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Abstract

We give an asymptotic expression for the expected number of spanning trees in a

random graph with a given degree sequence d = (d1, . . . , dn), provided that the number

of edges is at least n + 1
2d

4
max, where dmax is the maximum degree. A key part of our

argument involves establishing a concentration result for a certain family of functions

over random trees with given degrees, using Prüfer codes.

1 Introduction

The number of spanning trees τ(G) in a graph G (also called the complexity of G) is an

important graph parameter that has connections to a wide range of topics, including the

study of electrical networks, algebraic graph theory, statistical physics and number theory

∗Research supported by the Australian Research Council, Discovery Project DP140101519.
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(see for example [1, 15, 17, 18]). These connections are largely related to the matrix tree

theorem, which says that τ(G) is equal to any cofactor of the Laplacian matrix of G.

There is a large body of existing work concerning the approximate value of τ(G) for graphs

with given degree sequences, and random graphs with given degree sequences, especially in

the regular case. Let d = (d1, . . . , dn) be a vector of positive integers with even sum, and let

Γd denote the set of all graphs on the vertex set {1, 2, . . . , n} with degree sequence d. If every

entry of d equals d then we write Γn,d for the set of all d-regular graphs on {1, 2, . . . , n}.
Let Gd be the random graph with degree sequence d, chosen uniformly at random from Γd,

and let Gn,d be the random d-regular graph on vertex set {1, 2, . . . , n}, chosen uniformly at

random from Γn,d. Unless otherwise stated, all asymptotics in this paper hold as n → ∞,

possibly along some infinite subsequence of N.

The number of spanning trees in a graph is strongly controlled by its degree sequence.

Let

d =
1

n

∑
j

dj, d̂ =

( n∏
j=1

dj

)1/n

denote the arithmetic and geometric means of the degree sequence d. The best uniform

upper bound for regular graphs is due to McKay [12], who proved that when d ≥ 3,

τ(G) = O(1)

(
(d− 1)d−1

(d2 − 2d)d/2−1

)n
log n

nd log d

for all G ∈ Γn,d. This was proved sharp within a constant by Chung and Yau [3]. Kos-

tochka [8] proved that (
d̂(1− ε)

)n ≤ τ(G) ≤ d̂n

n− 1

for any connected G ∈ Γd, where ε = ε(δ) > 0 tends to zero as δ = minj dj → ∞. This lower

bound extended a result of Alon [1] on τ(G) in the case of d-regular graphs.

To discuss random graphs, define the random variables

τd = τ(Gd) and τn,d = τ(Gn,d).

That is, τd is the number of spanning trees in Gd, and τn,d is the number of spanning trees

in Gn,d. McKay [11] proved that for fixed d,

τ
1/n
n,d → (d− 1)d−1

(d2 − 2d)d/2−1

with probability 1. An alternative proof in a much more general framework was given by

Lyons in [9, Example 3.16].

McKay [10] gave the expected value E τd to within a constant factor, in the case that

dj = O(1) for all j and the average degree is at least 2 + ε, for some ε > 0. Specifically,
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McKay proved that under these conditions, the expected number of spanning trees is

E τd = Θ(1)
1

n

(
d̂ (d− 1)d−1

dd/2(d− 2)d/2−1

)n

. (1.1)

Greenhill, Kwan and Wind [6] recently found the asymptotic value of this Θ(1) factor, for

random d-regular graphs with 3 ≤ d = O(1). Specifically, they proved that the Θ(1) in (1.1)

is asymptotic to the constant

(d− 1)1/2

(d− 2)3/2
exp

(
6d2 − 14d+ 7

4(d− 1)2

)
. (1.2)

(This is about e3/2/d for large d.) They also gave the asymptotic distribution of the number

of spanning trees in a random cubic graph.

In this paper, we obtain an asymptotic expression for E τd for a wider range of sparse

degree sequences d than in any of the above random graph results.

Our main result is the following.

Theorem 1.1. Let d = d(n) = (d1, . . . , dn) be a vector of positive integers with even sum,

for every n in some infinite subsequence of N. Define

dmax = max
j

dj , d = 1
n

n∑
j=1

dj, d̂ =

( n∏
j=1

dj

)1/n

, R = 1
n

n∑
j=1

(dj − d)2

and let

Hd =
(d− 1)1/2

(d− 2)3/2 n

(
d̂ (d− 1)d−1

dd/2 (d− 2)d/2−1

)n

.

Suppose that d4max ≤ (d− 2)n. Then the sequence d is graphical for sufficiently large n, and

the expected number of spanning trees in Gd is given by

E τd = Hd exp

(
6d2 − 14d+ 7

4(d− 1)2
+

R

2(d− 1)3
+

(2d2 − 4d+ 1)R2

4(d− 1)4 d2
+O

(
d4max

(d− 2)n
+ η

))
,

where

η = min

{
d4max

(d− 2)2n
,
d3max log n

(d− 2)n
, dmax(d− 2)

}
= O

(
d4max

(d− 2)n
+

(log n)5/2

n1/2

)
.

Some remarks about this result are given below.

• Due to the Erdős-Gallai Theorem, under the conditions of Theorem 1.1 the sequence

d is always graphical (without any requirement for n to be large). Since this fact is

not required for our asymptotic formula, we omit the proof.
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• Since dmax ≥ 1, the condition d4max ≤ (d− 2)n implies that d > 2.

• Other than the relative error term, the expression given by Theorem 1.1 matches (1.2)

in the regular case, showing that the formula obtained in (1.2) for regular graphs with

constant d ≥ 3 also holds for d-regular graphs with slowly growing d (in particular, it

holds when d = o(n1/3)).

• Under our assumptions, the relative error term may not be vanishing, though it is

always bounded. Let m = 1
2

∑n
j=1 dj be the number of edges in any graph in Γd. The

condition d4max ≤ (d − 2)n is equivalent to the condition that m ≥ n + 1
2
d4max, or in

other words, that there are at least 1
2
d4max +1 more edges in any graph in Γd than in a

tree on n vertices. For example, when dmax = 3, our result holds with a bounded error

if the number of edges exceeds n− 1 by at least 42.

In particular, we have the following corollary when d is close to 2.

Corollary 1.2. Suppose that d = 2 + 2x/n where 1
2
d4max ≤ x ≤ n1/2. (This corresponds to

graphs with n+ x edges.) Then

E τd =
1

n

(e
2

)x ( n

2x

)3/2+x
(
d̂

2

)n

exp

(
(6 +R)(2 +R)

16
+

3x2

2n
+O

(
d4max

x
+

x3

n2

))
.

Proof. We estimate the various terms in Theorem 1.1. First note that

(d− 1)1/2 = (1 + 2x/n)1/2 = eO(x/n)

and
1

(d− 2)3/2

(
d̂

(d− 2)d/2−1

)n

= d̂n
( n

2x

)3/2+x

.

Next, a series expansion yields

log

(
(d− 1)d−1

dd/2

)
= (1 + 2x/n) log

(
1 +

2x

n

)
− (1 + x/n) log

(
2 +

2x

n

)
= − log 2 + (1− log 2)

x

n
+

3

2

(x
n

)2

+O

((x
n

)3
)

so we have (
(d− 1)d−1

dd/2

)n

= 2−n
(e
2

)x

exp

(
3x2

2n
+O

(
x3

n2

))
.

Then, we can compute

6d2 − 14d+ 7

4 (d− 1)2
=

3

4
+O

(x
n

)
,
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1

2 (d− 1)3
=

1

2
+O

(x
n

)
,

(2d2 − 4d+ 1)

4 (d− 1)4 d2
=

1

16
+O

(x
n

)
.

So, noting that R ≤ d2max, we have

6d2 − 14d+ 7

4 (d− 1)2
+

R

2 (d− 1)3
+

(2d2 − 4d+ 1)R2

4 (d− 1)4 d2
=

(6 +R) (2 +R)

16
+O

(
d4max x

n

)
. (1.3)

Finally, the error term from Theorem 1.1 is at most

O

(
d4max

(d− 2)n
+ (d− 2)dmax

)
= O

(
d4max

x

)
.

Since this error term dominates the error from (1.3) under our assumptions, the result

follows.

From Corollary 1.2 we see that when the average degree is close to but above 2, and the

geometric mean d̂ is strictly greater than 2, then E τd tends to infinity. This can be true

even for degree sequences where the probability of connectivity tends to zero, even when

Corollary 1.2 does not apply. For example, consider the degree sequence d with n/2 vertices

of degree 5 and n/2 vertices of degree 1 (restricted to even n). Here d = 3 and d̂ =
√
5 > 2.

From Theorem 1.1 it follows that the expected number of spanning trees in Gd is

Θ(1/n)

(
80

27

)n/2

which tends to infinity as n → ∞. However, the probability that Gd is connected tends to

zero. To see this, we work in the configuration model [2]. For ease of notation, write n = 2t

and let S be the set of configurations with t cells containing 5 points and t cells containing

1 point. If a configuration in S gives rise to a connected graph then every point in a cell of

size 1 is paired with a point from a cell of size 5. There are at most

(5t)t (4t)!

22t (2t)!
(1.4)

such configurations, and the probability that a random configuration in S is simple, con-

ditioned on connectedness, is at most 1. The total number of simple configurations in S

is

Θ(1)
(6t)!

23t (3t)!
(1.5)

where the Θ(1) factor is the probability that a random configuration in S is simple: this

tends to a constant bounded away from zero, by [13, Theorem 4.6]. Dividing (1.4) by (1.5)

gives the upper bound

Θ(1)

(
55

27 33

)n/2

= o(1)
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on the probability that a random element of Gd is connected.

The case of dense irregular degree sequences will be treated in a separate paper.

1.1 Outline of our approach

Let (a)k denote the falling factorial a(a − 1) · · · (a − k + 1). We say that a sequence x =

(x1, . . . , xn) of positive integers is a tree degree sequence if the entries of x sum to 2n − 2.

We say that a tree degree sequence x is a suitable degree sequence if 1 ≤ xj ≤ dj for all

j ∈ {1, 2, . . . , n}. (The intended meaning is that x is suitable as a degree sequence for a

spanning tree of a graph with degree sequence d.)

For a suitable degree sequence x, let Tx be the set of all trees with degree sequence x =

(x1, . . . , xn) and T be the set of all trees with vertex set {1, 2, . . . , n}. It is well-known that

|Tx| =
(

n− 2

x1 − 1, . . . , xn − 1

)
. (1.6)

(See for example [16, Theorem 3.1].) Let τd(x) denote the number of spanning trees of Gd

with degree sequence x, and denote by P (d, T ) the probability that the random graph Gd

has T as a subgraph, for all T ∈ T . Then the expected number of spanning trees with degree

sequence x in Gd can be written as

E τd(x) =
∑
T∈Tx

P (d, T ) (1.7)

and furthermore, the expected number of spanning trees (of any degree sequence) in Gd is

E τd =
∑
x

E τd(x)

where the sum is over all suitable degree sequences x.

We will estimate the summand in (1.7) using a theorem by McKay [13, Theorem 4.6],

which we will restate below, including some necessary terminology, and with some minor

rewording for consistency.

Theorem 1.3. [13, Theorem 4.6] Let g = (g1, . . . , gn) be a sequence of non-negative integers

with even sum 2m, and let gmax = max{g1, . . . , gn}. Let X be a simple graph on the vertex set

{1, 2, . . . , n} with degree sequence x = (x1, . . . , xn), where xmax = max{x1, . . . , xn}. Suppose
that gmax ≥ 1 and Δ̂ ≤ ε1m, where ε1 < 2/3 and Δ̂ = 2 + gmax(

3
2
gmax + xmax + 1). Define

λ =
1

4m

n∑
j=1

(gi)2 and μ =
1

2m

∑
ij∈X

gigj.

6



Let N(g, X) denote the number of simple graphs with degree sequence g and no edge in

common with X. Then

N(g, X) =
(2m)!

m! 2m
∏n

j=1 gi!
exp(−λ− λ2 − μ+O(Δ̂2/m))

uniformly as n → ∞.

Given a suitable degree sequence x and a tree T ∈ Tx, define the parameters

λ0 =
1

2dn

n∑
j=1

(dj)2,

λ(x) =
1

2(d− 2)n+ 4

n∑
j=1

(dj − xj)2,

μ(T ) =
1

(d− 2)n+ 2

∑
{i,j}∈E(T )

(di − xi)(dj − xj)

Using Theorem 1.3, we may prove the following.

Lemma 1.4. Suppose that x is a suitable degree sequence and let T ∈ Tx. With notation as

above, provided d4max ≤ (d− 2)n,

P (d, T ) =
(dn/2)n−1 2

n−1

(dn)2n−2

n∏
j=1

(dj)xj
exp

(
λ0 + λ2

0 − λ(x)− λ(x)2 − μ(T ) +O

(
d4max

(d− 2)n

))
.

Proof. There is a bijection between the set of graphs with degree sequence d which contain

T , and those with degree sequence d − x which contain no edges of T . Therefore, we can

write

P (d, T ) =
N(d− x, T )

N(d, ∅) (1.8)

and Theorem 1.3 to estimate the numerator and denominator.

First, consider N(d− x, T ). Let

Δ̂ = 2 + gmax

(
3
2
gmax + xmax + 1

)
where gmax = maxj=1,...,n(dj − xj). We require that Δ̂2 ≤ ε1m, where ε1 < 2

3
is a constant

and m = 1
2
((d− 2)n+ 2) is the number of edges in a graph with degree sequence d− x. By

assumption,

m = 1
2
((d− 2)n+ 2) ≥ 1 + 1

2
d4max.

Since gmax, xmax ≤ dmax and dmax ≥ 3 (which follows since d > 2), we have

Δ̂

m
≤ 2 + dmax(

5
2
dmax + 1)

1 + 1
2
d4max

≤ 55

83

7



which is strictly less than 2
3
. Observe also that Δ̂ = O(d2max). Hence Theorem 1.3 applies

and says that

N(d − x, T ) =
((d− 2)n+ 2)!

((d− 2)n/2 + 1)!2(d−2)n/2+1
∏n

j=1(dj − xj)!

× exp
(
−λ(x)− λ(x)2 − μ(T ) +O

(
d4max/((d− 2)n)

))
.

Similarly, we obtain

N(d, ∅) = (dn)!

(dn/2)!2dn/2
∏n

j=1 dj!
exp

(
−λ0 − λ2

0 +O
(
d4max/((d− 2)n)

))
, (1.9)

noting that the value of the Δ̂ is smaller than in the previous application of Theorem 1.3,

while the parameter m is larger. Substituting these expressions into (1.8) completes the

proof.

Observe that the only term in the argument of the exponential in Lemma 1.4 which

depends on the structure of T (rather than just the degree sequence of T ) is μ(T ). For any

suitable degree sequence x and any tree T ∈ Tx, define

f(x) = λ0 + λ2
0 − λ(x)− λ(x)2 (1.10)

and let

β(x) =
1

|Tx|
∑
T∈Tx

e−μ(T ) (1.11)

be the average value of e−μ(T ) over all T ∈ Tx.

Combining (1.6), (1.7) and Lemma 1.4, for any suitable degree sequence x we have

E τd(x) = eO(d4max/((d−2)n))
(dn/2)n−1 2

n−1
∏n

j=1 dj

(dn)2n−2

∑
T∈Tx

( n∏
j=1

(dj − 1)xj−1e
f(x)−μ(T )

)

= eO(d4max/((d−2)n)) (dn/2)n−1 2
n−1 d̂n

(dn)2n−2
(n− 2)!

( n∏
j=1

(
dj − 1

xj − 1

))
ef(x) β(x). (1.12)

Now define

μ̄(x) =
1

|Tx|
∑
T∈Tx

μ(T ), (1.13)

the average value of μ(T ) over Tx. By proving that β(x) is close to e−μ̄(x) for each suitable

degree sequence x, and evaluating μ̄(x), we will establish the following.
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Theorem 1.5. Suppose that the conditions of Theorem 1.1 hold and that x is a suitable

degree sequence. Then with η, R and Hd as defined as in Theorem 1.1,

E τd(x) = Hd

(
(d− 1)n

n− 2

)−1( n∏
j=1

(
dj − 1

xj − 1

))
exp

(
(R + d2)2

4d2
− 1

4
− λ(x)− λ(x)2

− 1

n

n∑
j=1

(xj − 1)(dj − xj) +O

(
d4max

(d− 2)n
+ η

))
.

The structure of the rest of the paper is as follows. In Section 3 we generalise the

function μ and prove a concentration result for trees with given degrees. This proof will

involve a martingale concentration result of McDiarmid [14] which we discuss in Section 2.

The results of Section 3 are applied in Section 4 to prove that the average of e−μ(T ) over

T ∈ Tx is close to exp(−μ̄(x)), and hence to prove Theorem 1.5, for any suitable degree

sequence x. Finally, Theorem 1.1 is proved in Section 5.

Before we begin, note that we use the following conventions in our summation notation:∑
i �=j will always denote a sum over all ordered pairs (i, j) with i 
= j (over some appropriate

range which will be clear from the context, usually i, j = 1, . . . , n). On the other hand, if i

is fixed and we wish to sum over all j 
= i (for example, over all j ∈ {1, 2, . . . , n} \ i) then
we will write

∑
j:j �=i.

2 Concentration results

Let P = (Ω,F ,P) be a finite probability space. A sequence F0, . . . ,Fn of σ-subfields of F
is a filter if F0 ⊆ · · · ⊆ Fn. A sequence Y0, . . . , Yn of random variables on P is a martingale

with respect to F0, . . . ,Fn if

(i) Yj is Fj-measurable and has finite expectation, for j = 0, . . . , n;

(ii) E(Yj | Fj−1) = Yj−1 for j = 1, . . . , n.

An important example of a martingale is made by the so-called Doob martingale process.

Suppose X1, X2, . . . , Xn are random variables on P and f(X1, X2, . . . , Xn) is a random vari-

able on P of bounded expectation. Let σ(X1, . . . , Xj) denote the σ-field generated by the

random variables X1, . . . , Xj. Define the martingale {Yj} with respect to the filter {Fj},
where for each j, Fj = σ(X1, . . . , Xj) and Yj = E(f(X1, X2, . . . , Xn) | Fj). In particular,

F0 = {∅, Ω} and Y0 = E f(X1, X2, . . . , Xn).

In this section we state some concentration results for martingales. See McDiarmid [14]

for further background and for any definitions not given here. Following McDiarmid [14],
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for j = 1, . . . , n we define the conditional range of Yj as

ran(Yj | Fj−1) = ess sup(Yj | Fj−1) + ess sup(−Yj | Fj−1). (2.1)

Here “essential supremum” may be replaced by “supremum”, as in [14], if the probability

distribution is positive over Ω.

Our main tool is the following result from McDiarmid [14]. The tail bound on the

probability is given by [14, Theorem 3.14]. The upper estimate on the moment generating

function E(ehYn) is an intermediate step of McDiarmid’s proof, see [14, Section 3.5]. The

lower bound on K is due to Jensen’s inequality.

Theorem 2.1. ([14]) Suppose that P = (Ω,F ,P) is a finite probability space. Let Y0, Y1, . . . , Yn

be a martingale on P with respect to a filter F0,F1 . . . ,Fn, where F0 = {∅, Ω}, such that

n∑
j=1

(ran(Yj | Fj−1))
2 ≤ r̂2 a.s.

for some real r̂. Then

E eYn = eY0+K

where 0 ≤ K ≤ 1
8
r̂2. Furthermore, for any real t > 0,

Pr(|Yn − Y0| ≥ t) ≤ 2 exp(−2t2/r̂2).

As a corollary, we obtain a concentration result for functions of sets of a given size.

Corollary 2.2. Let
(
[N ]
r

)
be the set of r-subsets of {1, . . . , N} and let h :

(
[N ]
r

)
→ R be given.

Let C be a uniformly random element of
(
[N ]
r

)
. Suppose that there exists α ≥ 0 such that

|h(A)− h(A′)| ≤ α

for any A,A′ ∈
(
[N ]
r

)
with |A ∩A′| = r − 1. Then

E eh(C) = exp (Eh(C) +K) (2.2)

where K is a real constant such that 0 ≤ K ≤ 1
8
min{r,N − r}α2. Furthermore, for any real

t > 0,

Pr(|h(C)− Eh(C)| ≥ t) ≤ 2 exp

(
− 2t2

min{r,N − r}α2

)
.

Proof. Let SN denote the set of permutations of {1, . . . , N} and τ = (τ1, . . . , τN) be a uniform

random element of SN . Note that the set {τ1, . . . , τr} is a uniformly random element of
(
[N ]
r

)
.

Define h̃ : SN → R by h̃(ω) = h({ω1, . . . , ωr}) for all ω ∈ SN . Then

|h̃(ρ)− h̃(ρ′)| ≤ α

10



for all permutations ρ, ρ′ ∈ SN such that ρ−1ρ′ is a transposition. Given ω = (ω1, . . . , ωN) ∈
SN , for k = 0, . . . , N let

h̃k(ω) = E

(
h̃(τ) | τj = ωj for j = 1, . . . k

)
.

Clearly, h̃0(τ), . . . , h̃N(τ) forms a martingale: it is the result of the Doob martingale process

for h̃(τ). It follows from Frieze and Pittel [5, Lemma 11] that

ran
(
h̃k(τ) | σ(τ1, . . . , τk−1)

)
≤ α.

Moreover, for any ω ∈ SN and k ∈ {r, . . . , N}, we have

E
(
h̃(τ) | τj = ωj, 1 ≤ j ≤ k

)
= h({ω1, . . . , ωr}).

Therefore ran
(
h̃k(τ) | σ(τ1, . . . , τk−1)

)
= 0 for all k > r. Applying Theorem 2.1 to the

martingale h̃0(τ), . . . , h̃N(τ), we conclude that (2.2) holds with 0 ≤ K ≤ 1
8
rα2, and that

Pr(|h(C)− Eh(C)| ≥ t) ≤ 2 exp

(
− 2t2

rα2

)
.

If r ≤ N − r then we are finished. Otherwise we repeat the above argument using the

bijection between subsets and their complements.

3 Trees with given degrees

In this section we consider sums of the form

F (T ) =
∑

{j,k}∈E(T )

φ(j)φ(k) (3.1)

for a given function φ : {1, 2, . . . , n} → [φmin, φmax] ⊂ R.

Let F̄ (x) be the average value of F over all trees with a given degree sequence x:

F̄ (x) =
1

|Tx|
∑
T∈Tx

F (T ).

The goal of this section is to prove the following theorem, showing that the average of eξF (T )

over Tx is close to eξF̄ (x), for ξ ∈ {−1, 1}. We will measure this distance using the seminorm

of φ given by

‖φ‖m = min
c∈R

n∑
j=1

|φ(j)− c|. (3.2)

Here the minimising value of c is any median of {φ(j) : j = 1, . . . , n}.
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Theorem 3.1. Let F satisfy (3.1). Then for any tree degree sequence x and for ξ ∈ {−1, 1},

1

|Tx|
∑
T∈Tx

eξF (T ) = exp
(
ξF̄ (x) +K

)
for some real constant K which satisfies 0 ≤ K ≤ 1

8
Lφ, where

Lφ = (φmax − φmin)
3 min

{
(φmax − φmin)n, ‖φ‖m (lnn+ 2)

}
.

Furthermore, if T̂ is a uniformly random element of Tx then for any real constant t > 0,

Pr(|F (T̂ )− F̄ (x)| > t) ≤ 2 exp
(
−2t2/Lφ

)
.

First we give some explicit formulae which we will need later.

Lemma 3.2. Let x be a tree degree sequence and consider the set Tx of all trees with degree

sequence x.

(i) Let S be a disconnected forest with vertex set {1, . . . , n} and degree sequence (s1, . . . , sn),

where sj ≤ xj for j = 1, . . . , n. Let S1, . . . , Sr be the components of S. Then the prob-

ability that a uniform random tree in Tx contains S is∏r
i=1

∑
j∈V (Si)

(xj − sj)

(n− 2)n−r

n∏
j=1

(xj − 1)sj−1,

where (xj − 1)sj−1 = x−1
j if sj = 0. In particular, for distinct j, k ∈ {1, 2, . . . , n}, the

fraction of trees in Tx in which vertices j, k are adjacent is

xj + xk − 2

n− 2
.

(ii) The average value of F over Tx is

F̄ (x) =
1

n− 2

(
n∑

k=1

φ(k)

)(
n∑

j=1

(xj − 1)φ(j)

)
− 1

n− 2

(
n∑

j=1

(xj − 1)φ(j)2

)
.

Proof. Define x′ = (x′
1, . . . , x

′
r), where x′

i =
∑

j∈V (Si)
(xj − sj) for i = 1, . . . , r. If x′

i = 0 for

any i then T cannot contain S, as S is disconnected. Hence the result holds trivially in that

case, and for the remainder of the proof we may assume that all entries of x′ are positive.

Next, observe that the entries of x′ sum to 2(r− 1), and hence x′ is a tree degree sequence.

Each tree in Tx that contains S can be formed uniquely by the following process:

12



(1) Take any tree T ′ on the vertex set {1, . . . , r} with degree sequence x′.

(2) For i = 1, . . . , r, replace vertex i of T ′ by Si and distribute the edges of T ′ that were

incident with i amongst the vertices of Si, so that each vertex j ∈ V (Si) has degree xj

in the resulting tree.

By (1.6), the number of choices for T ′ in Step 1 is
(

r−2
x′

1
−1,...,x′

r−1

)
, while the number of ways

to distribute edges in Step 2 is

r∏
i=1

x′
i!∏

j∈V (Si)
(xj − sj)!

.

The first statement of (i) is proven by multiplying these expressions together, dividing

by (1.6) and simplifying. Then taking S to be the edge jk together with n − 2 trivial

components completes the proof of (i).

Now using linearity of expectation, (3.1), and part (i), we calculate that

(n− 2) F̄ (x) =
∑
j<k

(xj + xk − 2)φ(j)φ(k) (3.3)

=
∑
j �=k

(xj − 1)φ(j)φ(k) (3.4)

=
n∑

j=1

(xj − 1)φ(j)

((
n∑

k=1

φ(k)

)
− φ(j)

)

=

((
n∑

k=1

φ(k)

)
n∑

j=1

(xj − 1)φ(j)

)
−

(
n∑

j=1

(xj − 1)φ(j)2

)
,

establishing (ii).

We complete this section with the proof of Theorem 3.1, which involves the process used

to construct the Prüfer code of a labelled tree. The Prüfer code of a tree T ∈ T is a sequence

b = (b1, . . . , bn−2) ∈ {1, 2, . . . , n}n−2. Given T , find the unique neighbour b1 of the lowest-

labelled leaf a1. Then b1 becomes the first entry in the Prüfer code for T . We find the next

entry recursively by considering the tree T −a1 with the first leaf deleted. The process stops

when a single edge remains: this edge is determined by the degree sequence and does not

need to be recorded in the code b. We will refer to this process as the Prüfer process with

input T . See Figure 1 for an example. The correspondence between trees and Prüfer codes

is a bijection: see for example Moon [16, pp. 5-6]. This provides a proof of Cayley’s formula

and of (1.6).

The following useful property of the Prüfer process may be proved by induction on j.

Lemma 3.3. Let x be a tree degree sequence and let T ∈ Tx. Suppose that the Prüfer

process with input T produces the Prüfer code b and the sequence (a1, . . . , an−2) of “leaves”.
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3 2

6

7

4

1 5
⇒ (2, 7, 1, 7, 2)

Figure 1: A tree and its corresponding Prüfer code.

For any j = 1, . . . , n − 2, the initial sequence (a1, . . . , aj) is uniquely determined by x and

(b1, . . . , bj−1).

When there is more than one tree under consideration we will write aj(T ), bj(T ) for the

vertices identified at step j of the Prüfer process for the tree T . To prove Theorem 3.1 we

work with a martingale defined using the Prüfer code of a tree. A martingale construction

based on the Prüfer code was given by Cooper, McGrae and Zito [4], for all labelled trees.

Our martingale is restricted to trees with a given degree sequence and we study a function

for which it is more difficult to bound the conditional ranges.

Proof of Theorem 3.1. Suppose that T1 and T2 are trees on {1, 2, . . . , n} with the same

degree sequence. For j = 0, . . . , n − 3, say that T1 and T2 are j-equivalent, and write

T1
j∼ T2, if bi(T1) = bi(T2) for i = 1, 2, . . . , j. By Lemma 3.3, if T1

j∼ T2 then ai(T1) = ai(T2)

for i = 1, . . . , j. The j-equivalence relation induces a partition of Tx into equivalence classes

Cj,1, . . . , Cj,rj , say, with ∪rj
�=1Cj,� = Tx.

Let Yj,� equal the average of F (T ) over T ∈ Cj,�, and define the function Yj on Tx by

Yj(T ) = Yj,� if T ∈ Cj,�. Finally, define the random variable Yj = Yj(T̂ ), where T̂ is a

uniformly random element of Tx. Then Y0 is the constant function which takes the value

EF (T̂ ) everywhere, and Yn−3 = F (T̂ ), since each equivalence class Cn−3,� is a set of size

1. Observe that Y0, . . . , Yn−3 is a martingale with respect to the filter F0, . . . ,Fn−3, where,

for each j, Fj is generated by the sets Cj,1, . . . , Cj,rj . In fact, this is the Doob martingale

process for the function F (T̂ ) of the random variables b1(T̂ ), . . . , bn−3(T̂ ), which determine

T̂ uniquely.

To apply Theorem 2.1 we must calculate a value for r̂2. Suppose that T1 and T2 are

(j− 1)-equivalent, where T1, T2 ∈ Tx and j ∈ {1, . . . , n− 3}. Then aj(T1) = aj(T2), again by

Lemma 3.3. For ease of notation, write ai instead of ai(T1) (or ai(T2)) for i = 1, . . . , j, and

write bi instead of bi(T1) (or bi(T2)) for i = 1, . . . , j − 1.

For s = 1, 2 let T ′
s be the tree (with n − j vertices) obtained by deleting the vertices

a1, . . . , aj from Ts. Both T ′
1 and T ′

2 have vertex set

Vj = {1, 2, . . . , n} \ {a1, . . . , aj}.

If bj(T1) = bj(T2) then T ′
1 and T ′

2 have the same degree sequence, since (in this case) precisely

the same edges have been deleted from T1 and T2. In this case, Yj(T1) = Yj(T2).

14



Otherwise, the degree sequences of T ′
1, T

′
2 differ only for the two vertices bj(T1) and bj(T2).

Specifically, vertex bj(T1) has degree in T ′
1 which is equal to its degree in T ′

2 minus 1, while

vertex bj(T2) has degree in T ′
1 which is equal to its degree in T ′

2 plus 1. Hence T ′
1 and T ′

2

have the same degree on all vertices in the set

Uj(T1, T2) = Vj \ {bj(T1), bj(T2)}.

For s = 1, 2, let ys be the degree sequence of T ′
s (on the vertex set Vj) and let T ′

s denote the

set of all trees on the vertex set Vj with degree sequence ys. Observe that ys and T ′
s depend

only on (b1, . . . , bj−1, bj(Ts)) and x. By relabelling the equivalence classes if necessary, we

may assume that Ts ∈ Cj,s for s = 1, 2. The map ϕ : Cj,s → T ′
s which sends a tree T ∈ Cj,s

to T \ {a1, . . . , aj} is a bijection. To see this, observe that the inverse map ϕ−1 takes a tree

in T ′
s , adds the vertices a1, . . . , aj and the edges

{{a1, b1}, . . . , {aj−1, bj−1}, {aj , bj(Ts)}}

giving a tree in Cj,s. Therefore, for s = 1, 2,

1

|Cj,s|
∑

T∈Cj,s

F (T \ {a1, . . . , aj}) =
1

|T ′
s |

∑
T ′∈T ′

s

F (T ′).

Combining this with (3.1) and the definition of Yj,s, we see that for s = 1, 2,

Yj,s =
1

|Cj,s|
∑

T∈Cj,s

∑
{k,�}∈E(T )

φ(k)φ(�)

=

(
j−1∑
i=1

φ(ai)φ(bi)

)
+ φ(aj)φ(bj(Ts)) +

1

|Cj,s|
∑

T∈Cj,s

F (T \ {a1, . . . , aj})

=

(
j−1∑
i=1

φ(ai)φ(bi)

)
+ φ(aj)φ(bj(Ts)) +

1

|T ′
s |

∑
T ′∈T ′

s

F (T ′).

Applying Lemma 3.2(ii) gives

Yj,1 − Yj,2 = (φ(bj(T1))− φ(bj(T2)))

(
φ(aj)−

1

n− j − 2

∑
�∈Uj(T1,T2)

φ(�)

)

=
φ(bj(T1))− φ(bj(T2))

n− j − 2

∑
�∈Uj(T1,T2)

(
φ(aj)− φ(�)

)
.

(Note that if T1
j∼ T2 then bj(T1) = bj(T2) and the above equality also holds.)

Recall the definition of ‖φ‖m from (3.2), and let c ∈ R be the minimising value in this

definition. By the triangle inequality,

1

n− j − 2

∣∣∣∣ ∑
�∈Uj(T1,T2)

(φ(aj)− φ(�))

∣∣∣∣ ≤ |φ(aj)− c|+ 1

n− j − 2

∣∣∣∣ ∑
�∈Uj(T1,T2)

(c− φ(�))

∣∣∣∣
15



≤ |φ(aj)− c|+ ‖φ‖m
n− j − 2

(3.5)

since Uj(T1, T2) has n − j − 2 elements and j ≤ n− 3. Therefore, for any equivalence class

Cj−1,�, we have(
sup

T ′∈Cj−1,�

Yj(T
′) + sup

T ′∈Cj−1,�

(−Yj(T
′))

)2

≤ (φmax − φmin)
2

(n− j − 2)2
sup

T1,T2∈Cj−1,�

( ∑
�∈Uj(T1,T2)

(φ(aj)− φ(�))

)2

≤ (φmax − φmin)
3 min

{
φmax − φmin, |φ(aj)− c|+ ‖φ‖m

n− j − 2

}
. (3.6)

(Here we take the minimum of two possible upper bounds: the first arises from taking the

worst case summand for both factors in the line above, while the second arises by applying

(3.5) to one of the factors.)

Now let Cj−1(T̂ ) denote the random set which is the equivalence class with respect to
j−1∼

which contains T̂ . It follows from (3.6) that

ran(Yj | Fj−1)
2 =

(
sup

T∈Cj−1(T̂ )

Yj(T ) + sup
T∈Cj−1(T̂ )

(−Yj(T ))

)2

≤ (φmax − φmin)
3 min

{
φmax − φmin, |φ(aj(T̂ ))− c|+ ‖φ‖m

n− j − 2

}
.

Using the definition of c, the standard upper bound on the harmonic series and the fact that

each vertex is chosen as aj(T̂ ) at most once during the Prüfer process, we get that

n−3∑
j=1

ran(Yj | Fj−1)
2 ≤ (φmax − φmin)

3 min {(φmax − φmin)n, ‖φ‖m (lnn+ 2)} .

Observe that the left hand side does not change if F is replaced by −F (and hence, the same

bound is obtained whether ξ = 1 or ξ = −1). Since E(eYn−3) = E(eF (T̂ )) and Y0 = E(F (T̂ )),

applying Theorem 2.1 completes the proof.

4 Proof of Theorem 1.5

First we note the following corollary of Theorem 3.1. Recall the definition of β(x) and μ̄(x)

from (1.11), (1.13), respectively.

Lemma 4.1. Under the conditions of Theorem 1.1,

β(x) = exp

(
−μ̄(x) +O

(
min

{
d4max

(d− 2)2n
,
d3max lnn

(d− 2)n

}))
.
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Proof. Set

φ(j) =
dj − xj√

(d− 2)n + 2

for j ∈ {1, 2, . . . , n}, and let ξ = −1. We can take φmin = 0 and φmax = dmax/
√

(d− 2)n+ 2.

Next, we bound

‖φ‖m ≤
n∑

j=1

dj − xj√
(d− 2)n+ 2

=
√
(d− 2)n+ 2.

Finally, observe that

d3max(‖φ‖m + φmax)(lnn+ 2)

((d− 2)n+ 2)3/2
= O

(
d3max lnn

(d− 2)n
+

d4max lnn

((d− 2)n)2

)
= O

(
d3max lnn

(d− 2)n

)
.

Now the result follows from Theorem 3.1.

We can now prove Theorem 1.5, giving an asymptotic expression for the expected number

E τd(x) of spanning trees in Gd with degree sequence x.

Proof of Theorem 1.5. Firstly note that, by (3.4),

μ̄(x) =
1

(n− 2)((d− 2)n+ 2)

∑
j �=k

(xj − 1)(dj − xj)(dk − xk) (4.1)

=
1

n

n∑
j=1

(xj − 1)(dj − xj) +O

(
d2max

(d− 2)n

)
. (4.2)

We rewrite (1.12) as

E τd(x)

= eO(d4max/((d−2)n)) (dn/2)n−1 2
n−1 d̂n

(dn)n

(
(d− 1)n

n− 2

)−1
(

n∏
j=1

(
dj − 1

xj − 1

))
ef(x) β(x) (4.3)

with f(x) as defined in (1.10). Applying Stirling’s approximation gives

(dn/2)n−1 2
n−1 d̂n

(dn)n
= Hd

(
1 +O

(
1

(d− 2)n

))
where Hd is defined in the statement of Theorem 1.1. Combining Lemma 4.1 and (4.2) gives

β(x) = exp

(
−μ̄(x) +O

(
min

{
d4max

(d− 2)2n
,
d3max lnn

(d− 2)n

}))

= exp

(
−1

n

n∑
j=1

(xj − 1)(dj − xj)
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+O

(
d2max

(d− 2)n
+min

{
d4max

(d− 2)2n
,
d3max lnn

(d− 2)n

}))
. (4.4)

In some cases, when d − 2 is small, we can obtain a smaller error bound by a different

argument. Observe that

e−μ̄(x) ≤ β(x) ≤ 1, (4.5)

using Jensen’s inequality for the lower bound. It follows from (4.2) that

μ̄(x) = O

(
d2max

(d− 2)n
+ (d− 2)dmax

)
.

Hence we can replace the upper bound on β(x) in (4.5) by e−μ̄(x) if we include an error term

of this magnitude, leading to

β(x) = exp

(
−μ̄(x) +O

(
d2max

(d− 2)n
+ (d− 2)dmax

))
= exp

(
−1

n

n∑
j=1

(xj − 1)(dj − xj) +O

(
d2max

(d− 2)n
+ (d− 2)dmax

))
(4.6)

using (4.2). We may choose to use either this expression or (4.4), whichever gives the smaller

bound. Finally, observe that

λ0 + λ2
0 =

(R + d2)2

4d2
− 1

4
. (4.7)

Combining this with (1.10), (4.3), (4.4) and (4.6) completes the proof.

5 Proof of Theorem 1.1

In this section we prove Theorem 1.1 by summing the expression from Theorem 1.5 over all

suitable degree sequences x. Given a suitable degree sequence x, define

g(x) = f(x)− μ̄(x) =
(R + d2)2

4d2
− 1

4
− λ(x)− λ(x)2 − μ̄(x), (5.1)

using (4.7). By (4.2) and Theorem 1.5 we have

E τd = Hd

∑
x

(
(d− 1)n

n− 2

)−1
(

n∏
j=1

(
dj − 1

xj − 1

))

× exp

(
g(x) +O

(
d4max

(d− 2)n
+ η

))
(5.2)

where the sum is over all suitable degree sequences x. We now interpret this sum as an

expected value of a function of a nonuniform distribution on suitable degree sequences.
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Lemma 5.1. Fix a partition A1, . . . , An of {1, 2, . . . , (d − 1)n} such that |Aj| = dj − 1 for

j = 1, . . . , n, and let B be a uniformly random subset of {1, 2, . . . , (d − 1)n} of size n − 2.

Define the random vector X = X(B) = (X1, . . . , Xn) by Xj = |Aj ∩B|+ 1. Then

E τd = Hd exp

(
O

(
d4max

(d− 2)n
+ η

))
E
(
eg(X)

)
.

Proof. Let x be a suitable degree sequence. Since the sets Aj are disjoint, there are∏n
j=1

(
dj−1
xj−1

)
ways to choose a subset of {1, . . . , (d − 1)n} with precisely xj − 1 elements

in Aj, for j = 1, . . . , n. It follows that

Pr(X = x) =

(
(d− 1)n

n− 2

)−1 n∏
j=1

(
dj − 1

xj − 1

)
.

Substituting this into (5.2) completes the proof.

Next, we prove that E
(
eg(X)

)
can be approximated by eE g(X) by applying Corollary 2.2.

We say that two suitable degree sequences x and x′ are adjacent if x and x′ differ in precisely

two entries, say in entries j and k, such that x′
j = xj + 1 and x′

k = xk − 1. Adjacent degree

sequences correspond to subsets A,A′ of {1, 2, . . . , (d− 1)n} of size n− 2 which have n− 3

elements in common. In order to apply Corollary 2.2 to g we must bound the amount by

which g(x) can differ from g(x′) when x and x′ are adjacent.

Lemma 5.2. Suppose that x, x′ are two suitable degree sequences which are adjacent. Then

|g(x)− g(x′)| = O

(
d2max

(d− 2)n

)
.

Proof. Recall the definition of g in (5.1). Firstly, observe that

λ(x′)2 − λ(x)2 = (λ(x′)− λ(x)) (λ(x′) + λ(x)) = O(dmax) (λ(x
′)− λ(x))

since for any suitable x we have

λ(x) = O

(
dmax

(d− 2)n

) n∑
j=1

(dj − xj) = O(dmax).

Next we calculate that

|λ(x′)− λ(x)| = |(dk − xk)− (dj − xj − 1)|
(d− 2)n+ 2

= O

(
dmax

(d− 2)n

)
.

Therefore ∣∣λ(x) + λ(x)2 −
(
λ(x′)− λ(x′)2

)∣∣ = O

(
d2max

(d− 2)n

)
.
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Now we consider μ̄. Suppose that y is a vector which disagrees with x in precisely one

position, say yi = xi+ ζ where ζ ∈ {−1, 1}. Then using (4.1) (most conveniently in the form

in (3.3)),

|μ̄(y)− μ̄(x)| ≤ 1

(n− 2) ((d− 2)n + 2)

∑
j:j �=i

(dj − xj) |(di − xi)− (xi + xj − 2) + ζ |

= O

(
dmax

n

)
= O

(
d2max

(d− 2)n

)
.

Applying this twice gives a bound of the same magnitude on |μ̄(x′)− μ̄(x)|, completing the

proof.

Now we apply Corollary 2.2 to prove the following.

Lemma 5.3. Under the conditions of Theorem 1.1,

E
(
eg(X)

)
= exp

(
E g(X) +O

(
d4max

(d− 2)n

))
.

Proof. We will apply Corollary 2.2 to h(B) = g(X(B)), where the random set B is defined

in Lemma 5.1. We set N = (d − 1)n and r = n − 2. Lemma 5.2 says that h changes by

at most α = O(d2max/((d − 2)n)) if two entries of the vector change by 1 (one increasing

and one decreasing). The value of the error term given by Corollary 2.2 also depends on

min{r,N − r} = min{n− 2, (d− 2)n+ 2}. We consider two cases.

If (n− 2) ≤ (d− 2)n+ 2 then Corollary 2.2 gives

E(eg(X)) = exp

(
E g(X) +O

(
d4max(n− 2)

(d− 2)2n2

))
= exp

(
E g(X) +O

(
d4max

(d− 2)n

))
.

(The second equality follows since in this case d− 2 ≥ 1− 4
n
≥ 1

2
.)

Otherwise it holds that (d− 2)n+ 2 < n− 2, and here Corollary 2.2 says that

E(eg(X)) = exp

(
E g(X) +O

(
d4max((d− 2)n+ 2)

(d− 2)2n2

))
= exp

(
E g(X) +O

(
d4max

(d− 2)n

))
,

as required.

To approximate E g(X), we need to be able to compute joint moments of the form

E
(
(Xj − 1)s (Xk − 1)t

)
, where X = X(B) = (X1, . . . , Xn). The random vector

X − (1, 1, . . . , 1) = (X1 − 1, . . . , Xn − 1)
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has a multivariate hypergeometric distribution, and from this it follows that the entries

X1, . . . , Xn of X = X(B) satisfy

E((Xi − 1)s(Xj − 1)t) = (di − 1)s(dj − 1)t
(n− 2)s+t

((d− 1)n)s+t
(5.3)

for i 
= j. See for example [7, Equation (39.6)].

We now find an asymptotic expression for E(g(X)).

Lemma 5.4. Under the conditions of Theorem 1.1,

E(g(X)) =
6d2 − 14d+ 7

4(d− 1)2
+

R

2(d− 1)3
+

(2d2 − 4d+ 1)R2

4(d− 1)4 d2
+O

(
d3max

dn

)
.

Proof. First we estimate E μ̄(X) using (4.1). By (5.3) we have

E((Xj − 1)(dj −Xj)(dk −Xk))

(n− 2)((d− 2)n+ 2)

=
1

(n− 2)((d− 2)n + 2)

(
(dj − 2)(dk − 1)E(Xj − 1)

− (dj − 2)E((Xj − 1)(Xk − 1))

− (dk − 1)E((Xj − 1)2) + E((Xj − 1)2(Xk − 1))
)

=
(dj − 1)2(dk − 1)

(n− 2)((d− 2)n + 2)

(
n− 2

(d− 1)n
− 2(n− 2)2

((d− 1)n)2
+

(n− 2)3
((d− 1)n)3

)
=

(dj − 1)2 (dk − 1) ((d− 2)n+ 1)

((d− 1)n)3

= (dj − 1)2 (dk − 1)

(
d− 2

(d− 1)3n2
+O

(
1

d3n3

))
.

Now ∑
j �=k

(dj − 1)2(dk − 1) =
n∑

j=1

(dj − 1)2
(
(d− 1)n− (dj − 1)

)
= (d− 1)(R + (d− 1)2)n

2 +O(d2maxdn).

Hence the expected value of μ̄(X) is given by

E μ̄(X) =

(
d− 2

(d− 1)3n2
+O

(
1

d3n3

)) ∑
j �=k

(dj − 1)2 (dk − 1)

=

(
d− 2

(d− 1)3n2
+O

(
1

d3n3

)) (
(d− 1)(R + (d− 1)2)n

2 +O(d2maxdn)
)

=
(d− 2)(R + (d− 1)2)

(d− 1)2
+O

(
d2max

dn

)
. (5.4)
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Next, recall that

λ(X) =
1

2((d− 2)n+ 2)

n∑
j=1

(dj −Xj)2.

Applying (5.3) shows that

E((dj −Xj)2)

2((d− 2)n+ 2)

=
1

2((d− 2)n+ 2)
((dj − 1)2 − 2(dj − 2)E(Xj − 1) + E((Xj − 1)2))

=
(dj − 1)2

2((d− 2)n+ 2)

(
1− 2(n− 2)

(d− 1)n
+

(n− 2)2
((d− 1)n)2

)
=

(dj − 1)2 ((d− 2)n+ 1)

2((d− 1)n)2

= (dj − 1)2

(
(d− 2)

2(d− 1)2n
+O

(
1

d2n2

))
.

Therefore

E(λ(X)) =
n∑

j=1

(dj − 1)2

(
(d− 2)

2(d− 1)2n
+O

(
1

d2n2

))
=

(d− 2)(R + (d− 1)2)

2(d− 1)2
+O

(
dmax

dn

)
. (5.5)

The same approach works for E(λ(X)2) but the details are a little messier. Observe that

λ(X)2

=
1

4((d− 2)n+ 2)2

((∑
j �=k

(dj −Xj)2(dk −Xk)2

)
+

n∑
j=1

(dj −Xj)
2(dj −Xj − 1)2

)
. (5.6)

Applying (5.3) to the off-diagonal summands gives

E((dj −Xj)2(dk −Xk)2)

4((d− 2)n+ 2)2

=
1

4((d− 2)n+ 2)2

(
(dj − 1)2(dk − 1)2 − 2(dj − 1)2(dk − 2)E(Xk − 1)

− 2(dj − 2)(dk − 1)2E(Xj − 1) + (dj − 1)2 E((Xk − 1)2)

+ 4(dj − 2)(dk − 2)E((Xj − 1)(Xk − 1)) + (dk − 1)2 E((Xj − 1)2)

− 2(dj − 2) E((Xj − 1)(Xk − 1)2)− 2(dk − 2) E((Xj − 1)2(Xk − 1))

+ E((Xj − 1)2(Xk − 1)2)
)

=
(dj − 1)2(dk − 1)2
4((d− 2)n+ 2)2

(
1− 4(n− 2)

(d− 1)n
+

6(n− 2)2
((d− 1)n)2

− 4(n− 2)3
((d− 1)n)3

+
(n− 2)4

((d− 1)n)4

)
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=
(dj − 1)2(dk − 1)2 ((d− 2)n+ 1)3

4((d− 1)n)4((d− 2)n+ 2)

= (dj − 1)2(dk − 1)2

(
(d− 2)2

4(d− 1)4n2
+O

(
1

d3n3

))
.

Next, calculate ∑
j �=k

(dj − 1)2(dk − 1)2 = (R + (d− 1)2)
2n2 +O(d3maxdn).

Therefore the contribution to λ(X)2 from the off-diagonal summands is(
(d− 2)2

4(d− 1)4n2
+O

(
1

d3n3

)) ∑
j �=k

(dj − 1)2(dk − 1)2

=

(
(d− 2)2

4(d− 1)4n2
+O

(
1

d3n3

)) (
(R + (d− 1)2)

2n2 + O
(
d3maxdn

))
=

(d− 2)2(R + (d− 1)2)
2

4(d− 1)4
+O

(
d3max

dn

)
.

The contribution to E(λ(X)2) from the diagonal terms of (5.6) (that is, the second summa-

tion in (5.6)) is

1

4((d− 2)n+ 2)2

n∑
j=1

E((dj −Xj)
2(dj −Xj − 1)2) = O

(
d2max

(d− 2)n

)
E(λ(X))

= O

(
d3max

dn

)
,

using (5.5). Therefore

E(λ(X)2) =
(d− 2)2 (R + (d− 1)2)

2

4(d− 1)4
+O

(
d3max

dn

)
. (5.7)

The result follows by combining (4.7), (5.4), (5.5) and (5.7), after some rearranging.

Now we may easily prove our main theorem.

Proof of Theorem 1.1. The number of graphs with degree sequence d is positive when n is

sufficiently large, by (1.9). That is, d is graphical for sufficiently large n. The claimed

asymptotic expression for E τd then follows immediately from Lemmas 5.1, 5.3 and 5.4. We

also briefly justify the bound

η = min

{
d4max

(d− 2)2n
,
d3max log n

(d− 2)n
, dmax(d− 2)

}
= O

(
d4max

(d− 2)n
+

(log n)5/2

n1/2

)
.

Note that (d3max log n)/((d−2)n) ≤ d4max/((d−2)n) if dmax ≥ log n. When dmax ≤ log n, take

the geometric mean of (d3max log n)/((d− 2)n) and dmax(d− 2).

23



Acknowledgements

We would like to thank the referees for their helpful comments.

References

[1] N. Alon, The number of spanning trees in regular graphs, Random Structures Algorithms

1 (1990), no. 2, 175–182.

[2] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled

regular graphs, Europ. J. Combin. 1 (1980), 311–316.

[3] F. Chung and S.-T. Yau, Coverings, heat kernels and spanning trees, Electron. J. Com-

bin. 6 (1999), #R12.

[4] C. Cooper, A.R.A. McGrae and M. Zito, Martingales on trees and the empire chromatic

number of random trees, in Fundamentals of Computation Theory 2009 (M. Kuty�lowski,
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