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Analyzing paleomagnetic data: To anchor or not to anchor?
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Abstract Paleomagnetic directions provide the basis for use of paleomagnetism in chronological and
tectonic reconstructions and for constraining past geomagnetic field behavior over a variety of timescales.
Crucial to paleomagnetic analysis is the separation and quantification of a characteristic remanent
magnetization (ChRM), which relates to a process of interest, from other remanence components. Principal
component analysis (PCA) of stepwise demagnetization data is employed routinely in these situations to
estimate magnetic remanence directions and their uncertainties. A given ChRM is often assumed to trend
toward the origin of a vector demagnetization diagram and prevailing data analysis frameworks allow
remanence directions to be estimated based on PCA fits that are forced to pass through the origin of such
diagrams, a process referred to as “anchoring.” While this approach is adopted commonly, little attention
has been paid to the effects of anchoring and the influence it has on both estimated remanence directions
and their associated uncertainties. In almost all cases, anchoring produces an artificially low uncertainty
estimation compared to an unanchored fit. Bayesian model selection demonstrates that the effects
of anchoring cannot typically be justified from a statistical standpoint. We present an alternative to
anchoring that constrains the best fit remanence direction to pass through the origin of a vector
demagnetization diagram without unreasonably distorting the representation of the demagnetization data.

1. Introduction

Magnetic remanences preserved in rocks and sediments provide the basis for paleomagnetic reconstructions.
The natural remanent magnetization (NRM) of a paleomagnetic specimen may, however, contain several com-
ponents that were acquired at different times during the geological history of the sampled rock unit [Irving,
1964; McElhinny, 1973; Tarling, 1983]. To isolate the characteristic remanent magnetization (ChRM), which
often corresponds to the remanence direction acquired during formation of the rock, it is necessary to mag-
netically “clean” the NRM to remove any additional remanence components [As and Zijderveld, 1958; Collinson
et al., 1967]. Cleaning is achieved via a process of stepwise demagnetization, whereby the NRM is progres-
sively randomized with the aim of gradually isolating the ChRM. The need for stepwise demagnetization to
identify all remanence components in a specimen is now accepted universally in paleomagnetism.

Stepwise demagnetization data are readily visualized using a vector demagnetization diagram, where distinct
remanence components appear as straight line segments [Zijderveld, 1967; Dunlop, 1979]. The paleomagnetic
direction associated with any given remanence component can be estimated by performing principal com-
ponent analysis (PCA) on the data within the associated range of demagnetization steps and by determining
the direction of the leading principal component [Kirschvink, 1980]. Often, the ChRM is isolated when all addi-
tional remanence components have been removed; therefore, the data that define the ChRM should trend
toward the origin of a vector demagnetization diagram. This property is employed as key selection criteria
when interpreting vector demagnetization diagrams; if a demagnetization segment does not trend toward
the origin of the diagram, then it implies that multiple remanence components are present. Kirschvink [1980]
showed that in the case of a hypothesized ChRM component, the PCA solution that represents the corre-
sponding demagnetization segment can be forced to pass through the origin of the vector demagnetization
diagram. This process is termed “anchoring” and is attractive from a theoretical standpoint because the PCA
solution can be constrained to obey the behavior expected for many ChRM components.

As part of the PCA framework for analyzing demagnetization data, Kirschvink [1980] proposed use of the max-
imum angular deviation (MAD) to represent the directional uncertainty associated with a given remanence
component. MAD is typically employed as a selection criterion for rejecting specimens with scattered demag-
netization data. There are no generally accepted MAD cutoffs for specimen rejection; however, a remanence
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segment yielding MAD > 15∘ would be treated as questionable, while MAD < 10∘ would be considered to
be reasonably good [McElhinny and McFadden, 2000]. Studies requiring high-quality paleomagnetic direc-
tions from which to draw robust inferences concerning the paleomagnetic field have sometimes employed
an acceptance/rejection cutoff of MAD < 5∘ [Johnson et al., 1998]. MAD values are also often plotted as a func-
tion of depth in paleomagnetic studies of long sediment cores to illustrate how data quality varies through
different depth intervals [e.g., Channell et al., 2013].

Scatter in demagnetization data can be attributed to multiple sources, such as the random walk nature of
stepwise demagnetization and instrument noise [Khokhlov and Hulot, 2016]. For scattered data it becomes
necessary for an investigator to determine if a hypothesized ChRM trends toward the origin and, thus, if the use
of an anchored fit is potentially appropriate. The decision to anchor a fit is usually made by visual inspection,
i.e., does the demagnetization segment trend toward the origin? Determining whether data trend toward the
origin of a vector demagnetization diagram is, however, more complicated than it may appear at face value.
It is not sufficient for points projected onto the orthogonal planes of a vector demagnetization diagram to
appear to be directed toward the origin. They represent the same vector and must, therefore, intercept the
origin of the plot at the same point. In many cases this requirement is difficult to assess visually.

MAD-based criteria have been developed to determine if demagnetization data trend toward the origin. For
example, the Deviation ANGle (DANG) compares the MAD to the angle between the unanchored paleomag-
netic component and the direction between the mean of the demagnetization data and the origin [Pick and
Tauxe, 1993; Tauxe and Staudigel, 2004]. If the DANG is less than the MAD, then it is assumed that the com-
ponent trends toward the origin. It is important to note, however, that the DANG is based on the MAD of an
unanchored PCA solution and does not consider fully changes to the PCA fit induced by anchoring. Anchoring
will change both the direction and uncertainty associated with a PCA solution, and it is essential to assess if
this change can be justified given the data. Existing metrics, such as DANG, do not address this question and,
therefore, cannot be used as direct justification for adopting an anchored fit.

Recently, Heslop and Roberts [2016] developed a Bayesian framework to quantify the directional uncertainty
in isolated remanence components. In a similar vein, here we address the question of how the anchoring
process changes a traditional PCA [Kirschvink, 1980] fit, in terms of both estimated direction and uncertainty,
and show how key data processing decisions can be addressed in a rigorous and statistically justified manner.
We adopt a simple Bayesian model selection technique that provides an estimate of the probability that the
data support the use of an anchored rather than an unanchored PCA solution. This information can, therefore,
be used to make a statistically informed decision as to whether anchoring should be employed or not. Such
evidence-based decisions are crucial if higher-order paleomagnetic statistics, such as site mean directions, are
to be calculated in a rigorous manner that optimizes the amount of paleomagnetic information that can be
extracted from a measured data set. Finally, we propose a new form of constrained fit through the origin of
a vector demagnetization diagram, which appears to overcome a number of the shortcomings of traditional
PCA anchoring.

2. Principal Component Analysis

Analysis of stepwise demagnetization data requires identification of univectorial segments that may carry
geomagnetic or geological information [Zijderveld, 1967; Dunlop, 1979]. The magnetization (M), inclination (I),
and declination (D) of a segment of N demagnetization data considered to represent a univectorial trend can
be represented as follows in a Cartesian coordinate system:

t1(i) = M(i) cos I(i) cos D(i), (1)

t2(i) = M(i) cos I(i) sin D(i), (2)

and

t3(i) = M(i) sin I(i), (3)

where i is the ith demagnetization point and the mean of the segment is

t̄ = 1
N

N∑
i=1

t(i). (4)
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A covariance matrix can then be defined as follows:

S =
⎛⎜⎜⎝
∑

𝛿t1(i)𝛿t1(i)
∑

𝛿t1(i)𝛿t2(i)
∑

𝛿t1(i)𝛿t3(i)∑
𝛿t2(i)𝛿t1(i)

∑
𝛿t2(i)𝛿t2(i)

∑
𝛿t2(i)𝛿t3(i)∑

𝛿t3(i)𝛿t1(i)
∑

𝛿t3(i)𝛿t2(i)
∑

𝛿t3(i)𝛿t3(i)

⎞⎟⎟⎠ ∕N, (5)

where

𝛿t(i) = t(i) − t̄. (6)

S is more readily expressed in matrix form as follows:

S = (t − t̄)T (t − t̄)∕N, (7)

where T represents the matrix transpose. The direction of the best fit vector (in a least squares sense) through
the data is determined by solving:

Sui = 𝜆iui, i = 1,… , 3, (8)

where the eigenvectors and eigenvalues of S are denoted by ui and 𝜆i , respectively. The eigenvalues
and eigenvectors are then reordered so that 𝜆1 ≥ 𝜆2 ≥ 𝜆3. The inclination and declination of the leading
eigenvector, u∗, (normalized to unit length) are as follows:

I = arcsin
(

u∗
3

)
, (9)

and

D = arctan
(

u∗
2∕u∗

1

)
. (10)

For univectorial demagnetization, data deviations from the fitted vector are represented by the second and
third eigenvectors; however, such deviations are expected to be minor (i.e.,𝜆1 ≫ 𝜆2 ≃ 𝜆3). Under this assump-
tion, the MAD [Kirschvink, 1980] is the conical angle between the leading eigenvector and the minor cross
section of the prolate ellipsoid defined by the eigenvalues:

MAD = arctan

(√
𝜆2 + 𝜆3

𝜆1

)
. (11)

As discussed above, if a demagnetization segment trends toward the origin of the vector demagnetization
diagram, it may be considered to be a ChRM that warrants an anchored fit constrained to pass through the
origin. This constraint can be imposed by assuming that the mean of the demagnetization segment coincides
with the origin [Kirschvink, 1980], yielding a covariance matrix:

SA =
⎛⎜⎜⎝
∑

t1(i)t1(i)
∑

t1(i)t2(i)
∑

t1(i)t3(i)∑
t2(i)t1(i)

∑
t2(i)t2(i)

∑
t2(i)t3(i)∑

t3(i)t1(i)
∑

t3(i)t2(i)
∑

t3(i)t3(i)

⎞⎟⎟⎠ ∕N (12)

that represents a mixture of the data covariance and mean, which can be represented in matrix form as
follows:

SA = (t − t̄)T (t − t̄)∕N + t̄T t̄. (13)

Replacing S with SA in equation (8) provides the direction and MAD of the anchored fit (MADA). PCA in this
form has served the paleomagnetic community for over 35 years.

3. Quantifying the Effect of Anchoring

The matrix forms of S (equation (7)) and SA (equation (13)) provide an accessible representation to under-
stand the effects of anchoring paleomagnetic data. It is apparent that anchored directions and MADA

depend on both the data mean and covariance. Consider an isotropic three-dimensional Gaussian distribu-
tion with a standard deviation of 𝜎 and, therefore, a covariance matrix; 𝜎2I, where I is a 3-by-3 identity matrix.
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Figure 1. (a) Illustration of the dependance of the maximum angular deviation of an anchored PCA fit (MADA) on the
relative magnitudes of the mean and covariance of an isotropic Gaussian distribution. As the magnitude of the mean
(
∑

t̄2) increases with respect to the distribution variance (𝜎2), the anchored covariance structures (ellipses) become
more elongated, and MADA is reduced. (b) MADA as a function of

∑
t̄2 and 𝜎2. This simple example is for isotropic data,

which is not typical in paleomagnetism, but demonstrates that when considering demagnetization data the relative
magnitudes of the remanence segment mean and covariance will both exert control over MADA. In contrast, MAD
depends only on the data covariance (i.e., it is independent of the mean). The colored points in Figure 1b correspond to
the specific examples in Figure 1a.

This distribution has no preferred direction, so its eigenvalues are simply 𝜆1 = 𝜆2 = 𝜆3 = 𝜎2, which according
to equation (11) corresponds to MAD = arctan

√
2 = 54.7∘. The rightmost term of SA (equation (13)) repre-

sents the contribution of the mean to an anchored PCA fit. The matrix t̄T t̄ has a rank of 1, with 𝜆1 =
∑

t̄2

and 𝜆2 = 𝜆3 = 0. Therefore, in the simple isotropic case, when the contributions from the data mean and
covariance are brought together in SA, the eigenvalues are 𝜆1 =

∑
t̄2 + 𝜎2 and 𝜆2 = 𝜆3 = 𝜎2. This system

is illustrated in Figure 1a, where an example isotropic data set is migrated away from the origin of a vector
demagnetization plot. As the magnitude of the data mean increases with respect to the data covariance, the
ellipsoid representing SA becomes more elongated and MADA decreases. For the specific case of an isotropic
Gaussian distribution, MADA can be calculated as a function of the magnitude of the distribution mean with
respect to the distribution covariance (Figure 1b).

An example using simulated data with a preferred direction is given in Figure 2, where ellipses are drawn
to represent unanchored and anchored covariance structures. In the unanchored case (Figure 2a), the data
segment appears to trend toward the origin of the vector demagnetization diagram and the PCA fit yields
a MAD of 7.5∘. Visual inspection of the data trajectory suggests that it could intercept the origin of the vec-
tor demagnetization diagram, which is supported by a DANG (2.4∘) less than the MAD. In the case of an
anchored solution, it is apparent that the anchoring process has dramatically elongated the covariance matrix
(Figure 2b), which yields a MADA of 2.5∘. In this example the decision to anchor the fit changes the estimated
direction to an extent that is consistent with the DANG statistic, but the MAD-based directional uncertainty is
reduced by a factor of 3. This effect could cause confusion in terms of MAD-based specimen selection criteria.
The high unanchored MAD would imply that the corresponding paleomagnetic direction should be treated
with caution or that the specimen should be rejected. In contrast, MADA is small enough that the anchored
paleomagnetic direction may be considered to be of high quality; however, the reduced uncertainty is purely
an artifact of the anchoring process. Thus, when deciding whether a fit should be anchored, it is not enough
to consider solely the effect on the direction, but it is also crucial to consider the effect on the associated direc-
tional uncertainty. To address this question, we employed Bayes’ theorem to estimate the extent to which
the data favor the use of an anchored rather than an unanchored PCA fit. To achieve this, traditional PCA
needs to be placed in a probabilistic framework, which provides a representation to compare unanchored
and anchored models directly.
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Figure 2. Comparison of covariance structures (colored ellipses) employed in (a) unanchored and (b) anchored principal
component analysis (PCA) fits to the example data (open and filled circles represent vertical and horizontal components,
respectively). In this example, the DANG suggests that the data trend to the origin; however, elongation in the SA
covariance structure induced by anchoring reduces the MAD-based uncertainty for the estimated anchored direction by
a factor of 3. Thus, the decision to anchor the PCA solution has a dramatic effect on the apparent uncertainty of the
resulting paleomagnetic direction.

3.1. Probabilistic Principal Component Analysis
Tipping and Bishop [1999] provided a probabilistic PCA model (PPCA), whereby data are represented as realiza-
tions from a multivariate Gaussian distribution that accounts for both signal and noise contributions. Heslop
and Roberts [2016] showed how PPCA can be employed in analyzing demagnetization segments, whereby
perfect univectorial data will fall on a line in three-dimensional space, the direction of which can be repre-
sented by W, which is a three-element vector with covariance matrix WT W. In combination with the segment
mean, 𝝁, such univectorial behavior can be represented probabilistically by the three-dimensional Gaussian
distribution;  (𝝁,WT W). Deviations from perfect univectorial behavior, whether as a result of measurement
noise or random walk behavior during demagnetization [Khokhlov and Hulot, 2016], are considered to be
realizations from an isotropic Gaussian distribution with a standard deviation of 𝜎, i.e.,  (0, 𝜎2I), where I is
a 3-by-3 identity matrix. Combining the two Gaussian distributions that represent the signal and deviations
results in a further Gaussian distribution [Tipping and Bishop, 1999]:

t ∼  (𝝁,C), (14)

where C = WT W+𝜎2I. This approach provides a probabilistic formulation to represent univectorial demagne-
tization data. The maximum likelihood estimate of 𝝁 is the data mean given by t̄ in section 2, while maximum
likelihood estimates of W and 𝜎2 can be calculated directly in the three-dimensional case from the PCA
solution derived in section 2:

𝜎2 =
𝜆2 + 𝜆3

2
, (15)

and

W = u∗
√
𝜆1 − 𝜎2. (16)

Referring back to equation (11), the MAD can also be calculated for the maximum likelihood model as follows:

MAD = arctan

(√
2𝜎2

𝜆1

)
. (17)
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Table 1. Grades of Statistical Support Corresponding to Different p(HA|D)
Values When Comparing Unanchored and Anchored Fits Defined by HU
and HA , Respectively (Based on Raftery [1995]).

p(HA|D) Evidence

<0.01 Unanchored: very strong support

0.01 to <0.05 Unanchored: strong support

0.05 to <0.25 Unanchored: positive support

0.25 to <0.50 Unanchored: weak support

0.50 No preference

>0.50 to <0.75 Anchored: weak support

0.75 to <0.95 Anchored: positive support

0.95 to <0.99 Anchored: strong support

≥0.99 Anchored: very strong support

Given the covariance matrix (S or SA for the unanchored and anchored fits, respectively), the model log
likelihood is given by the following:

log = −N
2
{3 ln(2𝜋) + ln |C| + tr(C−1S)}, (18)

where |C| is the determinant of C and tr is the matrix trace. The ability to calculate the model likelihood and
estimate the maximum likelihood parameters provides a means to develop a procedure to determine the
support provided by demagnetization data for use of an anchored PCA model.

3.2. Bayesian Model Selection
The aim of Bayesian model selection techniques is to estimate the probabilities of different models based on
available data. In the case of demagnetization data, two models (written in terms of hypotheses) must be
considered.

1. HU: The demagnetization data are realizations drawn from a Gaussian distribution (𝝁,C), where C is based
on the unanchored PPCA solution.

2. HA: The demagnetization data are realizations drawn from a Gaussian distribution (0,C), where C is based
on the anchored PPCA solution.

The probability that a specific hypothesis, H, is correct given the observed data (i.e., p(H|D)) is estimated by
Bayes’ theorem [Bayes, 1763]:

p(H|D) = p(D|H)p(H)
p(D)

, (19)

where p(D|H) is the probability of observing the data given H, p(H) is the a priori probability that H is correct,
and p(D) is the probability of observing the data independently of any specific hypothesis. If HU and HA are
combined, it is possible to cancel p(D):

p(HU|D)
p(HA|D) =

p(D|HU)
p(D|HA)

⋅
p(HU)
p(HA)

, (20)

where the left-hand term is the posterior odds, which represents the relative strength of the evidence for HU

and HA. If the two hypotheses are deemed a priori to be equally probable (i.e., p(HU) = p(HA) = 0.5), the last
term of equation (20) cancels, and the first term on the right of equation (20), which is known as the Bayes
factor (BF), gives the posterior odds.

Estimation of BF can be challenging. Wagenmakers [2007] developed a simplified method to estimate an
approximate BF based on the Bayesian information criterion (BIC) of Schwarz [1978]. For a given hypothesis,
H, given the data, D, the BIC of the maximum likelihood model is given by the following:

BIC = −2 log + k ln(N), (21)

where k is the number of unknowns in the model. Unanchored PPCA is based on eight unknowns (three
unknowns in𝜇, three unknowns in u∗, plus𝜆1 and𝜎2), whereas anchored PPCA treats𝜇 as a known (the origin);
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thus, there are five unknowns remaining. The approximate Bayes factor is then given by [Masson, 2011] the
following:

BF =
p(D|HU)
p(D|HA)

≈ exp
(
(BIC(HA) − BIC(HU))∕2

)
. (22)

Using this approximation for BF, the posterior probability that the data favor HU (unanchored model) is as
follows:

p(HU|D) = BF
BF + 1

. (23)

The system is limited to two hypotheses, so the posterior probability that the data favor HA (anchored model)
is as follows:

p(HA|D) = 1 − p(HU|D). (24)

The BIC-based approximation of BF is expected to provide a somewhat conservative estimate of the support
for HA [Raftery, 1999]. This effect helps to protect against incorrectly selecting an anchored PCA fit and is not
considered detrimental to the proposed approach.

Use of an anchored fit can only be justified if p(HA|D) (a probability between 0 and 1) is sufficiently high. It is
important to recognize that this is a model selection procedure, and we do not propose that arbitrary cutoffs
are chosen to decide whether a solution should be anchored or not. Instead, anchored fits should be quoted
with MADA and p(HA|D) values. Jeffreys [1961] and Raftery [1995] provided descriptive rules for interpreting
Bayes factors, which can be written in terms of p(HA|D) to assign an accepted term describing the strength
of the evidence supporting HA (Table 1). These descriptions respect the continuous nature of p(HA|D) and
purposely avoid the hard binary decision of assigning one model as “right” and the other as “wrong.”

3.3. Real Examples
To illustrate the proposed technique, a number of examples based on data from Johnson et al. [1998] are
given to demonstrate the use of p(HA|D). Johnson et al. [1998] studied lavas from São Miguel Island (Azores)
from which we provide examples from their stepwise thermal and alternating field demagnetization experi-
ments. It is important to note that the chosen examples were selected to illustrate our proposed technique,
and we do not question the analysis or conclusions of Johnson et al. [1998] who did not anchor any of their
PCA fits. For specimen az13b2 (Figure 3a), anchoring has little effect on the estimated direction, but the MAD
is reduced by ∼35% and p(HA|D) = 0.52, which corresponds to weak support for the anchored model (which
is consistent with the DANG, which indicates that the data trend toward the origin). Similarly, a slight devi-
ation in the anchored direction of specimen az23a1 (Figure 3b) from the unanchored fit and a reduction
in the associated MAD by a third yields p(HA|D)=0.17, which implies that there is positive support in favor
of an unanchored fit. Thus, even though the DANG implies that the data trend toward the origin, anchor-
ing is not supported statistically. Anchoring of specimen az26j2 (Figure 3c) causes a change in the estimated
direction of > 6∘, the MAD is reduced from 12.1∘ to 6.3∘ and p(HA|D) = 0.01, which corresponds to strong
support for an unanchored fit. Finally, specimen az12e1 (Figure 3d) yields p(HA|D) = 0.00 (very strong support
for an unanchored fit), which results from large changes in both the fitted direction and MAD (consistent
with DANG).

To experienced paleomagnetists the results of the analysis in Figure 3 may appear surprising. Typically, demag-
netization data that appear to be directed toward the origin are taken to provide empirical support for an
anchored fit. As demonstrated by our model selection analysis, however, the form of SA makes it difficult to
justify an anchored fit from a statistically rigorous standpoint even for a remanence component that is clearly
directed toward the origin (e.g., Figure 3b). Even if the directions that result from unanchored and anchored
fits are the same, often, the reduction in MAD resulting from anchoring cannot be justified within a probabilis-
tic framework. As demonstrated in Figure 1, this effect becomes more pronounced the farther the centroid of
the demagnetization data is away from the origin.

The presented Bayesian analysis does not discount the possibility that a remanence direction determined
from a PCA solution should be forced to pass through the origin, but rather that the current technique of
assuming  (0,C) is a statistically inappropriate means to impose this constraint. Instead, it is necessary
to develop a technique that constrains the fitted vector to pass through the origin while distorting the
representation of the covariance structure as little as possible.
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Figure 3. Examples of stepwise demagnetization data from Johnson et al. [1998] with a variety of MAD and DANG
values. Representations of the covariance structures of the unanchored and anchored fits are shown in red and blue,
respectively. The DANG values suggest that the demagnetization data from specimens (a) az13b2, (b) az23a1, and
(c) az26j2 trend toward the origin and could potentially be anchored, but this is not supported by p(HA|D), which
suggests that only specimen az13b2 should be anchored (weak support). This lack of support for anchoring results from
the elongation induced in the model covariance structure by the anchoring process. (d) For specimen az12e1, both
DANG and p(HA|D) suggest that an anchored fit is inappropriate.
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Figure 4. Comparison of covariance structures (colored ellipses) employed in (a) unanchored and (b) constrained PPCA
fits calculated from the same example data shown in Figure 2 (scaling is the same as in Figure 2, with open and filled
circles representing vertical and horizontal components, respectively). While anchoring induces an elongation in the
covariance structure that is not supported statistically (p(HA|D) = 0.001), the constrained fit still passes through the
origin and causes minimal distortion to the covariance and, thus, receives positive statistical support; p(HC|D) = 0.82.

4. Constrained PPCA

Building on the PPCA model of Tipping and Bishop [1999], a maximum likelihood fit needs to be sought that is
constrained to pass through the origin of a vector demagnetization diagram. The PPCA model (equation (14))
lends itself readily to such a constraint. By definition, the leading principal component must pass through the
mean of the data, the maximum likelihood estimate of which is t̄. If the leading principal component passes
through the mean of the data and is constrained to pass through the origin, then its direction is given by the
unit vector t̄∕‖t̄‖. This yields a constrained version of W:

WC = t̄‖t̄‖√𝜆C − 𝜎2
C . (25)

Table 2. Grades of Statistical Support Corresponding to Different p(HC|D)
Values When Comparing Unanchored and Constrained Fits Defined by HU
and HC , Respectively (Based on Raftery [1995])

p(HC|D) Evidence

<0.01 Unanchored: very strong support

0.01 to <0.05 Unanchored: strong support

0.05 to <0.25 Unanchored: positive support

0.25 to <0.50 Unanchored: weak support

0.50 No preference

>0.50 to <0.75 Constrained: weak support

0.75 to <0.95 Constrained: positive support

0.95 to <0.99 Constrained: strong support

≥0.99 Constrained: very strong support
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Figure 5. Examples of stepwise demagnetization data from Johnson et al. [1998] (same specimens as Figure 3).
Constrained PPCA produces vectors that pass through the origin, but without spuriously elongated covariance
structures. The constrained fits cause little distortion to the covariance structures of specimens (a) az13b2 and (b)
az23a1, which receive positive statistical support. For (c) specimen az26j2, the constrained fit has weak statistical
support. In contrast, the covariance structure of the constrained fit to specimen (d) az12e1 requires a greater
broadening to accommodate a fit through the origin. This broadening results in a greatly increased MADC and cannot
be supported statistically, with very strong support for an unanchored fit.
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Based on equation (18), the log likelihood is given by the following:

log = −N
2

{
3 ln(2𝜋) + ln |CC| + tr

(
C−1

C S
)}

, (26)

where given the definition of WC in equation (25), CC = WT
CWC + 𝜎2

CI. Estimates of 𝜆C and 𝜎2
C are found by

maximizing equation (26) using numerical optimization [Nocedal and Wright, 2006] with the constraint that
𝜆C and 𝜎2

C are positive. The corresponding MAD is then given by the following:

MADC = arctan
⎛⎜⎜⎝
√

2𝜎2
C

𝜆C

⎞⎟⎟⎠ . (27)

This PPCA solution is referred to here as a constrained fit to avoid confusion with anchored fits. With respect
to the BIC, the number of unknowns estimated in the constrained fit is 5 (the mean contains three unknowns,
plus 𝜆C and 𝜎2

C). This enables Bayesian model selection comparing two hypotheses as follows.

1. HU: The demagnetization data are realizations drawn from the Gaussian distribution  (𝝁,C), where C is
based on the unanchored PPCA solution.

2. HC : The demagnetization data are realizations drawn from the Gaussian distribution  (𝝁,WT
CWC + 𝜎2

CI)
based on a constrained PPCA solution.

Using the same approach as outlined in section 3.2, p(HC|D) can be estimated using the BIC approximation
to BF.

The example shown in Figure 2 is reexamined using a constrained fit (Figure 4). When comparing anchored
versus unanchored fits, the data yield p(HA|D) = 0.001, which indicates very strong support for an unanchored
fit. This lack of support for anchoring results from the inappropriateness of SA to represent the data. In contrast,
when considering a constrained versus unanchored fit, p(HC|D) = 0.82, which indicates that there is positive
support for a constrained fit (see Table 2). In addition, the covariance structure of the constrained fit is not
spuriously elongated (compare Figure 4b to Figure 2b) and, therefore, does not lead to an artificial reduction
in MAD (MAD = 7.5∘, MADA = 2.5∘, and MADC = 8.3∘). The result MADC > MAD makes intuitive sense. To
accommodate a fit that passes through the origin, the Gaussian distribution that represents the constrained fit
must be slightly more rounded than the unanchored fit; therefore, the directional uncertainty must increase.
This contrasts with the paradox of MADA, where decreasing the agreement between the data and the fitted
direction can result in a decreased level of uncertainty associated with that direction.

To further demonstrate constrained fitting, we refer to the examples from Johnson et al. [1998] given in
section 3.3. Specimens az13b2, az23a1, az26j2, and az12e1 yield p(HC|D) values of 0.88, 0.91, 0.66, and 0.00,
respectively (Figure 5). This indicates that there is positive support for selecting a constrained fit over an unan-
chored fit for specimens az13b2 and az23a1, weak support for a constrained fit for specimen az26j2, and
no support for a constrain fit for specimen az12e1. Thus, use of a constrained fit will produce a remanence
direction that passes through the origin without the covariance elongation that made anchoring statistically
untenable (Figure 3). For all of the data shown in Figure 5, MADC ≥MAD, which corresponds to increased direc-
tional uncertainty as the fitted model rotates away from the data and toward the origin. Thus, our proposed
constrained PPCA approach resolves a longstanding problem associated with calculation of MAD values from
the standard PCA approach of Kirschvink [1980].

5. Conclusions

Anchoring of hypothesized ChRM components can have a strong influence on the estimated paleomagnetic
direction and associated uncertainty. If anchoring is to be justified, the resulting PCA fit must be consistent
with the demagnetization data. We employ a Bayesian model selection technique to estimate the relative
support provided by demagnetization data to unanchored and anchored PCA fits. Importantly, this approach
considers anchoring-induced changes in both the paleomagnetic direction and its associated uncertainty,
rather than considering the direction alone. We recommend that when anchored fits are used, researchers
should also quote p(HA|D) and its corresponding grade of support (Table 1). Similarly, paleomagnetic direc-
tions reconstructed from long sediment cores could be accompanied with a plot of p(HA|D) versus depth
(in addition to MAD or MADA values as appropriate) to demonstrate whether anchoring is justified throughout
the core.
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The anchoring approach of Kirschvink [1980] can lead to spurious elongation of the PCA covariance structure,
which in turn artificially reduces directional uncertainty. This property means that anchoring often cannot
be supported from a statistical standpoint even when demagnetization data are clearly directed toward the
origin of a vector demagnetization diagram. To remedy this inconsistency, we present a new PPCA-based
technique to fit vectors that are constrained to pass through the vector demagnetization diagram origin. This
approach reduces the level of distortion in the model covariance structure and, thus, provides more realistic
ChRM vector determinations. In addition, constrained fitting removes the artificial reduction in MAD asso-
ciated with the covariance elongation induced by anchoring and provides a more rigorous assessment of
directional uncertainty. As with anchoring, if investigators wish to employ a constrained fit, it is crucial to state
MADC and to justify the decision to adopt a constrained fit by quoting p(HC|D) and the corresponding grade
of support (Table 2).
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