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Alignment-free Sequence Comparison for
Biologically Realistic Sequences of Moderate

Length
Conrad J. Burden, Junmei Jing, and Susan R. Wilson

Abstract
The D2 statistic, defined as the number of matches of words of some pre-specified length k,

is a computationally fast alignment-free measure of biological sequence similarity. However there
is some debate about its suitability for this purpose as the variability in D2 may be dominated by
the terms that reflect the noise in each of the single sequences only. We examine the extent of the
problem and the effectiveness of overcoming it by using two mean-centred variants of this statistic,
D2* and D2c. We conclude that all three statistics are potentially useful measures of sequence
similarity, for which reasonably accurate p-values can be estimated under a null hypothesis of
sequences composed of identically and independently distributed letters. We show that D2 and
D2c, and to a somewhat lesser extent D2*, perform well in tests to classify moderate length query
sequences as putative cis-regulatory modules.
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1 Introduction and Background
The D2 statistic is defined as the number of word matches of some pre-specified
word length k between the two sequences of letters from a given alphabet A . Given
two sequences A= A1, . . . ,AnA and B= B1, . . . ,BnBof length nA and nB respectively,
let Xw and Yw be the number of occurrences of the k-word w ∈ A k in A and B
respectively. Then

D2(k) = ∑
w∈A k

XwYw. (1)

In a series of papers (Forêt, Kantorovitz, and Burden (2006), Kantorovitz, Booth,
Burden, and Wilson (2006), Burden, Kantorovitz, and Wilson (2008), Forêt, Wil-
son, and Burden (2009a,b)) the D2 statistic has been promoted as a potential tool
for alignment-free comparison of biological sequences (Waterman (1995), Lippert,
Huang, and Waterman (2002)). In these applications the alphabet A consists of 4
nucleic acids in the case of DNA sequences or 20 amino acids in the case of protein
sequences. Compared with alignment-based sequence comparison methods such as
BLAST (Altschul, Madden, Schaffer, Zhang, Zhang, Miller, and Lipman (1997)),
alignment-free sequence comparison measures do not assume conservation of long
range contiguity between sequences, and may be useful when genome shuffling, re-
versal or long insertions occur or for the identification of potential gene-regulatory
regions from training data.

The reasoning behind the D2 statistic is that it should detect simultaneous
over-representation in both sequences of a particular subset of all possible words.
However, it has been argued by Lippert et al. (2002) and Reinert, Chew, Sun, and
Waterman (2009) that a potential serious shortcoming of the D2 statistic is that the
signal one is trying to detect may be hidden by the natural variability of D2 due
to noise in each of the single sequences only, as measured by Var (D2) under a
suitable null hypothesis. We refer to this effect as single sequence noise. More
specifically, under an assumption that A and B are random sequences consisting
of identically and independently distributed (iid) letters, the variance of D2 for a
pair of sequences of length n is composed of an order O(n3) part arising from
independent random variations of word frequencies in each of the two sequences
(i.e. single sequence noise), and an order O(n2) arising from correlated variations of
word frequencies in both sequences. Therefore single sequence noise will swamp
any signal of simultaneous over-representation of particular words if the sequences
are sufficiently long. Consequently Reinert et al. (2009) argue that it may be more
appropriate to define alignment-free word match statistics in terms of the mean-
centred word counts
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˜
X̃w = Xw−E[Xw] = Xw− n̄A pw,

Yw = Yw−E[Yw] = Yw− n̄B pw, (2)

where pw is the probability of the k-word w occurring at any given location in A
or B and n̄A, n̄B are the number of possible k-word locations in sequences A and
B respectively.1 Accordingly they propose two new statistics, a centred, weighted
word count defined by

D∗2(k) = ∑
w∈A k

˜X̃wYw√
nAnB pw

, (3)

and a “self-standardized” or “Schepp” word match count,

DS
2(k) = ∑

w∈A k

˜X̃wYw√
˜X̃2

w +Y 2
w
. (4)

The main benefit of these two new statistics reported by Reinert et al. (2009)
and Wan, Reinert, Sun, and Waterman (2010) is that they have higher power to de-
tect sequence similarity when tested on synthetic data. Their power calculations
are based on alternative hypotheses simulated either from a common motif model,
in which a short motif is inserted randomly into two iid sequences, or a pattern
transfer model in which short motifs are randomly copied from one sequence to the
other. The power under a pattern transfer model can be further improved for ex-
tremely long sequences by using localised versions of D∗2 or DS

2 which are defined
as sums of pairwise comparisons of subsequences of the sequences under consider-
ation (Liu, Wan, Li, Reinert, Waterman, and Sun (2011)).

A second reported benefit of the Schepp statistic is that it is well represented
by a normal distribution. Unfortunately the Schepp statistic has a number of disad-
vantages for applications which involve large database searches: (i) it is computa-
tionally more intensive than the D2 statistic, requiring a sum over all |A |k possible
k-words and hence a run time of order O(|A |k(nA+nB)), (D2 has an extremely fast
run time of order O(k(nA+nB))), (ii) unlike D2, there is no known exact formula for
its variance, which must be estimated from a simulation for each set of parameters
k, nA, nB and letter frequencies fa, and (iii) the generalisation to a larger alphabet,
as required for protein amino-acid sequences, becomes impractical given the large
number of possible k-words and high dimensionality of the parameter space.

1In general n̄A = nA − k + 1 and n̄B = nB − k + 1. Herein, however, we find it algebraically
convenient to impose periodic boundary conditions on each of the the sequences and henceforth set
n̄A = nA and n̄B = nB. The periodic boundary conditions are a minor technicality which are easily
implemented in practical applications (see Forêt et al. (2009a)).
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In this paper we argue that the extent of the single sequence noise problem
is not serious for moderate sequence lengths encountered in many biological ap-
plications, such as searches for regulatory motifs or protein phylogeny. We also
demonstrate that, provided the word probabilities pw are specified externally and
not estimated from the sequences, the D∗2 statistic can be conveniently written as
an uncentred weighted word count whose mean and variance can be calculated an-
alytically under an iid null hypothesis and whose null distribution is very well ap-
proximated by a Gamma distribution. The benefit of these results is that D∗2 shares
with D2 the properties that it is very fast to compute (with run time linear in the
sequence lengths), and that accurate p-values can easily be obtained under the iid
null hypothesis for biologically relevant parameter regimes. We also test and com-
pare the performance of the D2, D∗2 and a centred version of D2, which we call DC

2 ,
with and without mismatches against a dataset of known cis-regulatory modules
constructed by Kantorovitz, Robinson, and Sinha (2007).

2 The magnitude of single sequence variations
As mentioned in the introduction, the extent of the single sequence noise problem
is indicated by the dominance of Var (D2) by a contribution from noise in each of
the single sequences. In the appendix it is shown for sequences of lengths nA and
nB and the more general case of a weighted word match statistic that the variance
is composed of an O(nAnB) part consisting of correlated variations of word-match
counts from their mean (i.e. the true signal) and an O(nAnB(nA+nB)) part composed
entirely of unwanted single sequence noise. Clearly the second contribution will
dominate in the limit nA,nB→ ∞.

In Fig. 1 is plotted the contribution to Var (D2) from its O(nAnB(nA + nB))
part arising from single sequence noise as a fraction of the total variance under the
iid null-hypothesis assumption. The calculation uses the exact formula in Forêt et al.
(2009b) for Var (D2(k)), which easily splits into O(nAnB) and O(nAnB(nA + nB))
parts. The range of word lengths k and sequence lengths nA,nB covers many cases
arising in previous studies of the D2 statistic by Forêt et al. (2006, 2009a) and
Kantorovitz et al. (2007). For alphabet A = {A,C,G,T}, the parameter η is an
asymmetry parameter introduced by Melko and Mushegian (2004) describing the
departure of a strand-symmetric nucleic acid distribution from uniformity:

fC = fG = 1
4(1−η), fA = fT = 1

4(1+η), (5)

where fa is the frequency of occurrence of letter a∈A in either sequence and−1≤
η ≤ 1. Examples of more extreme letter asymmetry in genomes are the roundworm
Caenorhabditis elegans and zebra fish Danio rerio, which exhibit compositional
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biases in the region of η = 1
3 , whereas for most mammals the asymmetry parameter

lies in the range η . 0.1 (Khuu, Sandor, DeYoung, and Ho (2007)).
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Figure 1: The fraction of Var (D2(k)) accounted for by its O(n3) single sequence
noise contribution for a range of sequence lengths n = nA = nB and word lengths k.
The letter frequency asymmetry parameter η is defined in Eq. (5). Only η > 0 is
shown as the curves are symmetric about η = 0.

One sees in Fig. 1 that Var (D2) is not strongly dominated by single se-
quence noise for the moderate values of η occurring in nature, particularly for
longer word lengths and shorter sequences. This brings into question the assertion
in Reinert et al. (2009) that D2(k) is not a suitable statistic for sequence comparison,
and demands further investigation. In Section 5 below we repeat an earlier analysis
by Forêt et al. (2009a) of a collection of cis-regulatory model data sets constructed
by Kantorovitz et al. (2007) to gauge the advantage to be gained by using the cen-
tred versions of word count statistics. These data sets are from the parts of the
human and fly genomes with asymmetry parameters in the range 0.1 . η . 0.2.
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3 The properties of D∗2
The statistic D∗2 (Eq. (3)), which was introduced by Reinert et al. (2009), was mo-
tivated by a desire to scale the word count vectors Xw and Yw by estimates of their
standard deviations. In its original version, the quantity pw occurring in the denom-
inator of Eq. (3) was an estimate of the word frequency w obtained from observed
letter frequencies in the sequences A and B, and was therefore a random variable. In
the subsequent calculations of the properties of D∗2 by Wan et al. (2010), these word
frequencies are defined as pw = Πa∈w fa, where fa is the prespecified probability of
occurrence of letter a ∈A under the null hypothesis in the randomly generated iid
sequences A and B. In this second interpretation, pw is an externally specified pa-
rameter and not a random variable. The choice of interpretation will affect the null
distribution of the statistic D∗2, and in this paper we chose the second interpretation,
principally because it renders the statistic amenable to analytic investigation.

We now show that D∗2 can be written, up to an additive constant, as a
weighted uncentred word match count. For any k-word w ∈ A k and position i =
1, . . . ,nA in sequence A, define the indicator random variable

IA
i (w) =

{
1 if (Ai . . .Ai+k−1) = (w1 . . .wk),
0 otherwise, (6)

and similarly for IB
j (w), j = 1, . . . ,nB. We also impose periodic boundary conditions

on both sequences, i.e. AnA+i = Ai and BnB+i = Bi for i = 1, . . . ,k− 1. The word
count vectors can then be written

Xw =
nA

∑
i=1

IA
i (w), Yw =

nB

∑
i=1

IB
i (w). (7)

Consider the expansion

√
nAnBD∗2(k) = ∑

w∈A k

XwYw

pw
−nB ∑

w∈A k

Xw−nA ∑
w∈A k

Yw +nAnB ∑
w∈A k

pw. (8)

The second term of this expansion is

−nB ∑
w∈A k

Xw =−nB

nA

∑
i=1

∑
w∈A k

IA
i (w) =−nB

nA

∑
i=1

1 =−nAnB, (9)

and similarly the third term is also equal to −nAnB. Since ∑w∈A pw = 1, the final
term is equal to nAnB. Thus D∗2 can equivalently be written as

√
nAnBD∗2(k) = D†

2(k)−nAnB, (10)
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where D†
2 is the weighted, uncentred word match count

D†
2(k) = ∑

w∈A k

XwYw

pw
. (11)

3.1 Mean and variance of D∗2

The means of D∗2(k) and D†
2(k) are easily seen to be

E[D∗2(k)] = 0, E[D†
2(k)] = nAnB. (12)

An exact analytic formula for the variance of any weighted word count statistic of
the form DW

2 = ∑w,v∈A k Xwβw,vYv, where βw,v is a fixed dk× dk symmetric matrix
defined between any two k-words w and v and d = |A |, has been given by Burden,
Jing, and Wilson (2011) (see appendix). Applying Eqs. (23) to (28) to the current
case gives

nAnBVar (D∗2(k)) = Var (D†
2(k))

= nAnB

[
dk +1−2k+2d

dk−1−1
d−1

]
. (13)

Two things are of note. Firstly the variance is independent of the letter distribution
fa. Secondly the variance is proportional to nAnB, with no third order part. Given
the relationship between D∗2 and D†

2, this is consistent with the result proved in the
appendix that the variance of the centred version of weighted word count, defined
as

DWC
2 (k) = ∑

w,v∈A k

˜X̃wβw,vYv, (14)

is precisely the O(nAnB) part of Var (DW
2 (k)), while the third order part is entirely

composed of single sequence noise. Thus we expect D†
2 to be free of single se-

quence noise as nA, nB become large.

3.2 Empirical distribution of D∗2

Numerical simulations carried out by Forêt et al. (2009a,b) indicate that the Gamma
distribution gives a more accurate approximation to the distribution of D2(k) than
does the Normal distribution for parameter ranges typically encountered in biologi-
cal applications. We have carried out analogous simulations of the D†

2 distributions
generated from ensembles of 100,000 pairs of random iid sequences. We compare
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these with Normal and Gamma distributions. For comparison with the Gamma dis-
tribution in particular, it is more convenient to work with D†

2, whose range is the
interval [0,∞), rather than D∗2, to which it is related by a simple shift and rescaling,
namely Eq. (10).

The motivation for the use of a Gamma distribution is as follows. The Nor-
mal and Pólya-Aeppli (or compound Poisson) distributions are known asymptotic
distributions of the D2 statistic in cases where the word length k is small or large
respectively with respect to the logarithm of the sequence lengths (Lippert, Huang,
and Waterman (2002), Burden, Kantorovitz, and Wilson (2008)). A Pólya-Aeppli
random variable is the sum of a Poisson number of Geometric random variables, and
arises in the study of random word counts as a Poisson number of clumps of over-
lapping words, each clump containing a Geometric number of k-words (Lothaire
(2005)). A Gamma random variable is a fixed number of iid exponential random
variables, and therefore should be an approximation to a Pólya-Aeppli random vari-
able as the Poisson parameter increases (so that the number of clumps is narrowly
distributed about its mean) and the expected number of word matches increases (so
that the geometric number of words in a clump can be approximated by a continuous
exponential random variable). By the central limit theorem, a Gamma distribution
is also asymptotically Normal in the limit that the number of iid exponential ran-
dom variables becomes large. It is therefore a logical choice for an empirical fit
straddling both asymptotic regimes.

Figure 2 shows empirically generated cumulative distribution functions of
the D†

2 distribution for typical values of sequence length, word length k and asym-
metry parameter η = 0, 0.1 and 0.2 defined by Eq. (5) for a d = 4 letter alphabet,
together with Normal, Gamma and Pólya-Aeppli distribution functions with means
and variances matching the theoretical values given in Eqs. (12) and (13).

By definition, D†
2(k) is a discrete random variable. For the case of a uniform

letter distribution, η = 0, we have D†
2(k) = dkD2(k), where D2(k) takes only integer

values. As shown in Figure 2, the discrete nature of D†
2(k) is evident and the Pólya-

Aeppli approximation is very close in this case for the parameter values shown. In
the biologically realistic range η = 0.1 to 0.2 however, the allowed values of D†

2(k)
are considerably more densely packed on the real line. For the parameter values
shown, the Gamma approximation is clearly superior to the Normal approximation,
though the Normal approximation improves as n increases as expected.

A more quantitative indication of the closeness of fit of empirically de-
termined samples of D†

2 to model distributions can be got from the Kolmogorov-
Smirnov test. Table 1 gives Kolmogorov-Smirnov p-values obtained by comparing
D†

2 samples against Normal and Gamma distributions with means and variances
matching the theoretical values given in Eqs. (12) and (13). We observe that the
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´

Figure 2: Empirical distribution functions of D†
2(k) for a range of sequence lengths

n = nA = nB, word lengths k and letter frequency asymmetry parameter η for a
4 letter alphabet, obtained from samples of 100,000 pairs of iid sequences. Also
shown are Normal, Gamma and Polya-Aeppli distribution functions with means
and variances matching the theoretical values
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Table 1: P-values from the Kolmogorov-Smirnov test applied to samples of the
D†

2 statistic from samples of pairs of random i.i.d. sequences of length n from a
4 letter alphabet with asymmetry parameter η = 0.1 for words of length k. The
tests were carried out against Normal and Gamma distributions with means and
variances calculated independently of the samples. P-values greater than 0.05 are
shown in bold face.

k�n 100 200 400 800 1600 3200

D†
2 vs. Normal (Sample size = 10,000)

4 0.000 0.042 0.740 0.758 0.745 0.876
6 0.000 0.000 0.003 0.340 0.349 0.142
8 0.000 0.000 0.000 0.000 0.000 0.251
10 0.000 0.000 0.000 0.000 0.000 0.000

D†
2 vs. Gamma (Sample size = 10,000)

4 0.131 0.959 0.704 0.378 0.510 0.895
6 0.000 0.000 0.057 0.120 0.724 0.475
8 0.000 0.000 0.000 0.004 0.327 0.016
10 0.000 0.000 0.000 0.000 0.000 0.007

D†
2 vs. Normal (Sample size = 1,000)

4 0.063 0.256 0.614 0.171 0.708 0.516
6 0.000 0.001 0.013 0.080 0.309 0.726
8 0.000 0.000 0.000 0.002 0.333 0.465
10 0.000 0.000 0.000 0.000 0.000 0.060

D†
2 vs. Gamma (Sample size = 1,000)

4 0.439 0.662 0.324 0.263 0.728 0.492
6 0.000 0.807 0.483 0.372 0.236 0.602
8 0.000 0.000 0.000 0.423 0.362 0.951
10 0.000 0.000 0.000 0.000 0.000 0.285

deviation from the respective model distributions, as indicated by small P-values,
sets in rapidly as the Pólya-Aeppli regime in the bottom left hand corner of the table
is approached, though in general the Gamma distribution maintains an acceptible
fit further into this regime. Note also that, because the model distributions are never
an exact description of the true D†

2 distribution, the p-values decrease as the sam-
ple sizes increase. That is, the location of a boundary beyond which the Gamma
approximation becomes invalid cannot be unambiguously specified.

To explore the accuracy of the above approximations for estimating p-values
in the tail of the distribution, in Figs. 3 and 4 we show Q-Q plots of the empirically
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determined D†
2 quantiles against quantiles of the Normal and Gamma distributions.

Again the Gamma distribution outperforms the Normal distribution, accurately es-
timating p-values out to the 99.0% percentile in most cases of biological interest.
However we would caution against trusting p-values obtained from the Gamma ap-
proximation as anything other than a qualitative guide of significance beyond this
point.

4 Centred exact and approximate word match statis-
tics

In order to overcome the problem of single sequence noise, one might also define
a centred version of the original D2 statistic in terms of the centred word counts
defined in Eq. (2), namely

DC
2 (k) = ∑

w∈A k

˜X̃wYw. (15)

As shown in the appendix for the more general case of a weighted word match
statistic, the variance of DC

2 (k) is precisely the O(nAnB) part of that of D2(k), and
the remaining, potentially troublesome third order part of Var (D2(k)) is entirely
composed of single sequence noise.

Another advantage of DC
2 is that, like D2, it can be computed in order

O(k(nA +nB)) time. To see this, consider the expansion

DC
2 (k) = D2(k)−nA ∑

w∈A k

pwYw−nB ∑
w∈A k

pwXw +nAnB ∑
w∈A k

p2
w

= D2(k)−nA

nB

∑
j=1

p(Bi...Bi+k−1)

−nB

nA

∑
i=1

p(Ai...Ai+k−1) +nAnB ∑
w∈A k

p2
w, (16)

where we have used the result

∑
w

pwXw =
nA

∑
i=1

∑
w

pwIA
i (w) =

nA

∑
i=1

p(Ai...Ai+k−1), (17)

which uses the indicator variables defined by Eq. (6). For iid sequences, the prob-
ability of the observed word at position i in sequence A is simply p(Ai...Ai+k−1) =
fAi . . . fAi+k−1 . Each of the second and third terms of Eq. (16) requires calculating

10
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Figure 3: QQ-plots comparing the D†
2 statistic generated from 100,000 pairs of ran-

dom iid sequences from a 4-letter alphabet with asymmetry parameter η = 0.1 with
Normal (red) and Gamma (blue) distributions. The vertical dotted lines indicate the
99% and 99.9% sample percentiles.
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Figure 4: The same as Fig. 3, except with η = 0.2
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Table 2: The same as for Table 1, except for the DC
2 statistic at η = 0.1. The shifted

Gamma random variable is explained in the text.

k�n 100 200 400 800 1600 3200

DC
2 vs. Normal (Sample size = 10,000)

4 0.000 0.032 0.182 0.867 0.822 0.077
6 0.000 0.000 0.001 0.026 0.011 0.103
8 0.000 0.000 0.000 0.000 0.000 0.085
10 0.000 0.000 0.000 0.000 0.000 0.000

DC
2 vs. shifted Gamma (Sample size = 10,000)

4 0.236 0.309 0.103 0.540 0.672 0.066
6 0.000 0.000 0.089 0.528 0.212 0.023
8 0.000 0.000 0.000 0.018 0.614 0.368
10 0.000 0.000 0.000 0.000 0.000 0.000

DC
2 vs. Normal (Sample size = 1,000)

4 0.004 0.517 0.682 0.085 0.003 0.355
6 0.000 0.004 0.017 0.725 0.248 0.771
8 0.000 0.000 0.000 0.000 0.001 0.155
10 0.000 0.000 0.000 0.000 0.000 0.000

DC
2 vs. shifted Gamma (Sample size = 1,000)

4 0.345 0.302 0.692 0.049 0.004 0.360
6 0.000 0.494 0.249 0.940 0.292 0.715
8 0.000 0.000 0.000 0.450 0.181 0.138
10 0.000 0.000 0.000 0.000 0.000 0.567

the probabilities of each of the words occurring in either of the sequences, which
requires O(k(nA +nB)) time, and the fourth term is a simple constant.

As for the previous word count statistics, we find that the empirical dis-
tribution of DC

2 is better approximated by a Gamma distribution than a Normal
distribution. Since its mean is zero, we compare DC

2 to a shifted random variable
XΓ−E[D2], where XΓ is a Gamma random variable whose mean is equal to the
theoretical E[D2] and variance is equal to the theoretical Var (DC

2 ). QQ-plots of
DC

2 samples obtained from 100,000 randomly generated pairs of iid sequences are
shown in Figs. 5 and 6, and Kolmogorov-Smirnov p-values for DC

2 samples from
10,000 and 1,000 pairs of i.i.d. sequences compared against Normal and shifted
Gamma distributions are given in Table 2.
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Figure 5: QQ-plots comparing the DC
2 statistic generated from 100,000 pairs of

random iid sequences from a 4-letter alphabet with asymmetry parameter η = 0.1
with Normal (red) and shifted Gamma (blue) distributions. The vertical dotted lines
indicate the 99% and 99.9% sample percentiles.
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Figure 6: The same as Fig. 5, except with η = 0.2
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Forêt et al. (2009a) considered an extension of the usual D2(k) statistic to an ap-
proximate word match statistic

D2(k, t) = ∑
w∈A k

∑
{v:∆(w,v)≤t}

XwYv, t = 0,1, . . . ,k, (18)

where ∆(w,v) is the number of mismatches between two words w and v. Like
the exact word match statistic, this statistic was also shown in general to be well
approximated by a Gamma random variable with a theoretically calculated mean
and variance. Bearing in mind once again the avoidance of single sequence noise,
we consider in the next section a centred version

DC
2 (k, t) = ∑

w∈A k
∑

{v:∆(w,v)≤t}

˜X̃wYv, t = 0,1, . . . ,k. (19)

which, like DC
2 (k), is well represented by a shifted Gamma random variable (data

not shown). We note however that the approximate centred word match statistic
DC

2 (k, t) is somewhat slower to calculate than its exact match counterpart DC
2 (k) as

the summands of the second and third terms of Eq. (16) must be replaced by a sum
of the probabilities of all words with up to t mismatches relative to the words at
positions j in B and i in A respectively.

5 Application to the discovery of cis-regulatory mod-
ules

The effectiveness of the D2 statistic as a tool for the discovery of cis-regulatory
modules (CRMs) was recently explored by Forêt et al. (2009a). A dataset con-
structed by Kantorovitz et al. (2007) was used, which consisted of two parts: a
‘positive’ data set consisting of seven sets of sequences from Drosophila and hu-
man known to contain CRMs, and a ‘negative’ data set constructed from randomly
chosen non-coding sequences from the same species. The following problem was
addressed: given a set of sequences known to contain CRMs, and a query sequence,
can the query sequence be classified as containing similar CRMs or not?

The following experiment was set up: each sequence in each positive set was
selected in turn as the query sequence and compared to both the remaining positive
sequences of this set and to the corresponding negative sequences using the D2
statistic. The query sequences were then screened to accept only those for which
the smallest p-value of all comparisons was less than 0.01. A stringent criterion
was used, namely, a positive query was considered to be correctly classified if the
smallest p-value was obtained with another sequence of the positive set. Here this

With applications to regulatory motifs in mind, Burden et al. (2008) and
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Figure 7: The percentage of times a query sequence was correctly classified as
containing CRMs by testing using D2 and D†

2 and DC
2 statistics. The numbers in

parentheses are the number of positive control sequences in each set. Sequence
lengths are typically in the range n = 100 to 2000, with a median close to 600.
Percentages are only plotted if at least 4 query sequences survived the screening
requirement that the minimum p-value should be less than 0.01.

experiment is repeated using the D†
2 (or equivalently, D∗2), DC

2 and D2 statistics.
The p-values were calculated using the Gamma approximations to each statistic.
The asymmetry parameters η used in the Gamma approximations were estimated
from relative letter frequencies within each entire data set, and were in the range
0.1 . η . 0.2.

The results are illustrated in Fig. 7. For both D2 and DC
2 , a good sensitivity is

achieved for most data sets, with typically 80% or more of the sequences correctly
classified for at least one choice of word length using the above stringent criterion.
In most cases the performance of D†

2 was noticeably poorer.
We have also carried out the above tests using the approximate word match

statistics D2(k, t) and DC
2 (k, t) for t up to three mismatches as test statistics. The

results for the percentage of times a query sequence was correctly classified as
containing CRMs are shown in Fig. 8. In each data set we observe that the optimal
choice of parameters includes a combination with t = 0 mismatches, suggesting that
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Figure 8: The percentage of times a query sequence was correctly classified as
containing CRMs by testing using D2(k, t) and DC

2 (k, t) statistics for up to t = 3
mismatches for the same data set as Fig. 7.

confers no benefit.
As a general rule, in applications to the detection of CRMs, the problem of

choosing between the word match statistic D2, D†
2 and DC

2 , and choosing the word
length k for a given data set could easily be solved by the above approach, namely
by determining a set of positive sequences and using these to estimate appropriate
parameters before comparing the query sequence(s) to them.

6 Discussion
Our main purpose is to examine the relative merits of variants of the D2 word match
statistic as an alignment-free method of biological sequence comparison. It has
been argued by Reinert et al. (2009) and Wan et al. (2010) that, in its original form,
the D2 statistic is not suitable for biological sequence comparison, firstly because
it is dominated by single sequence noise, and secondly because it performs badly
in tests of its power to detect sequence relatedness in synthetically generated data.
These claims are based on analyses which have concentrated on the asymptotic
behaviour of D2 and related statistics as the sequence lengths become large. Here

the extra considerable computational complexity involved in including mismatches
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we have concentrated our efforts on more moderate sequence lengths relevant to
biological applications, such as CRMs, of up to about 3,000 letters.

The claim by Reinert et al. (2009) that the D2 statistic is dominated by
single sequence noise is based on an observation that for sequences of length n,
Var (D2) under a null iid hypothesis is composed of an O(n3) part due to fluc-
tuations in word counts in each of the two sequences, and an O(n2) part due to
correlated fluctuations in word counts in both sequences. In the Appendix we have
verified the form of these contributions for the more general case of a weighted
word match statistic, DW

2 defined by Eq. (20), using exact analytic formulae for the
variance. Reinert et al.’s argument is that any genuine signal of simultaneous over-
representation of words above the O(n2) part is masked by the spurious O(n3) part.
While the claim certainly has merit in the asymptotic limit of very long sequences,
we find that for parameter values relevant to many biological applications that sin-
gle sequence noise is unlikely to be a serious problem. For instance, the O(n3) part
contributes less than half of Var (D2) for word lengths greater than k = 6 letters,
sequence lengths less than about n = 1000 letters, and the moderate values of letter
distribution asymmetry (η . 0.2) observed in most genomes (see Figure 1).

Nevertheless, it is straightforward to remove the O(n3) part of the variance
by defining word match statistics in terms of the mean-centred word counts defined
by Eq. (2). We have considered two such statistics, D∗2 originally proposed by Rein-
ert et al. (2009), and a simple centred version of D2, which we call DC

2 , defined by
Eq. (15). We obtain exact analytic calculations of the variance of these statistics,
and demonstrate empirically that for biologically relevant letter distributions and
a broad range of word and sequence lengths, they can be extremely well approxi-
mated up to the 99th percentile by a shifted Gamma distribution by making use of
the known mean and variance. In fact the statistic D∗2 is shown to be equivalent up
to a simple scaling and additive constant to a weighted, non-centred statistic, D†

2,
defined by Eq. (11).

Thus either of these statistics potentially provide a measure of sequence
similarity which can be evaluated rapidly in time linear in the sequence lengths,
and for which accurate p-values up to the 99th percentile under the null hypothesis
of iid letters can be readily obtained.

These statistics therefore have computational advantages over the Schepp
word match count DS

2 (Eq. (4)), also introduced by Reinert et al. (2009), whose
reported benefit is that it is asymptotically Normal for moderate sequence lengths.
However, there is no known exact formula for Var (DS

2), which must be estimated
numerically. Furthermore evaluation of DS

2 requires a sum over all possible k-words,
which has a high computational cost, particularly for a large alphabet such as the
set of 20 amino acids needed for protein sequences.
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Rather than using simulated data, we have reanalysed a data set constructed
by Kantorovitz et al. (2007) for the purpose of testing the effectiveness of simi-
larity measures in discovering cis-reulatory modules. Our analysis indicates that
DC

2 performs roughly as well as or slightly better than the previously tested exact
word-match D2 statistic, whereas D†

2 (that is equivalent to D∗2) performs noticeably
worse. We have also considered approximate-match versions of D2 and DC

2 which
allow a certain prespecificed number of mismatches, but we find that in general
that this leads to worse performance. For detecting CRMs against training data we
would therefore recommend checking both the exact D2(k) and DC

2 (k) statistics us-
ing the method outlined in Section 5 to determine the most appropriate statistic and
optimum word length.

Finally, we note that as with any test of sequence similarity, results must be
interpreted with caution. Firstly it is difficult to judge the sensitivity of any par-
ticular statistic for a given biological problem given that it is difficult to know the
true nature of the alternate hypothesis one is testing for. Choosing an alternate hy-
pothesis to measure the power of a sequence similarity test remains as much an art
form as choosing the statistic itself. Secondly, the specificity of a test depends on
having accurately judged the underlying null hypothesis: obtaining a small p-value
may indicate a common origin for the sequences in question, or it may simply indi-
cate that the underlying assumptions on which the test is based do not hold. Recent
studies of the k-word spectra of several entire genomes in Chor, Horn, Goldman,
Levy, and Massingham (2009) suggest a second order Markovian dependency may
in general be more appropriate than the iid null hypothesis used herein. In future
work we intend to extend our analysis of the distributional properties of D2, DC

2 and
D∗2 to include Markovian dependencies.

Appendix: Determination of Var (DWC
2 )

We give a derivation of the result that variance of the weighted, centred word match
statistic, under the iid null hypothesis, is precisely the O(nAnB) part of the variance
of the uncentred statistic.

The weighted word match statistic is a generalisation of the D2(k) statistic
defined by

DW
2 (k) = ∑

w,v∈A k

Xwβw,vYv, (20)

where βw,v is a fixed dk×dk symmetric matrix defined between any two k-words w
and v and d = |A | is the alphabet size. The β -matrix is assumed to take the form
of a product: βwv = β(w1,...,wk),(v1,...,vk) = βw1v1 . . .βwkvk . The original D2 statistic

20

Statistical Applications in Genetics and Molecular Biology, Vol. 11 [2012], Iss. 1, Art. 3

DOI: 10.2202/1544-6115.1724

Brought to you by | Australian National University
Authenticated | 130.56.104.242

Download Date | 3/19/14 8:52 PM



and the D†
2 statistic of Section 3 are particular cases of DW

2 . Burden et al. (2011)
give the formulae set out below for the mean and variance of DW

2 . As in previous
work (Forêt, Wilson, and Burden (2009a,b)), periodic boundary conditions are im-
posed on both sequences, that is, we define Ai = Ai−nA , i = nA + 1, . . .nA + k− 1,
and similarly for sequence B. The periodic boundary conditions are a minor tech-
nicality, easily implemented in practical applications. We further assume that the
probability of the letter a ∈A occurring at any given site in either sequence is fa,
where ∑a∈A fa = 1.

We begin with the following definitions. For a,b ∈A , set

ηa =
√

fa, Mab = ηaβabηb, πt = η
′Mt−1

η , t = 1,2, . . . ,

where η ′ = (η1, . . . ,ηL), η is the corresponding column vector and M is the L×L
matrix with elements Mab. We also define

φ = ∑
a,b∈A

fa fbβ
2
ab. (21)

For the mean, one obtains by analogy with (Forêt et al., 2009b, Eq. (4)) the result

E[DW
2 ] = nAnBπ

k
2 . (22)

Writing the variance of Var (DW
2 ) as a sum of cross-covariances, gives a sum of five

contributions:
Var (DW

2 ) =V1 +V2 +V3 +V4 +V5. (23)

Analogous to (Forêt et al., 2009b, Eqs. (10), (14), (17), (20) and (26)) we find

V1 = nAnB

(
φ

k−π
2k
2

)
, (24)

V2 = nAnB(nA +nB−4k+2)

[
π

k
3 +2

k−1

∑
s=1

π
2s
2 π

k−s
3 − (2k−1)π2k

2

]
, (25)

V3 = 2nAnB

[
φπ

2
2

φ k−1−π
2k−2
2

φ −π2
2

− (k−1)π2k
2

]
, (26)

V4 = 4nAnB

k−1

∑
t=1

t−1

∑
s=0

(
π2

2s
π2ν+3

ρ
π2ν+1

t−s−ρ −π2
2k
)
, (27)

and

V5 = 2nAnB

k−1

∑
r,t=1

[(
t

∏
i=1

πli

)(
r

∏
j=1

πm j

)
−π2

2k

]
. (28)
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In the contributions V4 and V5, the following definitions have been used:

ν =

⌊
k− s
t− s

⌋
, ρ = (k− s) mod (t− s),

li = 1+2η +

{
1 if i≤ ζ

0 otherwise

}
+

{
1 if i≤ ζ − r
0 otherwise

}
m j = 1+2η +

{
1 if j ≤ ζ

0 otherwise

}
+

{
1 if j ≤ ζ − t
0 otherwise

}
,

where

η =

⌊
k

r+ t

⌋
, ζ = k mod (r+ t),

and b c indicates the integer part.
The centred version of the weighted word match statistic is defined as

DWC
2 (k) = ∑

w,v∈A k

˜X̃wβw,vYv, (29)

where X̃ and Ỹ are defined by Eq. (2). The statistics DC
2 of Section 4 and D∗2 of

Section 3 are particular cases of DWC
2 . The mean E[DWC

2 ] is clearly zero. Here we
show that Var (DWC

2 ) is precisely the O(nAnB) part of Var (DW
2 ), and that the remain-

ing O(nAnB(nA +nB)) part of Var (DW
2 ) is principally composed of single sequence

noise in the form of contributions from Var (∑w pwβw,vXv) and Var (∑w pwβw,vYv).
From the above definitions,

Var (DWC
2 (k)) = Var

(
DW

2 (k)
)

+n2
BVar ∑

w,v
pwβw,vXv

)
+ n2

AVar ∑
w,v

pwβw,vYv

)

−2nBCov DW
2 ,∑

w,v
pwβw,vXv

)

−2nACov DW
2 ,∑

w,v
pwβw,vYv

)
. (30)
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First term

The first term, the variance of DW
2 (k) given above, is of the form

Var
(
DW

2 (k)
)
= nAnB(nA +nB)U +nAnBV, (31)

where U and V depend on the word length k and letter distribution fa but not the
sequence lengths nA and nB. More specifically,

U = π
k
3 +2

k−1

∑
s=1

π
2s
2 π

k−s
3 − (2k−1)π2k

2 . (32)

Second and third terms

To calculate Var (∑w pwβw,vXv) we make use of the indicator random variable IA
i (v)

for the occurrence of word v at position i in sequence A to obtain

∑
w,v

pwβw,vXv =
nA

∑
i=1

∑
w,v

( fw1βw1v1 . . . fwkβwkvk)I
A
i (v)

=
nA

∑
i=1

Fi, (33)

where

Fi =

(
∑

a∈A
faβaAi

)
. . .

(
∑

a∈A
faβaAi+k−1

)
. (34)

Then

Var
(

∑
w

pwβw,vXv

)
=

nA

∑
i=1

Var (Fi)+2 ∑
1≤i< j≤nA

Cov (Fi,Fj). (35)

The first of these terms is
nA

∑
i=1

Var (Fi) =
nA

∑
i=1

{
E[F2

i ]−E[Fi]
2}

=
nA

∑
i=1

E

[(
∑
a

faβaAi

)2
]k

−E
[
∑
a

faβaAi

]2k


=
nA

∑
i=1


(

∑
a,b,c

faβab fbβbc fc

)k

−

(
∑
a,b

faβab fb

)2k


= nA

(
π

k
3−π

2k
2

)
, (36)

where we have made use of the iid property of the sequence.
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The second of these terms is a sum of covariances which are zero unless the
k-words beginning at locations i and j overlap. Therefore we can set j = i+ s and
write the second term in Eq. (35) as

2 ∑
1≤i< j≤nA

Cov (Fi,Fj) = 2
nA

∑
i=1

k−1

∑
s=1

Cov (Fi,Fi+s)

= 2
nA

∑
i=1

k−1

∑
s=1

{
E
[(

∑
a

faβaAi

)
. . .

(
∑
a

faβaAi+k−1

)
×

∑
b

fbβbAi+s

)
. . . ∑

b
fbβbAi+s+k−1

)]
−

E
[(

∑
a

faβaAi

)
. . .

(
∑
a

faβaAi+k−1

)]
×

E

[(
∑
b

fbβbAi+s

)
. . . ∑

b
fbβbAi+s+k−1

)]}

= 2
nA

∑
i=1

k−1

∑
s=1

E
[
∑
a

faβaAi

]s

E

[
∑
a,b

faβaAi fbβbAi

]k−s

E

[
∑
b

fbβbAi

]s

−

E
[
∑
a

faβaAi

]2k
}

= 2
nA

∑
i=1

k−1

∑
s=1

(
π

s
2π

k−s
3 π

s
2−π

2k
2

)
= 2nA

{
k−1

∑
s=1

π
2s
2 π

k−s
3 − (k−1)π2k

2

}
. (37)

Adding Eqs. (36) and (37) gives

Var ∑
w,v

pwβw,vXv

)
= nAU, (38)

with U defined in Eq. (32). An analogous result holds for Var (∑w pwYw). The
contribution from the second and third terms of Eq. (30) is then

nAnB(nA +nB)U. (39)
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Fourth and fifth terms

To calculate Cov
(
DW

2 ,∑w,v pwβw,vXv
)
, first note from Eqs. (20) and (7) that

DW
2 (k) =

nA

∑
i=1

nB

∑
j=1

β(Ai...Ai+k−1),(B j...B j+k−1). (40)

Then, using Eq. (33) and the fact that the covariance in the second line below is
zero unless words at positions i and ` in sequence A overlap,

Cov

(
DW

2 ,∑
w,v

pwβw,vXv

)

=
nA

∑
i=1

nB

∑
j=1

∑
{`:|`−i|<k}

Cov
(

β(Ai...Ai+k−1),(B j...B j+k−1), F̀
)
.

=
nA

∑
i=1

nB

∑
j=1

∑
{`:|`−i|<k}

E
[
β(Ai...Ai+k−1),(B j...B j+k−1)F̀

]
−nAnB(2k−1)π2k

2 .

(41)

In the last line the definition Eq. (34) and the iid assumption have been used to
evaluate E[β(Ai...Ai+k−1),(B j...B j+k−1)]×E[F̀ ] = π2k

2 .
For fixed positions i and `= i+ s in sequence A, where s = 0, . . . ,k−1, and

j in sequence B, the term E
[
β(Ai...Ai+k−1),(B j...B j+k−1)F̀

]
can be written as a sum over

all combinations of letters (a1, . . . ,ak+s,b1, . . . ,bk) ∈A 2k+s as illustrated in Fig. 9

A: 

B: 

a1  ...  as+1 ...   ak  ...  ak+s 

b1  ...  ...  ...   bk 

j 

i 

k – s s s 

l 

Figure 9: Arrangement of letters contributing to E
[
β(Ai...Ai+k−1),(B j...B j+k−1)F̀

]
. The

diagram is shown for the case i≤ `< i+k. It is straightforward to show that Eq. (42)
with s = |`− i| holds for all i− k ≤ `≤ i+ k.
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as

E
[
β(Ai...Ai+k−1),(B j...B j+k−1)F̀

]
= ∑

a1,...,ak+s,b1,...,bk∈A
Pr (config. in Fig. 9)×β(a1...ak),(b1...bk)×

∑
c∈A

fcβcas+1

)
. . . ∑

c∈A
fcβcas+k

)
= ∑

a1,...,ak+s,b1,...,bk∈A
fa1 . . . fak+s fb1 . . . fbk×βa1b1 . . .βakbk×

∑
c1,...,ck∈A

fc1 . . . fckβc1as+1 . . .βckas+k

= ∑
a1,...,ak+s,b1,...,bk,c1,...,ck∈A

fa1βa1b1 fb1 . . . fasβasbs fbs×

fc1βc1as+1 fas+1βas+1bs+1 fbs+1 . . . fck−sβck−sak fakβakbk fbk×
fck−s+1βck−s+1ak+1 fk+1 . . . fckβckak+s fk+s

= ∑
a,b∈A

faβab fb

)s(
∑

c,a,b∈A
fcβca faβab fb

)k−s(
∑

c,a∈A
fcβca fa

)s

= π
2s
2 π

k−s
3 . (42)

A similar calculation leads to the same result for `= i− s, where s = 1, . . . ,k−1.
Substituting Eq. (42) into Eqs. (41), and using (32), we obtain

Cov DW
2 ,∑

w,v
pwβw,vXv

)
= nAnB π

k
3 +2

k−1

∑
s=1

π
2s
2 π

k−s
3 − (2k−1)π2k

2

)
= = nAnBU, (43)

with a similar result holding for Cov (DW
2 ,∑w,v pwβw,vYv). Thus the contribution to

the fourth and fifth terms of Eq. (30) is

−2nAnB(nA +nB)U. (44)

Finally, adding Eqs. (31), (39) and (44),

Var (DWC
2 (k)) = nAnBV. (45)

That is, the variance of DWC
2 (k) is precisely the O(nAnB) part of the variance of

DW
2 (k), as stated. Furthermore, the result (39) shows that the O(nAnB(nA + nB))

part can be written entirely in terms of either of the single sequence variances
Var (pwXw) or Var (pwYw).
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