the transformed y.(n) 
J J 

by two new complex linear combinations - the same combinations 

at each time point n - so that the newly formed regressor 

sequences , yl(n ) and Y2 (n ) are not merely incoherent but that 

their spectra (i.e. sets of points where their f(A) are non-zero) 

are disjoint. So the transformed sequences constitute, roughly 

speaking, two signals sent over completely different frequency 

bands. This situation is spectrally equivalent to that where all 

the regressors, y. (n), are solutions of a difference equation, 
J 

~akYj(n-k) ::: 0, whose characteristic roots lie on the unit circle. 

S h 1 t · f th 1 f a ea. e uc so u J.Ons are 0 e genera orm n cos .n, n sJ.n .n, 
J J 

o ~ a ~ m.-l, where exp(ie.) is a root of the equation of 
J J 

multiplicity m.. Thus a deterministic evolving seasonal 
J 

pattern would be included in the asymptotically efficient group. 

In Chapter III comparisons will be made which will contrast 

actual and asymptotic efficiency. 

The framework erected for the discussion of the previous 

theoretical results is also suitable for the discussion of an 

efficient estimation procedure when the r(n) covariance matrix 

is unknown, but the conditions (a), (b) and (c) hold. To best 

comprehend the construction of efficient estimates in this 

situation (see [20] ) one can consider a group of mutually 

exclusive band pass filters, passing bands, such that 
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Uf
m 

= (O,lr). The filtered series z(k)(nL Yik)(n),YJk~(n), ....• , y;k~ 
m 

and e(k)(n) are thus produced for k = 1,2,3, .•.. ,m. If the width 

of the filter bands could be chosen so that the band filtered series 

now had only minimal variation in power in e(n) within bands then 

approximately efficient estimates could be made by using a L. S .E . 

for each band. The next task is to weight together the 

approximately efficient individual band estimates to obtain an 

overall estimate with efficiency at least as good as the lowest 

in any band. Although this method is not exactly available in 

practice it does i ndicate what is being striven for in the 

following calculations. 

Spectra are computed at rrk k 0 12m to form m' =", ... , 

estimated quantities f (rrk) , f (rrk) and f (rrk). The 
zz m yy m yz m 

estimates f (rrk) and f (rrk) may be formed even if y (n) is not 
y z m yy m 

stationary. In the single equation situation described in 

(1. 6.2 ) f (rrk) is a scalar, f (rrk) a n r X r matrix and 
zz m yy m 

'" rrk f (--) an r X 1 vector, all of which are evaluated at each k. 
yz m . 

Before setting out the estimation formulae it is worth digressing 

to the Simple special case when r = 1. As in this situat ion 

an obvious estimate for each band is 

(1. 6 .16 ) 

which approximates the ideal of a L. S .E. based on a band of width 

rr rrk - located at --. To weight together these estimates within bands m m 

it is nece ssary to obtain knowledge of the power of the noise or 

error term within each band because the optimal weighting entails 

the ratio of signal to noise power, i.e. the relative power in 

each band of yik)(n) a nd ~(k)(n). The proposed estimation in the 

case when r = 1 is 
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b (1. 6. 17) 

Th~. discussion of the situation when r = 1 is included onl y as a 

means of helping insight a nd is of course a special case of the 

following estimation formula when r > 1 

b (1. 6 .18 ) 

To carry out the computation of the estimates, b, (1. 6 .18 ) can be 

simplified considerably [28]. A tilde is placed on the estimate 

of f (~k) to emphasize that this quantity is not directly 
ee m 

measurable and therefore a first estimate must be obtained 

either from a calculation of the residuals using a L.S.E. or 

assuming that the y sequences are realizations from a st ationary 

vector process a nd therefore using 

(1. 6 .19) 

This latter method has the appeal that the estimate of f (~k) ee m 

use all effects from y en ) and that vector's lagged values even 

if the postulated model i s incorrect. There is also, of course, 

no need for a preliminary estimate of 5 . However it has the 

drawback that it uses up more de grees of freedom (roughl y one for 

each band if r = 1) and has meaning onl y when y en ) is stationary. 

The estimates used in the applicat i ons discussed will be based on 

the first procedure. 

Thi s section is completed with an example of the need for 

caution i n claiming asymptot ic efficiency for a least squares 

estimate. The condition for asymptotic effic iency given above 

may be restated as follows. If M(A) increases at a finite set 

of points e., then to each e. in the set there must also be -e. 
J J J 

since R(m) is real. Adding together the increments in M(A) a t 

+e. a nd -e. the resulting matrices may form a set of p < r 
J J 

orthogonal idempotents, and if this is so, least squares is 



asymptotically efficient. In the case of the Fourier serie s, 

discussed earlier, even before adding +8. and -e. the matrices 
J J 

were orthogonal idempotents. Of course the above condition i s 

not necessary in order for least squares to be efficient even 

if the e(n) are serially dependent. However, if least squares 

is to be efficient for any cont i nuous spectral density function 

of the e(n) sequence then the above condition must be fulf i lled. 

It must be emphasized that the condition may be very nearly 

fulfilled and the result fail to be true. For example let 

~(n) are serially i ndependent sequences with zero mean a nd unit 

variance a nd totally independent of each other. If Yl(n ) is the 

only variable regressed upon then it is shown [31] that the 

asymptotic efficiency, i.e. ratio of the asymptotic va r i a nce of 

the B.L.U.E. to that of the L.S.E., is (1_p2 )/(1+p2), which will 

be very low for p near 1. However since f (A) is 
Yl . 

dM(A) (1_p2 ) dA 

27r(4 p2_2pcOSA) 

it approximates a delta funct ion at the origin as p tends to 1. 

Thus meA) is near to a function - indeed arbitrar i l y near - tha t 

jumps only at the origin, but the result is drastically not true . 

The reason is most easily explained in terms of the efficient 

regression procedure previously described. If OY1(n) is 

regarded as an amplitude modulated signal sent by a carrier wave 

in which each band of freque ncies is represented in proportion to 

the area under f (A) and above the ba nd then the efficient 
Yl 

procedure has been stated to be to estimate 0 from each of an 

increasingly large number of bands, a nd then to recombine each 

band estimate of 0 using the weights f (A)/f (A). In the example 
Yl e . 

proposed f (A)/f (A) = 1 so that all bands should be given equal 
Yl e 

weight however least squares does not give equal weight but 

weights according to f (A) onl y a nd for large p 
Yl 

very small away from the origi n . 
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1.7 Time Series Regression Procedures in Small Samples 

Previous sections have concentrated on time series 

regression problems for large samples of data; however a 

much more common situation is for the econometrician to be 

presented with a set of data which is too small for asymptotic 

procedures. A traditional approach to the task of estimating 

economic relationships in this context has been to employ the 

least squares procedure and then t o test the residuals computed 

from the least squares regression for the presence of serial 

correlation 129]. To outline the methods of testing for serial 

correlation in the regression model 

yen) = ~q15 . x.(n)+u(n) 
J J 

n = 1,2, ... ,N 

it is assumed that xl(n) _ 1 and for later use y is a 

th vector with yen) in the n place. The situation which has 

received almost all of the attention is that where x.(n) are 
J 

totally independent of the u(n) sequence so that the x.(n) 
J . 

can be treated as fixed sequences of numbers. The symbol 

x .(n) will be used for such sequences. When q = 1 and u(n) 
J 

are N. I.D .(o,a2 ) the problem was solved by von Neumann [ 53] who 

considered the ' von Neumann' ratio 

v = 

the significance pOints of which were tabulated by Hart [32]. 

Another statistic which has been considered is the 'circular 

serial correlation ' 
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(1. 7.2) 



where ~(n) is the residual from the calculated regression of 

. 10 
y (n ) on the x. (n ). Anderson [1] obt ained the distribution 

J 

of ri when a mean correction only has been made and t abulat ed 

the significance points. Another case which has been s tudied 

is that of a fitted Fourier series, where 

( ) _ cos27rj n 
x2j n - q , 

a nd the term for j = q/2 being omitted for the sine series 

if j = q/2 is even . Anderson a nd Anderson [2] obtained the 

distribution of ri and tabulated some significance points. 

A major work in relation to this prob lem was that of 

Durbin and Watson [13]. Replacing y(n) with ~(n ) they 

considered, under the same assumption for u(n) as previously 

specified, the statistic d = {(N-l)v }/N which may be written as 

He r e Q = (I-P) = I-X(X' X )-~' where X has x. (n ) i n row n and 
J 

column j, u has u(n ) i n row n, a nd the matrix Ad is 

Ad = 

10 

1 
-1 

0 

o 
o 

-1 
2 

-1 

o 
o 

0 
-1 
2 

o 
o 

0 
0 
0 

2 
-1 

0 
0 
0 

-1 
1 
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(1. 7 .6) 

To complete the summation from 1 t o N i n the numera t or of (1. 7.3 ) 

it is necessary to define ~(o) as equal t o G(n). 



The statistics v and ri can, of course, also be written in this 

form for a suitable matrix. If the non -zero eigenvalues of 

QAdQ are ~j' j = 1, ..• , N-l, while those of Ad are 

A. = 2(1-cos(~j/N )), j = 1, •.• ,N-l, then Durbin and Watson 
J 

established the followi ng bounds 

They tabulated the significance points for d~ and du that are 

independent of X a nd that provided bounds for the true 

Significance point to d. Durbin a nd Watson also showed how the 

moments of d of arbitrary order could be calculated a nd thus 

showed how a n arbitrarily good approximation to the Significance 

point for d could be obtained for example by the use of a 

sequence of beta distributions with the appropriate moments . 

The cases of straight mean correction and the fitting of a 

finite Fourier Series are special i n that for these it is possib le 

to choose a n appropriate matrix, i.e. one yielding a test hav i ng 

good powers against a simple Markov alternative for the process 

generating u(n) and which has the vectors x. (having x. (n ) i n the 
J J 

th n place) as eigenvectors. A somewhat similar circumstance was 

discussed by Hannan [26] who pointed out that to a n order of 

accuracy higher than N- l , which is the magnitude of d-d a nd 
u 

d -dt , the upper bound to the Significance point of d was appropriat e 

for the case of certain regressors i nc l uding that where 

x .(n ) = n
j 

(see also McGregor [43]). A very similar observat ion 
J 

was made by Theil a nd Nagar [50] who tabulated approximations to 

the Significance point of d which they observed were close to 

those of d . 
u 

Much of the work which follows rests upon a simply proved 

result due to Grena nder [17]. The result relates to W
N

, a 

seque nce of matrices , the Nth of N rows a nd columns, with 

elements Wjk(N) satisfying 

29 



where W(A) is a n even continuous f unct ion . Thus all elements 

down the same diagonal are i ndepe nde nt of N. If DN is a diagonal 

matrix with d.(N) in the jth place then Grena nder [17] shows 
J 
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lim D~lX'WrfCD~l = jTrW(A)dM(A) (1. 7 . 9 ) 
N+oo -Tr 

and it is apparent that a special case of (1.7.9) gi ves 

-1 -1 R(o) = lim DN X'XD
N

. As has been already noted when q 1, 
N+oo 

i.e. only a mean correction is made, t he situation is well 

understood and tabulations (Hart [32]) of v a nd (Anderson [1]) 

of r' are available. 
1 

It is worth adding that t he statistic r l , 

where the jth serial correlation is 

c. 
r. = ~, 

J Co 

has on t he null hypothesis of seri al i ndepende nce for u (n ) a 

(1. 7 .10 ) 

mean _N- l and a variance (N-2 ) 2 /{~ (N-l)} = (N+3)-1_8/ N3+O(N-4 ). 

Thus to a n adequate approximation, whe n N ~ 15 cert ainl y , 

(rl+N- l ) has the variance of a n ordinary correlat ion coeff i cient 

(with mean corrections) from (N+4 ) pairs of serially i ndependent 

Gaussian observat~ons. As suggested by Wa t son [ 54] a n exami nation 

of the significance points of the dis t r ibution of select e d 

tabulated quantities shows this approximation t o be quite adequa t e. 

Thus the statistics 

t 
(rl+N- l ) IN:;2 

J{1-(r
l
+N- l )2 

(1. 7 .11) 

is Student's t with N+2 degrees of f r eedom a nd t est s t he serial 

i ndependence of the data. The derivation of the mean a nd 

variance is quite straightforward a nd f ollows Durbi n a nd Watson 

[13] but as it is a method that· is also employed for q > 1 it is 

outlined i n preparation for the later work. If one represent s r l as 
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y' QWNr.;y 
r -1 - y'r.;y (1. 7 .12) 

where Q = I-N-lll' (1 being a vector composed entirely of units) 

and for r l the matrix 2WN has units in the 2 diagonals bordering 

the main diagonal and zeros elsewhere. Then since r
l 

is independent 

( ~ of the denominator see Pitman [47J, Watson [54]) the p moment 

about the origin of r l is 

e{[y'QWNQ;f]p} 

e{[y'r.;yJ P} 

If we take y to be composed of N.I . D.(O,l) variates and note 

that, for any symmetric matrix A, 

where the a. are tbe eigenvalues of A and s. are N.I.D.(O,l). 
J J 

Foll owing Durbin and Watson [13J and Kendall a nd Stuart [ 41,p 68] 

th the relation between the p moment of the quadratic form y'Ay 

and its cumulants is given by 

(1.7.14) 

where k. is the jth cumulant of ~a.s~; the summation is over all 
J J J 

sl,s2' ... ,sm' such that s l r l +s2r 2+·· .+smrm = p, 

and 

a(s,r) 
pI 1 

As the cumulant of the quadratic form y'Ay is 

k. = {2 j - l (j -l)l} tr{Aj } its pth moment can be expressed directly 
J 

in terms of trAj . Since 

c 



tr(QP) = trQ = N-l, 

a nd 

tr([QWNQ]2 ) = tr(QwNQWN) = tr~-2N-ll'W~N-2(l'WN1)2 

= ~(N-l)-N-l(2N-3)+N-2(N_l)2 

one finds moments about the origin, 

-(N-l)/N 

and so the quoted results for the mean and variance of r l hold . 

The above procedure has repeatedly made use of the fact that 

the trace of a product of two factors is independent of their 

order and this will again be used below. The techniques apply 

in general (see [13]) for any Q and the moments depend only 

upon the evaluation of tr[(QWNQ)p]. Here W
N 

is of the general 

form discussed above (see (1.7.8)). The trace in question is a 

linear combination of tr(w~) and expressions of the form 

a L a2 a 1 
tr(PWN-PWN ...•• PW

N
m) where as before P = X(X'X)- X' and 

~a. = p. For example if p = 3 then in the expression of 
j J 

[(r-p)w
N

(r-p)]3 one obtains a term w~, however, 

tr[w~~] = tr[pw~] which is of the required form. Now, 

repeatedly using the idempotency of P and the fact that 

trAB = trBA a general expression, 
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(1.7 . 17) 



where W(A) is the generating function of the matrix W
N

. Thus 

the moments depend only upon the traces of products of matrices 

of the form jTrW(7\ l dN(7\). Since e(y'Qy)p = O(NP ), the order 
-Tr 

of the error in the jth moment , corrected for the mean for j > 1 

- obtained by i nserting the correct expression for tr (WP ) and 
N 

( ) ( - j ) approximations such as 1.7.17 in the other traces - is 0 N . 

A special case (where the L.S .E. is efficient) is that 

where N(A) increases at S points in such a way that when these 

point s are grouped together in pairs, symmetrically placed with 

respect to the origin, the resulting increments in N(A) - N. 
J 

being the sum of increments at points +8. and -e.-are orthogonal 
J J 

idempotents, i.e . ~N. = I, N.Nk = 5~ .. There cannot be more than 
J J J J 

q of these of course. Then in this case the expression in (1. 7.16 ) 

becomes 

a nd so one may write 

since the sum of the coefficients of the expression of 
a L a

2 
a 

tr{[QWNQ]p} in terms of expressions such as tr{PWN-PWN ... PwN
m

} 

is evidently zero. The right hand side of (1. 7.18 ) may be 

written as 
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(1.7.20) 

where tr(N (7\)) = n (A) and this is thus a function which increases 

by jumps of integral amounts at points e j to a value q. 

Grenander and Rosenblatt have shown [18,p 103] in a much more 

general context that 

Q 



p 

so that w(~j/N ) , j = -[ N/2], ... ,[(N+l)/2], are approxi mately 

the eigenva l ues of WN. Thus (1. 7 .20 ) can be roughl y i nterpret ed 

as the remova l from the spectrum of the eigenvalues w(e. ) 
J 

- repeated tr (N. ) times - so tha t effect has been as i f the q 
J 

regressor vectors Xj had been eigenvect ors of W
N 

f or 

eigenvalues w(e j ). Of course the e i genvalues of W
N 

may not 

be repeated, but if N is not small t he eigenvalues will be 

ve ry close together a nd t here wi ll be a number near a ny one 

w(e . ). If N(A) has a single jump at t he origin, then the 
J 

correction term due to regress i on in (1. 7 .19 ) is q{w(o)}p. 

Si nce wee ) is the f unction cose , the largest possibl e 

eigenvalues have been removed. If i ns t ead of r
l

, d (see 

(1. 7 . 5 )) had been studied a simila r resul t would be obtained. 

Al though the matrix Ad is not qui t e of the f orm required, s ince 

the two end e l ement s i n the main dia gonal di ffer f rom those 

elsewhere in that diagonal, thi s effect wi ll be of a n orde r of 

magnitude nO larger t ha n those already negl ected. Now we e ) i s 

2 (1- cose) a nd t he q smallest eigenval ue s a re be ing r emoved . 

Thus t he upper bound t o t he te st s t atistic wi ll be appropri a t e 

to an order of appr oximation hi gher than N-l . It has already 

been pointed out (see [26] a nd [43] ) that this wi ll be the case , 

for example, when a t rend has been elimina t e d by fitting a 

polynomial i n n . Returning t o the general ca se (no 

spec i fica t ion t hat would ma ke the L .S .E . a sympt otically 

efficient ) straightforward but somewha t l engthy calculations 

show t hat mean and variance of r l are 

34 
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(1.7.21) 

Of course W(A) = COSA a nd tr(~) = ~(N-l) for r l but (1.7.21) 

is general in the sense that it applies for all W of the form 
N 

specified i n (1.7. 8 ). Higher moments can be similarly expressed, 

though the expression quickly becomes quite complicated. 

Consider a stationary x(n ) vector with serial correlations 

satisfying assumption (iii) of §1.6. With economic data it is 

very likely that all f .. (A) will be very concentrated at the 
JJ 

origin (see [16]). If W(A) is fairly smooth near the origin, 

as is the case when W(A) = COSA or indeed is the case for any 

W(A) likely to arise, then the terms in (1.7.21) may be 

approximated as follows 

tr { [f: W (A )dN (A) r } = j} (A1 )w ("" )tr (dN (A1 )dN ("" ) ) 

2 
~ qw (0). 

(1. 7 .22) 

So, i n this case also, the lower moments a gain will be close to 

those which would obtain if the q eigenvalue s nearest to w(o) 

are removed by the regression so that again for the Durbin 

Watson statistic, the smallest eigenvalues are being removed 

and the upper bound to the statistic is appropriate. 

To summarize the effect of the regression on the significance 

point of d (or any selected statistic ) depends substa nt ially on 

the cross spectra of the regressor vector x(n), i.e. upon N(A). 

The most important effect is t o reduce the mean by a quantity 

that is, to order N-l, _(N_q)-l j Trw(A)dn (A). If as is often 
-Tr . 
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the case i n economics, the spectrum of x(n) is relatively very 

concentrated at the origin of freque ncies the effect will be 

approximately allowed for by using the significance point for d u 

as the true significance point . This procedure will be accurate 

to order N- l . 

1.8 Serial Dependence Under the Null Hypothesis 

Serial dependence in the disturbance term u(n) in the 

relation (1 .7 . 1) is so common-place that a more important 

problem from the point of view of the economist is that which 

arises when the nul l hypothesis is not serial independence for 

u(n ) as it was in §1 .7 but rather 

36 

u (n ) = pu (n-l )+€(n ) (1.8.1 ) 

where the €(n ) are N. I.D.(0,cr2 ) (see [29]). The alternative 
u 

one has principally in mind is 

which becomes of the form (1. 8 .1) if P2 = O. The hypothesis 

P2 = 0 is appropriately tested by means of a form of partial 

autocorrelation, 

where r . = c ./c and the c. are defined i n (1 .7 . 10 ). If, for 
J J 0 J . 

notational convenience, ~ql~ . x. (n ) is set equal to ~(n ) then the 
. J J 
J 

regression model (1 .7 . 1) may be written 

(1. 8 .4 ) 

It is as well to distinguish clearly this model (1. 8 .4) from 

a nother often proposed i n economi cs , i .e. 

where v (n ) is some other linear combination of the x.(n), e . g . 
J . 

~~I.X. (n ) as it would be very convenient if the treatment which 
J J 

will be proposed for (1 . 8 .4) could also be used for (1. 8 .5 ) . 

d 



The procedures suggested for (1. 8 .4) will onl y also be applicable 

to (1. 8 . 5 ) if the vectors x.(n ) are of a parti cular form. The 
. J 

nature of x.(n ) required for thi s equi valence may be deduced 
J 

by equating a general form of (1. 8 .4) 
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(1. 8 . 6 ) 

to the general form of (1. 8 . 5 ) i.e. 

where x.(n ) are now treat ed in vector f orm. The solution requires 
J 

that ~Pj~'x(n -j) = ~lx(n ) a nd therefore will have to be of the form 

x(n ) = nUcosS. n, since roots which are not on the uni t circle are 
J 

not acceptable. Thus the nature of the x.(n ) vectors which would 
J 

result i n applicability of the methods to both (1. 8 .4) a nd (1. 8 . 5 ) 

is i n fact t hat the vectors be t hose f or which the L. S .E. is always 

asymptotically efficient. 

The definition of c. adopted in (1.7.10 ) ensures that 
J 

I I -1", '" . '" ( ) r 02 . 1 ~ 1. Indeed ~ajakc j _k N u ' Tu where u has u n as i t s 

t h 2 
n element a nd T has ~aj in the main diagonal, (aoal~la2) i n 

the 2 diagonals adjacent to the main di a gonal, and aoa2 i n the 

next two diagonals. This is the covariance matrix of 

alE(n )~2E(n-l)~3E(n-2 ) a nd t hus is positive definite so that 

~a .akc. k ~ O. Thus 
J J-

1 

2 2 
is posit i ve definite and t his ensur e s tha t (1-rl )(1-r02 .1 ) ~ O. 

I n t he case where onl y a mean correct ion has been made there 

has been a detailed i nvest i gation of s t a t isti cs of the type 

r
02

.
1 

by Daniels [9], Jenkins [35, 36] and Watson [54]. The exact 

derivations have been based upon the use of a circular def i nition 

which replaces c. by 
J 

c 

d 
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(1. 8 .8 ) 

where again to complete the summati on from 1 to N in c', the 
J 

definition ~ (n+j) = ~(j ) is employed. This means that all the 

matrices which occur both i n c~ and the quadratic form i n the 
J 

exponent of the likelihood f unction are circulants and thus 

commute and may be Simultaneously diagonalized. Unfortunately 

once something other t ha n a mere mean correction, or a 

regression on the trigonometric functions considered by 

Anderson a nd Anderson [2] is made the adva ntages of this 

definition fade. If Uj is the circulant matrix which makes 

-lA jA 
c~ = N u'U u and r is the circulant covariance matrix of the 

J 

u(n) then the transition from u to Qu = ~ means that we are 

concerned with a set of matrices QUjQ, QrQ, that no longer 

necessari l y commute a nd there is little point i n adopting the 

circular definition . 

The situation i n which one wishes t o test whe ther (1. 8 .1) 

or (1. 8 .2) is the appropriate form fo r the error in (1. 7 .1) is 

the same as testing whether the disturbance €(n ) in (1. 8 .4) is 

serially i ndepe ndent . The t est statistic used will be the one 

already mentioned in §1 .7, r 02 .1 ' however the li en ) which 

are used in the definition of the c j used in r 02 .1 have t o be 

those residuals resulting from the B.L. U.E. under the null 

h~othesis. A simple computing procedure i nvolves searching ove r 

a grid i n t he range -1 < P < 1, computing for each grid value of 

p estimates, ~,(p ) a nd ~(p), a nd choosing that set of ~(p) with 
J 

minimum sum of squares (see [10]). In f act the method of 

computation of the g.(p) a nd ~(p) was t o transform y en ) and the 
J 

x. (n ) by an N dimensional matrix M' , 
J . 

c 
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p, 

1, 

0, 
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o 
P 

1, P 
M' (1. 8 .9) 

1, P 

1 

for each P i n the grid . The L. S.E. and the associated residuals 

were found for each transformation of the original data a nd the 

~(p ) used i n the test statistic was the set with the minimum sum 

of squares . 

An alternative to using the statistic r 02 .1 would be to 

remove both the term ~(n ) a nd y (n-l) by regression a nd to use 

d for the resulting residuals. This does not seem quite 

appropriate since it gives a statistic that except for end 

effects will be 2(1+rl r 02 .1 ) a nd this is nearly 2 if r 2 is near 

to r~ OR if r l is near to ze ro. Thus d seems i nappropriate for 

testing P2 = pi i ndependent l y of the value of Pl' 

It has already been established that !r02 .1 1 ~ 1 a nd 

r 02 . 1 is simply expressed as a function of the c j ' i.e. 

Expanding H as a function of (co,c l 'c2 ) i n a Taylor 's series 

about (1,p,p2 ) and following Cramer [8,pp 354-5] produce 

the expressions, 

(1. 8 .10 ) 

(1. 8 .11) 

2 
where H are the first order derivative s evaluated a t (l,p,p ) 

u 

and H are the second order derivatives similarly evaluated. 
uv 

These results follow f rom the argument s i n the reference just 

th cited, using the fact that the k moment about the mean of Cv 

q 

d 
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is O(N-k+
l

), k > 1, whi le the bias is O(N- l ) so that 

e(c _pu) is O(N- k+l ). Now 
u 
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(1. 8 .12) 

where w~j) is N X N with ~ in the jth diagonal above and below 

the principle diagonal and zeros elsewhere, R has pljl everywhere 

. th . th d' 1 b d In e J lagona s a ove a n below the main diagonals and 

var. u (n ) is assumed equal to unity s ince r
02

.
1 

is scale free. 

The element s of R are genera ted by (see (1.7. 8 )) 

f (?\) 
u 27r(1+p2_2pcos?\) 

a nd those of w~j) are generated by (~)COSj?\. Thus (1. 8 .12) 

becomes 

e(c.) = N-l t r {RW(j)-(X1X)-lX(W(j)R+RW(j))X1 
J N N N . . . 

+(XIX)-~I (XI X )-~~j )X I} . 

Si nce tr{R_W(j)} = (N-j)p j it ·is easily checked tha t -N N . 

~Hjtr{RW~j)} = (N-j)~HjPj = 0 and therefore onl y the las t t wo 

expressions i n e(c.) need be considered. The last t erm give s 
J 

-1 u - to the order N - a contribution to ~H e(c -p ) which is 
u u 

(1. 8 .13) 

(1. 8 .14) 

= N-ltr {fTr 21 -
p2 

dN(?\ ) fTr (p2-2PCOS~+COS2?\? dN(?\ )}. (1. 8 .15 ) 
-Tr l+p -2pcos?\ . -Tr I-p . . 

The second t erm may be evaluated by replacing W~j ) R (and RW~j )) 

by a matrix A~j) whose elements are gene rated by 2f(?\)cosj?\. For 

example the .second term is not changed if W~j )R is replaced by 

--- - - -- ---__ --""'.-st'_ 
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0 1 0 0 0 1 N-l 
P P 

0 0 1 0 0 1 N-2 
P P 

0 0 0 1 ... 0 0 .... ., . 
. . . . . ... ., . . · ..... . . ..... · ..... 

0 0 0 0 0 1 · . ., ... 
0 0 0 0 1 0 N-l N-2 1 p p 

(1. 8 .16) 

The matrix (1. 8 .16 ) differs from the matrix A~j ) only because 

of the element s i n the first a nd last rows. For example the 

kth element i n the last row should have pN-k+1 added t o bring it 

to the form of Aij). The contribution to X (W (j)~RW (j))X' from 
-~ N· N· 

N N n 1 . 
this missing last row is a matrix with Xj(N) ~ p - t xk (n ) in row 

·n=l 

j column k. Then it may be seen that the contributi9n)to e(c,) 
_ Ix~N I J. 

row is dominated by const.N 1 ~ J ( ' ) = O(N- l ). 
J
' d, N J . 

from this missing 

A similar argument holds for other element s. To the same order of 

accuracy it is possib le to show that 

(1. 8 .17 ) 

a nd by direct but tedious manipulations to find 

(1. 8 .18 ) 

so that the final expressions for t he mean a nd variance are 

J
7r 2 

e (r ) = _N- 1 _2N- l P -2pCOSAtCos2A dn (A) 
02 .1 2 

-7r l+p -2pCOSA . 

-1 
t N tr [ J 7r (~_p2) dN(A) J7r p2-2PCOS~±COS2A dN(A)] ± O(N- l ) 

-7r (l+p -2pCOSA) . -7r (l-p ) . . 

(1. 8 .19 ) 

C 

cd 
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-1 
and so to order N only the mean is affected. It might be better 

to obtain the variance to a higher order of accuracy but this has 

not been done because of the labour involved. In case of a straight 

mean correction the results of Jenki ns [36] suggest that neglecting 

terms of order N- 3, the variance should be 1/(N+2). In the case 

where N(A) is a function that jumps only at points which may be 

put into pairs of symmetrically placed points (with respect to 

the origin ) so that the corresponding sums of the pairs of jumps 

are orthogonal idempotents then e(r02 .1 ) i n (1. 8 .19) reduces to 

(1. 8 .20) 

and in particular if the only jump is at the origin the expectation 

become s -(q+l)/N, which to order N- l agrees with known results 

for a mean correction . If the x.(n ) series have spectra which 
J 

are relatively very concentrated at the origin this may again be 

a good approximation . So the test procedure if the x.(n ) are of 
J . 

this nature is to use (r02 .1+(q+l)/N) as a n ordinary correlation 

from (N+2) pairs of observations. It may also be advisable to 

obtain higher order approximations to the lower moments of r 02 .1 ' 

Higher order partial correlations need consideration in the same 

way . For example the next step logically would be to estimate the 

gj and ~ (n ) over a grid of values of Pl a nd P2 that are associated 

with stationary u (n ). The ~(Pl'P2) which were associated with the 

minimal sum of squares would then be used in forming r
03

.12 t o 

test a n alternative hypothesis of a 3rd order autoregression for 

u(n ) against a null hypothesis assuming u(n) is a second order 

autoregression . 

c 
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II ESTIMATION AND I NTERPRETATION OF SPECTRA ARISING FROM 
ECONOMIC DATA 

2.1 Basic Spectral Estimators 

It is again assumed, to simplify the discussion, that 

the spectral distribution matrix, F(A), is absolutely continuous 

so that the random vectors employed in (1.2.10), the spectral 

representation of x(n ), are therefore characterized by the 

matrices C(A) and q(A) defined i n (1.2. 6 ). It is apparent from 

'" (1.2. 6 ) that a n estimate of f(A), say f(A), will be composed of 

estimates of these fundamental quantities, henceforth referred to 

as ~(A) and q(A). In §1.4, in which the sub ject of estimation was 

briefly introduced, an expression was presented for the estimator 

of element i n the jth row and kth column of f(A)' It is necessary 

to expand on the expression (1.4.5) to extract the estimators of 

Cjk(A) and qjk(A). First, we must relax the assumption that x(n) 

has a zero mean vector and redefine the estimate of the cross 

covariance between the jth a nd kth elements of x(n) as 
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(2.1.1) 

where x. ~Nlx.(m)/N, j = 1, ... ,p, and replace cJ.k(n) in (1.4. 5 ) 
J m J 

by cjk(n ). Now it is possible to represent cjk(n) as follows, 

where 

a nd since it is apparent from (2.1.1) that cjk(n ) 

expression for 0j k (n ) and Ejk(n) is 

O'k(n ) = ~{c~k(n)-ck·(n)} 
J '- J . J . 

(2.1.2) 

(2.2.3) 

ckj(-n) a nother 

(2.1.4) 
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When the expression for cjk(n ), gi ven i n (2.1.2), is i nserted 

i n (1.4. 5) we fi nd 
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(2.1. 5 ) 

with 

(2.1. 6 ) 

a nd 

(2.1.7) 

= ! L;N-lsinn'Ak (1- 1 E.I )0 . (n ). 
7r 1 n N Jk 

The estimates defined i n (2.1. 6 ) a nd (2.1.7) are the basis 

of a spect ral i nvestigation of x(n). From t hese qua ntities a 

number of characteristics are developed to aid i n underst a nding 

the relation between the elements in the vector. Two of t hese 

have already arisen, t he coherence Wjk('A ) a nd t he phase Bjk ('A). 

The estimate of Wjk('A) is 

(2.1. 8 ) 

a nd t he estimate of t he phase, Bjk('A ), is defined t o avoid a ny 

ambiguity as follows, 

(2.1. 9 ) 

= { t a n 

A 

-1 qJk ('A ) 

~jk ('A ) 

The measur e of coherence gi ven in (2.1. 8 ) shou ld be treated 

cautiously for t he followi ng reason . I f t he phase angle bet ween 

a ny two series j a nd k, Bjk is changi ng rapidly then using (2.1. 8 ) 

will probab l y lead to a n under-est i mate of coherence. The smoothing 

procedure necessary to redu ce the sampling variability means t hat 

c 
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Wjk(A) is being estimated from averages of the estimators Cjk (A), 

qjk(A), fjj(A) and fkk(A) over a band of frequencies, which wi ll 

" be designated G(A ). Thus each coherency estimate Wjk (A) might be 

represented as 

(2.1.10 ) 

where f jj (.) and f kk (.) are assumed to change little over the 

band G(A ) and therefore if Ifjk(m)1 is also almost constant over 

" the band then the expression for Wjk (A) becomes 

(2.1.11) 

If ejk (m) is changing rapidly the second factor may well be close 

to zero and thus the bias i n the coherence estimate may not be 

negligible. Although no attempt has been made in this work to 

allow for this problem it must be mentioned that because the bias 

in the phase is negligible it is possible to estimate ejk(m) and 

then to approximate it over the band G(A ) as ejk (A)+(m-A )ejk (A) 

and then make a phase shift to eliminate the 2nd term. The work 

on proper estimation whe n the phase is changing rapidly (relative 

to the band G(A)) still appears to be exploratory (see [3], [51]). 

If for any two of the elements of the vector x(n) it is 

thought that xj(n) may be explained by xk(n) then this would 

lead to the investigation of Bjk (A), the regression transfer 

function and fj : k (A), the residual spectral density function. 

Both these functions may be expressed in terms of spectral 

estimators previously defined as 

" fjk(A) 

fkk(A) 

c . k (" ) i q . k (A ) 

= f~k(") + f~k(A) 
and 

(2.1.12 ) 

(2.1.13) 

Q 
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The complex regression transfer function defined in (2.1.12 ) 

is usually considered i n the fo llowing polar form 

(2.1.14 ) 

The only new quantity i n this expression is Gj k(A), u sually 

referred to as the gain of the function, which is estimated by 

(2.1.15) 

The form of the covariance a veraging ke r ne l which has been 

used to obtain fjj(A), ~jk(A) and qjk(A) a nd which therefore 

underl ies all quantities based on these estimates is due to 

Parzen a nd is 

k (~) = 1_ 6 (~ )2+6 1 ~ 13 I~I < ..!.. 
m m m m = 2 

2 (1_1 ~ 1)3 1 ~ Iii ~ 1 m 2" 

0 I ~ I > 1 m 

where m is the number of autocovariance s or cross -covariances 

(2 .1.16 ) 

included i n the estimates . The spectral window (see (1.4. 6 )) for 

this weight f unct ion is 

1 3 1 [Sin (~) J4 (2 A 2} 
K (A) = - Cr - ) ~ l-(-)(sin (-)) 

N 27r LI- 3 1. (A ) l 3 2 
m 2"sln 2" 

(2. 1.17 ) 

It is i nst r uct ive also to consider the l i miting form of this 

spectral window, i.e . 

1 Joo - iAx 27r k (x )e dx. 
-00 

(2.1.18 ) 

Q 
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K(A), for the weights given in (2.1.14), is given by 

(2.1.19 ) 

The choice of the Parzen weight function has not been based 

on a detailed study of this and competing functions with a view 

to minimizing mean square error as there appeared to be a rather 

small payoff in this sort of investigation. 

The decision was based on computational ease a nd the fact 

that the associated spectral estimator of f .. (A) is never 
JJ 

negative . 

If it is most appropriate for distributed lag relations to 

be estimated by spectral methods the bias in the estimates 

proposed (see [21]) will be minimized for large N if the 

truncated covariance averaging kernel is used. This weight 

function is 

1 

= 0 

so that the estimator of f .. (A) is 
JJ 

'" (A) = ~ L:m (1_ 1£1 )c' .. (n )e i nA 
f. . 27r -m N JJ JJ n 

and the spectral window is 

1 
27r 

. (m+l A) 
Sln 2 

sin(~) 

with the following limiting form, 

K(A) sinA 
7rA 

2 .2 Mean Correction of Covariances 

(2.1.20 ) 

(2.1.21 ) 

(2.1.22 ) 

(2.1.23) 

The programs which have been developed for spectral estimation 

had their starting point in a program proposed by Karreman [40]. 

As mentioned i n 2 .1 the spectral estimators computed are to be 

c 
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based on the Parzen weight function a nd it is therefore desirable 

that the computation of the mean corrected covariances should 

be performed so that estimated spectra conti nue to be posit i ve. 

To consider this problem i n more detail we assume that j = k 

and make the division N in (2.1.1) so that t he mean corrected 

covariance is 

(2.2.1) 

1 i( N-n (( - -t - -u -2 } -N ~1 x. m)x. m+n )-(N-n )(x.-x.+x.x.-x.) 
m J J J J JJ J 

-t where x. 
J 

~~-nx.(m)/(N-n ) a nd ~ = ~~-nx.(ID+n )/(N-n ). If either 
m J J m J . 

form of (2.2.1) is used i n the computations then t here will be no 

problem with the positive nature of the estimated spectrum. The 

initial form of (2.2.1) would be used if all the data were passed 

through a detrending subroutine prior to spectral estimation where 

one of the detrending options wou ld be the production of mean 

corrected series. This computational organization means that new 

series y. = x.(n )-T.(n) are the series which form the input to t he 
J J J 

spectral computation procedures. Although t he latter form of 

(2.2.1) is susceptible to greater simplification for comput i ng 

purposes, it is tempting to use the following approximation, 

c~ . (n ) 
JJ 

11 

~ ~~-nx. (m)x. (IIl+n ) - (N-n )~ 
m J J J 

The approximation suggested i n [40J has a correction t erm 

-N~ i n t he first form of (2.2.2) which does not appear t o be 
J 

correct and will accentuate t he magnitude of possible negative 
estimators. 

Q 
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The obvious query is whether this approximation could lead to 

negative spectral estimators. The multiplicative factor N;n 

will affect the nature of the bias and the variance of the 

spectral estimator but will not affect the presence or absence 

of negative estimates, onl y the magnitude of these estimates. 

The result that must be established is therefore what will be 

the nature of the estimator f .. (A) if c~ .(n) is replaced by 
JJ JJ 

(N~n ) cjj(n) so that (1.4.5), with j = k, become s 

f~.(A) = ~L:m {1_1~1} c' . . einAk _ ~L:m {lJ~I} x~einAk . 
J J 2'JT - m N J J n 27T -m N J n . n n 

To evaluate (2.2.3) it is necessary to express the latter 

factor in terms of IN(A) (see (1.4.3)) as follows 

. 2 Nc!l 
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Sln 2 ] 
2 c!l d<P 

27TNsin -
(2.2.4) 

2 

dc!l • 

If the first term in (2.2.3) is expressed as proposed in (1.4.3) 

then the estimate is written 

c 



r 
It must be noted that the expression 

d¢, but that there is 

approximate equal ity if N »m. It is apparent that if t he 

amplitude of t he periodogram at zero fre quency is large relative 

to the ampl itude at a nd around A a nd the weight KN is not small, 

then it is quite possible if m is not large that negative spectral 

estimates could occur . To complet ely avoid the possibility of 

negative spectral estimates the approximation c~ .(n ) was not 
JJ 

used. Although some computing t ime is lost by this insurance 

it is possible to express the latte r t e rm in (2.2.1) in a more 

convenient f orm for computational purposes as fo llows 

1 { N- n - --t -u -} c' .. (n ) = -N L:l x .(m)x .(m+n )-(N- n )x.(x .+x.-x ) 
JJ m J J J J J . 
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(2 .2.6 ) 

where 

L:NN l x (m) . 
- n+ 

m 

< 

.-
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2.3 Missing Observations 

Granger [15] has suggested a method of treating a single 

gap in the data when the series has no trend in the mean. It 

does seem that the treatment of missing observations must be 

expanded to handle the sort of situation which arises where, 

for example, prices are recorded on a weekly basis. The series 

of weekly wool prices (on a n aggregated or type or quality basis) 

is an instance of a time series which is always incomplete for 

the following reasons. The custom of the wool trade is to close 

the Australian market at Easter, for 2-3 weeks, at Christmas 

again, for 3-4 weeks, a nd during the European summer for 5-6 

weeks. The gap at Easter is naturally variable in its calendar 

location but the other two breaks are reasonabl y constant in 

calendar location . It may be tempting to close these gaps in 

the data, arguing that the market mechanism is not active or 

perhaps is less than usually active. This does not seem to be 

justified as the factors determini ng supply and demand for the 

commodity are still active i n these periods so that while the 

Australian Wool Market is not registering a price in these 

periods, there may be in effect changes in the potential price 

of the commodity. Apart from the underlying feeling that the 

mechanism which determines prices does not halt during these 

gaps there is a purely practical difficulty if the gaps are 

closed i n that the period of the oscillation thus obtained 

cannot be easily interpreted in relation to the normal concept 

of time. There is now market time a nd calendar time. 

The procedure used was to fill in all misSing observations 

~ with zeros, thus maintaining a n equivalence between market and 

calendar time . It is obviously necessary to adjust the methods 

for computing autocovariances a nd cross-covariances so that the 

There were no actual observations with zero value so that all 
zero observations or cross-products arose from misSing observations. 

< 
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onl y market generated inforwation will be used in computing the 

covariances. 

To attempt to fi ll in the theoretical background on this 

approach to missing observations the analogue of IN(A), which is 

the sum of squares of regression of x(n) on sinnA and cosnA 

divided by 4rr, is considered. The sum of squares is 

SEi 

where 

1 -1 
.= 4TF y'A y 

y ' = (~'x(n)cosnA' ~'x(n)sinn~ 
and 

A=( ~'cos2nA 
~'cosnAsinnA 

~'cosnAsinnA ) 
2 . 

~'sin nA 

The symbol ' is to emphasize that the sum includes only those 

market gene rated values. Whether the A matrix will be close to 

orthogonality will depend on the distribution of the missing 

values over the time sequence 1, ... ,N. If A is close to 

orthogonality then 

where N' is the number of market generated observations, i .e . 

N less the number of missing observations. The quantity that is 

now to be used in estimating f .. (A) is the periodogram computed 
JJ 

f rom data with missing values replaced by zeros, i .e. I~(A)' 

To understand the implications in this redefinition it is useful 

to express I~(A) as follows 

I~(A) 

and 

c' (n ) 

1 ~N' -l ,( ) -inA 
2rrL.._N'+lc n e 
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The estimator proposed will be 

1 ~m ,() -inAk(n) =-L.., c ne -
27r -m m 

which will be non-negative for the Parzen spectral window. It 

is ne cessary also to introduce a double primed notation which 

means that in summing or counting between prescribed limits 

only non -zero cross products are included. The expected value 

of I~(A) is then given by 

( ) 
1 N'-l NII (n ) () -inA e I~(A) = 27r L:_N'+l N' I n e 

where NII(n ) is the numbe r of cross-products entering the 

definition of each c' (n ), so that the expected value of the 

proposed estimator is given by 

The only situation where there will be much distortion, compared 

to the normal situation without missing observations, is when 

NII(n ) N-n ( ) N' is small in relation to -N-' for n such that I n is not 

small (i.e. small n ). 

The problem of mean correction arises again and as much of 

the detailed argument would be on lines similar to those given in 

2.2 only a brief sketch of the details are given . 

The mean correction may be 

which produces new series y '. (n ) 
J 

made by a pre-filtering routine 

L:'x.(n) 
,( ) -, h -, J Xj n -xj were Xj = N' 

Alternatively the covariances for x. (n ) may be obtained from 
J 

If the covariances are obtained using (2 .3. 7 ) then the most 

convenient formula for computation is 
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C I. (n) = -Nl, L:!lx . (m)x . (ID+n) -X'. {L:!lx . (m )+L: !IX . (D1+n) - N'! (n )X1
.} 

J . J J J J J . J . J 

and it is emphasized that the sums included in the second term 

are also performed only for non-zero cross products. 13 The 

formula (2.3. 8 ) provides the focal point for an auto-spectral 

estimation program when miSSing observations are present . An 

analogous formula for cross-spectral purposes has also been 

developed by merely setting j = k in the second bracket in (2.3.7) 

and simplifying. The programs employ two counting procedures; 

one automatically totals the non-zero observations N' , and the 

other counts for each covariance or cross-covariance the non -zero 

cross products, Njk(n). It may seem even more tempting in these 

circumstances to use the approximation to c~(n) given by 
J 

~'. (n) = -N\ L:!lx . (m)x. (m+n)-N'.'(n) (x,.)2 
J J J J J 

but certain non-negativity of fjj(A) would then be sacrificed. 

The only extra computing that (2.3. 8 ) requires when compared to 

(2.3.9) is the upper and lower sums, L:!lx . (m) a nd L:!lx . (m+n) . 
J J . 

13 
The operation L: !lx. (m) means that those elements usually in the 

J 
lower sum which correspond to a zero cross -product are excluded 
from the sum. The reason for using the notation in the 1st t erm 
on the right hand side of (2.3. 8 ) needs a comment. Obviously it 
will not matter for the sum of cross-products whether the zero 
cross-products are added or not, but it does matter when correctly 
computing the sums in the second term on the right hand side of 
(2.3. 8 ) and so the L:!I notation is appropriate to (2.3.7) and to 
(2.3. 8 ). 
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2.4 Preliminary Transformation of Economic Data 

It is standard practice to examine a graph of the series 

under consideration, both as a means of 'editing' discrepant 

values and perhaps as a guide to suitable transformations of 

the data. It is not uncommon for logarithms of the data to be 

taken. There is little doubt that much economic data so 

transformed is closer to normality than in its original state. 

If the observed data is denoted x(n) then it is assumed tha t 

y(n) = log x(n) is normally distributed and for expositional 
e 

convenience that ~ 
y 

between the spectra 

2 
= ° and 0 = 1. 

Y 

of y(n) and x(n) 

To establish a relation 

it is necessary on several 

occasions to use the following result. If y (n ) is normally 

distributed with mean ~ and variance 0
2 (N . D .(~ ,(2

)) then y y y y 

the expectation of x(n) = ey(n) is given by [15] .. 

The lag covariance function of x(n ), 'x(T), is 
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(2.4.2) 

and 

is derived from (2.4.1) as y (n )+y (n+T) 

So the first term in (2.4.2) is 

e (x(n)x(n+T)) = exp {O~+'y(T)} 
, (T) 

= e. e y 

1 

2 is N. D. (O,2 (0 +, (T))). 
y Y ... 

and since e(x(n )) = e2 from (2.4.1) the simple expression for 

(2.4.4) 

E 



The variance of x(n) is obtained directly from (2.4.4) with 

~ = 0, so that the lag correlation function for x(n) is 

y (~) 

p (~) = e(e x -1) 
x e(e-l) 

y (~) 
e y -1 

e-l (2.4. 5 ) 

As it has been assumed that y (0) 
y 

1 the following relation 

holds between lag correlations 

p (~) 
e y -1 

px(~) = e-l (2.4. 6 ) 

If the exponential terms in (2.4. 6 ) are expanded in power series 

and then a weighted Fourier Transform is taken of each side of the 

equation we obtain the following relation between spectra 

(2.4.7) 

where f*l(A) = f (A) and f*j(A) =j7ff *(j-l)(A_e)f (e)de 
y y y -7f y . . y . 

and f*j(A) is referred to as the jth convolution of f (A). 
y y 

To interpret (2.4.7) it is best to imagine starting with 

normal variable y en ), which is exponentiated and then normalized. 

The spectrum of x (n ), in regular cases, will be much smoother 

than that of f (A) as it comprises 
y 

a weighted average of f (A) 
y . 

and its convolutions. Of course if y en ) has a very sharp peak 

in its spectrum, say at :9, then the convolution f*2(A) will have 
y 

a peak at A = 0, :2e, f;3(A) at ~e, ±3e, and so on . Thus 

~~f*j(A) will tend to have peaks at all harmonics of :e. The 
j y 

fact that the convolution may still be regarded as smoother is 

less important than the recognition of how the convolving procedure 

redistributes a sharp peak of power at a particular frequency to 

its harmonics. To unde rstand what will happen to a spectrum when 

logarithms are taken one merely has to imagine reversing the above 

explanation and the spectrum of the logarithm will be much more 

peaked at points of power. 

c 



In econometric work it is often t he case that the dependent , 

i ndepende nt or even all variables i n t he relat ion are i n rat i o 

form. It is useful to attempt to obtain some understanding of 

the nature of the spectrum of this type of variable i n terms 

of the spectra of the numerator and de nominator and t o do this 

the typical ratio variable, r(n) = clp) is investigated. As is Yfri) 

the case with most economic variables it is assumed that 

log c(n ) = zen) ~ N.D.(~ ,cr2 ) and log yen) = u(n) ~ N .D.(~ ,cr
2

). e z z e u u 

The spectrum of log r(n ) = wen ) is expressed i n terms of the e 

spectra of u(n ) and zen ) as 

57 

f (A) 
w 

f (A)+f (A)-2c (A) z u zu 
(2.4. 8 ) 

where c (A) is the co-spectrum between zen ) and u(n ) defined zu 

i n (1.2.11) and estimated by (2.1. 6 ). 

If the variables zen ) and u(n) have similar spectral shapes 

(see [16]) then it would be expected that f (A) will contrast 
w 

strongly with f (A) and f (A) in that it has much reduced power z u 

a nd is much flatter. 

Attention should not be focussed only on t he spect rum of 

wen), but rather on that of r(n ). 

wen ) is N.D.(I-l -j.l ,cr
2
+i-2cr ) it z u u z uz 

Si nce log r(n ) = wen) and e 

is possible as bef ore to 

exponentiate, normalize and thus express the spectrum of r(n), 

i.e. f (A), as a weighted average of the convolutions of f (A). 
r w 

It is therefore clear i n principle how the shape of zen ) a nd 

u(n ) will be modified i n f (A) a nd also how it will be f ur ther 
w 

modified by the convolution operations. 

The problem as it usually arises i n economics is where a 

monetary value is deflated by a price i ndex. A detailed 

i nvestigation of this problem has not been considered because 

the variab l e i n the denominator of the ratio, i.e. y en ), is 

itself a ratio, wi t h both t he numerator a nd t he denomina t or being 

sums of products. The development of t he spect rum of y en ) itself 

would therefore need a number of assumptions and a n extension of 

the above approach. 



2 . 5 Spectrum of a Controlled Variable 

Examples are common i n primary production of an authority 

being given the task of controlling some aspec t of the market 

for particular commodities . The approach of this section ac t s 

on the presumption that the control procedure proposed is 

successful and no attempt is made to investigate t he int eraction 

of the control procedures a nd the behavioural relations in the 

market. The aim, therefore, is to see how the spectrum of the 

uncontrolled variable will be modified when subject ed t o 

successful control . 

The type of control which is considered is the imposition 

of an upper a nd lower limit to the values the variable may take. 

The upper and lower limits on the original variable, which for 

expositional purposes will be taken to be a price variable, will 

be denoted a and b respectively. The situation where only an 

upper or lower limit is employed may be easily dealt with by 

using obvious special cases. The uncontrolled variable is 

assumed normally distributed with mean ~ and serial covariances 

,em ) . The controlled variable is then 

b 

wen) = { zen ) 

a 

b 

zen ) 

~ zen ) 

zen ) 

~ b 

~ a 

~ a 

If the uncontrolled variable zen) is standardized to form a new 

variable , x(n) as follows 

then the standardized variable is N.D.(O,l ) with autocorrelations 

p(m) = ,(m)/,(o). New standardized central limits, a =~ 
~ 

and ~ = (~are also established. The standardized controlled 
~ 

variable, yen), can then be defined as 
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y (n ) x (n ) ~ ~ f (x (n )) = ~ 
x(n ) ~ ~ x (n ) ~ ex (2. 5 .3) 

a x (n ) ~ ex. 

A description of the nature of the controlled variable, y (n ), can 

then be obtained from its spectrum. To establish this function 

a Taylor's expansion of R' (m) = e (y (n )y (n+m)) the expected va l ue 

of the lag cross -products of the standardized controlled variable, 

is required. The Taylor's series expansion is i n terms of the 

autocorrelations of x (n ) a nd is given by 

To proceed with this evaluation of R' (m) it is necessary to i nvoke 

the equality 

given by Price [ 49]. The expression one obtains for the term 

e {f (j)(x(n ))f( j )(x (n+m))} may be de noted A~ . The calculation of 
J 

the A~ is much simplified by special attention to the nature of the 
J 

function f (x(n )) and its derivative s f ( j )(x (n )). Referring to 

(2 . 5 . 3 ) it is apparent tha t 

0 x (n ) ~ ~ 

~~~~n )) f (l)(x (n )) = 1 ~ ~ x (n ) ~ ex 

0 x(n) ~ ex 

and the general derivative f(j) (x (n )) is 

f ( j )(x ) = o (j-2 )(x_~)_o ( j-2 )(x-a ), j = 2,3, ... , 

where 0 is the Dirac delta funct ion . Using the above expression 

for f(j) the fo llowing table of A~ can be deve loped 
J 

d 



f 

j 

° 

1 

2,3, ... 

Ju 1 1 2 
where I (u) = - e ~x dx, 

. -00.fEr 
4> (x) 

112 
- e2x a nd 
.Rii-

¢ (j)(x) = ¢ (x)H.(x)(-l)j. The function H.(x) is the jth Hermite 
J J 

polynomial and is defined (see [8]) by 

2 
x 

(-l)jH.(x)e 2 
J 

j = 0,1,2, ..•. 

Another approach to obtaining the expression which i s 

prop8sed by Grenander and Rosenblatt [18,p 51 ff.] is introduced 

because it proves to be advantageous when considerations of 

computation efficiency arise. It is shown in [18] that 

where the coefficient A I. are 
J 

J
OO 1 1 1 2 

AI. = - H. (x )f(x) - e ~x dx. 
J -oo,fjl J 5-

It is also shown i n [18] that if p = 1 then using the Parseval 

relation it follows immediately that an expression for the sum of 

the A ~2 coefficients is 
J 

2 x 

= - f (x)e dx. 
1 f OO 2 -2" 

J'i(r-oo 

60 

d c _ 



The weighted Fourier Transform of R' (m) will gi ve a spectral 

representation of y en ), de noted f' (A) which consists of the 
. y 

following weighted average of convolutions of f (A) 
x 

It is usual for the spectrum to be defined in terms of the 

covariances, so the weighted Fourier Transform should be applied 

to R' (m) - (e(y(n )))2 . As the mean, e(y (n )), is easily expressed 

i n terms of the A~ as A', the usually defined spectral density of 
J 0 

y en ) is f (A), with the prime omitted, a nd is calculated from 
y 

To illustrate how a spectral density will be modified in practice 

by this sort of cont rol procedure a set of data on monthly 

price/lb of wool sold at auction, issued by the Council of Wool 

Selling Brokers, is used. Two general control schemes are 

proposed; the first has variable upper and lower limits and the 

second only a variable lower limit. Table 1 below sets out the 

limits used i n each scheme i n terms of the origi nal and 

standardized variables. 

c 
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Lower Origi nal Variable 
Limit Standardized Var. 

Upper Original Variable 
Limit Standardized Var. 
-_._- --~ -

Lower Origi nal Variab le 
Li mit Standardized Var. 

Upper Original Variable 
Li mi t Standardized Var. 

TABLE 1 

CONTROL SCHEMES 

Scheme I - Upper a nd Lower Restriction 

11 12 
I 

13 14 15 16 17 

55 53 52 51 49 55 53 
-. 72 -. 88 - . 97 -1. 05 -1.22 -. 72 -. 88 

70 68 66 65 63. 6 75 74 
· 53 .37 .20 .12 0 .95 .87 

Scheme I I - Onl y Lower Restriction 

III 112 II3 114 II5 II6 II7 

55 53 52 51 49 57 59 
-. 72 -. 88 -.97 -1. 05 -1.22 -. 55 -.38 

(Xl (Xl (Xl (Xl (Xl (Xl (Xl 

(Xl (Xl (Xl (Xl (Xl (Xl (Xl 

Sample Statistics N = 168, x = 63. 6, S 12. 02. 

18 19 1
10 

. 

52 51 49 
-. 97 -1. 05 -1.22 

77 78 80 
1.12 1.20 1.36 

II8 II9 II10 ' 

61 62 63· 6 
-.22 -.13 0 

(Xl (Xl (Xl 

(Xl (Xl (Xl 

Ri 
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The computation of the spectra of the price variable when 

subjected to the control of upper a nd lower limi ts suggested 

above is based on (2 . 5 .12 ). The obvious dilemma with the 

expression for f given in tha t formula is how many terms in y 

the i nfinite sum should be used. The f ollowing resolution of 

this problem follows the lines suggested by Grenander and 

. 1 
Rosenblatt [18] a nd makes use of the fact that f*J + -- as j 

x 21r 

increases. If (2. 5 .13) is rewritten as 

f (A) 
y 

2 
A o 
21r 

then using the expression given in (2. 5 .12) for LA,.2 
J 

f (A) is y 

expressed in a way which suggests a method of computation, that is 

If a small finite numbe r of convol utions is calculated unti l the 

last is reasonably close to ~ (in the example discussed p = 10 ) 

a n estimate of f (A) is obtained by a dding the latter two terms . y 

To facilitate computations it is necessary t o express the terms 

1 Joo 2 1 2 -"";;;"'3-'/"""- f (x)e ~x dx as follows, 
(27r) 2 -00 

1 J
OO 1 2 
f2(x)e~x dx 

- 00 

2 2 1,:).2 1 2 
= e> 1(e»-ta (l-I(CX) )+I(cx)-I(e»+e>e 2f.' -cxe ~ 

(2. 5.17) 

The spectra of the controlled variab le for each scheme 

proposed in Table 1 are contrasted with the spectrum of the 

standardized variab le x (n ) in Fi g .I. 
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III 

3.1 

NARROW BAND SPECTRAL REGRESSION PROCEDURES 

Introduction 

This chapter is concerned with two problems, in each of which 

the model specifies exactly the signal (the re gressor) . To 

emphasize the pOint just made i n this Chapter we consider 

estimation problems where the actual freque ncy properties of the 

carrier wave are known and one wishes to detect onl y the 

amplitude (or frequency) modulation. In contrast i n Chapter IV 

we will begi n considering signal ext raction where the only 

characteristic of the signal which is known a priori is the 

signal's average spectral properties. Although the signal is 

known the method of a nalysis adopted will depend a great deal on 

the spectral nature of the signals i ncluded i n each model. 

The simpler of the two models is the basis f or the estimation 

of a stable seasonal pattern. This discussion is a logical 

starting point as the nature of the spectrum of the regressor 

set is such that the L . S .E. is asymptotically efficient. A series 

with a n extremely stable periodic pattern is used to obtain 

estimates of the seasonal coefficients and the asymptotic 

variances. As the L. S .E. is only asymptotically efficient some 

guidance is then sought on the loss in efficiency one may face 

from use of the L . S .E. rather than the B.L. U.E . in small to medium 

size samples. 
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Finally the model is extended t o allow for the effects of 

working days. Estimation of the working day coefficients clearly 

illustrates how efficient regression procedures may be employed when 

the spectra of the signals (regressors) a nd the disturbance term 

are such that the L. S .E . is no longer even asymptotically efficient. 

Although most economic time series seem t o exhibit evolving 

seasonal patterns there are occasions when the estimation of a 

stable seasonal pattern is apposit e. This position may prevail 

for two reasons; because the seasona l pattern is in fact 
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unchanging or more likely because the seasonal evolution is 

sufficiently slow for a stable pattern t o be useful over short 

periods (say 4-8 years) and therefore the slowly evolving pattern 

may be estimated by a moving stable regression procedure. 

3.2 Stable Seasonal Model 

The basis for discussion is the model 

(3.2.1) 

where wen ) is the observed series, pen ) is a 'trend' term, s*(n ) 

is the seasonal component and u(n) is a stationary residual 

with zero mean. The stationarity of u (n) means that one may 

write 

(3.2.2) 

where e is the expectation operator and the function f (A) is 
u 

the spectrum of u(n). 

Only the case where the unit of time is one month is 

considered as the approach taken can be t ranslated, perhaps 

with some change of emphasis, to a ny case where the time interval 

is some othe r known period. 

Since s*(n) is assumed to be periodic with period twelve 

months it may be expressed in the form
14 

s*(n ) 

The A. are called the seasonal frequencies. 
J 

14 

27rj 
12 ' 

j 1,2, ... , 6 . 

An equivalent alternative formulation for the stable component i s 

s*(n ) = L:
1
1

2
a.e.(n) , 

J J 

12 
L:l a j = 0 

where e.(n) is unity for (n- j ) divisible by 12 a nd is othe rwise 
J 

zero. The restriction on the a. coefficients implies a = O. This 
J 0 

equivalent approach is fully described in Nerlove [44, pp 451-2]. 
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The distinction that has been made between pen) a nd u(n ) is 

arbitrary. It could be argued t hat t he distinction between all 

three components tends to be arbitrary i n practice, but as a stable 

seasonal pattern is under consideration s* (n ) can be clearly 

distinguished. Alternatively one could consider 

(3.2.4) 

where ~ is a constant a nd zen ) is t a ken t o be stationary but 

with a very large concentration of power i n f (A) close t o the 
z 

origi n . An example would be zen ) = pz(n-l)+€(n ), where the €(n ) 

are serially i ndependent with variance a2 and p is close t o unity . 
€ 

The associated spectrum will be 

a nd will be very large close to t he origi n . Economic phe nomena 

are of course not stationary but are evolvi ng . Nevertheless a 

stationary process with a spectrum of t he t ype just described 

would have a n appearance which accords with what one would expect 

from an economic time series, over reasonab le periods, and 

statistical procedures could well be based on such a model. 

It is however simpler a nd a litt le more realistic to work i n 

terms of (3.2.1) although it is convenient on occasions to 

i nterpret the results of the followi ng i nvestigations i n terms 

of the alternative just described. 

The data is i nitially f iltered by an operator whi ch replaces 

wen ) by (see (1.3.1)) 

y en ) = ~q bkw(n-k). -p 
(3. 2 . 6 ) 

The effect on u(n ) is to replace i t by a new series, x(n ), with 

spectrum (see (1.3.3)) 
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The function B(A ) is the response function of the filter defined 

in (1. 3 .2). So far as s*(n ) is concerned a modified series sen) 

is obtained with modified coefficients given by 

a . = ~~q bkcOsA.k-~~~q bksinA.k 
J J -p J J -p J 
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(3.2. 8 ) 

~J' = ~q bksinA.k-~~q bkcoSA.k . J -p J J -p J 

The bk are chosen so that pen ) is made as small as practicable, 

i.e. so that in a model based on zen), IB(A)12fz (A) no longer has 

a large peak close to the origin. As (p+q) observations are lost 

in such a filtering process, for simplicity it is assumed that 

after filtering the number of observations available, N, is an 

integral multiple of 12. This is usually no restriction since 

the initial point for the analysis (i.e. the point to which one 

can return a nd still regard the seasonal as stable ) is somewhat 

uncertain and may as well be chosen so that N is an integral 

multiple of 12. 

3.3 Possible Regression Procedures 

Least Squares Estimates 

The L . S.E . is obtained from the regre ssion of y en) on 

A A 

cosnA. and sinnA. and provides estimators a., ~.. The equations 
J J J J 

(3.2. 8 ) with circumflexes i nserted throughout to denote estimates, 

A A 
are then solved for~, ~~. It is not necessary to proceed in 

J J 

this way. A precisely equivalent procedure is to average the y en) 

for each month of the year and then adjust these twelve averages 

to add to zero by subtracting their mean, thus obtaining re gression 

estimates of the filtered 8. (see footnote (14)), which are denoted 
J 

~~ (see [11]). Now the original coefficients may be recovered from 
J 

A 

the a~ by employing the following relations 
J 

1 11 ikA. 1 
= 12 L::l e J B - (A.) 

j J 

assuming that B(o ) = 0 and B(A j ) + 0 for all j + O. The gk are 

defined to be periodic with period 12 and are always real. This 

-
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procedure is numerically equi valent to the one described earlier 

i n t his section . There is nothi ng new or radical about t his 

technique proposed by Hanna n [22]j its virtue is merely t hat it 

enables a ny filter to be used, sub ject to the proposed 

restrictions on B(A). 

'" '" The variance of the estimates a j , ~j satisfy (see [23]) 

'" '" 47f f (A.) lim vara. = lim var~. = j + 6 
Nl-oo J N+-oo J N x J 

'" 27r lim var(a6 ) N f x (A6) 
Nl-oo 

a nd the covariances approach zero as N + 00. To employ t hese 

formulae one requires knowledge of f (A), or an estimate of t his 
x 

function . The series, Passenger Airline Reservations (see [7]) 

appears to be stable over the short period which has been chosen 

for a nalysis, i.e. the seven years, 1954-60 . This series is used 

to illustrate how in practice one might obtain a n estimate of t he 

'" '" asymptot ic variances of a., ~.. I t is argued i n more det ail later 
J J 
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i n t he secti on t hat it is most unlikely t hat f (A) will be known so 
x 

it is necessary to make an estimate of t he spectrum at each A.. To 
J 

produce this estimate the filtered residuals from the re gression of 

y(n ) on cosnA. a nd sinnA., is formed using 
J J 

~(n ) = y(n ) - L(a.cosnA.+g.sinnA.). 
j J J J J 

The periodogram, I"'(A), is then calculated for equi-spaced 
x 

frequency points between zero and 7f from t he f ormula 

A = Ak = 27rk, k = 0,1, ••• ,[N/2] 
N 

which is itself derived directly f r om (1.4. 2 ). To convert these 

periodogram ordinates of the residuals t o values which are 

releva nt to the coefficients of t he origi nal relat ion, i.e. 

~J.' ~~, I"'(A) must be recoloured by t he f actor 
J x 



to become I~(A), an estimate of the periodogram of the residuals 
x 

in the original relation. It should be immediately mentioned 

that because of the narrow band regression that has been performed 

and because the factor enclosed in the curly bracket in (3.3.5) 

has zeros at all A. no meaning can be attached to the value of 
J 

I~(A) at the exact points A .. Table 2 below presents the values 
x J 

of IA(A) and I~(A) that were obtained for the Airline Passenger x x 

Reservation series. The recoloured periodogram, I~(A), has been x 
A 

smoothed by a simple average to provide an estimate, f (A), of x 

the spectrum of x(n) (see [38]). Two simple averages were used, 

a three term and a five term,15 and the results of this averaging 

are also included in Table 2 after the frequencies of interest, 

A
j

. These estimates of f(A
j

) are then used in (3.3.2) to provide 

A A 

some indication of the significance of the ~,~~. Some 
J J 

perspective on the relevance of this asymptotic variance estimate 

when N = 72 will be given in future sections of this chapter. 

A A 

Table 3 below presents the estimates ~, ~~ and the associated 
J J 

asymptotic variance estimates. 

15 
The middle term in either average has to be neglected 

because of the lack of meaning of the ordinate at A. so that 
J 

in fact the average only involves either one or two terms each 
side of any A .. 

J 
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TABLE 2 

j A = 3t rA(A) r~(A ) omitting (,rj / 6) 
x x 4 te rm a v . 2 term avo 

1 Tr/36 .13357 102 .39706 104 

2 .35159 101 .14634 103 
3 ·30335 102 .22522 103 
4 .51653 102 .13481 103 

} 5 .21556 103 .34892 103 

}.26586 6 Tr/6 .39762 10-7 .39762 10-7 .17237 103 103 

7 .23923 103 .18279 103 
8 .32705 102 

.22941 102 

9 .10708 102 
.74237 101 

10 . 37151 102 
.28239 102 

h 
11 .42558 102 .35820 102 

}.73345 12 Tr/3 .61170 10-7 .61170 10-7 > .55545 102 102 

13 .97544 102 .11087 103 
14 .38273 102 .47251 102 ~ 
15 .41520 102 

· 52300 102 

16 .37871 102 .44939 102 
h 

17 .44155 102 .49132 102 

18 Tr/ 2 .36120 10-7 .31620 10-7 > .24153 102 
}.25789 102 

19 .26561 101 .24462 101 

20 .10665 10° .95000 10 - 1 ·W 
21 .41550 10-1 · 36600 10 - 1 

22 .25625 101 .23331 101 
~ 

23 .36905 10
1 .34786 101 

1O~ } .n7~8 24 2Tr/ 3 .11735 10-8 .11735 10-8 
)- .72551 102 

25 .19011 10-2 .19957 102 

~ 26 .30410 101 ·32520 101 

27 .12927 101 .13880 101 
28 .12499 102 .13148 102 

h 
29 .29337 102 

·30237 102 

}.24384 30 5Tr/ 6 .36769 10-8 .36769 10-8 

f .18011 102 102 

31 .18903 102 .18530 102 

32 .10392 102 .10130 102 ~ 
33 .17172 102 .16800 102 

34 .39673 101 
·39200 101 

~ 35 .24895 101 .24795 101 

101 '1.24795 36 Tr .13785 10-7 .13785 10-7 .31998 101 

1 



Coefficients 

Standard Dev. 
f rom Asymptotic 
Formula 

--

a* 1 

54 .47 

TABLE 3 

STANDARD DEVIATIONS FOR STABLE SEASONAL COEFFICIENTS 
FROM ASYMPTOTIC FORMULA 

f3* 1 ~ f3* 2 ~ f3* 3 at 
29 .02 -. 63 30·57 -10.65 4.49 5·27 

6.81 3.58 2 .l2 1.43 

--

f34: as f3* 5 

8.54 .67 -7 . 63 

2.06 

ag 

. 96 

·53 
I 

~ 
CJ\ 

~ 
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Best Linear Unbiased Procedure 

If f (A) , and therefore f (A) , was known then a. and ~. may 
u x J J 

be estimated by the B.L. U. regression procedure, that is a 

weighted regression on cosA.n and sinA .n . This procedure has 
J J 

been advocated by J orgensen [39]. It is almost i nconceivable 

that f (A) should in fact be known so that the best that could u 

be done would be to base a B. L.U.E. on an assumed f (A). I n 
u 

fact the B.L . U.E. is unlikely to be used for large samples as 

it is known the L .S.E. is asymptotically efficient if the effect 

of pen ) is much diminished by filtering, as must be assumed. 

Moreover the subsequent sections will show that the L. S .E. will 

prove to be quite efficient for small N provided f (A) is not 
x 

markedl y peaked . It should be emphasized that filtering is 

performed to attempt to reduce p(n )+u(n ) to a form approximating 

a stationary process with a smooth spectrum which is not markedly 

peaked . If this attempt is successful it will become apparent 

that the L.S.E. is quite a n acceptable procedure, particularly 

as i nformation sufficient l y precise to improve on it will not 

normally be available. 

Jorgensen [39] has suggested the case of a pure regression 

procedure in which t he term pen ) is represented as a polynomial 

a nd pen ) and s*(n ) are simultaneously estimated by a B.L. U. 

regression procedure. Normally a known f (A) is not available
16 

x 

and J orgensen therefore recommends the use of an estimate of 

f (A) , or parameters equivalent to it, from the residuals in an 
x 

initial regression . This approach needs assumptions concerning 

f (A) which are equivalent to requiring it to be a polynomial in 
x 

16 
If the disturbances were assumed to be independent then of 

course f (A) and the associated lag covariances would be known and 
x 

the B.L. U. procedure would be available. 
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exp(iA) and exp(-iA) so that only a finite number of parameters 

are to be estimated. It is difficult to assert a nything concerning 

the merits of this approximate procedure. The term neglected in 

approximating f (A) as suggested may be of similar magnitude t o 
x 

that involved i n the comparison of efficiencies. Further, for 

f (A) to be approximated in this way it must be comparatively x 

smooth so that the L.S.E. then has variances which approach the 

optimal value s fairly rapidly. 

Of course, one might assume f (A) to be constant (see 
x 

footnote 16 ) a nd use the L.S.E. Indeed as N increases it is 

known, assuming p(n ) to be a polynomial i n n, that the efficient 

estimation procedure tends not to depend on f (A). However, f or x 

a high degree polynomial N needs to be very large before this is 

so. Although regression is not t echnically a filtering techpique 

it may be thought of as one which produces a response function 

highly concentrated at the origin. The degree of concent ration 

decreases as the order of the polynomial increases. In terms of 

z(n ) the task is to modify the very large concentration of spect ral 

mass at a nd near the origin, a nd a troublesome part of this mass 

may not be ~ near to the origin . Thus the degree of the 

polynomial may have to be very large. What is required is a 

flexible procedure which will modify f (A) not merely right at the 
u 

origin . Polynomial regression is not well adapted to do this but 

filtering is.17 

Before looking i n detail at examples of the actual efficiency 

of the L. S.E . of a
j 

a nd ~j the case where a j and ~j are assumed 

to be zero for j + 1 is considered for expositional purposes onl y . 

The exact variance s of the L.S.E. of a l and ~l (see [46]) are 

17 
With a high order polynomial, regression often becomes 

unwie ldy and results in a loss of degrees of freedom. Against 
this must be set a ny loss of observat i ons a t the ends of the 
series due to filtering. 
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var(al ) ~1f f: [ ISN (A-Al ) 1
2

+I SN(A+Al ) 12+ <K,{Sr/A -Al)SN (A+Al )} J 

IB(A) 12fu (A)dA 

(3.3. 6 ) 

var(gl) ~1f f: [I SN (A-Al ) 12+ I SN (A+Al ) 12 -tR{SN (A-Al )SN (A+Al )} J 

IB(A) 12f (A)dA 
u 

where ~{.} mea ns the real part of the indicated function, and the 

function SN (A) a nd the square of its modul us are given by 

sin2tAN 

21fNsin
2

-!-A 

The last expression in (3.3. 7 ) integrates t o unity a nd is very 

concentrated a t A = O. 

The B.L. U. procedure results in a variance whi ch cannot be 

represented exactly i n this form (see 3.4.2) but approaches 

Indeed the approach t o the l imiting va l ues is quite fast unless 

fx(A) is very markedly peaked for the maxima of ISN (A-Al )I are 

. 31f 51f at A = Al and near pOlnts ~, ~, etc .•. away from Al , but are 

2 
much smaller than that at Al . Thus fx(A)! B(A)1 has t o be very 

different from its value a t A = Al for a large contribution t o 

arise from a nywhe re other tha n Al . 

3.4 Comparison of Efficiency 

To compare the regression procedures a number of situations 

with known f (A) are considered a nd the exact values of the 
u 

variances a nd covariances of the B.L. U.E. a nd L . S .E . of a . a nd 
J 

~., j = 1, .•. , 6, are computed . The B.L. U. procedure is not put 
J 

forward as one usually available in practice but rather as a 

benchmark for the L.S . procedure. For each case considered the 

number of observations after filt ering is N = 36, 48, 72. It does 

not seem necessary t o consider N greater tha n 72 because of (3.3.2 ) 
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and because the assumption of a stable seasonal pattern becomes 

less tenable as N is increased. The main purpose of the comparisons 

is to consider how the behaviour of u (n ) and the method of filtering 

may influence the efficiency of the L.S.E. of the parameters in a 

stable seasonal pattern . 

The possible generating models for the disturbances are 

limited to the three following types : 

(a ) an independent l y and identically distributed random 

variable with mean zero and unit variance (i.i .d .(O, l )) , 

(b ) a stationary first order autoregressive process 

u (n )~ (n -l ) = ~ (n ), 

(c ) a stationary second order autoregressive process 

The random variable ~ (n ) is i . i .d .(0, cr2 ), where cr2 is selected 
~ ~ 

for each choice of parameter (s ) so that the varl.ance of u (n ) is 

always unity . The va l ues considered for a were 

a = .75 , .85 , .90, .95, .99 and .995. The correlograms for 

a = .75, .95 and .995 are shown in Fig. II. For the second 

order process the following six sets of parameters for al , a2 

were investigated, 

2nd Order Model No . 1 

1.0 
.75 

2 

-.5 
·5 

-1 . 0 
.75 

4 
-1.1 

·3 

5 
-1.25 

.3 

6 
- .75 
-.20 

The first three sets produce complex roots; the first and third 

have the same amplitude but differ in that the first set produces 

oscillations in the correlogram with a much higher frequency than 

the third set. The most noticeable characteristic of the second 

set is the much lower amplitude of its roots and consequently the 

correlogram dumps out much more rapidly. The remaining sets have 

both roots positive and real and the only difference between them 

is the rate at which the lag correlations decay to zero. The rate 

of decay is greatest for the fourth set and declines successively 

for the remaining two sets. In Fig. I I I the correlogram is shown 

for the second order models Nos. (1), (j ) and (5). 
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The three model types a nd their different parameter values produce 

thirteen different covariance structures for the distur ba nces 

prior to filtering . The spectrum associat ed with each model t ype 

is set out i n Table 4 below. 

Model Type 

Independe nt Residuals 

1st Order Autoregression -
Parameter 

2nd Order Autoregression -
Parameters 

TABLE 4 

Spectrum 
fu(A) ~ E (-rr,rr) 

1 
~ 

(1~2)/{~(1~2-2acosA) 

There i s considerable scope for choice of filteri ng rout i nes 

to be applied t o the original observations. The filters 

i nvestigated are presented i n Table 5 a nd have been limited to 

those most commonl y used. The t able shows the filter coefficients, 

82 

b
k

, as described i n (3.2. 6) a nd also the square of the gain of each 

filter.
18 

18 
An underlined b

k 
coefficient indicates the middle term in a 

symmetric set of coefficients. For Fi lters (3) a nd (4) the first 
b

k 
coefficient is b

n 
a nd the last coefficient b n-q 



TABLE 5 

, TREND I REMOVING FILTERS 

Description and b
k

_ Coefficients 
Filter Number 

(1 ) 1 1 1 1 1 1 11 
Subtraction of {- 24' - 12' - 12' - 12' - 12' - 12' 12 .•. } 
12 month moving average -

(2 ) 1 
Subtraction of Spencer 's 350 {1,3,5,5,2, -6,-18, -33,-47,-57,290, 

21 pt. moving average ..... ) 

(3 ) 
1st Quasi-differences {1,- . 9} 

{1,-.7) 

(4 ) 2 
2nd Quasi-differences (1,-2(.9), (.9)2) 

{l, -2 ( .7), (.7) ) 
----

Gain Squared 

IB(A) 12 

sinAsin6A 1 -
24sin

2
tA 

1 
1-(350) (2+2c oSA-2cos3A) 

. 2 5A . 7A 
Sln 2 Sln 2 

. ( . 3 A ) 
Sln 2" 

1. 81-1. 80cos A 
1.5625-1.50cos A 

4. 8961-6 . 516cos A+l. 62cos2 A 
3.5664-4.6875cos A+l.125cos2 A 

en 
VJ 



A notationally economic comparison of the t wo estimation 

procedures i s most easily given if the model i s presented in 

matrix terms. y is a n N dime nsional vector of the fi l tered 

observations. The N x 11 matrix of regressors, S, is the matrix 

COSAl ,sinAl ,COSA2 ,sinA2 ' .... •. COSA5 ,sinA
5 

' -1 

COS2Al,sin2Al,cos2A2,sin2A2' ..•. . . cos2A
5
,sin2A

5
, 1 

~ -
~ and ~ are the L. S .E . a nd the B.L. U.E. of the eleven seasonal 

constants in vector form. The f ocus of interest is not so much 

the estimates themselves but rather their respective 

variance-covariance matrices, de noted rg and r§ and given by 

[18,p 234] 

and 
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(3.4.2) 

where rN i s the vari a nce-c ovariance matrix of x(n), the filtered 

residual. As the matrix SIS is diagonal with the firs t ten 

di a gonal terms N/2 a nd the las t diagonal term N, the inverse 

(S, s)-l is simply obtained. 

To create the e lements of rN (denote them by Yx (~)' 

~ 1,2, ... ,N) one must first generate the cova riance s y (~) , 
u 

~ 1,2, ..• ,M, where M is of course greater than N by the number 

of terms lost in filtering. Table 6 below indicates the method of 

generat ion of y (~) for the parameter (s ) chosen . 
u 



Model type 

Independent 

1st order 
autoregression 

TABLE 6 

Generation of "I (-r) 
u 

"I ( .. I:") -r = O, l, .•. ,M 
u 

{1, 0,0, ... ,O,O} 

{1 ,a,a2, ... ,er} 

2nd order 
autoregression 

{ 1, - { a l / (1+CX2 ) } , -(Xl "I u (0 ) -02"1 u (1 ) , 

.. ,,-a l "lu (M-l)-(X2"1u (M-2) 

Once the "I (-r) have been generated the lag covariances of x (n ) of 
u 

which rN is composed are simply obtained from the relation 

and from the property "I (-r) = "I (--r), T = 0,1, .. . ,M. 
u u 

A compact way of exhibiting the comparative efficiency of the 

B.L. U.E. and the L.S .E. is t o follow the procedure suggested by 

Watson [55] and to present the ratio of the determinants of the 

variance-covariance matrices given in (3.4.1) and (3.4 .2) 

which provides a measure of the efficiency 0 the L.S .E. relative 

to the B.L.U.E. For computational purposes it proved preferable 

to slightly redefine the S matrix, and to rename it S* so that the 

r a tio of determinants becomes 

where 

.J27N cos"l' -J27N sin"l' .... .. } J27N sin"S' - Jl1N 
J2/N cos2"1' J 2/N sin2"1' ... " , " , J2/N sin2"5' +Jl7N 

" ,. .... 
S* " " ... , 

'I""" • 

J2]N cOSNA1J J27N sinNAl' . 0 . 0 •• , J27N sinNA
5

, (_l)N Jl!N 
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It has been sugge sted [48] that the ratio of determinants 

exaggerates differences a nd tha t a good case may be made for 

using a measure such as 

(3.4 .6) 

Both E a nd E* (see Table 8 ) are measures of efficiency which 

depend on the efficiency obtained for every element of the 

variance-covariance matrix of the parameters and because of thi s 

it is possib le that an isolated very poor result may be obscured. 

What may be of interest to the inve stiga t or i s a n indication of how 

i nefficient the L.S. procedure could be in estimating any particular 

a . or ~ .. In summarizing the rather deta iled results this latter 
J J 

question of efficiency for part icular a. or ~. has been placed in 
J J 

a secondary position so that a more compact presenta tion of the 

results is possib le . It is however not difficult to obt a in a 

measure of this 'individual coefficient' efficiency for any 

situation cons i dered by formi ng the ratio of the value for any 

a. or ~. in the B.L.U . column t o the value f or the same a . or ~. 
J J J J 

in the L .S. column of Table 7. In thi s Table a further 

characteristic of both procedures which is studied is the relation 

of the act ual va riance s , that is the diagonal elements r§ (i,i) , 

r~(i,i), i = 1,2, . •. ,11, t o the appr opri a te asympt otic va riance s 

~7T f(A j ) (for i = 1,2 the appropriate Aj is of course Al ) . The 

onl y purpose i n pre senting this final comparison (see Tab le 7 ) i s 

t o give some indication of how effective an approximation the 

asymptotic value will be for various values of N. 

3.5 Efficiency Results and Conclusions 

The cases presented below a re necessarily selective and have 

been chosen to include typical as well as unusual results . To 

further reduce he volume of results Filter No .3, the 1st 

quas i-difference, is only tabled for the one differencing 

parameter, .7, and Filter No.4, the 2nd quasi-difference, is 

also limited to one differencing parameter, in this case .9 . 



The results for the first order autoregressive processes 

do not differ very much at all for the range of the parameter 

considered and the overall efficiencies as measured by either E 

or E* are high for a = .75 a nd become higher as a increases to 

.995. The behaviour of the ratio of actual to asymptotic 

variance exhibits only a minor improvement as a increases, but 

there is evidence that the choice of filter will influence the 

way in which the ratio approaches unity. The independent 

residuals model gives result s for both the overall efficiency 

indicators and for the individual variance ratios which are 

quite as would be expected for all filters except the second 

quasi-difference where for the L.S. procedure it is apparent tha t 

even for N = 72 the use of the asymptotic formula would be 

misleading, particularly for a l , 

The three second order autoregressive models presented 

provide a contrast between themselves and with respect to other 

methods of generation. Model (5) which has a spectrum and a 

correlogram of a more similar nature to the first order 

autoregression (c.f. Model (1) , see Fig. IV) performs very well 

on overall efficiency grounds and also when the ratio of actual 

to asymptotic variances is studied. Model (1) is a contrast to 

all other models for the disturbances (see Fig. IV) , The overall 

efficiencies are quite disappointing and the ratios in Table 7 

indicate the complete unsuitability of the asymptotic variance, 

particularly whe n the second quas i-difference filter is employed, 

To provide a contrast to the poor performance of Model (1 ) it is 

interesting to look at Model (3) a nd to note that the efficiencies 

are improved, although still less satisfactory tha n the other 

generating models; but most noticeable is the removal of the very 

large ratios of actual to asymptotic ratios associated with Model (1). 
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An explanation of the poor performance of Model (1) of t he 

2nd order autoregressions proves also to be a suitable vehicle for 

obtaini ng some understanding of the way the two est i mat ion me thods 

work. Returni ng to the discuss i on of L. S . i n §3.3 a nd i n part icular 

to the expression i n square b ra ckets gi ven i n 19 (3.3. 6), o~ may 

regard the L. S . variances for a l a nd ~l as resul t i ng (approxi mately ) 

from the multiplication of t he kernel (Fi g . V) by the spectrum of 

the filtered disturbance, IB(A)1
2

f (A), followed by i ntegration 
u 

over t he specified range. This i nterpret a t ion of the L. S .E. is 

valuable i n suggest ing how it may differ radically from the 

asymptot i c value, which depends onl y on t he value of the filtered 

disturbance at A
l

. To illustrate t hi s approach the filt ered 

spectrum of the disturbance for Model (1) a nd Model (3) of t he 

second order autoregressions, where the filter i s second 

quasi-differences with differencing parameter equal t o .9, is 

presented i n Fig. VI. The effect of t he 2nd di f fere ncing f ilt er 

has been to accentuate peak of power at hi gh frequency i n Model (1) 

a nd although the lobes of the kernel dimi nish i n magnit ude at 

higher freque nc i es it is apparent from Table 9 t hat t he produ ct 

of the kernel a nd the filtered spec t r um i n t his model still has 

significant magnitude well away from Al a nd this produces the 

large L. S . variance. 

19 
The expression i n square brackets is depi cted i n Fig . V for 

N = 36; (2. The difference i n shape of the f unction shown f or 
a

l 
a nd ~l is obviously due onl y t o the different s ign for the 

third t e rm i n t he b racket. 
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1 

TABU~ q 

KERNEL FUNCTIONS DEFInED r:1 (3.3.6) AND IB(A)1 2f , ,(A) FOR \10DF'L 1 - FILTER 4; N = 36 

---
(1) ( 2) 

Frequency Kernel for a Kernel for Sl IB(>.)/2f (>.) 
1 u 

j >. (see (3.3.6)) (see (3.3.6) ) Hoctel I Fi 1 ter 4 (1) " (3) (2) x ( 3) 

0 ° . 31673 10-12 .22740 10-13 .61501 10-6 ,-

1 .0<)401 -2 .91077 
-1 .17 648 10- 5 .1578 10-7 .1607 10-0 

10_12 
10_13 

2 . j0987 10_1 
.22266 10 .88070 10- 5 

3 . 47G06 .15463 ° .32938 10-4 
.1568 10- 5 .5093 10- 5 

4 .32622 
10_12 .23422 

10_13 .9 4138 
-4 

10 10 10_
3 10-3 

5 . 68561 10° .95103 10° .22341 10 .1532 10-3 . 2125 

6 Tl/6 . 20000 101 .20000 101 .46630 10-3 .9326 10-3 .9326 10-3 

7 .93048 ° .70239 ° .88837 10-3 .8266 10- 3 .6240 10-3 
10_11 10_12 

8 .14890 10 .51129 10_1 
.15335 10-2 

10-3 10-3 
9 .12838 ° .61105 .26866 10-2 .3449 .1642 10_10 

10_11 
10 .14749 10_1 

.18888 10_1 
.43927 10-2 

10-3 10-3 
11 . 54603 10 .18044 10 .69885 10-2 .3816 .1261 

12 Tl/3 .17965 10-10 .31406 10-11 .10900 10-1 
10-3 10-3 

13 . 31962 
-1 .78491 

-2 .16777 10-1 .5362 .1317 10_10 
10_11 

14 .14624 10_1 
.13528 10_2 

.25625 10-1 
10-3 10-3 

15 . 21794 10_12 .41855 10_13 
.39034 10-1 .8507 .1634 

16 .48505 10_1 
.50130 10_2 .59720 10-1 

10-2 10-3 
17 .16271 10 .25439 10 .92173 10-1 .1500 . 2345 

18 Tl/2 .13960 10-10 .10738 10-11 .14459 10° 
10-2 10-3 

.12915 
-1 .16985 

-2 .23251 10° .3003 .3949 19 10_10 
10_11 

20 .12073 10_1 
.10196 10_2 .38751 10° 

10-2 10-3 
21 .10725 10_10 .12197 10_11 

.67923 10° .7284 .8285 

22 .14779 10_2 
.11881 10_

3 
.12752 101 

10-1 10-2 
23 . 92261 10 .92930 10 .26008 101 .2400 .2417 

24 2T1/3 . 38597 10-11 .81290 10-12 .55102 10
1 

10-2 
25 . 81714 -2 .74462 -3 10

1 .7380 10-1 .6725 10_10 
10_11 .90309 

26 .14358 10_2 
.12968 10_

3 
.78975 101 

10-1 10-2 
27 .74200 10_11 

.62358 10_12 .50859 10
1 .3774 .3171 

28 .54014 10_2 .39593 1°_3 .33625 10
1 

10-1 10-2 
29 . 68880 10 .54341 10 .24263 10

1 
.1671 .1318 

30 5T1/6 .16188 10-10 .11626 10-11 .18912 10
1 

10-1 10-3 
31 . 65238 

-2 .49128 -3 .15661 10
1 .1022 .7694 10_11 

10_12 
32 .70340 10_2 

.69019 10_
3 

.13603 10
1 

10-2 10-3 
33 . 69260 10_10 

.45983 10_11 
.12282 10

1 .8507 .5648 

34 .13680 1°_2 .10270 10_
3 

.11460 10
1 

10-2 10-3 
35 . 61864 10_11 

.44500 1°_12 .11009 101 .6811 .4899 

36 TI .89258 10 .72914 10 .10864 101 



1 
Two further comments seem pertinent. The variation i n the 

performance of the variance of a. and ~. in Table 7 is explained 
J J 

by the shape of the appropriate f (A) a nd i n particular by the 
x 

difference i n the shape of the kernel for a. a nd ~. (see footnote 
J J 

(19 )). For instance in Model (1) it is to be expected on the 

above reasoning that the variance ratios in Table 7 would be 

worst for a l and ~l' the more so for smaller N. The relation 

between the variance ratios for a2 and ~2 still shows a2 with 

the higher ratio but the difference is much less marked and 

reflects the change in the kernel due to its central location 

now being at A2 . At A3 the a. a nd ~. kernel is identical. 
J J 

A. such that j > 3, there are only minor differences in the 
J 

For 

ratios of variances (the values have not been tabled) because 

for these A. although the relation of the a. and ~. kernel is 
J J J 

just the reverse of that for j < 3 there is no great concentration 

of power in the low frequencies for the filtered disturbances to 

accentuate the greater relative magnitude of the ~. kernel in this 
J 

region. 

The final comment is more general and is tha t the case of 

the second differencing filter in this context could be most 

inappropriate unless the a nalyst is confident that the true 

disturbances are not generated by a process which has a spectrum 

with strong power concentration in the higher frequencies. However, 

it should be pointed out that if the disturbances were generated by 

a model which had a peak at high frequencies and a 2nd difference 

filter was employed then the filtered data would be dominated by 

high frequency oscillations (obviously recognisable) which would 

provide a n obvious warning as to the inappropriateness of the filter. 



20 B.L.U. Procedure as a Benchmark 

In the examples discussed in the previous sections the 

place of the B. L.U.E . has been as a benchmark against which to 

judge the L.S. procedure . Some doubts as to the ability of the 

B.L .U. procedure to fulfil this role must have been r a ised by 

Lovell1s proposal [42] of several axioms that seasonal ad justment 

procedures should satisfy and more particularly the furthe r 

assertion [42,p 800J that the B.L .U. procedure does not satisfy 

all of these axioms in generally accepted mode ls of a seasonal 

economic time series. 

The series of axioms that Lovell proposed a nd which he 

requires a seasonal adjustment procedure t o satisfy are given 

i n full in the cited reference [ 42 J pp 994- 5J. Amongst these 

axioms are: 

'Property I: An Adjustment Procedure is said to PRESERVE 

SUMS if a nd only if 

for all t , 

where x
t 

and Yt are the original observations on a ny pair of 

time series and ~ a nd ~ are the adjusted observations', 

a nd 

'Property III: An Adjustment Procedure is ORTHOGONAL if 

for a ny time series 

Lovell also shows (see Theorem 3.1 [42, p 996J) that a ny procedure 

which sati sfies I and I II a nd also satisfies 

' Property IV: The Adjus tment Procedure is IDEMPOTENT if 

for all t ' , 

20 
The notation used by Lovell in describing his axioms has been 

maintained in thi s presentation a nd therefore in thi s section onl y 
x is a vector of observations. 
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reduces to a least squares regression of the observed vector x, 

cons isting of N observa tions xt ' on S, an appropriate matri x of 

k columns (and assumed to be of full rank) with N observations in 

each . At this point a different approach is used to prove the 

result previously presented by Lovell [42J. It is of interest to 

show how this resul t may be obtained without the use of Property IV . 

Pr operty I implies tha t the vector x may be written xt = qt(x) 

i . e . as an additive functiona l of the vector x . Now if the vector 

X G V, where V is a finite dimensional vector space, then it fo l lows 

that 

where both x a nd y G V. Further, if the vector x and the scalar 

a are rational then the property 

may a l so be established and so linearity follows . I n fact unless 

the functional qt is quite pathological (3 . 6.2) may be esta-b lished 

a nd in a ny case this property always holds if ~(x ) is bounded 

(i .e . qt(x) ~ A < 00 ) when Ixl < a where a a nd A are finite 

constants . Another way of establishing this result is to assume 

that qt(x) is a measurable and additive function of x and this 

implies that qt(x ) is a continuous function and so the functional 

is both linear and bounded . Thus the expression is a linear 

functional if it is measurable or bounded [34,p 24] and therefore 

a ' h . xt = qtX were qt lS a vector of N components. The vector of 

a a adjusted values, x , then satisfies x = Qx where Q has qt as the 

t th row. Property III implies that 

94 

x ' Q' (I-Q )x = 0 (3. 6 .3 ) 

and that this is so for all x. Thus Q' = Q' Q a nd Q' is symmetric. 

2 Therefore Q = Q and Q is idempotent a nd a perpendicular projector . 

If the columns of S span the space on which Q projects then xa is 

obtained b regression on these columns. 
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Before going further let it be said that these properties or 

axioms seem unacceptable on general grounds. First, it would be 

extraordinary if the vast array of techniques for signal detection 

a nd measurement , which have been developed over the last half 

centur y , could be redu ced to the simpler problem of regression 

a nalysis. More particularly, the axioms exclude non-linear 

procedures a nd this of itself seems unacceptable. It is easy to 

construct examples where maximum likelihood procedures are 

non- linear and it would be hard to envisage realistic formulations 

where this was not the case. Most importantl y, perhaps, Axiom or 

Property III must be unequivocably rejected. The stat ement by 

Lovell following this axiom [42,p 995], 'How can a nonorthogonal 

seasonal adjustment procedure be regarded as satisfactory? After 

all, if such a procedure correctly defines the seasonal movement 

the fact that the seasonal correction terms are correlated with 

the adjusted series implies that some seasonality remains in the 

data', elevates a particular inne r product, (x, y ) = x'y, into a 

premier place in relation to the vector space in wh ich x lies. If 

this i nner product is elevated to a premier place it can onl y be on 

the basis of prior assumptions. Appropriate prior grounds might be 

a model for the original observations of the f orm 

x-Dc-Sa = € (3. 6.4) 

where a is a vector of k seasonal constants, D'e is null and € is 

composed of identically and independentl y distributed variables with 

mean zero and unit variance (i.i.d.(O,l)). The matrix D is of full 

rank with columns representing t he non-seasonal dete rministic variables 

a nd e is the associated set of constant coefficients. I f the 

condition on € or that on S and D is not satisfied then Lovell 

axioms will prove to be hardly acceptable. Suppose that it is 

assumed that e(€€') = r then it wi ll be shown that the B.L. U. 

procedure is the same as the L.S. procedure of regression on S 

-1 
alone when a nd only when S and D are such that s ' r D is null a nd 

also the k columns of S are linear combinations of k eigenvectors 



of r . The argument proceeds as follows . A suffic ient condition 

for (S ' S )-lS' x to be a B. L.U.E . of a is that D' S = 0 a nd also tha t 

the space spanned by the columns of S (call it ~(S )) is spanned 

by eigenvectors of r . (See Watson [56]). If the L.S . regression 

of x on S is t o be the B. L. U.E . it is certainl y necessary tha t 

D' S = 0 since the expected value of the L . S .E . i s gi ven by 

a nd so SID must equal zero if the expectation is to equal a for 

all 0. Now consider a row vector A', 

with columns corresponding to the partitioned matrix ( . ~~ .) . 

Form the unbiassed estimator A2 (S' S)-lS' x of A2a a nd let A' Ax be 

another unbiassed estimate of A2a. The latter estimator may be 

denoted L' x, where L I = Li +L2 a nd L2 E l)11(S ), Ll .L 'JTt (S ) . Now 

the estimator L'x may be written as 

L'x 

L'Do+L ' x+L'E 1 2 1 

a nd so the expectation becomes 

Since L'x is unbiassed a nd the expectation does not involve ° this 

implies Li D = 0 and further as the expectation, e (L2x), is gi ven by 

and so 

L' Sa 
2 

A'a 2 

LISa = A' (S' S ) -lS'Sa 
2 2 

(since L2 E 'JitCS) and SID = 0 ) 

96 

i.e. (A
2

(S' S)-l S'-L2 )Sa = 0 
C3. 6.8) 

i .e. A2 (S' S )-lS' = L2· 
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The variance -covari ance estimator of the estimator L'x is 

a nd using (3. 6.8) this expression becomes 

L'rL = A2(S's)-ls' rS (S ' S)-~2+A2(S's)-lS'rLl+LirLl+Lirs(s ' s )-1A2 
(3· 6.9) 

and therefore if L2x is the B.L .U.E . then this implies that 

A
2

(S , s)-ls ' rL
l 

= 0 . Further as Ll1- ~(S ) then A2 (S , s)-l sr 

belongs to ~(S ') and consequently rs (s ' S )-~2 belongs to ~(S). 

As this is true for all (S ' S )-~2 t hen rs belongs to ~(S ) a nd so 

r transforms a vector in a k dimensional subspace into a vector 

also in that subspace (invariant transformation ) a nd S will be 

spanned by k eigenvectors of (see [56]). 

The only circumstances when this condition is at all likely 

to hold is where r is a scalar matrix (a numerical multiple of the 

identity matrix) a nd D is composed of a single column of units 
2-rr . 

while S has columns composed of (for monthl y data) cos ~ n, 

sin ~j n, for suitable values of j. Experience in seasonally 

adjusting economic data would lead one to believe that either D 

must be expanded to i nclude other explanatory vectors as well as the 

unit vector or the generating process for the disturbance must be 

more broadly specified. For exampl e we might have 

E(n ) = pE(n-l)+~(n ) where ~(n ) is i.i.d .(O,l) a nd p is close to 

unity but \p \ < 1. I ndeed it may be nece ssary t o accept both 

these respecifications. 

It seems therefore that Lovell's axiomatic basis for seasonal 

adjustment must be rejected and that a theory of seasonal ad justment 

must instead rest on much more elabora te techniques of signal 

detection a nd measurement. 



3.7 Working Day Variation 

Economic time series which register a flow of some kind over 

either monthly or weekly i ntervals may exhibit a source of 

variation which is not seasonal a nd therefore ranks for separat e 

consideration. The original model (3.2.1) is augmented in t his 

section to i nclude a further signal, which on a priori grounds 

one could readily expect to occur. The i nteresting point which 

arises i n this section is that when the signal generated by 

working days is incorporaied i n the above model its nature 

requires one to use a spectral regression procedure to obtain 

more efficient estimates than L. S . 

This additional source of variation may be included if t he 

model given in (3.2.1) is extended as follows 

oth th 
with u-t(n) the number of days of the ~ type i n the n month. 

I n (3. 7 .1) it is assumed that each working day makes a specific 

additive contribution to the series. It may be, however, t hat the 

variation depends on the composition of the "extra days" i n a ny 

month, that is those i n excess of twent y eight. For example, i t 

may not be that the Monday effect will be t he same i n a mont h 

ending Saturday, Sunday, Monday as i t would be i n a mont h ending 

Monday, Tuesday, Wednesday. An alternative model is t herefore 

proposed which can account for certain i nteractions between the 

days i n each group of "extra days". The more general model is 

wen ) 

where the variables u~(n) cover the fourteen possible two and t hree 

"extra days" effects. 21 At each time point n, one of t he vari ables 

u~(n) will be unity and t he rema inder zero. Both models (3. 7 .1) 

21 No attempt has been made t o estimate the "extra days" effect 
associated with leap year February, as this event occurs too 
infrequently either to give reliable estimates or to be import a nt. 
All February observations are i ncluded wi th a zero re gressor vec t or 
so that the lag correlations (and t herefore the spectra) of the 
regressor variables are interpretable in a ctual t i me. 



and (3. 7 .2) are suitable for the u se of regression methods t o 

estimate the proposed effects. Before dealing with appropriate 

regression procedures it is i nstructive t o look at the spectra 

of the possible regressors, u~(n) a nd utm (n ), examples of which 

are given i n Fig. VII . Certa in implications are apparent. The 

peaks of power i n the spectra of these regressors are found quite 

close to several seasonal freque ncies. 

The method of estimating the independent daily effects in 

(3. 7 .1) which has been proposed previously (see [52]) is to 

regress the original series on the u~(n) after trend a nd seasonal 

has been subtracted. This method will be more ~ppropriate if the 

model for s*(n ) is a stab le one as proposed in ' (3.2.3). However, 

if as will be suggested in the next chapter, it is believed that 

the seasonal pattern is slowly evolving and the method of seasonal 

estimation is cha nged accordingl y then a t certa in fre quencie s it is 

apparent that the seasonal estimates will be infl uenced by the 

working days power . Thus in a situation where the seasonal pattern 

is evolvi ng it is nece ssary to either estimate the working days 

effect after onl y trend removal a nd before seasonal estima tion or 

22 
to waive explicit consideration of the working days effect. 

Least squares regression of w(n ) on ui(n ) or u1m (n ) (where the 

change in symbols to w(n ), ul(n ) a nd u1m(n ) indicate tha t trend 

removal filtering has been carried out ) will provide es timat es of 

the required parameters. The simple least square procedure is not 

however the most efficient . The filtered regression variables are 

22 
The reason for second possibility is easily seen when in the 

next chapter the response function for the evolving seasonal 
extraction is given a nd it is apparent that this will incorporate 
some working day power. 
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1 
close to linear dependence and so the matrix of filtered 

regressors is close to singularity . The appropriate one of 

the f ollowing restrictions, 

o 

o w 
4 
11 

is employed to reduce by one the parameters to be estimated. 

A more fundamental change in the method of estimation which 

will further improve the efficiency is to use the methods 

discussed in §1.6, in particular employing the estimator given 

in (1. 6 .18). In using (1. 6 .18 ) the regressand and the regressors 

are decomposed into their contributions at each frequency band 

and then t~e regression coefficients for each band are optimall~ 

101 

weighted together to give a n efficient estimate of each coefficient. 

To employ this method most effectively it is necessary to restrict 

the set of freque ncy bands used to produce estimates to those where 

the regressors power is obviously non -zero as inclusion of bands 

where the power of the signal is effect ively zero will not 

influence the estimates and will involve a greater computational 

expense. As the spectra of the regressors in the ''Excess Days II 

model have more than one major peak the gain in efficiency from 

using the regression procedure which decomposes variables into 

their contribution at each freque ncy ba nd should be more marked 

than for the IIIndividual Daysll model where the regressor spectra 

have only one major peak (see Fig. VII). 

Estimates were made for the following series: 

Australian Total Exports of Merchandise 

Australian Total Imports of Merchandi se Feb . 49-May 67. 23 

23 
The source 0f both series of data is Commonwealth Bureau of 

Census and Statistics (Aust.), Monthly Review of Business Statistics. 



A tabular summary of estimates employing both models on each of 

the series is given in Table 10. In the !!Individual Days!! model 

for both series there is only one significant coefficient. It i s 

apparent that in this model the only significant effect 

discernible is the obvious negative effect associated with 

Sundays. The pattern of working day activity is much more 

apparent in the interaction !!Excess Days !! model a nd the se 

estimates have significantly large mid week three day excesses 

as well as significantly small near weekend excesses. It should 

be noted that some of the negative effects found in the two day 

excesses may be influenced by the number of public holidays which 

can occur on Mondays in the 30 day months . Australi a always has 

a Monday pub lic holiday i n June and April can have as many as 

two Monda y public holidays. 

The concentration of Monday holidays in two of the four 

30 day months may have produced some distortion of the effects.
24 

The significance of some of the excess -day coefficients does 

suggest it is most neces sary to carry out working day corrections 

to series which are likely to exhibit this variation particularly 

if a stable seasonal pattern has been fitted . Fai l ure to make 

these corrections could mi slead policy makers in their assessment 

of recent trends in exports and imports. 

24 
Some distortion will obvious l y arise if pub l ic holidays occur 

during the month on a ny day because the excess days wi ll not be 
determined only by those in excess of twenty-e ight . More detailed 
work could obviously be done on this point but it has not been 
pursued here . 
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A somewhat disquieting feature of the "Excess Days" Model 

for Exports (although one recognizes the distorting effects of 

Monday holidays i n the 30 day months ) is that it produces a 

s ignifi cant l y nega tive response for Mon-Tues whereas Sun -Mon is 

103 

not significant l y negative . A similar situation exists for Import s 

i n that Sun-Mon is significantly nega tive whereas Sa t-Sun i s not . 
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FIG.~ 

FUNCTIONS DEFIIIED IN (3 .3 . 6), N .36, '9, 60 , 72 
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INDEPENDENT 

FILTER N L. S. 
Q
1 61 

Q 2 62 u1 

36 1.01 .92 1.01 1.01 .89 

I 

1 48 1.01 .94 1.00 1.01 .91 

60 1.01 .95 1.00 1.01 .93 

72 1.00 .96 1.00 1.01 1.01 
-

36 1.42 1.06 .98 .97 .81 

2 48 1.32 1.04 .99 .98 .85 

60 1.25 1.03 .99 .98 .87 

72 1.21 1.03 .99 .98 .89 

36 1.27 1.00 1.05 1.00 1.07 

3 48 1.21 1.00 1.04 1.00 1.05 

69 1.16 1.00 1.03 1.00 1.04 

72 1.14 1.00 1.03 1.00 1.04 

36 4.19 1.36 1.25 1.08 .95 

4 48 3.39 1.27 1.18 1.06 .96 

60 2.91 1.21 1.15 1.05 .97 

72 2.59 1.18 l.12 1.04 .97 

TABLE 7 

RATIO OF CALCULATED VARIANCE TO ASYMPTOTIC APPROXII~ATION 

FIRST ORDER AUTO REGRESSIONS 

Q .. 0.75 Q = 0.995 

B.L.U . L. S. B.L.U. L. S. 
u1 82 62 Q

1 
Q
1 82 82 Q

1 
Q

1 B2 82 Q
1 

Q
1 B2 62 Q

1 

.86 .99 .99 .92 .91 1.03 1.08 .88 .85 .99 1.02 .92 .93 1.04 1.10 .89 

.89 .99 .99 .94 . 93 1.02 1.06 .91 .87 .99 1.01 .94 .94 1.03 1.08 .91 

.91 .99 .99 .95 .911 1.02 1.05 .92 .8') .99 1.01 .95 ,95 1.02 1.06 .93 

.92 1.00 .99 .96 .95 1.01 1.04 .94 .91 .99 1.01 .96 .96 1.02 1.05 .94 

.89 .94 .92 1.08 .94 .97 .98 .78 . 85 .95 .94 1.05 .93 .97 .99 .85 

.89 .95 . 94 1.06 .96 .98 .99 .82 .88 .96 .95 1.04 .95 .98 .99 .89 

.90 .96 .95 1.05 .97 .98 .99 .86 .90 .96 .95 1.03 .96 .98 .99 .90 

.91 .97 .95 1.04 .97 .99 .99 .88 .91 .97 .96 1.02 .97 .99 .99 .91 

.98 1.01 .98 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.03 1.40 1.04 1.11 1.01 
-

.98 1.00 .98 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.03 1. 39 1.03 1.10 1.00 

.99 1.00 .99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.03 1.38 1.03 1.10 1.00 

.99 1.00 .99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.03 1. 37 1.03 1.10 1.00 

1.05 .96 .97 1.43 1.01 1.06 1.00 .98 ')/' . ",u .98 .97 1.33 1.00 1.05 1.00 1.07 

1.03 .97 .98 1.32 1.01 1.04 1. 00 .99 .97 .99 .97 1.25 1. 00 1.04 1.00 1.05 

1.02 . 97 .98 1.26 1. 01 1.04 1.00 .99 . 98 .99 .98 1.20 1.00 1.03 1.00 1. 04 
-

1.02 .98 .99 1.22 1.00 1. 03 1.00 .99 . 98 .Y9 . 98 1.17 1.00 1.03 1.00 1.03 
---- --- -_ .. _ .. _- -- --- - - - - --------- - --- -- -- ----- -- - --- -- '-----------

B.L.U. 
Q
1 62 

.89 1.00 

.91 1.00 

.93 1.00 

.94 1.00 

.85 .95 

.88 .96 

.90 .97 

.91 .97 

1.10 1.01 

1.07 1.01 

1.06 1.00 

1.05 1.00 

0.97 1.00 

.98 1.00 

.98 1. 00 

.99 1.00 

8 2 

1.03 

1.02 

1.02 

1.01 

.95 

.96 

.96 

. 97 

1.03 

1.02 

1.01 

1.01 

.98 

.98 

.98 

. 99 

c
O" 



TABLE 7 

RATIO OF CALCULATED VARIANCE TO ASYl-lPTOTIC APPROXIHATION 

SECOND ORDER AUTOP~"X}RESSIONS 

MODEL 1 MODEL 3 

Cll = 1.00 Cl 2 = 0.75 (11 '" -1.00 Cl 2 = 0.75 

FILTER N L.S. B.L.U. L.S. B.L.U. --ell III Cl2 112 Cl l 81 
Cl 2 B2 Cll III Cl 2 82 

Cl
l 81 Cl

2 62 

36 1.80 1.01 1. 51 1.21 .89 .92 1.04 1.03 1.27 1.04 .96 1.00 . 88 .88 .80 .83 

1 48 1.60 1.01 1.38 1.16 .91 .94 1.03 1.02 1.20 1.03 .97 1.00 .90 .91 . 84 .86 
'-

60 1.48 1.00 1.31 1.13 .92 .95 1.02 1.(11 1.16 1.03 .98 1.00 . 92 .92 .87 .S8 
--~. 

72 1.40 1.00 1.26 1.11 .93 .96 1.02 1.01 1.14 1.02 .98 1.00 .93 .93 .89 .90 
- . 

36 5.41 1.48 1.50 1.19 .88 .89 .99 .99 2.22 1.44 .92 .94 . 83 .88 .77 .77 
~ 

2 48 4.30 1.36 1.37 1.14 .89 .89 .99 .99 1.91 1.33 .94 .96 .86 ,88 .82 . 81 

60 3.63 1.29 1.30 1.11 .92 .91 .99 .99 1.73 1.26 . 95 .96 .88 .88 .85 . 84 

72 3.20 1.24 1.25 1.09 .94 .94 1.00 1.00 1.61 1.22 .96 .97 .90 .88 .87 .86 

36 8.31 1.66 2.58 1.64 1.11 1.06 1.04 1.05 1. 55 1.15 .90 . 91 1.08 1.02 .81 . 88 

3 48 6.46 1.49 2.18 1.48 1.08 1.04 1.03 1.04 1.41 1.12 .92 .93 1.06 1.01 .85 .86 

60 5.36 1.40 1.94 1.38 1.06 1.03 1.02 1.03 1.33 1.09 .94 . 95 1.05 1.01 .88 .88 

72 4.64 1.33 1.79 1.32 1.05 1.02 1.02 1.02 1.27 1.08 .95 .96 1.04 1.00 . 89 . 90 

36 OJ . 10.3 6.19 3.13 1.01 1.11 1.00 1.02 3.16 1.66 . 88 .89 .97 1.07 .81 .80 

4 48 77.0 7.93 4.87 2.59 1.01 1.05 1.00 1.01 2.61 1. 50 . 91 .92 .97 1.05 .85 .83 

60 61.8 6.54 4.10 2.27 1.01 1.05 1.00 1.01 2.29 1.40 .93 .93 .98 1.03 .87 .86 

72 51.6 5.62 3.58 2.06 1.01 1.05 1.00 1.01 2.07 1.33 .94 .94 .98 1.03 .89 .88 
- ---- _. --------- - -- -- ------ --------- -- - --~ -----

Cl 1 = -1.25 

L.S . 
Cl 1 81 (lC) R2 

-
.91 .93 1.07 1.15 

. 93 .94 1.05 1.11 

.95 .06 11.04 1. 09 

.95 . 96 1.03 1.08 

1.01 .91 .98 1.00 

1.01 .94 .98 1.00 

1.01 .95 .99 1.00 

1.01) .96 .99 1.00 

.99 1.17 1.01 1.07 

.99 1.13 1.01 1.06 

. 99 1.06 1.01 1.05 

.99 1.03 1.01 1.04 

1.14 .97 1.01 . 98 

1.11 .98 1.01 . 99 

1.08 .98 1.01 .99 

1.07 .99 1.00 .99 

I 

gODF:L 5 

Cl 2 = 0 . 3 

B.L.U. 
Cl 1 III I Cl2 

T 1l2--

.99 ! 1.03 .'86 .80 
I 

.89 .91 .99 1.02 

.91 .92 .99 1.01 

.92 .93 .99 1.01 

.81 . 82 I . 94 .9 5 

. 85 . 86 1 .95 .9 6 

. 88 .88 .96 .9 6 
'-

.90 .90 .96 .97 

.97 1.07 1.00 1.03 

.98 1.04 1.00 1.02 

.98 1.04 1.00 1.0.1 

.99 1. 03 .98 1.01 

1.03 . 95 . 99 . 9'7 

1.02 .96 .99 .9;8 

1.02 .96 .99 . 9,8 

1.01 .97 1.00 .918 

l-' 
o 
~ 



TABLE ) 

OVERALL EFFICIENCY INDICATORS, E and E*, FOR SOME MODELS 

1ST ORDEH AUTOREGRESSION 2ND ORDER AUTOREGRESSION 

INDEPENDENT Q = 0.75 Q = 0.995 Q1 = -1.25, Q 2 = 0.3 Q1 = 1.00, Q 2 = 0.75 Q1 = -1.00, Q 2 = 0.75 

FILTER N E E* E E* E E* E E* E E* E E* 
--

36 .761 .976 .721 .971 .726 .971 .522 .943 .199 .863 .171 .852 

48 .799 .980 .757 .975 .762 .976 .571 .950 .257 .884 .221 .872 

1 60 .827 .983 .787 .978 .793 .979 .614 .957 .309 .899 .267 .887 

72 .848 .985 .811 .981 . 817 .982 .651 .962 .352 .910 .310 .899 . 

36 .392 .918 .544 .946 .627 .959 .532 .944 . 059 .774 .078 .793 

48 .466 .933 . 607 .956 .686 .966 .595 .954 .034 .736 .114 .821 

2 60 .527 .943 . 660 .963 .722 .971 .648 .961 .121 .825 .150 .841 

72 .580 .952 .701 .968 .750 .974 .690 .967 .155 .844 .184 . 857 

36 .738 .973 1.00 1.00 .676 .965 .772 .977 .058 .772 .385 .917 

48 .782 .978 1.00 1.00 .654 .962 .798 .980 .075 .794 .451 .930 
3 

60 .814 .982 1.00 1.00 .645 .961 .822 .982 .099 .811 .506 .940 . 

72 .838 .984 1. 00 1. 00 .641 .960 .843 .985 .120 .825 .552 . 947 

36 .144 .839 .551 .947 .696 .968 .823 .983 .002 .566 .151 .842 

48 .193 .861 .623 .958 .742 .973 .857 .986 .003 .521 .206 .866 
4 

60 .238 .878 .676 .965 .778 .978 .880 .988 .005 .617 .257 .884 

72 .279 .890 .715 .970 .806 .981 .897 .990 .006 .629 .304 .897 
I 

----



Day 

Regression Coefficient 
Standard Error 

Sun Mon Tues Ending Mon Tues Wed 

Coefficient 5.85 -12.41* -7·71 
Standard 5.4 5.6 5·4 Error 

Sun 

-3.681 
2 .8 

Wed 
Thu 

5.16 

5.3 

Mon 

TABLE lOa 

Working Day Effects 

Individual Day Effects 

Export s 

Tues Wed 

4.574 -2·333 3.308 
2·7 2.6 2 .8 

Two and Three Day Month Ending Effects 

Thu Fri Sat Sun Mon 

Fri Sat Sun Mon Tues 
Tues Wed 

3.63 -6.45 -13. 61* -.19 12 .60* 

5·4 5.4 5.6 3.8 4.0 
----

Thu 

4.134 
2 ·7 

Tues 
Wed 
Thu 

12 .63* 

3· 8 

Note: The * indicates the significant coefficients. 

Fri 

.792 
2 .7 

Wed Thu 
Thu Fr i 
Fri Sat 

4.79 .36 
4.0 4. 0 

_ ._--_ ... -

Sat 

-6.794* 
2 .6 

Fri 
Sat 
Sun 

-6.78 

3·9 

Sat 
Sun 
Mon 

-8.81* 
4.0 

t-' 
o 
\D 



Day Sun Man 

TABLE l Ob 

Working Day Effects 

Individua l Day Effects 

Import s 

Tue s We d Thu 

Regr e s sion Coef f i ci ent -5. 508* 1. 013 ·312 4.499 3·392 
Standard Err or 2 .328 2 .313 2·309 2.360 2 .263 

~--~ ---

Two and Three "Exces s Days" Effects 

Sun Man Tues Wed Thu Fr i Sat Sun Man Tues. 
Ending Man Tues Wed Thu Fri Sat Sun Man Tues Wed 

Tues Wed Thu 

Coefficient -10.729* -6. 602 1·393 5.463 1 . 508 -9.667 -5·770 -2 .879 11. 990* 9.733* 
Standard 5·301 5.431 5.158 5.167 5.167 5.158 5·273 4.494 4. 690 4· 550 Error 

--------

Note : The * indi cates the s i gnificant coefficient s. 

Fr i Sa t 

-1. 389 -2 ·319 
2 ·324 2 .274 

Wed Thu Fr i Sat 
Thu Fri Sa t Sun 
Fr i Sat Sun Man 

7 .542 .232 -7 .318 -5·355 
4.690 4.648 4. 593 ~ . 680 

~ 
o 
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IV SIGNAL EXTRACTION PROBLEMS 

4 .1 Seasonal Models a nd the Adjustment Problem 

In this chapter the problem area is again that of seasonal 

adjustment, but there is no longer a n exactly specified signal. 

Rather we begin with a priori ideas about the changing nature of 

the signal (amplitude and possibly phase modulation) and summarize 

these ideas on change in the spectral properties of the signal. 

This method appears particularly appropriate to a model of the 

seasonal component which must surely be represented as a sum of 

six narrow frequency band signals. The only extension that is 

proposed is to regard each signal as being amplitude modulated. 

Of course the seasonal signal will be superimposed on noise, 

however the narrow band nature of the signals means that only the 

average noise level over these narrow bands is of great concern. 

Consequently a spectral treatment of the noise will require the 

introduction of relatively few parameters and more detailed models 

will probably add very litt le in efficiency, while increasing the 

risk of invalid analysis. 

The main difficulty in effecting adequate sea?onal adjustment 

arises from the fact that the seasonal pattern may be changing. 
' " 

The problem of estimating such a changing seasonal pattern is an 

aspect of one of the most important of all scientific problems. 

The difficulty is Simple to perceive but must be understood . If 

an estimation procedure is developed which is sensitive to changes 

111 

in the seasonal component then the procedure will also be sensitive 

to chance fluctuations or noise effects. An optimal solution may 

be derived on the basis of an initial model. This optimal solution 

may be of value both for its own sake and as a standard of comparison 

for ad hoc procedures, but uncritical acceptance of the solution as 

best would be unwise as no model on which optimization procedures 

are based is likely to represent the truth. In any case the 

optimum criteria may be deficient because it fails to reflect 

subjective elements which are difficult t o quantify, such as the 
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reluctance of an official institution to employ methods which may 

entail substantive later revisions of first estimates. 

There is a further point which deserves discussion in this 

introduction. The treatment presented is based on a mode l of the 

data, possib l y after logarithmic transformation, which consists of 

seasonal plu s ' noise', where ' noise' is all the remaining variation . 

I t has been pointed out (see Whittle [58]) that it would be 

preferable to use a model in which the seasonal component is 

properly integr~ted as a part of the whole mechanism generating 

the series and is not merely 'stuck on ' as an additional but 

separate component. It is as well to point out howeve r that the 

use of certain seemingl y more complex models leads to the additive 

model we have used. For example, a model of the form 

(4.1.1) 

where e(n) contains a component , g (n ), with seasonally oscillating 

properties is no generalization. For if one writes e(n) = g (n )+h (n ), 

where g(n) produces seasonal oscillations then the general nature of 

the solution is 

where pen ) is the solution of the homogenous equation obtained from 

(4.1.1). Similarly s*(n) and u (n ) are the respective solutions of 

(4.1.1) when first g (n ) a nd then h en ) replace e(n). Thus the 

additive nature of the seasonal is maintained. 

The model adopted for the seasonal alone in this chapter and 

Chapter V could be thought of in the following terms. 

s*(n) is a solution of an expression of the form (4.1.1) with 

q 1, 

~. 

yj (n ) = Pje Jyj (n- l)+g* (n ) (4.1.2) 

i n which g*(n) produces oscillations with frequency A. a nd with 
J 

amplitude depending on the variances of the random terms E . (n ) 
J 

and D .(n) (see (4.2.3)). The advantage of the procedure adopted 
J 
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here is that the components pen ) a nd u (n ) are not tied to ge neration 

by the same mechanism. Fur ther, one obta ins no generality if the 

polynomial, ~~ . zj, is requi red mere l y t o have certain roots on or 
jO J 

very near to the unit circle a nd with 'argument' corresponding t o 

the seasonal frequencies. Once a gain the solution of (4.1.1) is no 

more than a sum i nvolving pen ) a nd s*(n ) obtained in exactly the same 

manner as described above a nd a ga in the model wou ld be more 

restrictive rather than more ge neral. One can propose essentially 

dif ferent models, such as one in which the y . oscillate periodically 
J 

but apparent l y no work has yet been done on models of thi s na ture. 

The difficulty is not that of building such models, but rather 

of building adequate ones. Economic i nter-relations are sufficient l y 

complex so that t he policy ma ker may be unwilling to commit himse l f 

entirely, for example, to one generating model for all components 

a nd so he would prefer to view key series with perhaps a model in 

mind but not restricted to it. The policy maker will want t o survey 

series with as little done to them as possible, except for seasonal 

adjustment a nd he will probab l y not be prepared t o u se uncritically 

a projection of a series or a set of series , the pro jection having 

been made purely on the basis of the past of the series. This leave s 

a n important role for seasonal corrections based on a n addit i ve model 

of the type presented in (3.2.1). 

4.2 An Evolving Seasonal Pattern 

The main task is the f ormulat ion of a suitab le model a nd 

consequent statistical treatment for t he case of a n evolving seasonal 

pattern. The case considered here will be where the change in the 

seasonal pattern is gradual and continuous. Separat e consideration 

should be given to the situat ion where sudden change s occu r at 

randomly distributed point s i n t ime. This form of a nalysis is 

unli~ely to proceed purely on the bas i s of the hi st ory of the da t a 

but will depend on additional related information which will be 

available a nd should be i ncorpor a t ed i n a more complex formulation. 

This approach is not pursued. 
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As indicated in the introduction to this chapter the mode l of 

the data which is used is given in (3.2.1), but now u (n )+p(n ) will 

often be referred to as the ' noise ' component (see ~3.2 - in particular 

the discussion associated with (3.2.4)). The traditional model for 

the seasonal pattern is that of a strictly periodic or stab le 

sequence and this model has been discussed in §3.2 a nd in particular 

is characterized by (3.2.3). A simple a nd obvious modification is 

to make a~ a nd ~~ depend on n so that 
J J 

s*(n) 6~s~(n) = 6~ (~(n ) cos nA.+~~(n )sinnA.) 
j J j \ J J J J 

(4.2.1) 

Of course ~(n) and ~~(n) will need to change slowly with n othe rwise 
J J 

the notion of a seasonal pattern fades. Deterministic variat i on of 

the aj(n) a nd ~j(n ) sequences is not considered here (see [23], [33]), 

but it is preferred to treat them as determined by chance. The 

autocorrelation of each sequence must however be h i gh if it is to 

show the smooth variation required of a reasonable model. Perhaps 

the simplest model is one of the form 

~(n ) = p.a~(n-l)+€.(n ) 
J J J J 

~~(n ) 
J 

p .~~(n-l)+71 . (n ) 
J J J 

2 
where €. (n) and 71 . (n ) have vari a nce a. a nd zero mean a nd all 

J J J 

correlations between € and 71, for any t wo time point s and for 

differing values of j vanish. 

(4.2.2) 

Before considering in detail the stochastic properties of the 

model used i n further work an attempt is made to give some 

perspective for this choice. For thi s purpose we define the 

seasonal at each freque ncy A. as 
J 

where 

s . (n ) 
-J 

j = 1,2, ... ,5 

(4.2.3) 

(4.2.4) 



a nd 
• 

S6(n ) 

a nd the complex variable s .(n ) is written in summary form as 
J 
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iA. n 
S . (n ) = S. (n )e J (4.2. 5 ) 

J J 

where the nature of the complex random variable s. (n ) is obvious 
J 

from the definition gi ven in (4.2.4). Using (4.2.2) i t is 

straightforward to derive the autoregression i n the complex 

variable 

s.(n ) = p.S.(n-l)+W.(n ) 
J J J J 

where w.(n ) is a complex random variable defined by 
J 

wj(n) = ~ {€j(n )-i~j(n )} . 

(4.2. 6 ) 

(4.2. 7 ) 

If one re-represents the complex random variable, s(n), as 

s.(n) = \s . (n )\eie (n ) 
J J 

(4.2. 8 ) 

with \s.(n )\ and e (n ) the modulus a nd argument of s. (n ) then by 
J J 

considering i n more det ail the nature of e (n ) one can see the range 

of possibilities this formulation offers. A mixture of frequency and 

amplitude modulation occurs when e (n ) is of the form n¢ (n ) since 
i n (A .+¢ (n )) 

then the signal becomes \S . (n )\e J • A slowly changing 
J 

¢ (n ) provides what has been referred to as frequency modulation 

provided that ¢ (n) does not decay to zero with n . The inclusion 

of frequency modulation means that the wave form changes not onl y 

because of the changing amplitude \s.(n )\ but also because the 
J 

underlying band of frequencies in the signal is slowly changing . 

However, t he argument e (n ) in (4.2. 8 ) may contain no part 

which may be written as n¢(n) 

but instead the signal may be 

- where ¢ (n ) is changing slowly -
iA.n ' e ( ) 

\ s .(n )\e J e
lH 

n , where ~ e (n ), 
J 

the phase a ngle, is the slowly changing part. When the variation 

in the wave form arises not onl y from amplitude modulation due to 

Is.(n )\ but also from the slowly cha nging factor e (n ) the model 
J 

(4.2. 8 ) provides a mixture of phase and amplitude modulation. 
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Of course it could be that e (n ) was of the form tha t could be 

partitioned into two part s; one that is of the form n¢ (n ) and 

a nother of the form e (n ) so that the model would inc l ude 

amplitude, phase and frequency modulation. 

In special circumstances (4.2.8) will produce 'pure' 

amplitude modulation. For if (4. 2 .8 ) becomes 

'e s . (n ) = ! s . (n ) ! e l (4.2.9) 
J J 

and (4.2.9) is used for S.(n) and s.(n-l) in (4.2. 6 ) one derives 
J J 

the relation 

!s.(n )!-p.!S.(n-l)! = )jr.(n)e-
ie 

. 
J J J J 

Assume as well a particular form for )jr.(n), namely, 
J 

)jr.(n) = a(n )cos e+ia(n )sine 
J 

(4.2.10) 

(4.2.11) 

where e is uniformly distributed on (-rr,rr) and is independent of 

a(n ), a sequence of independent positive random variables . If 

e(a2 (n)) = cr2 then it immediately fol lows that 

e ( a(n )cose) = e (a(n)sine) = 0 

( 
2 2 ) ( 2 . 2 \ 2/ e a (n )cos e = e \ a (n )sln e) = cr 2 (4.2.12) 

e (a(n)cose . a (n )sine) = O. 

Now the model as specified originally with )jr. (n ) as defined in . 
J 

(4.2. 7 ) will then correspond t o pure amplitude modulation if one 

puts ~E .(n) = a(n )cose and ~ .(n) = a(n)sine, otherwise there will 
J J 

be phase modulation as well. When E.(n) and ~ .(n) are in fact as 
J J 

prescribed for pure amplitude modulation they ca nnot be Gaussian 

random variables since they are uncorre lated but not in general 

independent. Thus i n this model there may be more information 

obtainab le from higher than second order moments . 
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When postulating in (4.2.2) the model which generated 

~(n) a nd ~~(n ) correlation between the random variab les E.(n ) 
J J J 

and ~ .(n) was specifically excluded. The reason for this 
J 

restriction is that if we allow correlation 

~ / n ) (call it r E~) then the lag covariance 

2 

bet ween E. (n) 
J 

for s~(n ) is 
J 

O'j2 p~ {cosnA .+r sin (2lll+n )A . } 
l-p. J J E~ J 

J 

and 

so that t he seasonal component would not be stationary. If 

however as is assumed i n (4.2.2) r = 0 then s*(n) becomes a 
E~ 

stationary process with a covariance function, 

2 

( ) 
6 0'. 

e s*(m)s* (m+n ) = ~l ~ p~cosnA .. 
j l-p. J J 

J 

(4.2.13) 

(4.2.14) 

It is apparent from (4.2.3) tha t Pj will have to be large for the 

autocorrelation sequence of s~(n ) is now p~cosnA. and even f or 
J J J 

p. = .98 and n = 60 the autocorrelation i s approximat ely .3 so that 
J 

seasonal patterns five years could differ quite radically. It is 

more illuminating to express the second order properties of s*(n ) 

and the s~(n ) in t erms of the spectrum. In thi s case the spectrum 
J 

is related to the aut ocovariances by 

J7T"·A 
y *(n) = ~ y.(n ) = ~ e

lll 
f.(A)dA 

s .J . 'IT J 
J J -" 

(4.2.15 ) 

where the spectrum, f.(A), is the Fourier 
J 

Transform of y.(n ), the 
J 

autocovariance sequence for s~(n), and is 
J 

given by 

f . (A) 
J 

0

2 {l l} 
~ 1+p~-2p .cOS(A-A . ) + 1+p~-2p.cOS(A+A.) 

J J J J J J 

The relation (4.2.4) may be rewritten as 

2 

ys*(n) = ~ J7T"cosnA ____ O'..IIj:.....-____ dA 
J 0 27r(l+p~-2p.cOS(A-A.) 

J J J 

(4 .2.16 ) 

(4.2.17) 



but it is found that the complex form of (4.2. 4 ) i s eas i er to work 

with. If P
J
' is near to 1 then f.(A) is very concentrated at +A. 

J - J 

which corresponds t o the f act tha t s~(n) is, over short peri ods, 
J 

much l ike a sinusoidal oscillation with frequency A .. 
J 

The model initially adopted is of the f orm gi ven in (4.2.2) 

but with all p. = 1. The reason for thi s has already been raised 
J 

and is tha t the p. must be ve r y near t o unity in any case. Since 
J 

it is most difficult t o determine p. ac cura t ely from the data and 
J 

118 

the model is unlikely to be correctly spec ified this simplification 

is adopt ed initially . One could, of course, go further a nd adopt 

a more elaborate scheme in place of tha t proposed in (4.2.2), f or 

example' one involving second or higher differences for ~(n), ~~ (n ), 
J J 

or generalizing in the fashion suggested in §4.1 one might cons ider 

s*(n) to be gene rated by a relation of order q, q > 1, such as 

~iy.s*(n -j) = u(n) 
j J 

where the characteristic equation of (4.2.18 ) is ~qy .zj 
l J 

(4.2 18 ) 

a nd 

has all of its roots on or outside of t he unit circle and u (n ) 

is a stat ionary time series with known spectra (see [24]). 

In principle the technique proposed (see [24] and [ 57]) 

can deal with such extensions but in practice the computa tional 

and algebraic complications become large a nd the a dditional work 

does not seem justified, although in connection with trend removal 

a second order difference scheme is dealt with . It should be noted 

that when p. 
J 

1 the seasonal component s*(n)., ceases t o be stationary . 

4.3 Filtering Prior to Seasonal Extra ction 

It should be remembered that in the introduct ory discussion 

of the evolving seasonal model tha t the noise can incl ude what 

would u sually be called trend . Thus a high pr oportion of its 

variance will be explained by very low frequency components and 

so it is necessary to filter w(n ) t o eliminate the trend . After 



trend elimination it is assumed that the new noise t erm x(n ) is 

stationary with spectrum f (A). Filtering- replaces w( n ) by y (n) 
x 

(see (3.2. 6 )), 

y (n ) = ~q b .w(n -j) 
-p J 

n = 1, ... , N 

and also therefore replaces s*(n ) and u(n) by s(n ) and x(n), 

s(n ) ~q b .s* (n-j) 
.-p J 
J 

x(n) = ~q b.u (n-j) 
.-p J 
J 

n = 1, ... , N 

where N is the number of ob servations remaining after filteri ng . 

The coefficient s ~(n ) a nd ~~(n ) become a.(n ) and ~.( n ) after 
J J J J 

filtering. For any of the trend-removing f i l t ers mentioned i n 

§4.6 the small difference between the properties of the st arred 

and unstarred coefficients may be disregarded. One of the 

traditional methods of formi ng y (n ), discussed in Chapter III, is 

the subtraction of a cent red 12 months moving average from w( n ). 

A thorough consideration of a n appropriat e trend-removing filter 

is even more important in the present case than i n Chapter III 

where s*(n ) was assumed stable for the method adopted will now 

have to allow frequencies well below Al , say, t o influence the 

estimate of sl(n) and correspondingl y thi s estimate wou ld be 

badly affect ed by a trend if t hi s was inadequately removed . 

4.4 Suitability of Seasonal Estimation for Optimal Procedures 

The -technique used to obt ain an estimate of the seasonal 

component is founded on the use of optimal methods for the 

extraction of a signal, the seasonal, which were briefly sketched 

in §l. 5. These methods' have been extended to allow for a 

non-stationarY signal (see [ 57] ~d [24]). The method is quite 

general and has the following virtues . I t allows the data up to 

the latest moment to be u sed to estimate the seasonal component, 

but as well this estimate may be revised as more informat ion comes 
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to hand. This is important for if the seasonal is allowed t o 

change it must be recognized that a t time n a large part of the 

i nformation available for the est i mation of the seasonal a t that 

time point has ye t to eventuate. Second, insofar as there is a 

stable seasonal component , or i ndeed i f a more elaborat e model 

is used, a seasonal component changing according to a sufficient l y 

simple deterministic law, this component will be exactly 

represented i n the est imate. Thirdly, only one unknown panamet er 

is i nvolved at each of the seasonal frequencies, t his being of the 

nature of a signal to noise rat i o. The level a t which this 

parameter is set reflects t he compromi se to be effect ed bet ween 

a quic k response, resul t i ng in qui t e a vari able estimat e of 

seasonal, a nd the damping out of noisy fluctuations. In principle 

this parameter should be det ermined f rom the data. 

The actual methods u sed i nvolve some compromises. The first 

issue arises in connection with the pre-seasonal extraction 

filtering. In all three techniques have been used but discussion 

of two of the se is delayed temporari l y . One of the t wo does in 

f ac t sub s t antially eliminate the prob lem now discussed whi l e the 

othe r (see section 4) is used because it enables estimate s t o be 

made using all the data up t o the current time point a nd does not 

lose us the last six observations, as does the subt raction of a 

centred 12 months moving avera ge. The remaining met hod i s the 

simple device of removal of a centred 12 months moving average . 

As is apparent from Fi g . VIII, removing a centred 12 months 

moving average does not affect a stable seasonal but it wi ll do so 

for a changing one. The effect may be judged by cons ider ing the 

model ariSing from (4. 2.1 ) a nd (4. 2 .2 ) when Ip.1 < 1. It was 
J 

i ndicated in §1.3 that the effect of fi l tering i s to multiply the 

spectral densities f *(A), f (A) by the factor IB(A)1 2
. B(A) i s s u 

the freque ncy response function, a nd f or the subt ract i on of a 

centred 12 months moving a ve rage is give n by 
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{ 
1 sinAsin6A} B (A) = 1 - ~2 =~=.;:.:....:. 
eLf . 2 1"\ • 

(4 .4 .1) 
SIn "2/\ 

The effect is considered a t the seasonal f requency where it will 

usually be greatest, name l y A
l

. It is B(A) which is more relevant 

than IB(A)1 2 for B(A) is the factor mul tiplying the component a t 

frequency A, whose variance is f *dA . Investigating B(A) i n the 
s 

range of frequencies i n which the bul k of the spectral mass of the 

signal lies allows a n assessment of the degree of distortion of the 

signal caused by fi ltering to remove the trend . 

A good approximation to the value of a, such that [A.-a,A.+a] 
J J 

contains a proportion p, of the t ot al mass under the curve given i n 

(4.2.16 ) is, f or p . near to unity a nd p < 1, 
J 

a 
'1fp 

-logpjta n 2" . 

I ndeed the proportion is very near t o 

2 
l-p j 

--2-----:.....-- dA 
1+p .-2p .cOSA 
. J J 

'[,00 
- 00 

I k I ikAd"\ p. e /\ 
J 

sinak 
k 

~ arc tan ( -a ) 
'If logp. 

J 

(4.4.2) 

(4.4.3) 

1 where a = - logp. a nd the approx imation is adequate if a is small 
a J 

a nd p. near to uni ty . For p. = . 98, p = . 90 the value of a i s 
J J 

0 .127 a nd for p = .50, Pj = .98 the value is . 0203 · The value 

of the response function, (4.4.1), is given a t the relevant points 

f requency (A) 

B(A) 

Al - 0 . 020 

-. 960 

Al +0 . 020 Al +0. 127 

1.036 1.170 . 



This indicates that the effects of the filtering will be slight. 

Over the range in which 50% of the spectral mass of si(n) lies 

the effect on the signal will be negligible. Over the remainder 

of the range considered the signal will be slightly diminished 

below Al and slightly augmented above Al . The resulting relocation 

of the signal affects only 5% of the total mass. As it seems 

appropriate to ignore the effects of this filtering sen) and 

s*(n) are no longer notationally distinguished. In any case if 

the next suggestion for simplification is adopted these effects 

are reduced even further. 

The second simplification is to adopt a technique which 

treats each s.(n) separately . The methods proposed are filt ering 
J 

processes and the justification for this simplification is the 

narrow band nature of the signal, i.e. the seasonal, for this 

assumes, for a given noise level, tha t there will be l ittle 

interference between the six signals. This point is discussed 

in detail in Hannan [24]. To illustrate this point the responses 

of the seasonal extraction filters are calculated and presented 

in Chapter V. It will be seen that the filter used to elicit 

sj(n) will hardly be affected by the sk(n ), k + j, because its 

response will be very substantially concentrated at A.. If, 
J 

however, there was concern about possible interference anothe r 

procedure could be used which eliminates both trend and sk(n), 

k + j, to a substantial degree. This is the procedure mentioned 

at the end of the preceding paragraph . In this approach one forms 
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y.(n) = (2-5~) ~66akw(n-k )cosA .k (4.4.4) 
J J - J k 

where 5~ is unity if j = 6 a nd is otherwise zero and a k are the 

coefficient s i n a centred 12 months moving average. This produces 

a filter with response 
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sin6 (A-A. )sin (A-A . ) 
J J 

sin6(A+A. )sin(A+A. ) 
J J 

which by elementary manipulations is reduced to 

sinAsin6A 
6(COSA-COSA.) (4.4. 5) 

J 

The expression (4.4.5), which is illustrated in Fig. IX for 

j = 1, 2 a nd 3, has a zero at A = 0 of the same order as is 

obtained when a centred 12 months moving average is subtracted. 

2 Whereas the response of this latter filter is like 6A at A = 0 

that of (4.4.5) is like A2 (1-COSA.)-1, which since (l-cOSA.)-l is 
J J 

larger than 6 only for j = 1 shows that the filter with response 

(4.4.5) tends to remove the trend better than the moving avera ge 

subtraction when j > 1, and not much worse for j = 1. Of course at 

Ak, k + j, (4.4.5) has zero response so that sk(n), k + j, is 

substantially removed. At A., (4.4.5) is unity and tends to have 
J 

a flatter, and therefore better, shape than the moving average 

subtraction filter has for j small, though the reverse is true for 

j near 6. The small j, j = 1,2 in pa rticular, are most likely to 

be the important seasonal frequencies. Experience with practical 

applications has suggested that the refinement involved in the use 

of the filter with response (4.4. 5) is not needed, (see Appendix D), 

particularly as i t loses six observations a t the end of the series. 

In principle it is not necessary to t a ke each A. separately 
J 

any more than it is necessary to adopt a first difference scheme 

i n representing E .(n ) and T} .(n ) in terms of a.(n) and ~.(n). In 
J J J J 

practice, however, the problem of computing the optimal coefficients 

becomes very great unless these things are done, as high order 

polynomials have to be factored. Computing each s.(n ) separately 
J 

has one result which must be mentioned, namely that, unless the 

prefiltering by means of filter (4.4.4) is carried out, it i s not 

quite true that a n additional s t ab le seasonal component wi ll be 

perfectly represented. This is because the part of the st ab le 
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seasonal due to the term a.cosA.n and ~.sinA.n will contribute 
J J J J 

not only to Sj(n) but also to sk(n ) for k + j. The effect will 

be slight however as can be judged from the response function of 

the filter used to compute s.(n ), which i s shown in Chapter V 
J 

(see Fig. XII). 

The final simplification is that the noise level, i.e. f (A), x 

is treated as 

to produce an 

a constant value f (A . ) when designi ng the filter 
x J 

estimate of s.(n). The justification for this step 
J 

is of the same nature as that for the previous simplification, 

namely that the response of the filter designed to produce the 

estimate of s.(n) will be very concentrated at A. so that assuming 
J J 
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f (A) constant at its mid band value, for the band where the filter 
x 

is concentrated, will have no great effect. In this regard, any 

other procedure is hardly conceivable as sufficiently precise 

knowledge necessary to warrant a more exact treatment is unlikely 

to be available. 

Thus the procedures will begin with a prefiltering of w(n ), 

either by removing a centred 12 months moving average, by use of 

the filter (4.4.4) or by a trend removal procedure outlined 

below i n §4. 6, to produce y.(n) . 
J 

4.5 Seasonal Extraction Model 

For each j the model 

Yj (n ) = s. (n )+x. (n ) 
J J 

j = 1,2, ... , 6 

is considered, wherein s.(n ) is as defined in (4.2.1) and (4.2.2) 
J 

but with p. = 1 a nd x.(n) to be serially uncorrelat ed and 
. . J J 

uncorrelated with s.(m), for all m, and with variance 2rrf (A.). 
J x J . 

This is fictitious as previously explained but not in a way which 

should seriously affect the resul t s. The optimal filter is now 

chosen to estimate sj(n ) based on the procedures for extracting 

a signal immersed in noise which were outlined in ~1.5. The 

derived filter depends only upon the ratio {cr~/2rrf (A.)}, which 
J x J 



is a form of signal t o noise ratio. Some discussion of estimation 

of this ratio will be given below, in §6 .3. "(V) ( The estimate s. n ), J . 

of s.(n ), using observations up to time (n+v), V ~ 0, is then 
J 

calculated, whe re (n+V) is the latest t ime point available. The 

estimates for each seasonal frequency are then combined to obtain 

"(V) 6 ,,(v) 
s (n ) = L:l s. (n ) . 

j J 

The derivation of the formulae for ~~V)(n) us ing the model (4. 5 .1) 
J 
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is not given here (see [57] a nd [24], [25]) but a sketch of the ma in 

results is given onl y as a basis for later discussion (see Chapt er V) 

of the implementation of these procedures a nd development of the 

estimates' characteristics. 

Let ~. be the root , of less than unit modulus, of 
J 

1+8. (1-z)(1-z-1) (4. 5 .3) 
J 

where 8. = ~f (A.)/(a~/2) a nd z is as defined in §1.5. This root 
J x J J 

is (28. fl{ 1+28 . -,J (448 .)} . Then form (see [25]) 
J J J 

u. (n ) 
J 

(4. 5 .4) 

If u
j 

a nd Vj are computed for some initial time point they are 

simply obtained thereafter from the following recursive relat ions 

u.(n+l) = ~. {u.(n )cOsA.-v .(n )sinA.} + (l-~.)y(n+l) 
J J J J J J J 

v.(n+l) = ~. {u.(n)SinA.+v.(n)coSA.} . 
J J J J J J 

Then the seasonal estimate at each point n, based onl y on pas t 

observations is obtained from25 

25 
It should be noted that calculation of the v. defined in 

J 

(4. 5 . 5 ) 

(4.5.4) is onl y necessary where the recursive formulae in (4. 5 . 5 ) 
are used t o obt ain u.(n) and v. (n ) for each time point, because 

J J 
"(0) 'e (4. 5 . 6 ) shows s (n ) is based only on the u. (n ) ~. 

J 
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To obtain ~(V)(n ), for V val ues > 0, one can proceed 

iteratively by means of 

s(V+l)(n) = s(V)(n)+~16 {(l-~.)~~ (y(n+V+l) cOS(V+l)A.-u. (n+V+l)cOS(V+l)A. 
j J J J J J 

(4. 5.7) 

Thus as new data comes to hand s(V)(n) is updated. The jth 

summand in the second term is the adjustment to ~~V)(n ) required 
J 

to obtain ~~V+l)(n). As mentioned above, this successive modificat ion 
J 

of an estimate is essential for any efficient method for a changing 

seasonal as future observations contain relevant i nformation for a 

correct estimate of the seasonal. 

4 . 6 Trend Extraction Procedure 

Two ways of eliminating pen), the low frequency component of 

wen ), have already been discussed, one by subtracting a centred 

12 months moving average a nd one by the use of the filter (4.4.4). 

Both methods have the disadvantage of producing a trend reduced 

series which stops 6 terms short of the end of t he original series. 

I n this section a technique is derived which is designed to remove 

trend which can be carried up to the last observation. Again the 

approach adopted is to propose a model a nd, thence, to obta in a 

trend representing filter which can be iteratively calculated . 

The model employed is not regarded as represent i ng the truth but 

rather it is believed that the filter resulting will do its task 

reasonably well. Support of this belief is provided below. 

The model is of the form 

(4.6.1) 

where 

(4. 6 .2) 



and €(n ) is serially independent with zero mean a nd constant 

2 variance a. This model produces a pen ) whi ch is the sum of a 
€ 

linear trend and a random component whi ch is the result of two 

successive partial summations of the €(n ) series, i.e. of the form 

N n 
~ ~ €(u). As already i ndicated this model is only a convenient 

n=o u=o 

basis on which to work. This must be borne i n mind when 

considering the rationale for a n assumption that v(n) has a 

constant spectrum. Clearly for estimation of pen) it is 

s*(n)+u(n ) which is the noise and this sum certainl y has not a 

uniform spectrum. The problem of solving the equations necessary 

to obtain a n optimal filter for representing pen ) when v (n ) is 

more general is a difficult one and has been avoided. The main 

cost will be the production of a filter with a non -zero response 

at the points A. so that the subtraction of their estimate of pen ) 
J 

from wen) to produce yen) will affect s*(n ). However a parameter 

occurs in this problem, of the same nature as the e. occurring i n 
J 

the seasonal model of §4.5, which reflects the rat io of the 

varia nce v (n ) to that of E(n ). It is referred t o as e2
• By 

making e2 larger the response of the filt er concentrates near t o 

A = 0 and thus reduces the effect of the removal of the est imate 

of pen) on s*(n ). The reason why (4. 6.2) i nvolves second 

differencing, rather than just first differencing, is that only 
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then does one obtain a filter for removing pen) which at the origi n 

has a root of the same order as the other methods proposed above 

and experience suggests a root of thi s order is needed. 

Canonical Factorizat ion 

The optimal filter may be obtained from a generating function 

of the form given i n (1.5.37) and is written 

(4. 6.3) 
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where g (z) = a2/~ a nd the f unction D(z) i s defined, us ing 
€€ € "'/I 

(1. 5 .33) a nd (1. 5 .34), as 

D(z)D(z-l) 4 
g (z)+ll-zl f (0) 

€€ V 

with f (0) being the spect rum a t zero of the noi se v (n ). 
v 

(4. 6 .4) 

2 
The a 

term i ncluded i n (1. 5 .34) has now been inc l uded in D(z) a nd D(z-l). 

By using the defini t ion of 82 previously s t ated c (V)(z) may be 

redefined using t he f unctions F(z) a nd F (z-l) aris ing from 

(4. 6 . 5 ) 

so t hat the generat i ng function f or the optimal filt er now is 

(4. 6 . 6 ) 

remembering that for signal ext rac t ion V ~ 0 (see C in §1. 5 ). 

To progress t owards an optimal predict ion the canonical fac t or s 

F(z) a nd F (z-l) must be found so the expression (4. 6 . 5 ) must be 

set equal t o zero a nd solved. To f ac i lit a t e thi s solution 

(4. 6 . 5 ) is s i mply rewritten as 

2 2 -1 2 
1+8 (l-z) (l-z ). (4. 6 .7) 

If A = pei~ is a solution of (4. 6 .7 ) then so also 

--1 A . I n fi nding t he roots of (4 .6 . 7 ) i t i s most convenient t o 

work with 

(4. 6 .8 ) 

as defini ng t his new variable allows (4 . 6 .7 ) t o be represented by 

the followi ng quadratic 

2 1 
A* +4+-2 -4A* = 0 

8 
(4. 6 .9 ) 

i.e . 
2 1 

(A * -2) +-2 = O. 
8 

The solutions for A* from (4. 6 . 9 ) are 

A* = 2 :: i ~ . (4 . 6. 10 ) 
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Now the decision as to whether 

/1..* 2 i 
1 

+ e (4. 6.11) 

~* 2 i 1 
::;0 - e 

or 

/1.* 2 i 1 
== - e (4. 6.12) 

);* 2 + i 1 
e 

is chosen as the appropriate pair of root s turns on whether t he 

modulus of /I., i.e. p, is made greater or less than 1. As the case 

of interest must be where p < 1, (4. 6.12) is the operative solution . 

Using /I. == pei ¢ and (4. 6.8), the definition of /1.*, the solut ions 

chosen may be written 

H -1 -H 2 i 1 
pe +p e == - e (4. 6.13) 

-H -1 H 2 + i 
1 

pe +p e == e 

By first adding the second expression in (4. 6.13) to the first 

and then subtracting the second from the first one obtains 

pcos¢+p 
-1 

cos¢ 2 == 

-1 1 
(4, 6.14) 

psin¢ -p sin¢ == - e 
Multiplying the first equation in (4. 6.14) by P a quadratic i s 

-1 
obtained and the solut ions for p are in fact solutions for p and p 

( 
-1 since multiplyi ng 4. 6.14) by P gi ves the same quadratic expression 

-1 
in powers of p 

p == 
l-sin¢ 

cos¢ , 

The solution used is 

-1 
p 

4sin¢ 
cos¢ 

(4. 6.15) 

although i n fact p == (l~sin¢ )/cos¢, and therefore solutions for 

-1 p of exactly this form may of course also be found. The choice 

exhibited in (4. 6.15) is based on a desire for a pair of solutions 

f d -1 'th th t th t d -1 t b 't' d or p an p Wl e proper yap a n p mus e POSl l ve a n 

-1 
p smaller than p This choice means that ¢ will be a small positive 

angle if P is close to 1. 
-1 

The product pp will equal unity . 



From the second equation in (4. 6 .14) and the definition of 

-1 p and p in (4. 6 .15) the following relation between ~ and 8 may 

be established, 
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( 
-1 

sin~ p-p ) 
1 
8 

(4. 6 .16) 

i.e. (-2sin2~)/(cos~) = 1 
8 

Once a value of 82 is specified then ~ may be simply deduced from 

(4.6.16) and p from (4.6.15). 

If a particular value of 8
2 

is chosen, say 8
2 
0' 

then using 
H 

the steps suggested in the previous paragraph a root z = p e o 0 

may be simply obtained. The remaining roots are of course z , o 

~ -1 and z-l It is useful for the latter development of the 
o 0 

o 

response function to represent (4. 6 .7 ) explicitly in terms of its 

roots and thus to derive a n equivalence which is required for the 

canonical factorization into F(z) and F (z-l) as follows 

2 (1 ( )2 ( -1 2) 2 ( (-) ( -1) ( - -1 ) -2 8 -2+ l-z l-z ) = 8 l-z z) l-z z l-z z l-z z z 
8 0 0 0 0 

= 

(4. 6 .11) 

e
2 

(l-z z)(l-~ z)(l-z z-l)(l_~ z-l) 
000 0 

z z 
o 0 

2 e - ( -1 ( - -1 --2 (l-z z)(l-z z) l-z z ) l-z z ). o 0 0 0 
p 

Since the roots of (~+(1_z)2(1_z-1)2) are of course the same as 
e2 

the roots of the expression given on the left hand side of (4. 6 .17), 

2 2 
the factor 8 has been extracted and finally z z = p has been used o 0 

to redefine a new multiplicative factorr e12
, where e1 = e/p, so 
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that t he power series i n F (z) has leading coeff i cient of unity . 

The canonical f actor is easily deduced f rom (4. 6 .17 ) a nd is gi ven by 

B/ -F (z) = p (l-z z)(l-z z) o 0 

and this implies direct l y t ha t 

8 11 -
- ~LL-Z )(l-z ) = l. 
p 0 0 

4. 7 Establishing Trend Estimates from the Opt imal 
Response Function 

(4. 6 .18 ) 

(4. 6 .19 ) 

Using the canonical fac t orizat ion from the previous section 

t he response funct ion may now be written 

c (V)(z) = (1_z)2 [ 

8 ' (l-z z)(l-z z) 
o 0 

where t he t erm i n the square b racket is the positive t erms i n a 

Laurent expansion i n a spec i fied a nnulus. I t is necessa ry theref ore 

to first obtain a n expression for the square b racke t of the fo rm 

where t he i ndividual coefficient s a . ca n be obta ined by contour 
J 

i ntegration withi n the specif i ed a nnul us f rom 

The circle around which i nte gration occurs i s such tha t 

Iz I < Izl < r < 1. The generat i ng f unction requires a general 
o 

evaluation of t he expr ession (4 . 7 .2) a nd thi s is obtained f rom 

substitut i ng (4 .7 .3) i n (4. 7 .2) to gi ve 

1 
B'21ri 

1 
e '21ri 



Since (4. 7 .4) has poles z, 

be evaluated from 

z (-V+2 ) 

z and z withi n r it therefore may 
o 0 

-( -V+2) 
z 
o 
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K = _____ ~~o~------__ ------
(l-z )2e' (z -z )(z -z) 

000 0 
( -2 (- - + l-z ) e' z -z )(z -z) 

000 0 
(1-z)2(Z - Z )(z -z ) o 0 

Using the expression (4. 7 . 5 ) f or the term in square brackets in 

(4. 7. 1) the genera t i ng function required is 

e' (l-z z )(l-z z) o 0 

Now if V = 0 t he first and second term in K may be shown to be 

2 2 2 
e 'p (l-p )+z(l-e '(l-p )) 

(z -z)(z -z) o 0 

by using elementary algebraic manipulations and the property tha t 

(l-z )(l-z ) = -el ,. The addit ion of the third t erm in K to (4. 7 . 7 ) 
o 0 

produces the expression 

2 2 2 2 2 e' {e'p (l-p )+z(l-e ' (l-p ))}(l-z) +z 

( 
2 -

l-z) e' (z -z)(z -z) o 0 

with a numerator which is a cubic i n z having complex roots z o 

and z a nd is therefore divisible bye ' (z -z)(z -z). Carrying out o 0 0 

t he suggested division and then incorpora ting the expression outside 

the square bracket one obta ins 

212 
(l-p )+z(e,-(l-p )) 

(l-z z) (l-z z) o 0 

A similar procedure is employed when V = 1 to establish the 

expression 

212 2 
(1) {(l-p ) - e , }+z{e, -(l-p )} 

C (z) = ------:;--.;;....----

(l-z z) (l-z z) o 0 
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The generating function f or p(o)(n ) i s z-nC (o)(z) a nd one 

identifies z-n+j with the observation w(n- j ). As the t wo 

o racketed t erms i n the denominator may be s imply expressed in 

terms of p and ~ the expression z-nc (o)(z) becomes 

A(O) A(O) 2A(0) {2 1 2}-n p (n )-2pcos~p (n-l)+p p (n-2) = (l-p )+z(e1 -(1-p)) z 

(4. 7 .11) 

In general, the generating function for p(V)(n ) is z-n -vc(v)(z) (if 

V = -1,-00, p(V)(n ) is written p(-V)(n ) to simplify presenta tion ); 

V = -1 it is 

The recursive relations i n n, (4. 7 .11) a nd (4. 7 .12), must clearly 

have two starting values. Rather tha n guessing two values, which 

could be done reasonabl y effectively, it is possible t o find exac t 

starting values at two starting pOint s, say (n-l) a nd (n-2), by 

noting that the de nominator of (4. 7 . 9 ) may be ~ritten as follows 

1 1 {Z Z} 
= (z -z) (1-: z) - (l-~ z) 
000 0 (l-z z)(l-z z) o 0 

1 . 1 . 1 . = ~ __ 'L,oo (z J+ _zJ+ )zJ 
2ipsin~.0 0 0 

J 

Thus the summations, 

for 

A(O) (2 ,,00 j sin (j+l)~ ( .) 1 ( 2)} 00 j s in ( j+l)~ w(n- J' -l) 
p (n ) = l-p ) ~op sin~ - w n-J +{e1- l-p ~op sin~ 

J J 

pel) (n) 

'L,OOpj sin ( j+l)~ w(n - j ) 
.0 sin~ 
J 

provide an explicit evaluation of p(l)(n ) and p(o)(n ). 



-n-V (V)( The expression z C z) which generat es the coeffi cient s 

for p(V)(n ) is obtained from (4. 7 . 6 ) a nd i s 

+ __ ~z~-_n_-_v~(1~_~z~)~2 ______ __ 

(z -z )e ,2(1_z z)(l-z z) . 
o 0 0 0 

If (4. 7 .15 ) is used to f orm 

-n -V (v)() -n -V+l (V-l)() - n-V+2 (V-2)( ) z C z -2z C z +z C z whi ch produces 

A(V)() A(V-l)() A(V-2)( ) P n -2p n +p n , then aft e r some s impli f ication one 

obtains 

( ) ( ) () -n-v( )2 
-n -V V () - n-V+l V-l () - n-V+2 V-2 () z l-z z C z -2z C z +z C z 

(V+l)(1 - )2 -V+l(l )2 

{ 

z -z -z -z 
000 0 

(z -z ) o 0 

(l-z z)(l-z z) o 0 

(
V - 2-'\1 2 

z z (l-z ) -z (l-z ) ) } o 0 0 0 

(z -z ) o 0 

z-n -v [(1_z)2 {a+b z}] 
(l-z z)(l-z z) o 0 

where, 

a 

From the formula for c (o)(z) gi ven in (4. 7 . 9 ) i t may be 
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deduced t hat the difference between the ob servat ion a t time point 

(n+V) a nd the estimated t rend based on ob servations pri or t o (n+v) 

at the same time point is ge nerat ed by 

212 
A(O) -(n+V) { (l-p )+(e,-(l-p ))Z} 

w(n+V)-p (n+V) = z 1 - -----~------
(l-z z) (l-z z) o 0 

which may be f ur ther simplif ied by us ing p2 

!e' = (l-z )(l-z ) to become o 0 

z z and o 0 



Since the generating function when lagged one time peri od is given by 

( ) -(n+v ) 2(1 )2 
w(n+V-l) -p 0 (n+V-l) = z p -z z (4. 7 .20 ) 

(l-z z) (l-'Z z) o 0 

it is obvious that the equivalence 

(4. 7 .21) 

holds a nd that by using the left hand side of (4. 7 .16 ) and the 

right ha nd side of (4. 7 .21) the following iteration on V i s derived, 

p(V)(n ) = 2p(V-l)(n )_p(V-2)(n)+pV-2(1_p2)cosv~ {w(n+v)_p(0)(n+v)} 

(4. 7 .22) V-3 2 "(0) -p (l-p )cos(V-l)~{w(n+V-l)-p (n+v-l)}. 

4. 8 Additional Value from the Re sponse Function 

The response functions established in §4.7 are the source of 

estimating relations for the trend based on the model (4. 6 .1) a nd 

(4. 6.2 ). Because of the generative properties of these response 

functions they provide valuable insight into the effects of the 

opt imal filter they represent on a complex harmonic . The gain, 

the square of the modulus of the response function, provides 

information on how the spectrum of the observations has been 

affect ed by the optimal fi l ters . To develop convenient formulae 

for the responses for varying values of V it is necessary t o 

return to (4. 7 .15 ). For simplicity onl y, the response function 

is obtained for the t ime point n = 0, although generalization t o 

-n a ny time point n merely reqUires multiplication by z The 

general response f unction for p(V)(o) is therefore 
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-V( 2 + ~~z __ ~_l_-_z~) __________ _ 

8 f2 (1_z z)(l-z z)(z -z ) 
o 000 

(4. 8 .1) 

It is convenient to simplify (4. 8 .1) considerabl y by elementary 

algebraic manipulations to obtain 

2 - ( v+2 ) ( 2 V+l 2 ( ( 1+8 f zl-z) (p (l-p) PCOSV<P-zcos V+l)<P)} 
2 ( (- ( -1 ( - -1 8 f l-z z) l-z z) l-z z ) l-z z ) 

000 0 

(4. 8. 2) 

As V becomes large it is apparent t ha t the second t erm in (4. 8. 2) 

will become very small as p is less t han one a nd the response will 

then be closely approximat ed by 

1 
2 (- ( -1 ( - -1 8 f (l-z z) l-z z) l-z z ) l-z z ) o 0 0 0 

(4. 8 .3) 

which on employi ng (4. 6 .17 ) becomes 

1 1 
------------~ = ----~~--
l+82 (2(1- cOSA)2 l+1682S in4~A 

(4. 8 .4) 

To evaluate the response a t a ny V value which i s not large 

(4. 8 .2) is best rewritten as 

1+8 r2 z-(V+2) (1-z)2(c+dz) 

1+1682sin4~A 

where the constant s c a nd d are defined by 

V+2 ( 2) c = p l - p COSV<P, 

(4. 8 . 5 ) 

(4. 8 . 6 ) 



As the expression (4. 8 .5) is complex it is best t o cons ide r the 

gain of the optima l filter which is 

Il+e , 2z -(V+2 )(1_z)2 (C+dz)1 2 

1+16e
2
sin

4
-!A 

(4.8 .7 ) 

An example of this function, when e 15, is given in Tab le 11 

i n Chapter V. 

4. 9 Trend Estimation Formulae for Large V 

It is convenient t o l eave the derivation of formulae for 

estimating a trend value a t a time point which i s both preceded 

by and followed by a reasonably large number of observa tions unti l 

this juncture because the se formulae a re most easily deduced from 

the expression (4. 8 .3). From the symmetry of (4. 8 .3) it i s apparent 

that its expression i n partial fractions must be of the form 

1 { c+dz c+dz-
l 

} 2" +-~l--+e . 
e' (l-z z)(l-z z) (l-z z- ) (l-z z-l) 

o 0 0 0 

(4. 9 .1) 

On simplifying and equating like t erms it is found that c = -e. 

-1 By setting the term in z or z equal to zero the equivalence 

c = -d(l+z z )/z z (z +z ) o 0 0 0 0 0 

may be establ i shed . Further, the equating of constant terms 

provides the fo llowing express i on in c alone , 

1 

- - 2 
(z z )(z +z ) o 0 0 0 

l+z z o 0 

( - 2 - 2) - c l+(z z ) +(z +z ) o 0 0 0 

(4. 9 .2) 

(4. 9 .3) 

Elementary manipulations of (4. 9.2) a nd (4. 9.3 ) resul t i n the 

following expressions for c and d, which depend onl y on p and ~, 

c 

d 

1. 2 
-'-"I'P 

222 (l-p ) (l+p +2pcos~)(l+P -2pcos~ ) 

2 -p (2pcos~) 
222 

(l-p )(l+P +2pcos~)(1+p -2pcos~) 

(4. 9 . 4 ) 

---~=---
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Thus if (4.9.1) is rewritten to include the values of c and d 

given in (4.9.4) it becomes 

1 
222 2 e' (l-p ) (l+p +2pcoset» (l+p -2pcoset» 

C-Dz _ (1_p2)} 
(l-z z )(l-z z) 

o 0 

2 2 where new constants C = l+p and D = P (2pcoset» have been employed. 

The expression (4.9.5) allows decomposition of the generating function 

so that the trend estimate p(o) may be considered as having three 

parts. One component involves observations prior to the time point 

of estimate and is denoted pI! (0). Another component involves 

observations after the time point of the trend estimate a nd is 

denoted p' (0). The last component merely weights the observations 

at the same time point as the required trend estimate. The term 

which produces p' (0) is the one on which attention is first 

focussed. It is simply expressed in partial fractions as follows, 

-1 
C-Dz 

( -1) --1 l-z z (l-z z ) 
o 0 

where y 
Cz -D 

o 

z -z 
o 0 

a nd 
D- Cz o 5 = --"-
z -z 
o 0 

Expanding each term on the right hand side of (4.9. 6) in a 

(4.9. 6) 

geometric series, collecting like terms and rewriting z a nd z 
o 0 

in terms of p a nd et>, one obtains the following simplification 

of (4.9. 6) 

-1 C-Dz C ~oo m sin(m+l)et> -m 00 m-l sinmet> 
-(--~-~l~(-------~l-= ~op sinet> z -D L:oP sinet> 
l-z z ) l-z z) m m 

o 0 

-m 
z 
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In an exactly analogous manner it is found that the expression 

generating pit (0) may be simplified to become 

C-Dz C ~oo m sin (m+l)¢ m D ~oo m-l sinm¢ 
= ~oP sin ~ z - ~oP sin~ 

m 
z . (4. 9 .8 ) 

m m (l-z z) (l-z z) o 0 

The expressions i n (4. 9 .7 ) a nd (4. 9 . 8 ) may be generali zed simply 

to relate to estimates a t any time point , say n, a nd when applied 

to the relevant observa t ion give the fo llowing component estimates, 

pI (n ) 

pit (n ) C L:oo m sin (ffi-/-l)¢ ( ) D L:oo m-l sinm¢ w(n -m). 
op sin¢ w n-m - op sin¢ 

The overall estimate p(oo)(n ) is obtained by recombining the 

component parts according to (4. 9 . 5 ) to give 

= {pI (n hplt(n )-Cw(n )} = 

el2 (1_p2) (l+p2+2p cos¢ ) (1+p2 _2pcos¢) 

{pI (n hplt(n )-Cw(n )} 
2 2 e I (l-p ) (l+p +2pcos¢) 

(4. 9. 10 ) 



V COMPUTATION OF SEASONAL AND TREND ESTTh1ATES 
AND THEIR PROPERTIES 

5.1 Introduction 

The calculations described are those necessary for the 

deseasonalizing of a n economic time series, whe n it is important 

for the whole series to be adequately adjust ed. If it is onl y 

necessary to have adequate adjustment for the latter part of the 

data available some savings i n computer storage and proce ss ing 

t ime may easily be had. 

The series y (n ) is assumed to be available for n = 1, ... ,N. 

To aid i n the description of the computations to be carried out 

t he availab le sequence of filtered observations is divided into 

three parts, from 1 t o M+l, M+l to N-M a nd N-M to N. These 

divisions will henceforth be referred to as the lower, 

i ntermediate a nd upper segments of the series. To proceed with 

the explanation of M it is necessary t o return to the definition 

of the seasonal s. (n ) in terms of s . (n ) a nd s . (n ), first 
J J-J 

i ntroduced in §4.2 (see (4.2.3) a nd §4.2). In the next section 

a formula is proposed for estimating S .(n) and the time point M 
J 

will be chosen so that the estimate f.(M) can be regarded as being 
J 

onl y negligibl y influenced by observations a t the beginning of 

the series. Similarly the estimate, f.(N-M), 
J 

is chosen so that 

i t is onl y influenced in a minor way by ob serva tions a t the end 

of the series. 

5.2 The I ntermediate Segment Seasonal Estimates 

So far in the discussion of signal extraction formulae the 

point of signa l extraction has been located by the parameter V ~ O. 
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Thus by using a procedure discussed by Ha nna n [25J a nd Whittle [57J 

the estimation of s ~V)(N_V), the signal at a time point V observations 
J 

from the end of the filtered sequence, is given by 
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where H = (l-~.)/(l+~.). This expression is easi er t o develop if 
J J 

a cha nge of variable m = k+V i s made so that (5.2 .1) may be 

rewritt en as 

(5 .2. 2 ) 

As V becomes large the second term in braces becomes negl igible 

a nd the estimator is then de noted 

f~OO) (N-V) 
J 

H 
00 Ikl ikA. 
~~. e Jy(N-k-V). 

k=-oo J 

Estimates of S ~oo)(n ) at time point s i n the intermediate segment 
J 

are obtained using the formula (5 .2.3) for all A. J 
J 

j = ~lJ~2J' "J~5 J 6 . Of course J the limi t s of the summation in 

(5.2.3) are in practice 1 a nd NJ but if M is appropri a te l y chosen 

the diffe rence between the actual a nd theoretical l imit s on the 

summation will result in onl y a n insignificant mi s-specification . 

For ease of exposition of the computational procedure (5.2 .3) may be 

.tt 26 rewrl en as 

f. (n ) = fl. (n )+fl.'(n )-Hy (n) 
J J J 

(5 .2.4) 

where 

'" S I. (n ) 
J 

'" s '.' (n ) 
J 

26 
The upper parenthesis (00) attached t o f.( n ) in (5.2 .3) 

J 
emphasizes the theoretical number of observations assumed t o be 
available between n and N. Henceforth a n upper parenthe s is is 
att ached onl y if (00) is not the appropriate one . 
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T A ( A ( he real and complex parts of ; I. n) a nd; '.' n) are easily obtained 
J J 

from (5.2. 5) a nd are 

u '. (n) (Xl m ( = H ~ ~.y n -m)cosA.m 
J o J J 

VI. (n) 
J 

(Xlm( ). H ~ ~.y n-m slnA .m 
o J J 

(5·2. 6) 
u'.' (n ) 

J 
H ~(Xl~~y(n+m)cosA.m 

o J J 

"( ) (Xl m ( ). v . n = H ~ ~.y n+m SlnA .m. 
J 0 J J 

The quantities detailed in (5.2. 6) may be evaluated at n = M+l ~~d N-/ 

to provide a basis for the evaluation of the same quantities for 

all time points in the intermediate segment . As each quantity, 

for each time point i n the intermediate segment, would involve a 

separate summation from 1 to N computing time is minimized by 

developing a n iterative relation st arting from the value obtained 

at M+l. It should be added that if the iterative approach is not 

adopted there would be no need t o calculate v l.(n ) a nd v '.'(n) 
J J 

because the estimate of the seasonal at each freque ncy does not 

i nvolve the se quantities. 27 

To establish the recursive relations needed for iterative 

evaluation of the quantities in (5.2. 6) it is easiest t o first 

obtain a recursion for fl. (n ) a nd f'.' (n ) of the form
28 

J J 

fl. (n+ 1) 
J 

-iA. 
f'.' (n-l) 

J 
H~ .e Jf'.' (n )+Hy (n-l) . 

J J 

27 
The reason for this comment will become evident as the seasonal 

estimate ~ . (n), gi ven i n (5.2.10), is expressed in terms of 
J 

u~(n), u~(n) and y en ). 
J J 

28 
A" ( ) A recursion f or ;. n+l 

J 
obtained but is difficult to 

the factor multiplying f'.' (n ) 
magnified. J 

in terms of f'.'(n) a nd y en ) may be 
J 

use for computer t abulati on because 
-1 

involves~. and any errors are gr eatly 
J 



On substituting for the complex quantities fl.(n) a nd fl!(n) using 
J J 

the expressions 

A 

~ I. (n ) 
J 
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€I: (n ) 
J 

(5.2 . 8) 

one can equate the real and complex parts in both equations in 

(5.2. 7 ) to give the following iterative relations 

~. Ju'. (n )coSA .-v l. (n)sinA.} + Hy (n+l) 
J l J J J J 

~. {u l
. (n)sinA .+v'. (n )cosA.} 

J J J J J 
(5 .2.9) 

Cl. ylLt}1/ 1"1 

The relations in (5.2.9) and the value calculated at n = M+l jmay 

be used to produce values for n = M+2 up to N-M. The associated 

estimated seasonal for this segment is then obtained from inserting 

the estimated quantities in (4.2.3) to give 

~. (n) 
J 

5.3 The Upper and Lower Segment Seasonal Estimates 

(5.2 .10 ) 

Attention is now focussed on the upper or most recent segment 

of data, where the estimate of the seasonal extracted will depend 

more on past and less on future observations as the point of 

estimation approaches N. 29 The estimate €.(N) has no future 
J 

observations on which it could be based. To begin the calculations 

29 
Past and future is defined in relation to the time point at 

which the estimate is being made. 



for this segment an estimate is made for each n therein which is 

based onl y on information from time points which precede n . These 

estimates are obtained from 

The real a nd imaginary parts of these estimates are the u. (n ) a nd 
J 
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v.(n) defined in (4.5.4) and are obta ined from the recursive relations 
J 

(4.5.5). To begin these iterative procedures one can use the values 

u' (N-M) a nd v ' (N-M) after multiplication by (l+~.). The estimate of 
J 

the seasonal for each frequency A. based only on the pas t is 
J 

~~o)(n) = f~o)(n )+f(~)(n). (5.3.2 ) 
J J -J 

Although ~~o)(n ) is the best estimate one can obtain a t N it is 
J 

apparent that for other points of time one should make use of 

future observations as well. In particular a t N-V there are V 

future observations available. It is therefore possible to obtain 

~~V)(N_V) for V = 0,1, .. . , M and this estimate can be obt ained by 
J 

employing the iterative relation which is 

-u. (n+v )COSA. V-v. (n+v )sinA . V} 
J J J J 

V = 1, ... , Mj n = N-M, ... , Nj j = 1,2, ... , 6. 

This recursion in V, when summed over j, is just the recursion 

presented in (4.5.7). To start the iteration based on (5.3 .3) the 

quantities s~o)(n), u.(n) a nd v.(n) are needed. Figure X illustrates 
J J J 

that (M+l) values of s~o)(n ), u(n) and v (n ) produce, through (5.3.3), 
J 

M values of s~l)(n). Each step of the iterative procedure provides 
J 

estimates at one less time pOint . The estimate at any time point 

N-V containing most information is the value S(V)(N-V), marked in 

the figure by a cross. This method has the virtue of not only reducing 

computer processing time but also of allowing a view of the way in 

which the estimates of the seasonal at each point of time stabilize. 

- -------
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FIG. X 
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If computer storage is a constraini ng factor a nd one is 

willing t o forgo the advantage of following the effect of 

additional i nformation on t he estimate then a more direct estimate 

may be obtained from 

(5 .3. 4) 

where 

v = O,l, ... , M. 

As this approach requires a separate summation for each es t i mate 

it will therefore increase processing time; however the s t orage 

space needed is redu ced. 

The lower segment of t he t ime series must now be cons i dered. 

To estimate each seasonal component over thi s period we may i ma gi ne 

t he time axis is reversed a nd t he set of procedures for t he upper 

segment will now apply to t he upper sect ion of the reversed seri es. 

To start t he estimation of t his segment one forms 

(l-~.) L;OO~~y (M+4m)cosmA . 
J 0 J J 

These values need not however be obta ined ab i ni tio as 

u~ (M+l) = (l+~.)u'.'(M-J-l) and v~(M+l) = (4~.)v '.'(M+l). In a 
J J J J J J 

completely analogous manner t o tha t desc r ibed for the upper 

segment, esti mates based onl y on the f uture, with re spec t t o the 

original definition of the time axis, are obta ined f rom the iterative 

formulae 

u~(n-l) = ~. {u~(n )cosA .-v~(n )sinA.L + (l-~.)y (n -l) 
J J J J J JJ J 

v~(n-l) 
J 

a nd from 

~ . {v~(n )cosA.-u~(n )sinA.L 
J J J J Jj 

n = M-J-l, ... ,2 



j lJ2 J ... J 6; 

6 
(2 -5. )u~(n) 

J J 

Exactly the same updating procedure in V (see 5.3.3) is carried 

out to obtain estimates for each time point using succe ssively 

more past i nformation until each estimate is based on as ma ny 

past observations as possible. The recurrence relation (5 .3.3) 

allows construction of a table similar to that shown in Fig. X 

except that the time scale on the extreme left of the figure now 

runs from 1 to M rather than from N to N-M. 

5.4 Trend Extraction Computations 

I n §4.6 a method was proposed for "trend extraction ". The 

calculations necessary to implement this method closely resemble 

those that have been discussed in the last two sections of this 

chapter. The series is divided i nto three segments as before a nd 

evaluation is begun either by making a guess a t the t rend value a t 
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MJ M-1J N-M and N-M+l or by carryi ng out the summations detailed in 
c~" d ('f • 9 · '2) 

(4.9.7)l Le. evaluating pl (n ) a t n = N-MJ N-M.t-l a nd p"(n ) a t 

n = MJ M-l. To economically compute the values in the 

intermediate segmentJ i.e. n = M+1J .. 'I N-M-l two simple recursive 

formulae may be used. I n section 4 . 9 the generating function of 

pl (0) was presented in (4.9. 6 ). If the t rend estimate considered 

is now gene ralized to refer to the time point n then the left ha nd 

side of (4. 9 . 6 ) implies the following recursive relation 

(5·4 .1) 

SimilarlYJ the left hand side of (4.9. 8 ) may be used t o obtain 

recursion for p" (n ), 

Cy(n)-Dy(n-l) . (5 . 4 .2 ) 



Once the values of p' (n) and p"(n) have been established for all 

n in the intermediate segment then the trend estimate for all 

points is derived from (4.9.1~. 

Trend estimation of the upper segment of the series requires 

an evaluation of both the summation i n (4. 7.14) a t n = N-M, N-M+l 

to start the recurrence relation in time for V = 0 given in 

(4.7.11) and for V = 1 given in (4.7.12). The values of p(o)(n ) 

and £(l)(n) when they have been calculated for the complete upper 

segment (it should be noticed that p(l)(n) can only be obtained 

up to N-l) provide the basis for a further iteration i n V using 

(4.7.22). This iteration is used to build a triangle of estimates 

similar in form to that depicted in Fig. X and discussed in §5.3. 

The body of this figure allows investigation of how rapidly t he 

trend estimate stabilizes as V increases. 
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The filtered observations yen) are obtained from w(n )-p(V)(n), 

using the largest V pOSSible, and naturally these observations are 

i nput to the seasonal extraction procedure. As new dat a comes to 

hand there must be a revision of past yen) and therefore of already 

computed values such as s(V)(n). Of course the trend should soon 

stabilize so that the updating may only have to be carried back for 

a few steps, perhaps 12 to 15. Such recalculations must be made if 

adequate estimates of the seasonal are t o be made for the most 

recent data points because any trend correction a t t hese point s 

must be incorporated as further very relevant i nformat ion comes 

to hand. 

To obtain the estimated "trend" for the lower segment the 

methods just described for the upper segment are available if once 

again it is imagined that the time series is temporarily reversed. 

The formulae, (4.7.11), (4.7.12) and (4.7.2%) are then applied t o 

the variables q(V)(n) and r(n) where these newly defined variables 

are r(n) = y (N+l-n) and q(V)(n) = p(V)(N+l-n) for n = N-M, ... ,N. 
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5·5 Evaluating Response Functions of Optimal Filters 

To evaluate how effectively the 'optimal' procedu re i s extracting 

the seasonal signal it is necessary to obtain a n express i on for the 

response function of the seasonal extraction procedure and to evaluate 

this function for various values of V. To accomplish this one ca n 

obtain the followi ng expression for ~~V)(N_V) by substituting in 
J 

(5.3.4) using the definition given i n (5.3. 5), 

00 {,'m-vi m V l} (i (m-V)A. -i(m-V)A.) 
H L: f3. +f3.+ + e J+e J y (N-m). 

mO J J 

(5.5.1) 

As the expression 

y(N-m) to produce 

in (5.5.1) is a filtering of 

is of the form L:ooa~V)(m)Y(N-m) 
o J 

the response function is given by 

,,00 (v)( ) iAill .wa. me 
o J 

( ) iVA . () - iVA . 
h.V (A-A.)e J+h. V (A+A.)e J 

J J J J 

where 

iVA V iA 
l-f3. {. V" (e -f3. )(l-e )} _ J 1 1\ f3 ___ ~J,,--__ _ 

- (l_f3.e iA ) e + j e iA _f3. ' 
J J 

V ~ O. 

In Fig. XI the response function (5.5.2) is depicted for the fir s t 

three seasonal frequencies for f3. = .96 and for V = 00. The figure 
J 

reveals i n the shape of the filter just how well the signal (and 

the power) at each i ndividual frequency is reproduced by the 

estimation procedure i n the intermediate segment. It should be 

noted however that only when in Fig. XII the modulus of the sum 

over all seasonal frequencies is graphed for V = 00 i s it apparent 

from the values of this gain function how adequately the overall 

seasonal will be reproduced. In parti cular, the effectiveness is 

very poor when V = 0, as is shown by the gain of the sum over all 

frequencies in Fig.XII; however the performance is quite adequate 

when V = 20 as can be seen from Fig. XII. A det ailed t abulation 
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of the gain i n question shows that after V = 20 the reproduction 

of the overall signal is probably adequate (see Table 12). It 

is also rather obvious that the shape of the gain function will 

depend on ~ .. For the present ~. = .96 is used for all j and 
J J 

the matter of discussing an appropriate choice of ~ . will be 
J 

postponed until Chapter VI. 

Before one can use the response functions (4. 8.3) for the 

intermediate segment and (4.8.2) for the upper and lower segments, 

to throw some light on the efficiency of the 'trend' extractor 

some decision must be made on the value of one of the parameters 

2 p, ~ or 8. The procedure adopted was to graph several possible 

values of 8
2

• Then the choice of 82 is decided on two counts. 
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First, on how well the gain or response function for a part icular 

8
2 

performs in relation to the response associated with the removal 

of a centred twelve months moving average. Second, on how the shape 

near to A = ° and at A. conforms to broad a priori ideas on the 
J 

required shape for a trend extraction. As 8
2 

increases the shape 

at the origin is less acceptable because the width of effective 

extraction decreases whereas the value at A. differs by less from 
J 

zero. These comparisons are illustrated by the graphing of the 

function relevant to the i ntermediate segment for 8 = 15, V = 00 

in Fig. VIII. To indicate the effect of V on the shape of the 

function it is also graphed for V = 0, 6 in Fig. XIII when 8 15 

(see also Table 11). Even for V = 6, the point at which the 

filter used for comparison is last available, it is clear that 

the shape of the filter is quite suitable for its purpose and 

will not cause much distortion of the seasonal signal. As is 

previously indicated, the trend extraction response, unlike 

removal of the twelve months moving average , is non zero at the 

seasonal freque ncies. However in comparing the relative merits 

of each response it must be borne in mind that the seasonal 

component is now represented by a ba nd of power about each j and 

thus each filter will cause minor distortion. 



5. 6 Characterist'ics of the Seasonal Estimates 

The estimate proposed at each A. is 
J 

i ntermediate segment and s~V)(n) for the 
J 

A(oo)( ) s. n 
J 

i n t he 

largest V available 

in the other segments. This seasonal estimate is free to evolve 
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and the nature of this evolutionary pattern is depicted by present i ng 

an estimate of the amplitude (and phase) for each point of time. 

As is apparent from the signal at A. as given i n (4.2.4) an 
J 

estimate of the amplitude of s.(n) depends only on a.(n) and ~.(n ), 
J J J 

the estimates of the real and complex parts of the amplitude of 

~ .(n). If ~ .(n ) is replaced by its estimate for t he highest V 
J J 

available i n (5.1.2) the logical estimate for a.(n) a nd ~ . (n ) i s 
J J 

(5 . 6 .1) 

In the i ntermediate segment these estimates may be obtained from 

quantities already calculated for t he seasonal estimation procedure. 

By using i n (5. 6 .1) either the expression for f.(n) given i n (5.2.3), 
J 

or rather more conveniently the further decompositions presented i n 

(5.2.4) and (5.2.6) one finds the following expression for a.(n ) 
J 

A 

and ~. (n ), 
J 

a. (n ) 
J 

gj (n) 

~ . (n ) cosnA .+ (2 - 5 ~ ) (v I. (n ) -v '.' (n )) sinnA
J
. 

J J J J J 

= ~. (n )sinnA .-(2-5~) (VI. (n )-v'~(n )) cosn'A .. 
J J J J J J 

(5 . 6 .2) 

A A 

Before estimates of a.(n) a nd ~.(n ) may be obtained for the 
J J 

other two segments it must be emphasized t hat t he ~.(n ) f or these 
J 

periods are obtained from a n iterative formula (5 .3.3) involvi ng 

onl y the r eal part of ~ ~V)(n ), since ~~V)(n ) = (2 -5~ )CRJ(f ~V )(n )). 
J J J J 

As is apparent from (). 6 .1) bot h a.(n ) a nd ~.(n ) will depend on 
J J r(f3V)(n )) i t is therefore necessary to evaluate 1Cfjv)(n )) 
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for every time point in both segments. The optimal seasonal 

estimate at a given time point with (V+l) additional observations 

available after t he time point of estimate is related t o the 

estimate at the same t ime point when only V extra observa t ions 

are availab le by the formula gi ve n i n Ha nnan [25, p 1075 ]. By 

equating imaginary parts i n this relation a n iterati on in V of 

the followi ng form is obtained 

(l_~j)~jV-l) { (y (n+v)-uj(n+v)) sinvAj 

(5.6.3) 

+v.(n+v)cosVA.L, 
J JJ 

v ::= 1, 2, ... , M+l. 

Now defini ng the quantity 

ex. (n ) and ~. (n) are obtained from 
J J 

ex. (n ) 
J 

~. (n ) 
J 

::= ~~v) (n)cosnA .+~~V) (n)sinnA . 
J J J J 

n ::= 1,2, ..• ,M+l and N-M, ... ,N 

for the upper and lower segments. 

(5.6.4) 

The reason for constructing the values of a.(n) and §. (n ) 
J J 

over the whole history of the seri es (see Fig . XIV ) is to depict 

the evolutionary nature of the signal a t each seasonal fre quency . 

The characteristic used to foc us attention on this evolution is 

R.(n ), an estimate of the amplitude of the jth seasonal fre quency 
J 

at a point of time, and e.(n ) a measure of the changi ng phase 
J 

at the jth seasonal frequency at a point of time. The estimates of 

R. (n ) and e. (n) are simply 
J J 

Rj(n) ::= Jex~(n )+~(n ), 

'" e. (n) 
J 

'" ~. (n ) 
arctan _"' .... J __ , 

a . (n ) 
J 

n ::= 1,2, ... , N 

n ::= 1,2, ... ,N. 
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5.7 Computing Procedure whe n p. is not assumed equal t o Unity 
J 

To generalize our estimat ion procedure to allow p. to vary 
J 

(i.e. -1 ~ p. ~ 1) we write following Whittle [57] and Ha nna n [25] 
J 

where 

1 V 
i(m-v)A. 
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( - ) - J = l-p. f'. p. t3.e v ~ 0 
J J J J (5.7 .2 ) 

(l-p ~l~.) { I I ' l} i (m-v)A . 
J J (1- A.)A. m-V ( _A. )A.m+v+ J 

(l-~~) Pj~j ~j + Pj ~j ~j e 

J V ~ O. 

The a~V)(m) coefficient s appropriate t o the seasonal (signal) 
J 

extraction procedure are for V ~ 0 and thus one may easily 

generalize (5.2.1) to include t he less restrictive assumptions 

on p . so that the signal estimate is now 
J 

If as was done in §5.2 the change of variable m = k+v is made 

then (5.7.3) becomes (cf. (5·2.2)) 

which, as V becomes large, may be written (cf. (5.2.3)) 



~~OO) (N-V) _ 
J 

I kJ iki\. 
~oo~. e Jy (N-V-k) 
k-oo J 

(l_p~l~.)(l_p.~.) 1 [ Jk J iki\. ] 
- J J J J H- H ~oo~. e Jy (N-V-k) 

(l-~~) k-oo 
J 

J 

Now, it is convenient for computations in the intermediate segment 

to express the estimates with variab le p. i n terms of the quantitie s 
J 

used for computation when p. = 1, thus (5.7.5) is re-expressed as 
J 

a nd the quantities fl.(n), ~1.I(n), ul.(n), 
J J J 

where K == 

u l!(n ), v l.(n ) and v l.l(n ) are defined in (5.2. 5) a nd (5.2. 6). The 
J J J 

seasonal estimate for the i ntermediate sector will then be (cf . (5.2 .10 )) 

S. (n ) 
J 

If now one turns to the general expression (5.7 .·3 ) and begins as 

was done in §5.2 with the estimat or based onl y on the past observations 

with respect to each time point one obtains 
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( 
-1 

l-p. (3.) { I I l} imA. g J ~oo (l-p.(3.)(3.m +(p.-(3.)(3~ e Jy (n-m ) 
(1-(3.) mO J J J J J J 

J 

( 
-1 

l-p. (3.) [ imA . ] 
J J (1-(3.) ~oo(3~e Jy (n-m) 

(1-(3 . ) J mO J 
(5.7. 8) 

J 

where L = (l-p ~1(3 . ) / (1-(3. ), and where u. (n) and v. (n) were defined 
J J J J J 

i n (4. 5.4) a nd may be obtained for all time points from the 

recursive formulae, (4.5. 5). The details of starting off the 

recursion are exactly as given i n §5.3. The seasonal estimate 

based only on the past is exactly as given in (5.3.2) but we 

would now use (5.7. 8) to compute f~o)(n ) a nd € (~)(n ). 
J -J 

To complete the seasonal calculations, with p. not restricted 
J 

to the value unity, a recurrence relation developed by Ha nna n [25] 

is used in the same way as is suggested in §5.3 (cf. (5.3.3)). The 

iterative relation employed is 

a nd taking real and imaginary parts a nd simplifying we obtain 

the following two recursions for ~~V)(n ) and ~~V)(n) (see §5.6 for 
J J 

their definition ) which involves onl y quantities already computed 

a nd constants, (cf. (5.3.3) a nd (5. 6.3)) 

A(V)( . ) s. n 
J [ y(n+V)cosVA.-L(COSVA.u.(n+v) 

J J J 

+sinVA.v . (n+v ))] 
J J 

(5.7.10 ) 

[ y (n+V)s inVA.-L (sinVA .u.(n+v) 
J J J 

A(V)( ) s. n 
J 

-v . (n+v)cos VA.)] . 
J J 
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The second recursion in (5.7. 10) is not required for computation of 

t he seasonal estimates but is required for the calcula t ion of the 

seasonal characteristics, eX. (n), ~. (n ), for t he non - intermediate 
J J 

segment. The procedures given in formulae (5. 6.4) are still 

appropriate although now the q,uantities ~~V)(n ) and ~}~V)(n ) must 
J J 

be obtained from (5. 7 .10), not from (5.3.3) a nd (5.6.3). 

The i ntermediate segment eX. (n ) a nd ~. (n ) are very simply 
J J 

computed for (5.7. 6) shows that the only difference i n t he 

seasonal estimate for this segment is a constant multiple K. 

This means that all that is necessary is for t he quantiti es 

obtained using (5. 6.2) to be multi~lied by the factor K. 

As a final comment it is worth presenting formulae for the 

variance of estimate of the signal extraction procedure which is 

a function of V a nd which ~s given by Hanna n [25, p 1075 -6] 

var (5.7 .11 ) 

which must be doubled at eac~ frequenoy to become the appropriate 

variance for ~~V)(n ). It is also argued (see [25, p 1075 -6]) tha t 
J 

because the filter is highly conce ntrated about each A., tha t 
J 

e(s3V)(n )s~V)(n)) ~ 0 , j + k, a nd so one could compute a n approximate 

prediction variance for ~(V)(n) from t he expression, 

Now it is worth setting out two special cases of (5.7 .11) fo r 

V = 0 a nd V = 00 . Thu s we have 



var 

a nd 

2 

_ ~ 1 { -1_ 2 2_ - 1 2 } - 2 2 ~ .p. ~ .+~. p. ~. 
(l-~.) J J J J J J 

J 

161 

var f~oo ) (n) 
J 

(5.7.14) 

which i n the special case of P
j 

_ 1 become 

2 
() a. ~. 

var f.o -....J..~ 
J - 2 (l-~.) 

J 

~~ese variances are not put forward as anything but a rough guide 

for after all the model was onl y really proposed as a basis for 

a filtering routine. 
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TABLE 11 
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5 1.1 Y >j 1.1 0R 1. (,3 ) G. 969 0 . 922 0 . 867 0 . 86Q 0 . A6I 0 . 862 0.Fl62 O. Hh2 
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7 1. 194 1. 06'5 L. 95 J 0 . 854 0 .777 0 . 68 7 O. 6 7 tl 0 . 624 o . 620 \l . 62.() 0 . 62.0 
8 1. 1'i8 1. 009 0 . 884 0 .77b u.689 0 . 59') 0 .') 6 7 o . 1,93 0 .4 fl1 0 . ' , 89 n .', ~ y 
9 1. 085 0.942 0 . 8 11 0 . 69 7 0 . 602 0 .4 R7 n .4 6 1 0 .375 U . 374 U . H,) 0 . "" ') 
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17 O. () 3 n 0.')10 U. 4 L ~ 0 . 312 0 . 22? 0 . 091 0 . 0 15 1) . 0', b 0 . 04 1 O . " 47 I). C4 7 
18 0 . 595 0 . 489 0 .3 8 7 0 . 290 0 . 203 0 . 0 75 0 . 0 11 0 . 036 t1 • I) 'IJ 0 . 038 0 . 03t\ 
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40 0.277 0 . 223 0 .171 0 .1 25 O. 0'39 0 . 036 0 . 022 0 . 002 0.o n2 0 . 002 o . on 2 
41 0.271 0 . 211'1 0 .167 0 .123 U. 08 7 0 . Cd5 0 . 022 8 . 00 1 (J • OU 2 U. Ol!2 O. ( U 2 
42 0.265 0 .213 0 .] 64 O. J 2. 0 0 . OH6 0 . 034 0 . 021 0 . 00 1 0 . 002 0 . OJ2 n . (n2 
43 0.26U 0 . 209 ().160 0 .11 8 0 . 0'3'5 0 . 03 :l 0 . 0 21 o • Ol) 1 0 . Od2 u . L)J2 0 . 002 
44 0 . 255 0 . 205 C.1 5 7 O. 116 0 . 083 0 . 032. 0 . 020 0 . 002 O . ouz 0 . 001 o • ( ,f) I 
45 0.750 0 . 2(; 1 O. J 5 4 0 .114 I). O!:l2 O. lH l D. Ll19 0 . 002. 0 . 001 ,) • () J 1 () . OUI 
46 0 . 2 46 0 .1 9'3 0 .1 52 d .112 0 . 031 O. ,)3U ,) . 0 1 H 0 . 002 0 . 00 1 0 . 0 )l 1) . (0 1 
47 0.2',2 O. 1 9'. 0 .14 9 0 .11 0 0 . 079 0 . 03J () . vI ' o • lJO 2. 0 . 00 1 0 " ) 1)) () . u() 1 
48 0 . 2 38 0 .1 91 0 .14f, 0.1 09 0 . 0 7 S 0 . 029 0 . 0 17 O . O~ 1 0 . 00 1 I) • ,) d 1 U • (Ill I 
49 ().234 0 .1 98 0 .144 0 .1 0 7 O. u77 O. f)2 f\ 0 . 0 16 O . Ouo O . OLl l O . nU l /) . 0/', ] 
50 0.230 O.l H'5 O. 14 2 O.l U6 0 . 0 76 0 . 028 n . 0 16 o . 00 1 O . nO l O . nO l o • ( ,) 1 
51 0 . 226 0 .1 82 0 .14 0 0 .1 0 4 O. 175 0 . 077 0 . 0 16 o • O() 1 o . 0') 1 0 . 0 1 1 !) • (,,) I 
52 0 . 223 0 .17 9 0 .1 38 0 .l U3 0 . 0 74 O. Q27 0 . 0 16 0 . 00 1 0 . 00 1 O . OJ I I) . Cu 1 
53 O.72U 0 .177 0 .13 6 O. I 0 1 0 . 073 0 . 027 0 . 0 16 v . OO2 o . Ou 1 u.OU l U . lllil 
54 0 . 2 17 O. 174 0 .13 4 O. J ou 0 . 0 7 2 0 . 020 0 . 0 16 0 . 001 O . UO I () • 0 ('ll ') • ( 0 I 
55 0 . 2 1 4 0 .17 2 C . 132 U. 099 O. 0 71 O. 02 (, 0 . 0 16 0 . 001 1) . 00 1 0 . '10 1 ,) • ( d l 
56 0 .211 0 .17 U 0 . 131 O. O')S O. I) 70 I) . 026 0 . 016 0 . OlJ 1 ,) • OU 1 o • ,) J 1 ll . CS I 
57 0 .? 09 0 .1 6 7 (j . J 29 O. Ot.} 7 1).069 O.OZu 1) . 016 0 . 000 0 . 000 u . nu l o • (h) 1 

58 0 . 206 0 .1 65 0 .1 27 0 . 096 0 . 068 O. U? t~ 0 . 0 16 G . OOU O . UO I O. OJ I o • (," J 
59 0.204 0 .1 63 0.12.6 0 . 094 0 . 06 7 O. O?" 0 . 0 1 5 0 . 001 v . OO l o . n,) I. o . LL I 
60 0 . 20 1 0 .1 62 0. 1 25 0 . 093 0 . 066 0 . 07S 0 . 0 1 5 O . Oul o . 0,) 1 U . 0) 1 o • (,l' 1 
61 0 .1 99 0 .1 61) 0 .1 23 0 . 093 0 . OD5 ,) . 02 :l r . 015 0 . 00 1 lJ . OOO u • ())] (J . ('C'l 
62 0. 197 0.15:\ C.l 2.2 0.0')2 0.065 0 . 02, O. 01't 0 . 00 1 0 .0 00 u . i.JJ 1 () • (,n 1 
63 0 .1 95 0. 1 57 0 .121 0 . 091 0 . U64 0 . 02') n . n 1 4 U . 0,) 1 0 . 001 () . ( )) ] n . r ,)] 
b4 0 .1 93 0 .1 'J:' C. 120 fl . 090 1).063 0 . 025 0 . 014 \) . 000 0 . 001 0 . 0 ()0 () • c, n I) 
65 0.192 0 .1 54 0 .11 9 U. O!:l9 0 . 062 O. 024 0 . 014 O. OOJ l) . 00 1 O . l)()O o • ('\) \J 

66 O.J <JO O. 1 5 ~ 0.1 1 8 0 . 088 0 . 062 lJ . 024 0 . 0 13 0.0 0 0 0 . 01)0 () • (h) () n . OOl 
67 0.18'3 O. 151 0 .117 O. (,tl tl 0.06 1 O. 024 n . 013 o • ()O 1 ,).00') 0 . 000 ) . l 0 C 
68 o.un 0. 1 50 0 .11 6 0.OR 7 U. 06 1 0 . 1124 0 . 0 14 U. OO I CJ . ouo 0 . ') )C O . Oui' 
69 l) .l K5 O. 14 fl 0 .11 5 O. Otlfl 0 . 060 0 . 023 0 . ll 14 O . CO l Ll.O Ol U . I')OO O. oou 
70 0 .I H4 0 . 1'.7 C.114 0 . 085 0 . 060 0 . 023 0 . 0 14 o . 01) 1 0 . 00 1 11 • Or) () G . OU(' 
71 0 .l R2 0 .1 46 0 .11 3 0 . 08'5 0 . 059 O. OB 0 . 0 1 4 0 . 01) 1 ,) . 000 a . (JUO o . our 
72 0 .l R 1 0 .1 45 0. 11 3 0 . 01:l4 0.0')9 0 . 023 0 . 0 14 0 . 000 0 . 000 O . JuO o.ro e 
73 0 .1 80 0.144 U.1l 2 O. (J8', 0 . 058 0 . 023 0 . 0 lit o . 00 ,) 0 . 000 U . OOO o . ()oc 
74 0 .17 9 O. 143 U.ll1 n.08J 0 . 058 0 . 022 0 . 013 0.00 1 O . OG l 0.0)0 0.00 (' 
75 0 .17 8 0.142 O. 111 0 . 083 0 . 058 0 . 022. 0 . 013 O . nO l 0 . 00 1 o .o oe O. UU 
76 O. 177 0.142 O. 11 C 0 . 0 82 0 . 05 7 O. 022 0 . 013 0 . 00 1 O.ouo 0 . 1))(1 u . O!)(, 
77 0. 17 6 0. 1 41 0.109 0.Ll82 J . 057 J . on o.on 0 . 0')1 O . OULl U • .ll)O O.on c 
78 0. l75 0.140 C. l 09 O. OK 1 0 . 057 0 . 022 0 . 013 0 . 00 1 O . OOLl u . ucJO O . 00 (\ 
79 0 .17 ' .. 0 .139 G. 1 0H 0 . 08 1 0 . 057 O. 021 0 . 0U 0 . 000 O. OUO 0 . 000 O. (,ftll 
80 0.173 0.139 C. 1 08 0 . 08U 0 . 056 0.021 0 . 0 12 (J . 00) 0 . 00 1 O . OOC O . OLJl. 
81 0.172 O.13A C. 1 07 0 . 080 O. 056 0 . 02 1 0 . 0 1 2 .O . OI)~ 0.000 0 . 000 0 . G110 
82 O. 17 2 0.13[3 C. 107 O.ORO 0 . 0')6 O. 02 1 O. 012 n. OJ 1 0 .00,1 0 . 00('; U . OOO 
83 0.171 0.137 0.107 D.079 0.056 0 . 021 0 . 0 12 0 .00 1 O.OO \J ·O . OOC o . OO( 
84 J. 17J 0.13 7 C.I06 0.079 0.056 0 . 021 0.012 0 . 00 1 n.ooo'o . O}O n . ('Ol. 
85 .J. 1 70 0 .13 6 C. 10 6 0.079 O. ()56 0 . 021 0 . 0 12 0 . 00 1 0.000 U.11 00 o • (, J C 
86 0.16~ 0.136 0 .1 06 0.078 0 . 05 ') O. o? 1 o. on 0.001 0.000 o.noo 0 . 000 
87 0.169 O. 1 3'5 0.105 0 .07 8 0.055 O. 021 0 . 013 0 . 000 J . OO,) 0 . 000 0 . 00(' 
88 O.lh'J 0 .1 35 0.105 n.078 0 .0'>5 0 . 021 0 . 013 0 .0 00' O.OOU G . OJu ( t . onr 
89 0.16-3 D.135 0.105 0 . 078 0 .05 'J 0 . 02 1 o . on 0.0 0,) n. no) 0 . 000 l1 • (: ij ( 
90 0.16'3 0.135 G. 1 \)5 0.0713 0 . U55 O. ,)21 l) .OU O.OUI 0 . 000 O. OUO !) . OO\') 
91 O.16ti 0 .13{~ .1 05 D. 07H U. 0'55 () . 02l J . D1? 0 . 0 0 1 0 .000 I) . OOC' O . (l (l ( 

92 0 .1 613 O.l.H 0.105 0.077 0 . 055 0 . 0;;> 1 0 .012 0 . 001 0 . 000 0 .) 00 I) . Cut 
93 O.ltl7 0.134 0.105 O. 077 0.055 ') . 02l 0 . 012 0 . 00 1 J . OoO O . O'JC) O. (,n f ' 

94 J .l ft 7 :). 13 f t O. 1 0 /+ 0 . 077 n. 0') 5 O. ') 21 O . O U 0.001 o . OU ) u • U J L' C . OOO 
95 0.167 C.1'34 O. 1 ott 0.077 0 .05 :> 0 . 021 O. lll? 11.000 0 .00 ,) U. OJO Ll . l)OO 
96 0 .167 0.134 0.104 0.071 f) .US5 O. 021 0 . 012 0 .0 00 O. ouo ,) . 00lo O . Due' 
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ONE SIDED GAIN OF THE SUM OVER ALL FREQUENCIES OF (5.5.3) 

v = 0,1,2,6,12,30,48,60,72,84,96, S = .96 

N: 0 1 2 6 12 30 48 60 72 84 96 
0 C.?394 0.1918 0.1479 0.0043 0.1543 0.0140 0.0507 0.0387 0.0314 0.0269 0.0241 
1 0.2420 0.1944 0.1504 0.0205 0.1490 0.0272 0.0114 0.0177 0.0249 0.0265 0.0248 
2 0.2;'04 0.20'27 0 .15 85 0.0421 0.13:'6 0.022? 0.0542 0.0254 0.0114 0.0255 0.0268 3 0.2664 0.2186 0.1738 0.0679 0.1236 0.0198 0 .0150 0.0468 0.0242 0.('251 0.0311 
4 0.2943 0.2462 C.2004 0.1024 0.1347 0.0601 0.0691 0.0205 0.0472 0.0282 0.0394 
5 0.3446 0.2954 C.2478 0.1549 0.1932 0.0573 0.0371 0.0593 0.0650 0.0429 0.0573 
6 0.4467 0.3942 0.3429 0.2518 0.3214 0.0662 0.1383 0.1288 0.0904 0.0905 0.1049 
7 0.7075 0.6439 0.5837 0.4908 0.6114 0.3942 0.2714 0.2499 0.2667 0.2866 0.2970 
8 1.2156 1. 1347 1.0735 1.0153 1.1369 1. 0139 l.tJ418 1.0309 1.0242 1.0201 1.0176 q 0 .6144 0.5773 0.5667 0.5937 0.5399 0.4400 0.2698 0.2617 0.2777 0.2<:;::'':: 0.3000 

10 0.3602 C.3307 0.3309 0.3765 0.2423 0.0777 0.1396 0.1220 0.0960 0.1024 0.1116 
11 0.2864 0.2=2J C. 2500 0.2995 0.1127 0.0918 0.0345 0.0774 0.0680 0.0591 0.0692 
1 2 0.27QO 0.23 79 0.2292 0.2765 0.0835 0.1387 ('.0871 (1.0373 0.0676 0.0489 0.0603 
13 0 .3157 0.2686 0 . 2518 0.2908 0 .157 0 (1.0821 0.0399 0.0740 0.0739 0.0577 0.0702 
14 0 .4142 0.3A12 0.3363 0.3578 0.2966 0.0875 0.1443 0.1324 0.0985 0.1011 0.1135 
1'5 0.679'5 0.6165 0 .5 R38 0.5619 0.5932 0.4381 0.2758 0.2588 0.2753 0.2938 0.3031 
16 1. 21 82 1.1518 1.1283 0.9874 1.1406 1. 0065 1.0463 1.0354 1.0287 1.0246 1.0221 
17 0.6164 0.6198 0 . 6330 0.5144 0.5594 0.4189 0.2741 0.2632 0.2794 0.2957 0.3034 
1 8 0.37:·8 0.1679 0.3907 0.3043 0.2595 0.0842 0.147<; 0.1271 0.0988 0.1041 0.11 42 
19 0.2929 0.2803 G.3055 0.2357 C.1228 0.0685 0.0373 /).0783 0.0714 0.06:)6 0.0714 
20 0.2779 0 . 2563 0 . 2801 0.2202 0.0780 O. 1186 0.0886 0.0389 0.0693 0.0506 0.0620 
21 0.3089 0.2777 0.2973 tJ.2420 0.1473 0.0790 0.0399 0.0762 0.0743 0.0595 0.0716 
22 0.4045 0.1637 0 . 3767 0.3177 0 . 2880 0 .0729 0.1448 0.1320 0.0995 0.1028 0.1147 
23 0.6699 0.6183 0 . 6222 0.5383 0.5862 0.4193 0.2762 0.2607 0.2772 0.2951 0.3(;40 
24 1.2187 1.1719 1.1657 1.0192 1.1413 1.0190 1.0471 1.0362 1.0295 1.0254 1.0229 
25 0 .6450 0.6460 0.6478 0.5651 0.5(',66 0 .4308 0 .2752 0.2631 0.2794 0.2961 0.3041 
26 0 .3825 0.3928 0.4029 0.3482 0.2666 0 .0750 0.1439 0.1288 0.0995 0.1043 0.1149 
27 0.2962 (>.3(37 0.3201 0 .2738 0.1279 0.0859 0.0183 0.0783 0.0725 0.0609 0.0719 
28 0.2774 0.2772 0.2980 0.2530 0.0765 O. n12 0.0890 0.0393 0.0697 0.0511 0.0625 2Q 0.305:'> 0.2952- 0 .31 83 0.2693 0.1424 0.0765 0.0398 0.0770 0.0742 0.0602 0.0720 
30 ('.3993 0.3178 0 .3994 0 .33 81 0.2832 0.0863 0.1449 0.1316 0.0998 0.1035 0.11sn 
31 0.6644 (>.6313 0.6435 0.5456 0.5821 0.4323 0.2763 0.261S 0.2779 0.2956 0.3043 
32 1.2189 1.1914 1.1658 0.9881 1.1415 1.0075 1.0474 1.0365 1.0298 1.0257 1.0232 
33 0 . 6501 0.6616 0.6279 0.5298 0.5708 0 .4259 0.2756 0.2629 0.2792 0.2961 0.3044 
34 0 .3 867 0.4080 0.3826 0.3203 0 .2708 0.0852 O. 1443 0.1297 0.0998 0.1 043 0.1151 
35 0.2984 0.3200 0.3023 0.2511 0. 1313 0.0721 0.0388 0 .0782 0.0731 0.0609 0.07?1 
36 0.2773 0.2943 0.2834 0.2347 0.0759 0.1245 0.0892 0.0394 0.0699 0.0512 0.0627 
37 0 .3034 0.3125 C.3068 0.2555 0.13Q2 0.0819 0.0395 0.0775 0.0740 0.0605 0.0721 
38 0.3957 0 .3945 0.3902 0.3301 0.2798 0 .0737 0.1448 0.1311 0.0999 0.1038 0.1152 
39 0.6605 0 . 6476 0.6332 0.5488 0.5791 0.4240 0.2762 0.2620 0.2784 0.7959 0.3045 
40 1.2190 1.2055 1.1427 1.0195 1.1416 1.0194 1.0475 1.0366 1.0299 1.0258 1.0233 
41 0.6539 0.6664 C.6063 0.5560 0.5738 0.4271 0.2759 0.2626 0.2790 0.2961 0.3045 
42 0.3899 0.4128 C.3017 0.3383 0.2740 0.0743 0.1445 0.1303 0.0999 0.1042 0.1152 
43 0.3001 0.3270 0.2805 0.2639 0.1340 0.0838 0.0391 0.0780 0.0735 0.0608 0.0722 
44 0 .7772 0 . 3038 0.2608 0.2433 0.0757 0.1278 0.0892 0.0395 0.0700 0.0513 0.0627 
45 0-. '30) 7 0.3241 0.2837 0.2598 0.1365 0.0742 0.03 0 3 0.0778 0.0737 0.0607 0.0722 
46 0.392 7 0.4075 0.3672 0.3290 0.2769 0.0857 0.1447 0 .1307 0.0999 0.1041 0.11 52 
47 0 . 6'>72 0.6608 CJ.61Q4 0.5377 0.5764 0 .4292 0.2761 0.2623 0.2787 0.2960 0.3045 
48 1.2190 1.2106 1.1291 0.9882 1.1417 1.0077 1.0475 1.0366 1.0299 1.0258 1.0233 

t-' 
0\ 
\..N 
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VI A RE-Jl..PPRAISAL OF THE METHODS ADOPTED 

6 .1 Introduction 

In ~4.l a brief excursion was made to extend the seasonal 

model used for estimation purposes t o incorporate phase modulation. 

In this chapter there are two aims. The first is to reconsider the 

model generating the a
j

, ~j and further t o reconsider the estimating 

procedure for these constants with a view to improving these 

estimates. The source of this improvement will be additional 

information on the parameters of the generating model for the 

2 seasonal, p. and cr., and also an estimate of the spectral power 
J J 

of the non -seasonal frequencies. The second task is much dependent 

on the results of the first a nd is an attempt to give some indication 

of the ac curacy of the seasonal estimates . The use of cross-spectral 

techniques for summarizing the efficiency of the seasonal extraction 

techniques is also considered. 

6 .2 Possible Generalization of the Seasonal Mode l 

In ~4.2 the seasonal generation model was extended sufficiently 

to consider models which included both amplitude and phase modulation . 

It is necessary to consider a nd then dismiss a further generali za tion 

of the model which was introduced in ~4.2. In §4.2 a Markov relation 

is given for the complex vari able ~. (n) and the parameter p. in this 
J J 

relation is a real constant. An obvious extension is t o consider the 

relation 

(6 .2.1) 

where ~. = p.-i~ . , p. and T. are both real parameters, and I~.I < 1. 
J J J J J J 

The seasonal, using the definition given in (5. 1.1) is therefore 

given by 

inA. -inA. 
s . (n) = ('; . (n)e J +I. (n)e J 

J J J 

and for s.(n) to be stationary it is required that 
J 

(6 .2.2) 

(6.2.3) 



that is the expression described in (6.2.3) only depends on m. 

Using (6.2.1) it i s straight forward to establish that the lag 

covariance or order m of s(.) is given by 

(6.2. 4) 

so that the requirement of (6.2.3) implies that e('Ir~(m)) == o. 
J 

Two direct consequencies of this latter equality are that the 

variance of the residuals E . (n ) and ~ .(n) must be equal a nd have 
J J 

zero covariance, i.e. 

(6.2.5) 

a nd also that e(S. (n)S.(n-m)) is equal to zero for all m. 
J J 

A 

further implication is derived from the special case m == 0 of the 

latter equality; since e (s~(n)) == 0 equating of real and complex 
J 

parts provide the following restrictions, 

e (a~(n)) == e (~~(n)) 

e (aj(n)~j(n)) == o. 

(6.2.6) 

The model presented in (6.2.1) may be more informatively 

presented. By equating real and complex parts the model is shown 

to be a bivariate autoregressive process in a.(n) a nd ~.(n) of t he 
J J 

following form, 

T.) (a. (n -l) ) (E.(n)) J J I . + J • 
p. ~ . \ n -l) Tj.(n) 

J J J 

(6.2. 7) 

The complex Markov proces s, (6.2.1) , may be solved in terms of 

current and lagged ~.(n) to give the f ollowing expression for S.(n), 
J J 

S.(n) 
J 

00 

I: 1-L~'Ir.(n-k). 
k==o J J 

(6.2. 8) 
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Formula (6.2.8) is conjugated and the expression 

e ( Sj(n)~j(n)) ~ e (a~(n)) + e (~~(n)) ~ 1_~:212 (6.2.9) 

J 

is simply derived. An analogous procedure allows the derivation 

of the recursion 

e (s.(n)'[.(n-l)) = jJ. .e (s.(n)I.(n)) = 
J J J J J 

(p . -i'r . )2i 
J J J 

2 2 
l-(p .+'r.) 

J J 

-ie 
= 'Y. e 

J 
(6.2 .10) 

and this suggests the definition of a new variable A.(n), which is 
J 

related to S . (n) by the expression 
J 

A.(n) = S.(n)eine 
J J 

and which has a lag covariance given by 

e (Aj (n)Aj (n-l)) = e (Sj (n)eineIj (n_l)e-
ine 

) 

= 'Y j ' 

(6.2. 11) 

(6 .2.12) 

The expression for s .(n), (6.2.2), when rewritten in terms of 
J 

A.(n) thus becomes 
J 

. e inA. . e -inA. 
( ) ( - In J - (In J s . n = A. n}e e +A. n)e e 

J J J 

+in(A .-e) -in(A . -e) 
J - ( J = A. (n)e +A. n)e 

J J 

(6 .2.13) 

a nd it is therefore apparent that a model of greater generality 

(see (6.2.1) or (6.2.7 )) will result in frequency modulation. As 

it seems unwise on a priori grounds to entertain a scheme which 

allows the local peak to be at other than the seasonal frequency 

this more general model will not be pursued. 



6.3 Information on the Model Parameters from Seasonal Estimates 

This discussion is based on the estimates of seasonal 

introduced in Chapter V and i n particular the expression for s.(n) 
J 

in terms of s .(n) a nd ~.(n ) given in (4.2.3) and (4.2.4). An 
J J 

estimate of s .(n) is presented in (5.2.2) and if the estimate is 
J 

ba sed only on past observations it was defined in (5.3.1) as 

imA. 
== r,oo (l-~. )~e Jy(n-m) 

mO J J 

== u. (n)+iv. (n). 
J J 

Now consider the expression 

where 6 is the first differencing operator. 

The estimate in (6.3 .1) is not much affected by sk(n ), 

k + j, particularly if the filter proposed in (4.4.4) is employed 

to obtain the filtered series. I n any case since the response of 
l-~ . 

i(~+A.) and is confined to the filter with output f~o)(n) is 
J 

l-~.e J 
J 

a fairly narrow band around -A j , if ~j is near to unity, then 

whether or not the filter suggested in (4.4.4) is used f~o)(n) 
J 

will be mainly affected by Sj (n) a nd not by sk (n). Thus fjo)(n) 

may be regarded as having been obtained from an input S. (n )+x . (n) 
J J 

where x.(n ) has a constant spectrum f (A.). The quantity put 
J x J 

forward for consideration in (6.3.2) then has a spectrum, 

relocated at the origin of frequencies, given by 

167 
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2 (1-(3 . )2 ri 
2 J { f + 27rfx (A.) (l-COSA)} 

2v(1+(3.-2(3.cosA) J 
J J 

If the statistic, 

2 1 {"'() -inA . } 12 , 
Sj = N ~I~ SjO (n )e J 

is formed thi s estimates the variance obtained by integration 

from (6. 3.3), which is 

2 2 
2 (1-(3.) () . } g ~ f + 27rf (A. )(1-(3. ) 

(1-(3 . ) l x J J 
J 

The computa tions defined i n (6. 3.4) are carried out mos t convenientl y 

by using the quantities 

expressions for a~o)(n) 
J 

u. (n ) a nd v.(n) defined i n (4. 5 .4) t o obta in 
J J 

a nd g~o)(n ). From the definition (4 .2 . 4 ) 
J 

and the estimator (5 .3.1) the following equivalences 

a nd 

at the origin, is 
30 It should be noted that the spectrum of f~o)(n), relocated 

J 

2 

~~ 1 

2 2v (1+p~ -2p . COSA ) 
J J 

, 

a nd tha t f (A . ) is the spectrum of t he noise at all A., 
x J J 

j = !1,!2, . .. , ~5J6. This requires a slight modification of the 

definition of a. used for calculation of the optimal (3. ( see (6.3 .15 )) 
J J 

to produce compatibility with the computations i n Chapter V. 



are derived. 31 By equating real and complex parts in the latter 

equivalence the expressions for a~o)(n) and g~o)(n) as simple 
J J 

functions of already computed quantities are 

(2-6~) (u. (n)cosnA .+v. (n)SinnA.) 
J \' J J J J 

g~o)(n) = (2-6~) (u.(n)sinnA.-v.(n)cosnA.) . 
J J \' J J J J 

For convenience the actual statistic computed is 

A2 1 ( 1+13 .) 2 
Sj = 2 ~ Sj 

J 

2 
which estimates a j / 4+2rrf (A.)(l-I3.). 

x J J 
Of course one must use 

(6.3.6) 

values of 13. close to unity and indeed as 13. approache s unity one 
J 2 J 

obtains a n estimate of a j / 4 alone, while the slope of a graph of 

~ against different 13. values will 
J J 

varying 13. one may obtain estimates 
J 

estimate -2rrf (A.). Also by 
x J 

of both i and 2rrf (A . ); 
J x J 

however the results of adopting this procedure were unsatisfactory 

as for most estimates made with these 13 . couplets varying between 
2 J 

.95 and .99 the estimate of a j / 4 was negative. It was therefore 

decided to make f~V)(n), for larger V, the basis of further efforts 
J 

because there waS a better chance of obtaining some meaningful 
2 

estimates of a j / 4 and 2rrf (A.). The virtue of taking larger V 
x J 

is that the response function which replaces the factor outside the 

bracket in (6.3.3) is more concentrated and will therefore better 

justify the assumptions on the nature of the input. The value of V 

used is i nfinite, and although this is not computable it is clear 

from the tabulated examples (see Table 12) that there i s little 

change i n the estimates as V increases above a moderate value, say 12. 

31 
The differencin6 operation in (6.3.4) could more simply have been 

carried out on expressions which are simply functions of cosnA., 
A(O) A(O) J 

sinnA., u . (n ) a nd v . (n); however as the ex. (n) and 13. (n) are 
J J J J J 

needed for later investigations an expression for these quantities 
is developed. 



To be ultra-cautious the calculations were based onl y on the 

estimate s obtained from the i ntermediat e segment (see §5. 2 ). 

Naturally as ~. varies the number of observations included in 
J 

the i ntermediate segment also varies, i.e. the value of M, 

i nt roduced in §5.1 depends on ~ .. If (5 .2.3) is ' rewritten as 
J 

( ) 
( 

l-~. ) I limA. f.oo (n ) = ~ ~oo y (n _m )~.m e J 
J l+~. -00 J 

J 

n = M, M+l, ... , N-M 

then one is led to form the quantity, 

which has the spectrum (approximately ), 

integrating to 

() -inA. 
Using the N-2M values of ~{f.oo (n )e J } the s t a tistic, 

J 

-2 _ .1. ( l+~j )2 _(l_-.....lo~~'-) 1 1 {f'(oo)( ) -inA j 112 
s j - 2 l-~J' 2 N-2M ~ ~ :" n e j 

(4~) J 
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(6.3.8 ) 

(6 . 3 .11) 

is constructed a nd estimates Again the 

simplest way to compute the expression t o be differenced i s to write 

it as 

= [ uv. (n )+u!!(n ) - ~~:j y (n )+i(v1.(n )-v l.l(n ))] [cosnA.-isinnA. ] 
J J ~I-' j J J J J 



(where this construction and the quantities involved are developed 

in (5.2.3) - (5.2.6)) and to use the final represent ation in 

However as the a~oo)(n), g~oo)(n) are needed for further 
J J 

investigation they are derived using (5. 6.1) a nd the first 

representation in (6.3.13) is actually the basis of the 

computations of -2 
The values of -2 plotted a gainst a s .' s. are 

J J 

number of large t3 j 
(e .g. t3. = . 95, .96, ... , .99) . Given a 

J 

marked change in the downward slope as t3. approaches unity this 
J 

could suggest that the extraction procedure waS omitting some 

Signal a nd therefore implying that a t3. has been reached for which 
J 

the model is no longer appropriate. 

-2 The graph of s. against t3., shown in Fig. XV, does not 
J J 

provide a completely satisfactory clue as to a n appropriate value 

of t3. although it does seem that t3. = .99 is too seve re except 
J J 

possibly for j = 5 and 6. In Table 13 all possible couplets of 

t3
j

, for t3
j 

= .95, .96, 

the implied estimate of 

.97, .98, .99, are presented together with 
2 

a j / 2 and 2rrf (A.) resulting from the 
x J 

-2 
estimated s. for the series Bank Advances. The table also 

J 

included for each couplet an estimate of the optimal t3
j 

assuming p. = 1 (see (6.3.14) below) . This estimate is a direct 
J 

application of the procedure suggested by Whittle a nd Hanna n 

(see [57], [25]) which shows that the optimal value of the 

coefficient t3. i n a signal extraction problem similar to that 
J 

proposed for the seasonal is given by 

171 

(6.).14) 

where 

e. = (27ff (A.)) /(a~/2) 
J x J J 

j (6.).15 ) 

j = 6. 
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Al 

ct
2 2 

t3 j f3 k 1 2frf x (A1) ~1 (J2 

. 99 .98 .798 859.9 .988 .161 

. 99 .97 1. 05 470 .7 .981 .196 

. 99 .96 1.15 312. 1 .976 .206 

. 99 . 95 1.19 245.9 .973 .207 

. 98 .97 2.39 240 .5 .961 .385 

.98 .96 2.55 178.2 . 953 .385 

.98 . 95 2·59 161. 0 .951 ·370 

. 97 .96 3.01 134.4 .942 .386 

. 97 ·95 2.99 136.7 . 943 .341 

·96 .95 2.96 138 .4 . 943 .245 

TABLE 13 

ESTIMATES OF (J~ AND 27rf (A . ) BASED ON ~ . COUPLETS 
J x J J 

A2 "'3 A4 
2 " 2 I 

2frfx (A2) ~2 (J3 21rfx (A3) ~3 (J4 21rfx (A4) ~4 

181.5 .988 .0040 48.7 .996 .0356 56 .2 .990 

126 .7 . 984 .0043 48.2 .996 .0469 38·3 .986 

111 .4 .983 .0033 49.8 .997 .0511 31. 7 . 981.~ 

110.0 .982 N.A . .0521 30.2 .984 

94 .32 .975 .0059 47 .9 .996 .1085 27 .75 · 975 

94 .23 .975 . 0004 50 .1 . 999 .1137 25·73 .974 

100 .1 .976 N.A. .1115 26 . 58 .975 

94 .17 .975 N.A . .1286 24.31 ·971 

101.8 . 977 N.A. .1174 26 .23 . 974 

107 ·7 . 981 N .A . .0932 27 .69 . 977 
- - _ . - '----------- , .. ---- - . . ~ 

A5 
2 2 

(J5 27rfx (A
5

) ~5 (J6 

N.A . 

N.A . 

N.A. 

N.A . 

N.A . 

N.A • 

N.A • .2536 

N.A . 

N.A . 

N.A . 
- - -

A6 

27rf)A6 ) 

N.A . 

N.A . 

N.A • 

N.A . 

N.A . 

N.A • 

3.412 

N.A . 

N.A . 

N.A . 
- --- - - ---- -

~6 

.897 

- ---- -

I-' 
~ 
'VI 



Although several couplets are rejected as ina dmissible, because 

they produce negat ive 

possible magnitude of 

variances, some guidance is obta ined on the 
2 

a j / 2 a nd 2rrf (A. ). It seems l ike l y tha t one 
x J 

should place most confidence in those couplets i nvo l ving high 

values of ~ . for then the assumpt ions as t o the na ture of the 
J 

input t o the fi lter wi ll be closer to correct. A choice along 
2 

these line s is made (see Tab le 14) a nd the value s of a j / 2, 

j = 1,2 , ... ,6, are used to approximate the prediction variance 

for the intermediate seasona l estimates. 

Another point sugge sts a slightly different approach . The 

assumption that p. = 1 is unlikely to be exac t l y correct. A 
J 

more appropriate assumption may be that a.( n ) a nd ~. ( n) are still 
J J 

generated by (4.2.2) but not with p. equal to unity as stipulated 
J 

in §4. 5, a nd as used in the computations discussed in Chapter V. 

Indeed as was mentioned in §4.2 the reason for choosing p. = 1 
J 

was that although it was unknown it must neverthe less, in the 

model considered, be ve ry close to unity . If p. < 1, the approach 
J 

174 

must be somewhat amended a nd this relaxation resul ts, as Pj differs 

more from 1, in a smaller concentrat i on of spectral ma ss in sen) 

at ea ch A . • 
J 

Consider first the case of V = O. On the same basis as was 

u sed earlier in thi s section the spect ral properties of f ~o ) (n) 
J 

may be found, with ~ . (n ) now being given by a relation of the form 
J 

(4 .2.2 ). The spectra of a~o)(n) a nd 8~o)(n ) are then approximately 
J J 

and these spectra are approximately i ncoherent, that is all lag 

correlations vanish. The spectrum in (6.3 .16) is that of a mixed 

autoregressive-moving average process, second order aut oregression, 

first order moving average (A.R. -M.A. 2:1), which may be more 

revealingly represented as 



Freq. 

"1 

"2 

"3 

" 4 

"5 

"6 

TABLE 14 

PREDICTION VARIANCES USING i ESTIMATES FROM TABLE 13 AND t3 . = .96 
J J 

2 Min. a~ From Table 13 2 Max . a . From Table 13 Best Gue ss a . From Table 13 
J J 

var C~ ~ 0 ) Cn ) ) 
J 

72.24 

9.26 

.142 

3·09 

N.A,,* 

-

var(~~oo) Cn)) 
J 

varC~~o)Cn )) 
J 

varC~~oo) Cn)) 
J 

varC~~o)(n )) 
J 

36.86 19·15 9.77 57 .36 

4.73 3.86 1.97 9.24 

.072 .010 .005 .142 

1. 58 .854 .436 2. 60 

N.A. N.A. N.A. N.A. 

- - - 3. 04* 

* One a~ estimate only is given in Table 13 and N.A . indicates 

there are no estimates of a~ in Table 13. 

J 

var C~~oo ) Cn) ) 
J 

29.27 

4. 71 

.072 

1.33 

N.A. 

1. 55 

I-' 
--.;] 
\Jl 
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2 iA 2 
1 K . Il-'L . e 1 

'Yn- J 'AJ2 'A 2 (6 . 3.17) 
CII Il-p .e l 

1 11 -13 .e l 
1 

J J 

where the relation between the parameters in (6 .3.16) and (6 .3.17 ) 

is given by 

2 
K . 'L . 

J J 

i.e. 

a nd 

2 2 
K .(l+'L.) 

J J 

2 'L. 1 
27rf (A. ) = K. J --=--

x J J P j (1_13.)2 
J 

2 
cr. 2 2 2 

2 (J2 )(1-13.) +27rf (A. )(1-13.) (4p . ) 
J x J J J 

2 

i.e. 
cr. 2 2 2 2'L· 2 

2 (J2 )(1-13.) = K. (l+'L . )-K. J (4p.) 
J J J J Pj J 

2 
K . 
J (p.-'L.)(l-p.'L . ). 
Pj J J J J 

2 
The unknown parameters i n (6 .3.17 ), i.e. p., K. and 'L. may be 

J J J 

estimated by the methods proposed by Box and Jenkins [ 6] and [7 ] 

or alternative l y by methods suggest ed by Durbin [12] or Ha nnan [27]. 

Preliminary estimates of p., 'L. a nd K~ based on a ~o)(n) and g~o) (n ) 
J J J J J 

were attempted using the latter methods. As can be seen from 

(6.3.18 ) if one accept s on a priori grounds that p. must be positive 
J 

then for acceptable es t imates of cr~ and f (A. ) 'L. mus t also be 
J x J J 

posit i ve and the inequality p. > 'L. hol ds. The failure of all 
J J 

estimates but those for Al t o meet these restrictions stimulated 

the following approach. Since the estimates of a~o) (n) and g~o)(n) 
J J 

have been formed using a particular chosen value of 13. t he paramet er 
J 

estimation may be simplified somewha t if weighted partial sums of 

the a~o)(n) and ~~o)(n ) are formed as follows 
J J 

n = M, • • • , N . 
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Of course if the a~o)(n) and &~o)(n) were available for the whole 
J J 

period n = 1, ... ,N then the upper summation limi t is (n-l ) . The 

spectra of the weighted partial sum sequences of &~o)(n) and g~o)(n) 
J J 

are of the form of a mixed first order autoregression - first order 

moving average process (A.R. -M.A. (1:1)) and the estimate s of p . , 
J 

~ _ and K. thus obtained may be the basis of the estimates of 
J J 
2 

ITj/2 and 2rrf (A.). 
x J 

The chosen value of ~. could also be used in the recursive 
J 

representation of € (n ), 

d n ) '-' (0) ( ('-'(0) '-' (0) a. n)- ~.+p . )a. (n - l )+~.p.a. (n -2)+'I.E(n-l) 
J J J J JJJ J 

to compute a sequence of € (n) for each admissible value of p . and 
J 

'I .. The sum of squares for each grid point in the p., 'I. plane 
J J J 

is then scanned for the minimal sum of squares given the restrictions 

on p. a nd 'I. and the associated estimate of p., 'I .. It was quite 
J J J J 

clear from investigating the grid in the Pj' 'I j plane that the mode l 

was unsatisfactory for frequencies other than Al . The data does not 

support the restrictions and values for p. a nd 'I. are insignificant. 
J J 

In fact even for Al the estimates of Pl' 'Il are not a satisfactory 

support for a priori ideas,on the value of Pl in particular, as 

can be seen from Table 15. 

There will of course be two estimates of each of these constants -

one from aio)(n) and one from &io) (n) - and these estimates may be 

averaged to produce better estimates . 

TABLE 15 

ESTIMATES OF Pl , 'I l , Kl BASED ON &io) (n) 

Pl 'Il 

From ~io) (n) .56 .001 

From gio ) (n) .60 . 001 

&(0) (n ) 
1 

Kl 

.92 

.66 

-~---------- - -------



Rather than proceed with the task of attempting to improve 

the estimates based on &io)(n) and ~io)(n) it was thought more 

effective to direct attention to the possibility of obt aining 

better estimates from a~oo)(n), &~oo)(n). The narrower response 
J J 

function use d i n producing f~oo)(n) will make the specified 
J 

signal plus noise model more appropriate a nd thus the estimates 

arising from these quantities more suitable. It is quite 

simple to consider estimates of a.(n), ~.(n) 
J J 

intermediate segment. The spectra of a~oo)(n) 
J 

approximately 

27rf (1-- .) 
x J 
27r 

which may be rewritten as 

from the 

and ~~oo) (n) 
J 

are 

The expression in (6 .3. 20 ) represents a mixed moving average 

(6 .3.20) 

autoregressive process, but it is (A.R.-M.A. (3:1)). However, 

using again the known va l ue of ~j one forms weighted partial double 

summations as follows 

where T may be set a t some value < M (e .g . 20). It has already 

been noted that at say V = 20 the response of the extraction 

procedure is not markedly different from the intermediate response 

i.e. V = 00, and so the (00) notation here includes the estimates 

a~V)(n), ~~V)(n) using the maximum V available for time points 
J J 



n = T, . . . ,M a nd n = N-M, ... ,N-T. As before the upper summation 

limit would be (n -l) if the a~oo)(n), 8~00)(n) were ava ilable for 
J J 

n = 1, .•. ,N. 

The most convenient procedure is to form a sequence of E(n) 

for each p., ~. couplet in the region -1 < p., ~. < 1 a nd to 
J J J J 

select the estimate of p., ~. as the values which produce the 
J J 

2 
minimum sum of squares, ~E (n). The minimum is however chosen 

subject to the restrictions on the p., ~. plane which are 
J J 

derived from (6.3.21) below. If the optimal p., ~. and K~ 
J J J 

are to produce positive estimates of O~ and ~ (A. ) then as 
J x J 

for the previous search when Pj is assumed positive a priori 

~. must also be positive and as well p. must be greater than ~. ' 
J J J 

As ~j is known the E(n) are obtained recursively for each Pj , T j 

using 

dn) A(OO) ( ( A(OO) ( ( 2 ~.dn-l);.a . n)- p.+2~.)Q:. n-l)+ 2~.p.+~.) 
J J J J J JJ J 

A(OO) 2 A(OO) 
Q:. (n-2)-~.p.Q:. (n-3). 

J J J J 

othe rwise the estimation problem may again be reduced to that of 

estimating an (A.R.-M.A. (1:1)) process by the above partial sum 

procedures. The equivalences between the parameter estimates 
2 

obtained from the above (A. R.-M.A. (3:1)) process and OJ/2) 

27rf (A.) are 
x J 

2 
T. K. 

27rf (A . ) = ....J.. _~J-...... 
x J Pj (1_~.)4 

and 

2 
K. 

J 

J 

(p .-T. )(l-p.~ .) 
J J J J 
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a nd these equivalences are used to turn the parameter estimates 

for Pi' ~l a nd K~ in Table 16 below into the esti mates of cr~ 

a nd 2rrfx CA1 ) i n Table 17 . 

TABLE 16 

ESTIMATES OF Pl , ~l AND K~ BASED ON &ioo)Cn ), ~ioo)Cn ) 

2 
Pl ~l Kl 

From aioo
) Cn ) . 80 .01 .048 

From ~ioo) Cn ) . 66 . 01 .006 

Basing the estimates on a~oo) Cn ) a nd ~~oo) Cn ) has somewi~a t 
J J 

improved the estimates of Pj for freque ncy Al , but has also 

confirmed that the data does not support the restrictions for the 

other frequencies. It is apparent that the model is useful onl y 

for the first seasonal freque ncy, which from Fig . XX can be seen 

to provide the major portion of seasonal power. In f ac t with the 

benefit of hindsight i t is clear that it would be very difficult 

to obtain the parameters for the signal plus noise model in the 

latter seasonal frequencies for Bank Advances as these frequencies 

have so little power. 

2 2 
The estimates of crl and ~xCA1) based on Pl' ~ l and Kl 

from Table 16 are presented below and coul d be used (see however 

§6.7 ) t~ guess at a possible choice of the optima l ~l' 

TABLE 17 

ESTIMJI_TES OF cr ~ AND 27r.f x CAl) USING Pl , T 1 AND ~ FROM TABLE 16 

18000 
1500 

284 
35 
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To obtain the prediction variance e(s.(n )_~~V) (n )}2 when 
J J 

s.(n ) or rather the component s S .(n ) a nd f . (n ) are generated by 
J J J 

(4.2.3) but the estimat ion procedure is based on p. = 1, the 
J 

181 

prediction variance e (s .(n )_f~V)(n )}2 is found f rom the expression, 
J J 

Ih (V)(A-A. )1
2

f (A.)} d"A 
J x J 

(6 . 3 .22 ) 

which becomes when relocated at the origin 

I h (v) (A) 12f (A.)} d"A. 
x J 

(6 .3 .23 ) 

( ) (l-~.) 
If V = 0 then h. o ("A) = J'

A 
a nd by s t raight fo rward cont our 

J l-~ .e l 

J 

integration one obtains the expression, 

x J J 
2 

27rf ("A . )(l-~ . ) } 

The prediction variance in (6 .3.24) may be related to tha t given 

i n §5.7 for e(s.(n)_~~O))2, where of course p. = 1, by recalling 
J J J 

(see (4. 2.3~ ) that s.(n ) = s .(n)+f.(n ) and by setting p. t o unity 
J J J J 

in (6 .3.24). Then, by noting that (27rf ("A. )/(a~/2)} is equal to 
x J J 

B. and that B. may be rewritten i n t erms of ~. as (see (4. 5 ·3)) 
J J J 

B. 
J 

if the optimal ~. is used, (6 .3.24) is equivalent to (5 . 7 .15 ). If 
J 

( ) (1_~j)2 
V = 00 the n h .

oo 
("A) a nd a gain contour i ntegration 

J Il_~ . ei"A12 
J 

followed by simple but lengthy algebraic manipulations provide the 

followi ng prediction variance, 
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222 
a. 1 { 2p .t3 . (1-t3.) (1-t3. )(1+t3. )(4p .t3. ) 

+ t 2 1 + J J 2 J 2 + _---'J"'--,,,----lO.J __ ..... J .......... J:...-

(l-p . ) (l-p.t3.) (1+t3.) (1+t3 . )3(1-p.t3.) 
J J J J J J J 

(6.3 .26 ) 

Again the cumbersome expression i n (6 .3.26 ) may be reduced to the 

very simple expression (5.7.15 ) by using the same expression for 

8. i n terms of t3. (6 .3.25) and by letting p. + 1 a nd applying 
J J J 

LfHospitalfs rule to the second term. 

6.4 Demodulation and Modelling 

There must of course be a good deal of uncertainty as to 

whether the model proposed i n (4.2.3) is a suitab le one. Before 

going into detail on the point s to be examined the demodulation 

procedure will be briefly sketched. The t echnique of investigating 

a particular frequency, or more correctly a narrow band about a 

particular frequenc y has a long history. Two recent discussions 

of this approach are Granger [15] and Bingham [ 5]. The demodulated 

series is composed of a real and a complex part and one of the purposes 

of thi s section is to investigate what sort of st ochastic processes 

might generate the real and complex part s. 

One begins with t he original observations we n ) and as will be 

the general approach in this section the removal of long term, low 

frequency, power will be carried out by subtract ing a twelve month 

moving average from we n ) giving the series y en ). The demodulated 

series result s from a further filt ering of y en ) and the success of 

this operation depends on the choice of coefficients in the filter . 

The filtering of y en ) proceeds as follows t o give 



A. (n ) 
J 

n = 6;-T+l, .. . , N-6-Tj 

(6 .4.1) 

j = 1,2, ... , 6 

which is a sequence of complex numbers. How narrow a band about 

Aj is represented by the sequence depends of course on the chosen 

bk coefficients. Perhaps the simplest method is to choose the bk 

as a centred moving average, that is to first form 

and then to centre the M.(n ) values at integral time points if 
J 

this is not so by then forming 

The frequency response of the bk coefficients associated with 

A. (n) as defined i n (6 .4.3) is, when (2T+l) = 48, 
J 

B(A) 

(6. 4.2) 

(6 .4.3) 

(6 .4.4) 

The success of the demodulation depends on how effective l y the 

response function of the chosen bk represents onl y the desired 

narrow band about A.. To attempt to improve the resul t another set 
J 

of filter coefficients was used. These coefficient s represent the 

repetition of a moving average and may be represented as 

() M M { 1 }2 -i(n-k-t)A' 
Aj n = ~-M t-M 2M+l e Jy (n -k -t ) 

(6 .4. 5 ) 

where if one selects 2M = 24 then the number of terms lost in 

demodulating will be approximately the same as in (6 .4.3) a nd 

the response function is 
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B (A) = 1 ~ sln . I 2 A . 
( . 25/ }2 

(25)2 l sln2 A 
(6.4.6) 

A comparison of the response functions of the two proposed 

demodulating averages is given i n Fig. XVI. Now the quantities 

which will be the subject of further investigation are ~(A .(n) ), 
J 

the real part of A. (n), and d, (A. (n) ), the imaginary part, and 
J a J 

which are given by 

(6. 4.7) 

cosnA.~TTbkCOskA.y(n-k)+sinnA.~TTbksinkA. y (n -k) 
J - J J - J k k 

a nd by 

(6.4. 8) 

sinnA.~TTbkCOskA.y (n -k)-cosnA.~TTbksinkA . y ( n -k). 
J - J J - J k k 

The quantities calculated using (6.4.7) a nd (6.4. 8) are slight l y 

modified to produce 

- m 6 cx. (n ) = IJU (A . (n ) )(2-5.) 
J J J 

(6.4.9) 
.. cV 6 
13 . (n ) = J (A. (n ) )(2 -5 . ) 

J J J 

and one may then easily contrast what is being done in this section 

with the approach based on a model which specifies the probabilistic 

development of the cx.(n) and 13.(n). To do this the expressions in 
J J 

the first line of (6.4.7) and (6.4. 8) should be compared with those 

given in (5. 6.1), assuming v is set equal to infinity. 

and f(~)(n) are given by (5.2.3) (except that N-V is set equal to n ) 
-J 

a nd so 

() . I kl ikA. 
f.oo (n) = H ~oo 13. e Jy(n-k). 

J -00 J 
(6.4.10) 
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The reason for repeating the expression for f~oo)(n) i n (6 .4.10 ) 
J 

is to emphasize that the quantities to be studied, a.(n ), ~.(n), 
J J 

differ from <2 _ (n ), g. (n) only in that the b
k 

term in the square 
J J 

bracket in (6.4 .7 ) and (6 .4. 8) do not spring from a specific 

a priori assumption as to the nature of the stochastic process 

generating ex _ (n), f3. (n ) . 
J J 

To obtain guidance as to the kind of process by which 

ex.(n ) a nd f3.(n) might be generated the quantities were tested 
J J 

in the following manner. The procedure adopted here follows 

closely the identification approach put forward by Box and 

Jenkins [6]. The autocorrelations of a.(n) and §_(n) were 
J J 

formed from the following expressions 
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(6 .4.11) 

ex_ 
J 

and similar quantities c~o) (~), c~o)(~) were also formed where 

the superscript (0) indicates that no mean correction was made. 

To further the identification task the partial autocorrelations 

of the uncorrected and mean corrected quantities are obtained as 

follows. If Rex is a p X P matrix, 
p 

Rex(l ) R (p-2) ex 
Rex(l) 1 Rex (P-3) 

. 
Rex (p-2 ) 1 

Rex(p-l) 1b: (p-2) Rex (l) 

R (p-l) ex 
Rex (p -2) 

(6 .4.12) 

Rex(l) 

1 

-- - - --- ------------



where Ra (~) = { Ca (~)/Ca (o)} and if r is the vector 

{~(1),Ra(2), ... ,Ra(p)} then a vector of estimates 

a 
~ = { ~ l'~ 2' ... ,~ } is obtained from p p pp 

To interpret ~a it should be understood that ~ . is the jth 
PJ 

(6.4.13) 

autoregressive parameter in a process of order p, and in particular 

the partial autocorrelation of order p is ~ The simultaneous 
pp 

equations (6.4 .13) may be solved by using the recursive relations 

given by Durbin [12] 

~ 1 . 
~+ ,J j 1, ... , ~ 

(6.4.14) 

-R(l) 

to obtain the partial autocorrelations for a.(n), ~.(n)~2 The 
J J 

statistics R (~) and ~ are suitable for the identification of 
~,~ 

moving average and autoregressive processes. For example if the 

a.(n) are generated by a moving average of order k it is well known 
J 

that the theoretical autocorrelation beyond k will be zero. To aid 

identification then one would compare R(k) with its standard error 

on the assumption that the process is a moving average of order 

(k-l). In this case for ~ values less than k one would expect R(~) 

to be large in relation to its standard error. The variance of R(k) 

when it is assumed that the process is of order (k-l) is given by 

the following formula proposed by Bartlett [4] 

32 
The equations in (6.4.14) have dropped the superscript, a, to 

give a less cluttered formulation. Of course it is also the case 
that (6.4.12), (6.4.13) and (6.4.14) are used also for ~.(n). 

J 
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(6.4.15) 

where the peT) are the population lag correlation coefficients. 

It is usually necessary in practice to use instead of p eT) the 

R(T) values from the sample of size N. The statistic t abled in 

Table 18 is 

k 1,2, ... ,24 (6.4.16) 

which is approximately a standard normal variate. 

Identifying a purely autoregressive process on the basis of 

the autocorrelations may be based on a judgement that the 

autocorrelation function lItails offll i n contrast t o the situation 

for the moving average process of order k where as has been pointed 

out the autocorrelations after the kth lIcut off 11 • It is ve ry much 

simpler however to instead concentrate on the partial aut ocorrelations 

for it may be shown that for an autoregression of order k tha t the 

partial autocorrelations lIcut offll, and t hat t he point of lIcut offll 

will be the order of the autoregression . The t est statistic which 

is computed on the basis of the partial autocorrelations to aid in 

identifying the lIcut offll point is 

k = 1,2, ... ,24 

where Mk is a standard normal variate, since the variance of 

¢k k' if the process is autoregressive of the order (k-l) is , 

Tables of demodulated values of a.(n), ~.(n) are presented in 
J J 

(6.4.17) 

(6.4.18) 

Table 18 for the two filtering methods and mean corrected a.(n), 
J 

~.(n ) are based on onl y one filter, that given in (6.4.5 ). The 
J 

tabulations are most space consuming so the latter seasonal 

frequencies, /\4 ' /\5 a nd /\6 are omitted. It is however already 

apparent in /\3 that a simple first order autoregression model is 



not the appropriate one for that frequenc y and similar results 

obtain for the latter frequencies. I n fact as the frequencies 

after A2 are for many series quite low in spectral power33 a nd 

therefore their contribution to the total seasonal variation is 

quite minor it seems possible to justify the following approach. 

Suppose that for these latter frequencies there is a stable 

seasonal coefficient which would thus produce a spike in the 

spectrum for these A .. This spike will then be approximated by 
J 

using the model proposed in (4.2.3), and further assuming tha t 

p. = 1 for j = 3,4,5,6, as was done for all A. previous l y . 
J J 

A rather general point is inserted before discussing in 

more detail the problems of identification . The series which is 

used for the modelling in identification procedures is "Bank 

Advances" and this series has characteristics which do indicate 

it is evolving (see Fig. XIV). For a ny series under consideration 

it is only sensible to do some preliminary investigation to 

establish whether the series is i n fact evolving before attempting 

to establish the nature of the evolution . A fairly obvious 

indication can be obtained from the study of a periodogram of 

residuals after regressing off a stable seasonal pattern as will 

be suggested in the next section . 

Returning to the constructed series ex. (n ), ~ . (n ), which 
J J 

are to form the basis of a n enquiry into three simple genera ting 

models 

(a) 

(b) 

(c) 

a. (n) 
J 

m .+€ . (n) 
J J 

a.(n) = p.a.(n-l)+€.(n) 
J J J J 

(a.(n )-m.) = p.(a.(n-l)-m.)+€.(n ) 
J J J J J J 

(6.4 .19 ) 

33 
The normalized spectra for wool presented in §6.7 does seem 

to have an unusual make-up of spectral power. (See Fig. XX) . 
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where € .(n) is a random disturbance which is I.I. D. (0, 1) and m. 
J J 

34 is the population mean of a.(n). It proves to be convenient 
J 

i n certain contexts to consider (c) in the form 

a.(n) = m.(l-p . )+P.a . (n-l)+€.(n). 
J J J J J J 

(6.4.20) 

To reiterate the variables which form the basis of tables are 

a.(n ), ~ . ( n ), a.(n)-a. and ~.(n)-~. and the estimate of p., 
J J J J J J J 

'" de noted p., is the first autocorrelation for both the mean 
J 

corrected and non-mean corrected dat a in Table 18 . If it was the 

case that (a) was the correct model but that the estimate of p. 
J 

was based on model (b) then it is easily shown that the probability 

'" limit of p. is 
J 

'" plim p. = 
J 

1 1 
1 

{l + '2} 
m. 

J 

(6.4.21) 

2 A 
and so unless mj was very small one would expect Pj to be close 

to unity. On the other hand if model (a) is t rue a nd a procedure 

to estimate p. appropriate to model (c) is employed then the 
J 

probability limit of Pj is 

'" plim p j = O. (6.4.22) 

As the samples are reasonably large (always greater than 100) a nd the 

Pj estimates do not differ markedly depe nding on whether or not mean 

corrections are made and the estimates of p. are quite large it 
J 

appears unlikely that (a) is the appropriate model. In any case 

if a process of (a) type was generating a.(n) a nd ~.(n) it is 
J J 

a priori much more likely that the disturbance will not be 

If in model (a) the disturbance € . (n ) was replaced by a 
J 

disturbance T).(n ) such that T).(n) = p .T) . (n-l)+€.(n ), Ip .1 < 1, 
J J J J J J 

then model (a) and model (c) are identical. 
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independent (see footnote 34) . So in thi s rather re stricted set of 

models a ttention is now centred on (b) a nd (c ) as f ormula ted in 

(6.4.20). If model (c) i s the true model and the estimation 

procedure is based on model (b ) then there is a bia s in the estimate 

'" of p., which is for large N equal t o 
J 

2 
a 

( a . } 
(l-p .)/ ~ 2 J 

J lm.+l 
(6.4.23) 

J 

2 
where aa 

j 
i s the population va riance of a.(n). 

J 
Thus with p. value s 

J 

close to 1 the asymptotic expression for this bias will be small. 

Another possibility i s if model (b) is true but the estimate of p. 
J 

is appropriate to model (c) . In those circumst a nce s there is no 

bias in the estimate of Pj' however there is a loss of efficiency 

i n the estimate of p .• The variance for p. in the true model is 
J J 

2 ( N 2 }-l 
a t 2:: a . (n) (6.4.24 ) 

E. 1 J J n= 

a nd for the assumed model is 

2 
2 { N 2 (2::a/n)) }-l 

a 2:: a . (n) - N 
E. 1 J J n= 

(6.4. 25) 

and so the loss of efficiency for estimating Pj using the incorrect 

model will be given by 

(6.4.26) 

So far onl y the influence of the choice of a n incorrect model 

on the paramet er p. has been considered but as is apparent from the 
J 

discussion of a n optimal ~ . (see (6.3 .14)) the effect of incorrect 
J 

model specification on a
2 

is also import a nt. We consider a gain 
E . 

J 

the case when (c) is true and (b) is employed. The estimate of 

2 
a is based on the vector of calculated residuals, €, where 

E. 
J 



192 

€ = a.(n )-p .a (n-l) 
J J 

(6.4 .27) 

and is given by, 

(6.4.28) 

which as is shown i n App. A is not an unbiassed est ima t e of cr2 
E. 

J 
The bias is presented for the general situa t ion in App. A a nd 

in the above situation is given by, 

(6.4.29) 

and the asymptotic expression for this bias is, 

2 

2 2 { m. (l-p .) 1-
J J 

m. "I 
J J 2 2 

a + m. 
O!j J 

(6.4.30) 

which will be small if m. is small or if p. is close t o 1. If 
J J 

model (b ) is true a nd (c) is used again one finds there i s no bias 

i n the estimate of cr2 , but the variance of the es timate is larger 
E. 

J 

than would be the case if the true model waS employed. (See App. A). 

The estimates of a2 actually obtained for each situation is 
E . 

J 
the f irst figure given in the variance of residuals now in Tab le 18 

and it is quite clear that the estimates do depend substantially 

on whether a mean correction is appropriate or not. As the question 

of whether a mean correction should be made must theref ore be faced 

a test of whether the parameter m. in model (c) is significantly 
J 

diff erent from zero must be considered. As has been noted this i s 

exactly the same as testing whethe r m. is significantly different 
J 



from zero i n model (a) if E.(n ) is replaced by ~ . (n ) defined 
J J 

i n footnote 34. The testing procedure ca n be expr essed as a n 

extremely simple regression problem, where the onl y regr e ssor i s 

the unit vector but where t he variance-covariance matrix of 

residuals is the familiar one associat ed with a f irst order 

autoregressive disturbance with paramet e r p . . Thus i f p. i s as 
J J 

expect ed close to 1 it will be diffi cul t t o f ind a s ignif i cant 

cons t a nt t erm since its variance i s gi ven by35 

.--2 
cr 
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var 0:. 
J 

E. 1 
--l. _-=----:-

N (l-p. )2 
J 

(6.4.31) 

.--2 
where cr is the variance of a.(n),where t he generalized leas t 

0:. J 
J 

squares estimate of m. is just o:.,and where the second expr ession 
J J 

merely employs the population relation be t ween the variance of 

0: . (n ) a nd t he variance of E. (n ) . 
J J 

Onl y rather tentative conclusions on the na ture of the 

parameters needed to develop t he "opti mal" model can be drawn . 

It appears that t he est i mates of 

a nd ~.(n ) are useful onl y for j 
J 

A 2 - ( p. a nd cr obta ined from 0: . n ) 
J E. J 

J 
1,2, - whi ch are u sually the 

main sources of power. As mentioned bef ore t he value s of p . are 
J 

not ve ry much diff erent whether mean corrections are ma de or not 

but the est imates of cr
2 are quite di fferent so tha t unle s s one 
E. 

J 
is able t o decide with some cert a inty whethe r m. = 0 a range of 

J 
2 

cr 
E. 

J 
• :?: J -

35 

values would have t o be cons i dered. The latter f requencies , 

2, do not appear t o be easily ha ndled by the mode ls proposed 

It may be more convenient on occasions t o use the spectral 
representation of the variance of a. which i s gi ven by 

J 

var 0:. 
J 

2Wf(o) where f(A) is t he spect rum of ~ .(n ). 
N J 



a nd short of extending the models under consideration a rather 

fami liar approach has to be adopted - partly justified by the 

usually minor role of the latter seasonal frequencies. It is 

assumed that the p. for these frequencies are identically equal 
J 

t o unity and thus an estimate of a~ will be made from the first 
J 

differences of the a.(n) a nd ~.(n) for j = 2,3,4,5,6. 
J J 

6.5 Periodogram Estimates 

To make further progress with the t ask of establishing the 

quantities on which the "optimal" method of signal (seasonal) 

extraction depends it is necessary to know something of the 

nature of the process generating the "non-seasonal". At least 

one must have some idea of the "non -seasonal" power or 

magnitude, if as is suggested in Chapter IV the simplifying 

assumption is made that the leve l of non-seasonal power or 

' noise' is a constant over a band at each seasonal frequency. 

A crude estimate of this power will be derived from an analysis 

of the periodogram ordinate s of y (n ) - the trend removed series. 

Thi s section also includes a discussion of the periodogram 

ordinates of the original observations, w(n ) (see (3.2 .1)), a nd 

of the residual series after a s t able seasonal pattern has been 

removed, r(n). 

The value in inspecting the periodogram ordinates of r(n) 

is easily demonstra ted . Before beginning the detailed work of 

developing an evolving seasonal estimation procedure as suggested 

in Chapters IV and V it is as well to attempt some assessment of 

whether a stable pattern is adequate . A quick guide to the 

adequacy of the stable pattern is to graph the periodogram 

ordinate s of r(n) and t o note whether significant power remains 

in frequencies in a band about any A . . This has been done for 
J 

two series: 

194 



All (Australian) Cheque Paying Banks: Loans, Advances and Bills 

Discounted $m (Bank Advances) September 1945 t o May 1967 

. 1 . 36 lnc USlve 

Number of bales of greasy wool sold in Australia 000 (Wool) 

July 1948 to June 1967 inclusive37 

and in Figs. XVII a, b, the periodogram ordinates, these ordinates 

after smoothing by a three term average, and after smoothing by a 

five term average are shown. For those averages which include an 

195 

ordinate which is {rrj/6}, j = 1,2,3,4,5,6, that term is omitted from 

the average a nd the denominator reduced by unity. It is quite clear 

that a considerable amount of power remains close t o the seasonal 

frequencies. For each of the series this is most marked for Al ; 

however there are also other seasonal frequencies where it does 

appear that the extraction of the power in a band about Aj wou ld 

remove some of the peaks close to these seasonal frequencies in the 

spectrum of r(n). 

A further useful enterprise is the consideration of the 

periodogram of four original series, the two previous l y introduced 

above and Registrations of New Motor Vehicles in Australia (Motor 

Vehicles) and Production of Electricity in Australia (Electricity)3
6 

(the logarithm of the published series is we n )). It was conjectured 

that careful scrutiny of the periodogram for each series might 

indicate appreciable differences in band width at seasonal 

frequencies for different series. To make this comparison the 

series were all restricted to the most recent 204 observations and 

thus to the same number of periodogram ordinates. It is possible to 

The source of these series is the Monthly Review of Business 
Statistics (Commonwealth Bureau of Census a nd Statistic s, Ca nberra, 
Australia). 

37 
The source of this series is the National Counci l of Wool 

Selling Brokers. 
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recognize the difference between the series Bank Advances and 

Woo l on the basis of the bandwidth of the seasonal signals 

(see Fig. XVI II ). It was however particularly difficul t to find 

any of the series which over a period as long as 17 years 

produced a periodogram with seasonal spikes. 

To complete the search for parameters necessary t o help in 

the development of an 'optimal' seasonal extraction procedure 

one must at least estimate the power of x(n ), i.e. the 

non -seasonal noise after trend has been removed, i n a ba nd about 

each A .. A guiding estimate of these qua ntities may be obta ined 
J 

from the periodogram of y (n ), which is defined by (see §4.3) 

The periodogram ordinates of y (n ) are then u sed to form equally 

weighted averages of either three or five t erms. Once a gain 

averages i nvolving ordinates at (or adj acent t o) A. should omit 
J 

those ordinates in the averaging procedure a nd the denomina t or 

of such averages adjusted accOrdi~gly38 (see Tab le 19). A 

freehand line is now used to Itfi t It the averaged pe riodogram 

ordinat es, which are now of course an estimat e of the spec trum 
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of the non-seasonal noise when trend has been removed (see Fig. XIX). 

The value of the "fitted It line at Aj is used as a rough estimate 

of the non-seasonal power required. 

There is a need here t o compare the approximate spec t ral shape 
obtained if one varies the number of ordina t es omitted, that is 
begin by just omitting the ordinate at A. and one either side and 

J 
then try A. and two either side and perhaps even the next step of 

J 
three either side of A. being omitted. 

J 
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2 
Now that estimates of p., cr a nd f (A.) are available i t 

J E. x J 
J 

would be possible to use the seasonal estimation procedures 

outlined in ~5.7 where p. is not identically equal to unity and 
J 

the choice of ~. is based on the series t o be seasonally ad jus t ed. 
J 

It is recognized that the demodulated series for each A. is based 
J 

on the seasonal component a nd the noise component of the original 

series; this is almost certainly the reason for the latter 

frequencies not being easy to model. To make much progress with 

this t ask of modelling at each A. more specific assumptions will 
J 

have to be made about the generating models for both signa l and 

noi se. 

6.6 An Overall Implicit Filter 

The methods used to estimate trend and seasonal are linear 

filtering methods and it is therefore possible t o give a response 

function for the optimal extraction at each time point . This 

means that there is not one response for the extraction operation 

that for example takes the original series into the trend series 

or the trend free series into a seasonal series but tha t there is 

a separate response for each point i n the sample. Fig. XII 

indicate s however that there is little difference in these 

functions once the time point considered is more than say 12 

observations from either end of the sample period. To illustrate 

the overall response function, meaning the t ot al effect resul ting 

from the use of both the "optimal" seasonal and trend extraction 

appropriate to each time point , the approach employed by Nerlove 

[45] is introduced. The situation considered by Nerlove was of 
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course quite different i n that the B.L. S . procedure was a non-linear 

one and therefore not easily describable by a theoretical response 

function. An implicit response function derived from the 

cross -spectrum was the onl y practical guide t o the overall effect 

of the B.L. S. procedure. The cross-spectrum under consideration 



is between the original series and that series after subtraction 

of a seasonal estimate, i.e. an adjusted series. 

To briefly outline what was done the symbols T and 8 denot e 

the operations of trend and seasonal extraction, where 

extraction is synonomous with estimation and not wi th removal. 

The trend is therefore estimated from the original series by 

Tw(n). 8easonal extraction is then performed on the trend 

2 03 

removed series, (l-T)w(n ); an additional operation produces a 

seasonal estimate, 8(1-T)w(n), and the adjusted series is therefore 

a(n ) w(n )-8(1-T)w(n ) 

(1-8 )w(n )+8Tw(n ). 

The extent to which the estimate of the gain from the 

cross-spectrum between a(n) and wen) approximates the ga in of 

(6.6.1) 

the filtering operation (1-8), which should we know from Fig . XII 

have a shape very close to that sought for by Nerlove [45] a nd 

Fishman [14], depends on two rather straightforward points. The 

first is the extent to which one has been able to design a trend 

extraction filter with a response function which does not have a 

significant overlap with the response function of t he seasonal 

extraction filter. Thus a n effectively designed seasonal filt er 

will fail to produce an implicit response function wi th accept able 

gain a nd phase characteristics if the trend filter is poorly 

designed. 

It would be very difficult indeed to produce a trend filter 

which had no overlap prob lems and if overlap does exist then the 

extent t o which the implicit function fails t o represent the gain 

of the operation (1 -8 ) depends on the power of wen ) a round points 

of significant overlap. Quite apart from the consideration of what 

the implicit response is actually measuring there are practical 

difficul ties i n adequately estimating a frequency response function, 

especially when there are peaks i n the spectrum as there will be 



a t or close to zero frequency and a t the seasonal frequencies 

(see [37]). As the presence of peaks i n the spectrum will result 

in smudged cross spectral estimates the est imation was repeated 

for an increasing number of spectral points. Thi s i s des cribed 

as "window closing" [37] and if as the number of points increase 

there is little change i n the gain and phase, an indica tion is 

obtained that litt le "smudging" of the cross-spectral estimate 

is t a king place. 39 

Two series, Bank Advances and Wool, a nd their respective 

adjust ed series, are subjected to cross-spectral a nalys is; the 

number of lag covariances, m, used in the estimate s are allowed 

t o vary as follows: m = 24,36,48, 60,72. A measure of the 

relative distribution of power in each origi nal series i s 

obtained by normalizing the spectral quantity at each frequency 

by dividing by the sum of the spectral power over all frequencies. 

It is plotted in Fig. XX for each m. Both series have been 

restricted t o the most recent 216 observation s and it could be 

argued that one should preclude from serious consideration those 

spectra a nd cross-spectra based on larger m tha n 48. The wool 

graphs certainl y seem t o support this argument and so the ga in 

a nd phase for m = 48 is focusssed on (see Fig . XXl) . There i s 

no significant phase change i ntroduced by the filtering procedures 

as the maximum phase change is approximately ~ at Al and as 

39 
It might be argued in this section tha t it may also be 

sensible to use a different covariance avera ging kernel such as 
the Tukey-Hanning kernel since the presence of negative spectra 
a nd then removal as m increases may be an effective way of 
recogni zing the disappearance of excess ive b l urring. 

204 
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coherence a t this f requency is . 044 the va riance of the phase 

estimate would be large a t thi s freque ncy .40 No attempt will be 

made to explain in detail the failure of the ga in to reproduce the 
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complement of the gain give n in Fig . XII. The only comment i s tha t 

if as is suggested most of the smudging effect s have been minimized 

then there remains a minor distortion which ca n be ascribed t o the 

design of the fi l tering routine piece by piece, which in practical 

terms seems t o be the onl y way to proceed. 

In the Bank Advances series one might consider the spectra 

based on 60 lag covariances as there is no indication of 

oscillations in the spectral a nd cross-spectral quantities until 

m = 72 . Even with thi s large number of spectral bands the ga in 

of the implicit response does not clearly represent the complement 

of the gain of the seasonal extraction operation (see Fig . XII) . 

The largest phase change indicat ed is a change of approximately 

rr/6 a t g~ - a time lag of about one quart er of a month. Aga in 

however the coherence at 39v/60 is . 038 and l ittle significance 

should be attached t o thi s change. It would be surprising if thi s 

coherence was not small as 39v/60 ~ ~ i.e. a harmonic of the 

frequency rr/6. 

It should also be noted that even with the same number of 

observations in each series the implicit response produced is f a r 

from identical. Some of the differences are due to chance 

variation but some may also be due t o the different spectral 

structure of the series (compare Figs. on normalized spectra with 

gain for each series). 

40 
Since the estimate of the phase can be shown to be asymptotically 

normal with mea n e . . (/\ ) and variance 
lJ 
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Conc l uding Example 

Chapters IV and V dealt with a special model of the seasonal 

signal and presented methods for a detailed analysis of a set of 

dat a using this special model. Chapt er VI has suggested ways in 

which one might use the same set of dat a with a slight l y more 

general a nd efficient model. The modifications t o the model 

derive from further analys i s of the dat a and are used to re-estimate 

the seasonal component in a fashion suggested in ~5.7. 

As an ill ustra tive example the series Bank Advances i s first 

seasonally adjusted on the basis of Model I in which p. = 1 and 
J 

~. = ,96 for all A. and subsequentl y on the bas is of Model II 
J J 

where 

Al A2 A3 A4 A5 A6 

p. · 99 1. 0 1. 0 1. 0 1. 0 1. 0 
J 

~. 
J 

.93 .99 .98 .99 . 99 . 98 

The result s of the deseasonalizing procedures based on 

Models I a nd II are printed out in f ull det ail in Appendix C. 

Model II i nvolves paramet er estimates derived from the 

demodulation approach suggested in ~6.4 and from the periodogram 

ordinates of y (n ). It is relatively easy t o support the decision 

to use the se estimates not withstanding the difficulties associated 

with this approach which are discussed in ~6 .4 . However as the 

estimates in Tables 16 and 17 are unsuitab le for further use some 

explanation for the obvious inability t o recover sati sfactory 

2 A A 
estimates of p., ~. a nd K. from the a.(n), ~.(n ) is necessa ry . 

J J J J J 

The approximate spectrum of the a~oo)(n), g~oo)(n) presented in 
J J 

(6.3.20) is equated to the general formula for the appropriate 

mixed moving average autoregre ss ion, i.e. 
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to derive the relations given in (6.3.21). 

As a satisfactory method for estimating the parameters of 

(6,7.1)J subject to the necessary inequality constraints, is not 

a.vailable the search procedure on p. a nd 7:. outlined in §6 .3 was 
J J 

A A2 A 

employed. 'l'he values in Tables 16 and 17 for 7:1, 0"1 and 27Tf'x (Al ) 

are a reflection of the fact that the plotted l ikelihood changes 

very little in magnitude as 7:1 is varied - i ndicating of course a 

very high variance for ~l' As a consequence of the wide range in 

which 7:1 may lie the associated estimates of cri and 2Trf'x (Al ) will 

also have large variances. 

A possible reaSon for the likelihood discriminating so poorly 

wi"h respect to 7:1 is the invalidity of the assumption tha t the 

noise level i s consta nt over the band considered. It is almos 

certain however that the real cause is that one i s trying to 

e stimate the shape of a sharply changing spectrum over a very 

narrow frequency band. Very many sets of parameter value s will 

do almost equally as well with the information available so hat 

the likelihood function is extremely flat in the neighbourhood 

of its maximum. 



TABLE 18a 

CENTRED 48 TERM M.A. - MEAN CORRECTED 

(11 

-7.11 - 6.7 9 - 6.78 - 6 .2 6 -7.09 - 6 . 00 - 6 .44 -0.1 3 - 6 . R6 - 5 . 41 - ';> . 41 -1, . 47 
- 3 .75 - 3 . 52 - 3.76 - 2.48 - 1.4 8 0 . 40 0 . 69 0 . 22 0 . 29 0 . 93 2 . 02 "3 . Cb 

4 .1 2 4.77 4.49 3.62 1.04 0 . 59 -0.25 -0. 30 - 1 . 50 - 1. 39 - 3 . '12 - 4 . {>6 
- 6.14 - 6.82 - 6.77 - 6.21 -6.32 -4.67 -4. 00 -4.13 - 3 . 32 - j . 71 - 4. 90 - 6 .12 
- (; . 49 - 5. 73 - 4.56 -3. 25 -3.21 -3.31 -5.45 -7.43 -7. 43 - 6 . 63 - 7 .7 0 - '1 . ~4 

-10.61 -11.73 -12.14 - 13 .1 3 -16.5 0 -18.45 - 20 .71 -22.1 0 -21.56 - 21. 05 - ZO o 6';> - 23 . ~2 
- 26 . 92 -28.87 - 30. 17 -3 0 .20 - 30 .4 0 -28.64 - 26 . 89 -2 6 . 61 - 26 . 26 - 26 .1 4 - 26 . '>.7 - 2 (. 07 
- 2 7.91 -26.32 -25.38 -25.21 -27.37 -27 . 52 -28.30 - 29 . 00 - 2'3 . 51 - 29 .5 5 - 30 . 49 -3 3 .43 
- 3 3 .78 -32.99 -33.05 -33.90 - 37.52 -39.64 -40 .28 -40 .46 - 39 . 14 - 38 . 86 -3 9 .36 -4 0 . 21 
-41.79 -41.1 0 -41.61 -41.23 -41.89 -40.64 -39.81 -39.50 - 38 . 13 - 37. 68 - 3t:l . Ij t -/t Z.1 3 
-43.64 -4 2.81 -43.04 - 42 . 24 - 44 . 05 -4 5 . 09 -47. 12 -4 9 .7 5 -49 . 52 - 4 .8 . 36 - 46 . '11 -4{>. Q2 
- 47.20 -4 5.76 -4 (;.35 -46.10 - 4 7.5 6 -46.64 - 46 . ?2 -47.43 -46.97 - 4(, . 1l4 - It 7. 6f , -41-<. 6U 
-4 8 . 92 -46.78 - 47. 82 -47.36 -48.69 - 46 .2 5 -4 4 .55 -44.60 - 44 .7 3 -4 '> . 53 -46.~ b -47.n 
-47.21 - 44.21 -44. 20 - 44 . 63 -47.15 -47.34 "-47. 03 -47.86 - 47 . 00 -4 b . 55 - 4R . O!:l - 4<1 . 75 
-49 . 48 - 47.09 - 4 7.42 - 47 .12 -'+ 9 .15 -47.32 -4 5 . 92 -45.17 -4 3 . '16 - 43 . 5', - 4 f. 24 - '») .1 3 
- 55.82 - 53 . 66 -53.54 - 54 . 5 1 - 5 7.77 -5 9 .15 -59 . 32 - 60 . 88 - 60 . 24 -5 '1 . 8 4 - 60 . 92 - 62 . 50 
-61.52 -5'1.15 -5 9 .57 - 59 . 85 - 62 . 02 -59. 69 -57.74 -5 8 . 24 - 5 7. 36 

AUTOCORRELATrON S 
0 . 990 0.978 0 . 965 0 . 953 0 . 940 0 .92 8 0 . 914 0 .'1 00 0 . 884 0 . 868 0 . 853 0 . 838 
0 . 821 0.805 0 .7 90 0 .776 0 .761 0 .747 0 .733 0 .718 0 .702 0 . 687 0 . 67,) 0 . 665 

V A R I AN ( E 0 F ~ E S 10 UA L S 
0 . 8 164E 0 1 0.8066E 0 1 0 . 8066F 0 1 0 . 8066 E 01 0 . 8060E 0 1 O. 805qE 01 0 . 8055E 0 1 C. 8024E 0 1 
0 .799 1E 01 0 .7988E 0 1 0 .7 9 7 0E C1 0 .7 9 70E 01 0 .790 1 E 0 1 0 .7 897E 0 1 0 .7 8 56F 0 1 0 .7 855E 0 ] 
0 .7856E 0 1 0 .78 52E 0 1 0 .7 850E C1 0 .7 841 E 0 1 0 .7 82 4 E 0 1 0 .7790E 0 1 0 .77 3'1E 0 1 C. 7 71 8F 0 1 

VARIANCES O F AUTOCO RRE LATI ONS 
0 . 005 0.015 0 . 02 4 0 . 034 O. 043 0 . 051 CJ . 060 0 . 068 0 . 0 7 6 0.084 0 . 0<;2 0 . 099 
0.106 0.112 0 .1 19 0 .125 0 .131 0 .137 0 .142 0 .148 0 .153 0 .158 0 .1 63 0 .1 67 

SIG. STATISTIC 
14. 034 8 . 057 6.201 5.207 4.559 4.093 3.73'3 3 .44 5 3 .2 0 1 2.993 2 . '318 2 . 665 
2.525 2 . 399 2 . 290 2 . 193 2 . L 03 2 . 0 19 1. 942 1. 86 7 1.795 1.7 30 1. 67') 1. 626 

AUTOREGR .CO EFFS . 
-1.083 0 . 08 3 0 . 003 - 0 . 0 14 0.010 - 0.0 11 -0. 027 0.001 0 .025 0 . 066 - 0 . 032 - 0 . 0':15 

C. 099 O. C5 a - O. 060 - 0 . 007 - 0 . 01 9 0 . 007 - 0 . 0 1 8 - 0 . 02 1 0 .1 09 0 . 025 -0. 038 - 0 . 0 44 

PARTIAL AUTOCORREL S. 
C.990 -0.110 0 .0 02 - 0 . 007 - 0 . 029 - 0 . 0 13 - 0 . 022 - 0 . 062 - 0 .065 - O. C 1 ~ 0 . 048 - 0 . 005 

-0.093 0.02 1 0 . 073 0 . 0 11 -0.001 - 0 . 020 -0. OL6 -0 . 036 - 0 . 047 0 . 065 0 . 086 0 . 044 

VARIANCES OF PART I AL AUTOCORRELS - 0.005 0.005 0 . 005 C.005 C.005 0 . 005 0 . 00'> 0 . 00'5 0 . 005 0 . 005 0 . 005 :J . O')? 
0.005 0.005 0.005 G.005 0. 005 0.005 0.005 0 . 006 0 . 006 0.006 0 . 006 0 . OLJ6 

SIG. STATISTIC 
14. 034 -1.546 0 . 03'3 - 0. 1 01 - 0 . 4 J2 - 0 .L 85 -0.307 - 0 . 858 - 0 . 896 - 0 . 248 0 . 661 -J . D7? 
-1.280 0.290 0 .9 91 0 .144 - O. 019 - 0 . 2 71 - ,) .21 3 - 0 .4 ,31 - 0 . 624 O. P71 1.144 O. 'iPl 

f\) 
0 
OJ 



TABLE 18a 

CENTRED 48 TERM M.A. - MEAN CORRECTED 

61 

- 6. 87 -7.16 - 8.01 - 8.44 -7.33 -7.52 -8. 25 -7.03 -8.82 - 8 .') 3 - 8. 63 - tI. 70 

- 8.54 - 8. 63 -11.08 -12. 82 -13.34 -13.54 -13.06 -13.5 8 -1 5.34 -15. 96 -16. 22 -1 ~.77 

-14.97 -13.32 -12.49 -10.71 -9.83 -10.60 -10.90 -11.57 -13.59 - 12.80 - 11. 48 -12. 2( 

-13.03 -14.25 -15~ 89 -16.7 8 -17.65 -1 8. 59 -18.49 -19.10 -20.47 -20.43 - 20.73 - 21.£0') 

-22.71 - 23 .56 - 24.59 -24.27 -2 3 .64 -23.20 -23.09 -25.17 - 2 7. 06 - 27. 79 - 76 .21 -2'J.77 

-25.81 -25.84 -24.02 -21.55 -1 9 .12 -19.03 -19.16 -2 0 .86 -21.24 -2 0 .29 - 20. 01 -l~.fl 

- 20.47 -21.51 -22.00 -23.26 -24.32 -25.69 -25.08 -24.94 -24.1 B -24.32 - 24.2 7 - 75. ?2 

- 2 6. to -26.40 - 2 4.16 -21.97 -19.25 -18.68 -17.47 -17.61 -16.55 -14.51 - 1 3. 12 -1 L. 9t1 

-14. 90 - 14. 42 -11.95 -9.72 -6.62 -6.84 -6.85 -7.68 - 6 . 80 - 5.32 - 3.99 -4. 03 

- 5.57 - 5. 85 - 6. 46 -8.29 -8.51 -9.64 -9.12 -9.30 - 8. 57 -7. 01 -5. 4,) -4.46 

- t. 42 -6.90 -7.11 -8.33 -6.57 -6.76 -7.00 -9.70 -12. 33 -14.29 -15. 06 -1 'i . °9 

-16.27 - 15.84 - 16. 61 -17.70 -17.23 -18.37 -17.67 -18.54 -1 8 .55 - 17.96 -17.4 6 -1 7. 86 

-19.28 -17.77 -17.48 -1 9 .74 -19.69 -21.35 -20.12 -19.27 -17.94 -17.16 -1 6 . 93 -17. 4~ 

-18.71 -15.98 -14.37 -12.78 -11.62 -12.63 -11 .86 -12.78 -12.58 -12.13 -1 0 .7 2 -1 1 .1 3 

-12.49 -10.8l - 9.52 -8.98 -7.35 -:3 .96 -8.39 -8.64 -6.94 - 3.01 0.99 1. 70 

-C.76 1.00 3. 81 7.93 10.35 9.67 10.04 9.08 9.50 10.12 11. 02 9 . 93 

9.12 1l.53 12.68 12.94 14.07 12.8~ 14.28 14.01 14. 0 5 

AUTOCORREL A TION S 0;902 0.973 0.938 0.869 0.835 0.798 0.758 0.714 0.674 0.633 0 .592 0.5'J2 

0.5G8 0.466 0.424 0.384 0.344 0.304 0.768 0.232 0.199 0.164 0 .132 O.10~ 

VARIANCE OF RESIDUALS 
0.518 5E 01 0.5088E 01 0.5077E Cl 0.5063 E 01 0.5051E 01 0.5029E 0 1 0.5000E 01 0.4974E 01 

0.4<)61E 01 0.4947E 01 0.4940E 01 O.4937E 01 0.4866E 01 0.4862E' 01 o .4860E 01 0 .4 e5SE 01 

0 .4854E Cl o .4850E 01 0.4843E 01 0.4842E 01 0.484LE 0 1 0.48l9E 01 o .4808F 01 0.4753E 01 

VARIANCES OF AUTOCORRELATIONS 
0.005 0.014 0.023 0.031 O. 039 0 . 046 0.052 0.058 0.063 0.067 0.071 0.075 

0.078 0.080 0.083 0.C84 0.086 0.087 0.088 0.089 0.089 0.090 0.090 0.090 

SIG. STATISTIC 
13.788 7.823 5.928 4.916 4.241 3.735 3.323 2.972 2.689 2.440 2.216 2.019 

1.820 1.(:42 1.476 1.324 1. 1 75 1.032 0.903 0 .779 0 .666 ' 0.547 0.440 0.3 'j'j 

AUTOR,EGR.COEFFS. 
-1.1CO 0.C84 0.116 -0.109 0.020 - 0 .04 8 0 .007 0.133 - 0 .112 0 . 023 0.056 - 0.141 

0.139 - 0.038 0.017 - 0.036 - 0.002 0.070 - 0.045 0.018 -0.0 81 C.110 0.071 -0.10tl 

PARTIAL AUTOCORRELS. 
0.973 - 0.137 -0.046 0.053 -0.049 - 0.065 - 0.077 -0.072 0.052 - 0.054 -0.038 0.024 

-0 .lZ 0 0.030 -0.019 -0.017 -0.029 -0.028 Q .039 -0.01 7 -0.010 -0. 068 0.048 0.108 

VARIANCES OF PARTI~l AUTOCO~RELS 
0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0. 00 5 

0.005 C.005 0.005 0.005 0.005 0.005 0.005 0.006 0.006 0.006 0.006 0.006 

SIG. STATISTIC 
13.788 - 1 • 93 1 -0.649 0.746 -0.690 -0.914 -1.071 -0.995 0.715 - O. 739 -0.522 0.33 0 

-1.644 0.410 -0.Z59 -0.228 -0.400 -0.385 0.532 -0.222 -0.132 - 0.905 0.635 1.43 U 

[\) 
0 
\.0 
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CENTRED 48 TERM M.A. - MEAN CORRECTED 

(12 

- 1. 60 -0 . 80 0.01 - 0.20 - 0 .46 -1. 20 -1 . 99 - 1.05 - 2 .44 
-0.86 - O. 24 1.86 2 .45 1.74 o .ll 0 . 0 4 -0.16 -2.00 

0 .62 - 0 . 35 -1.43 -2. 88 -0. 89 0 .1 2 0 . 65 -0.22 -1.91 
- 4.5 8 - 3.51 - O. 95 -0.53 O. II -0.58 - Q .48 -1. 2 1 - 3 . 27 
- 5 . 65 -3.9 2 -2.5 3 - 3 . 9 5 -4.25 -4.36 -2.72 -3.23 -4. 86 
-7.36 - 8 .11 -10.03 -1 2 . 66 -11. 91 - 9 .75 -7. 0 9 -7.7 0 - 8 . 9 1 

- 12.07 -12.96 -13.18 -1 2 . 33 -1 0.68 -10.73 -11.67 -12.3 8 -12.10 
-13.25 -11.21 -13.47 -1 6 .2 9 -16.71 -16.67 -15.40 -15. 0 7 -14. 36 
-15. 30 -14.4 9 - 17. 51 -19.71 -18.81 -16.48 -1 6 .1 6 -17. 28 -17. 31 
-16.38 -14.73 -15.24 -14.34 -13.0 5 -13.74 -14.64 -15.43 -15.52 
-16.09 -14.05 - 1 5. 41 -15.53 -14.6'1 -13.40 -1 2 .47 -13. 28 -15. 91 
- H.14 -14.25 -14.31 -14.1 2 -12.77 -12.74 -1 2 . 86 -1 2 .6 3 -12. 80 
-13.67 -12.1 9 -13.90 -13. 05 -10.92 -11.11 -12.24 -12. 07 -1l. 0 5 
-12.50 -11.60 -13.64 -15. 80 -14.13 -13.21 -13.47 -13.71 -13. 91 
-14. 29 -12.74 -15.1 2 -16. 60 -15. 69 -16 .22 -1 8 .11 -1 9 .84 -1 9 . 20 
-21.17 -2 0 .36 -24.08 - 2 7.69 -26. 06 - 24 .48 -24.65 - 24 . 22 -24.14 
- 23.89 -23.38 -25.78 - 26 .46 - 24 .73 - 26 .15 -27.43 -27.54 - 27 . 63 

AUTO CORR ELA TION S : 
0.963 0.922 0 . 900 0 . 878 0 . 849 0.82 1 J . 809 0 . 80 5 0 .790 
C.710 0.684 0 .670 0 . 64 4 0 .602 0.562 0 . 538 0 .521 0.496 

V A R I AN (E 0 F RE S 10 UA L S 
0 .403 1E C1 0 .400 1E 0 1 0.3728E 01 0 .3716E 01 0 .37 07E 0 1 0.3705E 01 
0 .355 5E Cl 0 . 3486E Cl 0 .3345E 
0 .2864E 0 1 0 .286 3E 0 1 0 . 2854E 

VAR IAN CES OF AUTOUJRRELATIONS 
0.005 0 . 0 14 0 . 023 0.031 
0.088 J.093 0 . 098 0 .103 

SIG. STATISTIC 
13.656 7.732 5.979 5.012 

2.389 2.238 2.139 2.010 

AUTOREGR .COEFFS. 
-1.084 0.245 -0.1 0 6 - 0 . 003 

0 .275 - 0.11 0 - 0 .1 76 0 . 092 

PARTIAL AUTOCORRElS. 
0 . 96 3 - 0.086 0 . 261 - C. C57 

-0.192 0.163 - O. C?8 -0.234 

YARIANCES OF PARTIAL AUTOC(1RRELS 
0 .0 05 0.005 0 . 005 C. 005 
0.005 0.005 0 . 005 0 . 005 

SIG. STATISTIC 
13.656 -1.209 3.679 - 0 .796 
-2.626 2.226 - 0 . 379 - 3 . L88 

01 0 .32 96E 0 1 0 . 31 76E 01 O.3 0 91E 0 1 
0 1 O.2 854E 01 0 . 2850E 0 1 0.2850E 01 

0 . 038 0.046 0.052 0.059 0.065 
0.107 0.110 0 .113 0 .116 0.119 

4.331 3.849 3.540 3.320 3.095 
1. 842 1.69 3 1.5 97 1.528 1.439 

- 0 . 032 
0 .127 

0 .112 - 0 . 052 -0.088 -0.162 
0.043 -0 . 054 0.051 -0.087 

- 0 . 049 0 . 025 0.164 0 . 09'4 -0.070 
- 0.1 38 0 .020 0 . 056 0.009 0 . 037 

0. 005 0 . 005 0 . 005 0 .0 0 5 0.005 
0 . 005 0 . 005 0 . 005 0.006 0 . 006 

- 0 . 680 0 .343 2 . 289 1.308 -0 . 970 
-1. 86 7 0 . 265 0 .7 49 0 .115 0 .497 

- 1. 83 - 1. ':3 7 - 1 .47 
-1.89 - U. 85 U.I U 
- 0 . 88 - 1. 4 9 - , . '<7 
- 3.10 -4. ':>0 - ':> . 94 
-4.32 - 3.35 - 5 . 26 
- 6.91 -5. 94 -9. 3':> 

-1l.11 -11. 92 -1::3.7 0 
- 12.52 -1 2 .1 2 -15. 85 
- 15 . 08 -14. 71 -1 6 . C~ 
-13.16 -1'3.1 6 -1 6 . T'> 
-16.33 -15. 56 -1 6 . 73 
-11.41 -1 2 . 27 -14. 151 

- 9 . 65 -1 0 . 42 - U.5U 
-1 2 .44 - 13.24 -I t . 29 
-14. 8 ':> - 14. 82 -2 U. 94 
-2 2 . 3 7 -2 3 .1 9 - 2t . 49 

0.763 0 .753 U.743 
0.468 0 .464 0 .465 

0.3605E 01 0 . 3573E 01 
0 .30 89E 0 1 0 .291 9F 01 
0 .27 85E 01 0.2782E 01 

0.071 0 .077 0.083 
0.121 0 .124 0 .1 26 

2.856 2.710 2 .5 91 
1.343 1. 32 1 1. 310 

0.310 - 0 .l S0 - O. l U6 
0 .170 - 0 .113 - U. 034 

- 0 .139 0 .2 0 1 - 0 .121 
-0.016 0 .15C U. 034 

0 . 005 0 . oe5 0.005 
0 . 006 0 . 006 0.006 

-1.923 2.773 - 1. 1'>64 
- 0 .21 4 2 . 003 0 . 454 

I\) 
I-' 
0 



TABLE 18a 

cENTRED 48 TERM M.A. - MEAN CORRECTED 

Q3 

- 5.7<' -4.99 - 5. 37 -5.69 -4.62 -4.32 -2.77 -3.71 -2.7lJ - 5. 44 - 4.74 -4. 81 

- 4. 22 - 3.40 - 3. 79 -5.84 -5.30 -3.97 -4.00 -3.15 -3.51 - 4. 43 - 3.36 -2.45 

-2.42 -3.63 - 3. 97 -1.81 -1.87 -3.47 -3.37 -1.56 1.03 0.75 1.80 -0.47 

-0.68 2.76 3.09 0.62 1.02 1.34 0.50 3.09 2.77 1.51 1 .48 0 .22 

0.98 2.32 1.20 0.48 0.72 0.22 -0.21 1.94 0.77 0.25 2.44 o. 16 

-0.78 0.06 -1.31 0.15 2.90 1.25 -1.31 1.72 0.78 0.36 2.72 - 0.97 

- 2. 28 - 1. 51 - 0.43 -0.18 -1.29 -3.03 -2.15 -0.28 - 2. 11 - 1.54 - 0.37 -3.7':> 

- 1.39 - O. BO -4.23 -2.83 -0.96 -1.28 -2.39 -1.71 - 3. e 6 -2.54 0.06 -4.48 

- 2. 28 -2.60 - 4.33 -1.46 0.01 -2.75 -2.20 -0.49 - 3.38 - 3-. 12 - 0.86 -4.10 

- 2.18 -1.19 -2.49 -2.08 -3.30 -3.68 -2.58 -1.65 -4.05 -3.13 -1.3 3 -':>.61 

- 1.89 -1.64 - 3. 92 -2.65 -2.82 -5.41 -4.16 -0.98 -2.67 -4.52 - 3. 28 -5.93 

- 3.51 - 2.34 -3.93 -3.52 -3.69 -4.78 -4.67 -3.77 -4.72 -3.34 - z. t8 -7.57 

-3.78 - 4. 00 - 5.16 -3.70 -4.69 -7.55 -5.62 -4.27 - 6. 43 - 5.47 -3.26 -7.68 

- 5. 53 - 5.96 - 8. 16 -5.77 -4.96 -6.84 -6.34 -5.51 -7.15 -6.09 - ':>. 1 1 -lU. 33 

- '5. 72 - 6.54 - 8. 72 -6.87 -6.37 -7.90 -5.03 -3.52 -7.74 - 6. 07 - 2.51 -9.08 

- 6.19 -7.97 -10.09 -6.39 -6.36 -8.91 -7.95 -7.33 -8.60 - 6.68 - 5.65 -1l.47 

- 6.36 - 8. 74 -10.24 -7.90 -8.68 -9.02 -7.83 -6.78 -9. 0 4 

AUTOCORRELATION S 
0.783 0.755 0.851 0.728 0.745 0.831 0.690 0.649 0.770 0.652 0.63C 0.736 

0.574 0.606 0.668 0.506 0.522 0.594 0.478 0.476 0.549 0.399 0.402 0.523 

V AR I AN CEO F RES 10 UA L S 
0.3655E 01 0.3169E 01 0.2155E 01 0.2127E 01 0.2044E 01 0.1897E 01 0.1825E 01 0.1693!' 01 

0.1557E 01 0.1546E 01 0.1540E 01 0.1503E 01 0.1438E 01 0.1348E 01 0.1279E 01 0.] 16SE 01 

0.1l48E 01 0.1146E 01 0.1146E 01 0.1l46E 01 o .1l45E 01 0.1l43E 01 0.1l14E 01 C.1087E 01 

VAR I AN CES 0 F AUTOCORRELA TI ONS 
0 .005 0.011 0.017 0.024 0.029 0.035 0.042 0.046 0.051 0.056 0.061 0.065 

C.070 0.073 0.077 0.081 0.084 0.087 0.090 0.092 0.095 0.098 0.099 0.101 

SIG. STATISTIC 
11.107 7.168 6.573 4.703 4.356 4.457 3.383 3.015 3.427 2.143 2.558 2.897 

2.170 2.240 2.4G8 1.775 1.803 2.018 1.591 1.565 1.785 1.277 1.276 1.641 

AUTOR EGR. CO EF F S. 
-0.569 -0.105 -0.148 -0.003 -0.102 -0.302 0.170 0.387 -0.334 - O. 023 0.082 -0.155 

0.188 -0.385 0.198 0.324 -~O. 1 76 -0.005 0.033 -0.011 0.006 -0.112 0.244 - O. 154 

PARTIAL AUTOCORRELS. 
0.783 0.365 0.566 -0.114 0.197 0.269 -0.194 -0.269 0.283 -0.083 -0.063 0.1':>5 

-0.209 0.249 - 0.227 -0.294 0.132 0.038 -0.007 0.004 0.022 0.045 - O. 160 0.154 

VARIANCES OF PARTIAL AUTOCORRELS 
0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

0.005 0.005 0.005 0.0 05 0.005 0.005 0.005 0.006 0.006 0.006 0.OG6 0.006 

SIG. STATISTIC 
11.107 5.144 7.959 -1.604 2.758 3.753 -2.7 0 1 -3.740 3.928 - 1. 148 - 0 .863 2 .127 I\) 

-2.863 3.409 -3. 097 -4.0 0 1 1.796 0.520 -J . 0 96 0.060 0.292 0.60 7 - 2.134 2.044 I-' 
t-' 



TABLE 18b 
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°1 

AUT CCOFR EL AT! Lll\l S 
0 . lS 1 u . '-1b2 0 . ~72 C. 9(:3 0 . 9 :>6 0 . 94 8 v • '139 V . 9 ::'J O . 9 ~ J C. n o C. 9L l \.. . b S 3 

:-: . 885 O. b 77 ,) . . je b u . tlb 1 O. b 54 C. b,",7 j . l:)3Q \..J . 03 1 0 . 623 Co d 1 0 C . B !\.. ,:; . b L 4 

V AR I ~;--, C E J F f{tS I DU 4l S 
,-> . 32( 7 [= (;2 O. 3.2J 7c (2 C. 31 9c 2 C. 3 1 86 E 02 (). 3 i7 5 02 u . 3 17 2::: \..2 "" . 3 17 ut C2 L • 1 57C. \.. 

~ . • 3 1 5 4;: C2 \J . 3 1 53~ (2 C. 3 1:u 2 J . 31 5 J E 02 J . 3 15J J/ '- • j 14 7 :: .~.2 v . 3 1L.7 E \..;2 l • 1 33L C2 

u . 3 1 3::lE ::J 2 u . 3 1 j5c (2 C. 3 135 2 C. 3 130 [ 02 J . 3 123 02 G. 3 U 5c l2 ~, . 51 2:>c LL \.. . 12'il U 

VA R I A': CE S O F AUT ,lCdl- P ELA T I C~IS 
u • C' J 5 (, . Ci'5 ,:; . 02 4 0 . \.. ::; '1 \" . 0 4 3 0 . u52 v . ut l v . J 7 J .) . v 7 8 ( • v::3 7 O. OS') v . I ~:3 

O. 1 1 1 0 .1 1-1 G. l27 u . 1 34 C. 141 G. 14 9 J . 15b v . 1 D3 :- . 17 ,) G. 17e C. l d C. l >:;C 

5 I G • 5 TH I STlC 
14 . 0 4 9" 3 . J:lo b . 23 1 5 . 2 4L.. ', . 6 1 C 4 . 154 3 . 0U 4 3 . 520 3 . 2rc 3 . Jd9 2 . 924 2 . 7 C' 1 

2 . 65 L.. 2 . 543 2 . 44 1 2 . 352 2 . 2 71 2 . 1 '16 2 .1 26 2 . J bj 1 • S l} 9 1. ~ 44 1 . b S :: 1 . p 4 t 

AUT y; F (R • co E F F S • 

- ~ ' 5~~ - j .. J61 u . 111 - v . v( l - 0 . ( 74 - O. uv i l - v . v 41 J . ~'3.2 c . v'-S u . u l o - v . u 1 S - Iv . :: 1 ~ 

'J . _ ..J - u . ·J37 .J • . ) c:; - C. (4 7 - ': . li2 S 0 . u 1 7 - J . ,-32 u . Ob l v • u 1 1 - C. u23 C . u L ~ - l . eli 

PA RT [ :'L AUT OCO~R EL S . 
C. qS 1 - J . Ju2 - 0 . u:> 4 c. esc; ( . 00 1 - O . ,)2~ - ) . 027 - J . 0b5 - J . 01-3 G. d 7 ~ 

v . ld 3 l.I . ..... :L. 

- u " H': a 0 . )20 - ("1 • 1J 11 .:: . 1.:' 4 G. 00 7 - (J . ,:'3, - J . i.JL.(j - 0 . ~ 3 ~ v . C'2l 0 . \.. 33 \... • L, I... .., u . v 17 

VA K1 ':'I\CES O F P /l RT J ,j, L ALl TJCLF'k.E L S 
J . 0')5 Ll . Ju5 ) . 025 L . i.J(.~ C. U ) 5 LJ . GC5 ,J . .... \... 5 J . CuS J . C ... ? ~ . 0J5 li elv5 LJ . ~·~::: 

0 . 0C5 C . (A,5 u . OC5 C. OL5 \.. . 0J5 0 . uC5 .J • C (.' 5 U . OL.D j . 0~o C . ',,) t 0 . ,~ \.. t C • .=c.c 

S I G • :) THI S TI C 
14 • .j <1 S - C . \..ZS - ..; . 7 <;2 ( . 8:;3 L. 0'+ S -O . 3b l - ) . 37 4 - ,-' . 39~ - 0 . :'''15 ( . 2jo lJ • .:. ( B C. 1 t 4 

- C. 109 0 . "\81 - u . 1 4 C " . 7 :''1: v. ug4 - \.. . '+u:, - ') . 114 - v . 5~ 1 '", • '2::: 3 C. 4 "t 7 l • i.,: C " . 2 L I f\) 

t-' 
f\) 



TABLE 1& 
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AUT CCCRPE LATI O"lS 
. 0'72 O. S82 O. "f-S C. S5S C. S51 0 . 93<; 0 . 92 't J e '7 0 S v . SS 7 

0 . 8 1 8 0 . 7 9 7 0 . 77c O. 75f U. 7 ~ 7 0 . 71 5 0 . 690 ~' . C 04 0 . 64 1 

VA R 1AN (E O F RE S I CU\LS 
C . 6 1 74 E 0 1 l . (:lJ5SE.Cl J . 5 c 3L L-l D. 5 7 2:::lE 0 1 u . 5054 '_' 1 C • :5 ", 4 6 E \.) 1 
\.; . 4 628E 0 1 "' . 'tUSE' (1 L . 4575 ,,1 G. 4':J 72 c 0 1 J . /r 4-12 ) 1 u . 4{.t5~ J l 
C . 43cl 7 F Cl U. 4:3L CC L 1 C. 4313 ( 1 u . 4264F 0 1 0 . -+ 226 o 1 0 . 4219c 8 1 

VA R. L'~ CES OF A LJ T \ I C H K E L A T r Ul S 
iJ . OOS O. ::, 15 C. J24 0 . ~,3 4 G. u -t3 0 . ;}52 u . 06 1 J • '..; C- ~ J . u77 
0 .1 C 7 C . l14 L . l2e G . 1Zt C. 132 c . 1 3 7 0 . 142 . 147 0 . 1 5 1 

S r G • S TIIT I S TI C 
14 . 063 8 . e 7] b . nc 5 . 22 j 4 . 592 4 . 124 :) . 7 53 J . +<1 2 3 .1 92 

2 . 502 2 . 365 2 . '2 lIe 2. • 1 31 2 . (32 1. 932 1 . 03 1 1 . 7 34 1 . 649 

AUT u' F (P • en E F F S • 
- l. u6 7 - 1 . 2-3 7 0 . 4 C6 J . 11 8 - C. 364 - O. 049 0 . 0 76 _I . !. t 3 - 0 • 11.7 

.] . 1 92 - J • ']4 1 - ( . J eu C. O')o - C. 119 C. 0 1 5 u . 1:37 J • ~. 29 - 0 . C73 

P APT r il L AU TOCO ~R. EL S . 
') . 9S2 - J . 13:l - O. 11t S C. b4 C. 114 - 0 . 32-3 - 0 . 2J4 - .i • ~.' .:J 't J . 19 i.J 

- 0 .. 1 33 O. e77 .J o ,J 34 - C. IL':) - ( . Co4 - () . 11 9 - ..; . 056 J . 1 J 2> J . (.;1 4 

VA Rr~~CE S OF P~R TI ~L AUTJCr.r<."c LS 
,J . 005 J . C):) ) . ,)J5 v . U1...5 (, . OJ5 0 . 0)5 v . OJ5 ~ . ... ' u ~ 0 . Cu5 
J . JC5 c . ~u~ :; • ,~c S c . (:C.S C. C)5 c . GOS J . UU? • ",' J':J G . lJu6 

S r :; • ST6 TI S TI C 
14 . 0t 3 - 1. '14 2 - 2 . ::43 2 . 5tt: 1. 6ec - 't . :J81 - 2 • b 40 - l.Lc2 2 . oj7 
- 1. 3 1 8 1. ::: 59 J . 742 -1. 4Ct - C. Po 7 - 1. 6 G8 - J . 7 50 1. ft32 1 . 2t.1 

G. s n C: <; ,,;:; C. 8': S • v .... ... 

C . b 21 0 . 6( 1 ( • 5 d 1 

v . 4:>35 E ui C . 4 F u2E Ll 
J . 44'52E (, 1 (.. . 1.4\.; '::[' C1 
0 . 4 2C2E: ", I ( . 4h( [ Cl 

O. OdS 0 . 0S3 C. ll.,":; 
0 .1 5 S L . 1: S C. 1(::3 

2 . 935 2 . 31 1 2 . r-5:;, 
1. 5 7 5 1 . Sl 7 I . 44 C 

o. J 17 0 . 0 el - C. 15.; 
- U. Ub C. I-E6 - 0 . 01S 

- c . u2l - '" • 1L 6 -0 . en 
0 . 04 1 - L . L65 J . C1', 

LJ . IJu5 v . vC5 L' . OC 5 
C. :JJb C . JU {.. l Cc 

- C . 291 - 1. 4l3 - ( . ~17 
0 . 5S2 - ", . de;;) .~ -. r L. • L __ 

f\) 

1-' 
\..N 



AUT UCOPRE LATI ONS 
C. 980 0 . 956 C. 9 ~ C 
0 . 3 16 O. ,S lO \.; • .785 

VA RI t\iIlCE OF ~ESICU \ L S 
u . 102 4E uZ I... . IC1.)t C2 
" . 9b8bE 0 1 L • L) L' ,) <3 C J 1 
,j.S382E C1 (J . S}of:E ( 1 

V A.I.. I ;\ ~I CF' S 0 F AU Tl C,] ~ --< E L A T I O.\J S 
J . OJ 5 O. CiS 'J . JZ4 
G. l CC l) . 10c " . 1 13 

S I G. STAT I STIC 
13 . 8':?C 7 . S3J 6 . e5 1 

2 . 5ec 2 . 455 2. • 3; t 

AUT JKCGR . CrJEFFS . 
- 1 . 044 O. l)2 5 ( . 1 ~2 

.] . 023 J . GG3 - C. 1 23 

P A~T I AL AUT QU)~RE LS . 
J . '1SC - 'J . 103 - ,) • I) ': 3 

- 1) . 0 74 - J . 06 1 - v • .,O l 

TABLE 1& 

REPEATED 24 TERM M.A. - NO MEAN CORRECTION 

ti2 

C. ':JOEl C. c 'J ( 0 . 830 J . b 73 O . 3t 7 0 . 862 
L. 7 6f: 0 . 7 4'> 0 . 736 0 . 7 26 0 . 7 H 0 . 717 

O. l Ol L': 2 O. 1 C (,3 E C2 0 . 99):) E: vI ~ . :n24L u l 
U. So;''l,E 1 J . 9625t Cl C. ·h73t 0 1 C . '7'::>3'it C. 1 

C . ~.3 55:= 1 ;:' . 9j25t 0 1 O. n 49E J 1 U . '.j 24 8E u J 

", . 032 O. 04 (, l; . 04S J . C56 0 . (,64 J . u 7l 
L. lI C, 0 . 125 C. l 3 C u . ljb O. 141 .) . 140 

5 . U5e 4 . (\ 2 9 4 . LJO,) 3 . £:.0 7 3 . 43 3 3 . 232 
:;> . 222 2 . 1 23 2 . 040 1 . 9 72 1 . 9 17 1. b 77 

- ~ . GOC; C. 023 - 0 . 0'39 - J . uub - j . l' 11 - O. u6t 
( • 153 - 0 . 0J1 - v . 01 8 L] . CZ6 ,J. .::132 - 0 . 10 5 

;:; . CH () . 11 0 C. 137 0 . 029 ) . l" 7 G. 03J 
- 0 . 121 C. 04 1 .) . U42 J . lJ34 .J . J 58 0 . 0-:10 

VA R I A~C ES OF PAkTIAL AU T J-=O~KE L S 
C. OL,5 J . LU? 0 . Li('5 v . UJ? o . US 

v . uu5 v . CO? O. ) C ': ,J . ..... L 5 
J . J05 0 . G05 0 . 0'J5 G. Gl;5 G. U J5 0 . Ju5 J . lJlJ5 V . LvO v • (0,)6 

S L: . STATISTIC 
13 . -3'10 -1 . 44t: - C. 7 5 ] 1 . 174 1. 53 'i 1 . 911 0 . 4(,3 u . 6 4b 0 . 422 

-L Oll - C . 33? - 0 . ,J13 - L c47 0 . 5:'4 0 . 56b J . 4~9 ,j. 7 de. 1 . 2G 2 

" . '353 L. ::41 r ,-~ 'J: ,-
..... . 1....: .... 1,.,., 

0 . 714 L. 71 0 C. 7 LS 

0 . 9 71 6 (· 1 C. r,. 9'Jt= Ll 
0 . 953 7 0 1 L • CO S::lt: I... J 
u . =7238 0 1 C. S 3eE 01 

.] . 0 78 v . ,= e6 J . ",93 
0 .1 51 lJ . l:6 '" • 1 6 1 

3 . U45 2 . 3 7 4 2 . 7;:6 
1 • d '37 1.7 <; 7 1. 7 5 7 

- 0 . 0 12 C • 1 L G - := . 117 
0 . 0 44 - O. LCJ - 0 . L.2 "-J 

- C. U4'+ - O. J 39 v . L54 
- 0 . li l 1 C. G33 

., ., - c L . \., L , 

C. uv5 l • C (': ( . le:: 
O. JJ6 L . CCt c. C Cc 

- ( . 60 4 - () . 5 t, 1 C. 74 .... 
- C. 1 4 3 v . 44(, ~ . 3tl l 

I\) 
I-' 
~ 



AU I ljCLr<.R EL T 1 UN::, 
\) . 17 C. S5] 0 . i2~ 
..; . dt C. BS.] O. :n ::; 

VA RI ) ~jCE 'l F ~E ::ll,)U~LS 
u . 653 4E (, 1 C. J,-':l 1i: C 1 
C . 43 6 4E 0 1 0 . 4344 t [ 1 
(J,3 35vE ( 1 u . 33 1 :E C 1 

V/l'<I A'I CES OF AU T J CJ K K C L A T IC i'l S 
J . O(,'; C. C14 0 . v24 
J . LJ3 u . 11 J ..; . 1 17 

S I ::; • STA T ISTIC 
1 3 . 7C: 9 7 . So 1_ O • .J 3 5 

(. . h C' 2 . ':J ':I 1 2 . L.38 

AUT J~EGq . COEFFS . 
- 0 . 3 13 - 0 . 533 J . 46e 

). 0,:3 5 - 0 . 1 2 4 'J . ') 2 5 

P ART I AL AJTOCJR~ELS 4 
) . n 1 0 . 2e') - L . 3 1c 

- ), 1 57 - 0 . 1 3j - C. 1 S7 

TABLE 1& 

REPEATED 24 TERM M.A. - NO MEAN CORRECTION 

B2 

C . 9~6 O. [d 7 u . 806 O. ':3 71 J • .':l8u 0 . 007 
C. blo C. 7 ':1 C 0 . 77 '7 0 . 7 00 0 . 7 00 0 . 7 08 

O. '545E r- C1 O. 543'1E .) 1 J . SL'S 7 " 0 1 v . ':"5 c4E :... 1 
C. 4 \...:3?L Cl C. 36 7 h U J . 3:>6:1t- 0 1 v . 352bC ~ 1 
C. 327C[ II J . 3ZCJ3c d ) . 3209[' vl v . 32 4 3': J 1 

C. u32 v . J .+ C 0 . 04 8 J . u?6 J . uu3 G . 0 71 
L· . 1 24 C. l 3 1 0 . 1 37 u . 14 3 J . 1Ld o • l? 5 

5 . J ~3 4 . 4 2 7 4 . (; 44 3 . 7 22 3 . 51 d j . 3n 
2 . 3 1 /, 2. . 1 ~ 3 2 . 1 J5 2 . 02 4 1. c 09 1 . 95 i 

0 . 36 ' - (J . t-11 - 0 . 2 4 8 u . 3t- 2 - ..; • v 32 - ..; . 326 
C. 1 SL u . 1 72 - 0 . 103 - ) . 045 J . 17 OJ - 0 . l; 77 

C. C SS C. 205 0 . 306 - ,) . 1 0:3 v . 09~ J • 1 A 5 
- C. C2 1 - C. J 7 0 v . l 0::' 'J . Ob8 - J . v4J o . vt 5 

VA ~ I<lI\CES LJ F P A,,J,, T I I'll AlJ nc CQR E L S 
C. uv5 0 . G05 J . vJ5 .j • .J U 5 v . LJ S C. nes v . Ju5 ..i . OC? U. OC 5 

\.J . 0l: C. tJC5 J . OC : C. ve5 L • .J J 5 C. \..: 05 0 . 0u ::, J . UOb O. ui.1c 

S [ ;; • S fA T 1 TI C 
13 . 7t 3 . 7'15 - 4 . 4 4C C. 8Z L. 3 . 7CE 4 . 2 71 -1. 508 1 . 302 2 . 20 7 
- 2 . 1 5 - l. M14 - 2. . biJ 1 - 1 . 103 - v . 9 ') 0 1 • <+2 3 J . 922 - v . 53 4 1 . 144 

0 . 09 1 v . bE l C • .: t:. 
\., . 77 4 C • 7t J C. 77 1 

c.. . 45 3 lE v 1 C . 4 ~~L C 1 
J . 330'7L L 1 c . 3L 7 ~ \... 1 
0 . 3222::: Ll l • 21~L C 1 

C. 0 7 ,> C.C.:7 C • l~ t., : 
0 . 16 1 L . 1 c 7 c. . 173 

3 . 1bb 2 . 98c 2 . fi 76 
1. -11 1 1. de~ 1. .b 5c 

- c. on i..; • 3 : ~ - v . 2f: 7 
- C. 1 30 C. 11 b - v . 0 4 3 

(; . ~}6 7 - G. 26 7 " . 2<, 7 
0 . (jj3 - LJ . lJe l u . C43 

c • ..;.)) C . \.,;"'; " . ,,\.,5 
C . vUe C. DCt c. . "Ct 

0 . ':)53 - ~ . c74 4 . CE2 
1.1 8L -l. ebe v . '; 77 f\) 

r' 
'0l 
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AU f lei cLDTlC I') 
• :~ 4 4 ~ • ~ 1 -l 
. 1>41 ' . ,1 

.... . '"") L H. 

- ,( 
~J .. I t ~ 
). 5::; 

V i\"[~'i::: ] " F S [ :",.L :; 
• W It .~ J 1 j .; 1 i.. , J v . l'~c;l 

.J . 'f 4 - " 
I T - -' 
_ . ..... , l 

• 't _ ... .., , 1 '_" t·-t r " 1 
• .; 7C ... 1 • .;7i1 L .:: j 

VA'I\tCt.) 2r 
• ~ '5 

i\ L r C) -l -, l L ,\ TIL;! S 
ill J . J1S l . u2" 

, - c; I . V ( __ L . ,,7i • ..;'-'~ l- . urt 

S I C . SH T ST I e 
1 1. ., 7 7 . t 'il 

2 . ' 5 ·2 • 1 "lJ 

AU T " IGR . ClEFFS . 
- U . '+ '30 - J . 'L) 

-' ~ J 7 1 - ) • ) 7 t. 

OAT [ tL AU T ,J c: l,( ) '= L <; • 
• i..,.: l~ 4 ) • j ...... s 

- ' ,, 72j V • . .J 11 

V:, 11,:, ICeS :,F Dt.~T i ,L 
~j 

l, . J C ~ 

s r ~ . :-TdIST[C 

t~ . I. ' .) 

1 1. -1(:7 ~ . l,l 
-] . u55 ', . 1';~ 

')74 
2 . P7 

- ) , ~ ,)4 
1 ~ L.. 

~ >~ :;; 

. 1::J 

i . 79 f 
1 . i 5 

v . it L 
\.. • i.;..1 

'.i.e. 
'- • 1 S 7 

:'i.JT C,JP>'LS 
J , J J: c. . \ ~ 
i . ~l_~ c • .. ~s 

?7·~~ - v . 31t 
- l.lt4 - 2 . 1-:-Jl 

a3 

\.. . 7'05 G. S4 1 
c • ') ')4 0 . 591 

'J 1 v . 7 i~ 7 0 F: L'l 
,,1 ") 1 L 

'w ' t"_ ~ .J L. cd 
L L , ~ ~D7jc v 1 

.,31 
() c, 

I, . ") ) 1 
1 • r;J 8 

- c. . • J -~ 5 
- v . lSe 

,,, 2.61, 
L . 1 "t C 

( . ll-':! 
(, . '- l.. :1 

.3 . 7~1 
? , l4 

C. v.:) 7 
lJ . \..~2 

4 . 344 
1 . '1 "t .'l 

- C. 52C 
- J . 2 \., '; 

:j . 3 of-) 
0 . 1 1 q 

J . ~ J':> 
J . v ,-'5 

'5 . J 1 -
1. ,::,;, 1 

u . 7 r j 

""' • ~ ~ 1 

• J~' 'j ~ F 
. 4U (:>[ 
• ) l- U 1 ': 

) . v ~ 4 
Ij . U?') 
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1. 716 
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J . vo:" 

- v' . 17] 
- . ..; • v 'J:) 
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J . _vS 

- 2 . 4 __ ) 
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AUTlCC,HEL TI lH') 
,] .) 2 C. ::L' 
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--I • .J CJ -

C. ':: " 

, • \ 15 J . _ 1 2 L . lie _ • \., L:" 
J • .j 7 7 C • .; t! Z C • '~ ~ 7 .~ . .:: q 1 

L . 7 J L 

" . b.J C 
u . d .... ';; 
;:; . 0:'4 

J 1 
~ 1 
, , 
'-

~ . )C::bj .)1 
J . J .... ·L l __ '1 
~ . 37 7,+ ul 

C. 03 '- d e v]..,) 

" . ; -+ ~ . 09 ~ 

S1::; . STiIT] S TI C 
1 1. 7~ 2 7 • . -l'J "-i 5 . ,3 ~ l. • t t'l '-f . ')) 0 -'+0 .2 '+0 

2 . SP 2 . 4L2 / . 24: 1. ';4') 7. . ,,4., 2 . )72 

AUT )'[~f- . C J EFf-S . 
- I . :; S 1 - J • J 5 t ~ • := '1 ':; \.. • ').3:3 - '- . ? j 4 - j . ,. 1 7 

J . i 3,j - u . 24 1 v . c.15 L . :;\.t \' . ,,)4 - 2 . l7C 

r\ n I (, L ;.\ T:J C J o.{( f: L S • 
J • -3 5 J • 4 L 20 • '2 t 1 - L • '- 7 1 l • 3 2 3 'J • 2. i '5 

- , . 37. - J • .Jt..? - _i . Zll - "l':1L - " . LiS J . u:)~ 

v'>-\ KI~.CES OF Ptlt{T ] lI L 
v . JG5 J . JI) 
) . ,J~5 ) . 0'") 

3 1 :; . ::,T:> TI TIC 

I-\~T JCvl.':';:: L S 
\... . ~C5 0 . vlS 
0 . )C5 -.... . Jl:: 

'.., . ~j -,:J 
C. \. .; 5 

J . L., ,! ') 
.J . u \...' '"-, 

J . 77" 
.1 . :J=ij 

oJ • ~ ~ v 1 
..J • ItL.. b ) 

J . J 7 LL 

J . J'13 
v . 1 J 2 

3 . 72.u 
1",,6j 

J . v0 7 
) . ,, 7 0 

j • v .... J 1 
- J . f_,,7 

J • '-,.,J ~ 
v . v ...... :> 

1 l.7 C : . "lc ~ . :::d: - l, Uu2 '1. 5..'2 4 . L25 O,,17 
- 4 • 55 - 'J • ,) 4 ~ - ~ . j '3 1 - ~ • (" 1 7 - L . 2 ~-.J 1 . 2::>3 - ,.) . 7)') 

. 71 .1 
J . :J42 

0 . , 'Su 
J . JC 5 

( . 7'1 ) 
C. 5 <; 2 

v . 'I ~ 2 
L.. • ?:: ~ C . !:: = 7 

'-' . bi.., 

J 1 
oJ 1 
'-, 1 

" . 7-:;77 J l J . 7 7 7 
' . .) • 'i j 4 
v . 3 '-15 

01 
C 1 
( 1 

" . 02[ C 1 
4 ?L C 1 
2U- L 1 

. J . t-;4 /,~ ,- 1 C • 
,,; . 3b'~ C ] l • 

J . J 4:i 
J . IL;b 

'; . 2 1 ::) 
1. 6b:::> 

v . 3 j0 

" . 233 

- .) . .>5 '., 
- J . 17':' 

v . ' ...... :j :, 

ll • • )\... 0 

- i.. . i ~3 
- ~ . _:1l3 

,J " 54 
oJ • 1 L' 

C . iJ5':; 
L . L1 2 

\... . • U t 5 
u • 1 1 0 

L . C7L 
'- • 1 .1 d 

3 . lJ7 3 . 03~ 2 . 070 3 . 15~ 
l . 7l ~ 1 . 0 1 7 i . SSe 1 . ej~ 

- J . l 3o - ~ . 4J5 O . l~4 - C . l ~~ 
- ) . ~5 l - C. ll1 ~ . :22 - C. wtC 

J . 2':1J C . ~29 - ( . 1 32 ( . 22t 
. 1 /\,..; l. . ]ltJ · L . vl ·:i ~ . i...- '-

J . C ):, 
J • '" ,j n 

4 . L"~V 
L. G J 2. 

. uu , 
v . -.Jub 

h U . ,-L~ 

l . • v\.... C 

4 . ~5l - ] . t~ f 
l . Sib ~ . 113 

J . ~ l ': 
C . C: t 

j . 15 ) 
l . I(S 

f\) 
I-' 
~ 



- l, . 7 d - "' . J'i - 5 . d.3 
- d . co - -} . 2 u -7. c5 
- 4 . 84 - 2 . 74 1.- . 1 ~ 

5 . 71 b . l,v t: . b i+ 

2 . 50 - J . 70 - o • . U 
- 25 . 0 7 - 2J . bJ - 2(' . 2.6 
- 30 . 76 - 30 . 1-+ - 2b . } 1 
- ,3 .7 2 - j ~ . J ~ - 32 . 77 
- 4 ,) . '1 v - 3" . d:J - 3'> . 02 
- '+ 0 . 0 1 - itO . d :.> - 4,+ . 't iJ 

- ::>') . 7 0 - 5::> . 2t - ,2 . 77 
- 5 3 . 20 - 5 7 . ce - 52 . 72 
- ':;'1 . 2'1 - 57 . oS - 52 d '3 
- 53 . 10 - 5::' . :ll - 4'; . 7 9 
- 5 7. 9'-} - :l'J . 7 " - 5 1. 24 
- 53 . 47 - 53 . 23 - 50 . J 5 
- 73 . 02 - 6 L :3 1 - 0 7.7 0 

AU T ;JC L f< k t L ~ TI u~1 S 
J . qO ? o. Jo~ 
U . 0 \"0 } .7 Yl 

-7. 50 
- 3 . 3 1 

J . ')5 
3 . J(; 

-1 u . fL 
-I S . ob 
- 2. 7 . 56 
- 35 . 7 2 
- 3j • .1b 
- ,.S . 4 2 
- 5b . 4 9 
- 5 '3 . 4 7 
- '55 . 55 
- 3 1 . 55 
- S5 . 2 7 
- ')9 . '+v 
-7 G. 25 

" . Y51 
J . 770 

TABLE l8c 

REPEATED 24 TERM M.A. - MEAN CORRECTED 

Ql 

-7. bb -j. 97 - :' . 74 
-7.,+ 5 - d . 8J - 7 .10 

4 . 0'3 2 . ':>7 4 . ov 
1 J . 3.3 3 . 1 3 0 . 4 Y 

-1 4 . 4 J - 10 . 5') -1 0 . 02 
-l7. 22 - 2 J • v 1 - 22 . 47 
- 27 . 4 0 - 3 J . 2.J - 31 . 59 
- :\0 . 21 - .3~ . 5e - 3;,. ,, 2 
- 3 d . 3 /.) - 4v . l.;b - .. J . 3:::> 
--t4 . 62 - 4::> . 53 - 4') . 1a 
- ,8 . 7 'J - o.J . J.:l - ':>-3 . 9J 
- 52 . 2:3 - 53 . 4 2 - S3 . 02 
- ")J . :':>O - cJ . 32 - 5=. . 7'6 
- 4Q . od - 31 . j:J - 5 v . 7 6 
- 5 't. 5 0 - :l0 .71 - ?'t . '+'t 
- 0 1. 9u - 6 1 . 5", - ",2 . '1 ... 
-71 . 07 - 72 . '; 1 -7 3 . u5 

C, . 930 
v . 7e,+ 

': . 92 7 
) . 752 

o. :no 
0 . 73 c 

J . -:iJ 2 
) . 7 2 (. 

-7.71 
- o .l U 

'-- . DO 
4 . v3 

-1 5 . 4 6 
- 22 . "11 
- )", . 3 7 
- jo . 2,. 
- 3b . 74 
- .. 4 . 21 
-5 4 . dt. 
- 5 1. 4':> 
- 5 4 . 5d 
- 40 . 07 
- 5 1.54 
- SS . S I 
-7 e . 5 4 

J . oo4 
J . 7u7 

- 4 . 06 
- 5 . 5'5 

::> . 05 
3 . v 7 

-15. 0'1 
- 24 . 17 
- 2" . 5'+ 
- .:>5 . 0 7 
- 3'1 . 7'3 
- 40 . 5::) 
- 5:l . J2 
- ">2 .7 6 
- 5u • .:' 2 
- ')v . 5':> 
- 5 1. 04 
- c l. j 4 
- 73 . 43 

) . i:lcb 
.1 . 692 

V AQ, !.UoJ C c (i F -{ E S I JU \ L S v . 1 :,9 4;: 2 ) .1 0 65 02 J . l ,,5JE 02 ) .1 045 LIZ 
) . l7 US v2 u . 17 ) 4 (: C2 

v . 10 1 7 ,,2 ", . I J 1 Zc )2 \.. • I ::> 11 t: Z J . 1 a1 1 02 u . 1oJ5E .;2 0 . 15-; 9 ,2 

\.J .1 59 1 C2. U. 15 02E 
~ ., -': . 1 5ELc 2 J . 1'57 0 J2 v . 1S74 t v? v . 157l (, 2 
.... L 

VA R I H'CESOF AUT J C J~~ E L A TI C~S 
0 . J US ), 0 1'5 v . u 2 4 ) . v~3 J . J4Z 0 . 05 L ;) . 059 J . ", 67 u . l 74 

.) • 1 J 3 'J . 1 v.} ("' . 11 5 C. lL I 0 .1 2 7 J . 13 3 u . 1 '13 lJ . 144 v . 14 ';1 

S IG. STATI S TIC 
l.:> . 9t 1 :3 . 01 4 to . 14 'J 5 . 1 04 I t . 5:J S 4 . J3 4 3 . 7 23 3 . 424 3 .17 2 

Z . 5 1 4 2 . 39 4 2 . 223 2 . 1 S 1 2 . 1 ) e 2 . 0 2b 1 . "147 1. d0 7 1. 7 S1 S 

~u T G f-' co GR . CU EF F S • 
- J . 9'11 - O. 0Sj J . 1 :;: - :; . v I \.. - v . 1::'4 - J . U~'~ J . Ju 7 v . JU1 J . 117 

v • v ,-3 } - v . v ?.) Jo J75 - v . l: 7:' - J . Jj " c. ,)3 c - J . '::'Zi .) • .J 9 !t J . Lvv 

?A Q,Tl~L AUTLCf)RRElS . 
J . hS - 0 . ') 1} - J . ,,7t .:- . 1 jl.- J . J 9~ - 0 • .n7 - J . lv2 - J . v05 - J . L47 

- u . , ,02 J . J60 u . ::':4 L . C7 L - J . J l 0 - } . J 7 °, - J . ':tY· - v . J 5) "1 • ~ 3j 

VIr-{ [AI\CES JF P PK T I >l l c.U TuC(1Pk=: lS 
v . uL') J . dl5 v . , ~ 5 - " -' . Ju5 J . " os ) . ~, J 5 ) . 1.-' J, ) . u,,; 5 

~ . ~ .... \., -
.J • I... ,J ':> ,J . 0 v 5 G. uC5 L. . 0l,,:; J . Jv5 0 . ,,0:' J . U-.l 5 J • ..:, u '" ) . 0':'6 

- I G. STA TI S TI C 
13 . 9 ':11 - 0 . 2td - 1 . ·J"; C 1 . :);2.1- 1 . " ... ( - J . 7 9'::, - 1 . 417 - v . -;.)2 - 1 . ( ... 7 

- ) . >3 4t, u • . , I 7 v . J) 5 J • ..,.:;3 - ~' . lj5 - 1 . _4 '7 - J . +-,.J - J . '" 79 v • = _ ·1 

- 7 • .38 
- 5 . 40 

5 . :> e. 
4 .1 7 

- 17 . 45 
- 25 . 59 
- 3 ~ . ,,1 
- 32 .1 0 
- 41 . 11 
- 5". 22 
- 53 • .:> 7 
- ';4 . C L 
- ,+7 . 32 
- 53 . 35 
- 53 .7 C 
- 6 7. 32 

O. d Su 
.] . 0 7 9 

\.. .l c23= 
0) . 15'1 Sl E 
U .1 5 7l E 

:' . v32 
,J . 15 3 

2 . que, 
1.7 .:>'+ 

- J . v24 
- 0 . v54 

u . O'59 
J . U 39 

oJ . !JS 
C . Ovo 

J . - I t.. 
v . 5 L7 

- 7 . toe 
- o . _ 

o • ~ 
::> . jL 

- 2J d 7 
- 2e . ~5 
- ~,,-, . d~ 
- 3·-3 . ,,:: 
- .. 4 . 31 
- 54 . ~~ 
- ::>6 . b 5 
- ?e .l a 
--t b . t3 
- ::> 7 . 72 
- 5 7. 30 
- 7 l . He; 

L . (j~S 
L . bC7 

- Y. 51 
- 5 . f 4 

b . 74 
4 . ~d 

- 24 . 26 
- .3 1.) . 1 7 - j" . c2 
- 30 . t7 
- 47 . 33 
- 57 . SI 
- 5~ . S'1 
- v 1. ~ c 
- 51 . 70 
- 5 7 . St, 
- 'J'-; . 7 1 
-7 4 . 25 

" • . "i Z? 
" . 6 5? 

2 G. 1 b2 1 
L L • 1 :>c, 2 -' 
2 L . 1 5 7 1 '-' 

L . (J2~ u • .19" 
(.. • l:o ~ ~) . 1 02. 

2 . 70.,7 Z . ":5J 
l. b 70 l . b2 c 

- v . 0 1 2 - ) . u6 1 
v . v II ....i. :.J...J'.) 

v . u l1 - ,,,; . u~Z 

- L . u I5 - J . Ju S 

0 . ve5 u . ()l.-j 
L . J0b J . t]0~ 

l • 1 L. (' - _,. ~2~ 

- v . 2vu - ' ...... . . ..1"" 7 
I\) 
I-' co 



TABLE l8c 

REPEATED 24 TERM M.A. - MEAN CORRECTED 

61 

- 6 . 60 - 6 . 3 7 - 6 . 58 - 5 . 02 - 6 . 03 - ? b 2 
- 8 . 3b - 1,) . 2 7 - 9 . 3 tJ - 9 . 9 1 -1 0 . 23 -1 0 . 45 

-17 • 4 ~ - 20 . 58 - 19 . j2 -1 9 . 6 7 - 1 8 . 6 1 - 17. 36 
- 20 .74 - 23 . cJ - 25 . 3 1 - 2 0 . 39 - 23 . tl7 - 2 lo u3 
-1 6 .1 9 - 14 . 1 3 -1 2 . 28 -1 3 . 08 -1 4 . 92 - l d . S1 
- 3 1. 43 - 3~ . 74 - 36 . 25 - 33 . 29 - 31.3 b - 2tL 71 
- 32 . 60 - 35 . 3 1 - 55 . ob - 33 . 't o - 33 . 5 2 - 3 1 . 9 7 
- 2::> . 03 - 23 . 43 - 20 . d3 -17.14 - 1 8 . 20 - l d . 92 
-1 6 . 36 -1 5 . 24 - 13 . 65 - ~ . 1 3 - 9 . 31 - 7 . 90 

- 6 . 59 - 6 . ::>9 - 4 . 64 -1. d 7 - 2 . 09 -1. 2 9 
- 2 . 8'.1 - 2 . 2 7 0 . 5b 3 . 54 0 . 0 7 - 2 . 82 

-1 6 . 59 -1 9 . o Q - 2iJ . u9 -17. 9 1 -1 9 . d 9 - 1-:/ . 0 7 
- 29 . 72 - 32 . C9 - 3 1.1 5 - 20 . 08 - 29 . 4 "1 - 29 . 90 
- 28 . n - 30 . 3 d - 25 . :1 8 - 22 .71 - 1 9 . d2 -10 . 27 

- 3 . 9 7 - 9 . 21 - 4 . 62 0 . 21 -0.7 5 1.3 9 
6 . 6 7 6 . 13 10 . 86 12 . 02 11. 1 S 10 . 4 8 
8 . 4~ 8 . b::> 11.74 14.77 13. 93 13 . 53 

AUT OCOR RELATI ONS 
C. 8 2 0 u . 97 5 0 . 9 4 6 0 . 9 1 2 C. dSO 0 . 85 4 

0 . 5 1 2 0 . 4 6 1 0 . 411 0 . 363 0 . 31 6 0 . 2 6 1 

'IA RI ANC E OF R ESI OU ~L S 
J . 89 24 E 0 1 O. tJ855 C1 0 . d 7 49E 0 1 0 . 8 72dE 0 1 
U. b0 21 E 0 1 C. de 18 0 1 u . d 0 1 5t: Jl 0 . 7 93 4E 0 1 
O.7717 E 0 1 u. 7 5 73 C 1 0 .7 SU l;C 0 1 0 .7 502 E u l 

VA R I ~N CE S Of AUTJ CJR1ELA TI CNS 
u . U05 0 . 0 14 0 . 02 3 0 . 032 0 . 039 

J . 0 ':38 
0 . 0 47 
0 . 089 0 . 0 8 0 0 . 083 0 . 035 0 . 08 7 

SIG . S TATISTIC 
13 . 8 20 7 . 8 7 3 5 . 9 7 0 

1.00 7 1 . 6u3 1.41 (' 

AUT J~EGR .COEF F S . 
- 0 . 992 -J.ll 0 C. 17 C 

0 .15 4 - 0 . 0;)1 - LJ . J09 

P <\ R T I AL AU TOCORR EL S . 
0 . 9 7 :' - O. Jod - O. lce; 

- 0 .1 60 0 . 026 - 0 . 022 

4 . 953 4 . 3 07 
l . 2,,3 1 . Co 5 

0 . 09 4 - J . 23 7 
0 • ..,24 - 0 . C88 

0 . u4't u . \J.:32 
- 0 . 002 - J . u 57 

VA R ~ ANCES OF PA RT I ,\L .4UTJCORQ.ELS 
0 . J05 0 . Ju5 0 . ,,\...5 L .. i.J05 0 . J05 
0 . 005 O. UV? oj . 005 (. . 005 d . 005 

S I G. S TATI STI C 
13 . :J 20 -1. 24c -1. 53t o. lS I 1 . 1 ::>4 
- 2 .1 tiM v . 3d - 0 . 2<;C; - ij . b ~e - '0 . 776. 

3 .7 98 
O. '6 77 

O. OJ I 
J . v 1 7 

- 0 . 20 1 
- 0 . 136 

0 . 005 
0. 0(,5 

- 2 . 008 
- L • b4 6 

- 2 . 10 - 8 . 8 4 - 3 . 71 
-1 2 . 3 /+ - 13 . .. 5 -14.3 0 
-1 9 . 13 - 2C . 18 - 22 . 47 
- 20 . 80 - 23 . 0 7 - 22 . 00 
- 22 • 5 2 - 23 . 90 - 2 4 . 3u 
- 3 1. 33 - 32 . 5 2 - 3 4 . 16 
- 34 . 5 't - 35 . 2 tJ - 35 . 22 
- 22 .7 2 - 22 . 8 7 - 22 . 65 

- 9 . 99 - 3 . 7 d - 3 . 41 
- j .1 5 - 2 .7 4 -1. 3 3 
- 8 .7 1 -11. 3 1 - 11. 30 

- 22 . 90 - 2 3 .7 0 - 24 . 16 
- 3"0 . 03 - 39 . 82 - 4u .7 9 
-17 . 9':> -.1 5 . 27 - 13 . 7 6 

- u . 93 0 . 0 6 2 . II 
7. 12 7. 23 <l . 00 
8 . 92 9 .7 6 12 . 09 

0 .77 8 o .7 3 1 0 . 6 3 5 
J. 203 li . 144 0 . 092 

O. d 6 69E ul C . 33 13 0 1 
0 . 77 0 1E J1 J . 77 7 5 '.I I 
O. 747 9E 0 1 0 .7 470 u 1 

u . u53 .) . 0 59 0 . uo 5 
0 . 0:10 0 . 0 90 O. Uqo 

3 . 37 0 3 . 00 1 2 . 69 5 
0 . 6 77 J . 4 8 1 O . 3C 5 

0 . u 7 0 0 . 06 3 0 . 0 19 
J . l C9 J . 05;' - 0 . (;2 '1 

- iJ . 17 4 - 0 . 063 J . G4 1 
- J . u96 J . 0 15 u . J56 

J . ,,·J5 J . GJ5 J . Ou5 
0 . 005 J . Ju6 O. OCo 

- 2 . .. 29 - u . 37 't 0 . 505 
- L. 2'"il J . 2Jo u . 754 

- 8 . 79 - 8 . 35 - 8 . ':' 5 
-14. 52 -1 5 . 14 - 10 . :)1 
- 2J . 88 - 21 . 4 7 -1 8 . ~ 0 
- 24 . 41 - z\., . f:: 7 -1 8 . L7 
- 23 . 3 3 - 23 . 31 - 2t . t 7 
- 32 . 5v - 3 1 . 9G - 3 1 . 25 
- 3 1 . 0 7 - 28 . 72 - 20 . 29 
- 20 .76 - 17-' 23 -1 8 . l; 0 

- 5 . 89 - 5 . 21 - 6 . U 
- O. 39 - U . 52 - 2 . to5 

-1 2 . 08 -il.7 6 -1 5 . :'7 
- 23 . :,'i - 24 . 1 5 - 2 7 . I:J5 
- 36 . 56 - 32 . 52 - 3l . 3 7 

- 9 . 90 - 9 . 4 4 - 10 . 34 
4 .7 4 5 . 68 4 . c 6 

11 . 06 1 0 . u; l li . 04 

0 . 6 4 3 0 . oll 4 0 . 5e2 
0 . li 4 6 0 . 002 - v . 0 4 3 

Ll . 80 bbE 0 1 0 . ELJ 34 E 0 1 
J . 777 2E ":' 1 L. .7 74 2E 0 1 
LJ . 745 3E 0 1 C. 7'1 4dc (, 1 

0 . 069 0 . 073 0 . 0 77 
0 . '0 9 0 0 . 09 ':' 0 . 09(; 

2 .445 2 . 230 2 . 026 
0 . 1 54 0 . 003 - C. 144 

v . 009 - 0 . 058 - c. 1 C4 
- 0 . ud 4 lJ . LJ2 4 J . 025 

0 . 0 19 - 0 . a 19 -J . 063 
0 . 034 - v . 048 - 0 . U25 

G. ou5 0 . 0C5 ) . vOS 
O. OJo u . uCo u . ut. .. 6 

0 . 25t. - L . 2Sc - J . Su2 
v . 6.'55 - li . c~9 - J . -;'27 

f\) 
I-' 
\0 



TABLE l8c 

REPEATED 24 TERM M.A. - MEAN CORRECTED 

(12 

1. 19 - u . C2 C. 94 1. 44 2 . 12 2 . 02 4 . 08 -1. 27 1 . 5.:! - L . U - 2 . 31 - 2 . C3 

- 1. 5:1 - O. 92 - 0 . 33 1. 18 0 . 05 0 .13 - 0 . 88 -1.86 - 2 . 20 - 3 . 26 -4.2 9 - 3 .44 

- 3 . 32 -v.5 8 · - 0 . 79 O.d9 - 3 . 04 - 1 .7 0 - 3 . 71 - 3 .71 - 3 . 00 - 2 . d9 - 1.4 0 - 0 . 4v 

0 . 96 4 . 48 2 . 48 2 . 42 -1. 81 -3. 27 - :, . 20 - 5 . 90 - 3 .50 -4. 34 0 . 49 C. S6 

0 . 07 - 3 . 07 - 5 . 87 - 2 .7 6 -1. 53 0 . 6 7 - 0 .75 - 3 . 36 - 5 . 28 -7. 25 - 8 . 80 - 9 . E7 

-7.52 - 5 . C5 - 2 . 8b - 4 . 60 -8. 65 -1 0 . 28 -1 2 .7 0 -1 4 . 03 -13. 50 -1 5 . 45 -15.73 -14.77 

-14. 80 -12.64 -1 0 . 030 -11. 0 1 -11. 08 -1 2 . n -1 6 . 09 -1 8 . 51 - H.,l - 2 1. 21 - 20 . 28 - l d . Sb 

-1 8 . 8J -101.61 -10.97 -1 " . 02 -15.11 -1 2 . 40 -1 5 . 62 -17.1 4 -1 6.57 -17. 25 - 2 1.1 4 - 17 . (7 

- 19.97 -H. n -1 5 . 7t -1 6.16 -15. 63 -14.90 -1 5 . 95 -17. 33 -17. 57 -1 8 . 48 -· 2C .7 2 - 2v .5':1 

- 20 . 09 - 2J . 24 -1 6 . 65 -16. 06 -17.18 -16.17 -1 6 . 93 -l tl . 5 1 -1 6 . 88 - 20 .17 - 22 . 98 - 23 . 31 

- 23 . 72 - 24 . 37 -1 9 . B - 17 . OS -13.64 -11.1 0 -11. 9 1 -1 6 . 0 7 -17. 60 -1 9 . 03 - 2C . 57 - 19 . 52 

-1 8 . 54 -17. 26 -1 2 .7 4 -1 2 . 29 -12 . 49 -1 2 . 9j -13.74 -1 5 . 24 -1 4 .1 8 - 16 . 82 -1 <; . 26 -1 9 .1 8 

-17. 85 - 1 6 . OU - 1 G. 95 - 9.00 -7. 2'+ - 0 .7 :3 -11. 7 6 -17 • 20 - 19 . 62 - 1 :3 . 99 -1 8 . 22 -14. 39 

-13.54 -11. 48 -1 0 . 58 - 7.5 8 -11. 55 -11. 08 -1 2 . 6 7 -1 3 .5 2 -1 3 . 54 -1 0 . 22 - 2O . d' - 20 .4 7 

-21.72 - 19 . 05 -15.55 - 13 . 47 - 13 . 27 -12. 60 -1 4 . 00 -17. 25 -17.7 4 -19. 81 - 22 . d5 - 23 . 46 

- 26 . 28 - 25 . es - 24 . '10 - 24 . 0 1 ~22. 903 - 22 . 9U - 23 . 0 7 - 27.56 -27. 23 - 3 1. n -3 5 .4 1 - 34 .78 

- 36.lL - 33 . 59 - 30 . 64 - 29 . 95 - 30 .1 4 - 29 . 01 - 32 . 20 - 35 . 00 - 34 . 24 

AUT OCORRELATIONSl 
0 . 955 0 . 901 J . 33 ci 0 .7 83 0 .744 C. 726 0 .7 13 G .71 3 0 . 7 1 3 0 .7 U6 0 . 690 0 . 6 72 
0 . 643 0 . 6U7 0 . 56<; 0 . 52(, 0 . 4 79 0 .4 48 0 . 423 J . 419 0 .4 24 0 .42 :' C.425 0 . 41d 

VA ~IANCE OF ~ES I CUALS 
0 .7 5 7 5E 0 1 O. 7445E Cl 0 .7 344E 01 J .73 05E 0 1 0 . 7143 0 1 O. :'14 1E 0 1 0 . 694 1 0 1 0 . 684 7E 0 1 
0 . 6tj40E 0 1 0 . b:l29t 0 1 J . b817E Jl 0 . v 7 d~c Jl 0 . b7!J~ 0 1 O. 0057E 01 0 . 6049 01 0 . 642 vE 0 1 
O. 64 1 2E 0 1 O. c4UoE Cl O. b :;95E Ll l Q . 63 il~E Cl 0 . 6315 1) 1 0 . 63 11 E 0 1 o . 63J8 0 1 0 . 6301c 0 1 

VA RI ANCES OF AU TO CO R~c L ATIONS 
0 . 0J5 0 . 014 u . 022 0 . 029 O. lJ3 5 0 . 0 41 0 . 046 J . 05 1 0 . 056 0 . 061 0 . 066 0 . 0 71 
0 . 0 7 5 0 . 079 0 . 083 0 . C86 J . 00 9 0 . 09 1 0 . 0'13 J . 095 0 . 09 7 0 . 099 0 .1 0e O.l LJ2 

; I G • STAT ISTIC 
13 . 544 7. 6ul 5 . 635 4 . 590 3. 905 3 . 594 3.325 3 .15 5 3 . 009 2.854 2 . 082 2 . 527 

2 . 34 1 2.153 1 . 975 1.770 1. b05 1.4 il2 1. 401 1. 3 5~ 1. 363 1. 354 1.340 1.307 

AUT8 REGR . COEFFS . 
-1. 026 - 0 . 021 v . 1 71 J . J43 - J . 0 15 - 0 . 127 U . ()~5 -0.112 - 0 . 037 - 0 . 024 O .l~1 - 0 .1 45 

0 . 054 0 . 031 - 0 . 141 O. n0 - V. 012 - J . Ouo -0. Ju4 0 . 0 7 4 - 0 .1 36 0 . 047 v . 013 - C. 035 

PARTIAL AUTOCORRELS. 
O . i55 - 0 . 131 - LJ .11 7 0 . 073 .J . i49 0 . 108 - v . vOl O . 116 J . 034 - 0 . 039 - 0 . 0 42 0 . 064 

- O. lOti - o.u~a -0 . 035 - v . 1 tlo v . v35 0 . 031 0 . 1342 0 . 03 1 0 .1 08 -0. 023 0 . 022 0 . 035 

VARI~"CES OF PARTIAL AUTOCURI<.ELS 
0 . 005 0 . 005 0 . 005 C. v05 0 . J05 0 . 005 0 . vu5 u . v05 0 . 005 0 . 005 0 . 005 J . ce5 
0 .v05 0 . 005 O. CC5 C. 005 O. J05 O. GG5 'J . Ou5 0 . 000 ) . '::06 J . Ou6 0 . OU6 0 . 006 

SlG . STATIS TIC 
13 .544 -1. 845 - 1. 044 1. C2 b 2 . 0d6 2 . 345 - 0 . v19 1. 0 15 J . L.69 - 0 . 543 - v .5 83 u . 88 1 
- 1. 486 - 1.20d - v . 474 - 2 . 526 0. 4')9 0 . 423 0 . 501 J . 4 12 1 . 442 -0 . 3J.::/ (, . 2<;2 C. 40 3 

f\) 
f\) 

0 



TABLE l8c 

REPEATED 24 TERM M.A. - MEAN CORRECTED 
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- 8 .4 5 - '1 . 03 - 8 . 83 -1 0 . 24 - 3 . 09 - 9 .7 5 - 13 .1 9 - 8 .40 -14. 32 - S . C8 -1 0 . 43 -1 0 . 75 
- 9 . 54 -1 0 .71 - 9 .1 4 - 9 . 28 -7. 60 -]. d 1 - 5 . 85 - 5 .77 - 5 .1 9 - 4 . /:::8 - 5 . 52 - b . ( u 
- 5 . 47 - 'J . 74 - 3 . 68 - 4 . 01 - 2 . 32 - 4 . 04 -1. 5 7 -2.3 6 - 3 . u9 -1. 21 - 3 . (1 c.. t d 
- 1. 63 J . S6 2 . 42 3 .1 6 4 . 35 Z . ,+9 1. 41 - 0 . 66 - 0 . 8 4 - 2 . t2 - 2 . 4C -0 . (<; 

1.lJ 1. 63 - 3 . 22 - 5 . 42 -5. 3 7 - 3 .1 4 0 . 89 1.41 1. 66 1. 18 - L . c 5 - 3 . 4 2 
- 6 . 3il - 6 . 15 - 2 . 96 - U. 24 1. 6 u -1. 0.3 U. 9,} -1. 7 2 - u . 62 - O. Od - 3 . Za - 3 . 1 c 
-3.49 - :5 . 02 - 1.5 :5 - Z . ZO 0 . ,1 0 .1 3 2 . 09 - 0 . 39 -1. 25 - Z. l1 - f. . '+ 7 -c . 2' 
- 6 . Cl - '3 . S 3 - 8 . 56 -1 0 .4 0 - 9 . 41 - 9 . 30 - 4 . 9 7 - 6 . 52 -7. Z4 - 11. 6S - 11 . 35 - 16 . L5 

- 12. 90 - 13 . Z0 - 13 . ·n - 14 . 51 -1 3 . ,5 - 15 . 21 -11. 6'" - 13 .1 0 -1 2 . Z2 - lZ . 42 - 14 . 1S -17 . '+'1 
-16 . 8-1 - H.:;2 -1 8 . 58 - 17 .7 4 - 16 .6 0 -1 0 . 4:5 -1 4 . 9 7 -1 6 .1 7 - U . 90 - 11. 52 - 13 . 80 -1/::: . 7<.-
-1 6 . 0u - 21 . 1;3 - ZO . 3 1 - ZI. 04 - 19 . 83 -1 9 . Co - 12 . Z6 -11. 87 -11. 69 - 13 . 09 -1 4 . L;0 - l S . 7v 
- 16 . 53 - H . 39 -15 . 05 - 15 . 00 - lZ.11 - 14 . 00 - 11 . U' -1 2 . 5'i - 1U . 08 - 9 . 1 d -11. l'< - 1: . <;L' 
-15.54 -1'1.1 0 -1 4 . <;5 -17 . vU -11. 83 -11. 52 - 5 .13 -7. 04 -1 0 . 57 -14. 26 - 17 . 517 - 1'o< . U0 
-16 . 04 - 17 . 33 - 15 . 26 - 1 5 . dZ - 12 . 68 -1 6 . uu -11.21 -1 2 . 57 - 9 . dd - o . 1 4 -l U. 7G -13 . tb 
-1 2 . 90 - 17 . 40 -13. :>9 -1 b . 5 1 -1 2 .7 4 -1 'J . 06 - 9 .7 0 - 9 . 66 - a .7 5 - 7 . 37 - E . 2 8 - S . 5'1 
-7.54 -11. 95 - 9 . 76 -11. 59 -11. 33 -11. 9 7 - 0 . 80 - 8 . 09 - 6 . 0 7 - 2 . Zl - 7 . (:J - t . C;'1 
- 9 .17 - 12 . 37 -1 0 . !:lZ -11. 05 - 9 . 66 - 9 . 85 - 3 . 73 - 6 . 36 - 2 . 03 

AU T DC O-R R E LA T I UN S 
0 . 9 1 2 0 . 8tl l 0 . 781 0 .7 "u J . 68a 0 . 098 'J . 695 J .7 32 0 .7 5 1 0 . 773 G. 752 0 . 77C o . 713 0 . 7L9 0 . 642 0 . 546 0 . 528 0 . 508 J . 474 0 . 491 J . 497 0 . 522 0 . 5L9 u . 523 

VARIANCE OF -<'ES I DUA L S 
O. 6201E vI 0 . 5/:::87E ( 1 O. 4Y96E 01 0 . 4 noE 01 0 . 4553 0 1 O. 4087E C l o . 4u72E 0 1 ( . "OZZ[: (,1 
0 . 3792E u l u . 376dE Cl O. 3481t 01 0 . 3 C44E 01 0 . 3023 0 1 u . z ·n4E 0 1 0 . 21111: v I L . L'c7 '::Jt Cl 0 . 26 4 ZE 0 1 U. 2641E 01 0 . 2626E 0 1 u . 2023E vI v . 20Zv 0 1 v . 2e ll E u1 u . 255jE 01 J . 25 1 9E 01 

VARIANCES OF AU1~CO~RELATICNS 
U . 005 0 . 013 O. uZ 1 u . 027 'J . 03Z 0 . 037 0 . U42 (, . 047 O. 0:J2 0 . v5l) 0 . Oc4 iJ . Jt..S 0 . 0 75 0 . 080 0 . 085 v . v89 J . 093 0 . U9b 0 . U'18 0 .1 0J O. I v 3 O. lJS U.1 0.:3 u . 11 1 

S I G. SIAT ISTIC 
1 2 . 936 7. 649 5 . 395 4 . 437 3 . 826 3 . 627 3 . 396 3 . 388 ~ • 29 1 3 . 22u 2 . 979 Z. 926 2 . 602 2 . 503 2 . 200 1 . 99~ 1.733 1. 643 1. 5 1Z 1.549 1. 55 1 1 .609 1 . 549 1 . 5 74 

AUTOREGR . COEF FS . 
- 0 .7 04 - 0 . 622 0 . 5 4 0 0 . 436 - O. 4 dS - 0 . 335 ') . 4 1 5 o . 09d - 0 . 573 - 0 . u 7 0 U. 489 - J . 177 - 0 .171 -J .1 65 U. 1 <; 1 0 .1 /:::9 - O. 0 11 - 0 .1 39 0 .1 62 0 .11 9 - J . 140 - G. v33 G . 228 - 0 . 110 

PA RT IAL AUTOCOR.~ELS . 
0 . 9 12 0 . 283 - 0 . 34<; C. Q6 4 O. zn 0 . 32 ( - 0 . u6Z O . II,) 0 . Z3':1 0 . 06l, - L . 276 J . 354 - 0 . 084 - (; .1 90 - 0 . 264 - 0 . 115 - 0 .11 3 - 0 . 006 - j . v 77 - .) . u 36 O . J 30 u . Ool - 0 . 149 J . 110 

VARIA NCES OF PARTIAL AUTUCOr<.R. EL S 
0 . OJ5 0 . 005 0 . 005 0 . 005 C. u05 J . 005 0 . 005 0 . 005 0 . 005 0 . 0.) ~ 0 . 0C5 ,) . 0 0 5 u . 005 u . 005 0 . UC5 L . 005 0 . 005 0. 005 0 . vJ5 V . JUb 0 . Ou6 v . 006 0 . 006 a . OC6 

S IG . STATIS TI C 
1 2 . ?36 4 . 'J61 - 4 . 905 0 . 896 4 . 034 4 . 464 - J . E66 1. 533 3 . 314 1 . 100 - 3 . a03 4 . 80 9 -1.1 55 - 2 . 595 - 3 . ::'95 - 1 . 56Z -1. 533 - v . (j~l -1. u33 - v . 4n J . 4J 1 0 . 814 -1. 987 1. 53 C, 

[\ ) 
f\) 
f ' 



TABLE l 8c 

REPEATED 24 TERM M.A. - MEAN CORRECTED 

a 3 

- 5.34 - 6 . 44 - 6 .3 2 - 0 . 97 - 8 . 6 7 -7. 31 -1 3 . 2d -7. 4~ -13.11 -7. 35 - 9 . 47 - lJ . c:5 
- 6 . -j4 - 6.12 - 5 . 28 - 5 . 8 1 -6. 25 - 5 . 24 -4.47 - 4 .60 - 3 . 07 - 4 . 1 3 - b . 4? - j . '-'4 
- 3 . 99 - 2 .7 9 - 2 . 08 -1.77 - 0 .71 -1. 0 1 1 .71 - 0 .1 8 -1. oU J . 57 - u . ~7 v . £5 

3 . 94 1. 41 -1. 03 1. 01 0 . 3 1 2 • 10 6 . 9 7 2 .7u 2 .1 3 2 . ; 5 4 . C3 3 . L4 
4. 23 j. 2 '_ 5 . 3d 2 . 88 3 . 46 2.44 1.1 5 2 . 32 5 . 27 2 . 03 -1. 4 7 1. ce. 
3 . H 1. J6 2.61 0 . 65 -1. 78 J . a 4 . 27 - 0 . 32 v . 23 - C. '74 - f . 44 -1. 104 

-2. 93 - 2 .1 3 - 2 . 55 - 2 . 30 - 6 . 62 - 2 . 57 1. 22 - 2 . 3t - v .1 7 - 2 . c2 - !::' . 33 - 2 . t G 

- 5 . uJ -2 . 67 u . 03 - 2 . 65 - 2 .47 - 2 . 35 - 0 . 5·j - 2 . 36 J . 2d - 2 • .33 - !:' . 4 'i - 2 . q 
- 5 . 3u - 2 . 25 0 . 42 -1. go - 2 . 5d -1. 9 7 -1. 5J -1. 9 1 - O. vl - 2 . C8 - t • 17 - 2 . Ie 
-4. Ul -1. 97 l. d2 - 2 .1 6 -1. 50 - 2.55 - 2 .71 - 2 . 0 7 -l. j :3 - 2 . ':15 - 7 . ",2 - 3 . 2"':f 
- a . 6j - -' . 11 2 . 27 - 3 . 30 - 4 . 14 - 3 . 89 - 6 . 09 -3.77 -1. 02 - 4 . 19 - 9 . 5 C - 4 . 5" 
- (; . 12 - 't .'t 8 - 2 . ,, 7 - 4 . 72 -7.11 - 4 . 86 - 4 . 05 -4.7 2 - 1.7 0 - 4 . 07 -! J . ?l - , . (j 
- Cl . u4 - 4 . 38 - 1. 86 - 5 . C9 -1 0 . 51 - 5.41 - 2 . 55 - 5 . 1-:1 - 3 . U9 - 5 . 4 8 - 13 . 71 - 5 . t" 
- 5 . 19 - ::> .7 2 - 2 . 92 - 5 . Y7 -7. 27 - 0 . 3u - 6 . u .. - 6 . 5e - 3 . 93 - b . Yd -13. d -7 . 71 

-13. 97 - 7. 31 - 5 . 50 - 8 . Of> -1 0 . J5 - 8 . 27 -1 0 . u3 - 8 . J 4 - 6 . u3 - b . 02 -1l. l!., - 8 . 25 
-1 4 . 49 - i3 . 48 - 6 . 34 - 8 . 32 - 3 . 03 - 8 . 42 -l v . 15 - 8 . :'1 - :> . "d - 8 . 09 - 15 . 12 - 8 . 2-, 
-14. 25 - 7. 29 - 3. 0 2 - 7 . 79 -7. 52 -7. 84 - 5 . b:> -7. 76 -1. 54 

AUT OCORRE lATI ONSI 
0 .71 9 0 . 683 v . o"C u . 602 j . on 0 . 769 v . 043 0 . 523 .J • 50-1 0 . 534 u . 5 ':2 J . 7C5 J .514 iJ . 47J 0 . 456 v . 3:'6 J . 41 8 O. L. 79 0 . 3 75 u . 292 J . 311 U. 242 v . 27<1 <1 . 397 

VARIANCE OF RESIOU4lS 
U. 8669E 0 1 0 . 704-'c 01 v.7026c 0 1 O.7 J25E ul J . o460E 01 C) . 5270E 01 v . 5231 l. 1 1. . 42C6E (;1 U.4134 E Ul 0 . 3 d 7 UE )1 O. 3t>41c Jl J . 3 726E 01 J . 3::>64E 01 0 . 3')02E 0 1 v . 34:.4 C' l (. . 3132F 01 U.31 08E 0 1 O. 3047E Cl 0 . 3v35E .. n C. 2996C Cl 0 . 29-i2E Jl 0 . 20l09t 01 ..1 . 2094 :)1 0 . £'c9UC Cl 

VA RIANCES OF AUTQCOR~ElATIC~S 
0 . 005 0 . J I 0 U. 0 15 0 . 020 O. 023 0 . 028 J . 034 ;) . J 38 0 . u4J 0 . 044 0 .u 4 7 J . 050 0 . 055 u . J57 0 . J59 0 . ')62 ) . 0:'3 0 . 005 J . 067 ,J . 06d 0 . 069 o .on C. 071 O. C71 

S IG. SH TI STIC 
IJ . B 1 6 .7 91 5 . 683 4 . 308 4 . 430 4 . 63C 3 . 5 11 2 .7 2) 2 . 932 2 . 552 2 . 553 3 . 1 b 1 2 .1 9 7 1. 903 1. d 71 1.4 3 Lt 1.668 1 . 884 1. 4 52 1.11 9 1 .1 d 2 0 . 914 1. G 15 1 . 485 

AU TOR E GR . CO E F f S • 
- J .317 - 0 . ::>1:1 - 0 . J55 0 . 314 - 0 . 136 - 0 . 6 14 0 . u88 0 . 096 - oj . 1 52 - 0 . 5 11 0 . 104 0 . 084 ;) . 023 - 0 . 384 0 . 16G 0 . 533 -v.l05 - 0 . 2d7 u . 0 71 0 . 214 - J . u22 - O. 2v'J U . CJ5d 0 . u3., 

PA RTI AL AUTOCURf<!:l S . 
0 .71 9 0 . 344 L. 2 :;4 - O. ull 0 . 2:14 0 . 428 - J . 092 - oJ . 443 ~ . 13J 0 . 253 - v . J8d J . 173 - 0 . 209 - 0 . )21 - (j . 174 - 0 . 305 G. ud8 0 .1 40 - 0 . u03 - 0 . 113 J . U-'6 O. lod - U . 07l - U . 03~ 

VA ~IANCES OF PARTIll lUT~CGRPElS 
0 . 005 v . C05 0 . J05 C. JG5 0 . 805 0 . 005 u . 005 J . 005 ) . 005 0 . J05 G. JG5 J . 005 0 . 005 0 . 005 J . 8C5 0 . 0(,5 O. :J 0 5 O. U 05 0 . 005 U. vu6 u . UJb O . ;)Jb U. JOe C. CC6 

SIG . STATISTI C 
lu.l'il 4 . 85'5 3 . -icn - 0 . 153 3 . 97 C 5 . 97 0 -1. 2 Q 1 - ::> .1 5.; 1 . R J7 3 . 493 -1. 2u7 , ~ • ." 7 2 - 2 . d62 -0. 283 - 2 . 375 - 4 .1 53 1. 1 d::l 1. a 91 - u . tl5? -1. 521 0 . 4,.6 2 . 2'+1 - G . ~43 - v . ':llD 

f\ 



TABLE l8c 
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0 . 68 - J. 1 4 1. 12 2.97 1.))3 2.39 1.94 3 .15 2 . 44 5 . 08 2 .7 9 1 . 10 3.24 2. . 47 4 . 1 5 6 . 84 4.b9 5.63 5.19 5.97 5 . 9 7 8 . 21 6 . 48 5 . 4'.1 7. 25 7. a 7 7. 7 9 11.42 8.46 10 .14 8 .75 11.13 9 .12 1 0 . 72 9 . 47 l U. 56 9 .49 15 . 41 9 . 63 11.08 '1.24 6 . 54 8 . 99 13.72 9 . 00 10 . 30 8 . 135 S . 2u 8 .4 4 '1.12 8 . 21 10 .3 3 7.73 '1 . 28 7. 08 5.23 6 . 8 1 1 C. 51 0 . 63 3 . b3 6 . 27 5 . 38 5 . ~0 8 . 90 5 . 81 5 . 09 5.79 9 . 54 5 . b 3 10.32 5 . li6 2 . cs. 4.36 2 . 44 3 . 55 6 . J6 J . 13 0 . 3b 2 . 48 4 .1 4 2 . 27 8 . 31 1 . 71 - C; . 52 0 . 6b -4. 89 0 . 03 2 . J3 -0.67 u . 56 -1.13 -1. 48 -1. 6 7 -1.1 6 - 1 . C; 0 -[ . 22 - 2 .16 - 7.1 J - 2 .1 4 -0.15 -1. 77 0 . 61 -l. 6U -0.9 2 - 1 . 31 1. 66 - 1.26 -4.75 - 1. 36 - 7.11 - C. d8 1. 76 -0.38 3 . 20 - u . 23 1. 5d 0 .1 5 5. 23 C. 37 -1. t3 O. 11 - ~ . d6 0 . 20 3.81 u.b3 4 . 6u U. 30 - 0 .11 0 . 55 4 . 43 C.51 -5. C.9 0 . 23 - 5.01 0 . 73 4 . 22 1. 17 3 . 32 1.4U 2 . 9 1 1.71 7. 23 2 . 1 a - 1. t3 2 . 15 -4.58 2 .7 9 9 . 43 3 . 43 3 . II 3 . 47 4.91 4 . u 5 S . 46 4 . 42 - 2 . 21 4 . 69 3 . 16 5 . 22 12 . 05 5 . 40 9 .1 6 5 . 26 5 . 54 5 . 24 10 . 06 5 . 49 3 . 38 5 . 33 -1.77 5 .7 2 10 . 96 5 . 93 10 . 24 5 .73 5 . 36 6 . 0 1 9 . 04 6 . 29 5 . 2':1 6 . 34 - 0 . 17 6 . 2{) B. 02 6 . 48 IJ.79 6 . 61 8 . 04 6 . d 1 14.74 7.C5 7 . 78 6.60 -0.22 6.53 9 . 29 6 . 56 9 . 35 I:> • 3'1 7. 93 6 .51 
AUTOC OR RE l A TI ONS)_ 

0 . 637 (' . 512 0 . 625 0 . 668 0 . 598 0 . 4B4 J . 566 0 . 550 0 . 672 J . 65 1 C. 547 0 . 750 0 . 502 u . 487 Oo'"t43 0 . 316 U. 405 0 . 423 0 . 362 0 . 258 0 . 310 0 . 276 lJ . 23u 0 . 463 
VARIANCE OF RESICU I\LS 

0 .l u92E 02 0.9470E Gl O. SQ 23E .)1 O. 8866E 01 0 . 7978E 01 0 .7l a2i: 01 0 .7 178C:: 01 0 . U58e Cl 0 . 5686E Ul 0.487·JE 01 0 . 4014E 01 0 . 4509E (,1 0 . 4J:'lE 01 U . 4042E 01 J . 36:33E 01 G.34 81F- 01 0.34 71E Cl 0.3449E C 1 0.3419c Gl 0 . 3259E 01 0..,230E 01 0 . 3174E Cl 0 . 3174E Cl C. 316:Jt Cl 
VARIANCES OF AUTOCJRRE l ATIONS 

0 . 005 0.009 u.014 0 . 0 1 8 0.020 0 . 024 0 . u29 0 . 032 0 . 035 U.03d U. 041 u . 044 0 . 049 0 . 052 C. 054 0 . 056 J . 057 0 . 059 0 . u61 0 . 062 0 . 063 0 . 064 G . J 04 v . U65 
S IG. S TATI STIC 

9 .5 26 6 . 692 5 .447 3 . 849 4 . 385 4.294 3 .53 4 2 . 697 3 . 042 2.35 9 2 . 705 3 . 615 • 2 . 255 2.135 1.9CO 1.332 1. 693 1.744 1.469 1.037 1.240 1. 093 1.1(4 1. 8 1 2 
AU TOR EGR . co EF FS. 

- 0 . 318 - 0 . 357 - 0 .1 04 0 . 357 - 0 . 206 - 0 .467 J . C j 7 o d b 7 - 0 .1 20 - 0 . 473 O. 1 C S - C . l~o 0 .1 22 - U. 307 0.2 ~C, 0.350 0. 023 - 0 .1 n 0.07 0 . 272 - J . U32 - 0 .1 21 O. J 11 - ) . 045 
P-AqTIAL AU TOCORR El S . 

0 . 672 0 . 364 0 . Z4( - G. 050 Ll . 316 0 . 316 ,J . 022 -0 . 377 0 . 277 0 . 37S - 0 .l C7 J . 2 52 - u . 319 - 0 . u47 - J . 296 - 0 . 237 - u . 05 5 0 . 0 7 8 - J . v93 - 0 . 216 0 . 084 G.1 38 0 . Lic4 J . 045 
VA RIA,,"CES OF PARTIAL AU TJCORR EL S 

0 . OJ5 0 . JG5 J . 005 v . Ou5 O. J05 0 . C05 J . ()05 0 . 005 0 . vu5 0 . 005 0 . 0e5 0 . ClO5 0 . 005 O. U05 0 . 0G5 D. DOS 0 . 005 0 . OLl5 0 . u05 0 . UG6 v . C.U6 O. 'JJ6 V. Uuo o . .... Cc 
S I G. STATISTIC 

... . 526 5.13') 3 . 384 -1.11 9 4.430 4 . 412 8 . 3J6 -5. L 38 3.534 5 . 236 - 1.475 3 . 46C - It .371 -J.t.J7 - 4 . J)8 -3.2~i - 0 . 744 1. G5 6 -1. 259 - 2 . 903 1.130 1.051 u . G5C J . bU'1 f\ 
f\ 

\ , 
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~ {11 + ( t<.. - 1 1 5 111 I .jr- ( ? 11 + ( r< - 1 1 ') 11) 1 .:)i-.; ( 3 11+( '< -11 5 1111 9h { 4 11+ ( r< - 1 ) 5!r ) 1 9:' 

1 1 . 2Li~'lc OJ G. 406 :) 81= 01 O. 1)q57E C2 O . 210/~CI= 02 
2 )'~ ::::3Q")E 02 C . 7(,,~7~ )2 0 . 14-:>14:= 02 0 . 43''5fF 02 
~ 1 . 577~2;: 02 o. ~ ~:! 33 r- J 2 ') . 7'1743'- 02 O . 2035'?c 02 
I. '),17"::5 " 0 4 C' . "'1~~7[ J3 0 . <7:'5::>[ 03 O .1 29~3E 03 
5 ) . 2731't l'" O~ G . ~ 57 Jc' )2 0 . 016,,-H 02 0 . 45,)OE 02 
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'-I n . 'c,,,"'4F 0) a , qU,7L 01 0 . 1 5552 1= 02 0 .134~OF 02 

1') 1.C' 5,)69= ) 2 0 . 1~4 ..)J - J3 0 . 10 750E 04 0 . 3f304?E 01 
11 ) • 1 1 ~ ~ I):: J 3 O . ~';~,1<;, 0 1 O . 237J2t= u1 ,) . 609"·1: 01 
1 2 1 • 1 ;:; s r; 1 t:: t) ~ li . C,13 0 (;1= J1 O. j(j4 11 f'- C? O. 95028[ 01 1 -

13 i) .1 112Q" 0:' 0 . L,J211E )2 0 . 17433" 02 0 . 31432:' 0, 
1« 8 . 2f-2L7': 01 o. :: )? :,~:::: B O. 350j4 [ 02 O. nB54IC O? 
15 J . 40'l7'"F' 02 0 . ·3")7j~ Jl J . 66345F 02 G.1l 63 7F 02 
16 1.3 414J!: 02 O .l 21 ~4 = 1 3 1 . BJ14:F 0') O.1 0523c 02 
1 7 0 . 14')"4c 02 1.l . 44 ::>~1;:: )2 0 .:; ."':;5 41:: li2 O.31'5 3 7!: 01 
1 j 0 . 4 <),)75;: 02 IJ . " -11 ')" IC )1 J .1 755U v2 0 .1 7305E 02 
1 -1 1 . 3213'1(: 02 V. ll217e ,)" J.4'373H 02 0 . 22020E 02 
20 Q .7 ')"?5~ 01 
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1 L5<07 1~ 0 1 0 . ;;: ';9J4" O? ') • t. 5 I t 6 (:, f 0 2 0 . 5e02 7 E 02 
2 ) . :3 u 7711= OJ C. l')S5'[ )3 O . 47't57: 02 o . 0642Q<: 02 
3 'J . 47:-, ",)E 02 G. ':; 4 2 +1 :: III J . 't4 '-'~Dr Ot' 0 .1 6474f 02 
4 ) . C,5 1) qqr O? O . ~~~HE: )? O . 4~113 f 01 0 .1 2393F 02 
'5 ,) • 162 57 r )2 o. L ~ 1"') 1,;" li 0.1°752f O~ 0 . 2695&E 02 
6 ) . ,)-;'7701= V n . 123J4 F P f') . 34-.1 l 1 E: 02 O . 24510E 02 
7 ) . <)715t O? 0 . 14c':21 c 'J ' 

rlV= - Tc~·, :"Vt,,<A';;;:S 

K { 311 + ( i<. - 1 1 '3. c: 11') I G:: ( C 1l t-( K-1l 5 . 511) ! ,>:, ( 1 3 11 + ( ', - l I S . 511 II .~ t (1 >1 lf+(K-1l 5 . 51111 Qc': 

') . 3 1 '. c. 7 01 C. 440' ()? O . 51s o4 02 0 . 24705 03 
? 1 . 4 ~"t) 2 P C. :3 .JC 7 1 ? '1.2 ')73 7 02 0 .1 9Q10 02 3 'J . 2 S 1 J" u2 ) . l;j~ )? J . 1 3~ 4 o 02 0 .1 2524 03 
'+ 0 .1 ,-1'03 0 3 O. L 7f:, 7 -)~ 1 . 251)') o/' 0 . 24277 02 

( 511+( K-ll '5 1111 % 

0 . 37652E 01 
O. '1 Of> 7f O? 
0 .1 4 347E 02 
O. c3804c: 02 
0 . 4oo12E 02 
0 . 3 15711:: 0] 
0 . 35253E: 0 1 
O. 88?£' SE 01 
O. '" 9 C; 7 2E 02 
0 . 35382E 02 
0 .1 5057E 02 
C. 4RORAF 0 1 
0 . 58107E 01 
0 . '11002E 02 
0 . 46100:: 0 1 
li . 491 A 7E 03 
O. 1953 SE 02 
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APPENDIX A EFFECTS OF MIS-SPECIFICATION OF MODEL ON 

ESTIMATE OF cr! 

Case I 

The mis-specification involves only erroneous inc l usion or 

exclusion of explanatory variables. Initially 

Assumed Model: 

True Model: 

a nd the data matrix i n the true model is N x K and may be 

partitioned as follows, X = (Xl ,X2 ), where Xl is N X L and X2 

is N X (K-L). The disturbance term € is N.I.D. (0,cr
2

). 
€ 

If the 

235 

(A.l) 

A 

residuals from the true model were computed, denote them €, then 

the mean of the statistic E' E/ (N-K) is e(E'E/(N-K)) = cr
2

. The 
€ 

A 

residuals from the assumed model, denote them~, are obtained from 

(A.2 ) 

and may be written as 

(A. 3) 

The statistic (~/~)/(N-L), easily obtained using (A.3) , i s 

(A. 4) 

and the mean of (A.4) is 

(A. 5 ) 



The second term i n (A.5) is a positive definite quadratic form 

in ~2 a nd so the estimate ~/~(N_L)-l has a mean which over 

2 estimates cr by an amount which depends on the degree of 
E 

correlation between the sets of variables in Xl a nd X2 · 

Case II 

Here one considers the case of erroneous i nc l usion of 

variables, i.e. 

Assumed Model: y 

True Model: 

The residuals from the assumed model are " again 1) and are 

" - (X'X)-lX'y. 1) y-X~, where /j = 

(A. 6) " On using the estimate of ~ given in 1) becomes, 

= (I-P )E 

where P = I-X(X'X)-~' . 

The stati st ic ~'~(N_K)-l has a mean which is, 

(" " -1) 2 e 1)'1) (N-K) = cr
E 

and so will give an unbiassed estimator of cr
2

. 
E 

Turning t o the residuals from the ~ regression, and 

denoting them E one can simply show that 

236 

(A. 6) 

(A .7) 

(A. 8) 

E'E = E'(I-Pl)E (A. 9) 

and so deduce that E'E/cr~ - X~_L. Thus the st a tistic E'E (N-L) - l 

has a mean and variance given by 



However t he st a t istic based on t he residuals from the assumed 

relat ion, ~/~/cr2, is distributed as 
E 

e(~/~(N-K )-l) = cr2 t he variance i s, 
E 

2 X
N

_
K 

and so while 
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(A.10) 

The second case gi ves an unbiassed es t imate of cr2 unlike the f i rs t 
E 

but the efficiency will be gi ven by the expressi on (~=~ ). 
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