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ABSTRACT

Hybridization of nucleic acids on solid surfaces is a
key process involved in high-throughput technologies
such as microarrays and, in some cases, next-
generation sequencing (NGS). A physical understand-
ing of the hybridization process helps to determine
the accuracy of these technologies. The goal of a
widespread research program is to develop reliable
transformations between the raw signals reported
by the technologies and individual molecular concen-
trations from an ensemble of nucleic acids. This
research has inputs from many areas, from bioinfor-
matics and biostatistics, to theoretical and experi-
mental biochemistry and biophysics, to computer
simulations. A group of leading researchers met
in Ploen Germany in 2011 to discuss present know-
ledge and limitations of our physico-chemical

understanding of high-throughput nucleic acid
technologies. This meeting inspired us to write this
summary, which provides an overview of the
state-of-the-art approaches based on physico-
chemical foundation to modeling of the nucleic
acids hybridization process on solid surfaces. In
addition, practical application of current knowledge
is emphasized.

INTRODUCTION

Hybridization of nucleic acids on a solid surface is a key
process used in a broad range of technologies. Usually a
DNA oligonucleotide (probe) is immobilized on a glass
slide or a micrometer-sized bead, with the oligonucleotide
acting as a trap for a complementary target sought in a
sample. If a complementary target exists in the sample, a
duplex is typically formed on binding of the two nucleic
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acid strands. The number of duplexes of a particular kind
is supposed to reflect the concentration of the correspond-
ing target. However, the targets within a typical biological
experiment are within a complex mixture of RNA
sequences. And as well as hybridization between a target
and its complementary probe sequence, there are other
reactions taking place within an experiment. For
example, sequences can fold into a secondary structure
or hybridize to partially complementary RNA in solution.
A number of microarray experiments have shown that

the extent of hybridization of the complementary probe
and target strongly varies from duplex to duplex (e.g. 1,2).
Specifically, given equal concentration of several targets
and a fixed concentration of probes, the number of
duplexes will vary depending on the sequence of the
probe–target duplex. This phenomenon is also likely re-
sponsible for the lack of correspondence between absolute
target concentration and quantification produced by the
454 next-generation sequencing (NGS, 3), although other
factors such as NGS probe-specific biases must also be
considered.
It is highly desirable to be able to predict the number of

probe-target duplexes formed at a given target concentra-
tion. Such a prediction would essentially mean a probe
response function, which could be used to measure
target concentration from the known number of
probe-target duplexes. The knowledge of the response
function is critical for quantitative applications of the
microarray and NGS technologies. The advantage of a
physics-based algorithm is that one could set a physical
error bar based on the data and clearly distinguish useful
datasets [i.e. those that best match to the expected
isotherm (4)] from the problematic ones.
Held et al. (5) conducted the first systematic attempt to

use physico-chemical principles to determine the micro-
array probe response function for the popular Affymetrix
Genechip. Further attempts have been carried out since
(e.g. 6–8), with many of the approaches taking advantage
of ‘spiked-in’ Genechip data, in which the concentration
of particular transcripts is already established (9). The
models of surface hybridization are typically related to
similar models of hybridization in solution, and use
either modeling parameters (hybridization, folding
energies, etc) taken from the studies conducted in a bulk
solution, or obtained by fitting a model to a training
dataset. To our knowledge no physico-chemical
modeling of NGS technologies has been attempted at
the same level of detail seen for microarray studies,
although investigation of sources of noise (10) and bias
in NGS data is an active field of research (11). Moreover,
modeling work for microarrays has benefitted from stable
protocols, whereas NGS technologies and protocols are
still in a period of rapid evolution, with substantially
revised versions released each year.
In spite of the heavy use of microarrays and NGS by the

biological community, there are many questions pertinent
to hybridization of nucleic acids on the surface that
remain unanswered.

. Do we clearly understand hybridization process on
solid surfaces?

. What are the stages of this process?

. Which response functions are precise enough to be
practically useable?

. Are there any alternative approaches to quantify
nucleic acid targets?

A group of 15 researchers from all over the world
gathered for a 2-day workshop at the Max Planck
Institute for Evolutionary Biology in Ploen, Germany
(http://www.evolbio.mpg.de/ploenworkshop/) to exchange
ideas about potential solutions to these questions. This area
of research is interdisciplinary, and the meeting brought
together researchers analysing topics ranging from the
chemical bonding expected for individual sequences, the
characteristics of populations of nucleic acids, all the way
to attempts to understand the causes of outliers seen across
many tens of thousands of microarray experiments.

This present report summarizes the state of the field,
showing latest achievements of particular groups, their
future directions and the relevance of their findings to
biologists as well as other scientists. We attempted to
make sections of this report as self contained as
possible, therefore each section may be read independently
from the others. Each section is prefixed with a short
italicized text for non-specialists.

HIDDEN SECRETS OF A HUNDRED THOUSAND
MICROARRAYS

Several artifacts were discovered by massive analysis of
100 000 microarrays from various research laboratories.
These artifacts are associated with molecular biology
protocols, runs of multiple G nucleotides in microarray
probes and fluorescent light scattering.

The tremendous success of microarray technology has
led to thousands of publications, describing the results
from hundreds of thousands of microarray observations
of messenger RNA. The vast majority of these data are
now available for meta-analysis—researchers typically
upload a description of their results and the associated
data to repositories such as the Gene Expression
Omnibus (GEO, 12) following publication of their own
analysis. There are now >100 000 microarray hybridiza-
tions within GEO.

Affymetrix Genechips consists of a large number of
25-mer single-stranded DNA probes, and transcripts are
measured through a set of probes. Each probe-set consists
of typically 11 perfect-match (PM) and mismatch (MM)
probes, with a MM probe having its central base comple-
mentary to that found in the partner PM probe. Every
microarray experiment usually undergoes several
pre-processing steps (13,14). The pre-processing of a
microarray requires a correction for background signals
as well as normalization of the data and the calculation of
an expression measure through condensing the multiple
PM and MM values into a single measure of the expres-
sion of the transcript (15,16).

A. Harrison and colleagues have performed a compara-
tive study of the differences between various pre-
processing protocols. This study has determined that the
calculation of the expression measure is the dominant
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cause of variation in the lists of genes reported to be dif-
ferentially expressed in experiments (17), consistent with
the findings of (18). Expression measure estimates such
as robust multiarray averaging (RMA) (15) and
GC-content corrected RMA (16) use algorithms based
on the observed data values to identify and eliminate
outlier values; however, these algorithms make no use of
prior knowledge regarding the reliability of probes.
Adapting these algorithms to do so would result in more
robust analyses. In reality, some probes are noticeably less
responsive to target concentration than the others, being
either unresponsive (no hybridization signal) or invariant
(same hybridization signal) across many observations. The
consistency of these results means that they do not appear
as noise, which is a random process, but as erroneous
signal, i.e. a systematic error. Mining large surveys of
microarrays is now shedding light on the nature of
outliers observed in microarray data (19).

Through examining correlations between the probes
within an exon, A. Harrison’s research is already finding
cases where many of the existing expression measure cal-
culations may be missing interesting biophysical effects.
The research has found a large family of correlated
outlier probes, the sequences of which contain a
common run of four or more contiguous guanines (20).
Because of the widespread correlations with other such
probes, they are not measuring the same signal as the
rest of the probes in the probeset to which they have
been assigned. Thus, one should place little reliance on
any probe containing four consecutive guanines, regard-
less of whether its value appears to be in agreement with
others in the probeset. A. Harrison and colleagues suggest
that this ‘4G’ signature results from guanine molecules in
four adjacent probes interacting to form a structure that
resembles a G-quadruplex (21). The existence of these cor-
relations in intensities seen across many experiments in
GEO suggests there is something in these experiments
that causes thousands of G-quadruplexes to change
together, something that varies from experiment to experi-
ment. Possibilities include changes in concentration of
different cations, pH variations, even ethanol contamin-
ation—all of which may show subtle variations from ex-
periment to experiment due to random and, likely, small
differences in the use of the protocol when running the
microarrays. Another feature that might affect the
microarray-to-microarray variation in the extent of
quadruplex formation is the life-history of the microarray
before being run in the experiment: a microarray in a cold
dark environment for a long time may well form many
G-quadruplexes on its surface whereas a microarray that
is heated strongly immediately before being used is
expected to have fewer G-quadruplexes.

A family of sequence motifs, centered on GCCTCCC
and related to the preparation of target, also confuses the
interpretation of data from microarray experiments (22).
The T7-binding domain is essential for the first interaction
with the RNA polymerase and the start of transcription in
the 30 in vitro transcription Microarray protocol. A small
spacer sequence is added between the T7 binding site and
the oligo-d(T) stretch, and this spacer is transcribed as a
leader sequence for all copies of the amplified RNA. This

T7 spacer sequence causes hybridization artifacts on those
probes containing sub-sequences complementary to part
or all of the spacer sequence—this is why probe sequences
containing motifs such as CCTCC do not work in some
cases. Unfortunately, there are no rules presently for
eliminating these motifs in the probe design of
Affymetrix microarrays.
A rather different discovery is that all probes adjacent

to the edge of an array are correlated with edge probes,
even though these edge probes are present only as controls
and the adjacent probes are meant to be measuring bio-
logically meaningful expression. Furthermore, many
probes across the entire array are correlated with these
edge probes. At first sight, therefore, the presence of
high correlations between biologically relevant probes
and these control probes is surprising. The answer lies in
the intensity of neighboring probes: all the lower-intensity
edge probes are adjacent to bright probes, while all the
affected non-control probes lie next to high-intensity
probes. Presumably light from the brightest probes
‘spills over’ into neighboring probes (23). The cause of
this effect is currently unclear: it may be due to focusing
problems, lens aberrations or perhaps even the diffraction
limit. The amount of blurring varies from CEL (i.e., raw
intensity) file to CEL file, but usually dominates the signal
of dim neighbors of bright probes, and means that the
measurements from affected probes are correlated. A.
Harrison and colleagues have shown that this blurring is
causing misleading intensities being reported for some
probes. The discovery of such technical defects is consist-
ent with an earlier work (24).

MODELING EACH STEP IN A MICROARRAY
EXPERIMENT

C.J.B.’s group aims to contribute to the ultimate develop-
ment of practical algorithms for inferring absolute target
concentrations based on Langmuir adsorption theory
applied to microarrays. H.B. provides a comprehensive
treatment of the physico-chemical processes involved in
the hybridization step, including the effects of non-specific
binding, bulk hybridization and probe and target molecule
folding (25).
H.B. and colleagues aim at disentangling the complex

nature of microarray hybridization process by addressing
selected effects in separate studies to understand their
nature, to judge the effect size and finally to develop
models and algorithms that allow suitable calibration of
the raw data. Particularly, they studied the global relation
between the levels of non-specific background and specific
hybridization (26), the effect of washing, described below,
(6), the effect of target depletion due to surface hybridiza-
tion (27), the effect of probe sequence and of special
sequence motifs (28–30) and of RNA-quality (31) using
physical models of surface hybridization. For example, it
was found that incremental changes in non-specific back-
ground entail opposite sign incremental changes in the
effective specific-binding constant (26). This effect, which
they refer to as the ‘up-down’ effect, results from the
subtle interplay of competing interactions between the
probes and specific and non-specific targets at the chip
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surface and in bulk solution. Existing heuristic normaliza-
tion techniques that do not exclude absent probes, level
intensities instead of expression values and/or use low
variance criteria for identifying invariant sets of probes
lead to biased results in expression analysis. It was also
found that the extent of the up-down effect is modified if
RNA targets are replaced by DNA targets, in that micro-
array sensitivity and specificity are improved via a
decrease in the non-specific background, which effectively
amplifies specific binding.
Developing a practical algorithm to estimate specific

target abundances based on Langmuir-like models and
using only information available in a given biological
experiment is a challenging problem. Two promising
developments in this direction have been the ‘Hook
Curve’ formalism (32,33) and the Inverse Langmuir
Method (4). The ‘Hook Curve’ (Figure 1) combines hybrid-
ization data of pairs of probes that bind the same transcript
with different affinities such as the PM/MM probe pairs on
microarrays. The plot of the log–intensity difference versus
their logged mean intensity provides curves of characteris-
tic hook-like shape, the dimensions of which enable param-
eterization of the Langmuir isotherm in a chip- and
probe-specific fashion (32,33). In addition to practical ex-
pression analysis, this approach allows distinguishing
between different hybridization mechanisms such as local
and global depletion of targets in supernatant solution (27)
and to identify different effects causing chip-to-chip inten-
sity variance such as scanner settings or non-specific back-
ground levels (see Figure 1a and b). Recently the hook
approach was applied to judge RNA-quality using micro-
array data (31). Here, probe pairs with different distances
to the 30-end of the transcripts are used for mutual
referencing. It was demonstrated that decomposition of
the probe signals into contributions due to specific and
non-specific hybridization and consideration of saturation
behavior might be essential for proper quality control of
the RNA used for hybridization (see Figure 1c).

The importance of the washing step in the
hybridization protocol

Washing is among the factors that potentially distort ex-
pression measures (34,35). Experiments on microarrays
were conducted using altered protocols for washing,
scanning and staining (6). It turns out that the effect of
washing scales inversely with the binding constant of
targets and gradually removes especially weakly bound
non-specific targets. The intensity decays obtained as a
function of the number of washing cycles are compatible
with a heterogeneous energy landscape of bound tran-
scripts. Interestingly, the study also reports indications
that fluorescent markers attached to the bound targets
drastically increase their washing yield compared with
non-labeled ones. This result possibly explains partly
contradictory findings on the effect of washing of
specific targets, which presumably are caused by different
labeling techniques (6,34,36).
The importance of washing, in conjunction with

Langmuir adsorption theory, has been combined in a
physico-chemical model (37), which incorporates both a

broad sweep of the chemical reactions occurring during
the hybridization step and the dissociation effects of the
post-hybridization washing step (see Table 1). This model
aims to predict the observed coverage fraction 0� y(x)� 1
of fluorescently labeled target-bound molecules on each
probe feature of a microarray as a function of the molar
concentration x of specific target in the hybridizing solu-
tion. Assuming the depletion of target molecules from the
supernatant solution due to hybridization to be negligible,
the coverage fraction is found to take the form of the
hyperbolic response function

yðxÞ ¼ a+b
Kx

1+Kx
ð1Þ

where the three parameters a, b and K are functions of
chemical reaction rates and the molar concentrations of
the various non-specific target species present in the hy-
bridization solution. The model has been extended to in-
corporate target depletion (27). The theoretical prediction
for this local depletion effect was verified experimentally
using binding isotherms of PM and MM probes. Thereby
the weaker MM-probes reveal a downwards-curved
‘delayed’ binding isotherm compared with that of the
competing PM probes. Such downwards-curved isotherms
were observed also in independent studies that presumably
reflect competitive depletion effects on the respective
microarrays (38).

A typical behavior predicted by the model for a PM/
MM pair of features on an Affymetrix microarray is
illustrated in Figure 2, together with an example of a fit
to data from the Affymetrix U95 Latin Square spike-in
experiment (39). The parameter a corresponds to the
signal due to non-specific hybridization at a specific
target concentration of zero. Competitive hybridization
entails that contribution of non-specific signal decreases
asymptotically to zero as the specific target concentration
x!1. The hybridization model predicts that the asymp-
totic coverage fraction of bound targets, a+b, is y(1)=1
before washing. The asymptote is reduced considerably as
a result of bound targets being removed during washing,
even though the washing process is ostensibly intended to
remove only unbound targets (6). As the MM probes have
a weaker binding affinity, the asymptote of the MM
response curve is always below that of the PM signal.
The parameter K is an effective equilibrium constant,
and is in general larger for a PM probe than for its
partner MM probe. Although the three parameters in
Eq. (1) are in principle determined from physical param-
eters including chemical equilibrium constants and the
composition of the non-specific background, in practice
this information is not known and must be inferred
from the available information such as the probe se-
quences and the observed distribution of intensities over
the entire microarray.

POLYMER PHYSICS OF DNA ARRAYS

The oligonucleotides in DNA microarrays are short
polyelectrolyte chains terminally grafted to a surface.
Their hybridization isotherms and kinetics reflect two
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regimes: (i) sparsely grafted chains when chain–surface
interactions dominate and (ii) densely grafted brushes
when chain–chain interactions are dominant.
A. Halperin, A.B. and co-workers used polymer science
insights to develop modifications of the Langmuir hybrid-
ization isotherms to allow for electrostatic and excluded
volume interactions as well as their dependence on
grafting density, ionic strength and the length of the
probes, targets and spacers.
DNA microarrays are polymeric systems, and polymer

physics thus affords insights concerning modeling their
hybridization behavior. Exploiting polymer physics direc-
tion is tractable for oligonucleotide chips where the probe

Figure 1. Schematic illustration of the hook plot that presents the log-intensity difference of probe pairs interrogating the same transcript (such as
PM and MM probes) taken from one array hybridization as a function of their mean log-intensity (panel a). The probes in the increasing part, the
maximum and the decaying part are dominated by non-specific (N), specific (S) hybridization and by asymptotic saturation (as), respectively. The
horizontal position of the hook plot, its width and height vary in a characteristic fashion owing to different experimental effects (panel b, see arrows):
optical scaling of the intensity owing to changes of the scanner settings or the labeling, shift the whole hook curve in horizontal direction; alterations
of the non-specific background level owing to changes of the amount of RNA and/or of its composition, alter the width of the curve and shift only
the increasing part in horizontal direction; modifications of the MM design and/or of the hybridization conditions (i.e. the ionic strength), change the
vertical dimensions of the hook and, finally, alterations of the post-hybridization washing efficiency mainly affect the height and width of the hook
curve. The plots in the right part of panel b compare pairs of hook curves taken from an experimental series referring to the effects schematically
illustrated in the left part. The thick curves are experimental data and the thin curves are theoretical hook curves calculated according to the
competitive Langmuir binding model. Panel c shows the so-called degradation ‘hooks’: The thick data-curves are calculated using probe intensity
data of two different arrays hybridized with RNA of different quality as plots of the smoothed log-30/50-intensity ratio-versus-mean where the 30 and
50 values are mean log-intensity values using the three probes from each probe set nearest the 30 and 50 ends of the respective transcript, respectively.
Good-quality RNA (orange curve, RIN is the RNA Integrity Number) shows a lower maximum than bad-quality RNA (blue curve), indicating a
decreased 30/50-intensity gradient of probes along the transcript. The log-intensity difference vanishes for predominantly non-specifically hybridized
probes that are insensitive for RNA quality. Also for saturated probes, the obtained signal difference decreases [see (31) for details].

Table 1. Reactions associated with hybridization of nucleic acids

strands

In bulk solution Reaction

Non-specific hybridization S+N $ S.N
Specific target folding S $ S’

At the microarray surface
Specific hybridization P+S $ P.S
Non-specific hybridization P+N $ P.N
Probe folding P $ P’

During the washing phase
Dissociation of specific duplexes P.S $ P (+ S)
Dissociation of non-specific duplexes P.N $ P (+N)
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chains are terminally anchored to the surface via covalent
bonds. Exploiting polymer physics direction is tractable
for oligonucleotide chips where the probe chains are
terminally anchored to the surface via covalent bonds.
The structure of microarrays of this format is well
defined, independent of time and of the probe sequence,
and thus amenable to theoretical modeling. The polymeric
approach extends the theory of terminally anchored
chains, as developed for inert flexible synthetic polymers,
to allow for hybridization reactions and the associated
changes in the charge and rigidity. It distinguishes
between two regimes. Sparsely grafted chains in the
‘mushroom’ regime do not interact with each other. In
this case, the hybridization behavior is affected by the
impenetrability of the wall and its effect on the number
of accessible chain configurations. In the ‘brush’ regime,
densely grafted chains crowd each other and stretch out to
lower the repulsive interactions between them. In turn, the
steric and electrostatic interactions vary with the degree of
hybridization. The main outcome of the theory, as de-
veloped by Halperin et al. (40), are hybridization iso-
therms relating the fraction of hybridized probes y to
the target concentration ct, temperature T and the bulk
equilibrium constant Kpt(T) for various situations
characterized by different surface interaction free energy
densities � int(�), Eq. (2)

y
1� y

¼ ctKpt Tð Þ exp �
1

RT

@�int
@y

� �
ð2Þ

The precise form of � int(y) differs with the length of the
spacer chains (41), the relative length of probes and targets
(42), the grafting density of the probes density and the
ionic strength (43). This Langmuir-type isotherm serves
as a basis for the description of competitive hybridization
at the surface and in the bulk (43,44). The hybridization
isotherms predicted by the theory were confirmed for
short synthetic DNA targets (40-mer) by Fiche et al.
using Surface Plamson Resonance imaging apparatus
with precise temperature control in the 15�C–85�C range
(45). The experiments using dedicated microarrays in
controlled conditions, yielded equilibrium DNA melting
curve for several synthetic short DNA duplexes as a
function of ionic strength (46, Figure 3). Furthermore,
for the same type of duplexes, the precise determination
of melting temperatures enabled exploration of denatur-
ant effects (47) as well as the detection of single point
mutations from homozygous and heterozygous samples
(48) and for low abundance mutations (49).

DNA ARRAYS FROM FIRST PRINCIPLES

Often empirical and statistical methods are used to make
sense of microarray data, but up to now microarrays have
resisted interpretation from first principles. Generally this
is attributed to surface effects that substantially change
the hybridization properties of DNA from its well-known
bulk properties. To test this hypothesis, the A. Ott group

Figure 2. Typical behavior of the coverage function y(x) for a PM/MM pair of probes plotted on linear (upper) and log (lower) scales before (left)
and after (middle) post-hybridization washing is accounted for. The coverage fraction y is the fraction of probe molecules on a feature that have
formed probe–target duplexes; x is the concentration of target RNA in the hybridization solution specific to the PM probe sequence. The right-hand
plots are measured fluorescence intensities in arbitrary units for one of the probes of the Affymetrix U95 Latin Square spike-in experiment, together
with fits of these data to the response function Eq. (1). The PM responses are shown in black and the MM in red.
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uses microarrays made in the lab to investigate the detec-
tion of single nucleotide mismatches.

The arrays in the A.O.’s lab are synthesized from den-
drimer surface linkers using optically directed
deprotection (50). Experimental results from a single
target-sequence hybridizing to the complete set of single
nucleotide polymorphisms on the microarray can be ac-
curately described using a molecular zipper model with
next-neighbor parameters from bulk (51). The results
can directly be mapped (52) to the well-known empirical
‘Position-Dependent Nearest-Neighbor Model’ (53).
Observations of substantial deviations from the
Langmuir isotherm likely result from limitations in syn-
thesis fidelity that come with the optical deprotection
chemistry. Erroneous sequences on the array also need
to be taken into account for theoretical interpretation,
as their contribution is not negligible.

In most real applications, the length-distribution of the
oligonucleotide targets, produced from biological material,
is poorly controlled. The length of the hybridizing strands
in solution is crucial to the DNA-detection fidelity because
the number of false conformations that may bind in com-
petition grows about exponentially with the length of the
hybridizing strands.

To get a better insight into the hybridization process of
two strands of unequal length, Trapp et al. considered a
DNA microarray with additional bases in the probe
sequence motifs (54). The target solution contains only
one target species of a specific length. This is to avoid
target–target interactions and competitive effects. On hy-
bridization, a bulged loop (referred to as loop in the fol-
lowing) occurs in the probe (see Figure 4). Figure 5 shows
the experimental microarray fluorescence intensity as a

function of loop length and position for a hybridization
temperature of 317K. Strongest and weakest fluorescence
intensities are normalized to 1 and 0, respectively. The
number of additional bases varies from 1 to 13 bases re-
sulting in loops of the same length. The additional loop
bases are inserted at 20 different positions along the probe
motif. Thus, 260 different probes are considered.
In Figure 6, the experimental data are averaged over

loop length and loop position. This is to get a better
overview of the fluorescence intensity dependence on
loop length and loop position. The stability of the
duplexes with a bulged loop decreases monotonically
with increasing length of the inserted loop sequence. The
fluorescence intensity of the sequence with the largest loop
of 13 bases is reduced to 60% of the PM fluorescence
intensity. Moreover, the stability of a duplex also
depends on the position where the additional loop
sequence is inserted into the probe motif, with the
duplex stability highest for bulged loops in the middle or
end positions. The fluorescence intensity variation as a
function of loop position along the duplex is weak (only
10%) when compared with the fluorescence intensity as a
function of loop length. To reproduce our experimental
results, we use a molecular zipper model at thermal

Figure 3. Collapsing master curves for all salt concentrations. The
probes are grafted by self-assembling of thiols. Enthalpy �H0 and
entropy �S0 are extracted from linear fits [adopted from (46)].

Figure 5. Signal intensity as a function of loop length and position,
hybridization temperature 317K.

Figure 6. Averaged signal intensity over loop length (top) and loop
position (bottom).Figure 4. Bulging loop on a probe.
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equilibrium. In the zipper model introduced before
(51,52), duplex opening was only possible from both
ends of the duplex because of the high stacking barrier
in the middle of the strand. However, duplex opening at
the loop position must be permitted so as to account for
the loops being studied. Figure 7 shows the comparison
between the experimental data and the model. The upper
part of the figure shows the hybridization fluorescence in-
tensity as a function of loop length, and the lower part
shows the fluorescence intensity dependence on loop
position. Taking into account unavoidable sequence
defects, the model can reproduce our data well. Details
can be found in (54).
In conclusion, in simple situations, microarray data can

be understood from first principles. It is sometimes not the
presence of the microarray surface that changes the
properties of DNA molecular recognition, rather it
seems that it is the physics of DNA itself that can be the
limiting factor to the detection process of DNA micro-
arrays. A duplex formed out of two strands of unequal
length is stable and contributes significantly to the fluor-
escence intensity of a DNA microarray. This makes the
hybridization process of DNA a complex matter. In prac-
tical terms, bulged loops occurring in DNA microarray
experiments need to be taken into account for a deeper
understanding of microarray data.

PHYSICS OF MISMATCHES

What do we know about the hybridization parameters of
mismatched probe–target duplexes? E.C. and J.H. investi-
gate whether the parameters developed earlier for bulk
solution hybridizations (i.e. the Nearest Neighbor
Model) are applicable for mismatched duplexes on the
microarray surface.
A powerful algorithm allowing a full computation of

hybridized fraction of target sequence in solution at the
full transcriptome scales was recently introduced (55). The
algorithm shows that at typical concentrations and tem-
peratures used in biological experiments, many RNA frag-
ments are almost fully hybridized, therefore effectively
depleted from the solution. This provides new criteria
for probe selections in microarrays. E.C. and J.H. group
have also been developing algorithms to interpret micro-
array signal intensities from physico-chemical principles
(55,56). Recently they designed a series of microarray

experiments to access nearest-neighbor hybridization par-
ameters from microarray data (57). They show an
excellent predictability of the mismatched duplex signal
intensity-based thermodynamic models over four orders
of magnitude in the measured fluorescence scale (i.e. the
full dynamical range of the system), see Figure 8. This
figure shows the experiment with a single target
sequence at concentration c (=100 pM), hybridizing to
a custom microarray containing a PM spot and spots
with one or two MMs. Several thousands of mismatching
probes were used in the experiments on different target
sequences, so that the thermodynamic parameters could
be obtained with high accuracy. The intensity of the
mismatching probes decreases as predicted by the
following equation:

I ¼ Ac exp �
��G

RT

� �
ð3Þ

Having obtained good estimates of the hybridization
parameters, one can think about applications to molecular
diagnostics (58). That article considers mixtures of
two DNA sequences t (the wild type) and t’ (the mutant)
differing by a single nucleotide with respect to t. It shows
that by using appropriately designed arrays and DNA
hybridization thermodynamic parameters, it is possible
to accurately quantify the presence of t’ even at low
relative concentrations. This paves the way to
applications in virology or cancer where somatic
mutations (often occurring in low amount) are
known to have a crucial influence on the evolution of a
disease.

Figure 8. Comparison of experimental data (filled symbols) and
expected isotherm (dashed line). In this plot, I is the measured fluores-
cence intensities from the microarray spots, while ��G is the hybrid-
ization free energy as obtained from the nearest-neighbor model
measured with respect to the PM free energy, for which ��G=0.
The experiments are obtained from an Agilent custom array
[for more details see (57)].Figure 7. Comparison between the experimental data and the model.
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OPTIMIZING SUBOPTIMAL PROBES

Common rules for design of selective probes suggest
avoiding complementary stretches exceeding 25% of the
probe total length. C.G. put these rules to test and dis-
covered them to be not conservative enough.

The group of C.G. attempts to improve the selectivity of
microarray probes. A common guideline implemented in
software for the construction of DNA microarrays has
been that avoiding complementary stretches of more
than 15 nucleotides in a 50- or 60-mer probe, or 75% of
the probe in total, will eliminate sequence-specific cross-
hybridization reactions (e.g. 59). However, solution
simulation of the hybridization behavior of pairs of oligo-
nucleotide probes and their targets suggests that even
a complementary stretch of sequence 9 nucleotides in
length has the potential to give rise to specific cross-
hybridization. Competition between the intended binding
partner and thermodynamically nearest suboptimal
targets designed by a common software has been
examined (60), but the original 15-mer design criterion
(61) remains widely used either as an initial sequence
screen or as the sole predictor of cross-hybridization (62)
and is largely unexamined in isolation from other factors,
despite improvements in our facility with printing and
handling microarrays in the intervening decade. To
explore the effect of minimal partial matches in a micro-
array context, C.G. and colleagues designed a set of
binding partners to a 50-mer oligonucleotide probe.
Each target was designed to be anticomplementary to
the probe, with the exception of a complementary
stretch from 6 to 21 nucleotides in length. Solution
melting experiments with these oligonucleotides found
partial duplexes stable in the prevailing range of hybrid-
ization temperatures used in microarray experiments.
Such duplexes formed when only 12 bp of complementary
sequence were present. Surface hybridization experiments
have confirmed that a signal indistinguishable from a
full-strength signal arising from a low copy number PM
can be obtained from sequences that form only a partial
duplex (63).

A representative PM oligonucleotide pair with balanced
GC content to represent a microarray probe and target
were selected. Several permutations of the target were
created such that a single continuous stretch of sequence
complementary to probe was preserved, while ensuring
that the sequence flanking the complementary region did
not permit extension of the partial duplex across a
mismatch or mismatches. This resulted in a series of par-
tially complementary pairs derived from the original PM
pair. Pairs with partially complementary stretches of 6, 9,
12, 15, 18 and 21 nucleotides were investigated. For each,
a version of the sequence was created with the complemen-
tary stretch near the center of the oligo pair (central), and
a second with the complementary stretch near one of the
ends of the pair (terminal). Figure 9 shows the signal due
to formation of duplexes between partially complemen-
tary probe and target pairs on the microarray surface.
Figure 9A shows that specific signal for the target in iso-
lation exceeds background signal when a complementary
12 nucleotides stretch is present. Figure 9B measures

signal owing to the same partially complementary target
in the presence of an equimolar concentration of un-
labeled PM target. Here, the signal does not exceed back-
ground until an 18 nucleotides complementary stretch is
present. In a microarray experiment, it is not known at the
start whether a PM for the target is present, and in the
absence of a PM competitor, a specific partial match may
give rise to signal that suggests the presence of a PM in
low concentration. Microarray and other molecular
capture strategies that rely on a 15 nucleotides lower
bound to completely eliminate specific cross-hybridization
may not be sufficiently conservative.

PSEUDO-LANGMUIR AND OTHER
HYBRIDIZATION REGIMES

Hybridization on the microarray surface is more
complicated than simple chemisorption, as one might
expect. The R.L. group identified distinct hybridization
behaviors that depend on the salt concentration and on
how many probes are grafted per unit surface area.
R.L. and coworkers are focusing on understanding the

molecular organization and interactions that take place on
DNA-modifed surfaces, and how these influence hybrid-
ization performance in technologies such as DNA micro-
arrays. Recently, this group has investigated a model
oligonucleotide system in which 20-mer probes were
hybridized with 18-mer targets as a function of probe
coverage S0 and solution ionic strength (salt concentra-
tion) CB (64,65). These studies sought to quantify co-
operative influence of these two ‘electrostatic’ variables
on hybridization, with S0 determining surface charge con-
centration and thus repulsion between the surface layer
and incoming targets, and CB modulating this repulsion
through electrostatic screening. Electrochemical methods
were used to precisely monitor extents of hybridization to
electroactively labeled target molecules. Hybridization
yields were quantified once a stable signal was reached,
which was presumed reflective of equilibrium.
The principal conclusions of these studies can be

summarized by a diagram of hybridization behaviors,
Figure 10. At highest coverage and lowest ionic strength,
hybridization signals were too weak for detection owing to
dominance of electrostatic repulsions between the probe
layer and the target oligonucleotides. Due to the weak
signals, for these operationally ‘non-hybridizing’ (NH)
conditions, the dependence of hybridization on S0 and
CB could not be established. An increase in ionic
strength, by addition of more salt, from the NH regime
led to detectable hybridization in the ‘electrostatically sup-
pressed’ (SH-E) regime. SH-E behavior was characterized
by sensitivity of hybridization yields to both CB and S0,
where this sensitivity could be modeled as primarily re-
flecting electrostatics (40,43,64–66). Further increases in
ionic strength, provided probe coverage was sufficiently
high, led to ‘packing constraint-suppressed’ (SH-P) condi-
tions. In this regime, increase in probe coverage sup-
pressed hybridization much more severely than expected
on basis of pure electrostatics. This strong suppression
was attributed to additional penalties derived from
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packing constraints. In comparison, increase in ionic
strength from the SH-E regime but at lower probe
coverage led to ‘pseudo-Langmuir’ (PL) behavior. In the
unusual PL regime, changes in probe coverage S0 only
minimally impacted hybridization yields; in other words,
the hybridization probability for a given probe was nearly
independent on proximity to neighboring probes. Such
independence on binding site coverage would be
expected for true Langmuir conditions (67); however, in
these experiments, and indeed in microarray applications,
probe molecular dimensions are too large compared with
probe–probe separation for interactions to be absent.
Rather, independence of hybridization signals with
regard to S0 suggests that interactions between probes
are, within the PL regime, insensitive to their spacing.
A tentative explanation for this observation may derive
from probe conformational flexibility that maintains

energetics of probe–probe interactions, and hence their
impact on hybridization, approximately constant over
this coverage range. Lastly, at sufficiently sparse
coverage, where average intermolecular separations far
exceed the length of the probes so that interactions
among them are largely prevented, true Langmuir
behavior is expected, though was not explored in the
studies.

SURFACE HETEROGENEITY

B.M.P.’s most recent work centers on the problem of how
and where attachments to the underlying microarray
surface can be made (68). For DNA mounted on
surfaces for microarrays, microbeads and nanoparticles,
the nature of the random attachment of oligonucleotide
probes to an amorphous surface substrate gives rise to a
locally inhomogeneous density of probes.

The fluctuations of the probe surface density are
inherent to all common surface or bead platforms, regard-
less if they exploit either an attachment of pre-synthesized
probes or probes synthesized in situ on the surface. The
surface density affects the local electrostatics that have
been long appreciated to effect the surface binding free
energies and so hybridization efficiencies (69). B.M.P.
and colleagues (68) recently demonstrated the crucial
role of the probe surface density fluctuations in perform-
ance of DNA arrays.

To account for the fluctuations of the probe surface
density, Vainrub and B.M.P. start with a DNA array hy-
bridization isotherm that accounts for the electrostatic po-
larization field near the surface (66). The isotherm
describes the electrostatic repulsion between the DNA
target and probe array arising owing to the large
negative charge of DNA phosphate backbone in terms
of a homogeneous probe surface density, i.e. in the

Figure 9. Surface-attached 50-mer probe response to designed anticomplementary 50-mer targets, bearing a continuous complementary stretch of
varying length (6, 9, 12, 15, 18, or 21 nucleotides). The placement of the complementary stretch is central (diamonds) or terminal (squares). Dotted
line indicates the average background intensity across the experiment; solid line indicates the signal intensity due to hybridization of a perfectly
matched 50-mer target. (A) target alone and (B) in presence of an equal concentration of unlabeled PM.

Figure 10. A map of surface hybridization regimes as a function of
probe coverage S0 and salt concentration CB, and as reported in (65).
See text for details.
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mean-field approximation. It assumes that the repulsion
energy is according to the following equation:

Erep ¼ wNPZTðZP+yZTÞ ð4Þ

Here NP is the surface density of probes, ZP and ZT are
the lengths of probe and target expressed in a number of
bases, y is the extent of hybridization (0� y� 1, and w is
the electrostatic interaction parameter that depends on the
NaCl concentration in the hybridization solution. This
leads to the hybridization isotherm:

C0 ¼
y

1� y
exp

�H0 � T�S0

RT

� �
exp

Erep

RT

� �
ð5Þ

Here C0 is the concentration of assayed DNA targets,
DH0 and DS0 are the enthalpy and entropy of double helix
formation in solution.

They then modeled the density fluctuations of a dis-
ordered 2D surface as a simple random Poisson distribu-
tion that corresponds to a very high temperature
Boltzmann distribution, relevant to how the attachment
sites were frozen out of the cooling glass substrate.

On a regular 2D lattice, each probe can have from
m=0 to 6 neighboring probes. For random probe attach-
ment, the probability pm that the probe has m neighbors is
as follows:

pm ¼
6!pmð1� pÞ6�m

m!ð6�mÞ!
ð6Þ

Here p= sNp is the probability for a hexagonal cell to
be occupied by the probe. Now the local surface density
Nm fluctuates depending on the number m of the probes in
six surrounding cells. Incorporating this distribution, they
derived the corresponding array hybridization isotherm
that includes a counter-ion screened electrostatic repulsion
between the assayed DNA and a random probe array on
the surface. They write their model in a form convenient
to find the melting curve ym= ym(T):

T ¼
�H0+wNmZPðZP+ymZTÞ

�S0+Rln½C0ð1� ymÞ=ym�
ð7Þ

This describes the hybridization yield ym to the probes
that have m neighboring probes. Hybridization to the
total array is then given by summing over the Poisson
distribution of probe site possibilities:

y ¼
X6
m¼0

pmym ¼
X6
m¼0

6!pmð1� pÞ6�m

m!ð6�mÞ!
ym ð8Þ

The calculated melting curves for short synthetic 40-
and 19-mer targets were found to be in excellent agree-
ment with published experimental results for arrays with
both pre-synthesized and in situ synthesized oligonucleo-
tide probes (Figure 11). The approach developed allows
one to accurately predict the melting curves of DNA
arrays using only the known sequence dependent hybrid-
ization enthalpy and entropy from solution and the ex-
perimental macroscopic surface density of probes.

SURFACE CHEMICAL IMAGING OF INDIVIDUAL
MICROARRAY SPOTS

What is the true composition of the microarray surface and
oligonucleotide spots? L.J.G. and D.W. Grainger bombard
the microarray surface with positive bismuth ions and record
mass spectra of the ions ricocheted from the microarray to
determine actual species of molecules on the surface.
Fabrication of the nucleic acid microarray itself con-

tinues to present challenges for improving the reproduci-
bility, sensitivity and quantification. Work by L.J.G. and
D.W. Grainger has focused on direct analysis of individ-
ual printed DNA microarray spots on both model and
commercial arraying surfaces using a variety of analytical
techniques including imaging comparisons from
time-of-flight secondary ion mass spectrometry
(ToF-SIMS), providing chemical details, and epifluores-
cence microscopy providing spatial density details. The
microarray printing process commonly involves spotting
nanoliter amounts of DNA solution on glass substrates
coated to bind nucleic acids. These microarray spots are
the basis for the microarray assay ‘answer’ and import-
antly can have many significant variations arising from
several factors affecting assay answer. These include
DNA probe chain length substrate surface chemistry
printing solutions and washing (all mentioned above), as
well as printer type and evaporation processes during spot
drying. Imaging ToF-SIMS yields a mass spectrum from
molecules at the microarray spot surface with micrometer
to sub-micrometer lateral resolution. This information can
be correlated to other imaging modes (e.g. high resolution
fluorescence) to provide spot distribution and density in-
formation directly related to how spots capture target.
Figure 12 shows examples of printed single spot hetero-

geneity as followed by the phosphate ion peak in
ToF-SIMS for spots with different concentrations of
DNA. Phosphate peaks have been shown to mirror DNA
base presence in ToF-SIMS imaging of DNA microarrays
(70), and exhibit strong ToF-SIMS signal intensity for
better visual contrast in images. Brighter regions in the
images in Figure 12 indicate higher DNA concentration,
and exhibit a wide variability in the types of heterogeneity
within the spots, reflecting differences in DNA density and
distribution. Furthermore, no heterogeneity was similar
across the three different printed DNA concentrations.
Printed spots with higher DNA surface densities show

lower target hybridization efficiencies (70). Hence, vari-
ability in DNA probe surface densities within the spots
likely results in variable amounts of target capture at dif-
ferent areas in the spots, and total target capture within
any given spot. More controlled experiments using a
model self-assembled DNA monolayers on gold showed
that target hybridization efficiency changes with surface
probe density (71). Variation in printed DNA density
within spots seen with imaging ToF-SIMS and high-
resolution fluorescence analysis can be easily missed
by lower resolution scanners often used to analyse
commercial microarray results. As a result, assay data
from spots that lack consistency in probe density reflect
highly variable target capture efficiency and variable
reliability.
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DNA-METER: DIRECTLY CALIBRATED PROBES

Every probe on the microarray surface is a sensor for its
target. ‘DNA-meter’ is an approach that renders every
microarray probe as an individual analytical device,
whose characteristics are experimentally determined
during a calibration process. The multitude of probes is
calibrated simultaneously in a series of several
hybridizations.
Since 2000, the goal of the A.P.–P.A.N.–D.T. group is

to bring microarray technology from a semi-quantitative
technique into the realm of analytical chemistry and mo-
lecular diagnostics. The key issues to be addressed are
probe response function and selectivity. As defined in

the ‘Introduction’ section of this article, the probe
response function refers to the dependence of probe
signal intensity on concentration of target sequences.
Probe selectivity refers to the extent of cross-reaction
between targets and non-target sequences. To address
the first issue, an ability to accurately predict the behaviors
of microarray probes is required, which has been a
problem since the beginning of the microarray technology
(1990s) (72). As research progressed, it became evident
that neither heuristic approaches (61,73–78) nor
solution-based melting thermodynamics (35,53,79–84)
could accurately predict probe behavior on the microarray
surface (1,83,85,86). The selectivity issue is an open-ended
problem because the number of potential targets is
extremely large and theoretical/experimental evaluation
of such target space seems intractable.

The unpredictable probe response function problem
was circumvented by directly calibrating microarray
probes using a dilution series of a sample of biologically
relevant complexity and concentration [details of the
method are in (Pozhitkov et al.; submitted for publica-
tion)]. The new approach has been already successfully
applied (87). Briefly, a set of samples representing se-
quences obtained from gene expression or a genomic
study is mixed together into one pooled sample; a
dilution series is prepared from this sample and several
microarrays are hybridized. To decrease probe variability,
the microarray contains probes in 10-fold replicates
because a single replicate is too noisy. On hybridization
to the dilution series, the probes response is recorded as a
calibration curve. For instance, 25-mer probes on the
Agilent microarray respond with a power curve, i.e.
Freundlich isotherm y=axb (Figure 13, panel A). The
characteristics of the calibration curve, such as parameter
b and goodness of fit R2, enable the researcher to discard
probes that are non-responsive. For example, a low value
for the parameter b would cause a high error in
back-calculating target concentrations. Detailed analysis
of the curves as well as curve selection guidelines based
on expected error is presented in (87). After appropriate
probes are selected, calculation of relative target concen-
trations is possible. Figure 13, panel B shows back-
calculation of the relative concentrations. Apparently
good resolution of concentrations is attainable.

The direct calibration of probes makes microarray
similar to a regular analytical instrument, which has a
known (recorded) response function. Through the
response function, one translates signal intensities into
concentrations, estimates errors and accounts for the
probe non-linearity, which is essential for further biolo-
gical interpretation.

NON-HYBRIDIZATION EFFECTS ON MICROARRAY
AND NGS SIGNALS

A calibration and an understanding of quantitative signals
are prerequisites for the analysis of large-scale profiling
data to find biologically relevant patterns. To this end,
the research group of D.P.K. pursues the identification
and removal of signal distortions in measurements of

Figure 11. Theoretical and experimental melting curves on glass.
Experiment: PM (circles) and single MM (triangles) 19-mer oligo-
nucleotides synthesized on glass surface. Theory: fluctuating surface
coverage (solid lines) and homogeneous (dashed lines) density of
probes.

Figure 12. ToF-SIMS images of the PO
�

2
ion in single printed DNA

spots show large variability of DNA concentration in and across the
microarray spots. Spots are printed from 20 and 40 mM DNA concen-
tration drops (from left to right) with 100% of the DNA tagged with
Cy3. Image size (400� 400mm). The Cy3 fluorescence images of the
same spots are shown for comparison.
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gene activities from multiple platforms, i.e. microarrays
and NGS.

It is now increasingly clear that measurements of target
abundances by NGS or microarrays are also affected by
other sources of signal variation. These need to be under-
stood both in attempts to improve and model the meas-
urement process itself, and also for getting a more
meaningful and reliable quantification readout. This is a
prerequisite for sensitive de novo expression pattern dis-
covery, and advanced profiling of alternative gene tran-
scripts, which requires truly quantitative signals for
individual exons and exon–exon junctions.

D.P.K. and colleagues determined that one of the major
sources of signal variation is sample processing. Most
protocols for quantitative profiling of targets by NGS or
microarrays include one or several steps for target selec-
tion, target amplification, transcription, fragmentation
and labeling. These are critical factors substantially
contributing to inter-laboratory variation in both
RNA-Seq and microarray results. The limited processivity
of enzymes is known to create 30- or 50-biases for
30-anchored and random primed transcription, respect-
ively (88). Non-uniform fragmentation contributes consid-
erably to signal variation along the transcript. For both
microarrays and RNA-Seq, such variation has been
observed to be about two orders of magnitude. Both
qualitative and quantitative profiling methods are
affected by protocol choices. The reverse-transcription
step has, for example, recently been identified as being
responsible for a multitude of false-positive
negative-strand signals—this suggests that direct hybrid-
ization of chemically or end-labeled messenger RNA to
microarrays, and future label-free NGS protocols should
considerably improve detection and quantification
accuracy (89).

The combined effects of these confounding factors can
be studied with help of large-scale calibration experiments,
with the aim of improving our understanding and
modeling for the subsequent extraction of the most mean-
ingful signal. For such calibration experiments, synthetic

spike-ins are one valuable option (39) although it is not
easy to ensure that synthetic spike-ins are representative of
realistic biological samples (90).
Interestingly, there are biological situations that provide

another form of calibration experiment. For instance,
while aneuploidy is badly tolerated in humans and many
other higher organisms, leading to death or serious disease
like Down’s syndrome (chromosome 21 trisomy), plants
are surprisingly tolerant of additional chromosome copies.
It has recently been shown that genes on these additional
chromosomes exhibit a direct dosage response with only a
small percentage of genes forming an exception where
dosage compensation or other regulatory mechanisms
interfere (91). This can be seen in a clear average trend
that emerges when plotting the differences between a
genotype with three copies of chromosome 5 compared
with the normal wild-type control as a function of the
gene expression level (see Figure 14). The magenta lines
represent this trend average and variation for genes on the
triplicate chromosome 5. The orange lines show the zero
average and variation of genes on the other chromosomes
present only in duplicate. In an ideal system, the magenta
line should start at zero (1.5� 0=0) and rise to a
constant level of log2(1.5), until perhaps saturation sets
in. The strongly non-linear response observed, however,
cannot be explained with our current models, and
provides an opportunity for testing further modeling
advances. It is worth pointing out that while RNA-Seq
data do not exhibit a similar strongly varying trend at
high expression levels, they show higher variation (10)
and stronger distortions for lower expression levels (data
not shown).
In general, both the average differential signal response

and also the average signal variation turn out to be a
function of the expression level. While both vary, they
vary differently, leading to an intensity-dependent bias
in differential expression detection. This means that func-
tional groups with genes of non-uniformly distributed ex-
pression levels will have different likelihoods of being
identified as differentially expressed. Transcription

Figure 13. Calibration curve for a probe (panel A); grey lines represent individual probe replicates, black line—averages. Histogram of concentra-
tions determined from signal intensities and calibrated probes (panel B); open circles represent true concentrations.
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factors, for example, are enriched in genes of low expres-
sion levels. A reduced sensitivity to differential expression
at low expression levels will thus lead to an underestima-
tion of differentially expressed transcription factors. This
particularly affects studies where hundreds to thousands
of genes change, and scientists seek under- or over-
represented functional groups in these genes to suggest
biological processes involved.
An ongoing development of our understanding of the

whole measurement process will thus support the im-
provement and validation of advanced hybridization
models, while also leading to quantitative readouts of
reduced bias, which are critical for probing complex bio-
logical systems. Improved models for the interpretation of
arbitrary probes (92) should also allow the application of
advanced high-density high-resolution microarrays that
can take advantage of probes targeting the most inform-
ative sequence regions rather than designing arrays with a
limited number of probes selected for similar thermo-
dynamic properties.

SUMMARY

Through a dynamic interplay between experimental and
theoretical studies, we are developing an increasingly
sophisticated understanding of the nuances of hybridiza-
tion of nucleic acids measured using high-throughput
technologies. Although models and experiments of hy-
bridization in solution provide useful first-order

descriptions, there are subtle differences between
solution and solid surface hybridization. Also, a collection
of probes on a solid surface may not resemble the ideal of
a uniform ‘bed of nails’ on which there are no interactions
between equally spaced neighbors.

The physical properties of an ensemble of same-
sequence strands of nucleic acids may show a range of
hybridization phases, dependent on the density of
probes, the ionic concentration, electrostatic distributions,
and other characteristics. The spatial distribution of
probes is heterogeneous and chemical imaging now
enables the local density of probes to be monitored. A
densely packed ensemble of identical sequences may
result in non-canonical interactions between nucleic
acids, such as Hoogsteen hydrogen bonds, which then
allow higher-order structures such as tetrads to form.

Chemical binding on solid surface can be described
using classical models such as Langmuir adsorption iso-
therms. However, analysis of collections of nucleic acids
has demonstrated the need for further considerations, and
the development of alternative isotherms. This work has
highlighted the need to include surface effects resulting
from polymer physics, the multiple steps in experiments
such as washing at different ionic considerations, bulk hy-
bridization as well as folding of individual sequences.
Moreover, measurements of probes with different
sequence compositions enable a determination of the
physics of mismatches, how the efficiency of duplex for-
mation depends on the position of particular sequences

Figure 14. M(A) plot of the average expression differences M between chromosome 5 trisomic Arabidopsis thaliana plants and disomics (y-axis) as a
function of average expression A (x-axis).
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within the probes, as well as the determination of
cross-hybridization expected for sub-optimal probes.

FUTURE OUTLOOK

The reader may wonder what is coming up in the field and
how one has to conduct microarray or NGS experiments
properly in the light of the knowledge described here. The
main contribution of this article is to report on the
progress being made towards ‘what really happens on
the arrays’ and to point towards rules, which in turn will
be fed into the refinement of analysis algorithms. The
transcriptomics field is a broad community, and one of
its strengths is that different groups are providing solu-
tions, or addressing problems, from different perspectives.
Such research may lead to an elegant description of the
hybridization process, similar to the Carnot’s ideal engine,
thus reducing complicated models to simple equations.
However, direct studies of the microarray surface may
find ‘Tunguska’ distribution of probes, thus challenging
many contemporary theoretical models.

‘Uncertainty principles’ of transcriptomics experiments
may need to be established. In practice, experiments con-
ducted by biologists using microarrays and NGS necessar-
ily cannot control for all the physical effects when
measuring a heterogeneous mixture of competing
sequence. However, the work described here will be hope-
fully of benefit to the designers of future microarrays.
There are sub-sequences, such as contiguous runs of
guanine, which should be considered in probe selection.
Similarly, considerations of grafting density versus probe
and target length, probe accessibility and surface treat-
ments, help to improve sensitivity and selectivity. We
note, though, that it may prove impossible to explicitly
take into account all of the effects at a probe-specific level.

In short, it is too early to completely replace the micro-
arrays with the new fashion of NGS. Microarrays have
their limitations but many of their measurements can be
interpreted with rationales from physics and chemistry.
This provides a solid base from which experiments of
several conditions can be compared with each other, and
reliable inferences made from the data. There is an active
field of algorithm development leading to increasingly
accurate inferences of transcript abundances—interested
biologists are directed to repositories of such methods,
such as http://bioconductor.org. Moreover, meta-analysis
of large collations of experiments determines known
outliers, and their causes, and many of the resulting
problems from the outliers are being treated effectively
via bioinformatics and biostatistical tools within the
software repositories, for example through the usage of
alternative annotation descriptors.

It is important to remember that there are a number of
experimental issues that affect transcriptomics experi-
ments of any flavor, irrespective of whether they are
microarray or NGS. For example, the technical variance
of both microarrays and NGS is several times smaller than
the biological variance. It is therefore a moot point which
technology is being used if the experiment of interest does
not contain sufficient biological replicates to enable

inferences of biological signals to be made. It may also
be similarly a moot point to make simple comparisons
between the technical variances of NGS and microarray
technologies—microarrays have many but limited number
of probes sampling a broad range of transcripts, whereas
RNA-seq experiments may use up many of their counts on
highly expressed transcripts, leaving only a few counts for
low-expressed genes, and for these genes, the signals may
get lost in the Poisson noise. Indeed, the use of some
capture arrays within NGS experiments emphasizes the
need for a greater understanding of the physical and stat-
istical characteristics of all transcriptomics technologies.
Transcriptomics experiments of all flavors may also be

affected by systematic biases introduced during sample
preparation. These biases result from transforming popu-
lations of RNA from a cell into an amplified library of
reverse-transcribed complementary DNA fragments of
about the same length. Moreover, target–target hybridiza-
tion within the supernatant solution may bedevil the in-
ferences made from transcriptomics experiments.
Discrepancies in the protocol before measurement may
also need greater standardization to enable reliable infer-
ences to be made from the data.
We are beginning to see the development of

physico-chemical treatment of the data from NGS experi-
ments. It is already clear that the protocols being used
within experiments leave a significant mark in the data.
The rapid development of sequencing technologies and
protocols may thus make detailed modeling of experi-
ments premature. We envisage that history may repeat
itself—the development of market leaders will lead to
the community identifying the need to use physico-
chemical–based analysis to model ‘Spike-In’ measure-
ments, such as we saw with Affymetrix microarrays and
the microarray community. We expect that insights about
high-density ensembles of nucleic acids gained from
microarrays will be of use to scientists building models
of the data produced from NGS technologies.
Given the availability of nucleic acid synthesis and puri-

fication technologies, we propose to generate benchmark
target mixtures consisting of hundreds to thousands of
species of known biologically relevant concentration.
The new benchmark target mixture will expand
possibilities for modeling of hybridization physical chem-
istry on different platforms (including NGS) and provide
new insights complementing the decade-old Affymetrix
Latin Square dataset. With available high-throughput
computing techniques, the future modeling of the nucleic
acids hybridization on the surface need to develop alter-
native approaches capable of considering fates of every
target, hybridizing specifically or non-specifically to a cor-
responding microarray probe or an NGS bead.
The work described here highlights rapid progress being

made in our understanding of the physico-chemical
properties of high-throughput measurements of nucleic
acids on a solid surface. Increasingly accurate determin-
ation of target concentrations is now being achieved,
allowing us to consider microarrays and NGS experiments
as analytical experiments. Together with the theoretical
advances, a practical calibration of such devices is indis-
pensable. An example from another field: although the
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physics of old-fashioned vacuum tubes or modern ubiqui-
tous transistors is well known, a precise theoretical de-
scription of the actual device’s performance is not
feasible. Hence, every device of this sort comes with its
empiric averaged characteristic curves.
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