
 

 

 

 

MICRO-MACRO MODELING OF ADVANCED MATERIALS BY 

HYBRID FINITE ELEMENT METHOD 

 

 

by 

Changyong Cao 

 

 

 

 

A thesis submitted for the degree of  

Doctor of Philosophy 

of The Australian National University 

 

 

 

 

 

September 2013 
  



 ii 

 

Thesis Supervisors:  

Prof. Qinghua Qin 

Prof. Aibing Yu 

 

Supervisory Panel:  

Prof. Qinghua Qin, The Australian National University, Chair 

Prof. Aibing Yu, The University of New South Wales 

Prof. Xi-Qiao Feng, Tsinghua University, China  

Prof. Xuanhe Zhao, Duke University, USA  

Prof. Zbigniew H. Stachurski, The Australian National University 

 

 

 

 

 

 

 

 

 

 

 

  



 iii 

 

Declaration 

 

I hereby declare that this submission is my own work at the Research School 

of Engineering of The Australian National University, Canberra, Australia. This thesis 

contains no material that has been previously accepted for the award of any other 

degree in any university, and contains no material previously published or written by 

another person, except where acknowledged in the customary manner. 

I also declare that the intellectual content of this thesis is the product of my 

own work, except to the extent that assistance from others in the project's design and 

conception or in style, presentation and linguistic expression is acknowledged. 

 

 

 

 

                                          (Signed) 

Changyong Cao 

September, 2013 

  



 iv 

 

Dedication 

 

To my family 

For their love and support 

 

 

 

 



 v 

Acknowledgements 

 

During the long journey of my PhD study over the past few years, many people 

have supported me in different ways. This is a right moment that I would like to give 

those people sincerely gratitude. First I would like to express my deepest gratitude to 

my thesis supervisors Professor Qinghua Qin and Professor Aibing Yu for their great 

support, inspiring guidance and kind encouragement to me during my study, especially 

in difficult moments. Their breadth of intellectual inquisition continually stimulates 

my analytical thinking skills. This work would not have been accomplished without 

their efforts. I am deeply indebted for their guidance and support in both my study and 

my daily life. 

I sincerely thank my committee members for their continuous effort, valuable 

insights and kind willingness to serve in my supervisory committee. In particular, I 

would like to thank Professor Xi-Qiao Feng for his guidance on instability analysis 

and modeling of biomaterials during my stay at Tsinghua University. I am deeply 

impressed by his enthusiasm as to the various scientific researches. His dedication to 

science has inspired me to be a scholar in mechanics for which I owe much gratitude.  

I would like to express my sincerely gratitude to Professor Xuanhe Zhao of 

Duke University for his kind guidance, strong support and fruitful discussion. I have 

benefited significantly from his teaching and mentorship on mechanics of soft active 

materials. He taught me many wonderful things about mechanics, offered me much 

sound advice, and helped me get through difficult times. I am grateful to Professor 

Zbigniew Stachurski for his discussion and guidance in the topic of composite 

materials. I would like to thank Professor Shaofan Li for his hosting, support and 

discussions during my research visit to the University of California at Berkeley.  

I would like to thank Dr. Jiangfeng Zang and Dr. Sungmin Hong for helpful 

discussions and teaching me experimental skills. I also express my gratitude to Dr. 



 vi 

Hui Wang for his valuable suggestions and fruitful discussion during his visit to ANU. 

I would like to thank my colleagues Mr. Jin Tao, Mr. Zewei Zhang, Mr. Check Yu 

Lee and Mr. Song Chen for their help, discussion and company during my study at 

ANU. Special thanks are also due to my friends Mr. Wensheng Liang, Ms. Ting Cao, 

Mr. Zhuojia Fu, Dr. Yongling Ren and Mr. Yimao Wan from ANU for their help and 

the wonderful times we had together. I would like to thank Mr. Xiaoyu Sun for his 

great help during my stay at Tsinghua. Thanks also to Ms. Weihua Xie, Mr. Mangong 

Zhang, Mr. Cheng Ye, Dr. Yue Li, Mr. Liyuan Zhang, Ms. Xiangying Ji and many 

other friends from Tsinghua, and Mr. Honfai Chan, Mr. Stephene Ubnoske, Mr. 

Qiming Wang and Mr. Qing Tu from Duke. I sincerely thank our supporting staff at 

CECS, especially Mr. Jonathan Peters, Ms. Kylee Robinson and Ms. Suzy Andrew. I 

would like to extend my thanks to all the friends, colleagues and staff at ANU, 

Tsinghua, Duke and UC Berkeley for their help and for creating a pleasant working 

atmosphere.  

I greatly acknowledge the International PhD Scholarship and HDR Merits 

Scholarship from ANU, and research funding from Laboratory for Simulation and 

Modeling of Particulate Systems at UNSW for providing financial support during my 

PhD study. My research visit overseas and conference attendance were also funded by 

Vice Chancellor’s Travel Grants and Dean’s Travel Grant from ANU.  

Last, but certainly not least, I would like to thank my wife, Yuhui Fang, for all 

her understanding, encouragement and companionship. Her faithful and unconditional 

support has always been my main source of strength and happiness. I am greatly 

indebted to my parents for their tremendous care, endless support and constant 

encouragement during my lengthy study. They deserve more thanks than I can ever 

give. 



 vii 

Micro-macro Modeling of Advanced Materials by Hybrid Finite 

Element Method 

by 

Changyong Cao 

Research School of Engineering, Australian National University, 2013 

 

ABSTRACT 

Advanced composite materials are increasingly used in a variety of fields due 

to their desirable properties. The use of these advanced materials in different 

applications requires a thorough understanding of the effect of their complex 

microstructures and the effect of the operating environment on the materials. This 

requires an efficient, robust and powerful tool that is able to predict the behavior of 

composites under a variety of loading conditions. This research addresses this problem 

and develops a new convenient numerical method and framework for users to perform 

such analyses of composites.  

In this thesis, the hybrid fundamental solution based finite element method 

(HFS-FEM) is developed and applied to model composite materials across microscale 

and macroscale and from single field to multi-field. The basic idea and detailed 

formulations of the HFS-FEM for elasticity and potential problems are first presented. 

Then this method is extended to solve general three-dimensional (3D) elasticity 

problems with body forces and to model anisotropic materials encountered in 

composite analysis. Standard tests for proposed elements are carried out to assess their 

performance. Further, an efficient numerical homogenization method based on HFS-

FEM is applied to predict the macroscopic elasticity properties and thermal 

conductivity of heterogeneous composites in micromechanical analysis. The effect of 

material parameters, such as fiber volume fractions, inclusion shapes and 

arrangements on the effective coefficients of composites are investigated by means of 
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the proposed micromechanical models. Meanwhile, special elements are also 

proposed for mesh reduction and efficiency improvement in the analyses.  

Finally, the HFS-FEM method is developed for modeling two-dimensional 

(2D) and 3D thermoelastic problems. The particular solutions related to the body force 

and temperature change are approximated using the radial basis function interpolation. 

The new HFS-FEM is also developed for modeling plane piezoelectric materials in 

two different formulations: Lekhnitskii formalism and Stroh formalism. Numerical 

examples are provided for each kind of problems to demonstrate the accuracy, 

efficiency and versatility of the proposed method. 
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Chapter 1. Introduction 

 

1.1. BACKGROUND AND MOTIVATION 

Advanced composite materials are being increasingly used in a variety of fields 

such as aerospace, automobile, defense, medical and sports due to their preferred 

mechanical behaviors and desired properties. Examples of their desirable properties 

are light weight, high stiffness or high flexibility, good thermal and mechanical 

durability, high yield strength under static or dynamic loading and good surface 

hardness. Some smart structures can energy transform among different forms such as 

piezoelectric sensors. Many of these materials, either human-designed or natural, are 

heterogeneous and have complex microstructures at a certain scale, features that 

increases the challenges involved in product design and analysis. The heterogeneous 

microstructure of composites has a significant impact on their observed macroscopic 

behavior. Indeed, the overall behavior of these materials depends strongly on the size, 

shape, spatial distribution and properties of the microstructural constituents and their 

respective interfaces (Wriggers and Hain 2007).  

The use of these advanced materials in variety of applications requires 

thorough understanding of the effect of complex microstructures and the effect of 

operating environment on these materials. This requires an efficient, robust and 

powerful tool that can predict the behavior of composites under a variety of 

environmental and loading conditions. Numerical simulations can significantly reduce 

the number of time-consuming and expensive experiments with laboriously 

manufactured material samples. Such simulations would clearly improve the 

development and design of new materials for modern engineering applications. This 

research thus attempts to address this problem and sets in place a framework that 

makes it convenient for users to perform such analyses.  
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The main motivation of this research is to develop a new efficient methodology 

for modeling advanced composite materials and to assess the performance of the 

method in predicting behaviors of these materials at both micro and macro scales. The 

research also underscores the need for convenient performance of multiphysics 

analyses and for thorough understanding of the underlying mechanisms. The work 

presented lays the foundation for establishing a multiscale framework to facilitate the 

design and analysis of advanced materials such as the carbon nanotube reinforced 

composites and piezoelectric materials widely used in smart structures and materials.  

1.2. MODELING OF ADVANCED MATERIALS 

With the advances in computing power and simulation methodology, 

computational modeling has been increasingly employed in the design and 

development of advanced composites. During the past several decades, a few methods 

have been proposed and successfully applied to modeling composites from nanoscale 

to macroscale (Ghosh, Nowak et al. 1997; Yang and Qin 2003; Chawla, Ganesh et al. 

2004; Yang and Qin 2004; Ghosh, Bai et al. 2009). In the following section of the 

chapter, a brief literature review on the modeling of composites is presented from the 

perspectives of macro-, micro- and multi-scale.  

1.2.1. Macroscale modeling of composites 

Composite materials were first used in aircraft engine rotor blades in the 1960s. 

Since then, a great deal of research has been conducted to improve the properties of 

composite materials; now numerous publications cover anisotropic elasticity, 

mechanics of composite materials, design, analysis, fabrication, and application of 

composite structures (Lekhnitskii 1968; Lekhnitskii 1981; Reddy 2004; Vasiliev and 

Morozov 2007). 

A typical composite structure consists of a system of layers bonded together. 

The layers can be made of different isotropic or anisotropic materials, and have 

different structures, thicknesses, and mechanical properties. The laminate 

characteristics are usually calculated using information about the number of layers, 
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their stacking sequence, geometric and mechanical properties (Vasiliev and Morozov 

2007).  

  

Figure 1.1 Schematic of a laminate composite plate with unidirectional ply. 

The laminate composite plate (Figure 1.1), as one of the most widely used 

composites in engineering, has attracted most attention. Models developed for 

laminated composite plates are mainly based on classical laminate plate and first-order 

shear deformation theories (Reddy 2004). However, it has been demonstrated that 

these theories can lead to substantial errors in the prediction of stresses of highly 

anisotropic and/or moderately thick composite plates (Kant 1993). To overcome the 

limitations of analytical methods, numerical models based on finite element method 

(FEM) and boundary element method (BEM) have been increasingly employed in the 

last three decades (Ghosh, Nowak et al. 1997; Yang and Qin 2003; Chawla, Ganesh 

et al. 2004; Yang and Qin 2004; Ghosh, Bai et al. 2009; Sen and Aldas 2009; Ye and 

Chen 2011). BEM involves boundary integrals only, which makes it less 

computationally exhaustive than FEM, where integrals must be carried out throughout 

the volume (Huang, Hu et al. 1994; Qin 2004; Liu, Nishimura et al. 2008). However, 

the treatment of singular or near-singular boundary integrals is usually quite tedious 

and inefficient and an extra boundary integral equation is also required to evaluate the 

interior fields inside the domain; additionally, BEM is also difficult and tedious when 

dealing with multi-domain problems in applying compatibility and equilibrium 

conditions along the interfaces between subregions (Qin 2000; Qin 2004).  
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Extensive research has been performed on damage modeling of composites 

and a number of models have been proposed to predict damage accumulation 

(Shokrieh and Lessard 2000; Dvorak and Zhang 2001; Van Paepegem and Degrieck 

2003). Among those, progressive damage models that use one or more damage 

variables related to measurable manifestations of damage (interface debonding, 

transverse matrix cracks, delamination size, etc.) are considered the most promising 

because they quantitatively account for the accumulation of damage in the composite 

structure. Kumar et al. studied the effect of impactor and laminate parameters on the 

impact response and impact-induced damages in graphite/epoxy laminated cylindrical 

shells using three-dimensional (3D) finite element formulation (Kumar, Rao et al. 

2007). Ghosh and Sinha (2004) developed a finite element analysis procedure to 

predict the initiation and propagation of damages as well as to analyze laminated 

composite plates damaged under forced vibration and impact loads. Zhao and Cho 

(2004) investigated the impact-induced damage initiation and propagation in the 

laminated composite shell under low-velocity impact. In addition, Abrate (1994) 

presented an overview of the work carried out by different researchers in the field of 

the optimum design of composite laminated plates and shells subjected to constraints 

on strength, stiffness, buckling loads and fundamental natural frequencies. 

1.2.2. Microscale modeling of composites 

Micromechanics has gained significant attention and been extensively used to 

investigate heterogeneous composites on a finer scale so as to relate the properties of 

composite materials to their microstructures (Hill 1963; Hill 1965; Hashin 1979; Mura 

1987; Ghosh, Nowak et al. 1997; Nemat-Nasser and Hori 1999; Chawla, Sidhu et al. 

2006; Zohdi and Wriggers 2008; Ghosh, Bai et al. 2009; Zeng and Li 2010). The 

micromechanical approach can reveal some inherited characteristics of composites 

from the known properties of their constituents and can extract the macroscopic 

material properties required for a macroscale analysis. As a result, not only the global 



 5 

properties of the composites, but also various mechanisms such as damage initiation, 

crack growth and propagation can also be studied through microscale analysis.  

In micromechanical analysis, the macroscopic properties are determined by a 

homogenization process that yields the effective stresses and strains acting on an 

effective, homogenized sample of material. Not long ago, homogenization and the 

determination of effective material parameters could only be done either by 

performing experiments or tests with an existing material sample or by applying semi-

analytical methods with strong assumptions on the mechanical field variables or the 

microstructure of the material. There are several analytical micromechanical 

techniques extensively employed in practice such as the Eshelby approach, Mori-

Tanaka method and Halpin-Tsai method (Eshelby 1957; Hill 1963; Mori and Tanaka 

1973; Hashin 1983; Benveniste 1987; Aboudi 1991; Nemat-Nasser and Hori 1999). 

However, these semi-analytical methods do not lead to sufficiently accurate results, 

especially for complex morphologies, high contrast in phase properties material 

nonlinearities and more non-proportional load histories. This suggests the need to 

carry out direct numerical simulation of microstructures and to try to establish a 

realistic representation of the heterogeneous structure that appends and contains all the 

microscale details.  

Some numerical methods, such as FEM and BEM have been widely used in 

micromechanical analysis for such a purpose (Ghosh, Nowak et al. 1997; Yang and 

Qin 2003; Chawla, Ganesh et al. 2004; Yang and Qin 2004; Seidel and Lagoudas 

2006; Tyrus, Gosz et al. 2007; Ghosh, Bai et al. 2009). The BEM-based 

micromechanics model seems effective for handling materials with defects such as 

cracks and holes. It involves boundary integrals only, which makes BEM less 

computationally exhaustive than FEM, where integrals must be carried out throughout 

the volume (Huang, Hu et al. 1994; Qin 2004; Liu, Nishimura et al. 2008). However, 

the treatment of singular or near-singular boundary integrals is usually quite tedious 

and inefficient and an extra boundary integral equation is also required to evaluate the 
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interior fields inside the domain; additionally, for solving multi-domain problems with 

BEM, each region is dealt with separately and then the whole body is linked together 

by applying compatibility and equilibrium conditions along the interfaces between the 

subregions. In consequence, implementation of the BEM becomes quite complex and 

the nonsymmetrical coefficient matrix of the resulting equations weakens the 

advantages of BEM (Qin 2000; Qin 2004). Nowadays sophisticated and efficient 

models to simulate realistic material behaviors continue to be developed in this active 

research area.  

 

Figure 1.2 The size requirements of a representative volume element (RVE). 

In micromechanical analysis, volume averaging takes place over a statistically 

representative volume element (RVE). The internal fields to be volumetrically 

averaged must be computed by solving a series of boundary value problems with test 

loadings (Zohdi and Wriggers 2008). It is noted that the RVE should satisfy the 

condition of that the characteristic size L3 of heterogeneities is much smaller than the 

dimension L2 of the RVE, which in turn is small compared to the wavelength L1 of the 

macroscopic structure, as shown in Figure 1.2. As a result, the macro-stress and macro-

strain are directly associated with the global analysis of the composite and on the 

macro-level, a RVE is regarded just as a point with a homogenized constitutive law. 
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The interface damage between fiber and matrix is also studied explicitly in the 

framework of a RVE of the composite (Caporale, Luciano et al. 2006; Aghdam, 

Falahatgar et al. 2008; Maligno, Warrior et al. 2009; Kushch, Shmegera et al. 2011). 

A RVE combined with proper boundary conditions to represent as closely as possible 

the real composite material macro-behavior would provide a tool to enhance practical 

understanding of the composite’s material behavior based on its micro-constituents.  

 

Figure 1.3 Effective material properties by homogenizing the heterogeneous 

microstructure. 

The aim of computational micro-macro mechanics is to develop relationships 

between the microstructure and the macroscopic response of a composite material 

(Figure 1.3), using representative models on the microscale that are as simple as 

possible and provide an acceptable representation of the composite material under 

investigation (Zohdi and Wriggers 2008). However, it should be noted that in the 

foreseeable future it will be computationally prohibitive to conduct modeling and 

simulation of structures at the micro scale with explicit representation of 

heterogeneities. Similarly, it is possible to describe other effective quantities such as 

conductivity or diffusivity, in virtually the same manner, relating other volumetrically 

averaged field variables, as discussed in details in Chapter 7. 
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1.2.3. Multiscale modeling of composites 

In the so-called multiscale modeling, macroscopic and microscopic models are 

coupled to take advantage of the efficiency of macroscopic models and the accuracy 

of the microscopic models. Multiscale modeling involves the design of combined 

macroscopic-microscopic computational methods that are more efficient than solving 

the full microscopic model and at the same time provides needed the information with 

desired accuracy. The asymptotic homogenization method is based on asymptotic 

expansion of the displacement, strain and stress fields and assumptions of spatial 

periodicity of microscopic RVEs (Bensoussan, Lions et al. 1978; Sánchez-Palencia 

1980). Concurrent multiscale analyses are executed at macro- and micro-scales with 

information transfer between them (Fish, Yu et al. 1999; Kouznetsova, Brekelmans et 

al. 2001; Terada and Kikuchi 2001; Özdemir, Brekelmans et al. 2008; Yuan and Fish 

2009). Ghosh and co-workers (Ghosh, Lee et al. 2001) combined the asymptotic 

homogenization method with the micro-mechanical Voronoi cell finite element 

method for multiscale analysis of deformation and damage in non-uniformly 

distributed microstructures.  

Such homogenization studies have overcome the shortcomings of 

phenomenological and effective micromechanical theories through the introduction of 

simultaneous two-scale analysis at each load step. However, such approaches can be 

computationally very expensive since detailed micromechanical analyses must be 

conducted for every integration point of macroscopic elements. In recent work, a 

multiscale cohesive zone model have been proposed and implemented to relate 

mesoscale interface properties to atomistic potential (Zeng and Li 2010), which 

naturally takes into account material microstructures such as interface lattice 

orientation and rotation. In this method, there are two coarse graining models: one for 

the bulk medium and the other for the material interfaces, or defects. By constructing 

a finite width cohesive zone and extending the Cauchy-Born rule to coarse scale 

deformation field, the multiscale cohesive zone model can simulate the overall 

behaviors of non-uniform deformation caused by defects. 
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1.2.4. Modeling of multifield materials 

Multifield materials have attracted much attention from researchers and 

scientists for their capability of interactively transferring energy from one type to 

another (Parton and Kudryavtsev 1988). These “smart materials” are responsive to 

multiphysical fields such as electric, magnetic or thermal fields in addition to the 

traditional mechanical field. Examples include piezoelectric ceramics, piezoelectric 

polymers and some biological tissues like bones. Piezoelectric materials are the most 

popular smart materials: they undergo deformation (strain) when an electric field is 

applied across them, and conversely produce voltage when a strain is applied, and thus 

can be used both as actuators and sensors. The coupling behaviors of these multifield 

materials are critical and unique for their applications in adaptive structures, actuators 

and sensors. It is of paramount important, therefore, to investigate the coupling 

behaviors of these materials for product design and analysis.  

Meric and Saigal (1990) derived shape sensitivity expressions for linear 

piezoelectric structures with coupled mechanical and elastic field. Suleman and 

Venkayya (1995) presented a simple finite element formulation for laminated 

composite plates with piezoelectric layers. Chattopadhyay and Seeley (1997) used a 

finite element model based on a refined higher order theory to analyze piezoelectric 

materials surface bonded or embedded in composite laminates. Varelis and Saravanos 

(2008) presented a coupled multi-field mechanics framework for analyzing the non-

linear response of shallow doubly curved adaptive laminated piezoelectric shells 

undergoing large displacements and rotations in thermal environments.  

The Trefftz method such as the hybrid Trefftz FEM (HT-FEM), Trefftz BEM 

and Trefftz collocation method has also been successfully applied to problems of 

piezoelasticity. Qin (2003) derived the corresponding Trefftz finite element 

formulation for anti-plane problems of piezoelectric materials by constructing a pair 

of dual variational functional. Wang et.al (2006) analyzed singular electromechanical 

stress field in piezoelectric by combining the eigensolution approach and Trefftz finite 

element models. Qin (2003) presented a family of modified variational principles of 
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piezoelectricity and succeeded in applying them to establish a Trefftz finite element 

formulation. Jin et al (2005) formulated the Trefftz collocation and the Trefftz 

Galerkin methods for plane piezoelectricity based on the solution sets derived by the 

complex variables method. Sheng et al (2006) developed a multi-domain Trefftz 

boundary collocation method for plane piezoelectricity with defects according to the 

plane piezoelectricity solution derived by Lekhnitskii’s formalism. In addition, much 

work has been done on micromechanics modeling for designing a smart composite, 

e.g. piezoelectric composites, shape memory alloy (SMA) fiber composites, and 

piezoresistive composites, where smart materials with coupling behavior are used as 

reinforcement (Minoru 1999).  

 

Figure 1.4 Coupling between the three considered physical fields. 

In the present dissertation three physical fields are considered: mechanical, 

electrical and thermal field and their possible interactions (see Figure 1.4). The 

possible interactions are:  

 One field problem: mechanical problem, thermal problem, electrical 

problem. 

 Two fields problem: thermo-mechanical coupling, electro-mechanical 

coupling, and thermo-electrical coupling; 
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 Three fields problem: electro-thermo-mechanical coupling; 

1.3. HYBRID FINITE ELEMENT METHOD 

1.3.1. Hybrid Trefftz finite element method 

The HT-FEM can be regarded as a variant of the conventional formulations of 

the FEM (Ritz-method-based FEM). The concept of Trefftz consists simply of using 

an approximation basis extracted from the solution set of the governing system of 

differential equations. When this concept is implemented in the framework of the FEM 

released from both node and local conformity concepts, the resulting finite element 

solving systems are sparse, free of spurious modes, and well-suited to adaptive 

refinement and parallel processing (Qin 2000; Toma 2007). 

As Trefftz bases embody the physics of the problem, substantially higher levels 

of performance are observed in accuracy, stability and convergence (Jirousek and 

Wroblewski 1996; Qin 2000). Moreover, this basis leads to a solving system in which 

all coefficients are defined by boundary integral expressions. Hence, it leads to a 

formulation that combines the main features of the FEM and BEM, namely domain 

decomposition and boundary integral expressions, while dispensing with the use of 

(strongly singular) fundamental solutions and avoiding the major weaknesses of BEM, 

such as singularity and loss of symmetry and sparsity (Toma 2007).  

In contrast to conventional FEM, the HT-FEM is based on a hybrid method 

which involves two novel independent fields: an independent auxiliary inter-element 

frame field defined on element boundary and an independent internal field chosen so 

as a priori satisfy the homogeneous governing differential equations by means of a 

suitable truncated T-complete function set of homogeneous solutions (Qin 2000; Qin 

and Wang 2008, Qin 2000). Inter-element continuity is enforced by employing a 

modified variational principle, which is used to construct a standard stiffness equation, 

and to establish the relationship between the frame field and the internal field of the 

element.  
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This approach involves only element boundary integrals, inherits the 

advantages of both conventional FEM and BEM, and has been successfully applied to 

various engineering problems (Qin 1994; Qin 1995; Qin 1996; Qin 2003; Qin and 

Wang 2008). The main advantages of HTFEM are: (a) it is only integral along element 

boundaries, enabling arbitrary polygonal or even curve-sided elements to be used; (b) 

no singular element boundary integral is involved; (c) it is likely to represent the 

optimal expansion bases for hybrid-type elements where inter-element continuity need 

not to be satisfied; (d) it can develop accurate crack-tip, singular corner or perforated 

elements by using appropriate known local solution functions as the trial functions of 

intra-element displacements (Qin 2003). However, the terms of truncated T-complete 

functions must be carefully selected to achieve the desired results, and it is difficult to 

generate T-complete functions for certain complex or new physical problems (Qin 

2000; Qin and Wang 2008). Further, in the HT-FEM a coordinate transformation is 

required to keep the system matrix stable, and the necessary variational functional is 

somewhat complex for practical use. 

The earliest applications of general purpose Trefftz elements can be dated back 

to 1977 when Jiroušek presented four formulations for solid mechanics problems 

(Jirousek and Leon 1977; Jirousek 1978), in which nonconforming elements are 

assumed to fulfill the governing equations a priori and the inter-element continuity 

and the boundary conditions are then enforced in some weighted residual or point-

wise sense. Later Herrera (1980) introduced completeness and convergence criteria 

and Cheung et al. (Cheung, Jin et al. 1989; Jin and Cheung 1995) proposed the direct 

Trefftz boundary element method in opposition to the so-called indirect approach of 

Jiroušek by enforcing in a weak form of the governing differential equation, using a 

complete basis as weighting functions. 

Since then, because of its generality and efficiency, this method has been quite 

successfully applied to plane elasticity (Jirousek and Teodorescu 1982), and Kirchhoff 

plates (Jirousek and N'Diaye 1990), moderately thick Reissner-Mindlin plates 
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(Jirousek, Wroblewski et al. 1995; Jirousek, Wróblewski et al. 1995), thick plates 

(Piltner 1992), thin shells (Voros 1991), general 3-D solid mechanics (Piltner 1987; 

Piltner 1992; de Freitas and Bussamra 2000), the Poisson equation (Zielinski and 

Zienkiewicz 1985), transient heat conduction analysis (Jirousek and Qin 1995), 

nonlinear problems (Qin 1996; Qin and Diao 1996; Qin 2005), and piezoelectric 

problems (Qin 2003; Qin 2003). Moreover, the h-version and the p-version of T-

elements have been suggested, implemented and studied (Jirousek 1987; Jirousek and 

Venkatesh 1989; Qin and Diao 1996). Besides, special-purpose elements have been 

proposed to deal with various geometries or load-dependent singularities and local 

defects such as obtuse corners, cracks, holes, and concentrated load (Piltner 1985; 

Jirousek and Guex 1986; Dhanasekar, Han et al. 2006).  

Extension into elastic and elastoplastic dynamic analyses in the time domain 

(Freitas 1999; Teixeira de Freitas and Wang 2001; Teixeira de Freitas and Wang 2002) 

was hindered by the fact that the commonly used time integration schemes destroy the 

parabolicity or hyperbolicity of the problem. This led to the subsequent development 

of special-purpose methods that rely on non-periodic spectral decomposition 

techniques (Teixeira de Freitas 2002; de Freitas 2003; de Freitas 2003) or on space-

time approximations (Reutskiy 2004). The natural suitability of the Trefftz method to 

modeling solutions in the frequency domain has been reported in the literature in 

applications ranging from the solution of the Helmholtz equation (Cheung, Jin et al. 

1991) to applications in acoustics and in fluid and solid mechanics (De Freitas 1997; 

Stojek 1998; Harari, Barai et al. 1999; Harari, Barai et al. 2001; Teixeira de Freitas 

and Cismaşiu 2003; Harari and Djellouli 2004), for both bounded and unbounded 

media. These results motivated the extension of the approach into coupled problems, 

as applied to structural acoustics, to poroelasticity, for saturated soils and soft tissues, 

and, in particular, to piezoelectricity (Sze, Wang et al. 2001; Qin 2003; Jin, Sheng et 

al. 2005; Wang, Sze et al. 2006; Moldovan and Freitas 2008; de Freitas and Toma 

2009; de Freitas and Moldovan 2011).  
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1.3.2. Hybrid fundamental solution-based finite element method 

Based on the framework of HT-FEM and the idea of the method of 

fundamental solution (MFS), a novel hybrid finite element formulation, called the 

Hybrid fundamental solution-based FEM (HFS-FEM), was recently developed for 

solving 2D linear heat conduction problems (Wang and Qin 2009; Wang and Qin 

2010a), elastic problems (Wang and Qin 2010b; Cao, Qin et al. 2012a; Cao, Qin et al. 

2013a), and piezoelectric problems (Cao, Qin et al. 2012b; Cao, Yu et al. 2013c). In 

HFS-FEM, fundamental solutions rather than T-complete functions are employed, 

which also exactly satisfy a priori the governing equations for the problem under 

consideration. In the approach, the intra-element field is approximated by the linear 

combination of the fundamental solutions analytically satisfying the related governing 

equation, and the domain integrals in the hybrid functional can be directly converted 

to boundary integrals without any appreciable increase in computational effort. It is 

also noticed that no singular integrals are involved in the HFS-FEM if the source point 

is located outside the element of interest and does not overlap with field point during 

computation (Wang and Qin 2010a). The resulting system of equations from the 

modified hybrid variational functional is expressed in terms of symmetric stiffness 

matrix and nodal displacements only, which is easy to implement into the standard 

FEM. 

The proposed HFS-FEM inherits all the advantages of HT-FEM over the 

traditional FEM and the BEM, and obviates the difficulties that occur in HT-FEM. 

The HFS-FEM has simpler interpolation kernel expressions for intra-element fields 

(fundamental solutions) and avoids the coordinate transformation procedure required 

in the HT-FEM to keep the matrix inversion stable. Moreover, this approach also has 

the potential to achieve high accuracy using coarse meshes of high-degree elements, 

to enhance insensitivity to mesh distortion, to allow great liberty in element shape, and 

to accurately represent various local effects (such as hole, crack and inclusions) 

without troublesome mesh adjustment (Qin 2003; Gao, Wang et al. 2005; Dhanasekar, 

Han et al. 2006; Qin 2003; Dhanasekar, Han et al. 2006).  
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It should be noted that, however, the HFS-FEM approach differs from the 

BEM, although the same fundamental solution is employed. Using the reciprocal 

theorem, the BEM obtains the boundary integral equation, and usually encounters 

difficulty in dealing with singular or hyper-singular integrals in the analysis, while this 

weakness is removed using HFS-FEM. Moreover, HFS-FEM makes possible a more 

flexible element material definition which is important in dealing with multi-material 

problems, rather than the material definition being the same in the entire domain in 

BEM.   

1.4. OBJECTIVES OF RESEARCH 

HFS-FEM has been proposed for solving 2D elasticity and heat transfer 

problems. Considering the attractive merits of this method, it is of interest to further 

extend this method for wider applications in the modeling of advanced materials 

across micro and macro scales. Thus, the main objectives of this research can be 

defined as follows:  

 To develop formulations of the method for both the 2D and 3D elasticity 

problems;  

 To formulate an alternative formulations based on the Stroh formalism for 

modeling anisotropic composites and to assess its performance in 

simulation;  

 To develop and assess the HFS-FEM in micromechanical modeling of 

heterogeneous composite materials based on the homogenization method 

and RVE concept, for both elasticity problem and heat conduction 

problem;  

 To derive special-purposed elements to facilitate the modeling of 

composites with holes and inclusions for mesh reduction, and to assess 

their performance;  
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 To assess the performance of the elements used in HFS-FEM in terms of 

convergence and of their sensitivity to mesh distortion and materials 

incompressibility; 

 To develop HFS-FEM formulations for modeling multifield materials such 

as thermal-mechanical and electric-mechanical problems.  

1.5. SCOPE AND ORGANIZATION OF THESIS 

The dissertation is organized in three main parts (i.e. macroscale modeling of 

elasticity and composites, microscale modeling of composites, and modeling of 

multifield problems) divided into nine chapters. In Chapter 1, the background and 

motivation of this research are firstly introduced, followed by a brief literature review 

of the topics discussed in this thesis. The research objectives are also stated. In Chapter 

2, the basic ideas and the detailed formulations of the HFS-FEM for elasticity and 

potential problems are presented based on relevant previous research. 

Chapter 3 proposes the formulations of the HFS-FEM for general 3D elasticity 

problems. The methods of particular solution and radial basis function approximation 

are proposed to deal with body force. Standard tests are carried out for a linear 8-node 

brick element and quadratic 20-node brick element. Several numerical examples are 

performed to investigate the method for modeling various problems including nearly 

incompressible materials.  

Chapter 4 proposes a new formulation of HFS-FEM for 2D anisotropic 

composite materials based on the powerful Stroh formalism. The Stroh formalism and 

the derived fundamental solutions for generalized 2D anisotropic elastic problem are 

presented. Four numerical examples are presented to demonstrate the accuracy and 

efficiency of the proposed method.  

Chapter 5 addresses applications of the HFS-FEM in micromechanical 

modeling of heterogeneous composites with isotropic fibers and orthotropic fibers. An 

efficient numerical homogenization method based on the newly developed method is 

applied to predict the macroscopic parameters of heterogeneous composites. The 
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homogenization method and representative volume element (RVE) concepts are 

introduced in this context. For comparison, formulations of the HT-FEM are also 

presented in this chapter. The effect of fiber volume fractions, different inclusion 

shapes and arrangements on the effective stiffness coefficients of composites are 

investigated using the proposed micromechanical models. 

Chapter 6 has basically the same structure as Chapter 5. In Chapter 6, 

formulations of the HFS-FEM for heat conduction problem are presented to model 

heterogeneous fiber-reinforced composites. Both the general element and special 

elements for circular hole and inclusion are proposed based on the relevant 

fundamental solutions to reduce the mesh refinement effort in modeling heterogeneous 

composites. A homogenization procedure for non-mechanical field variables is 

introduced for estimating the effective thermal properties of composites. Two 

examples are considered to assess the performance of the method and to investigate 

the influence of fiber volume fraction and fiber arrangement pattern on the effective 

thermal conductivity. 

Chapter 7 extends the HFS-FEM to model 2D and 3D thermoelastic problems 

considering arbitrary body forces and temperature change. The method of particular 

solution is used to decompose the displacement solution into two parts: homogeneous 

solution and particular solution. The particular solution related to the body force and 

temperature change is approximated by using the radial basis function interpolation. 

Five different numerical examples are presented to demonstrate the accuracy and 

versatility of the proposed method.  

In Chapter 8, the HFS-FEM is presented for modeling 2D piezoelectric 

material. Two different formulations are presented, the first based on Lekhnitskii 

formalism and the second on Stroh formalism. The foundational solution of 

transversely isotropic piezoelectric materials is employed to approximate the intra-

element displacement and electrical potential field. A modified variational functional, 

satisfying the governing equation, boundary and continuity conditions, is proposed to 
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derive the element stiffness matrix of the proposed method for piezoelectric materials. 

Numerical examples are presented to assess the accuracy and efficiency of the 

proposed formulations.  

The dissertation closes in Chapter 9 with a brief assessment of the current 

research and some recommendations for future research.  
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Chapter 2. Framework of HFS-FEM for Plane Elasticity and 

Potential Problems 

 

2.1. INTRODUCTION  

During past decades, research into the development of efficient finite elements 

has mostly concentrated on the three variants of FEM. The first is the conventional 

(Ritz based) FEM (Zienkiewicz, Taylor et al. 2005), which is based on polynomial 

interpolations and has been increasingly used for analyzing most engineering 

problems. With this method, the domain of interest is divided into a number of smaller 

sub-domains or elements, and material properties are defined at the element level. The 

second variant, the natural-mode FEM (Argyris, Dunne et al. 1974), presents a 

significant alternative to conventional FEM with ramifications on all aspects of 

structural analysis. It makes a distinction between the constitutive and geometric parts 

of the element tangent stiffness, which can lead effortlessly to the non-linear effects 

associated with large displacements. When applied to composite structures, the 

physically clear and comprehensible theory with complete quadrature elimination and 

avoidance of modal (shape) functions can show distinctly the mechanical behavior of 

isotropic and composite shell structures (Tenek and Argyris 1997).  

The third variant is the so-called HT-FEM (Qin 1995; Jirousek and 

Wroblewski 1996; Qin 2000). Unlike the other two methods, HT-FEM is based on a 

hybrid method that combines two independent assumed fields, an auxiliary inter-

element frame field defined on each element boundary and an intra-element field 

chosen so as to a priori satisfy the homogeneous governing differential equations. 

Inter-element continuity is enforced by using a modified variational principle, which 

is used to construct the standard force-displacement relationship. The HT-FEM 

combines the advantages of FEM and BEM, as addressed in Chapter 1. 

However, the terms of truncated T-complete functions must be carefully 

selected to achieve the desired results. Furthermore, they are difficult to develop for 
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some physical problems. To eliminate this drawback of HT-FEM, a novel hybrid finite 

formulation based on fundamental solutions, HFS-FEM, was first developed to solve 

2D heat conduction problems in single and multilayer-materials (Wang and Qin 2009). 

It was then developed and successfully applied to analyze plane elasticity problems 

under various loading conditions (Wang and Qin 2010b). The proposed HFS-FEM can 

be viewed as another variant of hybrid FEM which is different from the three 

aforementioned types. Sophisticated and efficient models for simulating realistic 

material behaviors still continue to be developed in this active research area.  

In this chapter, the framework of the HFS-FEM for 2D elasticity and potential 

problems is presented in detail, with the intention of providing a general overview of 

the recently proposed method. The detailed procedures and implementation of the 

HFS-FEM are all described. The two independent fields assumed in this method are 

highlighted, and the modified variaitional function to assure the continuity between 

elements is addressed and proved. The numerical integral and its implementation are 

given and the rigid motion recovery is also presented for complementation. In 

summary, this can be regarded as a brief review of the relevant work by some members 

of the candidate’s research group over the past three years. It also serves as the 

foundation of this dissertation which presents further development and application of 

this new method for modeling advanced composite materials, and is also a reference 

for the following chapters. Most of the materials presented in this chapter are 

organized and extended based on previous papers (Wang and Qin 2009; Wang and 

Qin 2010a; Wang and Qin 2010b) and a book (Qin and Wang 2008) published by Q.H. 

Qin and his co-worker.  

2.2. FORMULATIONS OF HFS-FEM FOR ELASTICITY 

2.2.1. Linear theory of plane elasticity 

In linear elastic theory, linear strain-displacement relations can be used and 

equilibrium equations refer to the undeformed geometry (Timoshenko and Goodier 
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1970). In the rectangular Cartesian coordinates (X1, X2), the governing equations of 

plane elasticity can be expressed as 

 , ,       , 1,2ij j i i jb   (2.1) 

If written in matrix form, it can be presented as 

 Lσ b  (2.2) 

where the stress vector  
T

11 22 12         σ , the body force vector  
T

1 2,b bb and the 

differential operator matrix L  is given as 

 
1 2

2 1

0

0

X X

X X

  
  
 

  
   

L  (2.3) 

The strain-displacement relation is expressed in matrix form as 

 

T
ε = L u  (2.4) 

where the strain vector  
T

11 22 12         ε , and the displacement vector  
T

1 2,u uu . 

The constitutive equations for linear elasticity are given in matrix form as  

 
σ Dε  (2.5) 

where D
 
is the material coefficient matrix with constant components for isotropic 

materials, which can be expressed as follows  

 

0   0

2 0

2 0

G

G

G

 

 

 
 

  
 
 

D  (2.6) 

where  

 
 

2
,      

1 2 2 1

E
G G




 
 

 
 (2.7) 

and  

 

          for plane strain

    for plane stress
1

v

 






 
 

 (2.8) 

where E is Young’s module and v  Poisson’s ratio. The two different kinds of 

boundary conditions can be expressed as 

 

 
              on  

     on  

u

t

 

  

u u

t Aσ t
 (2.9) 
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where 1 2[ ]Tt tt denotes the traction vector, u
 
are the prescribed boundary 

displacement vector and t
 
the prescribed traction vector, and A is a transformation 

matrix related to the direction cosine of the outward normal  

 
1 2

2 1

  

  

0

0

n n

n n

 
  
 

A  (2.10) 

where in
 
is the unit outward normal to the boundary. Substituting Eqs. (2.4) and (2.5) 

into Eq. (2.2) yields the well-known Navier partial differential equations in terms of 

displacements 

 T LDL u b  (2.11) 

2.2.2. Assumed fields 

The main concept of the HFS-FEM approach is to establish a finite element 

formulation whereby intra-element continuity is enforced on a nonconforming internal 

displacement field by a functional (Wang and Qin 2010a). In this approach, the intra-

element displacement fields are approximated by a linear combination of fundamental 

solutions of the problem of interest, as follows;  

 
11 12 11

1 12 22 22

( , ) ( , )( )

( , ) ( , )( )

sn
sj sj j

j sj sj j

u u cu

u u cu 

    
     
     

 e e

x y x yx
u(x) N c

x y x yx
 (2.12) 

where ns is the number of source points ( 1,2, , )sj sj ny  arranged outside the 

element to remove the singularity of the fundamental solution. In the analysis, the 

number of source points can be taken to be the same as the number of element nodes, 

which is free of spurious energy modes and can maintain the stiffness equations in full 

rank, as indicated in (Qin 2000). The matrix eN  and vector ec can be written as  

 
11 1 12 1 11 12

12 1 22 1 12 22

( , ) ( , ) ...... ( , ) ( , )

( , ) ( , ) ...... ( , ) ( , )

s s

s s

s s sn sn

s s sn sn

u u u u

u u u u

 
  
  

e

x y x y x y x y
N

x y x y x y x y
 (2.13) 

 11 21 1 2[ ...... ]T

n nc c c c
e

c  (2.14) 

in which the components ( , )ij sku x y  is the induced displacement component in the i-

direction at the field point x due to a unit point load applied at the source point sky  in 

the j-direction. The fundamental solution ( , )ij sku x y  is given as  
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 (2.15) 

where ii isr x x  ,
2 2

1 2r r r  , 1/ 8 (1 )A G    for isotropic materials (Sauter 

and Schwab 2010 ). 

 

Figure 2.1 Intra-element field, frame field in a particular element in HFS-FEM, 

and the generation of source points for a particular element. 

The source point ( 1,2, , )sj sj nx can be generated by means of the following 

method employed in the MFS (Wang, Qin et al. 2006; Hui and Qinghua 2007; Wang 

and Qin 2010a) 

  b b c  y x x x  (2.16) 

where   is a dimensionless coefficient, bx  is the elementary boundary point and cx  

the geometrical centroid of the element. For a particular element as shown in Figure 

2.1, the nodes of the element can be used to generate related source points for 
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simplicity. Determination of   must be discussed for different problems (Wang and 

Qin 2009; Wang and Qin 2010b).  

Making use of the constitutive Eq. (2.5), the corresponding stress fields can be 

expressed as  

 
e e

σ(x) T c  (2.17) 

where  
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e
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 (2.18) 

As a consequence, the traction is written as  

 
1

2

t

t

 
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 

e et nσ Q c  (2.19) 

in which   

 e eQ nT , 
1 2

2 1

0

0

n n

n n

 
  
 

n  (2.20) 

The corresponding stress components ( , )ijk x y are expressed as 
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 (2.22) 

The unknown ec  in Eq. (2.12) may be calculated by using a hybrid technique 

(Wang and Qin 2009), in which the elements are linked through an auxiliary 

conforming displacement frame which has the same form as in conventional FEM (see 

Figure 2.1). This means that in the HFS-FEM, a conforming displacement field should 

be independently defined on the element boundary to enforce the field continuity 
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between elements and also to link the unknown 
ec  with nodal displacement 

ed . Thus, 

the frame is defined as  

 
1 1

2 2

( ) ,       ( )e e e e

u

u

    
      

    

N
u x d N d x

N
 (2.23) 

where the symbol “~” is used to specify that the field is defined on the element 

boundary only, eN is the matrix of shape functions, ed is the nodal displacements of 

elements. Taking side 1-2 of a particular 4-node element (see Figure 2.1) as an 

example, eN and ed can be expressed as  

 1 2

1 2

0 0 0 0 0 0

0 0 0 0 0 0
e

N N

N N

 
  
 

N  (2.24) 

  11 21 12 22 13 23 14 24= 
T

e u u u u u u u ud  (2.25) 

where 1N  and 2N  can be expressed by natural coordinate [ 1,1]    

 
1 2

1 1
,           

2 2
N N

  
   (2.26) 

2.2.3. Modified functional for the hybrid FEM 

The HFS-FEM equation for a plane elastic problem can be established by the 

variational approach (Wang and Qin 2010a). Compared to the functional employed in 

the conventional FEM, the present hybrid functional is constructed by adding a hybrid 

integral term related to the intra-element and element frame displacement fields to 

guarantee satisfaction of the displacement and traction continuity conditions on the 

common boundary of two adjacent elements. In the absence of body forces, the hybrid 

functional me used for deriving the present HFS-FEM can be constructed as (Qin and 

Wang 2008) 

 
1

( )
2 e t e

me ij ij i i i i id tu d t u u d 
  

         (2.27) 

where iu
 
and iu

 
are the intra-element displacement field defined within the element 

and the frame displacement field defined on the element boundary, respectively. e

and e are the element domain and element boundary, respectively. t , u and I  

stands respectively for the specified traction boundary, specified displacement 

boundary and inter-element boundary ( e t u I     ). 
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By applying the Gaussian theorem, Eq. (2.27) can be simplified to 
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Due to the satisfaction of the equilibrium equation with the constructed intra-element 

field, we have the following expression for HFS finite element model 
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 (2.29) 

The functional in Eq. (2.29) contains boundary integrals only and will be used to 

derive the HFS-FEM formulation for the plane isotropic elastic problem. 

2.2.4. Element stiffness equation 

The element stiffness equation can be generated by setting 0me  . 

Substituting Eqs. (2.12), (2.23) and (2.19) into the functional of Eq. (2.29), we have 

 T T T1

2
me e e e e e e e e    c H c c G d d g  (2.30) 

where  
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To enforce inter-element continuity on the common element boundary, the unknown 

vector ec should be expressed in terms of nodal degree of freedom (DOF) ed . The 

stationary condition of the functional me with respect to ec and ed yields, respectively, 
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T

Tme
e e e

e


  


G c g 0

d
 (2.33) 

Therefore, the relationship between ec
 
and ed , and the stiffness equation can be 

obtained as follows 

 
1

e e e e

c H G d  (2.34) 

 e e eK d = g  (2.35) 

where 
1

e e e e

T
K = G H G is the element stiffness matrix. 
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2.2.5. Numerical integral for H and G matrix 

It is generally difficult to obtain the analytical expression of the integral in Eq. 

(2.31) and numerical integration along the element boundary is required. In the 

calculation, the widely used Gaussian integration is employed.  

The H matrix can be expressed as 

 
T d d

e e
e e e

 
    H Q N F(x)  (2.36) 

by introducing the matrix function  

 
T( )ij e em m

F


   F(x) x Q N  (2.37) 

and further, it can be rewritten into the component form 
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and J is the Jacobian expressed as  
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where  
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and 0n is the number of nodes of each edge. Thus, the Gaussian numerical integration 

for the H matrix can be calculated by 

          
1

1
1 1 1

d
e e pnn n

ij ij k ij k k

l l k

H F J w F J    

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         
   x x  (2.42) 

where en  is the number of edges of the element, pn  is the Gaussian sampling points 

employed in the Gaussian numerical integration and kw  is the weight of Gaussian 

integration for sampling point. Similarly, the eG  matrix can be calculated by  

    
1

1
1 1 1

( )  ( ) ( ) ( )
pe e

nn n

ij ij k ij k k

l l k

G F J d w F J    


  

           
   x x  (2.43) 

The calculation of vector eg  in Eq. (2.31) is the same as that in the 

conventional FEM, so it is convenient to incorporate the proposed HFS-FEM into the 
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standard FEM program. Besides, the flux is directly computed from Eqs. (2.56). The 

boundary DOF can be directly computed from Eq. (2.23) and the unknown variables 

at interior points of the element can be determined from Eq. (2.12) plus the recovered 

rigid-body modes in each element, which are introduced in the following section. 

2.2.6. Recovery of rigid-body motion 

Once the nodal displacement ed of the element e has been determined, the 

internal parameters ec  can be found from Eq. (2.34). The internal displacements 

calculated by Eq. (2.12) may, however, be in error by three rigid-body motion modes, 

since such terms were discarded to prevent the element deformability matrix eH from 

being singular. These missing terms can easily be recovered by setting for the 

augmented internal displacements  
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N c c  (2.44) 

where the undetermined rigid-body motion parameter 0c can be calculated using the 

least square matching of eu  and eu  at element nodes 
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The above equation finally yields 
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and  
node ei e e e i

  u u N c , and n  is the number of nodes for the element under 

consideration. 
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2.3. FORMULATIONS OF HFS-FEM FOR POTENTIAL PROBLEMS 

2.3.1. Basic equations of potential problems 

The Laplace equation of a well-posed potential problem (e.g. heat conduction) 

in a general plane domain   can be expressed as 

  2 0         u   x x  (2.49) 

with the following boundary conditions: 

－Dirichlet boundary condition related to the unknown potential field 

                         on  uu u   (2.50) 

－Neumann boundary condition for the boundary normal flux 

 ,                 on  i i qq u n q    (2.51) 

where 2  is the Lapalce operator, u  is the unknown field variable and q  represents 

the boundary flux, in  is the  thi component of outward normal vector to the boundary 

u q    , and u  and q  are specified functions on the related boundaries, 

respectively. The space derivatives are indicated by a comma, i.e. , /i iu u x   , and 

the subscript index i  takes values 1 and 2 in the analysis. The repeated subscript 

indices stand for the summation convention. 

For convenience, the equation (2.51) can be rewritten in matrix form as 

 
,1

,2

u
q q

u

 
  

 
A  (2.52) 

with  1 2n nA . 

2.3.2. Assumed fields 

In the following section, the procedure for developing a hybrid finite element 

model with a fundamental solution as interior trial function is described based on the 

boundary value problem defined by Eqs. (2.49)-(2.51). As in the conventional FEM 

and HT-FEM, the domain under consideration is divided into a series of elements. For 

each element of the domain, two independent fields are assumed in the manner 

discussed in the next two subsections (Qin and Wang 2008).  
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For a particular element e  which occupies sub-domain e , first assume that 

the field variable defined in the element domain is extracted from a linear combination 

of fundamental solutions centered at different source points (see Figure 2.1) 

      
1

,          ,
sn

e e j ej e e e j e

j

N c


    u x x y N x c x y  (2.53) 

where ejc  is undetermined coefficients and sn  is the number of virtual sources outside 

the element e . ( , )e jN x y  is the fundamental solutions to the partial differential 

equation 

    2 2, , =0       ,eN    x y x y x y  (2.54) 

which gives 

    
1

, ln ,
2

eN r


 x y x y  (2.55) 

Clearly, Eq. (2.53) analytically satisfies Eq. (2.49) due to the solution property of 

( , )e jN x y . Virtual source points for potential problems are usually generated by the 

same means as in the elasticity problems addressed in Section 2.  

The corresponding outward normal derivative of eu  on e  is 

 e
e e e

u

n


 


q Q c  (2.56) 

where 

 e
e e

n


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

N
Q AT  (2.57) 

with 
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T
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 (2.58) 

To enforce conformity on the field variable u , for instance, e fu u  on 

e f   of any two neighboring elements e and f, an auxiliary inter-element frame 

field u  is used and expressed in terms of the same DOF, ed , as used with 

conventional finite elements. In this case, u  is confined to the whole element 

boundary, that is 

    e e eu x N x d  (2.59) 
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which is independently assumed along the element boundary in terms of nodal DOF 

ed , where  eN x  represents the conventional finite element interpolating functions. 

For example, a simple interpolation of the frame field on the side with three nodes of 

a particular element can be given in the form 

 1 1 2 2 3 3u N u N u N u    (2.60) 

where iN  ( 1,2,3i  ) stands for shape functions in terms of natural coordinate   

defined in Figure 2.2 . 

 

Figure 2.2 Typical quadratic interpolation for the frame field. 

2.3.3. Modified variational principle 

For the boundary value problem defined in Eqs. (2.49)-(2.50) and (2.51), since the 

stationary conditions of the traditional potential or complementary variational 

functional cannot guarantee the inter-element continuity condition required in the 

proposed HFS FE model, as done in the HT-FEM, a variational functional 

corresponding to the new trial functions should be modified to assure additional 

continuity across the common boundaries Ief between intra-element fields of element 

‘e’ and element ‘f’ (see Figure 2.3): 

 
   (conformity)

   on  
0    (reciprocity)

e f

Ief e f

e f

u u

q q

 
   

  
 (2.61) 
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Figure 2.3 Illustration of continuity between two adjacent elements ‘e’ and ‘f’. 

A modified potential functional is developed as follows 

   d
e

m me e

e e

u u q


           (2.62) 

where 

 
, ,

1
d d

2 e qe
e i iu u qu

 
      (2.63) 

in which the governing equation (2.49) is assumed to be satisfied, a priori, for deriving 

the HFS-FE model. It should be mentioned that the functional (2.62) is different from 

that used in (Qin 2000). The boundary e  of a particular element consists of the 

following parts 

 e ue qe Ie      (2.64) 

where Ie  represents the inter-element boundary of the element ‘e’ shown in Figure 

2.1. 

Next we show that the stationary condition of the functional (2.62) leads to the 

governing equation (Euler equation), boundary conditions and continuity conditions. 

To this end, invoking (2.63) and (2.62) gives the following functional for the problem 

domain 

  , ,

1
d d d

2 e qe e
me i iu u qu q u u

  
         (2.65) 

of which the first-order variational yields 

    , , d d d d
e qe e e

me i iu u q u u u q u u q     
   

            (2.66) 

Using divergence theorem 

 
2

, , ,d d di i i if h hf n h f
  

       (2.67) 

we can obtain  

e f

Ief
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   , d d d d d
e qe ue Ie e

me iiu u q q u q u q u u u q     
    

            
 (2.68) 

For the displacement-based method, the potential conformity should be satisfied in 

advance, that is, 
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 (2.69) 

then, Eq. (2.68) can be rewritten as 

    , d d d d
e qe Ie e
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            (2.70) 

from which the Euler equation in the domain e  and boundary conditions and q  can 

be obtained as 
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 (2.71) 

using the stationary condition 0me  . 

The continuity requirement between two adjacent elements ‘e’ and ‘f’ given in 

Eq. (2.61), can be satisfied in the following way. When assembling elements ‘e’ and 

‘f’, we have 

 

   

   

( ) , d d d

                 d d ... 

e f qe qf e

f Ief

m e f ii

e f ef

u u q q u u u q

u u q q q u

   

 




   

 

      

    

  

 
 (2.72) 

from which the vanishing variation of ( )m e f leads to the reciprocity condition 

0e fq q   on the inter-element boundary Ief . 

If the following expression  

 
   

 ( )
q Ie e

e e e e e

e

q uds q u ds q u u ds     
  
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  

    (2.73) 

is uniformly positive (or negative) in the neighborhood of 0{ }u , where the 

displacement 0{ }u  has such a value that 0 0({ } ) ( )m mu   , and where 0( )m  stands 

for the stationary value of m , we have  

 0 0( )     or     ( )m m m m       (2.74) 

in which the relation that { } { }e fu u  is identical on e f   has been used. This is 

due to the definition in Eq. (2.61) in Section 2.3.3. 



 34 

PROOF: The proof of the theorem on the existence of extremum, may be 

completed by way of the so-called “second variational approach” (Simpson and 

Spector 1987; Hui and Qinghua 2007). In doing this, performing variation of m  and 

using the constrained conditions (2.73), we find 

 2

   
 ( )

q Ie e
m e e e e e

e

q uds q u ds q u u ds      
  

     
  

    (2.75) 

Therefore the theorem has been proved from the sufficient condition of the existence 

of a local extreme of a functional (Simpson and Spector 1987). 

2.3.4. Element stiffness equation 

Having independently defined the intra-element field and frame field in a 

particular element (see Figure 2.1), it is then possible to generate the element stiffness 

equation by the variational derived in the previous section. The variational functional 

e  corresponding to a particular element e  of the present problem can be written as 

  , ,

1
d d d

2 e qe e
me i iu u qu q u u

  
         (2.76) 

Appling the divergence theorem (2.67) to the above functional (2.76), we have the 

final functional for the HFS-FE model 
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 (2.77) 

Then, substituting Eqs. (2.53), (2.56) and (2.59) into the functional (2.77) finally 

produces 

 T T T1

2
e e e e e e e e e    c H c d g c G d  (2.78) 

in which 

 
T T T Td d ,   d ,   d

e e e qe
e e e e e e e e e e q

   
          H Q N N Q G Q N g N  (2.79) 

The symmetry of eH  is obvious from the scale definition (2.79) of the variational 

functional e . 
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To enforce inter-element continuity on the common element boundary, the 

unknown vector ec  should be expressed in terms of nodal DOF ed . Minimization of 

the functional e  with respect to ec  and ed , respectively, yields 
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T

T

e
e e e e

e

e
e e e

e
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   


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H c G d 0
c

G c g 0
d

 (2.80) 

from which the optional relationship between ec  and ed , and the stiffness equation 

can be produced 

 
1        and        e e e e e e e


c = H G d K d = g  (2.81) 

where 
T 1

e e e e


K = G H G  stands for the element stiffness matrix. 

2.3.5. Numerical integral for H and G matrix 

It is generally difficult to obtain the analytical expression of the integral in Eq. 

(2.79) and numerical integration along the element boundary is required. In the 

calculation, the widely used Gaussian integration is employed.  

The H matrix can be expressed as 

 
T d d
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 
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by introducing the matrix function  
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   F(x) x Q N  (2.83) 

and further we can rewrite it into the component form 
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where 
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and J is the Jacobian expressed as  
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where 
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and 0n is the number of nodes of each edge. Thus, the Gaussian numerical integration 

for H matrix can be calculated by 

          
1

1
1 1 1

d
e e pnn n
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   x x  (2.88) 

where en  is the number of edges of the element, pn  is the Gaussian sampling points 

employed in the Gaussian numerical integration and kw  is the weight of Gaussian 

integration for sampling point. Similarly, the eG  matrix can be calculated by 

    
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pe e

nn n
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The calculation of vector eg  in Eq. (2.79) is the same as that in the 

conventional FEM, so it is convenient to incorporate the proposed HFS-FEM into the 

standard FEM program. Besides, the flux is directly computed from Eqs. (2.56). The 

boundary DOF can be directly computed from Eq. (2.59) and the unknown variable at 

interior points of the element can be determined from Eq. (2.53) plus the recovered 

rigid-body modes in each element, which are introduced in the following section.  

2.3.6. Recovery of rigid-body motion 

For the physical definition of the fundamental solution, it is necessary to 

recover the missing rigid-body motion modes from the above results. Following the 

method presented in (Qin 2000), the missing rigid-body motion can be recovered by 

writing the internal potential field of a particular element e as 

 0e e eu c N c  (2.90) 

where the undetermined rigid-body motion parameter 0c  can be calculated using the 

least square matching of eu  and eu  at element nodes 
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0
node 

1

min
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e e e
i

i

c u


   N c  (2.91) 

which finally yields 

 0

1

1 n

ei

i

c u
n 

   (2.92) 

in which  
node ei e e e i

u u  N c  and n  is the number of element nodes. Once the 

nodal field is determined by solving the final stiffness equation, the coefficient vector 
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ec  can be evaluated from Eq. (2.81), and then 0c  is evaluated from Eq. (2.92). Finally, 

the potential field u  at any internal point in an element can be obtained by means of 

Eq. (2.53). 

2.4. SUMMARY 

In this chapter, the framework of the HFS-FEM for 2D elasticity and potential 

problems is presented, giving a general overview of the newly proposed method. 

Detailed procedures and implementations of the HFS-FEM are provided. The two 

independent fields assumed, as well as the modified variational function to assure the 

continuity between elements are addressed and proved. The numerical integral and the 

rigid-body motion recovery are also presented in detail. This chapter serves as the 

foundation for further development of this method for modeling advanced materials 

in both microscale and macroscale. 
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Chapter 3. HFS-FEM for Three-Dimensional Elastic Problems 

 

3.1. INTRODUCTION 

The HT-FEM, as a significant alternative to the conventional FEM, has 

become popular and is increasingly used to analyze various engineering problems 

(Patterson and Sheikh 1982; Jirousek and Guex 1986; Piltner 1992; Qin 1994; Jirousek 

and Qin 1995; Qin 2003; Fam and Rashed 2005; Qin 2005; Wang, Qin et al. 2007; Li, 

Lu et al. 2008; de Freitas and Toma 2009; Sze and Liu 2010; de Freitas and Moldovan 

2011). In contrast to conventional FEM, HT-FEM is based on a hybrid method which 

includes the use of an independent auxiliary inter-element frame field defined on an 

element boundary and an independent internal field chosen so as a priori to satisfy the 

homogeneous governing differential equations by means of a suitable truncated T-

complete function set of homogeneous solutions (Qin 2000). Inter-element continuity 

is enforced by employing a modified variational principle, which is used to construct 

standard stiffness equation, and to establish the relationship between the frame field 

and the internal field of the element. The property of nonsingular element boundary 

integral appearing in HT-FEM enables to the convenient construction of an arbitrarily 

shaped element; however, the terms of the truncated T-complete functions must be 

carefully selected to achieve the desired results and the T-complete functions for some 

physical problems are difficult to generate (Qin and Wang 2008).  

To overcome the drawback of HT-FEM, a novel hybrid FE formulation based 

on the fundamental solutions, called the HFS-FEM, was first developed for solving 

2D heat conduction problems in single and multi-materials (Wang and Qin 2009; 

Wang and Qin 2010a). In this approach, the intra-element field is approximated by a 

linear combination of fundamental functions analytically satisfying the related 

governing equations, an independent frame field defined along the element boundary 

and the newly developed variational functional are employed to guarantee the inter-
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element continuity, generate the final stiffness equation, and establish the relationship 

between the boundary frame field and the internal field of the element under 

consideration.  

In the HFS-FEM, the domain integrals in the hybrid functional can be directly 

converted into boundary integrals without any appreciable increase in computational 

effort. Locating the source point outside the element of interest and not overlapping 

with the field point during computation ensures that no singular integrals are involved 

(Wang and Qin 2010a). Moreover, by virtue of the features of two independent 

interpolation fields and element boundary integral in HFS-FEM, the algorithm has 

potential applications in the aspect of mesh reduction by constructing special purpose 

elements such as functionally graded elements, hole elements, crack elements etc. (Qin 

2003; Gao, Wang et al. 2005; Dhanasekar, Han et al. 2006).  

In this chapter, a new solution procedure based on the HFS-FEM approach is 

proposed to solve 3D elastic problems with or without body forces. The detailed 3D 

formulations of HFS-FEM are first derived for elastic problems by ignoring body 

forces, then a procedure based on the method of particular solution and radial basis 

function approximation is presented to deal with the body force. In consequence the 

homogeneous solution is obtained by using the HFS-FEM, and the particular solution 

associated with body force is approximated by using the strong form basis function 

interpolation. The solution procedure for 3D elastostatic problem is then programmed 

by means of MATLAB. Several standard tests and numerical examples are 

investigated and their results are compared with the existing closed-form solutions or 

ABAQUS results. The results show that the proposed method has higher accuracy and 

efficiency than ABAQUS when using the same element meshes. It is also found that 

this method is not sensitive to mesh distortion and has the capacity to deal with nearly 

incompressible materials. The majority of this chapter has been published in a paper 

(Cao, Qin et al. 2012a) co-authored by the candidate. 
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3.2. FORMULATIONS FOR 3D ELASTICITY WITHOUT THE BODY FORCE  

3.2.1. Governing equations and boundary conditions 

In this subsection, basic equations commonly used in the literatures are briefly 

reviewed to provide notations for the subsequent sections. Let (X1, X2, X3) denote the 

coordinates in the Cartesian coordinate system and consider a finite isotropic body 

occupying the domain  , as shown in Figure 3.1.  

 

Figure 3.1 Geometrical definitions and boundary conditions for a general 3D solid. 

The equilibrium equation for this finite body in the absence of body force can be 

expressed as  

 , 0,     ,  1,2,3ij j i j    (3.1) 

The constitutive equations for linear elasticity and the kinematical relation are given 

as  

 

2
2

1 2
ij ij kk ij

Gv
e Ge

v
  


 (3.2) 

 
, ,

1
( )

2
ij ji j ie u u   (3.3) 

where ij is the stress tensor,
 ije  the strain tensor, iu  the displacement vector, ij  the 

Kronecker delta, G the shear modulus, and v Poisson’s ratio. Substituting Eqs. (3.2) 

and (3.3) into Eq. (3.1), the equilibrium equations may be rewritten in terms of 

displacements as 

 , , 0
1 2

i jj j ji

G
Gu u

v
 


 (3.4) 
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For a well-posed boundary value problem, the following boundary conditions, 

either displacement or traction boundary condition, are prescribed as  

 
i iu u

 
on ,u  (3.5) 

 i it t  on ,t  (3.6) 

where u t   
 
is the boundary of the solution domain  , iu  and it  are the 

prescribed boundary values.  

3.2.2. Assumed fields  

To solve the problem governed by Eqs.(3.4)-(3.6) using the HFS-FEM 

approach, the solution domain   is divided into a series of elements as in 

conventional FEM. For each element, two independent fields, i.e. an intra-element 

field and a frame field, are assumed in the manner as that presented in (Wang and Qin 

2010a; Wang and Qin 2010b). The main idea of the HFS-FEM is to establish a FE 

formulation whereby intra-element continuity is enforced on a nonconforming internal 

displacement field chosen as the fundamental solution of the problem under 

consideration (Wang and Qin 2010b). In this approach, the intra-element displacement 

fields is approximated in terms of a linear combination of fundamental solutions of 

the problem as  
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 (3.7) 

where the matrix eN  and unknown vector ec
 
can be further written as 

* * * * * *
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* * * * * *
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* * * * *
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*

33) ( , )
ssnu

 
 
 
 
  x y

 (3.8)
 

 11 21 31 1 2 3[ ]T

n n nc c c c c c
e

c  (3.9) 

in which x  and sjy are respectively the field point and source point in the local 

coordinate system (X1, X2). The components 
* ( , )ij sju x y  are the fundamental solution, 

i.e. the induced displacement component in the i-direction at the field point x due to a 

unit point load applied in the j-direction at the source point sjy  placed outside the 

element, as given by (Sauter and Schwab 2010 ) 
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where ii isr x x  ,
2 2 2

1 2 3r r r r   , ns is the number of source points. 

 

Figure 3.2 Intra-element field and frame field of a hexahedron HFS-FEM element 

for 3D elastic problem. (The source points and centroid of the 20-node 

element are omitted in the figure for clarity and clear view, and are 

similar to those of the 8-node element.) 

In the analysis, the number of source points is taken to be the same as the 

number of element nodes, which are free of spurious energy modes and maintain the 

stiffness equations in full rank, as indicated in (Qin 2000). The source point 

( 1,2, , )sj sj ny can be generated by means of the following method (Wang and Qin 

2010b)   

 0 0( )s c  y x x x  (3.11) 

where γ is a dimensionless coefficient, 0x
 
is a point on the element boundary (the 

nodal point in this work) and cx
 
the geometrical centroid of the element (see Figure 

3.2). Determination of γ was discussed by (Wang and Qin 2009; Wang and Qin 

2010b), and γ=8 is used in the following analysis. 

According to Eqs. (3.2) and (3.3), the corresponding stress fields can be 

expressed as  

  11 22 33 23 31 12

T
       e eσ(x) T c  (3.12) 
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 (3.13) 

The components
* ( , )ijk x y are given by 
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As a consequence, the traction can be written in the form  
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in which   
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The unknown ec  in Eqs. (3.7) and (3.12) may be calculated using a hybrid 

technique (Wang and Qin 2009), in which the elements are linked through an auxiliary 

conforming displacement frame which has the same form as in conventional FEM (see 

Figure 3.2). This means that in the HFS-FEM, a conforming displacement field should 

be independently defined on the element boundary to enforce the field continuity 

between elements and also to link the unknown ec  and the nodal displacement ed . 

Thus, the frame is defined as  
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 (3.17) 

where the symbol “~” is used to specify that the field is defined on the element 

boundary only, eN is the matrix of shape functions, ed
 
is the nodal displacements of 

elements. Taking the surface 2-3-7-6 of a particular 8-node brick element (see Figure 

3.2) as an example, matrix eN
 
and vector ed

 
can be expressed as  

 

1 2 4 3e
   N 0 N N 0 0 N N 0  (3.18) 
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  11 21 31 12 22 32 18 28 38= 
T

e u u u u u u u u ud  (3.19) 

where the shape functions are expressed as  
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where iN  (i=1-4) can be expressed by natural coordinate , [ 1,1]    
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and  ,i i   is the natural coordinate of the i-node of the element (Figure 3.3). 

 

Figure 3.3 Typical linear interpolation for the frame fields. 

3.2.3. Modified functional for hybrid FEM 

The HFS-FEM formulation for 3D elastic problems can be established by the 

variational approach (Wang and Qin 2010b). In the absence of body forces, the hybrid 

functional me used for deriving the present HFS-FEM can be constructed as (Qin and 

Wang 2008) 
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where iu
 
and iu

 
are the intra-element displacement field defined within the element 

and the frame displacement field defined on the element boundary, respectively. e  

and e  
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stand respectively for the specified traction boundary, specified the displacement 

boundary and the inter-element boundary ( e t u I     ). 

Compared to the functional employed in the conventional FEM, the present 

hybrid functional is constructed by adding a hybrid integral term related to the intra-

element and element frame displacement fields to guarantee satisfaction of the 

displacement and traction continuity conditions on the common boundary of two 

adjacent elements. By applying the Gaussian theorem, Eq. (3. 22) can be simplified as 

 
,

1
( ) ( )

2 e e t e
me i i ij j i i i i i it u d u d tu d t u u d

   
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Due to the satisfaction of the equilibrium equation by the constructed intra-element 

fields, we have the following expression for the HFS-FEM 
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 (3.24) 

The functional (3.24) contains only boundary integrals of the element and is used to 

derive the HFS-FEM formulation for the 3D elastic problem in the following section. 

3.2.4. Element stiffness equation 

The element stiffness equation can be generated by setting 0me  . 

Substituting Eqs. (3.7), (3.15) and (3.17) into the functional (3.24), we have  

 T T T1

2
me e e e e e e e e    c H c c G d d g  (3.25) 
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To enforce inter-element continuity on the common element boundary, the 

unknown vector ec
 
should be expressed in terms of nodal DOF ed . The stationary 

condition of the functional me with respect to ec
 
and ed

 
yields, respectively, 
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Therefore, the relationship between ec
 
and ed , and the stiffness equation can be 

obtained as follows 

 
1

e e e e

c H G d  (3.29) 

 e e eK d = g  (3.30) 

where 
1

e e e e

T
K = G H G is the element stiffness matrix. It should be mentioned that the 

condition number of matrix eH  may become very large if the positions of source 

points are not chosen appropriately. This issue can be determined by numerical 

experiments for the parameter γ in Eq. (3.11). According to our experience, the 

suitable range for γ is between 2 and 10 to assure a better condition number for matrix 

eH in order to improve the accuracy.  

3.2.5. Numerical integral over element 

 It is generally difficult to obtain the analytical expression of the integral in 

Eq.(3.26) and numerical integration over the element is required. In this calculation 

the widely used Gaussian integration is employed. For a surface of the 3D hexahedron 

element, as shown in Figure 3.3, the vector normal to the surface can be obtained by  
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where v  and v are the tangential vectors in the  -direction and  -direction, 

respectively, calculated by 
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where dn  is the number of nodes of the surface,  , ,i i ix y z are the nodal coordinates. 

Thus the unit normal vector is given by 
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where 

 2 2 2( , ) n nx ny nzJ v v v v       (3.34) 

is the Jacobian of the transformation from Cartesian coordinates (x, y) to natural 

coordinates ( , ). 

For the H matrix, we introduce the matrix function  
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and rewrite it to the component form as  
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Using the relationship  

 dS= ( , )J d d     (3.38) 

and the Gaussian numerical integration, we can obtain 
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where fn and pn  are respectively the number of surface of the 3D element and the 

number of Gaussian integral points in each direction of the element surface. Similarly, 

the eG  matrix can be calculated by 
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The calculation of vector eg  in Eq.(3.30) is the same as that in conventional FEM, 

making it convenient to incorporate the proposed HFS-FEM into the standard FEM 

program. Besides, the stress and traction estimations are directly computed from 

Eqs.(3.12) and (3.13), respectively. The boundary displacements can be directly 
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computed from Eq.(3.17) and the displacements at interior points of the element can 

be determined from Eq.(3.7) plus the recovered rigid-body modes in each element, a 

procedure that is introduced in the following section. 

3.2.6. Recovery of rigid-body motion terms 

From the above procedures, it is evident that the solution will fail if any of the 

functions 
*

iju  is in a rigid-body motion mode, due to the fact that the matrix eH  is not 

in full rank and becomes singular for inversion (Qin 2000). Therefore, special care 

should be taken to discard all rigid-body motion terms from eu  to prevent the element 

deformability matrix eH  from being singular. However, it is necessary to reintroduce 

the discarded rigid-body motion terms when calculating the internal field eu  of an 

element. For this purpose the least squares method can be employed. The missing 

terms can easily be recovered by setting for the augmented internal field 
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and using a least-square procedure to match ehu  and ehu  at the nodes of the element 

boundary 
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where n  is the number of nodes for the element under consideration. The above 

equation finally yields 
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and  
node ei e e e i

  u u N c .  

3.3. FORMULATIONS FOR 3D ELASTICITY WITH BODY FORCE  

3.3.1. Governing equations 

For the 3D isotropic body occupying the domain  , as shown in Figure 3.1, 

the equilibrium equation for the body with body force bi can be expressed as  

 ,ij j ib      , 1,2,3i j   (3.46) 

The constitutive equations and the generalized kinematical relation are the same as 

those in Eqs. (3.2) and (3.3). Therefore, the equilibrium equations (3.46) can be 

rewritten in terms of displacements as 

 , ,
1 2

i jj j ji i

G
Gu u b

v
  


  (3.47) 

For a well-posed boundary value problem, boundary conditions are also defined by 

Eqs. (3.5) and (3.6). The following subsections present the procedure for handling the 

body force occurring in Eq. (3.47).  

3.3.2. The method of particular solution 

The inhomogeneous term ib  associated with the body force in Eq. (3.47) can 

be effectively handled by means of the method of particular solution (Chen and 

Brebbia 1998; Qin and Wang 2008). In this approach, the displacement iu  is 

decomposed into two parts, a homogeneous solution 
h

iu and a particular solution
p

iu   

 
c p

i i iu u u 
 (3.48)

 

where the particular solution 
p

iu should satisfy the governing equation  

 
, ,

1 2

p p

i jj j ji i

G
Gu u b

v
  

  (3.49)
 

without any restriction of boundary condition. However, the homogeneous solution 

should satisfy 
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, , 0

1 2

h h

i jj j ji

G
Gu u

v
 

  (3.50)
 

with the modified boundary conditions 

 
_

      on  h p

i i i uu u u  
 (3.51)

 

 
_

       on  h p

i i i tt t t  
 (3.52)

 

From the above equations it can be seen that once the particular solution 
p

iu is 

known, the homogeneous solution 
h

iu in Eqs. (3.50)-(3.52) can be obtained using the 

HFS-FEM. The final solution can then be given by Eq.(3.48). In the next section, radial 

basis function approximation is introduced to obtain the particular solution, and the 

HFS-FEM is given for solving Eqs. (3.50)-(3.52).  

3.4. RADIAL BASIS FUNCTION APPROXIMATION 

For the body force ib , it is generally impossible to find an analytical solution 

that converts the domain integral into a boundary one. So it must be approximated by 

a combination of basis (trial) functions or other methods. The radial basis function 

(RBF), which has been found to be most suitable for this purpose (Golberg, Chen et 

al. 1999; Cheng, Chen et al. 2001), is used for interpolation of body forces in this 

paper. Hence, we assume 

 
1

N
j j

i i

j

b  


  (3.53)
 

where N is the number of interpolation points, j are the RBFs and 
j

i are the 

coefficients to be determined. Then, the particular solution can be approximated by 

 
1

N
p j j

i i ik

j

u 


   (3.54)
 

where 
j

ik
 
is the approximated particular solution kernel of displacement. Once the 

basis functions are selected, the problem of finding a particular solution is reduced to 

solving the following equation 

 
, ,

1 2
il kk kl ki il

G
G  


    

  (3.55)
 

To solve this equation, the displacement is expressed in terms of the Galerkin 

-Papkovich vectors 
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1 1
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ik ik mm mk miF F
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
  

 (3.56)
 

Substituting Eq. (3.56) into Eq. (3.55), we can obtain the following bi-harmonic 

equation is obtained 

 4 1

1
il ilF  


  

  (3.57)
 

Taking the Spline Type RBF 2 1nr   as an example, we have the following solutions 

 
    

2 3

1 2 1 2 2 2 3 2 4

n

li
li

r
F

v n n n n

 

 
      (3.58)

 

  0 1 2 , ,li li i lA A A r r    (3.59) 

where 
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A n
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 
   

   

  
 (3.60)

 

and rj represents the Euclidean distance between a field point (x, y, z) and a given point 

(xj, yj, zj ) in the domain of interest. The corresponding particular solution of stresses 

can be obtained by 

 , , ,( )lij li j lj i ij lk kS G     
 (3.61)

 

where
2

1 2

v
G

v
 


. Substituting Eq.(3.59) into Eq.(3.61) yields 

 

  0 1 , , 2 , 3 , , ,lij j li i jl ij l i j lS B B r r B r B r r r     
 (3.62)

 

where  
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 (3.63)
 

3.5. HFS-FEM FOR HOMOGENEOUS SOLUTION 

After obtaining the particular solution, the next step is to modify the boundary 

conditions using Eqs. (3.51) and (3.52), after which the 3D problem can be treated as 

a homogeneous problem governed by Eqs. (3.50)-(3.52) by using the HFS-FEM 

presented in Section 3.2. It is clear that once the particular and homogeneous solutions 
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for displacement and stress components at nodal points are determined, the 

distribution of displacement and stress fields at any point in the domain can be 

calculated using the element interpolation function. 

 

3.6. NUMERICAL EXAMPLES 

The performance of the proposed 3D HFS-FEM is now evaluated with a 

number of challenging problems from the literature. First, the 3D patch test presented 

by (Macneal and Harder 1985) is conducted for the proposed element and is passed. 

Then the standard two-element distortion test and straight beam tests (with 

rectangular, trapezoid and parallelogram shape elements) are conducted. An 

irregularly meshed biomaterial beam is also investigated and the element performance 

of different elements is compared. After that, a cube under uniform loading and body 

force is presented to demonstrate the performance of the method for solving problems 

involving body forces. Then a perforated thick plate is considered to assess the 

handling of stress concentration. Finally, nearly incompressible materials are used to 

investigate the applicability of the method to volumetric locking problems.  

3.6.1. 3D Patch test 

A standard 3D patch test presented by Macneal and Harder (Macneal and 

Harder 1985) is carried out in this example. A unit cube is discretized by seven 

irregular 8-node hexahedral elements, as shown in Figure 3.4. The material is linear 

elastic with Young’s module E =106 Pa and Poisson ratio v=0.25. The eight exterior 

nodes are given a prescribed linear displacement as shown in Eq.(3.64) to reproduce a 

uniform strain/stress state for the irregular elements.  

 3 3 30.5 10 (2 ),  0.5 10 ( 2 ),  0.5 10 ( 2 )u x y z v x y z w x y z             

 (3.64) 
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Figure 3.4 3D patch test with wrap element (unit cube: E =106, v = 0.25). 

Table 3.1 gives the nodal coordinates of the elements and the boundary 

condition for the eight external nodes, and the interior nodes are free of any external 

load. It is found that both the 8-node and a 20-node brick element can successfully 

pass the patch test. It is demonstrated that the linear field can be approximated by the 

superposition of a finite number of the fundamental solutions with relatively high 

accuracy. 

3.6.2. Beam bending: sensitivity to mesh distortion 

To demonstrate the sensibility of the proposed model to mesh distortion, the 

well-known two-element distortion test is examined (Weissman and Taylor 1992; 

Andelfinger and Ramm 1993; Weissman 1996; Korelc and Wriggers 1997), as shown 

in Figure 3.5. The surface separating the two elements is gradually rotated to skew the 

mesh. The tip deflection at point A of the beam under pure bending is presented in 

Figure 3.6. From this figure, it can be seen that the error of deflection from HFS-FEM 

(HFS-HEX8) increases from 10% to about 40% when the distortion parameter   

increases from 1 to 4. However, the present element is not as sensitive to the distortion 

as the elements by Pian and Tong (Pian and Tong 1986) and Weissman (Weissman 
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1996). Compared with the results obtained by Pian and Tong (Pian and Tong 1986) 

and Weissman, it is obvious that the present results are much better when the element 

is distorted. 

 

Table 3.1 Node coordinates and displacement boundary condition for external 

nodes of the 3D patch test. 

Node 
Coordinates Displacement Boundary Condition 

x1 x2 x3 u1 u2 u3 

1 0.249 0.342 0.342 - - - 

2 0.826 0.288 0.288 - - - 

3 0.850 0.649 0.263 - - - 

4 0.273 0.750 0.230 - - - 

5 0.320 0.186 0.643 - - - 

6 0.677 0.305 0.683 - - - 

7 0.788 0.693 0.644 - - - 

8 0.165 0.745 0.702 - - - 

9 0.0 0.0 0.0 0.0 0.0 0.0 

10 1.0 0.0 0.0 1.0 0.5 0.5 

11 1.0 1.0 0.0 1.5 1.5 1.0 

12 0.0 1.0 0.0 0.5 1.0 0.5 

13 0.0 0.0 0.0 0.5 0.5 1.0 

14 1.0 0.0 1.0 1.5 1.0 1.5 

15 1.0 1.0 1.0 2.0 2.0 2.0 

16 0.0 1.0 1.0 1.0 1.5 1.5 
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Figure 3.5 Perspective view of a cantilever beam under end moment: sensitivity to 

mesh distortion. 

 

Figure 3.6 Comparison of deflection at point A for a cantilever beam (deflection at 

point A from a cantilever beam under end moment). 

3.6.3. Cantilever beam under shear loading 

A set of beams with rectangular, trapezoidal and parallelogram shapes 

(Macneal and Harder 1985; Cao, Hu et al. 2002) as shown in Figure 3.7 are 

investigated. The materials constants are E =1.0×107 and v = 0.3. One end of the beam 

is fixed and at the other end of the beam a concentrated load of P = 1 is applied. The 

length, width and thickness of the beams are 6.0, 0.2 and 0.1, respectively. The results 

obtained are normalized by the theoretical solution, 0.1081, which is obtained from 

beam theory (Macneal and Harder 1985).  
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Figure 3.7 Perspective views of straight cantilever beams: (a) Regular shape beam; 

(b) Trapezoid shape elements; (c) Parallelogram shape element. 

The normalized results are shown in Table 3.2. It is evident that the HFS-HEX8 

element cannot overcome the locking phenomenon for the trapezoidal and 

parallelogram cases. It exhibits severe locking in the trapezoidal case, which is only 

0.281 times the exact value. However, its performance is still better than that of the 

elements of Pian and Tong. For the parallelogram case, the accuracy of the HFS-HEX8 

element is similar to that reported by Cao et.al (Cao, Hu et al. 2002) and Pian and 

Tong (Pian and Tong 1986).  

 

Table 3.2 Comparison of normalized tip deflections of straight beam in load 

direction. 

Mesh type 

Pian and Tong 

(Pian and Tong 

1986) 

Cao et.al (Cao, Hu 

et al. 2002) 
HFS-HEX-8 

Rectangular 0.981 0.981 0.962 

Trapezoidal 0.047 0.980 0.281 

Parallelogram 0.625 0.653 0.657 
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1P 

45

4545
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3.6.4. Irregularly meshed beam with two materials 

In the fourth example, a long beam composed of two materials as shown in 

Figure 3.8 is investigated. The beam is 4m long with a constant squared cross-section 

of 0.5×0.5m2. The material parameters are respectively E1=200 MPa, v1=0.3 and 

E2=400 MPa, v2=0.3 (Ribeiro and Paiva 2009). The interface between the two 

materials is considered perfectly bonded. The displacements are restrained at one end 

of the beam and a transverse force of 2kN is uniformly applied on the cross-section of 

the other end, as shown in Figure 3.8.  

 

Figure 3.8 Irregularly meshed bimaterial beam: geometry, materials and boundary 

conditions.  

The response of the beam is computed using the 3D HFS-FEM for three 

irregular meshes, as shown in Figure 3.9, i.e. Mesh 1 (2×2×10 elements with 99 

nodes), Mesh 2 (4×4×20 elements with 525 nodes) and Mesh 3 (8×8×40 elements with 

3321 nodes). The transverse displacements 2u
 
along the force direction at the central 

tip point of the cross-section are used for comparison. Table 3.3 gives the transverse 

displacement 2u
 
obtained by the HFS-FEM using HFS-HEX8 and HFS-HEX20 

elements as well as the results by ABAQUS C3D8 elements and enhanced strain 

elements (EAS) (Simo and Rifai 1990). For Mesh 1 it is found that the C3D8 element 

is severely locked, as expected. EAS elements produce better results than the original 

C3D8 elements. The HFS-HEX8 element also displays a locking problem for Mesh 1 

but significantly improves on the results of C3D8, which has similar performance to 

EAS element. The quadratic element HFS-HEX20 has the best performance of the 
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listed elements. However, it can be expected that all the elements both from HFS-FEM 

and ABAQUS will converge to the benchmark value of 3.8388 cm (obtained by 

ABAQUS using 20×20×100 elements with 71001 nodes shown in Figure 3.10) with 

increase of the mesh density.  

 

 

Figure 3.9 Irregularly meshed bimaterial beam: Mesh 1 (2×2×10 elements), Mesh 2 

(4×4×20 elements) and Mesh 3 (8×8×40 elements). 

 

Figure 3.10 Regularly meshed bimaterial beam: fine mesh used by ABAQUS for 

benchmark reference (20×20×100 elements).  

In comparison with the solution of ABAQUS using several tens of thousands 

of nodes, it is interesting that similar results of nearly the same accuracy can be 

obtained by HFS-FEM using much coarser meshes. It is expected that by using non-

uniform mesh density for the interface and ends, similar results would be obtainable 

with an even smaller number of elements. It can be concluded from Table 3.3 that the 
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HFS-FEM with linear or quadratic elements is not sensitive to element distortion as 

shown in Example 3.6.2, and the shear locking problems is not as severe with the HFS-

FEM as with C3D8, and the performance of the HFS-FEM is competitive with that of 

the EAS.  

Table 3.3 Transverse displacement and relative errors of irregularly meshed beam 

calculated by HFS-FEM and ABAQUS using different elements. 

Mesh 
HFS-FEM ABAQUS 

HEX8 HEX20 EAS C3D8 

Mesh 1 

(2×2×10) 

3.0842 

(19.65%) 

3.7890 

(1.30%) 

3.2541 

(15.23%) 

2.1612 

(43.70%) 

Mesh 2 

(4×4×20) 

3.6188 

(5.73%) 

3.8305 

(0.22%) 

3.6982 

(3.66%) 

3.2769 

(14.64%) 

Mesh 3 

(8×8×40) 

3.7650 

(1.92%) 

3.8382 

(0.01%) 

3.7993 

(1.03%) 

3.6878 

(3.93%) 

Note: Displacement unit: cm; Values in parentheses are the relative error. 

3.6.5. Cubic block under uniform tension and body force 

To investigate the performance of the proposed method for problems involving 

body forces, an isotropic cubic block subject to uniform tension is considered in this 

example. The dimension of the block is 10×10×10mm and its geometry and boundary 

conditions are shown in Figure 3.11. A constant body force of 10 MPa and uniform 

distributed tension of 100 MPa are applied to the cube. To investigate the convergence 

of the method, three different meshes are employed with distorted 8-node brick 

elements: Mesh 1 (4×4×4), Mesh 2 (6×6×6) and Mesh 3 (10×10×10) as shown in 

Figure 3.12. The displacement and stress at Point A calculated by ABAQUS with a 

very fine mesh (shown in Figure 3.13, 40×40×40 C3D8 elements with 68921 nodes), 

which can be viewed as the exact solution are given as a reference benchmark for 

comparison.  
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Figure 3.11 Cubic block under uniform tension and body force: geometry, boundary 

condition, and loading (Length unit: mm, force unit: MPa). 

 

Figure 3.12 Cubic block under uniform tension and body force: Mesh 1 (4×4×4 

elements), Mesh 2 (6×6×6 elements), and Mesh 3 (10×10×10 

elements). 

Figure 3.14 and Figure 3.15 present the displacement component 1u  and the 

stress component 11
 
at Point A of the block, calculated by the HFS-FEM on the three 

meshes shown in Figure 3.12. The results from C3D8 and EAS elements are also 

presented for comparison. It can be seen from these figures that the results obtained 

from both the HFS-FEM and ABAQUS converge to the benchmark value with an 

increase in the number of DOF. For Mesh 1, the hybrid EAS element has the best 

performance whereas for Mesh 2 and Mesh 3 the HFS-FEM with HEX8 elements 

exhibits better accuracy for both displacement and stresses compared with EAS in 

traditional FEM. From the results it can be seen that the C3D8 has the poorest 
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performance of the three types of elements presented. Contour plots of 1u  and 11
 

obtained by HFS-FEM on Mesh 3 are also presented in Figure 3.16.  

 

Figure 3.13 Cubic block under uniform tension and body force: fine mesh used by 

ABAQUS for benchmark reference (40×40×40 elements). 

 

Figure 3.14 Cubic block with body force under uniform distributed load: 

Convergent study of displacements. 
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Figure 3.15 Cubic block with body force under uniform distributed load: 

Convergent study of stresses. 

 

  

Figure 3.16 Contour plots of displacement 1u  and stress 11  of the cube. 
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body force approximation, and then the results of displacement and stress are 

improved. Thus, to improve the accuracy of HFS-FEM for problems involving body 

force, it would be expected to increase the number of nodes so as to increase the 

interpolation points. Details of the RBF interpolation can be found in previous 

literatures (Cheng, Chen et al. 2001).  

3.6.6. Thick plate with a central hole  

The influence of holes on the distribution of stresses in structural elements has 

been investigated for a long time (Savin 1961; Folias and Wang 1990; Golecki 1995). 

To demonstrate the capability of the new method to handle complex geometry and 

stress concentration, a thick plate with a circle hole at its center is investigated in this 

example. Uniform displacement 1 1u   mm is applied on one face of the plate along 

the x axis as shown in Figure 3.17. The reference results are obtained by ABAQUS 

using 138,866 C3D8R elements with 151,725 nodes, as illustrated in Figure 3.13. 

Three different meshes used in this example, Mesh 1 (660 elements with 985 nodes), 

Mesh 2 (1392 elements with 1876 nodes) and Mesh 3 (5274 elements with 6657 

nodes), are shown in Figure 3.18. 

Figure 3.20 presents the results calculated by the HFS-FEM and ABAQUS for 

the stress at point M (as shown in Figure 3.17). It is obvious that the results from HFS-

FEM are much better than those given by ABAQUS. The error of HFS-FEM is less 

than 3% whereas the error of ABAQUS is greater than 20% when using the finer Mesh 

3. The von Mises stress of the thick plates is also given in Figure 3.21, in which the 

von Mises stress is given by  

 

3

2
vm ij ji     (3.65) 

where vm
 
is the von Mises stress, ij is the stress tensor and ij  is the deviatory stress 

defined by 

 
1

3
ij ij kk ij       (3.66) 
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It can be seen from Figure 3.21 that the HFS-FEM demonstrates promising 

performance with a far smaller error than that obtained from ABAQUS in the stress 

concentration problems.  

 

Figure 3.17 Thick plate with central hole: geometry, material and boundary 

conditions.  

 

Figure 3.18 Thick plate with central hole: fine mesh used by ABAQUS for 

benchmark reference (138866 elements with 151725 nodes).  

 

L=10

W=10

R=1

M

1 1u 

H=2

1x

3x

2x



 65 

 

Figure 3.19 Perforated thick plate: Mesh 1 (660 elements with 985 nodes), Mesh 2 

(1392 elements with 1876 nodes) and Mesh 3 (5274 elements with 6657 

nodes). 

 

 

Figure 3.20 Perforated thick plate under uniform distributed load: Convergent study 

of stresses. 
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Figure 3.21 Perforated thick plate under uniformly distributed load: Convergent 

study of von Mises stress. 

3.6.7. Nearly incompressible block 

As shown in Figure 3.22, a nearly incompressible block with dimensions 

100×100×50 m is considered (Andelfinger and Ramm 1993; Mueller-Hoeppe, 

Loehnert et al. 2009). The block is fixed at the bottom and loaded at the top by a 

uniform pressure of q=250 Pa, acting on an area of 20×20 at the center. Due to 

symmetry of the problem, only a quarter of the block is discretized with a uniform 

5×5×5 mesh. The bottom face of the block is fixed in the x3-direction, and the 

symmetry boundary conditions are applied to the symmetry surface of the block. The 

geometry and the material properties as well as the load applied and the boundary 

conditions are given in Figure 3.22.  
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Figure 3.22 Nearly incompressible block: geometry, boundary conditions and the 

tested mesh (1/4 model).  

The vertical displacement at the top center P of the block is listed for the HFS-

HEX8 element, HIS element (Areias, César de Sá et al. 2003) as well as the 3D.EAS-

30 (Andelfinger and Ramm 1993) and QM1/E12 (Korelc and Wriggers 1996) element 

in Table 3.4. It is found that HFS-HEX8 is free of volumetric locking and shows a 

significantly softer response compared with the QM1/E12 element. The enhanced 

strain element 3D.EAS-30 exhibits a little more stiffness than HFS-HEX-8 and HIS 

proposed by Areias et al.(Areias, César de Sá et al. 2003). The contour plot of the 

vertical displacement of the block using the HFS-HEX-8 element with 5×5×5 meshes 

is shown in Figure 3.23. With the QM1/E12 element, however, it is noted that 

solutions can be obtained for the two coarsest meshes only. With finer mesh 

resolutions, the QM1/E12 element shows unphysical hourglass instabilities (Mueller-

Hoeppe, Loehnert et al. 2009).  

Table 3.4 Near-incompressible regular block, displacement at the center P of the 

block.  

Element Displacement (m) Error   

HFS-HEX8 0.02132 10.98%  

HIS (Areias, César de Sá et al. 2003) 0.01921 0.00%  

3D.EAS-30 

 (Andelfinger and Ramm 1993) 
0.01905 0.83% 

 

QM1/E12 (Korelc and Wriggers 1996) 0.01892 1.51%  
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Figure 3.23 Contour plot of the vertical displacements (m) of the near-

incompressible regular block under central uniform loading. 

3.7. SUMMARY 

In this work a new HFS-FEM approach is proposed for analyzing 3D elastic 

problems. Detailed formulations for the 3D HFS-FEM are first derived for elastic 

problems by ignoring body force terms and then the method of particular solution and 

the RBF approximation are integrated into the HFS-FEM model to solve elastic 

problems with body forces. The homogeneous solution is obtained by the HFS-FEM 

and the particular solution by the RBF approach. Several standard tests and numerical 

examples are presented to demonstrate the capability and accuracy of the method. It 

is found that the new method with linear 8-node and quadratic 20-node brick elements 

can successfully pass the patch test. It is also found that HFS-HEX8 element exhibits 

the shear locking phenomenon and cannot pass the trapezoidal and parallelogram 

beam test, although it is not very sensitive to mesh distortion and performance is 

superior to that of the Pian and Tong element. It is also demonstrated that the new 

method usually converges better than the traditional FEM and it can be used in 

problems with nearly incompressible materials without volumetric locking. This new 

method seems promising for dealing with problems involving complex geometry, 
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stress concentration and multi-materials. It is possible to extend the current method to 

nonlinear problems by treating nonlinear terms as a generalized body force and 

developing a convergent iterative algorithm.  
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Chapter 4. HFS-FEM for Anisotropic Composites 

 

4.1. INTRODUCTION 

In materials science, composite laminates are usually assemblies of layers of 

fibrous composite materials which can be joined together to provide required 

engineering properties, such as specified in-plane stiffness, bending stiffness, strength, 

and coefficient of thermal expansion (see Figure 4.1) (Vasiliev and Morozov 2007). 

Individual layers (or laminas) of the laminates consist of high-modulus, high-strength 

fibers in a polymeric, metallic, or ceramic matrix material. On one hand, the fiber and 

matrix in each lamina can be treated as inclusion and matrix, respectively, from the 

viewpoint of micromechanics. On the other hand, each lamina and the whole laminate 

can also be viewed as a general anisotropic body in classical lamination theory, from 

the viewpoint of macromechanics. Hence, the analysis of anisotropic bodies is 

important for understanding of the micro- or macro-mechanical behavior of 

composites (Hwu and Yen 1991; Vasiliev and Morozov 2007).   

 

Figure 4.1 Schematic of a composite laminate (Vasiliev and Morozov 2007). 
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There are two main approaches in the literature, dealing with generalized two-

dimensional anisotropic elastic problems. The first is Lekhnitskii formalism 

(Lekhnitskii 1981), which begins with the stresses as basic variables and the other is 

Stroh formalism (Stroh 1958; Ting 1996) , which starts with the displacements as basic 

variables. Both of these approaches are formulated in terms of complex variable 

functions. Stroh formalism, which has been shown to be elegant and powerful, is used 

to find analytical solutions for corresponding infinite bodies (Ting 1996). The basic 

assumption of Stroh formalism is that all components of stresses and displacements in 

an elastic body depend on xl and x2 only, which is the condition for generalized plane 

deformation. Stroh formalism can be reduced directly to plane strain problems when 

out-of-plane displacement is zero. Moreover, it can also be applied to the generalized 

plane stress problems by considering displacements and stress as the average values 

through the thickness of the plates (Hwu and Yen 1991). In general, Stroh formalism 

is suitable for anisotropic material with distinct material eigenvalues. For degenerate 

materials with repeated eigenvalues such as isotropic materials, the results should be 

modified in analytical sense (Ting and Hwu 1988). However, a small perturbation of 

the material constants can usually lead to the eigenvalues be distinct and the results 

can be conveniently applied to isotropic materials. This formalism is also widely 

employed in the derivation of inclusion or crack problems of anisotropic materials 

(Ting 1996). 

Because of the limitations of analytical solutions which are available only for 

certain problems with simple geometry and boundary conditions (Lekhnitskii 1981; 

Ting 1996), numerical methods such as FEM, BEM, mesh free method (MFM), and 

HT-FEM are usually resorted to solve more complex problems with complicated 

boundary constraints and loading conditions (Hwu and Yen 1991; Denda and Kosaka 

1997; Ting, Chen et al. 1999; Qin 2000; Wang, Mogilevskaya et al. 2003; Rajesh and 

Rao 2010). As an alternative to the HT-FEM, a hybrid finite element formulation 

based on the fundamental solutions, called the HFS-FEM, has recently been developed 
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for solving 2D elastic and thermal problems for isotropic (Wang and Qin 2010a; Wang 

and Qin 2011), orthotropic (Wang and Qin 2010b) and piezoelectric materials (Cao, 

Qin et al. 2012b). The HFS-FEM retains the advantages of the HT-FEM over the 

traditional FEM and the BEM, such as the possibility of high accuracy using coarse 

meshes of high-degree elements, enhanced insensitivity to mesh distortion, great 

liberty in element shape, and accurately representation of various local effects without 

troublesome mesh adjustment (Qin 2003; Dhanasekar, Han et al. 2006). Compared to 

the HT-FEM, HFS-FEM has simpler interpolation kernel expressions for intra-

element fields (fundamental solutions) and avoids the coordinate transformation 

procedure required in the HT-FEM to keep the matrix inversion stable. 

In this chapter, the new hybrid finite element model (HFS-FEM) for analyzing 

anisotropic composite materials is developed based on the associated fundamental 

solutions in terms of Stroh formalism. The foundational solutions of anisotropic 

materials are employed to approximate the intra-element displacement field of general 

elements. Four numerical examples are presented to demonstrate the accuracy and 

efficiency of the proposed method. The chapter is organized as follows: a brief review 

of the basic equations, Stroh formalism, and the related fundamental solutions for a 

generalized 2D anisotropic elastic problem is presented in Section 4.2. Then the 

detailed HFS-FE formulations for composite materials are presented in Section 4.3. 

Several numerical examples are presented in Section 4.4 to verify and demonstrate the 

performance of the proposed method and finally some concluding remarks are 

provided in Section 4.5. The majority of this chapter has been presented in a paper 

(Cao, Qin et al. 2013a) co-authored by the candidate.  

4.2. LINEAR ANISOTROPIC ELASTICITY 

4.2.1. Basic equations and Stroh formalism 

In the Cartesian coordinate system (x1, x2, x3), if we neglect the body force ib

, then the equilibrium equations, stress-strain laws and strain-displacement equations 

for anisotropic elasticity are (Ting 1996)  
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 , 0ij j   (4.1) 

 ij ijkl klC e   (4.2) 

 
, ,

1
( )

2
ij ji j ie u u   (4.3) 

where , 1,2,3i j  , ij is the stress tensor, 
kle  the strain tensor, ijklC the fourth-rank 

anisotropic elasticity tensor, and iu  the displacement vector. For convenience, 

matrices are here represented by bold-face letters and a comma followed by an index 

implies differentiation with respect to that index. The summation convention is 

invoked over repeated indices. The equilibrium equations can be rewritten in terms of 

displacements by substituting Eqs. (4.2) and (4.3) into Eq. (4.1) as  

 , 0kij lkl juC   (4.4) 

The boundary conditions of the boundary value problem (4.2)-(4.4) are  

 i iu u               on u (4.5) 

 i ij j it n t      on t (4.6) 

where  and i iu t are the prescribed boundary displacement vector and the traction 

vector, respectively. In addition, in
 
is the unit outward normal to the boundary and 

=u+ t  is the boundary of the solution domain . 

For the generalized 2D deformation of anisotropic elasticity iu  is assumed to 

depend on 1x  and 2x  only. With this assumption, the general solution to (4.4) can be 

written as (Stroh 1958; Ting 1996) 

 2Re{ ( )}, 2Re{ ( )}z z u Af φ Bf  (4.7) 

where  
T

u u u1 2 3u = , ,  is the displacement vector,  
T

   1 2 3φ , ,  is the stress 

function vector, 1 1 2 2 3 3( ) [ ( ),  ( ),  ( )]Tz f z f z f zf  is a function vector composed of three 

holomorphic complex functions ( )f z  , 1,2,3  , which are arbitrary functions with 

the arguments 1 2z x p x    and will be determined by satisfying the boundary and 

loading conditions of a given problem. In Eq. (4.7), Re stands for the real part of a 

complex number, p  are the material eigenvalues with a positive imaginary part, 

 1 2 3
A = a ,a ,a  and  1 2 3

B = b ,b ,b  are 3×3 complex matrices formed by the material 

eigenvector associated with p , which can be obtained by the following eigenrelations 

(Ting 1996) 
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 pNξ ξ  (4.8) 

where N  is a 6×6 foundational elasticity matrix and ξ  is a 6×1 column vector defined 

by 

 
 

  
 

1 2

T

3 1

N N
N

N N
, 

 
  
 

a
ξ

b
 (4.9) 

where 
-1 T -1 -1 T

1 2 3
N = -T R ,N = T ,N = RT R -Q  and the matrices Q , R and T are 3×3 

matrices extracted from ijklC  as follows 

 1 1 1 2 2 2, ,ik i k ik i k ik i kQ C R C T C    (4.10) 

The stresses can be obtained from the derivation of stress functions φ  as follows 

 
   1 22Re{ ( )}, 2Re{ ( )}i iz z   Lf Bf  (4.11) 

where 

  1 2 3 4L p p p p    
1 2 3 4

b , b , b , b  (4.12) 

4.2.2. Foundational solutions 

To find the fundamental solution needed in this analysis, we must first derive 

the Green’s function of the problem: an infinite homogeneous anisotropic elastic 

medium loaded by a concentrated point force (or line force for 2D problems) 

1 2 3
ˆ ˆ ˆ ˆ( , , )p p pp  applied at an internal point 1 2

ˆ ˆ ˆ( , )x xx  distant from the boundary. The 

boundary conditions of this problem can be written as  

 

ˆ ˆ     for any closed curve  enclosing 

ˆ      for any closed curve  

lim 0

C

C

ij

d C

d C














x

p x

u p



 (4.13) 

Thus, the Green’s function satisfying the above boundary conditions is found to be 

(Ting 1996)  

 
1

ˆˆ( ) ln( )
2

Tf z z z
i

 


  A p  (4.14) 

Therefore, the fundamental solutions of the problem can be expressed as  

 

  

  

1
ˆˆIm ln

1
ˆˆIm ln

z z

z z

 

 






 

 

T

T

u A A p

B A p

 (4.15) 

The corresponding stress components can be obtained from stress function    
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  

  

*

1 ,2

*

2 ,1

1
ˆˆIm /

1
ˆˆIm 1/

i

i

p z z

z z

  

 

 


 


    

  

T

T

B A p

B A p

 (4.16) 

where p̂  are chosen to be (1,0,0) ,(0,1,0) ,(0,0,1)T T T , respectively,     stands for the 

diagonal matrix corresponding to subscript  , Im denotes the imaginary part of a 

complex number, and superscript T denotes the matrix transpose. 

4.2.3. Coordinate transformation 

A typical composite laminate consists of individual layers (see Figure 4.1) 

which are usually made of unidirectional plies with the same or regularly alternating 

orientation. A layer is generally referred to the global coordinate frame x, y, and z of 

the structural element rather than to the coordinates 1, 2, and 3 associated with the ply 

orientation. It is therefore necessary to transform the constitutive relationship of each 

layer from the material coordinate frame 1, 2, and 3 to the uniform global coordinate 

frame x, y, and z.  

 

Figure 4.2 Schematic of the relationship between global coordinate system and 

local material coordinate system (1, 2). 

For the two coordinate systems mentioned above (see Figure 4.2), the angle between 

axis-1 and axis-x is denoted by  , which is positive in the anti-clockwise direction, 

and the relationship for transformation of stress and strain components between the 

local material coordinates and the global coordinates is given by 

x

y

1
2


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  1

11 22 23 31 12, , , , , , , ,
T T

xx yy yz zx xy             T  (4.17) 

and 

    1

11 22 23 31 12, , , , , , , ,
T TT

xx yy yz zx xy             T  (4.18) 

where the transformation matrix T and its inverse matrix are defined as 

 

2 2

2 2

2 2
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c s
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 
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 
 
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2 2

2 2

1

2 2

0 0 -2

0 0 2

0 0 0
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c s
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 
 
 
 
 
  

T  (4.19) 

with cos( ),   sin( )c s   . Subsequently, the constitutive relationship in the global 

coordinate system is given by  

  1 1, , , , , , , ,
TT T

xx yy yz zx xy xx yy yz zx xy                T C T  (4.20) 

4.3. FORMULATIONS OF HFS-FEM  

4.3.1. Assumed fields  

To solve the anisotropic problem governed by Eqs. (4.4)-(4.6) using HFS-

FEM approach, the solution domain   must be divided into a series of elements as 

done in conventional FEM. For each element, two independent fields, i.e. the intra-

element field and the frame field, are assumed in the manner presented by (Wang and 

Qin 2010a; Wang and Qin 2010b). In this approach, the intra-element displacement 

fields for a particular element e are approximated in terms of a linear combination of 

fundamental solutions of the problem as  

 

1
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3
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( )     ( , )
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u

u

u

 
 
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 
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e e

x

u(x) x N c x y

x

 (4.21) 

where the matrix eN  and unknown vector ec  can be further written as  

* * * * * *

11 1 12 1 13 1 11 12 13

* * * * * *

12 1 22 1 23 1 12 22 23

* * * * *

13 1 32 1 33 1 13 32

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( ,

s s s

s s s

s s

s s s sn sn sn

s s s sn sn sn

s s s sn sn

u u u u u u

u u u u u u

u u u u u

e

x y x y x y x y x y x y

N x y x y x y x y x y x y

x y x y x y x y x y
*

33) ( , )
ssnu

 
 
 
 
  x y

 (4.22) 

 11 21 31 1 2 3[ ]T

n n nc c c c c c
e

c  (4.23) 
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in which ns is the number of source points, x  and sjy  are respectively the field point 

and the source point in the coordinate system (X1, X2) local to the element under 

consideration. The components 
* ( , )ij sju x y  represent the fundamental solution, i.e. the 

induced displacement component in the i-direction at the field point x  due to a unit 

point load applied in the j-direction at the source point sjy  placed outside the element, 

as given by Eq.(4.15) for general elements.  

In the analysis, the number of source points is taken to be same as the number 

of element nodes, which is free of spurious energy modes and retain the stiffness 

equations in full rank, as indicated by (Qin 2000). The source point ( 1,2, , )sj sj ny

can be generated through the following method (Wang and Qin 2010b)  

 0 0( )s c  y x x x  (4.24) 

where γ is a dimensionless coefficient, 0x  is a point on the element boundary (the 

nodal point in this work) and cx  the geometrical centroid of the element. 

Determination of γ has been discussed in literatures (Wang and Qin 2009; Wang and 

Qin 2010b) and γ=8 is used in the following analysis. 

The corresponding stress fields can be expressed as  

  11 22 23 31 12

T
      e eσ(x) T c  (4.25) 

where  
* * * * * *
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(4.26) 

The components 
* ( , )ijk x y  are given by Eq.(4.16) when ˆ ip is selected to be (1,0,0)T , 

(0,1,0)T  and (0,0,1)T , respectively. As a consequence, the traction can be written as  

 

1

2

3

t

t

t

 
 

  
 
 

e e
nσ Q c  (4.27) 

in which  

 e eQ nT  (4.28) 



 78 

 

1 3 2

2 3 1

2 1

0 0

0 0

0 0 0

n n n

n n n

n n
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
 
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n  (4.29) 

The unknown ec  in Eq.(4.21) and Eq.(4.25) may be calculated using a hybrid 

technique (Wang and Qin 2009), in which the elements are linked through an auxiliary 

conforming displacement frame which has the same form as in conventional FEM. 

This means that in the HFS-FEM, a conforming displacement field should be 

independently defined on the element boundary to enforce the field continuity between 

elements and also to link the unknown ec  and the nodal displacements ed . Thus, the 

frame field is defined as  

 

11

2 2

3 3

( ) ,       ( )e e e e

u

u

u
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N

u x N d N d x

N

 (4.30) 

where the symbol “~” is used to specify that the field is defined on the element 

boundary only, eN  is the matrix of shape functions, ed  is the nodal displacements of 

elements. Taking the side 3-4-5 of a particular 8-node quadrilateral element as an 

example, eN
 
and ed  can be expressed as  

 1 2 3e
   N 0 0 N N N 0 0 0  (4.31) 

  11 21 31 12 22 32 18 28 38= 
T

e u u u u u u u u ud  (4.32) 

where the shape functions are expressed as  
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i
N 0  (4.33) 

and 1N , 2N  and 3N  are expressed by natural coordinate [ 1,1]    

 
   

  2

1 2 3

1 1
,   1 ,       1,1

2 2
N N N

   
 

 
        (4.34) 

4.3.2. Modified functional for HFS-FEM 

With the assumption of a distinct intra-element field and frame field for 

elements, the modified variational principle can be established based on Eqs. (4.4)-

(4.6) for the hybrid finite element method of anisotropic materials (Qin 2000; Qin 
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2003). In the absence of the body forces, the hybrid variational functional me for a 

particular element e is constructed as 

 
1

( )
2 e t e

me ij ij i i i i id tu d t u u d 
  

         (4.35) 

where the boundary e of the element e is  

 e eu et eI       (4.36) 

and  

 ,eu e u et e t         (4.37) 

and eI is the inter-element boundary of element e. Compared to the functional 

employed in the conventional FEM, the present variational functional is constructed 

by adding two integral terms related to the intra-element and element frame fields to 

guarantee the satisfaction of the displacement continuity condition on the common 

boundary of two adjacent elements. To this end, performing a variation of m , yields 

 , [( ) ( )]
e et e

me ij i j i i i i i i i iu d t u d u u t t u u d      
  

           (4.38) 

Applying Gaussian theorem  

 ,
e e

i if d f n d
 

      (4.39) 

and the definitions of traction force  

 i ij jt n  (4.40) 

we obtain  

 ,
e e et

e ij j i i i i iu d t u d t u d    
  

         (4.41) 

Then, substituting Eq.(4.41) into Eq. (4.38) gives 

 , [( ) ]
e et e

me ij j i i i i i i i iu d t u d u u t t u d     
  

           (4.42) 

Considering the fact that 

 0
eu

i it u d


   (4.43) 

the following form is finally obtained 

 , ( ) ( )
e et e I

me ij j i i i i i i i i iu d t t u d u u t d t u d     
   

             (4.44) 

Therefore, the Euler equations for Eq. (4.35) result in Eqs. (4.4)-(4.6) because the 

quantities ,   and i i iu t u    may be arbitrary. The continuity condition between 
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elements can easily be seen from the following variational of two adjacent elements 

such as e and f 

 
 

( ) , ( )

( )

e f et et

efI

e f

m e f ij j i i i i

i i i ie if i

u d t t u d

u u t d t t u

   

 



   


 

     

   

 

 
 (4.45) 

This indicates that the stationary condition of the functional satisfies both the required 

boundary and inter-element continuity equations. In addition, the existence of 

extremum of functional (4.35) can be easily proved by the so-called “second 

variational approach”, which indicates that functional (4.35) has a local extreme. 

Therefore, it is concluded that the variational functional (4.35) can be used for deriving 

hybrid finite element formulations.  

4.3.3. Element stiffness equation 

Using Gaussian theorem and equilibrium equations, all domain integrals in Eq. (4.35) 

can be converted into boundary integrals as follows  

 
1

2 e e t
me i i i i i it u d t u d t u d

  
         (4.46) 

Substituting Eqs. (4.21), (4.27) and (4.30) into the functional (4.46) yields the 

formulation  

 
1

2

T T T

me e e e e e e e e    c H c c G d d g  (4.47) 

where 

 
T d

e
e e e


 H Q N ,   

T d
e

e e e


 G Q N ,   
T

t
e e d


 g N t  (4.48) 

To enforce inter-element continuity on the common element boundary, the unknown 

vector ce should be expressed in terms of nodal DOF de. The stationary condition of 

the functional me with respect to ce and de, respectively, yields 

 
T

me
e e e e

e


   


H c G d 0

c
 (4.49) 

 
T

Tme
e e e

e


  


G c g 0

d
 (4.50) 

from which the relationship between ce and de, and the stiffness equation can be 

obtained as 
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1

e e e e

c H G d  (4.51) 

 e e eK d = g  (4.52) 

where 
1

e e e e

T
K = G H G is the element stiffness matrix with symmetric properties. The 

numerical calculations for eH , eG ,and eg  can utilize the popular Gauss integration 

as used in FEM and BEM.   

4.3.4. Recovery of rigid-body motion terms 

It is necessary to reintroduce the discarded rigid-body motion terms when 

calculating the internal field ehu  of an element (Qin 2000). The least squares method 

can be employed for this purpose (Wang and Qin 2011). The missing terms can easily 

be recovered by setting for the augmented internal field 

 

3

0

2

3 1

2 1

1 0 0 0

0 1 0 0

0 0 1 0

e e e

x x

x x

x x

 
 


 
 





u N c c  (4.53) 

where the undetermined rigid-body motion parameter 0c can be calculated using the 

least square matching of eu  and eu  at element nodes, and using a least-square 

procedure to match ehu  and ehu  at the nodes of the element boundary 

 
     

2 2 2

1 1 2 2 3 3

1

min
n

i i i i i i

i

u u u u u u


      
   (4.54) 

where n  is the number of nodes for the element under consideration. The above 

equation finally yields 

 
1

e



0 e
c = R r  (4.55) 

where 

 

3 2

3 1

2 1

2 2

3 2 2 3 1 2 1 3

2 2

3 1 1 2 1 3 2 3

2 2

2 1 1 2 1

1

3 3 2

1 0 0 0

0 1 0 0

0 0 1 0

0

0

0

i i

i i

i i

i i i i i i i i

i i i i i i

n

i i

i i i i i i i i

i

x x

x x

x x

x x x x x x x x

x x x x x x x x

x x x x x x x x



 
 


 
 
 

    
    
 
     

eR =  (4.56) 
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2
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1 3 2 2 3

1 3 3 1

2 1 1 2

e i

e i

n
e i

i e i i e i i

e i i e i i

e i i e i i

u

u

u

u x u x

u x u x

u x u x



 
 


 
 

  
  
  
 
   

er  (4.57) 

and  
node i

ˆ
ei e eΔu = u -u . Consequently, once the nodal displacement fields ed  and the 

interpolation coefficients ec  are respectively determined by Eqs. (4.52) and (4.51), 
0c  

can be calculated by Eq. (4.55). Then the complete displacement fields eu  can be 

obtained from Eq. (4.53). 

4.4. NUMERICAL EXAMPLES 

In this section, the accuracy, efficiency and versatility of the present element 

model are shown by some examples which have been solved analytically or 

numerically. The 8-node quadratic element is employed for the HFS-FEM in all the 

examples, in which a plane stress condition is involved in the first three examples and 

a plane strain condition in the fourth example. Numerical results calculated by HFS-

FEM are compared to analytical solutions or those obtained from traditional FEM 

(ABAQUS).  

4.4.1. Finite orthotropic composite plate under tension 

A finite composite lamina with length L=100 mm and width W=100 mm is 

considered in this example. As shown in Figure 4.3, one side of the composite plate is 

fixed and a uniform tension of 0 =10 GPa along the 1x  direction is applied to its 

opposite side. The material parameters of the orthotropic lamina are taken as El=11.8 

GPa, E2=5.9 GPa, G12=0.69 GPa, v12= 0.071 (Hwu and Yen 1991). The lamina angle 

  is measured from the 1x  axis to the fiber direction, and the fiber direction is denoted 

by 1 as shown in Figure 4.2. Regular meshes are employed in this analysis and two of 

the mesh configurations with 16 and 100 8-node hybrid elements are shown in Figure 

4.4.  
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Figure 4.3 Schematic of an orthotropic composite plate under tension. 

 

     

Figure 4.4 Two mesh configurations (left: 4×4 elements, right: 10×10 elements) 

for the orthotropic composite plate. 

The effects of the locations of source points on the convergence and accuracy 

of stress and displacements have been investigated in previous work (Wang and Qin 

2009), and are omitted in this chapter. Thus, 8   is chosen in the following 

computations. The displacement 1u  and stress 11  at point A of the plate calculated by 

HFS-FEM on four different meshes (2×2 elements, 4×4 elements, 8×8 elements and 

10×10 elements) are shown in Table 4.1. It can be seen that the results obtained from 

W

L
1x

2x

0

A
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HFS-FEM converges to the reference values calculated by ABAQUS using a much 

finer mesh (50×50 quadratic elements). The stress and displacement for the composite 

lamina has a satisfactory accuracy for the analysis, in which the maximum relative 

error is 0.12% only when using 2×2 elements.  

Table 4.1 Convergence of the displacement and stress at point A of the composite 

plate. 

Method and  

Mesh Size 

HFS-FEM 

(2×2)  

HFS-FEM 

(4×4) 

HFS-FEM 

(8×8) 

HFS-FEM 

(10×10) 

ABAQUS  

(50×50) 

Disp. 1u  (mm) 1.6969 1.6968 1.6967 1.6967 1.6949 

Stress 11  (GPa) 10.016 10.013 10.007 10.005 10.000 

 

Table 4.2 Displacement (mm) of point A of the composite plate for various fiber 

orientations. 

Fiber angle   0° 30° 45° 60° 90° 

HFS-FEM  1.6967 6.5545 8.4564 7.4003 3.3904 

ABAQUS 1.6949 6.5549 8.4574 7.4024 3.3898 

Relative error  0.106% 0.006% 0.012% 0.028% 0.018% 

 

 

Figure 4.5 Variation of the displacements at point A of orthotropic plate with fiber 

orientation. 
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Table 4.2 gives the displacements at point A of the composite plate when the 

material orientation, i.e. the orientation of fibers, varies from 0° to 90°. The variation 

curves are shown in Figure 4.5, from which it is noticed that the orientation of 

orthotropic lamina has a significant influence on the mechanical behavior of the 

composite plate, and the largest displacement at  =45° is up to five times that at 

=0°. Figure 4.5 also demonstrates that the proposed method has good performance for 

various material orientations.  

4.4.2. Orthotropic composite plate with an elliptic hole under tension 

A finite composite plate containing an elliptical hole, as shown in Figure 4.6, 

is investigated in this example. A uniform tension of 0 =1 GPa is applied in the 2x  

direction. The material parameters of the orthotropic plate are taken as El=113 GPa, 

E2=52.7 GPa, G12=28.5 GPa, v12= 0.45. The length and width of the plate are L=20 

mm and W=20 mm; the major and minor lengths of the ellipse a and b are respectively 

2 mm and 1 mm. In the computation, the plane stress condition is used.  

 

Figure 4.6 Schematic of an orthotropic composite plate with an elliptic hole under 

uniform tension. 
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The mesh configuration used in the HFS-FEM analysis for the composite plate 

is given in Figure 4.7, which employs 1515 quadratic hybrid elements with 4665 

nodes. For comparison, the numerical results from ABAQUS, based on a very fine 

mesh (9498 quadratic elements with 28854 nodes) as shown in Figure 4.7, are also 

given. 

 

Figure 4.7 Mesh configurations for the orthotropic composite plate with an elliptic 

hole: (a) for HFS-FEM; (b) for ABAQUS.  

 

Figure 4.8 Variation of hoop stresses along the rim of the elliptical hole for 

different fiber orientation  . 
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Figure 4.8 shows the corresponding variation of the hoop stress along the rim 

of the elliptical hole when the orientation angle   of reinforced fibers is equal to 0°, 

30° 45°, 60°, and 90°. From Figure 4.8, the results from HFS-FEM are in good 

agreement with the reference solutions from ABAQUS. This indicates that the 

proposed method is able to capture the dramatic variations of the hoop stress induced 

by the elliptical hole in the plate. The contour plots of stress components 11 , 22 , 

12  around the elliptic hole in the composite plate for several different fiber angles are 

shown in Figure 4.9.  

 
(a) 00   

 
(b) 045   

 
(c) 060   
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(d) 090   

Figure 4.9 Contour plots of stress components around the elliptic hole in the 

composite plate. 

The stress concentration factor (SCF) induced by the hole in the plate, which 

is defined by 0/ 
 
at point A, are of particular interest in practical engineering. As 

shown in Figure 4.8, the corresponding variation of hoop stress along the rim of the 

elliptical hole calculated by the HFS-FEM exhibits good agreement with the solutions 

from ABAQUS. The relationship between the SCF and the inclined angle   of the 

reinforced fibers is shown in Figure 4.10. It is obvious that the SCF of the punched 

plate rises with an increase in fiber angle  . From Figure 4.10, the largest SCF occurs 

at 090   and the smallest appears at 0o  . There is good agreement between the 

numerical solution from ABAQUS and the corresponding results from HFS-FEM. 

Figure 4.10 also indicates the effectiveness of the proposed method in predicting the 

SCF for anisotropic composites. 
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Figure 4.10 Variation of SCF with the lamina angle  . 

4.4.3. Cantilever composite beam under bending  

A cantilever composite beam with a rectangular cross-section is fixed at one 

end and is bent by a normal load q=2 N/mm (per unit length) uniformly distributed 

along one of the long sides (Figure 4.11). The geometrical parameters of the beam are 

h=1 mm, b=50 mm, and l=300 mm. The material constants of the composite beam are 

taken as El=113 GPa, E2=52.7 GPa, G12=28.5 GPa, v12=0.45 (Chern and Tuttle 2000). 

The angle between the reinforcing fiber direction 1 and the x axis is denoted by  . 

 

Figure 4.11 Schematic of a cantilever composite beam under bending. 
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In verification of the accuracy of the method, the analytical stress solution for 

this problems was given by Lekhnitskii (Lekhnitskii 1968) as 
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 (4.58) 

where
3

12

hb
I  , and 11 16 12 66, , ,s s s s

 
are the compliance parameters of the orthotropic 

composites defined in (Lekhnitskii 1968; Chern and Tuttle 2000). The deflection of 

the axis of the beam can be given as follows by using the corresponding governing 

equations and boundary conditions:  
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 (4.59) 

Table 4.3 lists the deflection at the free end (i.e. x=0, y=0) of the composite beam for 

various material orientations: 0°, 30°, 45°, 60° and 90°. It is obvious that the present 

HFS-FEM method has good accuracy for the composite beam analysis. The errors of 

the results, compared with the analytical solutions from Lekhnitskii (Lekhnitskii 

1968), are all less than 1% using only 100 8-node elements, a result that is competitive 

with the ABAQUS using 50×500 quadratic elements (CPS8R).   

Table 4.3 Deflection (mm) at the free end of the composite beam for various fiber 

angles. 

Orientation angle 

  
0° 30° 45° 60° 90° 

HFS-FEM 

(5×20) 
13.50 17.15 20.74  24.58 28.62 

ABAQUS 

(50×500) 
13.47 17.00 20.71 24.59 28.65 

Analytical 

solution 
13.61 17.20 20.93 24.80 28.80 

Relative Error 0.81% 0.29% 0.91% 0.89% 0.63% 
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(HFS-FEM) 

Table 4.4 presents the stress x  at points: A (250, 25), B (250, 15), C (250, 0), 

D (250, -15) and E (250, -25) along the cross-section of the composite beam for 

various fiber angles  . It can be seen from Table 4.4 that the tensile stress in the x-

direction obtained by the HFS-FEM is slightly lower than the analytical solutions 

whereas the compressive stress in the x-direction of the beam by HFS-FEM (5×20 8-

node elements) is slightly higher than in the analytical solutions. However, all the 

results from ABAQUS (50×500 8-node CPS8R elements) are lower than the 

corresponding analytical solutions except for the points B and D, and the difference 

becomes larger when approaching to the upper and lower surface of the beam. It is 

also noted that the results from the HFS-FEM are usually more accurate than those 

from ABAQUS (50×500 CPS8R elements), especially for the maximum or minimum 

stresses on the upper and lower surfaces of the beam, which are more important in 

design and analysis.  

Table 4.4 Stress x  (GPa) along the cross section of composite beam for different 

fiber angles. 

Fiber 

angle   
Method 

Stress x  at different points  

A 

(250,25) 

B 

(250,15) 

C 

(250,0) 

D 

(250,-

15) 

E 

(250,-

25) 

0° 

HFS-FEM 

(5×20) 

-

149.510 
-90.221 0.000 90.221 149.510 

ABAQUS 

(50×500) 

-

146.518 

-

90.2558 
0.000 90.2558 146.518 

Analytical 
-

149.387 
-90.221 0.000 90.221 149.387 

30° 

HFS-FEM 

(5×20) 

-

142.394 
-90.177 -3.873 90.096 156.846 

ABAQUS 

(50×500) 

-

139.638 
-89.866 -3.758 90.481 153.803 

Analytical 
-

142.092 
-89.837 -3.763 90.439 157.142 

45° 

HFS-FEM 

(5×20) 

-

142.537 
-90.170 -3.891 90.010 156.676 

ABAQUS 

(50×500) 

-

139.856 
-89.844 -3.681 90.445 153.731 

Analytical - -89.814 -3.686 90.403 157.070 
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142.327 

60° 

HFS-FEM 

(5×20) 

-

143.735 
-90.239 -2.998 89.920 154.578 

ABAQUS 

(50×500) 

-

141.577 
-89.910 -2.778 90.364 152.047 

Analytical 
-

144.158 
-89.878 -2.781 90.323 155.282 

90° 

HFS-FEM 

(5×20) 

-

152.822 
-90.078 0.000 90.078 152.822 

ABAQUS 

(50×500) 

-

146.807 

-

90.1388 
0.000 90.1388 146.807 

Analytical 
-

149.714 
-90.103 0.000 90.103 149.714 

4.4.4. Isotropic plate with multi-anisotropic inclusions  

This example investigates the capability of the new method to deal with both 

isotropic and anisotropic materials in a unified way, through a multi-inclusion 

problem. As shown in Figure 4.12, an isotropic plate containing multi-anisotropic 

inclusions of square geometry (edge length a=2 mm) are considered. The distance 

between any two inclusions is assumed to be b=3 mm. The material parameters for the 

inclusions are chosen as El=134.45 GPa, E2= E3=11.03 GPa, G23=2.98 GPa, G31= 

G12=28.5 GPa, v23=0.49, v31= v12=0.301. The material parameters for the isotropic 

matrix are elastic modules E=2.8 GPa and Poisson’s ratio v=0.3. Figure 4.13(a) shows 

the mesh configuration of the plate for HFS-FEM, which uses 272 quadratic general 

elements. The results from the ABAQUS with 30471 CPS8R elements as shown in 

Figure 4.13(b) are also presented for comparison.  
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Figure 4.12 Schematic of an isotropic plate with multi-anisotropic inclusions. 

 
 (a)                                  (b) 

Figure 4.13 Mesh configuration of an isotropic plate with multi-anisotropic 

inclusions: (a) for HFS-FEM, (b) for ABAQUS. 

In general, Stroh formalism used in our method is suitable for anisotropic 

material with distinct material eigenvalues, but it fails for degenerated materials such 

as isotropic material with repeated eigenvalues , ( 1,2,3)p i    (Lekhnitskii, 

1968). However, a small perturbation of the material constants, such as p1= (1-0.004)i,  
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p2=i,  p3= (1+0.004)i, can be applied to render the eigenvalues be distinct and the 

results can be applied conveniently.  

Table 4.5 shows the displacement and stresses at points A and B as indicated 

in Figure 4.12. For the HFS-FEM only the coarse mesh in Figure 4.13(a) is used, 

whereas for ABAQUS both the coarse mesh in Figure 4.13(a) and the fine mesh in 

Figure 4.13(b) are employed. It is observed that there is a good agreement between the 

results from the HFS-FEM and those from ABAQUS a using very fine mesh, in which 

the maximum relative error for displacement and stress by HFS-FEM occur at point B 

(i.e. x2=0) and are 0.7% and 1.3%, respectively. Further, accuracy of the results from 

the HFS-FEM is superior to those from ABAQUS using the same mesh. The variations 

of displacement components 1u  and 2u  along the right edge (x=8) from the HFS-FEM 

are shown in Figure 4.14 and Figure 4.15 respectively with the results from ABAQUS 

with fine mesh for comparison, in which good agreement can also be observed. Figure 

4.16 shows the contour plots for displacements 1u , 2u  and stress 11  for the composite 

plate. 

Table 4.5 Comparison of displacement and stress at points A and B. 

Items Points 
HFS-FEM 

(Coarse mesh)  

ABAQUS 

(Coarse 

mesh) 

ABAQUS 

(Fine mesh) 

Disp. 1u
 

(mm)
 

A 0.04322  0.04318  0.04335  

B 0.03719  0.03721  0.03744  

Stress 11
 

(GPa)
 

A 10.0446  9.9219  9.9992  

B 9.8585  9.8304  9.9976  
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Figure 4.14 Variation of displacement component 1u  along the right edge of the 

plate (x=8) by HFS-FEM and ABAQUS. 

 

 

Figure 4.15 The variation of displacement component 2u
 
along the right edge of the 

plate (x=8) by HFS-FEM and ABAQUS. 
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Figure 4.16 Contour plots of displacement 1u , 2u  and stress 11  for the composite 

plate.  

4.5. SUMMARY 

In this chapter a hybrid finite element formulation based on fundamental 

solutions is developed to provide a simple but accurate approach for analyzing general 

anisotropic composite materials. In this approach, the foundational solutions of 

anisotropic materials in terms of Stroh formalism are employed to approximate the 

intra-element displacement field of the elements, and the polynomial shape functions 

used in traditional FEM are utilized to interpolate the frame field.  

Several numerical examples involving isotropic and anisotropic composite 

with various loadings were provided to demonstrate the performance of the proposed 

method. Accuracy and convergence were verified through comparison with the exact 

or numerical solutions given in the literature or by ABAQUS. The numerical results 

show that the proposed method is accurate and efficient in modeling anisotropic 

composites and can easily be further extended to analyze composite laminates. 
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Chapter 5. Micromechanical Modeling of 2D Heterogeneous 

Composites 

 

5.1. INTRODUCTION  

Due to their excellent physical properties, fiber-reinforced composites have 

been widely used in practical engineering for the past several decades. Such materials 

usually present heterogeneous microstructures, often a complex ensemble of defects 

and multiple phases, which directly affect their macroscopic properties and thereby 

the usability of these materials. Consequently, quantitative characterization and 

modeling of the microstructures of these composites are becoming increasingly 

important with strong demands for accurate predictions of their behaviors under 

external stimuli and for designs of new materials with desired properties.  

In the past decades, micromechanics analysis has gained significant attention 

and has been extensively used to solve problems on a finer scale (Hill 1963; Mura 

1987; S. Nemat-Nasser 1999; Feng, Mai et al. 2003; Fu, Feng et al. 2008). 

Micromechanical approaches can determine the overall behavior of composites from 

the properties and distributions of their constituents by means of the analysis of a RVE 

model. Therefore, not only the global properties of the composites, but also various 

mechanisms such as damage initiation, evolution, and microcrack growth can be 

studied through micromechanical analysis. In the literatures, many methods, both 

analytical and numerical, have been proposed for predicting the physical behaviors of 

composites and some of those methods have been widely used in recent years. Closed-

form solutions for pioneering micromechanical models, based on simplifying 

assumptions such as the shape, the size, and the spatial distribution of inclusions, were 

first obtained for practical applications (Eshelby 1957; Qin and Swain 2004; Qu and 

Cherkaoui 2006). Well-known analytical micromechanical methods employed in 

material analysis includes the Mori-Tanaka method, the self-consistent method, the 

differential approach, and the Halpin-Tsai method (Hill 1965; Mori and Tanaka 1973; 
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Benveniste 1987; Aboudi 1991; Qin, Mai et al. 1998; Qin and Yu 1998). These 

methods, however, are applicable only to problems with simple geometry and loading 

conditions. For example, Eshelby’s tensor widely used in the above methods is size 

independent due to the assumption of prescribed uniform eigenstrains inside the 

inclusion. This limitation makes it valid only when the size of the inclusion is 

relatively small compared to the dimensions of the RVE (Eshelby 1957; Benveniste 

1987; Feng, Mai et al. 2003; Wang, Li et al. 2005).  

To overcome such limitations, numerical micromechanical models based on 

the FEM and BEM have been increasingly employed (Ghosh, Nowak et al. 1997; Yang 

and Qin 2003; Chawla, Ganesh et al. 2004; Yang and Qin 2004; Ghosh, Bai et al. 

2009). These methods are widely used for simulating the mechanical properties of 

micro-structured and nano-structured composites (Yang and Qin 2004; Seidel and 

Lagoudas 2006; Tyrus, Gosz et al. 2007). The BEM-based micromechanical model 

seems to be effective for handling materials with defects such as cracks and holes. The 

BEM involves boundary integrals only, which makes it less computationally 

exhaustive than FEM (Huang, Hu et al. 1994; Qin 2004; Liu, Nishimura et al. 2008). 

However, the treatment of singular or near-singular boundary integrals is usually quite 

tedious and inefficient and an extra boundary integral equation is also required to 

evaluate the fields inside the domain; moreover, when solving multi-domain problems, 

the compatibility and equilibrium conditions along the interfaces between subregions 

must be involved. As a consequence, implementation of the BEM becomes quite 

complex and the nonsymmetrical coefficient matrix of the resulting equations detracts 

from the advantages of the BEM (Qin 2000; Qin 2004). Currently, sophisticated and 

efficient models to simulate realistic material behaviors continue to be developed in 

this active research area.  

The HT-FEM has recently become a highly efficient computational tool for 

solving complex boundary value problems. The HT-FEM is based on a hybrid method 

by employing an auxiliary inter-element displacement or traction frame to link the 
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internal displacement fields of the elements. Such internal fields, chosen so as to a 

priori satisfy the governing differential equations, have conveniently been represented 

as the sum of a particular integral of non-homogeneous equations and a suitably 

truncated T-complete set of regular homogeneous solutions multiplied by 

undetermined coefficients (Qin 2000; Qin and Wang 2008). The main advantages of 

HT-FEM are: (a) being integral along element boundaries only, which enables 

arbitrary polygonal or even curve-sided elements to be used; (b) being likely to 

represent the optimal expansion bases for hybrid-type elements where inter-element 

continuity need not be satisfied; and (c) being able to develop accurate crack-tip, 

singular corner or perforated elements by using appropriate known local solution 

functions as the trial functions of intra-element displacements (Qin 2003; Dhanasekar, 

Han et al. 2006).  

In the last two years, another recently developed method - HFS-FEM has 

demonstrated good performance in heat transfer problem and elastic problem by 

employing fundamental solutions (Green’s function) to substitute for the T-complete 

functions in HT-FEM as a trial function (Wang and Qin 2009; Wang and Qin 2010a; 

Wang and Qin 2010b). The intra-element field is approximated by a linear 

combination of the foundational solutions, which   analytically satisfies the related 

governing equations. The domain integrals in the hybrid functional can be directly 

converted into boundary integrals without any appreciable increase in computational 

effort, and by locating the source point outside the element of interest, no singular 

integrals are involved in the HFS-FEM. Moreover, the features of two independent 

interpolation fields and the element boundary integral in HFS-FEM give the algorithm 

potential applications in mesh reduction by constructing special-purpose elements 

such as functionally graded elements, hole elements, crack elements, and so on (Wang 

and Qin 2011).  

In this chapter, an efficient numerical homogenization method is proposed to 

predict the macroscopic parameters of heterogeneous composites, which is based on 
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the newly developed HT-FEM and HFS-FEM methods. In particular, firstly a HFS-

FEM is constructed for 2D elastic materials. Then, two numerical examples of 

composites containing isotropic and orthotropic fibers are studied to demonstrate the 

efficiency and accuracy of these two methods in predicting the effective stiffness 

parameters of composites. The effect of fiber volume fractions, and the shapes and 

patterns of reinforced fibers on the effective stiffness coefficients of composites are 

investigated by using the proposed micromechanical models. The majority of this 

chapter has been presented in a paper (Cao, Qin et al. 2013b) co-authored by the 

candidate. 

5.2. GOVERNING EQUATIONS AND HOMOGENIZATION 

 Governing equations of linear elasticity 

In the Cartesian coordinate system (x1, x2), without considering the body force

ib , the equilibrium equations, stress-strain laws and strain-displacement equations for 

elasticity are  

 , 0,       , 1,2ij j i j   (5.1) 

 ij ijkl klC e   (5.2) 

 
, ,

1
( )

2
ij ji j ie u u   (5.3) 

where ij is the stress tensor, kle  the strain tensor, ijklC the fourth-rank elasticity 

tensor, and iu  the displacement vector. The boundary conditions of the boundary 

value problem (5.1)-(5.3) are  

 i iu u          on u (5.4) 

 i ij j it n t      on t (5.5) 

where  and i iu t are the prescribed boundary displacement and traction vector, 

respectively, in
 
is the unit outward normal to the boundary and u t     is the 

boundary of the solution domain . For convenience, in the present work, matrices 

are represented by bold-face letters and a comma followed by an index implies 

differentiation with respect to that index. The summation convention is invoked over 

repeated indices. 



 101 

 Representative volume elements 

 The concept of the RVE has been intensively employed in micromechanical 

analysis (Miehe 2003; Zohdi and Wriggers 2008). It serves as a “specimen” for 

specified tests to extract desired effective material properties in an averaged or 

homogenized method. The success of homogenization is based on the identification of 

such a “specimen” under appropriate boundary conditions. It should be noted that for 

a RVE to be statistically representative, it must contain a large number of 

heterogeneities. The characteristic size of the heterogeneities should be much smaller 

than the dimension of the RVE, which in turn is should be small compared to the 

characteristic length of the macroscopic structure (Figure 5.1). As a result, a RVE is 

regarded on the macro-level as just a point with a homogenized constitutive law.  

 

Figure 5.1 Schematic of representative volume elements (RVE).  

In the present analysis, a RVE consisting of matrix material and inclusion 

phase, as shown in Figure 5.1, is chosen to be statistically representative of a two-

phase composite. Because the RVE is comprised of two different materials, the micro-

constitutive law that governs each material or phase is given by the standard elastic 

constitutive law. For a periodic composite, it is usually sufficient to draw conclusions 

for the whole structure by considering only a unit periodic RVE (Zohdi and Wriggers 

2008). 
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 Boundary conditions for RVE 

The macroscopic properties of composites are determined by specified tests on 

RVEs with appropriate boundary conditions. Three types of boundary conditions  are 

usually employed to evaluate the overall effective material properties: (a) uniform 

traction boundary conditions (UT-BCs), (b) linear displacement boundary conditions 

(LD-BCs) and (c) periodic boundary conditions (PR-BCs). Previous investigations 

have found that the periodic boundary conditions are much more accurate than the 

other two boundary conditions in micromechanical analysis of composite materials for 

both periodic materials and random materials (Huet 1990; Hazanov and Huet 1994). 

Consequently, PR-BCs are applied to the RVE models in the present research. This 

implies that each RVE of the composite has the same deformation profile and there is 

no separation or overlap between neighboring RVEs (Miehe and Koch 2002; Qin and 

Yang 2008).  

For a 2D square RVE of periodic fiber-reinforced composites, as shown in 

Figure 5.2, the PR-BCs of RVE requires a periodic displacement boundary condition 

and an anti-periodic traction boundary condition, which can be expressed as follows: 

 

0 0

1 2 1 2

0 0

1 1 2 1 1 2

( , ) ( , )

( , ) ( , )

i i

i i

u x x u x L x

x x x L x 

 

  
 (5.6) 

for the left and right sides, and 

 

0 0

1 2 1 1 2

0 0

2 1 2 2 1 2

( , ) ( , )

( , ) ( , )

i

i i

u x x u x x L

x x x x L 

 

  
 (5.7) 

for the upper and lower sides, where L is the periodicity of RVE. The PR-BCs can be 

implemented in the code by the penalty function method as done in the traditional 

FEM (Miehe and Koch 2002; Temizer and Wriggers 2007; Zohdi and Wriggers 2008). 

After defining the specified PR-BC, the boundary-value problem of a RVE can be 

solved to obtain the distributions of stresses and strains within the RVE. Then the 

remaining necessary procedures are (a) homogenizing/averaging the stresses and 

strains over the volume, and (b) calculating the effective material properties according 

to the formulations given in the following section. 
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Figure 5.2 Schematic of periodic boundary conditions of RVE.  

 Homogenization for Representative Volume Element 

To determine the properties of an equivalent homogeneous medium which at 

the macroscopic level accurately represents the response of a microscopically 

heterogeneous material, the effective macroscopic stress 
*

ij and strain 
*

ij are defined 

as the corresponding mean values of the stresses ij and strains ij  over the RVE 

 * 1
ij ij ij ijd   

 
   

 
 (5.8) 

 * 1
ij ij ij ijd   

 
   

 
 (5.9) 

where ij and ij  are the stress and strain tensors, respectively,   is the volume of the 

RVE. The effective elastic constants of the equivalent homogeneous material can then 

be defined by the linear constitutive equation 

 
*

ij ijkl klC   (5.10) 

Using Voigt-notation following the rules 11→1, 22→2, 33→3, 23→4, 13→5, 12→6 

and written in matrix form, Eq. (5.10) can be expressed as 

 

*
σ = C ε  (5.11) 

where the stress vector is expressed as  
T

11 22 12         σ , the strain vector as

 
T

11 22 12       2  ε and  
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* * *

11 12 16

* * * *

12 22 26

* * *

16 26 66

c c c

c c c

c c c

 
 

  
 
 

C  (5.12) 

The heterogeneous stresses and strains in Eqs. (5.8) and (5.9) are calculated using the 

formulations presented in Section 5.3. 

5.3. FORMULATIONS OF THE HFS-FEM  

 Two assumed independent fields 

The main idea of the HFS-FEM approach is to establish a finite element 

formulation whereby intra-element continuity is enforced on a nonconforming internal 

displacement field chosen so as to a priori the fundamental solution of the problem 

under consideration (Wang and Qin 2010b). In this approach, for a particular element 

e, the intra-element displacement field is approximated in terms of a linear 

combination of fundamental solutions of the problem of interest  

 
11 12 11

1 12 22 22

( , ) ( , )( )

( , ) ( , )( )

sn
sj sj j

e e

j sj sj j

u u cu

u u cu 

    
     
     


x x x xx

u(x) N c
x x x xx

 (5.13) 

where ns is the number of source points ( 1,2, , )sj sj nx located outside the element. 

The matrix eN  and vector ec
 
can be written as  

 
11 1 12 1 11 12

12 1 22 1 12 22

( , ) ( , ) ...... ( , ) ( , )

( , ) ( , ) ...... ( , ) ( , )

s s

s s

s s sn sn

e

s s sn sn

u u u u

u u u u

 
  
  

x x x x x x x x
N

x x x x x x x x
 (5.14) 

 11 21 1 2[ ...... ]T

e n nc c c cc  (5.15) 

in which the component ( , )ij sku x x  is the fundamental solution, i.e. the induced 

displacement component in the i-direction at the field point x due to a unit point load 

applied at the source point skx in the j-direction. The detailed expressions of ( , )ij sku x x  

are given as  
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1 2
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 (5.16) 
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where ii isr x x  ,
2 2

1 2r r r  , 1/ 8 (1 )A G    , for isotropic materials (Sauter 

and Schwab 2010 ), and  

 

2 2

11 1 2 1 2 1 2

2 2

1 2
22 1 2

1 2

2 2
12 21 1 2

1 2 1 1

( , ) ( ln ln )

( , ) ( ln ln )

( , ) ( , ) arctan arctan

u D A A

A A
u D

r r
u u DA A

r r
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 

 

 

  

 
   
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 

s

s

s s

x x

x x

x x x x

 (5.17) 

where 

12 66
1 2

1 2 22 22

11
1 2 12 22

22

2 2

1 2

21
,

2 ( )

, ,

,

i i

i i i i si

s s
D

s s

s
A s s

s

r r r x x

 
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  

 


  



  

   

 

for orthotropic elastic materials (Rizzo and Shippy 1970). 

 

 

Figure 5.3 Intra-element field and frame field in a particular element of a HFS-

FEM element for plane elastic problems. 

In the present work, the number of source points is taken to be the same as the 

number of element nodes, which are free of spurious energy modes and can maintain 

the stiffness equations in full rank, as indicated by (Qin 2000). In practice, the source 
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point ( 1,2, , )sj sj nx can be generated by means of the following method (Wang 

and Qin 2010b)  

 0 0( )s cx x x x    (5.18) 

where γ is a dimensionless coefficient, 0x is the element boundary point, and cx the 

geometrical centroid of the element (see Figure 5.3). It should be noted that the 

parameter γ must be determined by numerical tests. Thus, γ=8 is used in our analysis. 

Using the constitutive Eq.(4.2), the corresponding stress fields can be 

expressed as  

 e eσ(x) T c  (5.19) 

where  

 

111 1 211 1 111 211

122 1 222 1 122 222

112 1 212 1 112 212

( , ) ( , ) ...... ( , ) ( , )

( , ) ( , ) ...... ( , ) ( , )
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n n

e n n

n n
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 

  
 
  

x y x y x y x y

T x y x y x y x y

x y x y x y x y

 (5.20) 

As a consequence, the traction is written as  

 
1

2

e e

t

t

 
   
 

t nσ Q c  (5.21) 

in which   

 e eQ nT , 
1 2

2 1

0

0

n n

n n

 
  
 

n  (5.22) 

The corresponding stress components
 

( , )ijk x y
 
are as follows: 

(1) Isotropic elastic materials 
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 (5.23) 
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  (5.24) 
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(2) Orthotropic materials (Rizzo and Shippy 1970) 
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 (5.25) 

where     
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 (5.26) 

The unknown ec in Eq. (5.13) can be calculated using a hybrid technique 

(Wang and Qin 2009), in which the elements are linked through an auxiliary 

conforming displacement frame which has the same form as in conventional FEM (see 

Figure 5.3). This means that in the HFS-FEM, a conforming displacement field should 

be independently defined on the element boundary to enforce the field continuity 

between elements and also to establish the relationship between the unknown c and 

the nodal displacement ed . The frame is defined as  

 
1 1

2 2

( ) ,       ( )e e e e

u

u

    
      

    

N
u x d N d x

N
 (5.27) 

where the symbol “~” is used to specify that the field is defined on the element 

boundary only, eN is the matrix of shape functions, ed  is the nodal displacements of 

elements. Taking the side 1-2 of a particular 4-node element (see Figure 5.4) as an 

example, eN and ed can be expressed as  

 1 2

1 2

0 0 0 0 0 0

0 0 0 0 0 0
e

N N

N N

 
  
 

N  (5.28) 

  11 21 12 22 13 23 14 24= e u u u u u u u ud  (5.29) 
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where 1N  and 2N  can be expressed by natural coordinate [ 1,1]    

 
1 2

1 1
,           

2 2
N N

  
   (5.30) 

e

e 1x

2x

1

4 3

2

Frame field

( ) e eu x N d

Intra-element field

      e eu N c

X1

X2

 

Figure 5.4 Intra-element field and frame field of a HT-FEM element for plane 

elastic problems. 

 Modified functional for hybrid FEM 

The HFS-FEM equations for plane elastic problems can be established by the 

variational approach (Wang and Qin 2010b). Compared to the functional employed in 

the conventional FEM, the present hybrid functional for HFS-FEM is constructed by 

adding a hybrid integral term related to the intra-element and element frame 

displacement fields to guarantee the satisfaction of displacement and traction 

continuity conditions on the common boundary of two adjacent elements. In the 

absence of body forces, the hybrid functional me  for deriving HFS-FEM stiffness 

equations can be constructed as (Qin and Wang 2008) 

 
1

( )
2 e t e

me ij ij i i i i id tu d t u u d 
  

         (5.31) 

where iu
 
and iu

 
are the intra-element displacement field defined within the element 

and the frame displacement field defined on the element boundary, respectively. e

and e are the element domain and element boundary, respectively. t , u , and I  

stand for the specified traction boundary, specified displacement boundary, and inter-

element boundary, respectively ( e t u I     ). 
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Appling the Gaussian theorem, Eq.(5.31) can be simplified to 

 
,

1
( ) ( )

2 e e t e
me i i ij j i i i i i it u d u d tu d t u u d

   
            (5.32) 

Due to satisfaction of the equilibrium equation with the constructed intra-element 

fields, we have the following expression for the HFS-FE model 

 
1

2 e e t
me i i i i i it u d t u d t u d

  
         (5.33) 

The functional (5.33) contains boundary integrals only and is used to derive HFS-FE 

formulation for the plane elastic problem. 

 Element stiffness matrix 

The element stiffness equation can be generated by setting 0me  . 

Substituting Eqs. (5.13), (5.21) and (5.27) into the functional (5.33) produces 

 T T T1

2
me e e e e e e e e    c H c c G d d g  (5.34) 

where   

 
T T Td ,      d ,      

e e t
e e e e e e e e d

  
       H Q N G Q N g N t  (5.35) 

To enforce inter-element continuity on the common element boundary, the unknown 

vector ec should be expressed in terms of nodal DOF ed . The stationary condition of 

the functional me with respect to ec and ed yields, respectively, 

 
T

me
e e e e

e


   


H c G d 0

c
 (5.36) 

 
T

Tme
e e e

e


  


G c g 0

d
 (5.37) 

Therefore, the relationship between ec
 
and ed , and the stiffness equation can be 

obtained as follows 

 
1

e e e e

c H G d  (5.38) 

 e e eK d = g  (5.39) 

where 
1

e e e e

T
K = G H G is the element stiffness matrix. The matrix eH , matrix eG and 

vector eg  can be integrated numerically by the common Gaussian integral method.  
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 Recovery of rigid-body motion 

Considering the physical definition of the fundamental solution, it is necessary 

to recover the missing rigid-body motion modes from the above results. Following the 

method presented in (Qin 2000; Wang and Qin 2010b), the missing rigid-body motion 

can be recovered by writing the internal potential field of a particular element e as 

 0e e e u N c c  (5.40) 

where the undetermined rigid-body motion parameter 0c  can be calculated using the 

least square matching of eu  and eu  at element nodes 

  
2

0
node 

1

min
n

e e e
i

i

   N c c u  (5.41) 

which finally gives 

 0

1

1 n

ei

in 

 c u  (5.42) 

in which  
node ei e e e i

  u u N c  and n  is the number of element nodes. Once the 

nodal field is determined by solving the final stiffness equation, the coefficient vector 

ec  can be evaluated from Eq. (5.38), and then 0c  is evaluated from Eq. (5.42). Finally, 

the potential field u  at any internal point in an element can be obtained by means of 

Eq. (5.13). 

5.4. FORMULATIONS OF THE HT-FEM 

The formulations of HT-FEM have the same forms as those of HFS-FEM, except for 

the intra-element displacement field (5.13), which must be replaced by 

 
1 1

2 2

       ( )e e e e

u

u

   
      
   

N
u c N c x

N
 (5.43) 

where  

 
1 1 1

1 2

2 2 2

1 2

m

e

m

N N N

N N N

 
  
 

N  (5.44) 

and mN  are the truncated T-complete functions satisfying the homogeneous Navier 

equations in terms of displacements. The T-complete functions of elastostatics can be 

generated in a systematic way from Muskhelishvili’s complex variable formulation 

(Qin and Wang 2008), which is given as  
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 1

Re( )1

2 Im( )
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iz
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Re( )1

2 Im( )

k

k k

z
N

G z

  
  

  
 (5.48) 

Note that it is essential to discard all rigid-body motion terms from ue to form the 

vector Ne = [N1 N2 … Nm] as a set of linearly independent functions Nj associated with 

non-vanishing strains. As well, to ensure that the resulting stiffness matrix has full 

rank, the number of independent solutions Nj should be higher than (Ndof -3), i.e. 

3dofm N  , where Ndof is the number of nodal DOF of the element. As an example, 

the terms of the T-complete function of a 4-node linear quadrilateral element shown 

in Figure 5.4, should be greater than 2⨯4-3=5.  

The corresponding components of the eT matrix in Eq. (5.19) should be 

changed as follows (Qin 2000) 
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5.5. NUMERICAL EXAMPLES AND DISCUSSION 

Determination of the equivalent homogeneous material properties implies a 

homogenization procedure that requires the application of several independent loading 

conditions on the RVE under consideration (Zohdi and Wriggers 2008). Each loading 

case consists of specifying displacement fields that render null all but one of the three 

independent components of the strain tensor. In the present investigation, the strain 

controlled method is employed to conduct the necessary tests. Resolving the stress 

field in the heterogeneous material through a static equilibrium analysis allows 

calculation of the average stress field σ . Since the average strain ε  is imposed, the 

stiffness tensor components for the equivalent material ijC can be directly calculated 

from Eq. (5.11).  

In the following two examples, the effective properties of two-phase 

composites are investigated by means of the HT-FEM and HFS-FEM. It is assumed 

that both fiber and matrix are linear elastic and that they are perfectly bonded at their 

interface. It is also assumed that the reinforced fibers are infinite in the third direction 

so that it can be treated as plane strain problem. Two different cases (isotropic 

reinforced fiber embedded in isotropic matrix, and orthotropic reinforced fiber 

embedded in isotropic matrix) are studied to demonstrate the efficiency and accuracy 

of the two hybrid finite element methods.  

 Composite with isotropic fiber 

A composite with embedded periodic isotropic fibers is investigated in this 

section. The material parameters of the matrix and fiber are as follows 

Matrix: Young’s modulus mE = 3 GPa,  Poisson’s ratio mv = 0.35;  

Fiber: Young’s modulus fE = 70 GPa,  Poisson’s ratio fv = 0.2.  

5.5.1.1. Effect of mesh density 

For finite element method, it is of interest and paramount importance to 

investigate the convergence and distortion sensitivity of the elements before 

conducting the analysis. In this section, three different meshes, as shown in Figure 5.5, 
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are employed to investigate the convergent performance of the HT-FEM and the HFS-

FEM in predicting the effective elastic parameters of the heterogeneous composite. 

The meshing of the model is obtained using ABAQUS’s built-in free meshing 

algorithm. Figure 5.5(a) contains irregular geometry, non-uniform elements. The 

number of elements for the coarse mesh, medium mesh, and fine mesh are 28, 135, 

and 522, respectively. 

 
(a) Coarse mesh        (b) Medium mesh          (c) Fine mesh 

Figure 5.5 Three different mesh densities (red: fiber, yellow: matrix). 

Table 5.1 presents the predicted effective stiffness parameters, effective 

transversal Young’s modulus and effective Poisson’s ratios calculated by the HT-FEM 

with linear quadrilateral elements based on three different mesh densities. The 

effective engineering constants (transversal Young’s modulus ET, Poisson’s ratios vT 

and shear modulus GT) are calculated by C11, C12, and C66 based on the following 

equations (Yang and Qin 2004): 

 12 11 12/ ( )Tv C C C   (5.53) 

 11(1 )(1 2 )

(1 )

T T
T

T

C v v
E

v

 



 (5.54) 

 66TG C  (5.55) 

For comparison and verification, the corresponding effective parameters calculated 

using ABAQUS with the same meshes are also presented in Table 5.1. It can be seen 

that, compared with the ABAQUS, good accuracy can be achieved by the HTFEM 

when using the coarse mesh. 
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Table 5.1 Effective parameters calculated by HT-FEM and ABAQUS based on 

different meshing with linear elements. 

Mesh 

Density 

Coarse Mesh 

(28) 

Medium Mesh 

(135) 

Fine Mesh 

(522) 

Method HT-FEM ABAQUS HT-FEM ABAQUS HT-FEM ABAQUS 

C11 7226.608 7095.709 7289.793 7263.611 7318.937 7276.700 

C12 3271.800 2909.319 3361.714 3296.600 3378.242 3314.374 

C66 1671.889 1630.440 1640.908 1633.470 1639.296 1635.974 

ET 5187.313 5403.733 5167.818 5205.400 5185.194 5202.297 

υT
 0.312 0.291 0.316 0.312 0.316 0.313 

Table 5.2 shows the effective parameters calculated by the HT-FEM and HFS-

FEM with quadratic quadrilateral elements (8-node quadrilateral elements) for the 

three different meshes in Figure 5.5. The results obtained by ABAQUS are also 

presented for comparison. It can be found that for the HT-FEM and HFS-FEM, the 

error of the engineering constant Tv
 
between linear element and quadratic element is 

less than 1.3% for the coarse mesh and 0.1% for the fine mesh, whereas the error of  

Tv
 
calculated by ABAQUS can be up to 8% for the same coarse mesh and 1.3% for 

the same fine mesh.  

Table 5.2 Effective parameters calculated by HT-FEM, HFS-FEM and ABAQUS 

using different meshing and quadratic elements. 

Mesh 

Density 
Coarse Mesh (28) Medium Mesh (135) Fine Mesh (522) 

 
HT-

FEM 

HFS-

FEM 

ABAQU

S 

HT-

FEM 

HFS-

FEM 

ABAQU

S 

HT-

FEM 

HFS-

FEM 

ABAQU

S 

C11 
7327.51

9 
7321.741 7103.658 

7328.00

7 
7327.285 7268.491 

7328.05

5 
7326.448 7309.561 

C12 
3383.97

3 
3374.516 3278.802 

3384.73

3 
3384.911 3358.074 

3384.72

3 
3385.245 3373.518 

C66 
1639.98

1 
1641.007 1601.484 

1639.62

9 
1639.998 1627.928 

1639.57

5 
1640.025 1636.495 

ET 
5189.39

0 
5192.517 5032.753 

5189.16

8 
5188.112 5146.138 

5189.23

5 
5186.751 5178.972 

υT
 0.316 0.315 0.316 0.316 0.316 0.316 0.316 0.316 0.316 

Moreover, it can be seen from Table 5.1 and Table 5.2 that there is little 

difference in the results calculated by HT-FEM and HFS-FEM when the number of 

elements is increased. In contrast, an obvious difference is found in the results 
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calculated by ABAQUS although the ABAQUS results approach those calculated by 

HT-FEM and HFS-FEM when using the finest meshes. It is well known that by 

increasing mesh density and employing higher order elements, ABAQUS results can 

be improved and tend to converge to the exact solutions. Consequently, it is believed 

that the difference between the results of HT-FEM and ABAQUS decreases along with 

an increase in the mesh density or/and the order of element.  

From Table 5.1 and Table 5.2, it can be seen that the results with lower-order 

coarse meshes in HT-FEM and HFS-FEM are similar to those given by ABAQUS 

with a higher-order fine mesh. The results also indicate that the HT-FEM and the HFS-

FEM are not sensitive to mesh density and element distortion. This can also be 

observed from Figure 5.6, in which the contour plots of the stress fields of a RVE with 

a fiber volume fraction (FVF) of 28.27% are shown when the RVE is subjected to 

controlled shear strains (10-4). The results shown in Figure 5.6 (a) are calculated using 

HT-FEM with the fine mesh shown in Figure 5.5 (c), and the results shown in Figure 

5.6 (b) are obtained using HFS-FEM. For a clear view, all the deformations of the 

RVE in Figure 5.6 have magnified 1000 times. It can be seen that the stress 

distributions and profile of RVE obtained from HT-FEM and HFS-FEM are the same. 

It should be pointed out that the number of terms of the Trefftz function has no obvious 

influence on the results of effective material parameters as long as the requirements 

are satisfied of a minimum number of terms of T-complete functions (Qin 2000).  

 
(a) HT-FEM 
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(b) HFS-FEM 

Figure 5.6 Stress fields of the RVE of composites with isotropic fiber on deformed 

configuration under pure shear strain using (a) HT-FEM and (b) HFS-

FEM (FVF: 28.27%). 

5.5.1.2. Effect of fiber volume fraction 

It has been found that the FVF has a significant influence on the effective 

mechanical properties of composites. In this section, six different FVFs, varying from 

12.57% to 63.62%, are used to study the macroscopic effective parameters of 

composites. The FVF is changed by varying the radius of the fiber in the analysis. The 

fiber radius is assumed to be r=4, r=5, r=6, r=7, r=8 and r=9, respectively. The 

predicted effective stiffness parameters from HT-FEM are listed in Table 5.3 and 

Table 5.4. Compared with the results in Table 5.3 and Table 5.4, it is found that there 

is little difference (<2%) for C11, C12 and C66 when elements of different orders are 

employed. That indicates that linear elements can be employed to improve the 

calculation efficiency of large-scale simulations without the decrease in accuracy 

incurred by ABAQUS. 

 

Table 5.3 Predicted effective stiffness parameters for different FVFs using HT-

FEM with linear element. 

FVF 12.57% 19.63% 28.27% 38.48% 50.27% 63.62% 

C11 5695.083 6329.452 7289.793 8839.901 11503.063 16860.629 

C12 2927.021 3120.798 3361.714 3651.620 3927.328 4488.681 

C66 1329.382 1460.801 1640.908 1900.043 2329.915 3254.094 

TE  3707.760 4268.260 5167.818 6704.960 9503.904 14973.143 

Tv  0.340 0.331 0.316 0.292 0.256 0.210 
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Table 5.4 Predicted effective stiffness parameters for different FVFs using HT-

FEM with quadratic element. 

FVF 12.57% 19.63% 28.27% 38.48% 50.27% 63.62% 

C11 5703.923 6346.791 7328.007 8881.711 11538.307 16902.291 

C12 2936.343 3136.764 3384.733 3676.311 4011.769 4543.670 

C66 1328.242 1459.639 1639.629 1901.206 2333.549 3261.974 

TE  3708.126 4271.770 5189.168 6729.260 9468.312 14976.993 

Tv  0.340 0.331 0.316 0.293 0.258 0.212 

 

 

Figure 5.7 Variation of the composite effective parameters with increasing FVF 

using HT-FEM (linear and quadratic elements). 

Figure 5.7 graphically illustrates the variation of the composite effective 

parameters with an increase in FVF by the HT-FEM using linear elements and 

quadratic elements. As expected, all three effective stiffness parameters C11, C12, and 

C22 increase along with the increase in FVF. However, the rates of increase for these 

three parameters are not the same which C11 experiences a dramatic increase whereas 

C12 increases only slightly. The rate of increase becomes greater as the FVF increases. 
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It is obvious that for all the cases investigated in this analysis, good accuracy can be 

achieved by both linear and quadratic elements as mentioned in previous section.  

 

Figure 5.8 Variation of the Young’s elastic modules TE of composite with 

increasing FVF using HT-FEM. 

Figure 5.8 and Figure 5.9 describe the variation of effective transversal 

Young’s modulus TE  and Poisson’s ratios Tv
 
of the reinforced composite with FVF. 

The results from the Mori-Tanata method are also included in the figure for 

comparison. It can be seen that the effective transversal Young’s modulus increases 

with FVF whereas the effective Poisson’s ratio decreases. The analytical solutions 

from the Mori-Tanata method are in good agreement with those from HT-FEM when 

FVF<40%, but the predicted values from the Mori-Tanata method diverge from those 

by HT-FEM when FVF>40%. This phenomenon verifies the conclusion that the Mori-

Tanata method is more accurate for medium FVFs (30%).  
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Figure 5.9 Variation of Poisson’s ration Tv of the composite with increasing FVF 

using HT-FEM.  

 

Table 5.5 Predicted effective stiffness parameters for different FVFs using HFS-

FEM. 

Fiber 

Fraction 
12.57% 19.63% 28.27% 38.48% 50.27% 63.62% 

C11 
5704.05

9 

6346.78

6 

7327.42

3 

8882.77

3 

11538.8

5 
16904.75 

C12 
2936.53

7 

3136.38

8 

3384.75

1 

3676.24

2 

4009.64

4 
4544.372 

C66 
1328.39

6 

1459.78

2 
1640.37 

1901.32

8 

2333.35

7 
3261.719 

TE  
3708.07

5 

4272.17

8 

5188.44

7 

6730.57

2 

9470.83

8 

14979.13

5 

Tv  
0.340 0.331 0.316 0.293 0.258 0.212 

It also demonstrates that the predicted transversal Young’s modulus and 

Poisson’s ratios are nearly the same when the linear and quadratic elements are 
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employed in the HT-FEM.  The effective properties for the same fiber fractions are 

also calculated using HFS-FEM with 8-node elements, as shown in Table 5.5. 

Comparison of the results in Table 5.4 and Table 5.5 shows that the results from the 

HT-FEM and the HFS-FEM are nearly identical.  

 Composites with orthotropic fibers 

For composites with orthotropic fibers, the fiber stiffness parameters are 

assumed to be 
4 2

11 6.1622 10 NmC   ,
4 2

12 1.3911 10 NmC   , 

4 2

22 1.8908 10 NmC   ,
3 2

66 4.0502 10 NmC   .  

The Young’s modulus and Poisson’s ratio of the matrix remain the same as those of 

the composite with isotropic fibers, i.e. Em = 3 GPa and m = 0.35 respectively.  

5.5.2.1. Effect of mesh density 

The effect of mesh density on the accuracy of the method is investigated for 

the composite with orthotropic fibers by using the HFS-FEM. The three different 

meshes shown in Figure 5.5 are employed again for discretizing the square RVEs with 

orthotropic fibers. The coarse mesh uses 28 quadratic elements, medium mesh 135 

quadratic elements, and fine mesh 522 quadratic elements. The effective material 

parameters calculated by HFS-FEM are given in Table 5.6, and also graphically 

demonstrated in Figure 5.10 for a clear view of the differences between them.   

It can be seen from Table 5.6 and Figure 5.10 that there is little variation in the 

predicted effective parameters when the mesh density is decreased. The accuracy of 

HFS-FEM using the coarse mesh (28 8-node quadrilateral elements) is similar to that 

of the ABAQUS using the fine mesh (522 8-node quadrilateral elements). These 

results indicate that the micromechanical modal based on the HFS-FEM is also not 

sensitive to mesh density and element distortion for the case of orthotropic fiber. It is 

demonstrated that this method has the potential to be used in multiscale simulation to 

enhance computational efficiency while maintaining the required accuracy.  
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Table 5.6 Effective stiffness parameters obtained by HFS-FEM and ABAQUS 

with different mesh densities. 

Mesh Density Method C11 C12 C22 C66 

Coarse mesh 

(28) 

HFS-FEM 7232.374 3246.842 6443.842 1448.592 

FEM(Quadratic) 7145.669 3212.689 6377.076 1437.549 

FEM(Linear) 6425.217 2610.608 5745.458 1365.512 

Medium mesh 

(135) 

HFS-FEM 7230.208 3247.765 6442.853 1447.489 

FEM(Quadratic) 7211.703 3241.617 6428.952 1444.831 

FEM(Linear) 7062.563 3125.867 6302.854 1429.705 

Fine mesh 

(522) 

HFS-FEM 7229.685 3251.708 6440.99 1447.614 

FEM(Quadratic) 7221.606 3241.769 6433.551 1446.791 

FEM(Linear) 7146.783 3168.411 6346.986 1602.323 

 

 

Figure 5.10 Comparison of effective stiffness parameters calculated by HFS-FEM 

and ABAQUS. 

5.5.2.2. Effect of fiber volume fraction 

The effect of FVF is also investigated in this section for composites with 

orthotropic fibers. Table 5.7 presents the four parameters: C11, C12, C22, and C66 of the 
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stiffness matrix for six different fiber fractions: 12.57%, 19.63%, 28.27%, 38.48%, 

50.27%, and 63.62%, respectively. These FVFs are selected by changing the fiber 

radius from r=4 to r=9 as described in Section 5.5.1. 

Table 5.7 Variation of effective parameters with the volume fraction of reinforced 

fibers. 

Fiber Fraction 12.57% 19.63% 28.27% 38.48% 50.27% 63.62% 

C11 5703.923 6287.574 7230.208 8708.330 11182.148 15881.294 

C12 2936.343 3037.789 3247.765 3514.385 3889.846 4597.288 

C22 5439.596 5855.995 6442.853 7268.749 8448.530 10190.166 

C66 1253.403 1336.934 1447.489 1596.397 1810.012 2154.185 

 

Figure 5.11 Mesh, deformation, and stress fields of the RVE of composites with 

orthotropic fiber under constant shear strain using HFS-FEM (FVF: 

28.27%). 

As is obvious from Table 5.7, all the investigated parameters increase with the 

FVF of the composites, displaying a similar trend to that found in the isotropic fiber 

case. It should be noted, however, that the rates of increases for these four parameters 

are not consistent when the FVF increases from 12.57% to 63.62%, as is graphically 

demonstrated in Figure 5.12. The effective parameter C11 reaches the value of 10177.4 
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MPa when FVF=63.62%, which is nearly 2.8 times its original value. For C22 and C66, 

however, the changes are only about 1.6 times their original corresponding values. 

These results derive from the phenomenon that the composite, consisting of 

orthotropic fibers and isotropic matrix, demonstrates strong orthotropic properties, as 

expected. Figure 5.11 shows the mesh configuration, deformations and stress fields of 

the RVE for orthotropic fiber when the RVE is subjected to constant shear strain and 

FVF is equal to 28.27%. 

5.5.2.3. Effect of fiber shape 

In this section, the effect of the shape of fibers on the effective properties of 

composites is presented. As shown in Figure 5.13(a)-(d), four inclusion shapes, circle, 

ellipse, square, and triangle, are considered. For all the RVEs presented in this section, 

the FVF is kept constant at 28.27% (i.e. the radius of the circular fiber is equal to 6). 

The predicted effective parameters calculated by the HFS-FEM for the four different 

configurations are given in Table 5.8, and are also graphically depicted in Figure 5.15. 

It can be seen that compared to the other three forms, the reinforcement performance 

of the elliptical shape is significant, dramatically increasing the stiffness of the 

reinforced composite in the major axis direction while not significantly decreasing the 

other three stiffness parameters. It may be concluded that elliptical-shaped fiber is a 

promising reinforcement form and can be employed when extra reinforcement is 

needed in a particular direction. Furthermore, the triangle-shaped fiber also has good 

reinforcment performance, in that the reinforced composite has higher effective 

stiffness than its counterpart with circle shape inclusion.   
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Figure 5.12 Variation of effective parameters with increasing FVF. 

     

(a)                                        (b) 

     

 (c)                                        (d) 

Figure 5.13 Meshes for RVE with different-shaped fibers. 
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Table 5.8 Effective parameters predicted by HFS-FEM for different inclusion 

shapes and configuration. 

Inclusion 

Shape 
Circle Elliptical Square Triangle Pattern 1 Pattern 2 

C11 7230.208 9715.192 7451.964 7675.534 7275.869 7078.099 

C12 3247.765 3331.026 3173.031 3261.295 3223.868 3384.242 

C22 6442.853 6180.894 6506.971 6525.828 6456.642 6400.636 

C66 1447.489 1423.143 1441.282 1472.153 1444.499 1501.981 

5.5.2.4. Effect of fiber configuration 

Two different configurations of reinforced fibers, as shown in Figure 5.14 (a) 

and (b), are studied to investigate the effect of the fiber configuration on the effective 

parameters of composites. The two patterns in Figure 5.14 have the same FVF and the 

arrangement of Pattern 2 is obtained by rotating Pattern 1 by an angle of 90°. The 

effective parameters of the composites are given in Table 5.8 together with the cases 

from one fiber. Here, for comparison, the FVFs of the two patterns are equal to the 

single fiber case investigated in previous section. From Table 5.8, little difference is 

observed when the one circular-fiber RVE is replaced by the four-fiber RVE as shown 

in Figure 5.14 (a) and (b). For these two patterns, it is also found that Pattern 2 has 

slightly higher values in C12 and C66 but slightly lower values in C11 and C22 compared 

with Pattern 1, as can be seen from Figure 5.15.  

       

 (a) Fiber pattern 1                       (b) Fiber pattern 2 

Figure 5.14 Meshes for RVE with different fiber configurations. 
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Figure 5.15 Difference of effective parameters among six configurations. 

5.6. SUMMARY 

A micromechanical analysis based on the HFS-FEM and HT-FEM is presented 

to determine the effective properties of heterogeneous composites. In this work, the 

homogenization technique is employed to average the microscale stresses and strains 

through the concept of the RVE. Two kinds of fiber reinforced composites are 

analyzed, including isotropic and orthotropic materials. Numerical results obtained 

from ABAQUS are also presented for comparison and verification. The numerical 

results show that the accuracy of the HFS-FEM and HT-FEM is promising when using 

coarse meshes. In the micromechanical modeling, the effective material parameters 

obtained from HT-FEM and HFS-FEM are insensitive to mesh density and element 

distortion. Generally both methods give better results than ABAQUS when using the 

same meshes.  

The effect of microstructure factors, including the FVF, fiber shape, and fiber 

configuration in RVE, on the effective parameters of the composites are also studied 

in this chapter. For both isotropic- and orthotropic- fiber-reinforced composites, all the 
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effective stiffness parameters increase with an increase in FVF, with the rates of 

increase of these parameters differing from one another. It may be concluded that the 

proposed micromechanical models based on the HFS-FEM and HT-FEM have the 

potential for further development in the consideration of various defects including 

cracks and pore voids in microstructures.  
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Chapter 6. Effective Thermal Conductivity of Fiber-reinforced 

Composites 

 

6.1. INTRODUCTION  

Fiber-reinforced composites are structural materials that usually consist of a 

fiber reinforcing phase and a matrix phase in which the fiber is embedded at a 

macroscopic level to possibly experience a range of mechanical, thermal, and chemical 

environments during their service life (Chung 1994). Due to the superiority of their 

physical properties over the single matrix, such as high thermal and electrical 

conductivity, high stiffness and strength etc., fiber-reinforced composites are widely 

used in engineering applications. Determination of the effective properties of 

composite materials is of paramount importance in engineering design and application 

of composite materials. The effective thermal conductivity and other thermo-physical 

properties of composites have attracted considerable interest from theoretical, 

numerical, and experimental researchers in the last several decades (Chen and Cheng 

1967; Mauge and Kachanov 1994; Landis, Beyerlein et al. 2000; Tsukrov 2000; 

Tsukrov and Novak 2002; Brucker and Majdalani 2005; Kachanov and Sevostianov 

2005; Farooqi and Sheikh 2006; Wang and Pan 2008; Brennan and Walrath 2009; Li, 

Li et al. 2011). It would save much effort, time, and expense if the properties of new 

reinforced composites could be predicted accurately or designed from microstructural 

properties of their constituents. 

In the literatures, the averaged or homogenized method by RVE is usually 

employed in micromechanical modeling of composites (Miehe 2003; Zohdi and 

Wriggers 2008). Boundary value problems defined on the RVEs can be analyzed by 

appropriate numerical methods. In the past two decades, considerable attention has 

been paid to determination of the thermal or mechanical properties of composites by 

using FEM (Islam and Pramila 1999). The reason for using FEM is that it easily 

enables simulation of the effects of various possible defects on the mechanical 
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properties, i.e., the effect of improper bond between fiber and matrix and the effect of 

cracks with different orientations. However, the drawback of this method is that 

refined meshes near the defects (cracks, holes or inclusions) are usually required to 

achieve the desired accuracy. This is not practical for the analysis of composites whose 

fiber distribution might change repeatedly. Unlike FEM, BEM simply requires 

division on the boundaries of the domain under consideration, reducing the 

dimensionality of the problem by one. This approach has been successfully applied to 

steady-state and transient heat conduction (Ma, Chatterjee et al. 2008), interface 

performance (Chen and Papathanasiou 2004), and thermoelastic behavior (Henry, Ma 

et al. 2007) of fiber-reinforced composites. Singular or hyper-singular integrals, 

however, are unavoidable in BEM. Moreover, the BEM solution process becomes 

extremely complex for imposing continuity conditions across the interface between 

fiber and matrix when solving multi-material problems such as fiber-reinforced 

composites (Gao and Davies 2002).  

To overcome these difficulties, HT-FEM was developed based on the novel 

concept of two independent fields: an intra-element field and an auxiliary frame field 

(Qin 2000; Qin and Wang 2008). This approach involves the element boundary 

integrals only, inherits the advantages of both conventional FEM and BEM, and has 

been successfully applied to various engineering problems (Qin 1994; Qin 1995; Qin 

1996; Qin 2003; Qin and Wang 2008). As an alternative, a novel hybrid finite 

formulation based on the fundamental solutions, the HFS-FEM, was developed by 

Wang and Qin for solving two-dimensional linear heat conduction problems (Wang 

and Qin 2009; Wang and Qin 2010a), and isotropic elastic (Wang and Qin 2011), 

functionally graded elastic (Wang and Qin 2011) and piezoelectric problems (Cao, 

Qin et al. 2012b). The HFS-FEM inherits all the advantages of HT-FEM and obviates 

the difficulties that occur in HT-FEM.  

In this Chapter, the formulations of the HFS-FEM for the heat conduction 

problem are presented to model heterogeneous fiber-reinforced composites and to 
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investigate the applicability of the new method in predicting the effective thermal 

conductivity of ideal fiber reinforced composites. Both the general element and a 

special element for circular fiber inclusion are proposed based on the relevant 

fundamental solutions. The special element is based on a special fundamental solution 

which analytically satisfies the continuity of temperature and heat flux on the interface 

between fiber and matrix and is constructed to reduce the mesh refinement effort in 

modeling heterogeneous composites. Then, independent intra-element and frame 

fields as well as a modified variational functional are constructed to derive final 

stiffness equations and determine the unknowns. The RVE is utilized for estimating 

the effective thermal property of the composites. Two examples are considered in 

order to obtain insight into the influence of the FVF and fiber arrangement pattern on 

effective thermal conductivity. The accuracy of the numerical results obtained by the 

proposed method is verified against those calculated by the commercial software 

package ABAQUS. The results indicate that the proposed method is efficient and 

accurate in analyzing the thermal behavior of fiber-composites and has the potential 

to be scaled up to macroscale modeling of large-scale practical problems of 

considerable interest. 

This chapter is organized as follows: the governing equations of the heat 

conduction problem and the basic concepts of RVE and homogenization procedures 

are introduced in Section 6.2. Then, the fundamental solutions for interpolation of a 

temperature field within each element domain are given in Section 6.3. Further, the 

detailed solution procedures for the derivation of the HFS-FEM are presented in 

Section 6.4. Finally, two numerical examples for RVEs with simple and complex fiber 

patterns are considered in Section 6.5, and some concluding remarks are presented in 

Section 6.6. The majority of this chapter has been presented in a paper (Cao, Yu et al. 

2012c) co-authored by the candidate.  



 131 

6.2. HOMOGENIZATION OF HEAT CONDUCTION PROBLEMS 

In this section, a brief review of the basic equations and concepts used in 

micromechanical analysis of heat conduction problems is presented to introduce the 

notation and provide a common source of reference for later sections. 

 Governing equations 

In the absence of mechanical deformations, the thermal equilibrium governing 

equation for the temperature field can be expressed as (Temizer and Wriggers 2010)  

 0 q  (6.1) 

with the boundary conditions 

      on  ,            on  hh h      q n  (6.2) 

where 1 2[ / , / ]x x       is the divergence operator, 0T T    is the unknown 

temperature change, where T is the current absolute temperature and T0 is a reference 

absolute temperature, and g  is the temperature gradient. h is the normal heat 

flux, and n  is the outward normal vector to the boundary h    , and   and h  

are specified values on the related boundaries, respectively. The space derivatives are 

denoted by a comma, i.e. , /i ix    , and the subscript i  takes values 1 and 2 in the 

present analysis.  

The constitutive law for flux vector 1 2[ , ]Tq qq  is provided by the Fourier’s 

law (Temizer and Wriggers 2010)  

 q = -kg  (6.3) 

where k  is the thermal conductivity tensor, which is symmetry and positive-definite 

and depends on the local materials in the heterogeneous composites. The matrix and 

fiber are herein assumed to be locally isotropic and homogeneous, so 11 22 mk k k   in 

the matrix and is equal to fk  in the fiber area, respectively.  

 RVE for micro-thermal analysis  

The microstructure of the composite, such as the shape, size distribution, 

spatial distribution, and orientation distribution of the reinforcing inclusions in the 

matrix, has a significant influence of the overall (effective) properties of 

heterogeneous materials (Nemat-Nasser and Hori 1999). Although most composites 
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possess inclusions in random distributions, great insight into the effect of 

microstructure on the effective properties can be gained from investigation of 

composites with periodic structures. For a periodic composite, it is usually sufficient 

to draw conclusions for the whole structure from considering only a unit cell (i.e., one 

RVE as shown in Figure 6.1), as was done in Chapter 5 (Zohdi and Wriggers 2008).  

 

Figure 6.1 Periodic fiber-reinforced composites and RVE. 

For simplification, the following assumptions for ideal fiber-reinforced 

composites are applied (Islam and Pramila 1999): (a) the composites are 

macroscopically homogeneous, (b) locally both the matrix and the fiber are 

homogeneous and isotropic, (c) the thermal contact resistance between the filament 

and the matrix is negligible, (d) the composite is free of voids, (e) the problem is 2D, 

and (f) the reinforced fibers are arranged in a square periodic array, i.e., they are 

uniformly distributed in the matrix. This last assumption implies that the fibers are 

equal and uniform in shape and size and are symmetrical about the x1 and x2 directions.  

 Homogenization for the RVE 

The macroscopic constitutive formulation must be determined by materials 

testing of the RVE, from which the heterogeneous conduction problem is solved with 

specified boundary conditions. The macroscopic flux and the macroscopic gradient 

L L L/2L/2

L

L
1x

2x

RVE
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fields are identified as the volume averages of the microscopic counterparts and are 

related to each other by the macroscopic constitutive formulations.  

The thermal constitutive law that governs each material or phase in a RVE is 

given by the standard Fourier’s law as shown in Eq.(6.3). To evaluate the effective 

thermal conductivity of microscopically heterogeneous fiber-reinforced composites, 

the effective flux q  and the effective temperature gradient g  are defined as the 

volume average values of the respective fields in the RVE (Zohdi and Wriggers 2008) 

 
1 1

d h d
 

    
  q q q X  (6.4) 

 
1 1

d d 
 

     
  g g n  (6.5) 

where   is the volume of the RVE. It can be seen from Eqs. (6.4) and (6.5) that the 

volume average gradient and flux are related only to the flux on the boundary of the 

RVE.  

For the isotropic case, the thermal tensor *
k can be expressed as * *kk I , 

where *k  is the conductivity coefficient and I  is the identity tensor. Thus, according 

to Fourier’s law, the effective thermal conductivity can be calculate by  

 

*

*

*
k  

q q

gg
 (6.6) 

It should be noted that, to eliminate any external influents or rate effects, the material 

test for the RVE must be conducted under steady-state conditions and there should be 

no external heat supply (Temizer and Wriggers 2010).  

 Boundary conditions for the RVE 

Using the RVE model described above, three types of boundary conditions are 

usually employed to evaluate the overall/effective thermal properties of heterogeneous 

materials: (a) a uniform flux boundary condition (UF-BC), (b) a linear temperature 

gradient boundary condition (LT-BC), and (c) a periodic boundary condition (PR-BC) 

(Zohdi and Wriggers 2008; Temizer and Wriggers 2010). The three boundary 

conditions in detail are:  

(a) Uniform flux boundary condition (UF-BC):  
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 h  Q n  (6.7) 

so that q Q . 

(b) Linear temperature boundary condition (LT-BC): 

   G X  (6.8) 

so that g G . 

(c) Periodic boundary condition (PR-BC): 

         G X X  (6.9) 

and  

 h h    (6.10) 

so that q Q , where Q and G are controlled constant vectors. Previous 

investigations have found that the periodic boundary condition is much the most 

accurate in micromechanical analysis of composite materials for both periodic 

materials and random materials (Huet 1990; Hazanov and Huet 1994). Consequently, 

the periodic boundary condition is employed for the RVE models in the present 

research.  

From the above homogenization procedures, it is evident that the flux and 

temperature on the boundary of the RVE are sufficient to calculate the effective 

thermal conductivity of the composites. This feature easily permits employment of the 

special element introduced in Section 6.3 to evaluate the effective parameters of the 

RVE.   

6.3. FUNDAMENTAL SOLUTIONS OF PLANE HEAT CONDUCTION PROBLEMS 

For the HFS-FEM, it is essential to find the fundamental solutions of plane 

heat conduction problems to interpolate the intera-element approximation fields. The 

Green’s function of the 2D heat transfer problem in an infinite domain can be defined 

by  

 2 ( , ) ( , ) 0k G   x y x y  (6.11) 

where ( , ) x y  is the Dirac delta function, 1 2( , )x xx  denotes the field point where the 

response is calculated and  1 2( , )y yy  denotes the source point where unit 

concentrated heat is applied. For plane heat conduction problems of fiber-reinforced 
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composites two kinds of fundamental solution are used, i.e., the general fundamental 

solution for homogeneous materials with no inclusions and a special fundamental 

solution which satisfies the interfacial conditions between the circular inclusion and 

the matrix. 

 General fundamental solution 

For a unit heat source applied at the source point 0 10 20iz x x   in the infinite 

homogeneous domain m , as shown in Figure 6.2, the temperature response mG  at 

any field point z  is given in the form (Chao and Shen 1997) 

  m 0 0

1
( , ) Re ln( )

2 m

G z z z z
k

    (6.12) 

where Re  denotes the real part of the bracketed expression, 1 2iz x x   and i= 1  is 

an imaginary number. 

 

Figure 6.2 Schematic for the definition of general fundamental solutions of plane 

heat conduction problems. 

 Special fundamental solutions for hole in a plate 

Now we consider a unit heat source located at the point 0 10 20iz x x   in the 

infinite domain containing a centered circular hole with radius R  as shown in Figure 

6.3. The special fundamental solutions or Green’s functions refer to the singular 

solution which is required to satisfy not only the governing equation (6.11) but also 

specified free boundary conditions around the hole. Therefore, the temperature 

1x

2x

1 2, ( , )z x x

0 10 20, ( , )z x x
m

field point

source point
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response at any field point 1 2iz x x   in this case is obtained in the following form 

(Ang 2007): 

 

Figure 6.3 Schematic for the definition of special fundamental solutions (hole) of 

plane heat conduction problems. 

 0 0
0 2

1 1
( , ) Re ln Re ln 1

2 2

z z zz
G z z

k R k R 

       
        

      
 (6.13) 

for the case of 0N   on the circular boundary, and 

 
2

0 0
0

1 1
( , ) Re ln Re ln

2 2

z z R zz
G z z

k R k Rz 

       
      

       
 (6.14) 

for the case of / 0N n    on the circular boundary, where R denotes the radius of the 

embedded hole. 
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 Special fundamental solutions for inclusion in a plate 

 

Figure 6.4 Schematic for the definition of special fundamental solutions 

(inclusion) of plane heat conduction in fiber-reinforced composites. 

When a central circular inclusion is embedded in an infinite domain m , if a 

unit heat source is applied at the source point 0z  in m , as shown in Figure 6.4, the 

temperature responses mG  and fG  at any field point z  in matrix or fiber regions can 

be obtained by using complex potential theory, considering the interface ( z R ) 

continuity conditions between inclusion and matrix as (Chao and Shen 1997)  
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 (6.15) 

Similarly, the induced temperature mG  in the matrix shows proper singular behavior 

at the source point 0z , while fG  in the fiber is regular because the source point 0z  is 

outside the fiber.  

6.4. FORMULATIONS OF THE HFS-FEM FOR HEAT TRANSFER PROBLEMS 

The HFS-FEM, originated from the HT-FEM, utilizes two independent 

approximate fields: an intra-element field and an independent frame field along the 

element boundary. But, unlike the HT-FEM, intra-element fields in the HFS-FEM are 

constructed based on the fundamental solutions, rather than a truncated T-complete 

function set. In this section, the solution procedures of the HFS-FE model with the 
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fundamental solutions as interior approximation functions are described for solving 

linear heat transfer problems of composite materials. 

 Intra-element field 

For a particular element e , which occupies sub-domain e , assume that the 

temperature field defined in the element domain is approximated by a linear 

combination of foundational solutions at different source points located outside the 

element domain (see Figure 6.5) 

      
1

,         ( , )
sn

e sj j e e e sj e

j

N c


    x x y N x c x y  (6.16) 

where sn  is the number of source points outside the element domain, which is equal 

to the number of nodes of an element in the present research based on the generation 

approach of the source points, 
ec  is an unknown coefficient vector (not nodal 

temperature), 
eN  is the fundamental solution matrix, which can be written as  

 
* * *

1 1 2 2( , ) ( , ) ... ( , )
s ss s n snG G G   eN x y x y x y  (6.17) 

 1 2[ ... ]
s

T

nc c c
e

c  (6.18) 

It should be pointed out that ( , )i sjG x y  represents the corresponding 

fundamental solution 

 
m m

f f

( , )       
( , )

( , )        

sj

i sj

sj

G
G

G


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

x y x
x y

x y x
 (6.19) 

It is noted that since the fundamental solutions already include the presence of the 

interface between filler and matrix, it is not necessary to model the temperature and 

heat flux continuity conditions on the interface; thus the analysis is simplified. One of 

the advantages in the HFS-FEM is that it reduces computation effort by using special-

purpose elements. Furthermore, due to the use of two groups of independent 

interpolation functions in the HFS-FEM, it is possible to construct arbitrarily shaped 

elements for use in analysis, as shown in Figure 6.5.  
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Figure 6.5 Intra-element field, frame field in a special element of HFS-FEM, and 

the generation of its source points.  

For a particular element as shown in Figure 6.5, the nodes of the element can 

be used to generate related source points for simplicity, so that the singular sources 

are located on the pseudo boundary to achieve a certain numerical stability. 

Practically, the source point ( 1,2, , )sj sj ny can be generated by means of the 

following method (Wang and Qin 2010a)  

 0 0( )s c  y x x x  (6.20) 

where γ is a dimensionless coefficient, 0x is the point on the element boundary (the 

nodal point in this work)and cx is the geometrical centroid of the element.  

The corresponding outward normal derivative of eu  on e  is 

 e
e e eh k

n


  


Q c  (6.21) 

where 
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 Auxiliary frame field 

To enforce conformity on the field variable  , for instance, e f   on 

e f   of any two neighboring elements e and f, an auxiliary inter-element frame 

field   is used and expressed in terms of nodal displacement vector, ed , as used in 

conventional FEM. In this case,   is confined to the whole element boundary, that is, 

              e e e e  x N x d x  (6.24) 

which is independently assumed along the element boundary in terms of nodal DOF 

ed , where eN  represents the conventional finite element interpolating functions. For 

example, a simple interpolation of the frame field on the side with three nodes of a 

particular element can be given in the form 

 1 1 2 2 3 3N N N       (6.25) 

where iN  ( 1,2,3i  ) stands for shape functions in terms of the natural coordinate  . 

 Hybrid variational functional 

For the boundary value problem defined in Eq. (6.1) and Eq. (6.2), since the 

stationary conditions of the traditional potential or complementary variational 

functional cannot guarantee the required inter-element continuity condition in the 

HFS-FE model, a modified potential functional is developed as follows 

 m me

e

    (6.26) 

with 

  , ,

1
d d d

2 e qe e
me i ik h h    

  
          (6.27) 

in which the governing equation Eq.(6.1) is assumed to be satisfied a priori. The 

boundary e  of a particular element consists of the following parts 

 e e he Ie      (6.28) 

where Ie  represents the inter-element boundary of the element ‘e’. 

Appling the divergence theorem, the domain integral can be eliminated to 

obtain the final form of the functional for the HFS-FE model 
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         (6.29) 

Finally, substituting Eqs. (2.53), (2.56) and (2.59) into the functional (2.77) produces 

 T T T1

2
e e e e e e e e e    c H c d g c G d  (6.30) 

in which 
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To enforce inter-element continuity on the common element boundary, the unknown 

vector ec  should be expressed in terms of nodal DOF ed . Minimization of the 

functional e  with respect to ec  and ed , respectively, yields 
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from which the optional relationship between ec  and ed , and the stiffness equation 

can be produced 

 
1

e e e e


c = H G d  (6.32) 

and 

 e e eK d = g  (6.33) 

where 
1

e e e e

T
K = G H G  stands for the symmetric element stiffness matrix. The 

evaluation of the vector eg  in Eq. (6.33) is the same as that in the conventional FEM, 

which is obviously convenient for the implementation of HFS-FEM into an existing 

FEM program. The matrix eH , eG  and vector eg  can be calculated by the commonly 

used Gaussian numerical integration as described for potential problems in Chapter 2. 

 Recovery of rigid-body motion 

Considering the physical definition of the fundamental solution, it is necessary 

to recover the missing rigid-body motion modes from the above results. Following the 

method presented by (Qin 2000), the missing rigid-body motion can be recovered by 

writing the internal potential field of a particular element e as 

     0e e e c  x N x c  (6.34) 
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where the undetermined rigid-body motion parameter 0c  can be calculated using the 

least square matching of e  and e  at element nodes 

    
2

1

min
n

e e

i

 


    x x  (6.35) 

which finally gives 

 0

1

1 n

ei

i

c
n




   (6.36) 

in which  
node 

ei e e e
i

   N c  and n  is the number of element nodes. Once the 

nodal field is determined by solving the final stiffness equation, the coefficient vector 

ec  can be evaluated from Eq. (6.16), and then 0c  is evaluated from Eq. (6.36). Finally, 

the temperature field   at any internal point in an element can be determined by 

means of Eq. (6.34). 

6.5. NUMERICAL EXAMPLES AND DISCUSSION 

In this section, numerical experiments are conducted to demonstrate the 

performance and efficiency of the HFS-FEM and also to study the micro-thermal 

behavior of composites. Evaluating the effective thermal conductivity of composites 

implies a homogenization procedure that requires the application of several 

independent loading conditions on the RVE of the heterogeneous materials (Zohdi and 

Wriggers 2008). In the present work, a temperature gradient controlled method is 

employed to conduct the necessary tests. Resolving the heat flux field in 

heterogeneous materials through a steady-state heat transfer analysis allows 

calculation of the average flux field component q . Since the average temperature 

gradient g  is imposed, the effective thermal conductivity coefficient k* for the 

equivalent homogeneous material can be directly calculated from Eq. (6.6).  

In the following two examples, effective properties of two-phase composite 

materials are investigated by means of the HFS-FEM. It is assumed that both fiber and 

matrix are linear thermal conductive and that they are perfectly bonded at their 

interface. No complex inclusion geometry is included in the RVEs and the problem of 
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how to generate realistic RVE micro-level geometry for numerical analysis is not 

discussed in the present work. 

 RVE with one reinforced fiber 

In the first example, a square RVE with only one fiber as shown in Figure 6.6 

is investigated by the proposed method. The thermal conductivities of the fiber and 

matrix are respectively assumed as 2 20k  , and 1 1k  . The mismatch ratio between 

fiber and matrix 2 1/m k k =20 is maintained in this analysis unless otherwise 

specified. For verification and comparison purposes, the numerical results from 

traditional FEM (ABAQUS) are also given in the analysis. It should be pointed out 

that a constant temperature gradient [1,0]TG   or [0,1]TG   is applied during 

analysis and the periodic boundary condition (PR-BC) illustrated in Section 2 is 

employed for both the HFS-FEM and ABAQUS modeling.  

 

Figure 6.6 Schematic of RVE containing one central fiber. 

L

L

R
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Figure 6.7 Mesh configurations for RVE by (a) HFS-FEM with special element 

(white: matrix, green: fiber) and by (b) ABAQUS.  

6.5.1.1. Convergence verification of the method 

Before employment of the HFS-FEM for heat transfer analysis of composite 

materials, a convergence study is first carried out by checking against the variables of 

interest. Three different meshes are employed: Mesh 1 (12 8-node elements and one 

16-node special element, with a total of 60 nodes), Mesh 2 (32 8-node elements and 

one 16-node special elements, with a total of 128 nodes), and Mesh 3 (61 8-node 

elements and one 16-node special element with a total of 220 nodes). The results 

calculated by ABAQUS (FEM) using a very fine mesh (as shown in Figure 6.7,1940 

3D8R elements with 5941 nodes) are provided as a reference benchmark for 

comparison.  

Figure 6.8 presents the effective thermal conductivities k* with the variation of 

the number of element meshes or nodes. It is evident that the results obtained from the 

HFS-FEM converge to the benchmark values with the increase in the number of DOF. 

It is also notable that, using only 128 nodes, HFS-FEM has similar accuracyto that 

from ABAQUS using thousands of nodes. 
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Figure 6.8 RVE with one central fiber: Convergence of the effective thermal 

conductivity. 

6.5.1.2. Effect of fiber volume fraction 

The FVF has a significant influence on the overall thermal conductivity of 

heterogeneous composites. In this section, the effect of FVF on the macroscopic 

effective thermal conductivities k* of the composite is investigated. The FVF is 

modified from 3.14% to 63.62% by varying the radius of the fiber. The predicted 

effective thermal conductivities from HFS-FEM are graphically shown in Figure 6.9. 

It can be observed, as expected, that effective thermal conductivities k* rises along 

with the increase in FVF. However, the rate of increase becomes greater as the FVF 

increases. When the fiber volume fraction increases to 63.62%, the effective thermal 

conductivity k* is more than four times that of the thermal conductivity of the matrix 

material. It is also observed from Figure 6.9 that for all the cases investigated here, 

better accuracy can be achieved by HFS-FEM with special elements than from 

ABAQUS.  
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Figure 6.9 Effective thermal conductivity k of composite for different FVFs. 

Compared to the results obtained from ABAQUS, which are achieved by 

refined meshes around and within the fiber, the specially-purpose inclusion elements 

achieved good accuracy. This conclusion is also confirmed by Figure 6.10 and Figure 

6.11, which presents the variations of the effective thermal conductivities k* with the 

change of materials mismatch ratio 2 1/m k k . 

6.5.1.3. Effect of material mismatch ratio 

Figure 6.10 shows the effective thermal conductivity k* of the heterogeneous 

composite for different material mismatch ratios when the thermal conductivity k2 of 

the fiber is greater than the thermal conductivity k1 of the matrix, i.e. a conductive 

fiber embedded into an insulated matrix. The FVF is kept constant at 19.63%, i.e. 

R=2.5. It can be seen from Figure 6.10 that for a defined matrix, the effective thermal 

conductivity increases with the increase in conductivity of the fiber, and the heat 

conduction performance can be dramatically improved when adding the conductive 

fiber but the effect weakens when the thermal conductivity of the fiber is more than 

20 times that of the matrix. For comparison, the predicted results obtained from 
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ABAQUS are also involved in Figure 6.10. The same conclusion can be drawn from 

the results, and both methods provide equivalent accuracy. 

Figure 6.11 presents the variation of the effective thermal conductivity k* for 

the different material mismatch ratios when the thermal conductivity k2 of the fiber is 

lower than the thermal conductivity k1 of the matrix, i.e. an insulate fiber embedded in 

a conductive matrix. The FVF is also kept constant at 19.63%. It is obvious that a 

nearly linear relationship between effective thermal conductivity k* and the matrix 

thermal conductivity k1 is found, which is different from the nonlinearity shown in 

Figure 6.10.  

 

 

Figure 6.10 Effective thermal conductivity k* of the composite for different 

mismatch ratios when k2>k1. 
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Figure 6.11 Effective thermal conductivity k* of the composite for different 

mismatch ratios when k1>k2. 

Contour plots of the temperature and heat flux distributions in the RVE under 

constant temperature gradient and periodic boundary conditions are shown in Figure 

6.12 and Figure 6.13, in which the FVF is defined as 19.63%. It can be seen from 

Figure 6.12 that for the more conductive fiber the heat flux mainly passes through the 

fiber, whereas for the insulated fiber with lower conductivity than that of the matrix, 

most flux will be carried out through the matrix (Figure 6.13). 

 

Figure 6.12 Contour plots of the temperature and heat flux distribution in the RVE 

(m=20, FVF=19.63%). 
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Figure 6.13 Contour plots of the temperature and heat flux distribution in the RVE 

(1/m=20, FVF=19.63%). 

 RVE with multiple-fibers 

     

 

      (a)             (b) 

Figure 6.14 RVEs of the composite with two different fiber configurations. 

Two different fiber patterns as shown in Figure 6.14 are investigated to reveal 

the effect of fiber configuration on the effective thermal properties of heterogeneous 

composites. The geometry and dimensions of the RVEs are given in Figure 6.14 for 

Pattern 1 (a) and Pattern 2 (b), in which L=10 and R=1. In the two cases, the FVF is 

kept constant at 15.71%. The mesh configuration of the RVEs for HFS-FEM is shown 

in Figure 6.15, in which the 16-node special element (i.e. 8-edges) for fibers is 

employed. Mesh configurations of the RVEs for ABAQUS are shown in Figure 6.16. 
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(a)     (b) 

Figure 6.15 Mesh configurations of the RVEs for HFS-FEM. 

 

(a)     (b) 

Figure 6.16 Mesh configurations of the RVEs for ABAQUS. 

6.5.2.1. Effect of material mismatch ratio 

The predicted effective thermal conductivities k* of the two-phase composites 

by the HFS-FEM for the two different patterns are given in Figure 6.17 and Figure 

6.18, respectively. For the case of conductor embedded in an insulated matrix, i.e. 

k2>k1, Figure 6.17 shows that for both patterns the effective thermal conductivity k* 

increases with the increase in fiber thermal conductivity k2 and the rate of increase is 

dramatic between 1 and 20, then tends to be smoother. The relationship between 

effective thermal conductivities k* and mismatch ratio m is nonlinear. When the 
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thermal conductivity k2 of the fiber is 20 times of that of the matrix, the effective 

thermal conductivity k* of the composites, compared with the pure matrix materials, 

increases by 33.3% for Pattern 1 and 35.2% for Pattern 2. It is obvious from Figure 

6.17 that the effective thermal conductivity k* of Pattern 2 is slightly better than that 

of Pattern 2, and the beneficial influence becomes clearer as the mismatch ratio 

becomes larger (m>20).  

 

Figure 6.17 Effective thermal conductivity k* of the composite for different 

mismatch ratios when k2>k1. 

For the case of an insulated fiber embedded in a conductor matrix, i.e. k2<k1, 

Figure 6.18 shows that the effective thermal conductivity k* for both patterns increases 

linearly with the matrix thermal conductivity k1 if k2 is fixed as a constant, which is 

completely different from the former case of nonlinearity. In this case, the thermal 

property of the matrix has a significant influence on the overall material property. The 

matrix conductivity reduces by 26.80% for Pattern 1 and 28.02% for Pattern 2, when 

the thermal conductivity k1 of the matrix is 100 times that of the fiber. It can be 

observed from Figure 6.18 that the effective thermal conductivity k* of Pattern 1 is 
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slightly better than that of Pattern 2; in other words, the conductivity reduction effect 

of Pattern 2 is slightly superior to that of Pattern 1, like the increasing effect for the 

case of k2>k1.  

 

Figure 6.18 Effective thermal conductivity k* of the composite for different 

mismatch ratios when k1>k2. 

6.5.2.2. Effect of fiber pattern 

Figure 6.19 presents the contour plots of the temperature distribution and heat 

flux components across the RVE when m=20 and the FVF is 15.71%. It is obvious 

that the fiber inclusions have a significant influence on the heat flux distribution in the 

RVE, and that the heat fluxes are concentrated through the fibers when a fiber appears 

at an intersection. Clearly, most of the heat is conveyed through the fibers in the 

composite when the thermal conductivity of the fiber is higher than that of the matrix. 

Conversely, Figure 6.20 shows that insulated fibers expel the heat flux to the matrix 

and most flux travels through the matrix, not the fiber. This phenomenon is much more 

significant for Pattern 2 than for Pattern 1. Numerical results in the above modeling 

also show that the results from HFS-FEM are in good agreement with those from 
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ABAQUS although much fewer meshes are employed by the HFS-FEM. It can be 

concluded that the proposed method is accurate and efficient in analyzing micro heat 

transfer problems.  

 

 

Figure 6.19 Contour plots of temperature and heat flux distribution in the RVE 

(m=20, FVF=15.71%). 

 

 

Figure 6.20 Contour plots of temperature and heat flux distribution in the RVE 

(1/m=20, FVF=15.71%). 
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6.6. SUMMARY 

In this chapter, the HFS-FEM method is successfully applied to heat transfer 

problems of heterogeneous composites. The two independent intra-element and frame 

fields facilitate the construction of arbitrary-shaped elements and the modified 

variational functional for stiffness matrix derivation involves the element boundary 

integral only. Based on the special fundamental solution, a type of special element 

involving the inclusion/fiber is proposed for mesh reduction in analyzing 

heterogeneous composites.  

The effective thermal conductivity of composites is evaluated through the 

RVEs with single or multiple fibers using the homogenization technique. The method 

is used to investigate the effect of fiber volume fraction and the mismatch ratio 

between fiber and matrix in the composites. Numerical results show that the proposed 

method is accurate and efficient in simulating the heat transfer problem. The 

employment of special elements significantly reduces the meshing effort and 

computing cost of the model, also obviating the need for mesh regeneration when the 

fiber volume fraction changes slightly. It can be concluded that the proposed 

micromechanical models based on the HFS-FEM have the potential to model fiber-

reinforced composites and to be further developed for multi-scale simulation in future 

work.  
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Chapter 7. HFS-FEM for 2D and 3D Thermo-elasticity Problems 

 

7.1. INTRODUCTION 

Problems of thermoelasticity arise in many practical applications such as those 

encountered in the design of steam and gas turbines, jet engines, rocket motors and 

nuclear reactors. Thermal stress induced in such structures is one of the important 

concerns in product design and analysis. General thermoelasticity is governed by two 

time-dependent coupled differential equations: the heat conduction equation and the 

Navier equation with thermal body force (Henry and Banerjee 1988). In most practical 

engineering applications, the coupling term of the heat equation and the inertia term 

in Navier equation are generally negligible (Henry and Banerjee 1988). Consequently, 

most analyses employ the uncoupled thermo-elasticity theory, which is adopted in the 

present research.  

Currently, numerical methods such as the FEM are widely employed to 

investigate thermoelasticity problems (Bahtui and Eslami ; R.J 1993; Aubry, Lucas et 

al. 1999; Carrazedo and Coda 2010; Solin, Cerveny et al. 2010). Despite many 

attractive features of FEM, it is still a nontrivial and time consuming task for complex 

domains, particularly for 3D problems. One alternative to circumvent this difficulty is 

to use the BEM, which requires only boundary discretization rather than domain 

discretization (Sládek and Sládek 1984; Chaudouet 1987; Shiah and Lin 2003). 

However, the treatment of singular or near-singular boundary integrals is usually quite 

tedious and inefficient and an extra boundary integral equation is also required to 

evaluate the fields inside the domain; additionally, for multi-domain problems, 

implementation of the BEM becomes quite complex and the nonsymmetrical 

coefficient matrix of the resulting equations offsets its advantages (Qin 2000; Qin 

2004). Recently, a combination of the MFS and the dual reciprocity method has been 
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utilized to solve 2D thermoelasticity with general body forces (de Medeiros, Partridge 

et al. 2004) and 3D thermoelasticity (Tsai 2009). 

In the past three decades, HT-FEM a significant alternative to traditional FEM, 

has become popular and has been increasingly used to analyze various engineering 

problems (Jirousek and Guex 1986; Jirousek and Qin 1995; Qin 2003; Qin 2005; 

Wang, Qin et al. 2007; de Freitas and Toma 2009; Sze and Liu 2010; de Freitas and 

Moldovan 2011). However, the terms of truncated T-complete functions in HT-FEM 

must be carefully selected to achieve the desired results and the T-complete functions 

for some physical problems are difficult to develop (Qin 2000; Qin and Wang 2008). 

To overcome these drawbacks of HT-FEM, the HFS-FEM was developed for solving 

2D heat conduction problem in single and multilayer-materials (Wang and Qin 2009; 

Wang and Qin 2010a) and isotropic elastic problems (Wang and Qin 2010b). The 

advantages of the method have been addressed in the previous chapters (Qin 2003; 

Gao, Wang et al. 2005; Dhanasekar, Han et al. 2006). 

In this chapter, a new solution procedure based on the HFS-FEM is proposed 

to solve 2D and 3D thermoelastic problems with consideration of arbitrary body forces 

and temperature changes. The method of particular solution is used to decompose the 

displacement solution into two parts: a homogeneous solution and a particular 

solution. The homogeneous solution is obtained by using the HFS-FEM with elastic 

fundamental solutions and the particular solution related to the body force and 

temperature change is approximated by using the RBF interpolation. Five different 

numerical examples are presented here to demonstrate the accuracy and versatility of 

the proposed method. The examples show that, compared with the existing closed-

form solutions or ABAQUS results, even when using a very coarse mesh, relatively 

accurate results can still be obtained by the new method.  

This chapter is organized as follows. Section 7.2 reviews the basic equations 

of thermoelasticity. Sections 7.3 and 7.4 describe the method of particular solution and 

RBF approximation which are employed to deal with temperature change and body 
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force. In this section, two different approaches are presented to treat this problem. 

Section 7.5 gives the derivation of the HFS-FEM formulations in detail. In Section 

7.6, five numerical examples are presented to demonstrate the validity of the approach. 

Concluding remarks are given in Section 7.7. The majority of this chapter has been 

published in a paper (Cao, Yu et al. 2012d) co-authored by the candidate. 

7.2. BASIC EQUATIONS FOR THERMOELASTICITY 

Consider a finite isotropic material in domain   (see Figure 7.1), and let (x1, 

x2, x3) denote the coordinates in Cartesian coordinate system. The equilibrium 

governing equations of thermoelasticity with the body force are expressed as  

 ,ij j ib    (7.1) 

where ij is the stress tensor, ib  is the body force vector and , 1,2,3i j  . The 

generalized thermoelastic stress-strain relations and the generalized kinematical 

relation are given as  
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in which ije  the strain tensor, iu  is the displacement vector, T is the temperature 

change, G is the shear modulus,  is the Poisson’s ratio, ij  is the Kronecker delta, 

and  

 2 (1 ) / (1 2 )m G v v    (7.4) 

is the thermal constant with   the coefficient of linear thermal expansion. By 

substituting Eqs. (7.2) and (7.3) into Eq. (7.1), the equilibrium equations may be 

rewritten as  

 
, , ,

1 2
i jj j ji i i

G
Gu u mT b


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
 (7.5) 

For a well-posed boundary value problem, the following boundary conditions, 

either displacement or traction boundary condition, should be prescribed as  

         on  ,i i uu u   (7.6) 

          on  ,i i tt t   (7.7) 
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where u t    is the boundary of the solution domain  , iu  and it  are the 

prescribed boundary values, and  

 ,i ij jt n  (7.8) 

is the boundary traction, in which jn  denotes the boundary outward normal. 

 

Figure 7.1 Geometrical definitions and boundary conditions for general 3D 

problems. 

7.3. THE METHOD OF PARTICULAR SOLUTION 

For the governing equation (7.5) in the previous section, the inhomogeneous 

term ,i imT b  can be eliminated by employing the method of particular solution 

(Henry and Banerjee 1988; Wang, Qin et al. 2007; Wang and Qin 2010b). Using 

superposition principle, the displacement iu  is decomposed into two parts, the 

homogeneous solution 
h

iu and the particular solution 
p

iu as follows: 

 
h p

i i iu u u   (7.9) 

in which the particular solution 
p

iu should satisfy the governing equation  
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but does not necessarily satisfy any boundary condition. It should be pointed out that 

the solution is not unique and can be obtained by various numerical techniques. 

However, the homogeneous solution should satisfy 
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with modified boundary conditions 

 
_

,     on  h p

i i i uu u u    (7.12) 

 
_

,     on  h p

i i i i tt t mTn t     (7.13) 

From the above equations, it can be seen that once the particular solution 
p

iu is known, 

the homogeneous solution 
h

iu in Eq.(7.9) can be solved by Eqs. (7.11)-(7.13). In the 

following section, radial basis function approximation is introduced to obtain the 

particular solution, and the HFS-FEM is derived for solving Eqs. (7.11)-(7.13).  

7.4. RADIAL BASIS FUNCTION APPROXIMATION 

It is usually impossible to find an analytical solution for Eq.(7.10) except for 

some special cases. As a consequence, RBFs (Golberg, Chen et al. 1999; Cheng, Chen 

et al. 2001) are used in this analysis to approximate the body force ib  and the 

temperature field T in order to obtain the particular solution. There are two different 

ways to implement this approximation: Method 1 is to treat the body force ib  and the 

temperature field T separately, as done by Tsai (Tsai 2009). Method 2 is to treat 

,i imT b  as a whole. However, the performance of the two approaches differs, as 

discussed in the numerical examples in Section 7.6. 

7.4.1. Method 1: Interpolating temperature and body force separately 

The body force ib  and temperature T are assumed by the following two 

equations  

 

2 3

1

     (i=1,2 in   and   i=1,2,3 in ) 
N

j j

i i

j

b  


    (7.14) 

and  

 1

N
j j

j

T  


  (7.15) 

where N is the number of interpolation points, j are the basis functions, and 
j

i  
and

 
j
 
are the coefficients to be determined by collocation. Then, the approximate 

particular solution can be written as follows  

 
3

1 1 1

N N
p j j j j

i i ik i

k j j

u  
  

      (7.16) 
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where 
j

ik  and 
j

i  are the approximated particular solution kernels. Once the RBF is 

selected, the problem of finding a particular solution is reduced to solving the 

following equations 

 
, ,

1 2
il kk kl ki il

G
G  


    


 (7.17) 

 
, , ,

1 2
i kk k ki i

G
G m


   


 (7.18) 

To solve Eq.(7.17), the displacement is expressed in terms of the Galerkin -

Papkovich vectors (A.H.-D 2000; Cheng, Chen et al. 2001)
 

 
, ,

1 1

2
ik ik mm mk miF F

G G


    (7.19) 

Substituting Eq. (7.19) into Eq. (7.17) yields the following bi-harmonic equation: 

 

4 1

1
il ilF  


  


 (7.20) 

Taking the spline type RBF 2 1nr   the following solutions can be obtained: 

 
   

2 3
2

2 2
   ( )  for n=1,2,3

1 2 1 2 3

n

li
li

r
F

v n n

 

  
  

 (7.21) 

   2

0 1 2 , ,    ( )  for n=1,2,3li li i lA A A r r     (7.22) 

where 

 

     

2 1

0 2

1

2

1

2 1 2 1 2 3

5 4 2 (2 3)

(2 1)

nr
A

G v n n

A n v n

A n



 
  

   

  

 (7.23) 

for 2D problems and  

  
    

2 3
3   ( )  for n=1,2,3

1 2 1 2 2 2 3 2 4

n

li
li

r
F

v n n n n

 

  
    

 (7.24) 

   3

0 1 2 , ,    ( )  for n=1,2,3li li i lA A A r r     (7.25) 

where 

 

     

2 1

0

1

2

1

8 1 1 2 2 1

7 4 4 ( 2)

(2 1)

nr
A

G v n n n

A n v n

A n



 
   

   

  

 (7.26) 
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for 3D problems, where rj represents the Euclidean distance of a given point (x, y) 

from a fixed point (xj, yj) in the domain of interest. The corresponding stress particular 

solution can be obtained by 

 , , ,( )lij li j lj i ij lk kS G     
 (7.27)

 

where
2

1 2

v
G

v
 


. Substituting Eq. (7.25) into (7.27) yields 

 

   2

0 1 , , 2 , 3 , , ,          ( )  for n=1,2,3lij j li i jl ij l i j lS B B r r B r B r r r        (7.28) 

where 

 

    

2

0

1

2

3

1

1 2 1 2 3

(2 2) (2 3)

(2 3) 1

1 2

nr
B

v n n

B n v n

B v n

B n

 
  

   

  

 

 (7.29) 

for 2D problems, and substituting Eq. (7.25) into (7.27), one can obtain 

    3

0 1 , , 2 , 3 , , ,          ( )  for n=1,2,3lij j li i jl ij l i j lS B B r r B r B r r r      
 (7.30) 

where 

 

    

2

0

1

2

3

1

4 1 1 2

3 2 2 ( 2)

2 ( 2) 1

1 2

nr
B

v n n

B n v n

B v n

B n

 
  

   

  

 

 (7.31) 

for 3D problems. 

To solve Eq. (7.18), i  can be treated as the gradient of a scalar function  

 ,i iU   (7.32) 

Substituting Eq. (7.32) into Eq. (7.18) obtains the Poisson’s equation 

 2 (1 2 )

2 (1 )

m
U

G







 


 (7.33) 

Thus, taking 2 1nr  , its particular solution can be obtained (A.H.-D 2000) 

 
2 1

2

2

(1 2 )
   ( )  for n=1,2,3

2 (1 ) (2 1)

nm r
U

G n






 

 
 (7.34) 

 
2 1

3(1 2 )
   ( )  for n=1,2,3

2 (1 ) (2 1)(2 2)

nm r
U

G n n






 

  
 (7.35) 

Then from Eq. (7.32), i  can be obtain as follows 
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2

, 2(1 2 )
   ( )  for n=1,2,3

2 (1 ) 2 1

n

i

i

r rm

G n






  

 
 (7.36) 

 

2

, 3(1 2 )
   ( )  for n=1,2,3

2 (1 ) (2 2)

n

i

i

r rm

G n






  

 
 (7.37) 

The corresponding stress particular solution can be obtained by substituting Eq. (7.25) 

into (7.27) 

 , , ,( )ij i j j i ij k kS G     
 (7.38)

 

Then we have 

 
 

 
2 1

2

, ,(1 2 ) (1 2 )(2 1)    ( )  for n=1,2,3
(1 ) 2 1

n

ij ij i j

mr
S nv v n r r

v n




     
 

 (7.39) 

 
  

 
2 1

3

, ,(1 2 )(2 1) (1 2 )    ( )  for n=1,2,3
1 2 2

n

ij i j ij

mr
S n r r nv

v n
 



     
 

 (7.40) 

7.4.2. Method 2: Interpolating temperature and body force together 

Considering that the temperature gradient plays a role in body force, ,i imT b
 

can be approximated together by the following equation 

 
,

1

N
j j

i i i

j

mT b  


   (7.41) 

Thus the approximate particular solution can be written as 

 

3

1 1

N
p j j

i i ik

k j

u 
 

   (7.42) 

Consequently, for body force the same approach can be followed as in Method 1 

employing Eq. (7.17) and Eqs. (7.19)-(7.28) to obtain the desired 
j

ik  and lijS , which 

are the same as those for the case of body force only. This second approach has a 

relatively smaller number of equations to solve for the coefficients and the condition 

number of the coefficient matrix is smaller as well, which is beneficial to the solution. 

At this time the particular solutions of Eq. (7.9) have been obtained, can then be used 

to obtain the modified boundary conditions in Eqs. (7.12) and (7.13) so as to solve the 

homogeneous solution by Eq.(7.11) . In the following section, the HFS-FEM is 

employed to obtain this homogeneous part. 
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7.5. FORMULATIONS OF THE HFS-FEM 

7.5.1. Assumed fields for 2D problems 

In the HFS-FEM approach, two different assumed fields are employed: an 

intra-element and a frame field. Intra-element continuity is enforced on a  

nonconforming internal displacement field chosen as the fundamental solution of the 

problem (Wang and Qin 2010b). In this approach, the intra-element displacement field 

is approximated in terms of a linear combination of the fundamental solutions of the 

problem of interest  

 
* *

11 11 12

* *
1 221 222

( ) ( , ) ( , )
    ( , )

( , ) ( , )( )

sn
jsj sj

e sj e

j jsj sj

cu u u

cu uu 

    
        

     
 e e

x x y x y
u(x) N c x y

x y x yx
 (7.43) 

where sn  is the number of source points outside the element domain, which is equal 

to the number of nodes of an element in the present research based on the generation 

approach of the source points, 
ec  is an unknown coefficient vector (not nodal 

displacements), and 
eN  is the fundamental solution matrix, which can be written as  

 

* * * *

11 1 12 1 11 12

* * * *

21 1 22 1 21 22

( , ) ( , ) ... ( , ) ( , )

( , ) ( , ) ... ( , ) ( , )

s s

s s

s s sn sn

s s sn sn

u u u u

u u u u

 
  
  

e

x y x y x y x y
N

x y x y x y x y
 (7.44) 

 11 21 1 2[ ...... ]T

n nc c c c
e

c  (7.45) 

in which x  and sjy are respectively the field point and source point in the local 

coordinate system (X1, X2). The components 
* ( , )ij sju x y  represent the fundamental 

solution, i.e. the induced displacement component in the i-direction at the field point 

x due to a unit point load applied in the j-direction at source point sjy , as given by 

(Sauter and Schwab 2010 ) 

  *

, ,

1
(3 4 )

8 (1 )
( , ) lnij i jij sj r r

G
u r 

 


  


x y  (7.46) 

where ii isr x x  ,
2 2

1 2r r r  .  

In this analysis, the number of source points is taken to be same as the number 

of element nodes, which is free of spurious energy modes and can maintain the 

stiffness equations in full rank, as indicated by (Qin 2000). The source point 

( 1,2, , )sj sj ny can be generated by means of the following method (Wang and Qin 

2010b)  
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 0 0( )s c  y x x x  (7.47) 

where γ is a dimensionless coefficient, 0x is the point on the element boundary (the 

nodal point in this work)and cx is the geometrical centroid of the element (see Figure 

7.2). Determination of γ was discussed by (Wang and Qin 2009; Wang and Qin 

2010b), and γ=5 is used in the following analysis. 

 

Figure 7.2 Intra-element field and frame field of a HFS-FEM element for 2D 

thermoelastic problems. 

With the assumption of intra-element field of Eq. (7.43), the corresponding 

stress fields can be obtained by the constitutive Eq. (1) 

  11 22 12

T
    e eσ(x) T c  (7.48) 

where  

 

* * * *

111 1 211 1 111 211

* * * *

122 1 222 1 122 222

* * * *

112 1 212 1 112 212

( , ) ( , ) ...... ( , ) ( , )

( , ) ( , ) ...... ( , ) ( , )

( , ) ( , ) ...... ( , ) ( , )

s s

s s

s s

n n

n n

n n

   

   

   

 
 

  
 
  

e

x y x y x y x y

T x y x y x y x y

x y x y x y x y

 (7.49) 

As a consequence, the traction is written as  

 
1

2

t

t

 
  

 
e e

nσ Q c  (7.50) 

in which   

 e eQ nT , 
1 2

2 1

0

0

n n

n n

 
  
 

n  (7.51) 
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The components 
* ( , )ijk x y

 
for plane strain problems are given as  

 
, , , ,

*

, ,

1
(1 2 )( ) 2

4 (
(

1 )
, ) k ij j ki i jk i jijk kr r r r r r

r
   

 



      

x y  (7.52) 

The unknown 
ec  in Eq. (7.43) can be calculated using a hybrid technique 

(Wang and Qin 2009) in which the elements are linked through an auxiliary 

conforming displacement frame which has the same form as in conventional FEM (see 

Figure 7.2). This means that in the HFS-FEM, a conforming displacement field should 

be independently defined on the element boundary to enforce the field continuity 

between elements and also to link the unknown c with nodal displacement ed . Thus, 

the frame is defined as  

 
1 1

2 2

( ) ,       ( )e e e e

u

u

    
      

    

N
u x d N d x

N
 (7.53) 

where the symbol “~” is used to specify that the field is defined on the element 

boundary only, eN
 
is the matrix of shape functions, ed

 
is the nodal displacements of 

elements. Taking the side 3-4-5 of a particular 8-node quadrilateral element (see 

Figure 7.2) as an example, eN
 
and ed can be expressed as  

 
1 2 3

1 2 3

4 6

0 0 0 0 0 0 0

0 0 0 0 0 0 0e

N N N

N N N

 
 
 
 

N  (7.54) 

  11 21 12 22 18 28

T
u u u u u ued  (7.55) 

where 1N , 2N  and 3N
 
can be expressed by natural coordinate 

 
   

  2

1 2 3

1 1
,   1 ,       1,1

2 2
N N N

   
 

 
        (7.56) 

7.5.2. Assumed fields for 3D problems 

For 3D cases, the intra-element displacement fields are approximated by 
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2

3

( )

( )     ( , )

( )

e sj e

u

u
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 
 

    
 
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e e

x

u(x) x N c x y

x

 (7.57) 

where the matrix eN  and vector ec
 
for 3D elements can be written as 

* * ** * *
11 12 1311 1 12 1 13 1

* * * * * *

12 1 22 1 23 1 12 22 23

* * * * *
13 1 32 1 33 1 13 32

( , ) ( , ) ( , )( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( ,

s s s

s s s

s

sn sn sns s s

s s s sn sn sn

s s s sn

u u uu u u

u u u u u u

u u u u u

e

x y x y x yx y x y x y

N x y x y x y x y x y x y

x y x y x y x y x y
*

33) ( , )
s ssn snu

 
 
 
 
  x y

 (7.58)
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 11 21 31 1 2 3[ ]T

n n nc c c c c c
e

c  (7.59) 

in which the fundamental solution components 
* ( , )ij sju x y  are given by 

  *

, ,

1
(3 4 )

16 ( )
( , )

1
ij ij ji sj r r

G
u

r
 

 
  


x y

 (7.60)
 

where 
ii isr x x  ,

2 2 2

1 2 3r r r r   . In 3D analysis, the number of source points is 

also taken to be same as the number of element nodes as done for 2D cases.  

 

Figure 7.3 Intra-element field and frame field of a hexahedron HFS-FEM element 

for 3D thermoelastic problems (The source points and centroid of the 

20-node element are omitted in the figure for a clear view: they are 

similar to those of the 8-node element). 

The corresponding stress fields in 3D can be expressed as  

  11 22 33 23 31 12

T
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 (7.62) 

in which the components 
* ( , )ijk x y are given as 

  , , , ,
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1
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As a consequence, the traction is expressed as  
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where  

 e eQ nT ,    

1 3 2

2 3 1

3 2 1

0 0 0

0 0 0

0 0 0

n n n

n n n

n n n

 
 


 
  

n  (7.65) 

The frame field for the element surfaces, which is different from the line frame 

field of the 2D case, is defined as  
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3 3
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 (7.66) 

For the face 1-2-3-10-15-14-13-9 of a particular 20-node 3D brick element (see Figure 

7.3), eN and ed can be expressed as  

 e
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  
 

1 2 3 8 4 7 6 5

5 2 5

N N N N 0 0 N N 0 0 N N N 0 0  (7.67) 
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T
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where the shape functions are expressed as  
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and 
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 (7.70) 

where  ,i i   is the natural coordinate of the i-node of the element (Figure 7.4). 
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Figure 7.4 Typical quadratic interpolation for the frame fields. 

7.5.3. Modified functional for HFS-FEM 

The HFS-FEM formulations for 3D thermoelastic problem can be established 

by the variational approach. In the absence of body forces, the hybrid functional me

used to derive the present HFS-FEM can be constructed as (Qin and Wang 2008) 
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where iu
 
and iu

 
are the intra-element displacement field defined within the element 

and the frame displacement field defined on the element boundary, respectively. e

and e are the element domain and element boundary, respectively. t , u , and I  

stand respectively for the specified traction boundary, specified displacement 

boundary, and inter-element boundary ( e t u I     ). 

Compared to the functional employed in the conventional FEM, the present 

hybrid functional is constructed by adding a hybrid integral term related to the intra-

element and element frame displacement fields to guarantee the satisfaction of 

displacement and traction continuity conditions on the common boundary of two 

adjacent elements. By applying the Gaussian theorem, Eq. (7.71) can be simplified as 
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 (7.72) 

For the equilibrium equation with the constructed intra-element fields, the following 

expression for the HFS-FE model is obtained 
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The functional Eq. (7.73) contains boundary integrals only and is used to derive HFS-

FEM formulations for 2D and 3D thermoelastic problems. 

7.5.4. Element stiffness matrix 

The element stiffness equation can be generated by setting 0me  . 

Substituting Eqs. (7.57), (7.64) and (7.66) into the functional (7.73) yields  

 T T T1

2
me e e e e e e e e    c H c c G d d g  (7.74) 

where   
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To enforce inter-element continuity on the common element boundary, the unknown 

vector ec should be expressed in terms of nodal DOF ed . The stationary condition of 

the functional me with respect to ec
 
and ed

 
yields, respectively, 
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Therefore, the relationship between ec
 
and ed , and the stiffness equation can be 

obtained as  
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c H G d  (7.78) 

 e e eK d = g  (7.79) 

where 
1

e e e e

T
K = G H G  is the element stiffness matrix. Consequently, the 

homogeneous solution can be obtained by Eq. (7.43) for 2D problems and Eq. (7.57) 

for 3D problems. 

7.5.5. Recovery of rigid-body motion terms 

When using the above procedures to obtain eu the rigid-body motion modes 

are not included so as to prevent singularity of the inversion of matrix eH . It is 

necessary, therefore, to reintroduce the discarded rigid-body motion terms after 
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obtaining the internal field of an element. The least squares method can be employed 

for this purpose and the missing terms can be recovered easily by setting for the 

augmented internal field  
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For detailed formulations please refer to Chapter 3.  

7.6. NUMERICAL RESULTS AND DISCUSSION 

In this section, five different numerical examples are presented to test the 

performance of the proposed methodology, including 2D and 3D elastic and 

thermoelastic problems with body force and temperature change. The first three 

examples are used to investigate the capability of the method to treat 2D problems 

with temperature change or body force, or both. The latter two examples are used to 

show the method’s ability to deal with 3D thermoelasticity with arbitrary body force 

and temperature. Analytical results or numerical results from ABAQUS with fine 

meshes are presented to check the accuracy of the method.  

7.6.1. Circular cylinder with axisymmetric temperature change 

In this example, a long circular cylinder with axisymmetric temperature 

change in the domain is considered to show the performance of the proposed method. 

The inside and outside surfaces of the cylinder are both assumed to be free of traction. 

The temperature T changes logarithmically along the radial direction. With the 

symmetry condition of the problem, only one quarter of the cylinder is modeled. The 

configurations of geometry and the boundary conditions are shown in Figure 7.5. 

Under the assumption of plane strain, the analytical solutions for stress components 

without body forces are given as (Timoshenko and Goodier 1970)  
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 (7.82) 

for reference. In the computation, the parameters a=5, b=20, E=1000, ν =0.3, α =0.001, 

and T0 =10. As shown in Figure 7.6, two different meshes with 16 8-node elements 

and 128 CPE8R elements, respectively, are employed to show the influence of the 

mesh density. The two approaches listed in Section 7.4 to approximate body force and 

temperature are discussed and analyzed in this example.  

 

     

Figure 7.5 Geometry and boundary conditions of the long cylinder with 

axisymmetric temperature change. 
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Figure 7.6 Mesh configurations of a quarter of the circular cylinder: (a) Coarse 

mesh (left: 16 elements) and (b) Fine mesh (right: 128 elements). 

Figure 7.7 and Figure 7.8 present the variation of the radial and the 

circumferential thermal stresses with the cylinder radius for both coarse mesh and fine 

mesh, in which the theoretical values are given for comparison. It is seen from these 

figures that the results from Method 2 are much better than those obtained from 

Method 1 for both coarse mesh and fine mesh. When coarse mesh is used with 

Method 2, the radial stress near to the outer surface of the cylinder exhibits very large 

errors, but when the mesh is refined the error decreases dramatically and the results 

agree well with the analytical ones. It can be inferred that the error may be to a large 

extent due to the RBF interpolation, for which the number of interpolation points has 

a significant influence on its accuracy. However, no significant improvement is 

observed using Method 1 when refining the mesh to 128 8-node elements.  

The circumferential thermal stresses obtained from the coarse (left) and fine 

(right) meshes in Figure 7.6 through Method 1 also show a smaller error compared to 

the radial stresses. However, these errors are still larger than those from Method 2, as 

can be seen clearly from Figure 7.8.  
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(a) 

 

(b) 

Figure 7.7 Variation of the radial thermal stresses with the cylinder radius using 

(a) coarse mesh and (b) fine mesh.  

Figure 7.9 shows the variation of the radial displacement with the cylinder 

radius using (a) coarse mesh and (b) fine mesh. It can be seen that for both meshes 
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with Method 2, even using the coarse mesh, good agreement can be obtained. This 

result further verifies the conclusion that the second strategy (Method 2) of 

approximating temperature and body force together is a much better choice. 

 

(a) 

 

(b) 

Figure 7.8 Variation of the circumferential thermal stresses with the cylinder 

radius using (a) coarse mesh and (b) fine mesh. 
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(a) 

 

(b) 

Figure 7.9 Variation of the radial displacement with the cylinder radius using (a) 

coarse mesh and (b) fine mesh.  
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Figure 7.10 displays the contour plots of (a) radial and (b) circumferential 

thermal stresses (the meshes used for the contour plot is different from that for 

calculation due to the use of quadratic elements). It demonstrates that treating 

temperature gradient and body force together is superior to treating them separately. 

In subsequent examples, therefore, Method 2 is employed in the analysis. It should be 

pointed out that it is necessary to apply Method 1 when the temperature change is 

discretely distributed or when the gradient of the temperature field is not available.  

  

Figure 7.10 Contour plots of (a) radial and (b) circumferential thermal stresses (the 

meshes used for the contour plots are different from those used for 

calculation due to the use of quadratic elements). 

7.6.2. Long beam under gravity 

The second exampleis a long beam with rectangular cross-section subjected to 

gravity. The geometry of the rectangular cross-section and the corresponding 

boundary conditions are shown in Figure 7.11, in which g denotes the gravity 

accelerator, and ρ is the density of material. The problem can be viewed as a plane 

strain problem, and the analytical solutions of displacements and stresses are given by 
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Let L = 20, E = 1000, ν = 0.25, α = 0.001 and ρg = 9.8, and four 8-node quadratic 

elements are used to model the entire square cross-section domain (see Figure 7.11).  
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Figure 7.11 Long square cross-section beam under gravity. 

 

Figure 7.12 Mesh configuration of square cross-section beam. 

The numerical results for the distribution of nodal displacement component u2 

along x1 = 10 are shown in Figure 7.13, from which it can be seen that the numerical 

results agree very well with the analytical solutions. Moreover, the stress results at 

element nodes along x1 = 10 are also compared with the exact solutions in Figure 7.13, 

from which it is obvious that the numerical results obtained from the HFS-FEM with 

RBF interpolation are in good agreement with the analytical results.  
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Figure 7.13 Displacement and stresses along x1=10 of square cross-section of the 

beam. 

Figure 7.14 gives the stress contour plots of the beam cross-section beam under 

gravity. It can be seen that the stresses change linearly with x2 coordinates and 

independently of the x1 coordinate, which is consistent with the analytical solution. 

 

  

Figure 7.14 Contour plots of the stresses of square cross-section beam. 
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7.6.3. T-shaped domain with body force and temperature change  

In this example, the proposed numerical method is used to model a T-shaped 

domain with changes in both temperature and body force. The boundary condition and 

temperature distribution are shown in Figure 7.15. The material properties are E = 

30000, ν = 0.15, α = 0.001, ρ=2.3 and g = 9.8. 

 

Figure 7.15 Dimension and boundary condition of the T-Shaped domain. 

  
                  (a) HFS-FEM (22 elements)           (b) ABAQUS (352 element) 

Figure 7.16 Mesh configuration of T-Shaped domain. 
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In this example, 22 8-node quadrilateral elements are utilized to model the T-

shaped domain by the HFS-FEM. Because there is no analytical solution for 

comparison, the results from ABAQUS using 352 CPE8R elements are employed as 

reference. Figure 7.17 shows the thermal stresses 11  along the line 2 14x   and 22  

along the line 1 0x  . It is obvious that the results from HFS-FEM using the coarse 

mesh in Figure 7.16 agree very well with the results from ABAQUS with a fine mesh 

in Figure 7.16. It should be noted that in order to obtain accurate results at the two 

sharp corners of the T-shaped domain, a refined mesh is necessary due to the stress 

concentration at these points, which is also applied in the traditional FEM (ABAQUS). 

The contour plots of the displacement components and stresses components are 

presented in Figure 7.18.   
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(b) 22  along line 1 0x   

Figure 7.17 Variation of the thermal stresses of T-shaped domain: (a) 11  along line 

2 14x   and (b) 22  along line 1 0x  .
 

7.6.4. 3D cube under arbitrary temperature and body force 

In this example, a 3D cube of 1 1 1   with center located at (0.5, 0.5, 0.5) is 

considered, which is shown in Figure 7.19. The material properties of the cube are 

Young’s modulus 5000E  , Poisson’s ratio 0.3v  , and linear thermal expansion 

coefficient 0.001  . The lower surface is fixed on the ground and the temperature 

distribution and body force are assumed to be 
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Because there is no analytical solution available, the results from ABAQUS are 

employed for comparison. The meshes used by HFS-FEM and ABAQUS are given in 

Figure 7.20, in which the coarse mesh consists of 125 20-node brick elements and the 

fine mesh for ABAQUS has 8000 C3D20R elements.  

 

  

14 12 10 8 6 4 2 0
-500

-400

-300

-200

-100

0


2

2

x
2

 HFS-FEM

 ABAQUS



 183 

 

  

  

Figure 7.18 Contour plots of the displacement and stresses of T-shaped domain 

under change of temperature and body force. 
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Figure 7.19 Schematic of the cube under arbitrary temperature and body force. 

 

 
(a) HFS-FEM (125 elements)           (b) ABAQUS (8000 element) 

Figure 7.20 Mesh configurations of the 3D cube under arbitrary temperature and 

body force. 

Figure 7.20 presents the displacement 3u  and stress 33  along one edge of the 

cube which coincides with the x3 axis. It can be seen that the results from HFS-FEM 

again agree very well with those from ABAQUS. It is demonstrated that procedure 

based on HFS-FEM can predict the response of 3D thermoelastic problems under 
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arbitrary temperature and body force. It is also shown that the HFS-FEM with RBF 

interpolation can give satisfactory results using very coarse meshes.  

 

 

 

Figure 7.21 Displacement 3u  and stress 33  along one cube edge when subjected to 

arbitrary temperature and body force. 
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7.6.5. A heated hollow ball under varied temperature field 

Finally, a heated hollow ball is considered to show the capability of the method 

to solve 3D thermal stress problems with complex geometry. As shown in Figure 7.22, 

the radius of the inner hole is a  and the radius of the outer ball is b . The temperature 

distribution is given by 0(2 10 / )T T r  . 

 

Figure 7.22 Schematic and dimension of heated hollow ball 

 

 
(a) HFS-FEM (864 elements)           (b) ABAQUS (11088 element) 

Figure 7.23 Mesh configurations of the heated hollow ball: (a) for HFS-FEM and 

(b) for ABAQUS.  

 

In the calculation, 05, 10, 20a b T   are assumed. Considering the symmetry 

property of the problems, only one eighth of the ball is modeled. The mesh used for 

a
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HFS-FEM is given in Figure 7.23, in which a total of 864 20-node brick elements are 

employed. As a reference, the results from ABAQUS are calculated using a much finer 

mesh with 11088 C3D20R elements as shown in Figure 7.23.  

Figure 7.24 shows the radial displacement ru and von Mises stress of the 

hollow ball along its radial direction. The radial displacement increases with the radius 

from 0.071 to 0.143 except for a slight reduction when 5 6.3r  . It can be seen from 

Figure 7.23 that the inner surface of the hollow ball suffers maximum von Mises stress 

up to 20 and this value dramatically reduces to about 0.15 at 6.5r  , then it 

experiences a moderate increase to about 8.2 at the outer surface. It is obvious from 

Figure 7.24 that the results obtained by HFS-FEM are in a good agreement with the 

results from ABAQUS. This again demonstrates the good performance of the 

proposed procedure in predicting the thermoelastic response of 3D problems with 

complex geometry. 
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Figure 7.24 Radial displacement and von Mises stress along radius of the heated 

hollow ball subjected to temperature change.  

7.7. SUMMARY 

In this chapter, the HFS-FEM is extended to model multifield problems and a 

new solution procedure based on HFS-FEM is proposed to solve 2D and 3D 

thermoelastic problems with arbitrary body forces and temperature changes. The body 

force and temperature change are treated by the method of particular solution, in which 

the homogeneous solution is obtained by using the HFS-FEM with elastic fundamental 

solutions, and the particular solution is approximated by the RBF. It is found that 

treating body force and temperature change as a whole is superior to approximating 

them separately. The five numerical examples presented in this chapter show that the 

proposed method is able to predict the thermoelastic response of 2D and 3D 

thermoelasticity problems with complex geometry, arbitrary body force and arbitrary 

temperature changes. It is a promising methodology for mesh reduction, which is 

capable of obtaining satisfactory results with much coarser meshes than the traditional 

FEM. It is also possible to improve the results by only increasing the interpolation 

points while keeping the meshes at a lower density.  
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Chapter 8. HFS-FEM for Piezoelectric Materials 

 

8.1. INTRODUCTION  

Piezoelectric materials have the property of converting electrical energy into 

mechanical energy and vice versa. This reciprocity in energy conversion makes them 

very attractive for use in electromechanical devices, such as sensors, actuators, 

transducers and frequency generators. In past decades, piezoelectric composite 

materials have also been developed by combining piezoceramics with passive non-

piezoelectric polymers. Superior properties are achieved by taking advantage of the 

most desirable properties of each constituent, and a great variety of structures have 

been produced. It has been demonstrated that the presence of defects such as voids and 

cracks results in degeneration of the service performance of piezoelectric materials 

(Barsoum 1997; Park, Park et al. 1998). The analysis of electroelastic fields around 

defects in piezoelectric materials is of paramount importance for evaluating the failure 

of such materials.  

To enhance understanding of the electromechanical coupling mechanism in 

piezoelectric materials and to explore their potential applications in practical 

engineering, numerous investigations, both analytical and numerical, have been 

conducted over the past decades. Barnett and Lothe (1975) extended Stroh formalism 

(Stroh 1958) to an eight-dimensional framework to solve the problem of a line 

dislocation and a line charge in anisotropic piezoelectric materials. Chung and Ting 

(1996) studied the 2D problem of an elliptic hole in a solid of anisotropic piezoelectric 

material by using Stroh formalism. Dunn and Taya (1993), Qin and Yu (1998) and 

Zhao et al (2011) conducted micromechanics analysis of piezoelectric composites to 

predict their effective properties. Sosa (1991) derived the analytical solution for a 

transversely isotropic piezoelectric material containing an elliptical hole with the 

impermeable electric boundary condition by using the theory of complex variables. 
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On the basis of Sosa’s work, Xu and Rajapakse (1999) presented an analytical solution 

for arbitrarily oriented elliptical voids. Park and Sun (1995) derived the closed-form 

solutions for an infinite piezoelectric medium containing a horizontal center crack by 

Stroh formalism. Using Stroh’s formalism, Qin and Yu (1997) derived the explicit 

solutions for an arbitrarily oriented crack terminating at the interface between 

dissimilar piezoelectric materials. 

The afore-mentioned analytical methods, however, are limited to relatively 

simple geometries because of material anisotropy and electromechanical coupling. As 

a consequence, numerical methods are usually employed in solving most practical 

problems. For example, the FEM has been used for the design and analysis of 

piezoelectric devices and adaptive structures (Kumar and Singh 1997; Béchet, 

Scherzer et al. 2009; Jański, Scherzer et al. 2010). However, mesh refinement near 

holes or cracks is required for FEM to achieve the necessary accuracy, which is a very 

time-consuming and complex task (Yu, Guo et al. 2008). The BEM has also been 

extended to piezoelectric problems (Lee and Jiang 1994; Ding, Wang et al. 1998; Xu 

and Rajapakse 2001; García-Sánchez, Zhang et al. 2008; Denda and Wang 2009). 

Compared with the FEM, the BEM is computationally efficient and highly accurate in 

dealing with linear fracture analyses. Lee and Jiang (1994) developed a boundary 

element formulation for piezoelectric solids using the method of weighted residuals 

and the Green’s functions for a transversely isotropic piezoelectric plate. Pan (1999) 

presented a single-domain boundary element analysis of fracture mechanics in 2D 

anisotropic piezoelectric solids based on Green’s functions derived by Stroh’s 

formalism. Xu and Rajapakse (2001) performed a BEM analysis of crack problem 

based on the Green’s functions derived by Lekhnitskii’s formalism.  

To avoid mesh refinement, special Green’s functions for 2D anisotropic and 

piezoelectric materials have been derived (Ting 1996; Hwu 2010) and a linear 

boundary element has been developed to analyze problems involving multiple-holes 

and cracks by utilizing special Green’s functions (Hwu and Yen 1991; Hwu 2010). In 
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this method, a special Green’s function related to elliptical holes is required to satisfy 

the proper singularity at the source point and the traction-free-hole boundary 

conditions along the rim of the elliptical hole, which makes meshing around the hole 

boundary unnecessary. Thus, a vast amount of computer time and storage in numerical 

calculation can be saved. Moreover, due to the exact satisfaction of the traction-free-

hole boundary condition, the results are more accurate than those obtained by using 

conventional boundary elements (Hwu and Yen 1991).  

The Trefftz method, such as HT-FEM, Trefftz BEM and Trefftz collocation 

method, has also been successfully applied to problems of piezoelasticity. Qin (2003) 

derived the corresponding Trefftz finite element formulation for anti-plane problems 

of piezoelectric materials by constructing a pair of dual variational functional. Wang, 

Sze et al. (2006) analyzed singular electromechanical stress field in piezoelectrics by 

combining the eigensolution approach and Trefftz finite element models. Qin (2003) 

presented a family of modified variational principles of piezoelectricity and succeeded 

in applying them to establish a Trefftz finite element formulation. Jin, Sheng et al. 

(2005) formulated the Trefftz collocation and the Trefftz Galerkin methods for plane 

piezoelectricity based on solution sets derived from the complex variables method. 

Sheng et al (2006) developed a multi-domain Trefftz boundary collocation method for 

plane piezoelectricity with defects according to the plane piezoelectricity solution 

derived by Lekhnitskii’s formalism. As an alternative to the HT-FEM, the HFS-FEM 

was recently developed for solving 2D or 3D elastic and thermal problems for isotropic 

(Cao, Qin et al. 2013a) and orthotropic materials (Wang and Qin 2010a). This method 

inherits the advantages of the HT-FEM over the FEM and the BEM, such as the 

possibility of high accuracy using coarse meshes of high-degree elements, enhanced 

insensitivity to mesh distortion, great liberty in element shape and the possibility of 

accurately representing various local effects (Qin 2000).  

In this chapter, a new HFS-FEM is developed for modeling plane 

piezoelectricity with/without defects (holes or cracks) based on Lekhnitskii’s 
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formalism and the extended Stroh formalism, respectively. The fundamental solutions 

derived from these formalisms are employed to approximate the intra-element 

displacement and electrical potential field (DEP). A modified variational functional, 

which satisfies the governing equation, boundary and continuity conditions, is 

proposed to derive the element stiffness equation for piezoelectric materials. The 

stationary conditions of the variational functional and its theorem on the existence of 

extremum are also presented to show their suitability for deriving the proposed hybrid 

finite element formulations. Several numerical examples are presented to demonstrate 

the accuracy and efficiency of the proposed formulations. The majority of this chapter 

has been published in papers (Cao, Qin et al. 2012b; Cao, Yu et al. 2013c) co-authored 

by the candidate.  

8.2. BASIC EQUATIONS FOR PIEZOELECTRIC MATERIALS 

In the Cartesian coordinate system (x1, x2, x3), for a linear piezoelectric 

material, the differential governing equations are given by  

  , 0,      0ij j i i,if D q        in  (8.1) 

where ij  is the stress tensor, iD  the electric displacement vector, if  the body force, 

q  the free charge densities, and  the solution domain. Subscript commas denote 

partial differentiation with respect to the coordinates. The summation convention is 

invoked over repeated indices. 

With strain and electric field as the independent variables, the constitutive 

equations are  

 ij ijkl kl kij kC e E   ,  i ikl kl ik kD e E   (8.2) 

where ijklC  is the elasticity tensor measured under a constant electric field (E=0), ikle

and ij are respectively the piezoelectric tensor and dielectric tensor measured under 

constant strain (=0),  and ij iE  are the elastic strain tensor and the electric field 

vector, respectively. The strain-displacement and electric field-electric potential 

relations are given as  

 
, ,

1
( )

2
ij i j j iu u   ,  ,i iE    (8.3) 
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where iu  and  are the displacement and the electric potential, respectively. 

The boundary conditions of the boundary value problem (8.1)-(8.3) can be 

given by 

 i iu u                    on u  (8.4) 

 i ij j it n t           on 
t  (8.5) 

                        on   (8.6) 

 n i iD D n q          on 
D  (8.7) 

where 
it  is the traction, q  is the surface charge, 

iu , 
it ,   and q are the prescribed 

boundary values, and in  is the unit outward normal vector. The barred quantities 

indicate that their values are prescribed. =u+t=D+ is the boundary of the 

problem domain .  

For a transversely isotropic material, if x1-x2 is taken as the isotropic plane, one 

can employ either x1-x3 or x2-x3 plane to study the plane electromechanical 

phenomenon. Thus, choosing the former and considering the plane strain conditions (

22 32 12 0     and 2 0E  ) Eq.(8.2) can be reduced to 
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 (8.8) 

For a plane stress piezoelectric problem ( 22 32 12 0     and 2 0D  ), the 

constitutive equations can be obtained by replacing the coefficients 11c , 13c , 33c , 44c , 15e

, 31e , 33e , 11 , 33  in Eq. (8.8) as 

  

* 2 *

11 11 12 11 13 13 12 13 11

* 2 * *

33 33 13 11 44 44 15 15

* *

31 31 12 31 11 33 33 13 31 11

* * 2

11 11 33 33 31 11

/ ,  / ,

/ ,  ,  ,

/ ,  / ,

,  /

c c c c c c c c c

c c c c c c e e

e e c e c e e c e c

e c   

   

   

   
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  (8.9) 
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8.3. HFS-FEM BASED ON LEKHNITSKII’S FORMALISM  

8.3.1. Assumed fields 

The main idea of the proposed hybrid finite element method originated from 

the HT-FEM, which utilizes two independent approximate fields: an intra-element 

field and an independent frame field along the element boundary. Unlike the HT-FEM, 

however, the intra-element fields in the HFS-FEM are constructed based on the 

fundamental solutions, rather than a truncated T-complete function set. For 

piezoelectric problems, the HFS-FEM is based on assuming two distinct DEP fields: 

an intra-element DEP field u  and an independent DEP frame field u  along the 

element boundaries (Qin 2000; Qin 2003). 

    

Figure 8.1 Intra-element field and frame field of HFS-FEM element for 2D 

piezoelectric problem: general element (left) and special element with 

central elliptical hole (right).  

The intra-element DEP field u identically fulfills the governing differential 

equations (8.1) and is approximated by a linear combination of foundational solutions 

at different source points located outside the element domain  
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where sn  is the number of source points outside the element domain, which is equal 

to the number of nodes of an element in the present research based on the generation 

approach of the source points (see Figure 8.1), 
ec  an unknown coefficient vector (not 

nodal displacements), 
eN  the fundamental solution matrix, which can be written as  

* * * * * *

11 1 21 1 31 1 33 33 33

* * * * * *

12 1 22 1 32 1 33 33 33

* * * * *

13 1 23 1 33 1 33 33

( , ) ( , ) ( , ) ... ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ... ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ... ( , ) (

s s s

s s s

s

s s s sn sn sn

s s s sn sn sn

s s s sn

u u u u u u

u u u u u u

u u u u u

e

x y x y x y x y x y x y

N x y x y x y x y x y x y

x y x y x y x y
*

33, ) ( , )
s ssn snu

 
 
 
 
  x y x y

 (8.11) 

 11 21 31 1 2 3[ ... ]
s s s

T

n n nc c c c c c
e

c  (8.12) 

in which x  and sjy are respectively the field points (i.e. the nodal points of the element 

in this work) and source points in the local coordinate system (X1, X2). The component 

* ( , )ij sju x y  is the induced displacement component (i=1, 2) or electric potential (i=3) in 

the i-direction at the field point x due to a unit point load (j=1, 2) or point charge (j=3) 

applied in the j-direction at the source point sjy . The fundamental solution 
* ( , )ij sju x y  

is given as (Ding, Wang et al. 1996) 
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where    
2

1 1 3 3

22

s sj jx x s xr x   , and js are the three different roots of the 

characteristic equation 
6 4 3 0i i ias bs cs d    . The source point ( 1,2, , )sj sj ny can 

be generated by means of the following method 

 0 0( )s c  y x x x  (8.16) 

where γ is a dimensionless coefficient used to determine the distance between the 

source point sy and the geometrical centroid of the element cx , and 0x  is a point on 

the element boundary (i.e. the nodal points in this work) as shown in Figure 8.1.  

Making use of Eq.(8.3) and the expression of the intra-element DEP field u  

in Eq. (8.10), the corresponding stress and electric displacement Eq.(8.8) can be 

further written as 

 
e e

σ T c  (8.17) 
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in which 
*

sj( , )ij x y  denotes the corresponding stress components (i=1,2,3) or electric 

displacement (i=4,5) along the i-direction at the field point x due to a unit point load 

(j=1,2) or a unit point charge (j=3) applied in the j-direction at the source point ys and 

can be derived from Eqs.(8.13)-(8.15), as listed below, which are derived by 

substituting the fundamental solutions into constitutive equations (Yao and Wang 

2005).  
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 (8.23) 

in which the coefficients 11 12 13, , , , , ,ij ij ij ijs d g t M M M  are defined as below (Ding, 

Wang et al. 1996). 
2 4

1 13 1 6 7

3 5

1 8 9 44 3

2 4

1 31 1 10 11
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(8.24)        
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   (8.25) 
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2 4
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3 6 7 8
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(8.26)        

1 1 1

11 11 21 21 41 31 61

1 1 1

12 12 22 22 42 32 62
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M a t a t a t

M p t p t p t
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 (8.27) 
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23 23 33 33 23 43 33 13 13 33 63 13 23 23 13

,    ,    ,

,    ,    ,

,     ,      ,

t d g d g t d g d g t d g d g

t p s p s t p s p s t p s p s
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     

 (8.28) 
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 (8.29) 
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(8.30)     
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 (8.31) 

From Eqs. (8.2), (8.5) and (8.7), the generalized traction forces and electric 

displacement can be given as  

 

1 1

2 2

3n

t

t

D

   
   

    
   
   

e e e

Q

Q c Q c

Q

 (8.32) 

where 

 e eQ nT  (8.33) 
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1 2

2 1

1 2

0 0 0

0 0 0

0 0 0

n n

n n

n n

 
 


 
  

n  (8.34) 

The unknown coefficient 
ec  may be calculated from the conditions on the 

external boundary and/or the continuity conditions on the inter-element boundary. In 

the majority of cases a hybrid technique is used, whereby the elements are linked 

through an auxiliary conforming displacement frame which has the same form as in 

the conventional FEM. This means that a conforming DEP field should be 

independently defined on the element boundary to enforce field continuity between 

elements and also to link the coefficient 
ec , appearing in Eq.(8.10), with nodal DEP 

ed . For the 2D piezoelectric problem under consideration, the frame field is assumed 

as 

       

1 1

2 2

3

( ) ,       ( )e e e e

u

u



  
  

      
   
   

N

u x N d N d x

N

 (8.35) 

where the symbol “~” is used to specify that the field is defined on the element 

boundary only,  e e ed = d c  stands for the vector of the nodal displacements which 

are the final unknowns of the problem, e  represents the boundary of element e, and 

eN  is a matrix of the corresponding shape functions which are the same as those used 

in the conventional FEM. For example, for the side 3-4-5 of a particular quadratic 

element as shown in Figure 8.1, the shape function matrix eN  and nodal vector ed  

can be given in the form  

 

1 2 3

1 2 3

1 2 3

6 9

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

e

N N N

N N N

N N N

 
 
 
 
 
 

N  (8.36) 

  11 21 1 14 24 4 18 28 8

T
u u u u u u  ed  (8.37) 

where the shape functions are expressed by natural coordinate   

 
   

  2

1 2 3

1 1
,   1 ,       1,1

2 2
N N N

   
 

 
        (8.38) 
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8.3.2. Variational principles 

Based on the assumption of two distinct DEP fields, the Euler equations of the 

proposed variational functional should also satisfy the following inter-element 

continuity requirements in addition to Eqs.(8.4)-(8.7): 

 ie ifu u    e f          
 
(on e f  , conformity) (8.39) 

 0ie ift t     0ne nfD D    (on e f  , reciprocity) (8.40) 

where ‘e’ and ‘f ’ stand for any two neighboring elements. Eqs. (8.1)-(8.7) together 

with Eq. (8.39) and Eq. (8.40) can now be taken as the basis to establish the modified 

variational principle for the hybrid FEM of piezoelectric materials (Qin 2000; Qin 

2003). 

Since the stationary conditions of the traditional potential or complementary 

variational functional cannot satisfy the inter-element continuity condition required in 

the proposed HFS-FEM, new modified variational functional must be developed. In 

the absence of the body forces and electric charge density, the hybrid functional me

for a particular element e is constructed as 

 ( ) ( )
e e

me e i i i nt u u d D d 
 

         (8.41) 

where 

 
1

( )
2 e t D

e ij ij i i i i nD E d tu d D d  
  

         (8.42) 

and the boundary e of the element e is  

 e eu et eI e eD eI           (8.43) 

and  

 , , ,eu e u et e t e e eD e D                  (8.44) 

and eI is the inter-element boundary of element e. Compared to the functional 

employed in conventional FEM, the present hybrid functional is constructed by adding 

two integral terms related to the intra-element and element frame DEP fields to 

guarantee the satisfaction of the DEP continuity condition on the common boundary 

of two adjacent elements.  
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Figure 8.2 Illustration of continuity between two adjacent elements ‘e’ and ‘f’. 

It can be proved that the stationary conditions of the above functional (8.42) 

leads to Eqs.(8.1)-(8.7). To this end, performing a variation of m , one obtains 

[( ) ( )] [( ) ( )]
e e

me e i i i i i i n nu u t t u u d D D d         
 

              (8.45) 

in which the first term is 

 , ,
e e et eD

e ij i j i i i i nu d D d t u d D d     
   

          (8.46) 

Applying Gaussian theorem  

 ,
e e

i if d f n d
 

      (8.47) 

and the definitions of traction force and electrical displacement 

 ,    i ij j n i it n D D n   (8.48) 

and considering the fact  

 0,  0
eu e

i i nt u d D d


 
 

      (8.49) 

following form is finally derived 

, , ( ) ( )

( ) ( )

e e et eD

e e I I
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   

   
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   

   
 (8.50) 

Therefore, the Euler equations for Eq. (8.50) result in Eqs. (8.1)-(8.7) and Eq. (8.39) 

because the quantities ,  , , ,  , and i i n iu t D u      may be arbitrary. As for the 

continuity condition of Eq. (8.40), it can easily be seen from the following variational 

of two adjacent elements such as e and f: 

   

( ) , , ( ) ( )

( ) ( )

e f e f et et eD fD

efI efI

e f e f

m e f ij j i i i i i i n n

i i i n ie if i ne nf

u d D d t t u d D D d

u u t d D d t t u D D d

     

     



       

 
   

        

        

   

   

 (8.51) 

e f

Ief
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This indicates that the stationary condition of the functional satisfies both the required 

boundary and inter-element continuity equations. In addition, the existence of 

extremum of functional (8.41) can be easily proved by the so-called “second 

variational approach” as well, which indicates that functional (8.41) has a local 

extreme. Therefore, it can be concluded that functional (8.41) can be used for deriving 

hybrid finite element formulations. 

8.3.3. Element stiffness equation 

The element stiffness equation can be generated by setting 0me  . To 

simplify the derivation, all domain integrals in Eq. (8.41) are first transformed into 

boundary ones. Making use of the Gaussian theorem, the functional in Eq. (8.41) may 

be simplified as 

, ,

1 1
( ) ( )

2 2

( ) ( )

e e e e

t D e e

me i i ij j i n i i

i i n i i i n

t u d u d D d D d

tu d D d t u u d D d

  

  

   

   

      

      

   

   
 (8.52) 

Due to satisfaction of the equilibrium equation with the constructed intra-element 

fields, we have the following expression for the HT finite element model 

1
( ) ( )

2 e e t D
me i i n i i n i i nt u D d t u D d tu d D d  

   
             (8.53) 

Substituting Eqs. (8.10), (8.35) and (8.32) into the above functional yields the 

formulation as 

 
1

2

T T T

me e e e e e e e e    c H c c G d d g  (8.54) 

where 

 

T d
e

e e e


 H Q N
,  

T d
e

e e e


 G Q N
,  

T T

t D
e e ed d

 
   g N t N D

 (8.55) 

To enforce inter-element continuity on the common element boundary, the unknown 

vector ec  should be expressed in terms of nodal DOF ed . The stationary condition of 

the functional me with respect to ec  and ed , respectively, yields 

 
T

me
e e e e

e


   


H c G d 0

c
 (8.56) 

 
T

Tme
e e e

e


  


G c g 0

d
 (8.57) 
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from which the relationship between ec  and ed , and the stiffness equation can be 

obtained 

 
1

e e e e

c H G d  (8.58) 

 e e eK d = g  (8.59) 

where 
1

e e e e

T
K = G H G is the element stiffness matrix. 

The missing rigid-body motion can be recovered by setting the augmented 

internal field of a particular element e as 

 

2

1 0

1 0 0

0 1 0

0 0 0 1

e e e

x

x

 
 
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 
  

u N c c  (8.60) 

where the undetermined rigid-body motion parameter 0c can be calculated using the 

least square matching of 
eu  and 

eu  at element nodes 

      
22 2

1 1 2 2

1

min
n

i i i i i i

i

u u u u  


      
  

  (8.61) 

which finally gives 

 
1

e



0 e
c = R r  (8.62) 

 

2

1

2 2
1 2 1 1 2

1 0 0

0 1 0

0

0 0 0 1
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n
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i i i i i

x
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x x x x

 
 


 
  
 
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eR =  (8.63) 

 

1

2

1 1 2 2 1

e i

n
e i

i e i i e i i

ei

u

u

u x u x





 
 


 
  
 

 

e
r  (8.64) 

and  ˆ
ei e e node i

Δu = u -u , n  is the number of element nodes. As a consequence, 0c  can 

be calculated by Eq.(8.62) once the nodal DEP fields ed  and the interpolation 

coefficients ec  are respectively determined by Eqs. (8.59) and (8.58). Then the 

complete DEP fields eu  can be obtained from Eq. (8.60). 

8.3.4. Normalization of the variables 

The orders of magnitude of the material constants and the corresponding field 

variables in piezoelectricity have a wide spectrum as large as 1910  in SI units. This 

will lead to an ill-conditioned matrix of the system. To resolve this problem, 



 204 

normalization of each quantity by its reference value should be employed in dealing 

with piezoelectric problems. The reference values for the stiffness, piezoelectric stress 

constant, dielectric constants, and strain are selected to be  11 2

0 10 /c N m , 

1

0 10 ( / )e N mV ,  9

0 10 /k C mV , and  3

0 10 /V m  , respectively. The 

reference values of other quantities, as shown in Table 8.1, are determined in terms of 

these four fundamental reference variables and the characteristic length  0

0 10x m  

of the problem, so that the normalized governing equations remain in exactly the same 

form as the original equations. 

Table 8.1 Reference values for material constants and field variables in 

piezoelectricity derived from basic reference variables: 0c , 0e , 0k , 0 and

0x . 

Displacemen

t 
3

0 0 0 10 ( )u x m    Electric Potential 
7

0 0 0 10 ( )x E V    

Stress 
8 2

0 0 0 10 ( / )c N m  

 
Electric induction 

2 2

0 0 0 10 ( / )D k E C m 

 

Compliance 

11 20
0

0

10 ( / )s m N




 

 

Impermeability 

90
0

0

10 ( / )
E

mV C
D

  

 

Electric field 
70

0

0

10 ( / )E V m
e


   Piezoelectric 

strain constant 

10
0

0

10 ( / )
E

g mV N


 

 

8.3.5. Numerical results 

Numerical examples are presented in this section to illustrate the effectiveness 

and accuracy of the proposed method. In the first example, a piezoelectric panel 

subjected to a linearly varying stress at one edge is modeled. The stability, 

convergence, and accuracy of the method are discussed. Simple tension of a 

piezoelectric prism is then simulated to investigate the effect of mesh distortion, and 

a simply supported bimorph beam made of PZT-4 with different poling directions is 

investigated. Finally, an infinite plate with a circular hole subjected to remote tension 

is studied to demonstrate the influence of the hole’s radius on the stress concentration 

factor (SCF), and a recommended dimension for modeling the infinite piezoelectric 
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plate is presented. It should be noted that the plane strain condition is considered in 

the following examples. 

 

Example 1: Bending of a piezoelectric panel 

As shown in Figure 8.3, a 1×1mm piezoelectric panel made of PZT-4 is 

subjected to a linearly varying stress at the right edge. The corresponding boundary 

conditions are  

   ,     0,        at  / 2xx xz xz D x L      (8.65) 

 0, 0, 0         at  / 2, 0x z xu u D x L z       (8.66) 

 0, 0        at  / 2, 0x xz xu D x L z       (8.67) 

 0, 0      at  / 2xz z x h       (8.68) 

 0, 0      at  / 2x xz zz zu D x h       (8.69) 

The properties of the material PZT-4 (Sze, Yang et al. 2004) are given in Table 8.2. 

In this example, 16 quadratic elements are used to model the piezoelectric panel as 

shown in Figure 8.4. In the proposed hybrid FEM, the position of source points will 

affect the accuracy and stability of the numerical results. Thus, it is of interest and 

importance to determine a suitable range of the parameter γ, which is used in the 

present analysis to generate the source points according to the related element nodes. 

In this analysis, the variation of the stress xx  at point A (0, 0.5 mm), the condition 

number of matrix H and the condition number of global stiffness matrix K with 

parameter γ are presented in Figure 8.5 and Figure 8.6, respectively.  

 

Table 8.2 Properties of the material PZT-4 used in Example 1. 

Parameters Values Parameters Values 

11c  10 213.9 10 Nm  15e  213.44Cm  

12c  10 27.78 10 Nm  31e  26.98Cm  

13c  10 27.43 10 Nm  33e  213.84Cm  

33c  10 211.3 10 Nm  11  96.0 10 C / Nm  

44c  10 22.56 10 Nm  33  95.47 10 C / Nm  
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Figure 8.3 Bending of a piezoelectric panel. 

 

Figure 8.4 Mesh used for the piezoelectric panel by HFS-FEM. 

It can be seen from Figure 8.5 and Figure 8.6 that the results of both stress and 

condition number are stable when 3 <γ < 15 for the investigated range, but they 

fluctuate dramatically when γ < 3. This can be explained by the fact that for small 

values of γ (γ < 3), the source points are close to the element boundary, which results 

in strong disturbance of the singularity of the fundamental solutions to numerical 

accuracy. Conversely, for larger γ the source points are distant from the element 

boundary, so that the potential round-off error will lead to some components of the H 

matrix having nearly the same value, which in turn gives H a larger condition number 
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and results in a large round-off error in the inverse manipulation of the H matrix [30]. 

Therefore, it is advised to choose the parameter 3 < γ < 10. In the following 

computations, γ is chosen to be 5.  

 

Figure 8.5 Variation of the stress xx
 
at point A (0, 0.5mm) with parameter  . 

 

Figure 8.6 Variation of the condition number of H matrix and K matrix with 

parameter  . 
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Table 8.3 Comparison of HFS-FEM and analytical results (Sze, Yang et al. 2004) 

for the piezoelectric panel 

Position 

(x, z) 

(mm, mm) 

17  (10 m)xu 
 

17  (10 m)zu 
 8  (10 V)   

HFS-FEM Exact  HFS-FEM Exact  HFS-FEM Exact  

(0.0, 0.5) 1.9805 1.9805 -1.3691 -1.3691 0.0000 0.0000 

(0.5, 0.0) 0.0000 0.0000 -3.9609 -3.9610 2.2225 2.2225 

(0.25, 0.5) 2.9707 2.9708 -2.6069 -2.6069 0.0000 0.0000 

(0.5, 0.25) 1.9804 1.9805 -4.0556 -4.0557 1.6667 1.6669 

(0.5, 0.5) 3.9609 3.9610 -4.3398 -4.3399 0.0000 0.0000 

  
      (a) xu  (unit: 1310 m )               (b) zu  (unit: 1310 m ) 

  
(c)   (unit: 310 V )                (d) xx  (unit: 510 Pa ) 

Figure 8.7 Contour plots of displacements, electrical potential and stress. 

Table 8.3 lists the DEP at five different reference points, in which the analytical 

results (Sze, Yang et al. 2004) are also presented for comparison. It is obvious that the 

proposed approach has good accuracy and the results agree very well with the 
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analytical solutions. Figure 8.7 shows the contour plots for the displacements xu , zu , 

electrical potential   and stress xx , clearly demonstrating the distribution of the 

variables of interest. 

 

Example 2: Simple tension of a piezoelectric prism 

In this example a PZT-4 piezoelectric prism subjected to simple tension, as 

shown in Figure 8.8, is considered. The properties of the material PZT-4 (Ding, Wang 

et al. 1998) are given in Table 8.4. The corresponding boundary conditions are  

 0      at  xx xz xD x a       (8.70) 

 ,   0      at  zz xz zP D z h       (8.71) 

 

Figure 8.8 Geometry and boundary conditions of the piezoelectric prism. 

In the analysis, the dimensions of the geometry are set as a = 3 m, h = 10 m, P = 10 

Pa. Considering the symmetry conditions of the problem, only one quadrant of the 

prism is analyzed. As shown in Figure 8.9, 30 8-node quadrilateral elements are used 

in the analysis. The displacements and electric potential at the four selected reference 

points, A (2,0), B (3,0), C (0,5), and D (0,10), are listed in Table 8.5. The analytical 

results of the corresponding points are also given for comparison (Ding, Wang et al. 
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1998). It is found that the HFS-FEM results are in good agreement with the analytical 

ones. 

Table 8.4 Properties of the material PZT-4 used in Example 2. 

Parameters Values Parameters Values 

11c

 

10 212.6 10 Nm

 

15e

 

212.7Cm

 
12c

 

10 27.78 10 Nm

 

31e

 

25.2Cm

 
13c

 

10 27.43 10 Nm

 

33e

 

215.1Cm

 
33c

 

10 211.5 10 Nm

 

11

 

96.463 10 C / Nm

 
44c

 

10 22.56 10 Nm

 

33

 

95.622 10 C / Nm

 

Table 8.5 Comparison of the predicted results from HFS-FEM with the analytical 

results. 

Position 
10(10 m)

xu


 

9(10 m)

zu


 

(V)


 

2(N m )

xx


 

2(N m )

zz


 

2(N m )

zD


 

A 
-0.7220 

(-0.7222) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

0.0018 

(0.0000) 

9.9991 

(10.000) 

-0.0000 

(0.0000) 

B 
-1.0831 

(-1.0834) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

0.0019 

(0.0000) 

9.9992 

(10.000) 

-0.0003 

(0.0000) 

C 
0.0000 

(0.0000) 

0.3914 

(0.3915) 

1.2187 

(1.2183) 

0.0018 

(0.0000) 

9.9992 

(10.000) 

-0.0000 

(0.0000) 

D 
0.0000 

(0.0000) 

0.7828 

(0.7829) 

2.4373 

(2.4367) 

0.0019 

(0.0000) 

9.9991 

(10.000) 

-0.0001 

(0.0000) 

          

Figure 8.9 Regular (left) and distorted (right) meshes used for modeling the 

piezoelectric prism. 
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Table 8.6 Comparison of the predicted results from HFS-FEM on distorted 

meshes with the analytical results. 

Position 
10(10 m)

xu


 

9(10 m)

zu


 

(V)


 

2(N m )

xx


 

2(N m )

zz


 

2(N m )

zD


 

B 
-1.0847 

(-1.0834) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

0.0023 

(0.0000) 

10.0289 

(10.000) 

-0.0003 

(0.0000) 

D 
0.0000 

(0.0000) 

0.7825 

(0.7829) 

2.4375 

(2.4367) 

0.0041 

(0.0000) 

9.9297 

(10.000) 

-0.0000 

(0.0000) 

 

To study the sensitivity of the proposed element model, a distorted mesh as 

shown in Figure 8.9 is used and the results are listed in Table 8.6. It can be seen that 

the results are still in good agreement with the analytical ones, indicating that the HFS-

FEM is not sensitive to the mesh distortion and can produce highly accurate results 

when using severely distorted elements. The contour plots of the piezoelectric plate 

under simple tension are given in Figure 8.10, clearly demonstrating that the 

displacement field and electrical distribution are in linear variation as expected.  

 

(a) xu  (unit: 910 m )       (b) zu  (unit: 910 m )        (c)   (unit: 110 V ) 

Figure 8.10 Contour plot of the displacements and electric potential of the plate. 
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Example 3: Bimorph beam with two electrodes  

As shown in Figure 8.11, a 10×1 mm simply supported bimorph beam is 

considered in this example. The material properties are the same as those in Example 

1. To obtain a large displacement, the upper and lower halves of the bimorph are poled 

upward and downward, respectively. Through the electrodes at / 2z h  , equal-

potential conditions 100V    are prescribed. In this analysis the bimorph beam is 

modeled by using 40 8-node elements, as shown in Figure 8.12. 

 

Figure 8.11 A simply supported bimorph piezoelectric beam ( x z  : local material 

coordinate system). 

 

Figure 8.12 Element mesh used for modeling the bimorph piezoelectric beam in 

HFS-FEM analysis. 

The mid-span predictions are listed in Table 8.7. For comparison, the analytical 

solution of the beam is also given in the table, which can be calculated by following 

equations without considering the localized boundary effect (Sze, Yang et al. 2004). 
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where sgn( )z  denotes the sign of z. It can be seen from Table 8.7 that the results from 

HFS-FEM are in good agreement with the analytical results. The errors for stresses 

are less than 1% and the error for displacement of the mid-span of the beam is less 

than 0.1% even when a coarse mesh is used (Figure 8.12). 

Table 8.7 Mid-span predictions for bimorph beam under electric loading. 

Method 
0|

( m)

z zu




 

/2 /2| , |

( )

xx z h xx z h

MPa

  

 

0 0
| , |

( )

xx xxz z

MPa

   


 

HFS-FEM 1.2146 2.0341 -4.0862 

Analytical 1.216 2.047 -4.094 

Error  0.082% 0.635% 0.195% 

 

 

Example 4: Infinite piezoelectric medium with hole 

 

Figure 8.13 An infinite piezoelectric plate with a circular hole subjected to remote 

stress.  

Consider an infinite piezoelectric plate with a circular hole as shown in Figure 

8.13. The material parameters are the same as those in Example 1. Suppose that a 

mechanical load 0 10xx     parallel to the x axis is imposed at infinity with the 

boundary of the hole being traction- and electric charge- free. In this calculation, the 

radius of the hole is set to be r = 1 and the L can vary within a wide range.  

x
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Figure 8.14 Element meshes used for HFS-FEM (left) and ABAQUS (right) in the 

case of L/r=20. 

In the literature, different L/r ratios have been used for simulating the infinite 

plate, which may cause confusion among researchers as to which one should be taken 

as a reference. To clarify this, the influence of the L/r ratio on the SCFs is investigated 

using both the HFS-FEM method and ABAQUS. Table 8.8 shows the SCF results as 

a function of L/r. It should be mentioned that, in the analysis, different meshes are 

employed to ensure the accuracy of the simulation, and the numbers of 8-node 

quadratic elements for the six cases (L/r=5, 10, 20, 30, 40, and 50) shown in the first 

column of Table 8.8 are, respectively, 114, 117, 140, 227, 401, and 405 for HFS-FEM, 

and 2545, 2562, 2735, 9909, 13005, and 18247 for ABAQUS. The corresponding 

SCFs without considering the piezoelectric effect (i.e. pure elasticity) are also 

presented for reference. It is obvious that the application of the HFS-FEM with 

roughly coarse meshes obtains accurate results compared with those from 

conventional FEM (ABAQUS). It can be found from Table 8.8 that the SCF decreases 

with an increase in L/r and tends to be a constant when L/r =40 and above. Noting that 

an error of less than 1% is acceptable in most practical engineering, it is recommended 

that L/r=20 (error: about 0.56%) be used to evaluate the SCF of an infinite 

piezoelectric. Considering the recommendation above L/r =20 is employed in the 
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following analysis. The corresponding meshes (for L/r=20) used by HFS-FEM and 

ABAQUS in the calculation are shown in Figure 8.14. 

From Table 8.8, it is noted that a significant difference exists (about 17.1%) in 

SCF between the piezoelectric medium loaded in the poling direction (z axis) and in 

its perpendicular direction (x axis). The SCFs also display certain differences between 

piezoelectric and pure elastic. In comparison with pure elasticity, it can be seen that 

the piezoelectric-mechanical coupling alleviates the stress concentration by about 

7.7% for circular holes in the poling direction but enhances the stress concentration by 

about 3.9% in the other direction. Therefore, it cannot be simply concluded that the 

electromechanical coupling effect is helpful for the safety of materials and structures 

(Dai, Guo et al. 2006). These findings can also be clearly seen from Figure 8.15 and 

Figure 8.16, in which the present results are in excellent agreement with the 

corresponding results of Sosa (Sosa 1991).  

 

Table 8.8 Comparison of the SCFs obtained by HFS-FEM and ABAQUS. 

L/r 

Elastic Piezoelastic 

SCF 

 ( 0xx   ) 

SCF  

( 0zz   ) 
SCF ( 0xx   ) SCF ( 0zz   ) 

ABAQUS ABAQUS 
HFS-

FEM 
ABAQUS 

HFS-

FEM 
ABAQUS 

5 3.4955 3.2280 3.6789 3.6630 2.9497 2.9553 

10 3.1949 2.9743 3.3101 3.3265 2.7352 2.7382 

20 3.1251 2.9151 3.2346 3.2475 2.6844 2.6883 

30 3.1093 2.9025 3.2212 3.2303 2.6793 2.6779 

40 3.1050 2.8990 3.2192 3.2255 2.6711 2.6750 

50 3.1034 2.8975 3.2186 3.2236 2.6710 2.6734 

 

Figure 8.15 shows the distribution of hoop stress   and radial stress r  along 

the line z=0 for remote loading xx 
 and along the line x=0 for remote loading zz 

. The 

results obtained from HFS-FEM agree well with the results from ABAQUS and Sosa 

(Sosa 1991). It can be seen that hoop the stress   has maximum value on the rim of 

the hole and it decreases dramatically with the increase of the distance from the edge 
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of the hole. It is also shown that   tends to be equal to the remote applied load 0  

when r increases toward infinity. Compared with the hoop stress  , it is obvious that 

the radial stress r  is much smaller and usually does not need to be considered.  

Figure 8.16 presents the variation of the normalized stress 0/   along the 

edge of the hole. It can be seen that the results from HFS-FEM and the analytical 

solution of Sosa almost coincide with each other, which indicates that the proposed 

model works quite well. It is also noted that the two curves under the different loading 

conditions: xx 
 and zz 

 have different magnitude, as described in Table 8.8. It is 

obvious that loading along the poling direction produces lower stress concentration 

due to the coupling effect. The maximum values of   appears at 90   for case of 

xx 
 and at 0   and 180  for case of loading zz 

, both of which agree well with 

the analytical solution from Sosa (Sosa 1991).  

Figure 8.17 shows the variation of the normalized electric displacement 

10

0/ 10D    on the hole edge under remote mechanical loading. The results from 

HFS-FEM agree well with the analytical solution. The electric displacement 

10

0/ 10D   produced by xx 
 and zz 

 are nearly identical, and are symmetrical with 

respect to the x axis. The maximum values of D  appears at 65   and 115  , 

which also agrees well with the analytical solution from Sosa (1991).  
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(a) 

 
(b)  

Figure 8.15 Distribution of (a) hoop stress  and (b) radial stress r  
along the line 

z=0 when subjected to remote mechanical load xx 
 and along the line 

x=0 when subjected to remote mechanical load zz 
.  
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Figure 8.16 Variation of normalized stress 0/ 
 
along the hole boundary under 

remote mechanical loading.  

 

Figure 8.17 Variation of normalized electrical displacement 
10

0/ 10D   along the 

hole boundary under remote mechanical loading.  
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8.4. HFS-FEM BASED ON STROH FORMALISM 

8.4.1. Extended Stroh formalism 

If we neglect the body force if  and surface charge q  and let (Ting 1996) 

 

     , , , 1, 2,3

      4,  , , 1,2,3

      4,  , , 1,2,3

    4,  , 1,2,3

ijkl

lij

IJKL

jkl

jl

C i j k l

e k i j l
C

e i j k l

i k j l




 
 

 
   

 (8.73) 

 4 4, 4,   2 ,   1,2,3j j j j jD E u j       (8.74) 

the basic equations (8.1)-(8.3) can be expressed as an expanded tensor notation 

 
,, ,

1
,   ( ),   , , , 1,2,3,4

2
0,   IJ J IJ IJKL IJ J J IL IK u IC u J K L        (8.75) 

where IJKLC  has the following symmetry property  

 IJKL JIKL IJLK KLIJC C C C    (8.76) 

It is noted that the governing equations (8.75) and (8.76) for piezoelectric 

anisotropic materials have the same form as those of pure anisotropic elasticity. For 

the generalized 2D deformation ( iu  depends on 1x  and 2x  only), an extended version 

of Stroh formalism satisfying the governing Eq. (8.75) has been proposed by Kuo and 

Barnett as (Stroh 1958; Ting 1996) 

 2Re{ ( )}, 2Re{ ( )}z z u Af φ Bf  (8.77) 

where  1 2 3, , ,
T

u u u u =  is the displacement vector,  1 2 3 4, , ,
T

   φ  is the stress 

function vector, 1 1 2 2 3 3 4 4( ) [ ( ),  ( ),  ( ), ( )]Tz f z f z f z f zf  is a function vector composed 

of four holomorphic complex function ( )f z  , 1,2,3,4  , which is an arbitrary 

function with argument 1 2z x p x    ( p are the material eigenvalues with positive 

imaginary part) and will be determined by satisfying the boundary and loading 

conditions of a given problem. In Eq. (8.77), Re stands for the real part of a complex 

number,  1 2 3 4
A = a ,a ,a ,a  and  1 2 3 4

B = b ,b ,b ,b  are 4×4 complex matrices formed 

by the material eigenvector associated with p , which can be obtained by the 

following eigenrelations (Ting 1996; Hwu 2010): 

 pNξ ξ  (8.78) 

where N  is a 8×8 foundational elasticity matrix and ξ  is a 8×1 column vector defined 

by 
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 

  
 

1 2

T

3 1

N N
N

N N
, 

 
  
 

a
ξ

b
 (8.79) 

where 3   -1 T -1 T -1 T T

1 2 2 3
N = -T R , N = T N , N = RT R -Q N  and the matrices Q , R

and T are 4×4 matrices extracted from IJKLC  as follows 

 1 1 1 2 2 2, ,        , 1,2,3,4ik i k ik i k ik i kQ C R C T C i k     (8.80) 

the detailed matrix components are shown below as  

11 16 15 11 16 12 14 21 66 26 46 26

16 66 56 16 66 26 46 26 26 22 24 22

15 56 55 15 56 25 45 25 46 24 44 24

11 16 15 11 16 12 14 12 26 22 24 22

, ,

- - -

C C C e C C C e C C C e

C C C e C C C e C C C e

C C C e C C C e C C C e

e e e k e e e k e e e k

     
     
       
     
     
     

Q R T  (8.81) 

Since  ,
T

ξ a b  is the right eigenvector of matrix N , normalization is required to 

obtain unique values of  ka  and kb . As with anisotropic elasticity, following the 

orthogonality relation for material eigenvetor matrices A  and B can be used for this 

purpose  

 
    

    
    

T T

T T

I 0A A B A

0 IB B B A
 (8.82) 

It should be noted that when using transversely piezoelectric materials (e.g. 1x - 2x as 

the isotropic plane), and taking the 3x  as the poling direction, then the Stroh formalism 

will fail for such degenerate materials, namely, 1 2 3 4 i       . In these cases, a 

small perturbation must be given to enable the Stroh formalism to work. Based on the 

relation in Eq. (8.82), the Barnett–Lothe tensors L, S and H can be defined by (Ting 

1996) 

   ,   T T T
H = i2AA , L = -i2BB S = i(2AB - I)  (8.83) 

The stresses and electric displacement can be obtained from the derivation of 

the generalized stress function φ  as follows 

 1 ,2 2 ,1,   ,      1,2,3i i i i i        (8.84) 

 41 1 4,2 42 2 4,1,    D D         (8.85) 

8.4.2. Foundational solutions 

To find the fundamental solution needed in this analysis, it is necessary first to 

derive the Green’s function of the problem: an infinite homogeneous anisotropic 

elastic medium loaded by a concentrated point force or electric charge 
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1 2 3 4
ˆ ˆ ˆ ˆ ˆ( , , , )p p p pp  applied at an internal point 1 2

ˆ ˆ ˆ( , )x xx  distant from the boundary. 

The boundary conditions of this problem can be written as  

 

ˆ ˆ     for any closed curve  enclosing 

ˆ      for any closed curve  

lim 0,   lim 0

C

C

ij i

d C

d C

D
 





 





x x

p x

u p



 (8.86) 

The Green’s function satisfying the above boundary conditions has been found to be 

(Ting 1996)  

 
1

ˆˆ( ) ln( )
2

Tf z z z
i

 


  A p  (8.87) 

Therefore, the fundamental solutions of the problem can be expressed as  

 

  
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1
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T

T

u A A p

B A p

 (8.88) 

The corresponding stress components can be obtained from stress function    

 

  

  

*

1 ,2

*

2 ,1

1
ˆˆIm /

1
ˆˆIm 1/

i

i

p z z

z z

  

 

 


 


    

  

T

T

B A p

B A p

 (8.89) 

where p̂  is chosen to be (1,0,0,0)T , (0,1,0,0)T , (0,0,1,0)T , and (0,0,0,1)T , 

respectively,     stands for the diagonal matrix corresponding to subscript  , Im 

denotes the imaginary part of a complex number, and superscript T denotes the matrix 

transpose. 

 

Special foundational solutions for plate with hole 

Consider an infinite anisotropic plate containing a traction- and electric charge- 

free elliptical hole under a concentrated force or electric charge 1 2 3 4
ˆ ˆ ˆ ˆ ˆ( , , , )p p p pp

applied at point 1 2
ˆ ˆ ˆ( , )x xx , as shown in Figure 8.18.  

 



 222 

 

Figure 8.18 Schematic of an infinite anisotropic plate with an elliptical hole. 

 

Figure 8.19 Conformal mapping of an infinite plane with an elliptical hole. 

The Green’s function of this problem can be obtained by employing the 

conformal mapping technique shown in Figure 8.19, which transforms the region 

outside the elliptical hole in the z-plane onto the exterior of a unit circle in the  -

plane. The expressions of the Green function have been derived as (Hwu and Yen 

1991; Ting 1996) 
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



T -1 T

k

T -1 T

k

u A A A B BI A p

B A B B BI A p

 (8.90) 

in which the unknown complex function vector ( )f z  is better expressed in terms of 

the arguments    

 

2 2 2 2 2 2 2 2ˆ ˆ
ˆ,

z z a p b z z a p b

a ip b a ip b

     

 

 

 
     

 
 

 (8.91) 

where 2a  and 2b  are the lengths of the major and minor axis of the elliptical hole 

 1 2 1 2
ˆ ˆˆ,     z x p x z x p x        (8.92) 



 223 

The derivation of   with respect to z  can be expressed as 

 
   

2

22 2 2 2

21
1

z

z a ip b a ip b a ip bz a p b
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   
       

 (8.93) 

Then the derivation of   with respect to 1x  and 2x  can be expressed as 
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 (8.94) 

Using Eq. (8.94) and letting    2a ip b a ip b       , the corresponding stress 

components can be expressed as 
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 (8.95) 

The fundamental solutions for an infinite anisotropic medium with a crack of 

length 2a  can be obtained easily by letting b =0 in Eq. (8.90) (Ting 1996). For the 

crack problem, it is always of interest to know the stress fields near the crack tips. 

Differentiating the generalized stress function with respect to 1x  and letting 2 0x  , 

1x a , the stresses  2 21 22 23, ,
T

  σ  ahead of the crack tip along the 1x  axis are 

obtained as  

 1
2 ,1 22 2

1

1 1 1
ˆ1 Im

ˆ ˆ
Tx

a x a  
     

    
     
       

σ φ B A p  (8.96) 

where  
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ˆ ˆ

ˆ,   
z z ax x a

a a
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 
  

   (8.97) 

With the definition of the stress and electric displacement intensity factors of cracks  

(Lu and Williams 1998) and using the following relations,  
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one can obtain 
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σ B A p  (8.99) 

where IK , IIK  and IIIK  are the stress intensity factors, and IVK  is the electric 

displacement intensity factor (Suo 1992). 

8.4.3. Assumed independent fields 

To solve the piezoelectricity problem governed by Eq. (8.75) using the HFS-

FEM approach, the solution domain   must be divided into a series of elements as in 

conventional FEM. For each element, two independent DEP fields, i.e. an intra-

element DEP field and a frame DEP field. In this approach, the intra-element DEP 

field 
eu for a particular element e is approximated in terms of a linear combination of 

fundamental solutions of the problem as  

    ( , )e sj e  
e e e

u N c x y  (8.100) 

where  1 2 3, , ,
T

u u u eu , the fundamental solution matrix 
eN
 
and unknown vector 

ec (not nodal displacements) can be written as 
* * * * * *
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 (8.101) 

 11 21 31 41 1 2 3 4[ ... ]
s s s s

T

n n n nc c c c c c c c
e

c  (8.102) 

in which sn  is the number of source points located outside element domain, x  and sjy  

are respectively the field point (i.e. the nodal points of the element in this work) and 

source point in the coordinate system (X1, X2) local to the element under consideration. 

The component 
* ( , )ij sju x y  is the induced displacement component (i=1, 2, 3) or 

electric potential (i=4) in the i-direction at the field point x due to a unit point load 

(j=1, 2, 3) or point charge (j=4) applied in the j-direction at the source point sjy . The 

fundamental solution
 

* ( , )ij sju x y  is given by Eq. (8.88) for general elements or by Eq. 

(8.90) for special elements. 
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With Eq. (8.75) and the expression of intra-element DEP field u  in Eq. 

(8.100), the corresponding stress and electric displacement Eq. (8.75) can be further 

written as 

 
e e

σ T c  (8.103) 
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  (8.104) 

in which 
*

sj( , )ij x y  denotes the corresponding stress components ( i =1,2,3) or electric 

displacement ( i =4,5) along the i -direction at the field point x  due to a unit point load 

( j =1,2) or a unit point charge ( j =3) applied in the j -direction at the source point 

sjy . The components 
* ( , )ijk x y  are given by Eq. (8.89) for general elements or by Eq. 

(8.95) for special elements. Consequently, the generalized traction forces and electric 

displacement can be given as  
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 (8.105) 

where 

 e eQ nT  (8.106) 

 

1 2

2 1

2 1

1 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

n n

n n

n n

n n

 
 
 
 
 
 

n  (8.107) 

The unknown ec  in Eq. (8.100) and Eq. (8.105) may be calculated using a 

hybrid technique (Wang and Qin 2009), in which the elements are linked through an 

auxiliary conforming displacement frame which has the same form as in conventional 

FEM. Thus, for the 2D piezoelectric problem under consideration, the frame field is 

assumed as 
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where the symbol “~” is used to specify that the field is defined on the element 

boundary only,  e e ed = d c  stands for the vector of the nodal displacements which 

are the final unknowns of the problem, e  represents the boundary of element e, and 

eN  is the matrix of shape functions. Taking the side 3-4-5 of a particular 8-node 

quadrilateral element as an example, eN
 
and ed  can be expressed as  
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(8.109) 

 11 21 31 1 14 24 34 4 18 28 38 8

T
u u u u u u u u u  ed  (8.110) 

and 1N , 2N  and 3N  are expressed by the natural coordinate [ 1,1]    
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8.4.4. Variational principles 

Like the modified variational principles in Section 8.3.4, the hybrid functional 

me for a particular element e, without body forces and electric charge density, is 

constructed as 

 ( ) ( )
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where 
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and the boundary e of the element e is  

 e eu et eI e eD eI           (8.114) 

and  

 , , ,eu e u et e t e e eD e D                  (8.115) 

With Gaussian theorem and equilibrium equations, the functional in Eq. (8.112) may 

be simplified as 



 227 

    
1

( ) ( )
2 e e t D

me i i n i i n i i nt u D d t u D d tu d D d  
   
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As shown in Section 8.3.2, it can be easily proved that the stationary conditions of the 

above functional leads to Eqs. (8.1)-(8.7).  

8.4.5. Element stiffness equation 

Substituting Eqs. (8.100), (8.108) and (8.105) into the above functional 

(8.112) yields the formulation 
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The stationary condition of the functional me with respect to ec  and ed , 

respectively, yields 
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from which the relationship between ec  and ed , and the stiffness equation can be 

obtained 
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 e e eK d = g  (8.121) 

where 
1

e e e e

T
K = G H G is the element stiffness matrix. 

Following the procedure in (Qin 2000), the missing rigid-body motion can be 

recovered by setting the augmented internal field of a particular element e as 
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where the undetermined rigid-body motion parameter 0c can be calculated using the 

least square matching of eu  and eu  at element nodes 
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which finally gives 
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in which  ˆ
ei e e node i

Δu = u -u  and n  is the number of element nodes.  

8.4.6. Numerical examples 

Several numerical examples are presented in this section to illustrate the 

application of the HFS-FEM and to demonstrate its effectiveness and accuracy.  

 

Example 1: Simple tension of a piezoelectric prism 

In this example a PZT-4 piezoelectric prism subjected to simple tension, as 

shown in Fig. 8.20, is investigated by the proposed HFS-FEM. The properties of the 

material PZT-4 are as follows (Ding, Wang et al. 1998): 
10 2 10 2 10 2

11 12 13

10 2 10 2

33 44

12.6 10 Nm , 7.78 10 Nm , 7.43 10 Nm ,

11.5 10 Nm , 2.56 10 Nm

c c c

c c

  

 

     

   
 

2 2 2

15 31 3312.7Cm , 5.2Cm , 15.1Cme e e       

12

11 0 33 0 0730 , 635 , 8.854 10 C / Nm          

In this analysis, the dimensions of the geometry are set as a = 3 m, h = 10 m, P = 10 

Pa. Considering the symmetry conditions of the problem, only one quadrant of the 

prism is modeled by HFS-FEM. The corresponding boundary conditions are  

0xx xz xD              at x a   

,    0zz xz zP D          at z h   
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Figure 8.20 Geometry, boundary conditions and mesh configuration of the 

piezoelectric prism. 

Table 8.9 Comparison of the predicted results from HFS-FEM with the analytical 

results. 

Position 
10(10 m)

xu


 

9(10 m)

zu


 

(V)


 

2(N m )

xx


 

2(N m )

zz


 

2(N m )

zD


 

A 
-0.7220 

(-0.7222) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

0.0018 

(0.0000) 

9.9991 

(10.000) 

-0.0000 

(0.0000) 

B 
-1.0831 

(-1.0834) 

0.0000 

(0.0000) 

0.0000 

(0.0000) 

0.0019 

(0.0000) 

9.9992 

(10.000) 

-0.0003 

(0.0000) 

C 
0.0000 

(0.0000) 

0.3914 

(0.3915) 

1.2187 

(1.2183) 

0.0018 

(0.0000) 

9.9992 

(10.000) 

-0.0000 

(0.0000) 

D 
0.0000 

(0.0000) 

0.7828 

(0.7829) 

2.4373 

(2.4367) 

0.0019 

(0.0000) 

9.9991 

(10.000) 

-0.0001 

(0.0000) 

As shown in Figure 8.20, thirty quadrilateral elements are used in this model. 

The displacements and electric potential of the four selected reference points: A (2,0), 

B (3,0), C (0,5), and D (0,10), are listed in Table 8.9. The analytical results of the 

corresponding points are also given for comparison (Ding, Wang et al. 1998). It can 

be seen that the HFS-FEM results are in good agreement with the analytical ones. The 

contour plots of the piezoelectric plate under simple tension are given in Figure 8.21, 
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clearly demonstrating that the displacement field and electrical distribution are in 

linear variation as expected.  

 

 

Figure 8.21 Contour plot of the displacement and electric potential of the plate. 

 

Example 2: Infinite piezoelectric plate with a circular hole 

In this example, an infinite piezoelectric plate with a circular hole as shown in 

Figure 8.13 is assessed by the new HFS-FEM based on Stroh formalism. The material 

parameters used are given in Table 8.10. It is assumed that a remote mechanical load 

0zz    or electrical load 0zzD D   is applied to the plate along the z-axis direction 

(poling direction), while traction- and electric charge-free boundary conditions are 

applied on the edge of the hole. As in our previous study (Cao, Qin et al. 2012), we 

assume the radius of the hole to be r = 1 and /L r =20 to approximate the infinite 

piezoelectric plate in this work. In this analysis, 117 eight-node quadratic elements are 

employed for the one-quarter piezoelectric plate. The results for the stress   and 

electric displacement D  are normalized with respect to either the far field applied 

stress 0zz    or the far field applied electric displacement 0zzD D  . 
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Figure 8.22 An infinite piezoelectric plate with a circular hole subjected to remote 

stress.  

Figure 8.16 presents the variations of the normalized stress 0/   and the 

normalized electric displacement 
10

0/ 10D    along the edge of the hole under 

remote mechanical load. It is obvious that the results obtained from HFS-FEM agree 

very well with the results from analytical solution by Sosa (Sosa 1991). It is also 

verified that when loading along the poling direction, the electromechanical coupling 

effect is able to alleviate the stress concentration occurring in the plate.  

Table 8.10 Properties of the material PZT-4 used in Example 2. 

Parameters Values Parameters Values 

11c  10 213.9 10 Nm  15e  213.44Cm  

12c  10 27.78 10 Nm  31e  26.98Cm  

13c  10 27.43 10 Nm  33e  213.84Cm  

33c  10 211.3 10 Nm  11  96.0 10 C / Nm  

44c  10 22.56 10 Nm  33  95.47 10 C / Nm  
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It can be observed from Figure 8.16 that the maximum values of   appears 

at 0   and 180   for the applied load zz 
, which also agrees well with the 

analytical solution from Sosa (Sosa 1991). It is found from Figure 8.24 that the 

maximum values of D  appear at 65   and 115  , which also agrees well with 

the analytical solution from Sosa.  

 

 

Figure 8.23 Variation of normalized stress 0/ 
 
along the hole boundary under 

remote mechanical load.  

 

Figure 8.24 Variation of normalized electrical displacement 
10

0/ 10D   along the 

hole boundary under remote mechanical load. 
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Figure 8.25 Variation of normalized stress 
8

0/ 10D 
 
along the hole boundary 

under remote electrical load.  

 

Figure 8.26 Variation of normalized electrical displacement 0/D D along the hole 

boundary under remote electrical load. 

Figure 8.25 shows the variation of normalized stress 
8

0/ 10D 
 
and 

electrical displacement 0/D D along the hole boundary under remote electrical load. 

It can be seen from Figure 8.25 that electrical displacement can induce strong stress 

concentration problems in piezoelectric materials with defects, which the stress 

concentration can be up to 
8

0/ 10D 
 
times the applied 0D . It can be seen from 

Figure 8.26 that D  reaches its maximum at 0   and its minimum at 180  , 

which also agrees well with the analytical solution from Sosa (1991). To achieve the 
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same accuracy, 960 8-node ordinary parametric elements are needed to model a 

quarter of the plate (Deng and Wang 2002). It is obvious that the computational 

efficiency of the HFS-FEM is superior for this investigated case. 

 

 

 

Figure 8.27 Contour plots of stress and electric displacement components around the 

elliptical hole in the piezoelectric plate under remote mechanical load. 

Example 3: Infinite piezoelectric plate with elliptical hole 

To investigate the performance of the special element, an infinite piezoelectric 

plate with an elliptical hole is modeled by the HFS-FEM. A uniform remote tension 

0  is applied in z  direction. The material parameters are the same as those used in 

Example 2. In this analysis, as shown in Figure 8.28, the infinite plate is approximated 

by a finite domain with the length and width assumed to be L=W=20 mm, and the 

geometry of the ellipse being a=2b=2 mm. In this case, it is not necessary to use 

numerous elements to capture the concentrated stress as in traditional FEM. A 

relatively coarse mesh can be employed and the elliptical hole can be analyzed by only 

one special element. There are total 49 elements with a total of 176 nodes: 48 8-node 

conventional hybrid elements and one central special element containing the elliptical 

hole, which is given in Figure 8.29.  



 235 

 

 

Figure 8.28 Schematic of an infinite piezoelectric plate with an elliptical hole under 

remote tension. 

 

 

Figure 8.29 Mesh configuration with special element for the piezoelectric plate. 

 

Figure 8.30 shows the variations of the normalized hoop stress 0/   and 

electric displacement 0/D   along the rim of the elliptical hole. It can be seen from 
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Figure 8.30 that the results obtained from HFS-FEM are in very good agreement with 

the analytical solutions. This indicates that the proposed method with the special 

element can capture the dramatic variations of hoop stress and electric displacement 

induced by the elliptical hole in the plate.  

 

 

 

Figure 8.30 Variations of the normalized hoop stress 0/   and electric 

displacement 0/D   along the rim of the elliptical hole. 

Example 4: An infinite piezoelectric plate with a center crack 

In this example the extreme case of the elliptical hole is considered. By setting 

the minor axis b  equal to zero, an elliptical hole can be made into a crack of length 
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2a . The geometry and loading for this problem are shown in Figure 8.31. The 

dimensions are assumed to be 2 /a W =0.1 and /L W =1, so that it can be 

approximated to an infinite plate with a finite crack. The plate is made of PZT-5H 

ceramic and the material parameters are listed in Table 8.11 . The remote mechanical 

loading and electric loading are 
61.0 10zz    Pa, 

61.0 10zx    Pa and 
61.0 10zzD  

2/C m . The same mesh as used in Example 3 is employed for this problem.  

 

Figure 8.31 An orthotropic plate with a center crack under uniform tension. 

 

Table 8.11 Properties of the material PZT-5H used in Example 4 

Parameters Values Parameters Values 

11c  10 212.6 10 Nm  15e  217.0Cm  

12c  10 25.5 10 Nm  31e  26.5Cm  

13c  10 25.3 10 Nm  33e  223.3Cm  

33c  10 211.7 10 Nm  11  915.1 10 C / Nm  

44c  10 23.53 10 Nm  33  913.0 10 C / Nm  

 

The stress and electric intensity factors IK , IIK  and IVK calculated by the 

proposed HFS-FEM are given in Table 8.12, in which the analytical solutions obtained 
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from the formulations of Sosa and the BEM results (Sosa 1991; Ding, Wang et al. 

1998) are listed for comparison. Figure 8.32 shows the variation of IVK  with respect 

to the applied remote electric displacement zzD
. It can be seen from Table 8.13 and 

Figure 8.32 that the results from the HFS-FEM exhibit a good agreement with the 

analytical solutions and have similar accuracy to that of the BEM.  

Table 8.14 The stress and electric intensity factors IK , IIK  and IVK . 

Method IK ( 6 3/210 N m ) IIK ( 6 3/210 N m ) IVK ( 3 3/210 N m  ) 

HFS-FEM 0.1761 0.1707 0.1753 

BEM 0.1757 0.1708 0.1750 

Analytical 0.1772 0.1772 0.1772 

 

 

Figure 8.32 The variation of IVK with respect to the applied remote electric 

displacement zzD
. 

8.5. SUMMARY 

In this chapter the HFS-FEM is developed to predict the coupling behaviors of 

plane piezoelectric materials. Two different series of formulations are developed, 

based on the foundational solutions derived from Lekhnitskii formalism and Stroh 

formalism for piezoelectric materials. Based on the fundamental solutions derived 

from the elegant Stroh formalism, a special hybrid finite element for the HFS-FEM is 
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also developed for modeling plane piezoelectric materials with cracks or elliptical 

holes. In this method, the general or special foundational solutions of the piezoelectric 

materials are employed to approximate the intra-element DEP, and the element frame 

field is interpolated by the common shape functions. A modified variational 

functional, satisfying the governing equation, boundary and continuity conditions, is 

proposed to derive the element stiffness equation of the proposed method for 

piezoelectric materials.  

To verify and assess the performance of the new method, numerical examples 

are considered and the results from the HFS-FEM are compared with those from 

analytical solutions or the literatures. It is found that the HFS-FEM has good 

performance in the analysis of the coupling behavior of piezoelectric materials under 

various different loading conditions. It is also found that the electromechanical 

coupling effect on the SCF is dependent on the loading direction. In comparison with 

pure elastic materials, stress concentration is smaller when loaded in the poling 

direction but larger when loaded in the direction perpendicular to the poling direction.  

The numerical results show that the special element is able to capture the strong 

stress/electric displacement concentration around the elliptical hole and can obtain 

accurate SIFs for cracks while simultaneously eliminating the need for very fine 

meshing around such defects. The HFS-FEM offers the attractive possibility of 

developing accurate crack, corner or perforated elements, simply by using appropriate 

special fundamental solutions as the trial functions of the intra-element displacements. 

It can be concluded that the HFS-FEM is a promising numerical method for solving 

complex piezoelectric problems.  
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Chapter 9. Conclusions and Outlook 

The main objective of this research has been to develop the newly proposed 

HFS-FEM for modeling elasticity problems (2D and 3D) and multifield materials, and 

to demonstrate its capability and performance in predicting the behaviors of 

heterogeneous composite materials at both micro and macro scales. The scope of the 

thesis covers: review and summary of the formulations of the HFS-FEM for modeling 

the macroscale behaviors of elasticity problems and thermal transfer problems and 

extension of this approach to dealing with 3D problems; development of the method 

for predicting the micromechanical behaviors of composites by considering their 

microstructures; and development of the method for modeling multifield problems 

such as thermoelasticity and electric-mechanical problems. The conclusions from this 

research are summarized in this chapter. Recommendations and outlook for future 

research are also provided in the last part of the chapter. 

9.1. SUMMARY OF PRESENT RESEARCH 

9.1.1. Macroscale modeling of materials by HFS-FEM 

In this work a novel hybrid finite element formulation based on fundamental 

solutions (HFS-FEM) has been developed to provide a simple but accurate approach 

for analyzing general elastic materials in 2D and 3D, including both isotropic and 

anisotropic materials. In this approach, two independent displacements fields are 

employed, one being the intra-element displacement approximations defined in the 

element domain, and the other being the element frame displacement fields defined 

along the element boundary. General fundamental solutions are used for the 

interpolation of inter-element displacement and traditional shape functions as used in 

FEM are employed for frame field interpolation. For general anisotropic materials, 

Green’s functions derived from Stroh formalism are employed to approximate the 

intra-element displacement field of the elements, and polynomial shape functions as 

used in traditional FEM are utilized to interpolate the frame field.  



 241 

The method of particular solution and radial basis function approximation are 

applied to treat elastic problems involving body forces. The homogeneous solution is 

obtained by the HFS-FEM and the particular solution by the approach of radial basis 

function. Accuracy and convergence are verified through comparison with exact or 

numerical solutions given in the literature or by ABAQUS. The standard tests reveal 

that the new method with linear 8-node and quadratic 20-node brick elements can 

successfully pass the patch tests and that the HFS-HEX8 element exhibits shear 

locking phenomenon and cannot pass the trapezoidal and parallelogram beam test, 

although it is not very sensitive to the mesh distortion. It is also demonstrated that the 

convergence of the new method is usually superior to that of traditional FEM and it 

can be used in problems with nearly incompressible materials without volumetric 

locking. This new method seems to be promising to deal with problems involving 

complex geometry, stress concentration and multi-materials. Numerical results show 

that the proposed method is accurate and efficient in modeling anisotropic composite, 

and can easily be further extended to analyze composite laminates. 

9.1.2. Microscale modeling of composites by HFS-FEM 

In order to characterize the microstructures of heterogeneous composites, the 

new HFS-FEM and the HT-FEM are combined with homogenization techniques to 

perform micromechanical analysis of fiber-reinforced composite materials. The 

homogenization technique is implemented to determine the equivalent macroscale 

material properties of heterogeneous composites, using the concept of the RVE. For 

elasticity problems, two kinds of fiber reinforced composites are analyzed, including 

isotropic and orthotropic materials. Numerical results show that the solutions obtained 

by HT-FEM and HFS-FEM coincide with the results calculated by ABAQUS with 

fine and high order elements. HT-FEM and HFS-FEM are insensitive to mesh density 

and irregular element geometry, and give more accurate results than ABAQUS when 

using the same meshes. It is concluded that linear elements of HTFEM and HFS-FEM 
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can achieve the same accuracy as achieved by ABAQUS using quadratic order 

elements with same element density.  

The influence of microstructure parameters, such as the shape of fibers, on the 

effective parameters are investigated in this chapter. It is found that for both isotropic 

and orthotropic fiber-reinforced composites, all the effective stiffness parameters 

increase with an increase in FVF although the rates of increase of these parameters 

differ over the investigated range. Further, for isotropic fiber-reinforced composites, 

it is observed that effective transversal Young’s modulus increases with the reinforced 

fiber volume fraction whereas the effective Poisson’s ratio decreases with the 

reinforced fiber volume fraction. The results also reveals that an elliptical inclusion 

can dramatically increase the stiffness of a reinforced composite in its major axis 

direction while not significantly decreasing the other three stiffness parameters 

simultaneously. It is also demonstrated that a triangular shaped inclusion has good 

reinforcement performance, as composites thus reinforced have greater effective 

stiffness than composite counterparts with a circle inclusion.  

For problems of heat transfer in heterogeneous composites, using the special 

fundamental solution, a type of special element with an inclusion involved is proposed 

for mesh reduction in analyzing the composites. The effective thermal conductivity of 

composites is evaluated through RVEs with single or multiple fibers, using the 

homogenization technique. The effects of fiber volume fraction and of the mismatch 

ratio of fiber and matrix in the composites are investigated by this method. It is shown 

that the numerical solutions obtained by HFS-FEM coincide with the results calculated 

by ABAQUS with a fine element mesh. It is also found that the effective thermal 

conductivity increases with an increase in fiber volume fraction. The usage of a special 

inclusion element can significantly reduce model meshing effort and computing cost, 

and simultaneously avoid mesh regeneration when the fiber volume fraction changes 

slightly. It can be concluded that the proposed micromechanical models based on HFS-

FEM, especially with special elements, have the potential to model fiber-reinforced 



 243 

composites and to be further developed for considering defects such as cracks and pore 

voids in microstructures and for multi-scale simulation in future work.  

9.1.3. HFS-FEM for multifield materials 

A new solution procedure based on HFS-FEM is proposed to solve 2D and 3D 

thermoelastic problems with arbitrary body forces and temperature changes in this 

thesis. The body force and temperature change are treated by the method of particular 

solution, in which the homogeneous solution is obtained using the HFS-FEM with 

elastic fundamental solutions and the particular solution is approximated by the radial 

basis function. Comparison of different strategies shows that treating body force and 

temperature change as a whole is superior to approximating them separately. The 

numerical examples in this chapter show that the proposed method is able to predict 

the thermoelastic response of 2D and 3D thermoelasticity problems with complex 

geometry, arbitrary body force and arbitrary temperature changes. It is a promising 

methodology for mesh reduction, which is capable of obtaining satisfactory results 

with much coarser meshes than the traditional FEM. It is also possible to improve the 

results by increasing only the interpolation points while maintaining the mesh at a 

lower density, which will be investigated in further research. 

Further, the HFS-FEM is developed to model the coupling behaviors of plane 

piezoelectric materials. This thesis develops two different series of formulations based 

respectively on foundational solutions derived from Lekhnitskii formalism and Stroh 

formalism. On the basis of special fundamental solutions derived from Stroh 

formalism, a special hybrid finite element with high efficiency for HFS-FEM is also 

developed for modeling plane piezoelectric materials with cracks or elliptical holes. 

The performance of the new method is verified and assessed using various numerical 

examples. It is found that the HFS-FEM has good performance in the analysis of the 

coupling behavior of piezoelectric materials under various different loading 

conditions. It is also found that the electromechanical coupling effect on the SCF is 

dependent on the loading direction. Compared with pure elastic materials, stress 
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concentration in piezoelectric materials is lower when loaded in the poling direction 

but higher when loaded at the direction perpendicular to the poling direction. 

Numerical results show that the special element is able to capture the strong 

stress/electric displacement concentration around an elliptical hole and can obtain 

accurate SIFs for cracks while simultaneously eliminating the need for very fine 

meshing around such defects.  

9.2. RECOMMENDATIONS FOR FUTURE RESEARCH 

As stated initially, the goal of the present research is to extend the newly 

proposed HFS-FEM to elasticity problems (2D and 3D) and multifield materials, and 

to demonstrate its capability and performance in predicting the behaviors of 

heterogeneous composite materials at micro and macro scales. Due to time limitation, 

however, some interesting problems are left for further enhancement and future 

applications of the hybrid finite element method as listed here:  

 In the examples of the thesis, all the meshes employed for numerical calculation 

are partially facilitated by the ABAQUS CAE, a GUI facilitating model building. 

For the general elements in the model, it is easier to use ABAQUS to generate the 

in-house code for preparing the input data file, however, when certain special 

elements are involved in the analysis, mesh generation work becomes a very 

challenging problem and much effort is required to partition the model and write 

the input file. It is of practical interest, therefore, to develop a preprocessing tool 

like the CAE/ABAQUS for the current code to facilitate creation of the meshing 

domains and preparation of the input files. If this is done, it will be much more 

convenient for potential users to employ this method and its code as a tool for 

design and analysis.  

 One of the great merits of the new method is that an arbitrarily shaped element and 

certain special elements for local defects or singularity loads can easily be 

employed and implemented in the framework in order to reduce the number of 

elements and simultaneously improve accuracy. In the present work, only a few 
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special elements are proposed: a special element with a central hole for heat 

transfer and eleaticity, special element with a central inclusion for heat transfer, 

special elements with an elliptical hole for elasticity, and a special element with a 

point/line concentrated load for elasticity and piezoelasticity. It is interesting and 

important in further research to develop new special elements based on the Stroh 

formalism of multifield materials with defects and concentrated loads.  

 In the current work, micromechanical modeling is conducted based on the 

averaged or homogenization technique. The cohesive zone model for interface 

failure will in future be employed to enrich the micro-scale model with the ability 

to simulate crack propagation. It will be of interest and beneficial in the future to 

develop a concurrent multiscale framework for modeling heterogeneous 

composite materials. The new multiscale methodology can be established based 

on the heterogeneous multiscale method.  

 In this thesis thermoelasticity and piezoelectric problems are considered. 

Considering the importance of multifield materials in smart structures design and 

analysis, it will be beneficial to extend this method to be capable of modeling 

thermal-electric-mechanical and thermal-electric-magnetic-mechanical materials 

in future. 

 It is also noted that all the problems considered in the thesis belong to the class of 

static problems. It will be a major development and improvement to extend the 

method to dynamic problems such as vibration, moving load, etc. In addition, it is 

interesting to develop this method with the capability to treating contact and 

friction problems. 

 Finally, it is possible to extend the current method to nonlinear problems by 

treating nonlinear terms as a generalized body force and developing a convergent 

iterative algorithm. 
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