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Abstract 

The two-component dengue virus NS2B-NS3 protease (NS2B-NS3pro) is an established 

drug target but inhibitor design is hampered by uncertainties about its three-dimensional 

structure in solution. Crystal structures reported very different conformations for the 

functionally important C-terminal segment of the NS2B co-factor (NS2Bc), indicating 

open and closed conformations in the absence and presence of inhibitors, respectively. 

An earlier nuclear magnetic resonance (NMR) study in solution indicated that a closed 

state is the preferred conformation in the absence of an artificial linker engineered 

between NS2B and NS3pro. To obtain direct structural information on the fold of 

unlinked NS2B-NS3pro in solution, we tagged NS3pro with paramagnetic tags and 

measured pseudocontact shifts by NMR to position NS2Bc relative to NS3pro. NS2Bc 

was found to bind to NS3pro in the same way as reported in a previously published 

model and crystal structure of the closed state. The structure is destabilized, however, by 

high ionic strength and basic pH, showing the importance of electrostatic forces to tie 

NS2Bc to NS3pro. Narrow NMR signals previously thought to represent the open state 

are associated with protein degradation. In conclusion, the closed conformation of the 

NS2B-NS3 protease is the best model for structure-guided drug design.  
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Introduction 

Dengue virus is a health burden that sends almost 100 million people to clinics every 

year [1] and puts an estimated 40% of the world population at risk especially in the 

tropical and sub-tropical regions [2,3]. The infection involves the translation of the 

flavivirus RNA genome into a poly-protein, which must be cleaved into several 

individual components. The N-terminal part of the non-structural protein 3 (NS3) 

encodes a serine protease, NS3pro, which is required for cleavage of the poly-protein. 

This makes NS3pro a prime drug target [4]. Its activity towards peptide substrates is 

boosted about 3300- to 7600-fold by the presence of a second viral protein, NS2B, 

which comprises about 40 residues [5]. The NS2B-NS3 proteases of the dengue 

serotypes 1-4 are closely related to each other (Fig. S1) and to the NS2B-NS3 protease 

from the West Nile virus (WNV; about 40% sequence identity). The present work 

focuses on the NS2B-NS3 protease of the dengue virus serotype 2, which is the most 

studied serotype.  

 The wild-type poly-protein contains a recognition site for the NS2B-NS3 protease 

between NS2B and NS3 [6]. To stabilize the protein, the most widely used construct of 

the NS2B-NS3 protease contains a 47-residue segment of NS2B fused to the 

N-terminus of NS3pro via an artificial Gly4-Ser-Gly4 linker. This and similar constructs 

retain the activity of the protease [7] and have been used for crystal structure 

determinations [8,9], NMR spectroscopic studies [10,11] and ligand binding studies 

[12-28]. In the following we refer to this construct as DENpro (WNVpro for the 

corresponding construct from WNV). We use the name DENp for an alternative 

construct that is devoid of the covalent linkage between NS2B and NS3pro. The 

distinction is important, because the functionally important NS2B co-factor has been 

reported to assume very different conformations in DENpro and DENp (Fig. 1). 

Crystal structures of DENpro and WNVpro in the absence of inhibitors revealed an 

open conformation [8,29], in which the N-terminal part of the NS2B co-factor inserts 

into the N-terminal β-barrel of the NS3 protease, but the C-terminal segment of NS2B 

(NS2Bc, corresponding to the segment Glu66-Leu95 in DENpro serotype 2) is located 

far from the substrate-binding site of NS3pro. We refer to the structures with NS2Bc 
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far from the active site of NS3pro as the “open state” (Fig. 1A). In contrast, structures 

determined in the presence of inhibitors displayed NS2Bc forming a β-hairpin that lines 

the substrate-binding site [8,29-32]. We refer to this conformation as the “closed state” 

(Fig. 1B). In view of the importance of NS2Bc for full proteolytic activity of the 

proteases [5,33-37], the closed conformation is assumed to represent the enzymatically 

active structure. As expected for homologous proteins, the closed conformations 

reported for DENpro and WNVpro in the presence of inhibitors are very similar [8,30]. 

Remarkably, also the crystal structures of the open conformations without inhibitors 

are very similar [8,29].  

 In solution, NMR experiments unambiguously showed that DENpro can assume 

the closed conformation in the presence of inhibitor 1 (Fig. S2A)[11]. In the absence of 

an inhibitor, however, not all signals could be observed, indicating extreme broadening 

of the NMR resonances of DENpro due to conformational exchange. A similar 

situation was observed in the case of WNVpro: the protein assumes the closed 

conformation in the presence of inhibitors, but the disappearance of signals in the 

absence of inhibitors indicates conformational exchange. NMR experiments showed 

that the closed conformation is more highly populated in either case [38].  

A recent study investigated a construct of DENp produced by co-expression of 

NS2B and NS3pro without a covalent link between both proteins [39]. Significant 

differences to the earlier results obtained with DENpro were found. Importantly, no 

NMR signals were reported to be missing in the absence of inhibitors, allowing more 

complete resonance assignments and thus the measurement of secondary chemical 

shifts, 15N-relaxation rates and PREs from a spin-label attached to NS2Bc. These data 

indicated that NS2B may exist in a conformation similar to the closed form of DENpro, 

but structural details were not obtained.  

The present study presents direct structural information for a related unlinked 

NS2B-NS3pro construct, using pseudocontact shifts induced by different paramagnetic 

lanthanide ions attached at different sites. The data fully support the structure of the 

closed state detected previously in the presence of inhibitors [11,30], but NS2Bc is 

found to undergo conformational exchange that becomes more pronounced at increased 
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pH and ionic strength, without appreciably dissociating from NS3pro even under 

conditions of high salt. Evidence is presented that a set of very narrow signals at 

chemical shifts characteristic of random coil conformations previously attributed to 

open conformations [10,38] instead signifies degraded protein. The results show that 

the structure and dynamics of the dengue NS2B-NS3 protease are much more closely 

related to the corresponding protease from the West Nile virus than implied by 

previous analyses. 

 

 

Results 

Protein production 

DENp was expressed as a single polypeptide chain to produce NS2B and NS3pro in 

equimolar ratio. SDS-PAGE showed that the autoproteolytic cleavage site was 

quantitatively cleaved in the course of protein expression and purification, regardless of 

whether the protein was produced by cell-free synthesis or in vivo (Fig. S2C). ESI mass 

spectrometry of DENp selectively labelled with 15N-isoleucine showed two peaks of 

molecular mass 6670 and 20753 (calculated: 6671 and 20757 for NS2B and NS3pro, 

respectively). DENp was enzymatically active (Fig. S3). 

 

DENp assumes the closed conformation 

The 15N-HSQC spectrum of DENp selectively labelled with 15N-isoleucine (Fig. 3A) 

was strikingly similar to that of DENpro in the presence of inhibitor 1 (Fig. 3C). The 

improved spectral quality of DENp is in line with earlier observations, where a similar 

unlinked construct of the NS2B-NS3 protease was shown to produce better NMR 

spectra than the DENpro construct [39]. We previously established by pseudocontact 

shifts from multiple lanthanide binding sites [11] that the structure of DENpro with 

bound inhibitor 1 assumes the closed conformation as observed in the crystal structure 

3U1I [30]. The conservation of chemical shifts observed for the isoleucine residues in 

DENp without inhibitor (Fig. 3A) and DENpro with inhibitor 1 (Fig. 3C) thus indicates 

that DENp assumes the closed conformation too. Apart from small differences in 
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chemical shifts expected to arise from the presence or absence of the inhibitor and the 

covalent linker peptide (for example, Ile36, which is close to the active site, changes its 

chemical shift between DENp without inhibitor and DENpro with inhibitor 1), there are 

pronounced differences in peak intensities. For example, the cross-peaks of Ile78* and 

Ile86* in NS2B and Ile165 in NS3pro were unexpectedly weak. Effects of this 

magnitude can only be explained by exchange broadening, which we attribute to 

conformational exchange of the β-hairpin of NS2Bc. Ile165 is buried in the C-terminal 

β-barrel of NS3pro which binds NS2Bc in the closed conformation. Sensitivity of the 

C-terminal β-barrel to the state of NS2Bc has been reported earlier [11].  

Remarkably, greater spectral differences are observed between DENpro without 

inhibitor (Fig. 3B) and either DENpro with inhibitor 1 (Fig. 3C) or DENp without 

inhibitor (Fig. 3A). For example, the resonance of Ile123 is strongly affected in Fig. 3B 

and there are no signals of Ile165, Ile67* and Ile73* that would be expected for the 

closed conformation. Another notable feature of the spectra of Fig. 3B and C is a set of 

narrow signals for isoleucine residues of NS2B at 1H chemical shifts characteristic of an 

unfolded polypeptide chain (8.1 – 8.3 ppm). In early NMR studies of DENpro, these 

signals were very intense and assigned to NS2B by systematic site-directed mutagenesis 

[10]. In the spectrum of Fig. 3B, however, these cross-peaks are much weaker than those 

of NS3pro. Having repeated these preparations and NMR measurements multiple times, 

we found the intensity of these NS2B signals to vary between different sample 

preparations and not to change when inhibitor 1 was added to the sample. Notably, 

previous experiments of selectively 15N-Ser labelled samples of DENpro without 

inhibitor displayed weak 15N-HSQC cross-peaks of the serine residues of NS2B at the 

chemical shifts of the closed conformation, with little evidence of serine residues at 

random coil chemical shifts [11]. We conclude that the cross-peaks of isoleucine 

residues of NS2B at random coil chemical shifts stem from degradation of the 

NS2B-NS3pro complex, possibly resulting in free NS2B, which is known to be soluble 

whereas NS3pro is insoluble. In agreement with this interpretation, the corresponding 

set of narrow peaks in selectively 15N-isoleucine-labelled DENp grew noticeably in 

height already after 4 hours at 25 oC in step with protein precipitation. This conclusion 
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supersedes our earlier interpretation that the random coil signals of NS2B represent the 

open conformation of NS2B in the NS2B-NS3pro complex [11,38].  

Discounting the signals from the degraded protease, there is no second set of 

isoleucine cross-peaks that would indicate the existence of the open conformation in 

either DENp or DENpro. Instead, the open conformation may be manifested in the 

apparent absence and weakness of some of the isoleucine cross-peaks in the 15N-HSQC 

spectrum, which indicates excessive line broadening arising from conformational 

exchange. To rule out line broadening due to chemical exchange of the amide protons 

with the water, we performed a control experiment to assess the amide proton exchange 

rates. The experiment used selective excitation of the water resonance followed by a 

mixing time to allow magnetisation transfer by chemical exchange followed by the 
15N-HSQC pulse sequence to record the amide cross-peaks arising from chemical 

exchange with water. The spectrum was recorded of selectively 15N-Ile/15N-Ser-labelled 

DENp. The scarcity of observable cross-peaks (Fig. 4C) confirmed that exchange with 

the water resonance was unimportant even at pH 7.5, where exchange with water is 

more pronounced than at lower pH [40]. Weak cross-peak intensities in the 15N-HSQC 

spectra of Fig. 3 are thus indicative of conformational rather than chemical exchange 

broadening. 

 

Structural analysis of DENp by pseudocontact shifts 

While the overall conservation of chemical shifts between DENp and DENpro indicates 

structural conservation, we sought more direct evidence by measuring pseudocontact 

shifts (PCS) in DENp. To do this without mutations in the critical NS2Bc segment, we 

prepared three different single-cysteine mutants for labelling with paramagnetic C1- and 

C2-lanthanide tags. The mutation sites corresponded to the sites A, B and C (Ala57*Cys, 

Ser34Cys and Ser68Cys) used previously to establish the closed conformation of 

DENpro in the presence of the inhibitor 1 [11]. In the study of DENpro [11], on average 

larger PCSs were obtained with the C2 than with the C1 tag. Therefore, we recorded 

data with the C1 tag only for mutant B, which delivered the largest number of PCSs for 

NS2B. For all three mutants, PCSs were measured with Tm3+ and Tb3+ tags. Fig. 5 
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shows examples of PCSs measured for mutant B with the C1-Tb3+ tag in DENp without 

inhibitor and compares them with corresponding PCSs measured for DENpro with 

inhibitor 1. Fig. 6 shows an overview of all the PCSs that could be resolved for both 

DENp and DENpro with different tags. Clearly, the PCSs measured for DENp and 

DENpro were very similar throughout, including, in particular, resonances of NS2Bc. 

The PCSs thus provide very clear evidence that both NS3pro and NS2B predominantly 

assume the closed conformation in DENp. The model of the closed conformation of 

DENpro established by PCSs [11] is very similar to the crystal structure of the serotype 

3 NS2B-NS3 protease determined in the presence of an inhibitor [30] with a backbone 

rmsd of 0.7 Å.  

 

  

Conformational exchange of NS2B 

DENp and DENpro display more intense 15N-HSQC cross-peaks in the presence of the 

inhibitor 1. Fig. 7 shows a quantitative assessment of the relative peak heights of 

samples selectively labelled with 15N-Ser and 15N-Ile in the absence and presence of 

inhibitor. Clearly, signals from NS2B are more strongly affected than those of NS3 and 

DENpro suffers more from exchange broadening than DENp, including residues 123 to 

165 of NS3pro. This observation reinforces the conclusion that the C-terminal β-barrel, 

which harbours those residues, senses the conformational exchange of NS2B. Notably, 

residual exchange broadening persists in DENp in the absence of inhibitor for NS2B and 

also for Ile139 in NS3. 

 While it is common that binding of an inhibitor rigidifies a protein structure, it is 

remarkable that the low-molecular weight inhibitor used here achieves this for NS2B, as 

the inhibitor is too small to form direct contacts with NS2B. Based on mutation and 

mass spectrometry data, the inhibitor hydrolyses upon binding, leaving only a 

p-guanidino-benzoyl moiety behind that is covalently bound to Ser135 [11]. We 

hypothesized that the positive charge of the guanidino group helps to tie NS2Bc to NS3, 

as the C-terminal β-hairpin of NS2B is highly negatively charged owing to the presence 

of Glu80 and Asp81 and four additional glutamates at the C-terminus of NS2B (Fig. S1). 
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If electrostatic interactions are important, the association of NS2B to NS3 should be 

weakened by high salt concentrations. Furthermore, the association should be weakened 

at higher pH, when His51 in the active site loses its positive charge.  

 Fig. 4 shows that the 15N-HSQC cross-peaks of many residues became significantly 

weaker at pH 7.5 compared to pH 6.5 and that this loss in intensity was not due to fast 

proton exchange with the water. As expected, the effect was observed equally for DENp 

and DENpro, whereas the signals retained their intensities in the presence of the 

inhibitor 1 (Fig. 8). The presence of 300 mM NaCl at pH 6.5 weakened the signal of 

Ile78* in a selectively 15N-Ile labelled sample (Fig. S5). A uniformly 15N-labelled 

sample confirmed this result, i.e. most cross-peaks of NS2Bc were significantly weaker 

or absent at 300 mM NaCl, whereas the cross-peaks from NS3pro were much less 

affected (Fig. 9B), except for some cross-peaks of amides in NS3pro that are sufficiently 

close to NS2B to sense its conformational exchange (Fig. 9C). These results indicate 

that the association of NS2Bc to NS3pro is indeed stabilized by electrostatic attraction.  

 In view of the open conformations found in crystal structures of DENpro and 

WNVpro [8,29], it is plausible that the pH- and salt-dependent conformational exchange 

of NS2B in DENp arises from temporary dissociation of NS2Bc from NS3pro, leading 

to the open conformation. As stated above, however, the PCSs measured for NS2B were 

in full agreement with the closed conformation. PCSs readily average to zero for flexible 

polypeptide chains, so that any disordered open conformation would not contribute to 

PCSs of NS2B and, therefore, the average PCSs of closed and open conformations 

would become smaller for increasing populations of open conformations. The similarity 

in PCSs observed in DENp without inhibitor and DENpro with inhibitor 1 (Fig. 6) 

indicates that, at pH 6.5 and low ionic strength, DENp does not populate open 

conformations to any significant extent.  

In a fast equilibrium between open and closed conformations, a minor population of 

open conformation should be manifested in changes in chemical shifts, whereas a slow 

equilibrium would result in new cross-peaks for the open conformation. As the protein 

chemical shifts are very highly conserved between pH 6.5 and pH 7.5 without any new 

peaks appearing at pH 7.5 (Fig. 4A and B), open conformations cannot be highly 
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populated at the higher pH. Nonetheless, many signals broaden significantly at pH 7.5. 

A more complete picture was obtained by using uniformly 15N-labelled DENp. The 

comparison of Figs 9 and 10 shows that high pH and high salt predominantly affect the 

residues of NS2Bc and nearby residues of NS3pro, suggesting that the electrostatic 

attraction of NS2Bc to NS3pro is weakened at increased pH. This result may be 

explained by a loss of charge of the side chain of His51. If the exchange broadening 

observed at high salt and high pH arises from small populations of open conformations, 

DENpro would be expected to be more sensitive than DENp. This is indeed the case 

(Fig. 4). 

The chemical shifts of DENp changed slightly in the presence of high salt, raising 

the possibility that this effect could be attributed to a greater population of open 

conformations. It was difficult, however, to assess the amount of open population, as all 

NS2Bc resonances were too broad to be observable (Fig. 9A) and Ser70* and Ser71* 

were the last residues of NS2B for which amide cross-peaks could be detected in 

uniformly 15N-labelled DENp at high salt. Their PCSs generated by the C2-Tb tag 

attached to a cysteine residue at site B (Fig. S6) changed slightly at high salt, but other 

PCSs in NS3pro also changed, reflecting a small change in the average location and 

orientation of the paramagnetic tag relative to the protein. This effect is not unexpected, 

as the lanthanide tags used were charged and thus sensitive to attractive and repulsive 

forces from the charged amino acid side chains on the protein surface. Using all 

observable PCSs to fit Δχ tensors yielded good correlations between back-calculated 

and experimental PCSs, including for residues 70* and 71* (Fig. S7). The PCS data thus 

indicate that Ser70* and Ser71* of NS2Bc retain their closed-state association with 

NS3pro even at high ionic strength. In contrast, the more C-terminal residues of NS2Bc 

are subject to substantial conformational exchange, which may or may not include 

dissociation from NS3pro. Clearly, however, the open conformation observed in the 

crystal structure [8] can be populated to a very small extent only (less than 10%). 

 

 

Discussion 
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Open and closed conformations 

The question of open and closed conformations in the dengue virus and West Nile virus 

proteases has been vexed ever since their first observation in crystal structures [8]. As 

NS2B greatly increases the activity of the proteases [5,41], it would be attractive to 

prevent the association of NS2Bc with the substrate-binding site by a drug molecule. 

Inhibitor designs for DENpro have used either conformation as template 

[14,17,19,20,23,26,42-52]. For both WNVpro and DENpro, the presence of low 

molecular weight inhibitors greatly improves the quality of the NMR spectra 

[11,38,44,53-55]. For WNVpro, however, the NMR experiments clearly showed that the 

closed conformation is predominant in solution regardless of the presence of an inhibitor 

[38]. The situation was thought to be different for DENpro, as very narrow signals 

indicative of NS2Bc in a random coil conformation were observed with high intensities 

in the absence of inhibitors [10]. In the course of the present study, these signals proved 

to be little reproducible in intensity, with some sample preparations showing hardly any 

evidence for them at all. Furthermore, they were insensitive to the addition of inhibitor 1. 

These observations clearly identify these signals as degradation products and eliminate 

them as evidence for a predominantly open conformation, in contrast to our previous 

interpretation [38]. Heterogeneity in DENpro sample preparations has been reported 

previously [56] but the evidence for open conformations in solution is not clear-cut.  

Kim et al. reported earlier this year [39] that an unlinked construct of the 

NS2B-NS3 protease yields better NMR spectra than the original linked DENpro 

construct. They also used NMR spectroscopy to establish that the unlinked protease 

most likely assumes the closed conformation. The key observations were (i) that the 
15N-relaxation times of the NS2Bc resonances were overall comparable to those of 

NS3pro, showing that the mobility of NS2Bc is not greatly enhanced compared to that 

of NS3pro in agreement with the closed state, and (ii) that paramagnetic relaxation 

enhancements (PRE) could be resolved for seven of the backbone amides in the globular 

part of the protease in a cysteine mutant with a nitroxide radical attached to residue 75 of 

NS2B. The PREs were also in agreement with the closed conformation and could not be 

explained by the open conformation of the crystal structure 2FOM [8]. In addition, 



 12 

approximate boundaries of secondary structure were derived from the chemical shifts of 

NS2B that are in agreement with the β-hairpin structure found for NS2Bc in the crystal 

structure 3U1I of the closed conformation [30].  

The crystal structures of DENpro and WNVpro indicate that the association 

between NS2Bc and NS3pro is weak, as the closed conformation has only ever been 

observed in the presence of an inhibitor. Even with the strongly binding inhibitor 

aprotinin, a co-crystal structure of DENpro showed no electron density for NS2Bc, 

indicating that it is disordered [30]. Nonetheless, the crystal structures of WNVpro [29] 

and DENpro from serotype 1 [9] showed that the β-hairpin structure of NS2Bc forms 

readily also when NS2Bc is dissociated from NS3pro. It is thus conceivable that, in 

solution, the β-hairpin structure forms and associates non-specifically with NS3pro. The 

NMR data of Kim et al. [39] could not discern this situation from the well-defined 

closed conformation observed with inhibitors [11,30], as distance restraints to nitroxide 

tags are difficult to quantify. In addition, the hydrophobicity of the tag could influence 

the interaction with NS3pro. 

The pseudocontact shifts observed in the present study using multiple tags at 

multiple sites unambiguously establish that the dengue virus NS2B-NS3pro enzyme 

from serotype 2 assumes the closed conformation as observed in the crystal structure 

3U1J [30], when the covalent linkage between NS2B and NS3pro is broken. At the same 

time, however, broad and missing NMR signals show that NS2Bc retains increased 

dynamics which increase with increasing salt and pH. 

 

Conformational exchange 

All backbone amide groups with the same relaxation times should display 15N-HSQC 

cross-peaks of the same intensity, while increased relaxation rates reduce the cross-peak 

intensities by broadening the signals and because of loss of magnetisation by fast 

relaxation during the spin-echo periods of the experiment. As no relaxation mechanism 

can compete with the line broadening effects from chemical exchange, the weak signal 

intensities observed in the spectra of DENpro and DENp must arise from exchange 

broadening. As hydrogen exchange with water is inefficient at pH 7.5, conformational 
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exchange remains the only plausible mechanism for the loss of cross-peak intensities.  

It is tempting to identify the exchange broadening with an exchange between open 

and closed conformations. Our current results show that the broadening becomes more 

pronounced by increasing the pH or the salt concentration, showing that the interaction 

between NS2Bc and NS3pro has a significant electrostatic component. Even in the 

presence of 300 mM NaCl, however, when most signals of NS2Bc become unobservable, 

the pseudocontact shifts of the last backbone amides of NS2Bc that we were able to 

resolve (Ser70* and Ser71*), induced by a C2-Tb tag at site B, were not at all reduced, 

contrary to expectations when NS2Bc fully dissociates from NS3pro and assumes a 

random position relative to the tag. This suggests that the exchange broadening arises 

from exchange between different conformations of the β-hairpin of NS2Bc while it is 

bound or from its selective dissociation from NS3pro. In either case, the fully open 

conformations reported in crystal structures are not the predominant form in solution 

even under conditions that promote conformational exchange of NS2Bc.  

The 15N-Ile labelled DENpro construct shows no cross-peaks of NS2Bc in the 

closed conformation (Fig. 3B), indicating that the Gly4-Ser-Gly4 linker enhances the 

conformational exchange of NS2Bc. Nonetheless, weak cross-peaks at chemical shifts 

characteristic of the closed conformation have been observed in 15N-Ser labelled 

samples [11], showing that the closed conformation is populated even in DENpro. As 

there are no cross-peaks of NS2Bc in the spectrum of Fig. 3B that can be assigned to the 

intact NS2B-NS3 protease, it is hard to tell whether the closed or open state is more 

highly populated in DENpro. Certainly, the conformational state of DENpro is more 

sensitive to high pH, as cross-peaks from NS3pro disappear more readily at pH 7.5 than 

the corresponding signals in DENp (Fig. 8).      

 

Pseudocontact shifts for structure analysis 

The present study illustrates the power of PCSs induced by lanthanide tags. 

Traditionally, most NMR studies collect long-range structure restraints by measuring 

PREs from site-specifically attached nitroxide spin-labels. PREs, however, can also arise 

from intermolecular interactions and artificial interactions can be promoted by the 
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hydrophobic nature of conventional nitroxide spin-labels. In contrast, the PCS effect can 

be measured over greater distances, allowing attachment of the tag at a site far from the 

site of interest where it causes minimal perturbations, and non-specific intermolecular 

interactions do not generate PCSs [57]. The PCSs proved particularly valuable in the 

case of DENp at high salt, where the signals of NS2Bc were either missing or strongly 

attenuated due to conformational exchange. This demonstrates how PCSs can provide 

structural information even under adverse conditions, where NMR signals can be 

observed only for isolated residues because of peak broadening, low protein 

concentrations or unstable preparations.  

 

Dissociation of NS2Bc from NS3pro 

In contrast to DENpro which is stable against degradation at room temperature, our 

DENp construct precipitated rapidly during the NMR measurements. Precipitation was 

even faster at high ionic strength, limiting the measurement time for each sample to 

about 4 hours. A possible explanation for this effect is that the absence of the linker 

between NS2B and NS3pro facilitates the dissociation of NS2B, as NS3pro on its own is 

insoluble. 

Could the open conformations observed in crystal structures be caused by the 

crystallization conditions used? It is well known that exchange with small populations of 

alternate conformations can be sufficient to broaden NMR signals beyond detection and 

that crystallization conditions can select unusual conformations. Interestingly, serotype 2 

DENpro without inhibitor was crystallized at pH 8.5 and 48 oC [8], conditions which 

could promote dissociation of NS2Bc from NS3pro. The open conformation of WNVpro 

crystallized at pH 7.5 and 25 oC [29], but it was obtained of the His51Ala mutant, which 

could have weakened the binding of NS2Bc to NS3pro. The open conformation of 

serotype 1 DENpro was of the wild-type protein crystallized at pH 7.5 and 20 oC [9]. 

Based on our present data, these conditions would not promote dissociation of NS2Bc 

from NS3pro, but the difference in amino acid sequence may confer different properties 

to this particular protein, favouring the association between the NS2Bc segments from 

different protein molecules as observed in the crystal structure. 
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Conclusion 

The present results unequivocally demonstrate that the serotype 2 dengue virus 

NS2B-NS3 protease in solution predominantly assumes the closed conformation in the 

absence of inhibitors and that any open conformation is hardly populated. This has 

obvious and important implications for the choice of structural templates in the rational 

design of inhibitors.  

 

Experimental procedures 

Materials 

Two different dengue 2 NS2B-NS3pro constructs were used in the present work. The 

first construct was the traditional construct used earlier for structural and functional 

work [7,8,11], comprising 255 residues with a (Gly)4-Ser-(Gly)4 linker between NS2B 

(47 residues) and NS3pro (185 residues). In addition, it contained a His6-tag at the 

C-terminus and the T7 gene 10 N-terminal peptide MASMTG at the N-terminus 

followed by a two-residue cloning artifact (Leu-Glu), resulting in a 27 kDa protein. In 

this construct, NS2Bc comprises the segment from Glu66* to Leu95* (to discriminate 

between NS2B and NS3 residues, residue numbers of NS2B are marked by an asterisk 

throughout this text). We refer to this construct as DENpro. The second construct was 

the same as the first construct, except that the (Gly)4-Ser-(Gly)4 sequence in the linker 

between NS2B and NS3pro was replaced by the protease recognition sequence 

EVKKQR that precedes NS3 in the wild-type poly-protein (Fig. 2A and B). We refer to 

this construct as DENp. 

DENpro and DENp samples were prepared either by cell-free protein synthesis from 

PCR-amplified DNA [10] or by high-cell density in vivo expression [58]. Cell-free 

protein synthesis used the high-copy number plasmid pRSET-6d-DEN2 

CF40GlyNS3pro as the template for PCR-amplification [8,59]. S30 cell extracts were 

prepared in-house from E. coli strains Rosetta::λDE3/pRARE and BL21 Star::λDE3 [42], 

including concentration with polyethylene glycol 8000. 15N-labelled amino acids were 

purchased from Cambridge Isotope Laboratories and ISOTEC. Synthetic 



 16 

oligonucleotides were purchased from IDT-DNA Technologies and Geneworks. PCRs 

were performed using Vent DNA polymerase (New England Biolabs). PCR products 

were purified using the QiaQuick PCR purification kit (Qiagen).  

Single-cysteine mutants were prepared by in vivo expression experiments using the 

same gene constructs as cell-free expression but inserted into the pETMCSI T7 

expression vector [60] and transformed into the E. coli strain Rosetta::λDE3/pRARE. 

 The C1- and C2-compounds for tagging with lanthanides were synthesized as 

described [61].  

 

Cell-free protein synthesis 

Production by cell-free synthesis allowed selective labelling with 15N-labelled amino 

acids without significant isotope scrambling [62] and the rapid production of 

site-specific mutants [10]. Samples of DENp were synthesized in a cell-free E. coli 

coupled transcription-translation system using a previously described protocol [63,64]. 
15N-labelled isoleucine was used in the cell-free reaction mixture. Wild-type DENpro 

was synthesized using the pRSET-DEN2 CF40GlyNS3pro plasmid at a concentration of 

16 µg/ml of reaction mixture. Mutant DENpro was synthesized using re-annealed DNA 

at a concentration of 20 µg/ml of reaction mixture. Each synthesis was performed in two 

identical parallel reactions, each using a reaction volume of 2 ml in 20 ml of outer buffer 

and proceeding for 14-15 h at 30 ºC.  

The S30 extract used for the expression of selectively 15N-serine labelled samples 

was reduced with sodium borohydride to suppress cross-labelling by transaminases as 

described previously [65]. 100-150 µM NMR samples were obtained from three 2.5 ml 

reactions in 25 ml of outer buffer at 30 °C in overnight reactions (14-15 h).  

 

Protein purification 

Following synthesis, the protein samples were purified using IMAC Ni-NTA spin 

columns. The columns were equilibrated with binding buffer (50 mM HEPES, 300 mM 

NaCl, 10 mM imidazole at pH 7.5), loaded with the sample, washed five times with 

wash buffer (50 mM HEPES, 300 mM NaCl, 30 mM imidazole, pH 7.5), and eluted 
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with elution buffer (50 mM HEPES, 300 mM NaCl, 300 mM imidazole, pH 7.5). The 

purified protein was dialyzed extensively against NMR buffer (20 mM MES, pH 6.5, 50 

mM NaCl or 20 mM Tris.HCl, pH 6.9 or pH 7.5, 50 mM NaCl). Samples at higher salt 

concentrations (300 mM NaCl) were prepared by dialysis against buffers with 

correspondingly increased salt concentration. Samples were concentrated using a 

Centricon-4 ultrafilter MWCO-10 kDa concentrator (Amicon) to final volumes of 0.5 ml 

for samples at low salt concentration in 5 mm NMR tubes and 0.2 ml for samples at high 

salt concentration in 3 mm NMR tubes. The protein concentrations at low and high salt 

were 0.2 and 0.7 mM, respectively.  

 

Tagging reaction 

C1- and C2-tags loaded with Tb3+, Tm3+ or Y3+ (Fig. S2) were attached to the single 

cysteine mutants of DENp by adding the protein to a three-fold excess of the respective 

metal complexes of C1 or C2 and incubating at room temperature for several hours. 

Excess low-molecular weight reactants and products were removed by washing with 

NMR buffer. 

 

NMR spectroscopy 

All NMR spectra were recorded at 25 oC on Bruker 600 and 800 MHz NMR 

spectrometers equipped with cryoprobes. NMR spectra were recorded in NMR buffer 

unless indicated otherwise. p-nitrophenyl-p-guanidino benzoate (1; Fig. S2A) was used 

as the inhibitor [66]. The inhibitor was added in five-fold molar excess to the protein 

using a 100 mM stock solution in DMSO-d6. A spectrum for measuring chemical 

exchange between water and amide protons was recorded using the CLEANEX-PM 

pulse sequence [67].  

 

Pseudocontact shifts 

PCSs were measured as the 1H chemical shifts of backbone amides observed in 
15N-HSQC spectra of paramagnetic samples minus those observed for diamagnetic 

samples. The PCSs were generated by a lanthanide ion with non-isotropic magnetic 
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susceptibility. For each nuclear spin, the PCS (measured in ppm) depends on its polar 

coordinates r, θ and ϕ with respect to the principal axes of the Δχ tensor: 

€ 

ΔδPCS = 1
12πr3

Δχax 3cos
2θ −1( )+ 32Δχ rhsin

2θcos2ϕ
) 

* + 
, 

- .   (1) 

where Δχax and Δχrh denote, respectively, the axial and rhombic components of the 

magnetic susceptibility tensor χ [68], and the Δχ tensor is defined as the χ tensor minus 

its isotropic component. Equation 1 shows that PCSs can be positive or negative, 

depending on the position of the nuclear spin with respect to the coordinate system 

defined by principal axes of the Δχ tensor. For mobile polypeptide chains, PCSs easily 

average to zero.  
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Figures  

 
Fig. 1. Open and closed conformations observed in crystal structures of the NS2B-NS3 

protease from dengue virus serotypes 2 and 3, respectively. In the orientation shown, the 

C-and N-terminal β-barrels of the protease are in the left and right halves, respectively. 

The parts from NS2B and NS3 are shown in orange and grey, respectively, and their N- 

and C- termini are labeled. Spheres identify the Cα atoms of the single cysteine residues 

for the attachment of lanthanide binding tags in the mutants A-C. Dotted lines indicate 

missing electron density in the crystal structure. (A) Open conformation (PDB ID 2FOM 

[8]). The C-terminal segment of NS2B, NS2Bc, is far from the active site. (B) Closed 

conformation (PDB ID 3U1I [30]). NS2Bc wraps around the active site.  
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Fig. 2. Expression constructs of the dengue virus protease with and without covalent 

linker between NS2B and NS3. (A) Schematic representation of the protease construct 

with NS2B (orange) linked to NS3pro (black) via a flexible Gly4-Ser-Gly4 linker. We 

refer to this construct as DENpro. (B) Same as (A), except that the Gly4-Ser-Gly4 linker 

is replaced by the natural cleavage site between NS2B and NS3 in dengue virus serotype 

2 (EVKKQR). We refer to this construct as DENp. The autoproteolytic cleavage site is 

identified by a red triangle. See Fig. S1 for the detailed amino acid sequence. (C) 

SDS-PAGE of DENp with Coomassie blue staining. Left panel: result from cell-free 

expression (S: supernatant, C: crude reaction mixture); right panel: purified product 

from in vivo expression. In both cases, soluble DENp was obtained without covalent 

linkage between NS2B and NS3pro. The bands of NS2B and NS3pro are indicated.  
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Fig. 3. Chemical shift conservation suggests that DENp predominantly assumes the 

closed conformation in the absence of an inhibitor. The spectra show the spectral region 

of the backbone amides in 15N-HSQC spectra recorded of selectively 15N-isoleucine 

labelled samples of DENp and DENpro. All spectra were acquired using 0.2 mM protein 

solutions in 90% H2O/10% D2O with 20 mM MES, pH 6.5, 50 mM NaCl at 25 oC on a 

Bruker 800 MHz NMR spectrometer. Assignments of NS2B are identified by stars. (A) 
15N-HSQC spectrum of DENp. The circle indicates the position of the cross-peak of 

Ile86* which was observed with very weak intensity in a spectrum of a different sample. 

(B) Same as (A), except for DENpro. Weak narrow cross-peaks of NS2B appearing at 

random coil chemical shifts are from a minor species of variable intensity between 

different sample preparations. (C) Same as (B), except that a 5-fold excess of inhibitor 1 

was added to induce the closed conformation.  
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Fig. 4. Reduced peak intensities in the 15N-HSQC spectra are caused by conformational, 

not chemical exchange. All spectra were recorded of selectively 15N-Ser and 15N-Ile 

labelled DENp, using the same sample condition and spectrometer as in Fig. 3. See Fig. 

S4 for resonance assignments. (A) 15N-HSQC spectrum at pH 6.5. (B) Same as (A), 

except that the pH was 7.5. (C) 15N-HSQC exchange spectrum at pH 7.5. The 

experiment was recorded with the CLEANEX-PM-FHSQC pulse sequence [62], in 

which selective water excitation by a 7.5 ms 180o pulse sequence was followed by 60 ms 

CLEANEX-PM mixing prior to the conventional HSQC pulse sequence. Cross-peaks in 

this spectrum arise from magnetisation transfer from water to amide protons by proton 

exchange.   
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Fig. 5. Similar PCSs are observed for NS2B of DENp without inhibitor as for DENpro 

with inhibitor 1. The spectra were recorded on a 600 MHz NMR spectrometer using the 

same conditions as in Fig. 3. (A) Superimpositions of selected spectral regions of 
15N-HSQC spectra of mutant B of DENp without inhibitor (left panels) and DENpro 

with inhibitor 1 (right panels). The samples were tagged with the C2-tag loaded with 

paramagnetic Tb3+ (cyan peaks) or diamagnetic Y3+ (red peaks). (B) Cartoon 

representation of the dengue virus protease in the closed conformation (PDB ID 3U1I 

[30]), showing NS2B in orange and NS3pro in grey. The locations of the residues 
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analysed in (A) are highlighted by balls and the site of the C2-tag is indicated by a green 

sphere.  

 

 

Fig. 6. PCSs demonstrate that DENp assumes a closed conformation very similar to that 

reported in the crystal structure of DENpro with bound inhibitor [30]. The figure plots 

the PCSs measured with different tags and metal ions for mutants A, B and C of DENp 
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in the absence of inhibitor (red symbols) and DENpro in the presence of inhibitor 1 

(black symbols). Squares identify the PCSs of NS3pro and NS2B residues that form part 

of the N-terminal β-barrel of NS3pro; these residues are structurally similar between 

open and closed conformations (see Fig. 1). PCSs for NS2Bc are shown as circles. For 

clarity, data are shown only for residues for which PCSs could be measured both for 

DENp and DENpro. The close similarity between the PCSs indicates closely similar 

structures.  

 

Fig. 7. Ratios of cross-peak heights in 15N-HSQC spectra of DENp and DENpro without 

and with inhibitor 1 provide evidence for conformational exchange. All spectra were 

measured at pH 6.5 under the same sample conditions as in Fig. 3. In each spectrum, the 

cross-peak intensities were determined relative to the intense cross-peak of Ile172. Error 

ranges were estimated from the reproducibility of the peak heights in spectra recorded 

with two different samples, taking into account the level of white noise. Data for 

residues of NS2B and NS3 are shown in orange and grey, respectively. Residues, for 

which cross-peaks at or near the position characteristic of the closed conformation could 

not be observed in the absence of inhibitor are reported with a peak intensity ratio of 

zero. (A) Data for DENp. (B) Data for DENpro. 
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Fig. 8. The conformational equilibria in DENp and DENpro are pH dependent. Top 

panel: Superimposition of a selected spectral region from 15N-HSQC spectra of DENp 

(red) and DENpro (black) recorded without inhibitor at different pH. Except for the pH, 

the sample conditions were the same as in Fig. 3. The decrease in peak intensities with 

increasing pH indicates increasing population of alternative conformations with 

chemical shifts different from the closed state of the protease. Bottom panel: 

Corresponding region of DENpro in complex with inhibitor 1, providing a reference for 

the closed conformation.  
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Fig. 9. High ionic strength weakens the association between NS2Bc and NS3pro. (A) 
15N-HSQC spectra of uniformly 15N-labelled DENp at 300 mM NaCl (red spectrum) and 

30 mM NaCl (black spectrum). All other sample conditions were the same as in Fig. 3. 

Circles identify peaks that broadened beyond detection after the addition of sodium 

chloride. (B) Cross-peak heights observed in the spectra of (A) plotted versus the amino 

acid sequence. Red and black symbols correspond to the data measured at high and low 

salt concentrations, respectively. A horizontal line indicates the level of white noise in 

the spectrum at high salt. Circles and squares refer to NS2B and NS3, respectively. The 

peaks in DENp displaying intensity reductions greater than 20% after the addition of salt 

are highlighted by filled red symbols. (C) Cartoon representation of the NS2B-NS3 

protease in the closed conformation with NS2B and NS3 shown in orange and grey, 

respectively. Spheres identify the residues highlighted in (B) for greatly reduced peak 

intensities upon addition of salt. 
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Fig. 10. High pH weakens the association between NS2Bc and NS3pro. The figure 

corresponds to Fig. 9, except that the peaks affected by pH rather than salt are analysed. 

(A) 15N-HSQC spectra of uniformly 15N-labelled DENp at pH 7.5 (blue spectrum) and 

pH 6.5 (black spectrum). All other sample conditions were the same as in Fig. 3. Circles 

identify peaks that broadened beyond detection at pH 7.5. (B) Cross-peak heights 

observed in the spectra of (A) plotted versus the amino acid sequence. Red and black 

symbols correspond to the data measured at high and low pH, respectively. A horizontal 

line indicates the level of white noise in the spectrum at high pH. Intensities are in 

arbitrary units and the spectra were scaled to give similar intensities for the peaks with 

highest intensities. The peaks in DENp displaying intensity reductions greater than 40% 

at high pH are highlighted by filled red symbols. (C) Cartoon representation of the 

NS2B-NS3 protease in the closed conformation with NS2B and NS3 shown in orange 

and grey, respectively. Spheres identify the residues highlighted in (B) for substantial 

reductions in peak intensities at pH 7.5. 
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Figure S1. Sequence alignment of the NS2B-NS3pro in the dengue virus serotypes 

1-4 (NCBI taxonomy IDs 11053, 11070, 408693 and 408688). Positively and negatively 

charged amino acids are shown in blue and red, respectively. Residues of NS2B are 

displayed in italics and identified by an asterisk. NS2B contains a hydrophilic domain 

acting as a cofactor (residues 49*-95*) followed by a hydrophobic transmembrane 
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domain and a C-terminal hydrophilic segment containing the autoproteolytic cleavage 

site (residues 125*-130*) leading to NS3. In previous studies of the dengue virus 

protease, the NS2B cofactor was linked to NS3pro via a covalent Gly4-Ser-Gly4-linker, a 

construct referred to as DENpro [1]. The construct presented here, referred to as DENp, 

uses the autoproteolytic cleavage site (residues 125*-130*) instead of the 

Gly4-Ser-Gly4-linker to connect NS2B and NS3pro. The resulting amino acid sequence 

of the DENp construct is shown in bold, underlined residues form the catalytic triad. 

Autoproteolysis of DENp during protein expression yields a non-covalent, active 

protease complex. 

 

 

 

 

 

 
Figure S2. Chemical structures of inhibitor 1 and C1 lanthanide tag. (A) Inhibitor 

used in the present work. It is a generic inhibitor of serine proteases [2,3], which reacts 

with the protease with formation of an ester bond to Ser135, releasing yellow 

p-nitrophenolate [4]. (B) Structure of the C1 tag with bound lanthanide ion [5]. The tag 

is activated by a pyridin-2-yldisulfanyl group for spontaneous reaction with a cysteine 

thiol group to form a disulfide bond. The C2-tag is the opposite enantiomer of the 

C1-tag with ((R)-1-phenylethyl)acetamide pendants instead of 

((S)-1-phenylethyl)acetamide pendants throughout.   
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Figure S3. DENp is enzymatically active. The activities of DENp (triangles) and 

DENpro (circles) were compared using 10 µM Bz-norleucine-lysine-arginine- 

arginine-AMC [6] in 50 mM Tris.HCl (pH 7.5), 50 mM NaCl and 1 mM CHAPS in a 

final volume of 50 µL at 25 °C. The proteolytic reaction was monitored by the increase 

in fluorescence (relative fluorescence units per second, exciting at 380 nm and 

monitoring the emission at 450 nm) observed during 30 mins on a SpectraMax 

microplate reader. Each measurement was performed in three different wells and the 

data were averaged.  
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Figure S4. 15N-HSQC spectrum of DENp selectively labelled with 15N-serine and 
15N-isoleucine. Same as Figure 3A, except that the resonance assignments are shown. 

 

 

 

 

 

 

 

 

 

 

 

Figure S5. 15N-HSQC spectra of DENp selectively labelled with 15N-isoleucine at 

different ionic strengths. Both spectra were acquired using 0.2 mM protein solutions in 

90% H2O/10% D2O with 20 mM MES, pH 6.5, at 25 oC on a Bruker 800 MHz NMR 

spectrometer. (A) 15N-HSQC spectrum recorded in the presence of 50 mM NaCl. The 

spectrum is the same as the spectrum in Figure 3A. (B) Same as (A), except that the 

buffer contained 300 mM NaCl.  
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Figure S6. PCSs observed for NS2B of DENp at 50 mM and 300 mM NaCl. The 

spectra were recorded using the same conditions as in Figure 3. (A) Superimpositions of 

selected spectral regions of 15N-HSQC spectra of mutant B of DENp with the C2 tag at 

50 mM NaCl (left panels) and 300 mM NaCl (right panels). The samples were tagged 

with the C2-tag loaded with paramagnetic Tb3+ (cyan peaks) or diamagnetic Y3+ (red 

peaks). The resonance assignments of the selected cross-peaks are indicated. (B) 

Cartoon representation of the dengue virus protease in the closed conformation (PDB ID 

3U1I [7]), showing NS2B in orange and NS3pro in grey. The locations of the residues 

analysed in (A) are highlighted by balls and the site of the C2-tag is indicated by a green 

sphere. 
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Figure S7. Correlations between back-calculated and experimental PCSs of DENp 

at low and high salt. The PCSs were measured for the backbone amide protons of a 

uniformly 15N-labelled cysteine mutant of DENp with the cysteine positioned at site B 

(see Figure 1) and ligated with either a paramagnetic C2-Tb3+ or a diamagnetic C2-Y3+ 

tag. The PCSs of NS2B and NS3pro are shown as red squares and black circles, 

respectively. NS2B appears to be located in the same position at high and low salt, as 

this point fits equally well to the correlation line under both conditions. (A) Data at 50 

mM NaCl. (B) Data at 300 mM NaCl. 
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Table S1. PCSs of backbone amide protons of 15N-labelled DENp mutant B with C2-tag 

loaded with Tb3+ at 50 mM and 300 mM NaCl concentrationsa 

Residueb  
PCS in low 
salt (ppm) 

PCS in high 
salt (ppm) 

Arg55* -0.578 -0.722 
Ala57* -0.220 -0.361 
Glu62* 0.075 0.026 
Glu63* 0.056 0.026 
Gln64* 0.070 0.056 
Ala65* 0.096 0.078 
Ser70* 0.169 0.183 
Ser71* 0.119 0.140 
Ser75* 0.108 - 
Gly21 -0.200 -0.280 
Gly39 -0.413 -0.640 
Thr41 -0.265 -0.340 
Thr48 -0.128 -0.220 
His51 1.219 1.020 
Gly62 -0.748 -0.710 
Asp71 0.254 0.200 
Ile77 0.092 0.060 
Tyr79 -0.308 -0.330 
Gly82 -0.088 -0.110 
Leu98 0.175 0.090 
Ala108 0.142 0.080 
Gln110 0.166 0.140 
Thr111 0.158 0.130 
Gly114 0.179 0.130 
Phe116 0.195 0.160 
Gly121 0.141 0.140 
Thr122 0.130 0.120 
Ile123 0.181 0.170 
Val140 0.135 0.090 
Lys142 0.073 0.050 
Gly148 0.143 0.080 

a Other parameters were 20 mM MES, pH 6.5, 800 MHz 1H NMR frequency. PCSs were 

calculated as the difference in chemical shifts measured with paramagnetic Tb3+ minus 

the chemical shifts with diamagnetic Y3+. 
b NS2B residues are identified by an asterisk. 
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Table S2. Δχ tensor parameters of DENp mutant B with C2-Tb3+ taga 

 Δχax
 Δχrh x y z α β γ 

Low 
salt 

-16.1  

(0.6) 

-1.5 

(0.3) 

29.2 

(0.2) 

34.0 

(0.2) 

-4.2 

(0.3) 

7.7 

(1.2) 

48.4 

(1.0) 

56.9 

(8.7) 

High 
salt 

-13.7 

(1.1) 

-1.4 

(0.4) 

30.4 

(0.3) 

34.2 

(0.3) 

-4.0 

(0.4) 

20.0 

(2.1) 

51.2 

(1.7) 

26.0 

(21.5) 

a The tensor parameters of NS2B-NS3pro complex were calculated with the program 

Numbat [8], using the PCSs of Table S1 and the model of the closed conformation 

established previously [4]. This model deviates from the crystal structure of serotype 3 

DENpro 3U1I [7] with a backbone RMSD of 0.7 Å. The axial and rhombic components 

of the Δχ tensors are given in 10-32 m3 and the Euler angles in degrees, using the zyz 

convention and unique tensor representation [8]. Error estimates (in brackets) were 

determined from fits obtained by randomly omitting 10% of the PCS data. 
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