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AN IMPROVED UPPER BOUND FOR THE ERROR IN THE

ZERO-COUNTING FORMULAE FOR DIRICHLET L-FUNCTIONS

AND DEDEKIND ZETA-FUNCTIONS

T. S. TRUDGIAN

Abstract. This paper contains new explicit upper bounds for the number of
zeroes of Dirichlet L-functions and Dedekind zeta-functions in rectangles.

1. Introduction and Results

This paper pertains to the functions N(T, χ) and NK(T ), respectively the num-
ber of zeroes ρ = β+iγ of L(s, χ) and of ζK(s) in the region 0 < β < 1 and |γ| ≤ T .
The purpose of this paper is to prove the following two theorems.

Theorem 1. Let T ≥ 1 and χ be a primitive nonprincipal character modulo k.
Then

(1.1)

∣∣∣∣N(T, χ)− T

π
log

kT

2πe

∣∣∣∣ ≤ 0.317 log kT + 6.401.

In addition, if the right side of (1.1) is written as C1 log kT +C2, one may use the
values of C1 and C2 contained in Table 1.

Theorem 2. Let T ≥ 1 and K be a number field with degree nK = [K : Q] and
absolute discriminant dK . Then
(1.2)∣∣∣∣NK(T )− T

π
log

{
dK

(
T

2πe

)nK} ∣∣∣∣ ≤ 0.317 {log dK + nK log T}+ 6.333nK + 3.482.

In addition, if the right side of (1.2) is written as D1 {log dK + nK log T}+D2nK+
D3, one may use the values of D1, D2 and D3 contained in Table 2.

Theorem 1 and Table 1 improve on a result due to McCurley [3, Thm 2.1];
Theorem 2 and Table 2 improve on a result due to Kadiri and Ng [2, Thm 1]. The
values of C1 and D1 given above are less than half of the corresponding values in
[3] and [2]. The improvement is due to Backlund’s trick — explained in §3 — and
some minor optimisation.

Explicit expressions for C1 and C2 and for D1, D2 and D3 are contained in
(4.11) and (4.12) and in (5.11) and (5.12). These contain a parameter η which,
when varied, gives rise to Tables 1 and 2. The values in the right sides of (1.1) and
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(1.2) correspond to η = 1
4 in the tables. Note that some minor improvement in the

lower order terms is possible if T ≥ T0 > 1; Tables 1 and 2 give this improvement
when T ≥ 10.

Table 1. C1 and C2 in Theorem 1 and in [3] for various values of η

η McCurley [3] When T ≥ 1 When T ≥ 10
C1 C2 C1 C2 C2

0.05 0.506 16.989 0.248 9.339 8.666
0.10 0.552 13.202 0.265 8.015 7.311
0.15 0.597 11.067 0.282 7.280 6.549
0.20 0.643 9.606 0.300 6.778 6.021
0.25 0.689 8.509 0.317 6.401 5.616
0.30 0.735 7.641 0.334 6.101 5.288
0.35 0.781 6.929 0.351 5.852 5.011
0.40 0.827 6.330 0.369 5.640 4.770
0.45 0.873 5.817 0.386 5.456 4.556
0.50 0.919 5.370 0.403 5.294 4.363

Table 2. D1, D2 and D3 in Theorem 2 and in [2] for various values
of η

η Kadiri and Ng [2] When T ≥ 1 When T ≥ 10
D1 D2 D3 D1 D2 D3 D2 D3

0.05 0.506 16.95 7.663 0.248 9.270 3.005 8.637 2.069
0.10 0.552 13.163 7.663 0.265 7.947 3.121 7.288 2.083
0.15 0.597 11.029 7.663 0.282 7.211 3.239 6.526 2.099
0.20 0.643 9.567 7.663 0.300 6.710 3.359 5.997 2.116
0.25 0.689 8.471 7.663 0.317 6.333 3.482 5.593 2.134
0.30 0.735 7.603 7.663 0.334 6.032 3.607 5.265 2.153
0.35 0.781 6.891 7.663 0.351 5.784 3.733 4.987 2.173
0.40 0.827 6.292 7.663 0.369 5.572 3.860 4.746 2.193
0.45 0.873 5.778 7.663 0.386 5.388 3.988 4.532 2.215
0.50 0.919 5.331 7.663 0.403 5.225 4.116 4.339 2.238

Explicit estimation of the error terms of the zero-counting function for L(s, χ) is
done in §2. Backlund’s trick is modified to suit Dirichlet L-functions in §3. Theorem
1 is proved in §4. Theorem 2 is proved in §5.

The Riemann zeta-function, ζ(s), is both a Dirichlet L-function (albeit to the
principal character) and a Dedekind zeta-function. The error term in the zero
counting function for ζ(s) has been improved, most recently, by the author [7]. One
can estimate the error term in the case of ζ(s) more efficiently owing to explicit
bounds on ζ(1 + it), for t� 1. It would be of interest to see whether such bounds
for L(1+ it, χ) and ζK(1+ it) could be produced relatively easily — this would lead
to an improvement of the results in this paper.
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2. Estimating N(T, χ)

Let χ be a primitive nonprincipal character modulo k, and let L(s, χ) be the
Dirichlet L-series attached to χ. Let a = (1−χ(−1))/2 so that a is 0 or 1 according
as χ is an even or an odd character. Then the function

(2.1) ξ(s, χ) =

(
k

π

)(s+a)/2

Γ

(
s+ a

2

)
L(s, χ),

is entire and satisfies the functional equation

(2.2) ξ(1− s, χ) =
iak1/2

τ(χ)
ξ(s, χ),

where τ(χ) =
∑k
n=1 χ(n) exp(2πin/k).

Let N(T, χ) denote the number of zeroes ρ = β+iγ of L(s, χ) for which 0 < β < 1
and |γ| ≤ T . For any σ1 > 1 form the rectangle R having vertices at σ1 ± iT and
1 − σ1 ± iT , and let C denote the portion of the boundary of the rectangle in the
region σ ≥ 1

2 . From Cauchy’s theorem and (2.2) one deduces that

N(T, χ) =
1

π
∆C arg ξ(s, χ).

Thus

N(T, χ) =
1

π

{
∆C arg

(
k

π

)(s+a)/2

+ ∆C arg Γ

(
s+ a

2

)
+ ∆C argL(s, χ)

}

=
T

π
log

k

π
+

2

π
= log Γ

(
1

4
+
a

2
+ i

T

2

)
+

1

π
∆C argL(s, χ).

(2.3)

To evaluate the second term on the right-side of (2.3) one needs an explicit version
of Stirling’s formula. Such a version is provided in [4, p. 294], to wit

(2.4) log Γ(z) = (z − 1

2
) log z − z +

1

2
log 2π +

θ

6|z|
,

which is valid for | arg z| ≤ π
2 , and in which θ denotes a complex number satisfying

|θ| ≤ 1. Using (2.4) one obtains

= log Γ

(
1

4
+
a

2
+ i

T

2

)
=
T

2
log

T

2e
+
T

4
log

(
1 +

(2a+ 1)2

4T 2

)
+

2a− 1

4
tan−1

(
2T

2a+ 1

)
+

θ

3| 12 + a+ iT |
.

(2.5)

Denote the last three terms in (2.5) by g(a, T ). Using elementary calculus one
can show that |g(0, T )| ≤ g(1, T ) and that g(1, T ) is decreasing for T ≥ 1. This,
together with (2.3) and (2.5), shows that

(2.6)

∣∣∣∣N(T, χ)− T

π
log

kT

2πe

∣∣∣∣ ≤ 1

π

∣∣∆C argL(s, χ)
∣∣+

2

π
g(1, T ).

All that remains is to estimate ∆C argL(s, χ). Write C as the union of three
straight lines, viz. let C = C1 ∪ C2 ∪ C3, where C1 connects 1

2 − iT to σ1 − iT ; C2
connects σ1−iT to σ1+iT ; and C3 connects σ1+iT to 1

2+iT . Since L(s, χ) = L(s, χ)
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a bound for the integral on C3 will serve as a bound for that on C1. Estimating the
contribution along C2 poses no difficulty since

| argL(σ1 + it, χ)| ≤ | logL(σ1 + it, χ)| ≤ log ζ(σ1).

To estimate ∆C3 argL(s, χ) define

(2.7) f(s) =
1

2
{L(s+ iT, χ)N + L(s− iT, χ)N},

for some positive integer N , to be determined later. Thus f(σ) = <L(σ + iT, χ)N .
Suppose that there are n zeroes of <L(σ + iT, χ)N for σ ∈ [ 12 , σ1]. These zeroes

partition the segment into n+ 1 intervals. On each interval argL(σ + iT, χ)N can
increase by at most π. Thus

|∆C3 argL(s, χ)| = 1

N
|∆C3 argL(s, χ)N | ≤ (n+ 1)π

N
,

whence (2.6) may be written as

(2.8)

∣∣∣∣N(T, χ)− T

π
log

kT

2πe

∣∣∣∣ ≤ 2

π
{log ζ(σ1) + g(1, T )}+

2(n+ 1)

N
.

One may estimate n with Jensen’s Formula.

Lemma 1 (Jensen’s Formula). Let f(z) be holomorphic for |z − a| ≤ R and non-
vanishing at z = a. Let the zeroes of f(z) inside the circle be zk, where 1 ≤ k ≤ n,
and let |zk − a| = rk. Then

(2.9) log
Rn

|r1r2 · · · rn|
=

1

2π

∫ 2π

0

log f(a+Reiφ) dφ− log |f(a)|.

This is done in §4.

3. Backlund’s Trick

For a complex-valued function F (s), and for δ > 0 define ∆+ argF (s) to be the
change in argument of F (s) as σ varies from 1

2 to 1
2 + δ, and define ∆− argF (s) to

be the change in argument of F (s) as σ varies from 1
2 to 1

2 − δ.
Backlund’s trick is to show that if there are zeroes of <F (σ + iT )N on the line

σ ∈ [ 12 , σ1], then there are zeroes on the line σ ∈ [1 − σ1,
1
2 ]. This device was

introduced by Backlund in [1] for the Riemann zeta-function.
Following Backlund’s approach one can prove the following general lemma.

Lemma 2. Let N be a positive integer and let T ≥ T0 ≥ 1. Suppose that there is
an upper bound E that satisfies

|∆+ argF (s) + ∆− argF (s)| ≤ E,

where E = E(δ, T0). Suppose further that there exists an n ≥ 3+bNE/πc for which

(3.1) nπ ≤ |∆C3 argF (s)N | < (n+ 1)π.

Then there are at least n distinct zeroes of <F (σ + iT )N , denoted by ρν = aν +
iT (where 1 ≤ ν ≤ n and 1

2 ≤ an < an−1 < · · · ≤ σ1), such that the bound

|∆ argF (s)N | ≥ νπ is achieved for the first time when σ passes over aν from above.
In addition there are at least n−2−bNE/πc distinct zeroes ρ′ν = a′ν + iT (where

1 ≤ ν ≤ n− 2 and 1− σ1 ≤ a′1 < a′2 < · · · ≤ 1
2).
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Moreover

(3.2) aν ≥ 1− a′ν , for ν = 1, 2, . . . , n− 2− bNE/πc,
and, if η is defined by σ1 = 1

2 +
√

2(η + 1
2 ), then

(3.3)

n∏
ν=1

|1 + η − aν |
n−2−bNE/πc∏

ν=1

|1 + η − a′ν | ≤ ( 1
2 + η)2n−2−bNE/πc.

Proof. It follows from (3.1) that | argF (s)N | must increase as σ varies from σ1 to
1
2 . This increase may only occur if σ has passed over a zero of <F (s)N , irrespective
of its multiplicity. In particular as σ moves along C3

|∆ argF (s)N | ≥ π, 2π, . . . , nπ.
Let ρν = aν + it denote the distinct zeroes of <F (s)N the passing over of which
produces, for the first time, the bound |∆ argF (s)N | ≥ νπ. It follows that there
must be n such points, and that 1

2 ≤ an < an−1 < . . . < a2 < a1 ≤ σ1. Also if
1
2 + δ ≥ aν then

(3.4) |∆+ argF (s)N | ≥ (n− ν)π.

For (3.4) is true when ν = n and so, by the definition of ρν , it is true for all
1 ≤ ν ≤ n.

By the hypothesis in Lemma 2,

(3.5) |∆+ argF (s)N + ∆− argF (s)N | ≤ NE.
When 1

2 + δ ≥ aν , (3.4) and (3.5) show that

(3.6) |∆− argF (s)N | ≥ (n− ν −NE/π)π,

for 1 ≤ ν ≤ n − 2 − bNE/πc. When 1
2 + δ = aν and ν = n − 2 − bNE/πc,

it follows from (3.6) that |∆− argF (s)N | ≥ π. The increase in the argument is
only possible if there is a zero of <F (s)N the real part of which is greater than
1
2 − δ = 1 − an−2−bNE/πc. Label this zero ρ′n−2−bNE/πc = a′n−2−bNE/πc + iT .

Repeat the procedure when ν = n−3−bNE/πc, . . . , 2, 1, whence (3.2) follows. This
produces a positive number of zeroes in [1− σ1, 12 ] provided that n ≥ 3 + bNE/πc.

For zeroes ρν lying to the left of 1 + η one has

|1 + η − aν ||1 + η − a′ν | ≤ (1 + η − aν)(η + aν),

by (3.2). This is a decreasing function for aν ∈ [ 12 , 1 + η] and so, for these zeroes

(3.7) |1 + η − aν ||1 + η − a′ν | ≤ ( 1
2 + η)2.

For zeroes lying to the right of 1 + η one has

|1 + η − aν ||1 + η − a′ν | ≤ (aν − 1− η)(η + aν).

This is increasing with aν and so, for these zeroes

(3.8) |1 + η − aν ||1 + η − a′ν | ≤ σ2
1 − σ1 − η(1 + η).

The bounds in (3.7) and (3.8) are equal1 when σ1 = 1
2 +
√

2(η + 1
2 ). Thus (3.3)

holds for σ1 = 1
2 +
√

2(η + 1
2 ). For the unpaired zeroes one may use the bound

|1 + η − aν | ≤ 1
2 + η, whence (3.3) follows. �

1McCurley does not use Backlund’s trick. Accordingly, his upper bounds in place of (3.7) and

(3.8) are 1
2

+ η and σ1 − 1 − η. These are equal at σ1 = 3
2

+ 2η, which is his choice of σ1.
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3.1. Applying Backlund’s Trick. Apply Jensen’s formula on the function F (s),
with a = 1 + η and R = r( 1

2 + η), where r > 1. Assume that the hypotheses of

Lemma 2 hold. If 1 + η− r( 1
2 + η) ≤ 1− σ1 then all of the 2n− 1−bNE/πc zeroes

of <F (σ + iT )N are included in the contour. Thus the left side of (2.9) is

log
{r( 1

2 + η)}2n−2−bNE/πc

|1 + η − a1| · · · |1 + η − an||1 + η − a′1| · · · |1 + η − a′n−2−bNE/πc|
≥ (2n− 2− bNE/πc) log r,

(3.9)

by (3.3). If the contour does not enclose all of the 2n − 2 − [NE/π] zeroes of
<F (σ + iT )N , then the following argument, thoughtfully provided by Professor
D.R. Heath-Brown, allows one still to make a saving.

To a zero at x+ it, with 1
2 ≤ x ≤ 1 +η one may associate a zero at x′+ it where,

by (3.2), 1 − x ≤ x′ ≤ 1
2 . Thus, for an intermediate radius, zeroes to the right of

1
2 yet still close to 1

2 will have their pairs included in the contour. Let X satisfy

1 + η − ( 1
2 + η)/r < X < min{1 + η, r( 1

2 + η) − η}. Since r > 1, this guarantees

that X > 1
2 . For a zero at x+ it consider two cases: x ≥ X and x < X.

In the former, there is no guarantee that the paired zero x′ + it is included in
the contour. Thus the zero at x+ it is counted in Jensen’s formula with weight

(3.10) log
r( 1

2 + η)

1 + η − x
≥ log

r( 1
2 + η)

1 + η −X
.

Now, when x < X, the paired zero at x′ is included in the contour, since 1 + η−
r( 1

2 + η) < 1−X < 1− x ≤ x′. Thus, in Jensen’s formula, the contribution is

log
r( 1

2 + η)

1 + η − x
+ log

r( 1
2 + η)

1 + η − x′
≥ log

r( 1
2 + η)

1 + η − x
+ log

r( 1
2 + η)

η + x

= log
r2( 1

2 + η)2

(1 + η − x)(η + x)
.

(3.11)

The function appearing in the denominator of (3.11) is decreasing for x ≥ 1
2 . Thus

the zeroes at x+ it and x′ + it contribute at least 2 log r.
Suppose now that there are n zeroes in [ 12 , σ1], and that there are k zeroes the

real parts of which are at least X. The contribution of all the zeroes ensnared by
the integral in Jensen’s formula is at least

k log
r( 1

2 + η)

1 + η −X
+ 2(n− k) log r = k log

( 1
2 + η)

r(1 + η −X)
+ 2n log r ≥ 2n log r,

which implies (3.9)

3.2. Calculation of E in Lemma 2. From (2.1) and (2.2) it follows that

∆+ arg ξ(s, χ) = −∆− arg ξ(s, χ).

Since arg(π/k)−
s+a
2 = − t

2 log(π/k) then ∆±(π/k)−
s+a
2 = 0, whence

|∆+ argL(s, χ) + ∆− argL(s, χ)| = |∆+ arg Γ( s+a2 ) + ∆− arg Γ( s+a2 )|.

Using (2.4) one may write

(3.12)

∣∣∣∣∆+ arg Γ

(
s+ a

2

)
+ ∆− arg Γ

(
s+ a

2

) ∣∣∣∣ ≤ G(a, δ, t),
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where

G(a, δ, t) =
1

2
(a− 1

2
+ δ) tan−1

a+ 1
2 + δ

t
+

1

2
(a− 1

2
− δ) tan−1

a+ 1
2 − δ
t

− (a− 1

2
) tan−1

a+ 1
2

t
− t

4
log

[
1 +

2δ2{t2 − ( 1
2 + a)2}+ δ4{

t2 + ( 1
2 + a)2

}2
]

+
1

3

{
1

| 12 + δ + a+ it|
+

1

| 12 − δ + a+ it|
+

2

| 12 + a+ it|

}
.

(3.13)

One can show that G(a, δ, t) is decreasing in t and increasing in δ, and that

G(1, δ, t) ≤ G(0, δ, t). Therefore, since, in Lemma 2, one takes σ1 = 1
2 +
√

2( 1
2 + η)

it follows that δ =
√

2( 1
2 + η), whence one may take

(3.14) E = G(0,
√

2( 1
2 + η), t0),

for t ≥ t0.

4. Proof of Theorem 1

First, suppose that |∆C3 argL(s, χ)N | < 3 + bNE/πc. Thus (2.6) becomes

(4.1)

∣∣∣∣N(T, χ)− T

π
log

kT

2πe

∣∣∣∣ ≤ 2

π
{log ζ(σ1) + g(1, T ) + E}+

6

N
.

Now suppose that |∆C3 argL(s, χ)N | ≥ 3 + bNE/πc, whence Lemma 2 may be
applied.

To apply Jensen’s formula to the function f(s), defined in (2.7), it is necessary
to show that f(1 + η) is non-zero: this is easy to do upon invoking an observation
due to Rosser [6]. Write L(1 + η+ iT, χ) = Keiψ, where K > 0. Choose a sequence
of N ’s tending to infinity for which Nψ tends to zero modulo 2π. Thus

(4.2)
f(1 + η)

|L(1 + η + iT, χ)|N
→ 1.

Since χ is a primitive nonprincipal character then f(s) is holomorphic on the circle.
It follows from (2.9) and (3.9) that

(4.3) n ≤ 1

4π log r
J − 1

2 log r
log |f(1 + η)|+ 1 +

NE

2π
,

where

J =

∫ 3π
2

−π2
log |f(1 + η + r(

1

2
+ η)eiφ)| dφ.

Write J = J1 + J2 where the respective ranges of integration of J1 and J2 are
φ ∈ [−π/2, π/2] and φ ∈ [π/2, 3π/2]. For σ > 1

(4.4)
ζ(2σ)

ζ(σ)
≤ |L(s, χ)| ≤ ζ(σ),

which shows that

(4.5) J1 ≤ N
∫ π/2

−π/2
log ζ(1 + η + r( 1

2 + η) cosφ) dφ.

On J2 use

log |f(s)| ≤ N log |L(s+ iT, χ)|,
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and the convexity bound [5, Thm 3]

(4.6) |L(s, χ)| ≤
(
k|s+ 1|

2π

)(1+η−σ)/2

ζ(1 + η),

valid for −η ≤ σ ≤ 1 + η, where 0 < η ≤ 1
2 , to show that

(4.7) J2 ≤ πN log ζ(1+η)+N
r( 1

2 + η)

2

∫ 3π/2

π/2

(− cosφ) log

{
kTw(T, φ, η, r)

2π

}
dφ,

where

w(T, φ, η, r)2 =

1 +
2r( 1

2 + η) sinφ

T
+
r2( 1

2 + η)2 + (2 + η)2 + 2r( 1
2 + η)(2 + η) cosφ

T 2
.

(4.8)

For φ ∈ [π/2, π], the function w(T, φ, η, r) is decreasing in T ; for φ ∈ [π, 3π/2] it is
bounded above by w∗(T, φ, η, r) where

(4.9) w∗(T, φ, η, r)2 = 1 +
r2( 1

2 + η)2 + (2 + η)2 + 2r( 1
2 + η)(2 + η) cosφ

T 2
,

which is decreasing in T .
To bound n using (4.3) it remains to bound − log |f(1 + η)|. This is done by

using (4.2) and (4.4) to show that

− log |f(1 + η)| → −N log |L(1 + η + iT )| ≤ −N log[ζ(2 + 2η)/ζ(1 + η)].

This, together with (2.8), (4.1), (4.3), (4.5), (4.7) and sending N →∞, shows that,
when T ≥ T0

(4.10)

∣∣∣∣N(T, χ)− T

π
log

kT

2πe

∣∣∣∣ ≤ r( 1
2 + η)

2π log r
log kT + C2,

where

C2 =
2

π

{
log ζ( 1

2 +
√

2( 1
2 + η)) + g(1, T ) +

E

2

}
+

3

2 log r
log ζ(1 + η)

− log ζ(2 + 2η)

log r
+

1

2π log r

∫ π/2

−π/2
log ζ(1 + η + r( 1

2 + η) cosφ) dφ

+
r( 1

2 + η)

4π log r

{
− 2 log 2π +

∫ π

π/2

(− cosφ) logw(T0, φ, η, r) dφ

+

∫ 3π/2

π

(− cosφ) logw∗(T0, φ, η, r) dφ

}
.

4.1. A small improvement. Consider that what is really sought is a number
p satisfying −η ≤ p < 0 for which one can bound L(p + it, χ), provided that
1+η−r( 1

2 +η) ≥ p. Indeed the restriction that p ≥ −η can be relaxed by adapting
the convexity bound, but, as will be shown soon, this is unnecessary.

The convexity bound (4.6) becomes the rather ungainly

|L(s, χ)| ≤

{(
k|1 + s|

2π

)(1/2−p)(1+η−σ)

ζ(1− p)1+η−σζ(1 + η)σ−p

}1/(1+η−p)

,



ERROR IN THE ZERO-COUNTING FORMULAE 9

valid for −η ≤ p ≤ σ ≤ 1 + η. Such an alternation only changes J2, whence the
coefficient of log kT in (4.10) becomes

r( 1
2 + η)( 1

2 − p)
π(1 + η − p) log r

.

This is minimised when r = (1 + η − p)/(1/2 + η), whence (4.10) becomes

(4.11)

∣∣∣∣N(T, χ)− T

π
log

kT

2πe

∣∣∣∣ ≤ 1
2 − p

π log
(

1+η−p
1/2+η

) log kT + C2,

where

C2 =
2

π

{
log ζ( 1

2 +
√

2( 1
2 + η)) + g(1, T ) +

G(0,
√

2( 1
2 + η), T0)

2

}

+
1

log
(

1+η−p
1/2+η

){3

2
log ζ(1 + η)− log ζ(2 + 2η) +

1

π
log

ζ(1− p)
ζ(1 + η)

+
1

2π

∫ π/2

−π/2
log ζ(1 + η + (1 + η − p) cosφ) dφ+

1
2 − p
2π

(
− 2 log 2π

+

∫ π

π/2

(− cosφ) logw(T0, φ, η, r) dφ+

∫ 3π/2

π

(− cosφ) logw∗(T0, φ, η, r) dφ

)}
,

(4.12)

in which g(1, T ), G(a, δ, T0), w and w∗ are defined in (2.5), (3.13), (4.8) and (4.9).
The coefficient of log kT in (4.11) is minimal when p = 0 and r = 1+η

1/2+η . One

cannot choose p = 0 nor should one choose p to be too small a negative number lest
the term log ζ(1− p)/ζ(1 + η) become too large. Choosing p = −η/7 ensures that
C2 in (4.11) is always smaller than the corresponding term in McCurley’s proof.
Theorem 1 follows upon taking T0 = 1 and T0 = 10. One could prove different
bounds were one interested in ‘large’ values of kT . In this instance the term C2 is
not so important, whence one could choose a smaller value of p.

5. The Dedekind zeta-function

This section employs the notation of §§2-3. Consider a number field K with
degree nK = [K : Q] and absolute discriminant dK . In addition let r1 and r2 be
the number of real and complex embeddings in K, whence nK = r1 + 2r2. Define
the Dedekind zeta-function to be

ζK(s) =
∑

a⊂OK

1

(Na)s
,

where a runs over the non-zero ideals. The completed zeta-function

(5.1) ξK(s) = s(s− 1)

(
dK

πnK22r2

)s/2
Γ(s/2)r1Γ(s)r2ζK(s)

satisfies the functional equation

(5.2) ξK(s) = ξK(1− s).
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Let a(s) = (s− 1)ζK(s) and let

(5.3) f(σ) =
1

2

{
a(s+ iT )N + a(s− iT )N

}
.

It follows from (5.1) and (5.2) that

(5.4)

∣∣∣∣∆+ arg a(s) + ∆− arg a(s)

∣∣∣∣ ≤ F (δ, t) + nKG(0, δ, t),

where F (δ, t) = 2 tan−1 1
2t − tan−1 1/2+δ

t − tan−1 1/2−δ
t , and G(0, δ, t) is defined in

(3.13).
Thus, following the arguments in §§2-4, one arrives at

(5.5)∣∣∣∣NK(T )− T

π
log

{
dK

(
T

2πe

)nK} ∣∣∣∣ ≤ 2(n+ 1)

N
+

2nK
π
{|g(0, T )|+ log ζ(σ1)}+ 2,

where n is bounded above by (4.3), in which f(s) is defined in (5.3). Using the
right inequality in

(5.6)
ζK(2σ)

ζK(σ)
≤ |ζK(s)| ≤ {ζ(σ)}nK ,

one can show that the corresponding estimate for J1 is
(5.7)

J1/N ≤ π log T +

∫ π/2

−π/2

{
log w̃(T, φ, η, r) + nK log ζ(1 + η + r( 1

2 + η) cosφ)
}
dφ

where

(5.8) w̃(T, φ, η, r)2 = 1 +
2r( 1

2 + η) sinφ

T
+
r2( 1

2 + η)2 + η2 + 2rη( 1
2 + η) cosφ

T 2
.

For φ ∈ [0, π/2], the function w̃(T, φ, η, r) is decreasing in T ; for φ ∈ [−π/2, 0] it is
bounded above by w̃∗(T, φ, η, r) where

(5.9) w̃∗(T, φ, η, r)2 = 1 +
r2( 1

2 + η)2 + η2 + 2rη( 1
2 + η) cosφ

T 2
.

which is decreasing in T .
The integral J2 is estimated using the following convexity result.

Lemma 3. Let −η ≤ p < 0. For p ≤ 1 + η − r( 1
2 + η) the following bound holds

|a(s)|1+η−p ≤
(

1− p
1 + p

)1+η−σ

ζK(1 + η)σ−pζK(1− p)1+η−σ|1 + s|1+η−p

×
{
dK

(
|1 + s|

2π

)nK}(1+η−σ)(1/2−p)

.

Proof. See [5, §7]. When p = −η the bound reduces to that in [5, Thm 4]. �
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Using this it is straightforward to show that

J2/N ≤
2r( 1

2 + η)

1 + η − p

{
log

ζK(1− p)
ζK(1 + η)

+ log
1− p
1 + p

+ (1/2− p) log
dK

(2π)nK

}
+ π log ζK(1 + η) + log T

(
π +

2rnK( 1
2 + η)( 1

2 − p)
1 + η − p

)
+

∫ 3π/2

π/2

logw(T0, φ, η, r)

(
1 +

nKr(
1
2 + η)( 1

2 − p)(− cosφ)

1 + η − p

)
dφ

(5.10)

The quotient of Dedekind zeta-functions can be dispatched easily enough using

−ζ
′
K

ζK
(σ) ≤ nK

{
−ζ
′

ζ
(σ)

}
to show that

log
ζK(1− p)
ζK(1 + η)

=

∫ 1+η

1−p
−ζ
′
K

ζK
(σ) dσ ≤ nK

∫ 1+η

1−p
−ζ
′

ζ
(σ) dσ ≤ nK log

ζ(1− p)
ζ(1 + η)

.

Finally the term − log |f(1 + η)| is estimated as in the Dirichlet L-function case —
cf. (4.2). This shows that

log |f(1 + η)| ≥ N log
ζK(2 + 2η)

ζK(1 + η)
+
N

2
log(η2 + T 2) + o(1).

This, together with (5.5), (5.7), (5.8), (5.9) and (5.10) and sending N →∞, shows
that, when T ≥ T0,

∣∣∣∣NK(T )− T

π
log

{
dK

(
T

2πe

)nK} ∣∣∣∣ ≤ r( 1
2 + η)( 1

2 − p)
π log r(1 + η − p)

{log dK + nK log T}

+

(
C2 −

2

π
[g(1, T )− |g(0, T )|]

)
nK +D3,

(5.11)

where C2 is given in (4.12) and

D3 = 2 +
r( 1

2 + η)

π log r(1 + η − p)
log

(
1− p
1 + p

)
+

1

π
F (
√

2( 1
2 + η), T0)

+
1

2π log r

(∫ 0

−π/2
log w̃∗(T0, φ, η, r) dφ+

∫ π/2

0

log w̃(T0, φ, η, r) dφ

+

∫ π

π/2

logw(T0, φ, η, r) dφ+

∫ 3π/2

π

logw∗(T0, φ, η, r) dφ

)(5.12)

If one chooses p = −η/7, to ensure that the lower order terms in (5.11) are smaller
than those in [2], one arrives at Theorem 2. One may choose a smaller value of p
if one is less concerned about the term D2.
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