Change detection in urban and rural driving scenes: Effects of target type and safety relevance on change blindness

Vanessa Beanland^{a,*}, Ashleigh J. Filtness^{b,c,} and Rhiannon Jeans^d

^a Centre for Human Factors and Sociotechnical Systems, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia

^b Loughborough Design School, Loughborough University, LE11 3TU, United Kingdom

^c Queensland University of Technology, Centre for Accident Research and Road Safety –

Queensland (CARRS-Q), Kelvin Grove, QLD 4059, Australia

^d Research School of Psychology, The Australian National University, Canberra, ACT 2601, Australia

* Corresponding author. Email: <u>vbeanlan@usc.edu.au</u>

Abstract

The ability to detect changes is crucial for safe driving. Previous research has demonstrated that drivers often experience change blindness, which refers to failed or delayed change detection. The current study explored how susceptibility to change blindness varies as a function of the driving environment, type of object changed, and safety relevance of the change. Twenty-six fully-licenced drivers completed a driving-related change detection task. Changes occurred to seven target objects (road signs, cars, motorcycles, traffic lights, pedestrians, animals, or roadside trees) across two environments (urban or rural). The contextual safety relevance of the change was systematically manipulated within each object category, ranging from high safety relevance (i.e., requiring a response by the driver) to low safety relevance (i.e., requiring no response). When viewing rural scenes, compared with urban scenes, participants were significantly faster and more accurate at detecting changes, and were less susceptible to "looked-but-failed-to-see" errors. Interestingly, safety relevance of the change differentially affected performance in urban and rural environments. In urban scenes, participants were more efficient at detecting changes with higher safety relevance, whereas in rural scenes the effect of safety relevance has marginal to no effect on change detection. Finally, even after accounting for safety relevance, change blindness varied significantly between target types. Overall the results suggest that drivers are less susceptible to change blindness for objects that are likely to change or move (e.g., traffic lights vs. road signs), and for moving objects that pose greater danger (e.g., wild animals vs. pedestrians).

Keywords: driving; change detection; visual attention; change blindness

1 **1.** Introduction

The ability to detect changes is crucial for safe driving: we must notice when another vehicle pulls out ahead, when an in-vehicle alert appears, or when advisory signs are updated. However, research demonstrates drivers often fail to detect changes (Charlton and Starkey, 2013; Zhao et al., 2014), which is referred to as *change blindness* (Rensink et al., 1997). Accurate change detection while driving is associated with safer decision-making (Caird et al., 2005; Edwards et al., 2008), and in-depth crash analyses suggest approximately 9% of serious injury crashes involve a driver failing to detect hazards (Beanland et al., 2013).

9 Several paradigms have been used to explore change blindness (Jensen et al., 2011). The 10 most common methods used in driving-related research are flicker tasks, one-shot tasks, and 11 simulated driving scenarios. In flicker tasks, two alternating images are presented for a fraction of a 12 second each (240-500ms), separated by a brief (80-500ms) blank screen that masks visual transients 13 (Rensink et al., 1997). The sequence "flickers" between images until the observer determines 14 whether they differ. One-shot tasks use a similar format, but each image is presented only once and 15 stimulus durations are often longer (e.g., 10-15s; Zhao et al., 2014). Simulated driving paradigms embed change detection tasks within a driving simulator scenario. Some simulator studies mask 16 changes with brief occlusion periods (Lee et al., 2007; Shinoda et al., 2001; Velichkovsky et al., 17 2002; White and Caird, 2010), whereas others have changes occur naturalistically, for example, 18 19 changing between repeated drives on the same road (Charlton and Starkey, 2013; Harms and 20 Brookhuis, 2016; Martens and Fox, 2007).

Previous research has examined how change detection in driving scenes is affected by factors
 including target relevance, driving experience, familiarity with the road environment, and secondary
 task engagement. Key findings are summarised in the following subsections.

24

1.1. Target relevance

25 Observers are faster and more accurate at detecting changes to targets that have greater relevance to the overall scene context (Rensink et al., 1997) or are personally meaningful (Marchetti 26 27 et al., 2006). Similarly, drivers are better at detecting changes to driving-relevant targets, compared with irrelevant targets (Galpin et al., 2009; Mueller and Trick, 2013; Velichkovsky et al., 2002; Zhao 28 29 et al., 2014). One caveat is that many studies use broad definitions of "relevant" and "irrelevant". Relevant targets include vehicles, pedestrians, and road signs, whereas irrelevant targets include 30 31 buildings, dumpsters, and mailboxes (Galpin et al., 2009; Mueller and Trick, 2013; Velichkovsky et 32 al., 2002). This raises a potential confound, as irrelevant targets are typically stationary objects 33 positioned off-road and farther from the driver's central focus. Moreover, these studies group 34 together multiple driving-relevant targets, which vary considerably in their importance to safe 35 driving.

Two simulator studies provided more systematic manipulation of relevance within a single 36 37 class of targets (Lee et al., 2007; Shinoda et al., 2001). In the first study, a "no parking" sign changed 38 into a "stop" sign, and target placement was systematically manipulated. Drivers were significantly 39 less likely to notice the changing sign when they were following another car, or when it occurred mid-block, compared with when it occurred at an intersection (Shinoda et al., 2001). Arguably, stop 40 41 signs are equally relevant regardless of where they appear; however, drivers *expect* signs at 42 intersections to convey more meaningful information. In another study, Lee et al. (2007) tested 43 drivers' ability to detect changes to vehicles that were either parked, moving ahead, or moving 44 behind. Drivers were most sensitive to lead vehicles moving closer to them (simulating sudden braking) and were least sensitive to changes involving parked vehicles. This suggests drivers are 45 46 more efficient at detecting changes with greater safety relevance; however, safety relevance was 47 confounded with target location (Lee et al., 2007).

5

48 Finally, a French study using a one-shot task manipulated the relevance of changes involving 49 cars (Koustanaï et al., 2012). A car was either added or moved (e.g., to simulate turning, or to appear 50 closer) within a driving scene, and task instructions were varied to manipulate the relevance of these 51 changes. Participants were better at detecting changes when instructed to make driving-related 52 judgements about the scene (e.g., whether it was safe to turn or cross the intersection). Participants 53 were also better at detecting a car appearing in urban versus rural environments, which the authors suggested could be due to contrast and salience (which was lower in rural images) and/or 54 55 expectations (i.e., drivers expect cars to appear suddenly in urban areas; Koustanaï et al., 2012).

56 1.2. Driving experience

57 Change blindness research in non-driving domains consistently indicates that domain-experts 58 are less susceptible to change blindness for expertise-related changes, compared with domain-59 novices (Feil and Mestre, 2010; Reingold et al., 2001; Werner and Thies, 2000). For instance, 60 American football experts are faster than non-experts at detecting changes to football-related images 61 that meaningfully alter game formations, but not at non-meaningful or non-football-related changes (Werner and Thies, 2000). Comparable findings have been obtained for chess masters (Reingold et 62 63 al., 2001) and physics experts (Feil and Mestre, 2010). However, research examining the effects of driving experience on change detection has yielded mixed results (Zhao et al., 2014). 64

One approach for examining experience effects is to compare drivers with non-drivers. An 65 66 English study comparing non-drivers and drivers found no significant difference in performance on a driving-related flicker change detection task (Galpin et al., 2009). The authors suggested their driver 67 group may have had insufficient experience (average 70 months). For example, novice drivers and 68 69 non-drivers may show similarities because non-drivers have experience as "backseat drivers", which can confer familiarity with road environments and driving routes (von Stülpnagel and Steffens, 2012). 70 71 Following this, a Chinese study compared change detection ability in non-drivers and drivers 72 with on average 33 months' experience (Zhao et al., 2014). The Chinese study used a one-shot task

CHANGE DETECTION IN URBAN & RURAL DRIVING SCENES

and inserted a central fixation point on half the trials. Drivers and non-drivers performed similarly on trials with no fixation point, replicating Galpin et al.'s (2009) results. When the fixation point was present, non-drivers were significantly less accurate than drivers at detecting driving-related and peripheral changes (Zhao et al., 2014). The authors suggested driving experience helps facilitate more efficient processing of driving-related and peripheral elements while fixating centrally.

78 Other studies have compared change detection abilities among drivers with varied experience. In a US study comparing young novice drivers (average 6 months' experience) to more 79 80 experienced young drivers (average 7 years' experience), both groups performed similarly on 81 driving-related changes but novices were less accurate at irrelevant changes (Mueller and Trick, 82 2013). One explanation is that experienced drivers are more efficient at processing driving-related 83 information, so they have greater capacity remaining for processing irrelevant information. This is consistent with Zhao et al.'s (2014) findings, whereby drivers showed superior detection of 84 peripheral changes compared with non-drivers. Further, a French study comparing novice drivers 85 (average 1.3 years' experience) with more experienced drivers (average 5.6 years' experience) found 86 87 that the experienced drivers were significantly more accurate at change detection when the task 88 required them to judge whether it was safe to traverse an intersection, but not when the task involved simply viewing the images (Koustanaï et al., 2012). 89

Finally, an Australian study found that after accounting for simple reaction time differences, drivers with <3 years' experience were significantly *faster* at detecting driving-related changes, compared with drivers who had >10 years' experience (Wetton et al., 2010). Notably, this study's "novice" group had as much experience as "experienced" drivers in some other studies (e.g., Zhao et al., 2014). Overall it seems that differences in change detection ability are most likely when comparing drivers with either non-drivers or very inexperienced drivers.

6

96 *1.3*. **Familiarity**

97 Some studies have examined the effect of environmental familiarity on change detection 98 (Charlton and Starkey, 2013; Harms and Brookhuis, 2016; Martens and Fox, 2007). These studies 99 use similar methods: all recruited groups of drivers to complete 20-25 simulated drives over several 100 days or weeks. Whereas most studies assess short-term changes (i.e., detecting a change within the 101 past second), familiarity studies typically assess long-term change detection, such as when a speed 102 limit has changed. Overall, these studies suggest that familiarity increases drivers' sensitivity to 103 certain environmental elements but impairs others. For instance, familiar drivers are faster at 104 detecting a target vehicle (Charlton and Starkey, 2013). These benefits are offset by substantial 105 change blindness to other aspects of the environment, even for safety relevant changes. Many drivers 106 failed to detect when an intersection sign changed from granting them priority to requiring them to 107 give way (Martens and Fox, 2007), when speed limits on dynamic speed signs changed (Harms and 108 Brookhuis, 2016), or when signs changed from English to German language (Charlton and Starkey, 109 2013). Drivers also exhibited robust change blindness to the addition or removal of roadside 110 buildings, but were much better at detecting changes to road markings, even after repeated exposure 111 (Charlton and Starkey, 2013). This suggests drivers pay relatively less attention to the roadside – 112 including safety-relevant signs - on familiar routes, but maintain focus on the road itself.

113 *1.4*.

Secondary task engagement

114 Studies examining the impact of secondary task engagement on driving-related change 115 detection have indicated that engagement in a cognitively demanding secondary task significantly 116 impairs change detection (Lee et al., 2007; McCarley et al., 2004; Richard et al., 2002; White and 117 Caird, 2010). Specific aspects of change detection affected by dual-task engagement include 118 accuracy, sensitivity and response time. Tasks that impair change detection include auditory working 119 memory tasks, hands-free phone conversation, and responding to messages, but not passive listening 120 (Lee et al., 2007; McCarley et al., 2004; Richard et al., 2002). Similarly, White and Caird (2010)

found young adult drivers were less likely to detect changes when accompanied by an attractive opposite-sex passenger, compared with participants driving alone. Notably, McCarley et al. (2004) found drivers were equally likely to fixate change targets when talking on a phone, but failed to consciously detect the change. Together these findings suggest that driver distraction can exacerbate change blindness.

126 1.5. The current study

127 Change blindness often occurs in driving environments, but the extent of change blindness 128 varies depending on characteristics of the changed object. Previous studies have either defined task 129 relevance quite broadly (Galpin et al., 2009; Mueller and Trick, 2013; Velichkovsky et al., 2002; 130 Zhao et al., 2014) or have used only a single class of targets (Koustanaï et al., 2012; Lee et al., 2007; 131 Shinoda et al., 2001), so there is scope for more systematic investigation of the relationship between 132 target characteristics and change detection. The current study was designed to assess change 133 blindness in urban and rural driving scenes across a range of target types including vehicles, 134 vulnerable road users, signs, and roadside objects. All are potentially relevant to safe driving, so we 135 systematically manipulated the contextual safety relevance of changes within each category. This 136 allowed us to explore whether the type of target or its safety relevance is more influential in change 137 detection, and whether these factors interact. In addition to standard measures of accuracy and 138 response time (RT), eye movements were recorded to provide a more comprehensive understanding 139 of how change detection occurs.

140 **2. Method**

141 2.1. Participants

Twenty-six drivers (15 female, 11 male) aged 20-43 years (M = 22.9, SD = 4.7) participated in a single 1-hour session. Data from one additional participant was discarded due to technical errors. All participants had normal or corrected-to-normal visual acuity (measured using a near vision chart), held a current unrestricted Australian driver's licence, and drove at least once a week within the local region. Participants provided written informed consent and received AUD\$20. Ethical aspects of the
research were approved by the Australian National University Human Research Ethics Committee
(protocol 2014/458).

149 **2.2.** Apparatus

Visual stimuli were presented on a 27" Apple iMac desktop computer. An Eyelink 1000 eyetracker, with a reported spatial accuracy within $0.25 \cdot 0.5^{\circ}$, was used to monitor eye movements at a temporal frequency of 1000Hz. Head position was fixed using a chinrest with a viewing distance of 95cm, yielding a display area of $30.3^{\circ} \times 19.4^{\circ}$ visual angle. Stimulus presentation and data acquisition were controlled via SR Research Experiment Builder.

155 **2.3.** Stimuli

156 Experimental stimuli included 200 image pairs depicting driving scenes, which constituted 50 157 urban change-present pairs, 50 rural change-present pairs, 50 urban change-absent pairs and 50 rural 158 change-absent pairs. All images subtended $23.0^{\circ} \times 17.5^{\circ}$ and were taken during daylight hours on 159 urban and rural roads in the areas surrounding the data collection location (i.e., areas likely to be 160 familiar to participants) using a digital camera mounted on the dashboard of a station wagon. In 161 *change-absent* image pairs the two images displayed were identical, whereas in *change-present* pairs 162 one of the images was edited to add, remove or alter a single driving-relevant target. Images used 163 were selected from a larger sample (N > 2000) of photographs. Images for the change-present trials 164 were selected and edited first, and then similar images (e.g., taken on the same road, with similar 165 traffic density, but a different day or time) were selected to comprise the change-absent trials, to 166 ensure that the images used in change-absent and change-present trials were matched in terms of 167 visual features and complexity.

Within both the urban and rural environments, five types of target objects were changed. In the urban scenes change targets were road signs, cars, motorcycles, traffic lights, and pedestrians, with 10 trials per category. In the rural scenes change targets were road signs, cars, motorcycles,

CHANGE DETECTION IN URBAN & RURAL DRIVING SCENES

trees, and animals (kangaroos or cows), again with 10 trials per category. For the three categories that occurred in both urban and rural scenes (i.e., road signs, cars, motorcycles), changes were matched so that equivalent changes occurred in both environments.

174 Within each target type the potential safety impact of the change was manipulated, ranging 175 from high potential safety impact (e.g., vehicle appears/disappears immediately in front of the 176 participant, 10 km/h change to speed limit sign) to low potential safety impact (e.g., parked vehicle appears/disappears, change to bicycle lane advisory sign content). The key differentiator between 177 178 high- and low-impact images was that high-impact changes would require a driver to change their 179 behaviour (e.g., adjust travel speed, brake, monitor a potential hazard), whereas low-impact changes 180 would not require any response. As previous studies have found discrepancies between objective 181 (expert-assessed) risk and subjective risk perceived by drivers (Charlton et al., 2014), to better 182 capture the safety relevance of changes as perceived by participants, we had a separate group of 21 183 fully licenced drivers aged 25-40 years (M = 29.1, SD = 3.6) rate the safety relevance of each change 184 on an 11-point scale from 0 (not at all safety relevant) to 10 (highly safety relevant). Ratings for each 185 image pair were averaged across drivers to derive a safety relevance score between 0-10 for each 186 image pair, which was used as a covariate in statistical analyses for the current study.

187 Image pairs were presented using a "flicker" sequence, in which one image was presented for 188 500ms, followed by a 500ms blank grey screen, followed by the second image for 500ms and then 189 another 500ms blank (see Figure 1). The cycle of alternating images and blanks continued until the 190 participant responded, or for 30s, whichever occurred first. Participants were instructed to decide as 191 quickly as possible whether a change occurred and then immediately press the space bar. They were 192 then prompted to report whether a change occurred (yes/no) and, if applicable, the change target. 193 Available response options for both urban and rural trials were: "vehicle", "motorcycle", "bicycle", 194 "person", "animal", "tree", "building", "sign", and "traffic light". If participants failed to respond 195 within 30s the program automatically proceeded to a response screen that asked them to indicate

CHANGE DETECTION IN URBAN & RURAL DRIVING SCENES

196 whether a change occurred. Change-present trials were considered "correct" if the observer correctly 197 identified the change target, but were considered "incorrect" if they reported no change or failed to 198 select the correct change target. Change-absent trials were considered "correct" if the observer 199 reported no change, and were considered "incorrect" if they indicated a change occurred. 200 The experiment contained 220 trials, which comprised 200 trials with unique image pairs 201 (100 change-present, 100 change-absent, as described above) and 20 trials with repeated images (10 202 change-present, 10 change-absent). For the current study, only the 200 unique trials were analysed. 203 Trial order was randomised, such that urban and rural images were intermixed, with scheduled 204 breaks every 55 trials. The experimental task was preceded by 5 practice trials (3 change-present, 2 205 change-absent), which used driving-related images taken from a previous study.

206

207 *Figure 1.*

Example trial sequence depicting an urban change-present trial in which the change target is acar (the blue car appears/disappears).

210

2.4. Self-Report Measures

Participants completed a brief demographic questionnaire and two self-report inventories, the
Driver Behaviour Questionnaire (DBQ; Lajunen et al., 2004; Lawton et al., 1997; Mattsson, 2012)
and the Cognitive Failures Questionnaire (CFQ; Broadbent et al., 1982).

215 The DBQ requires respondents to rate their frequency of engaging in 28 aberrant driving 216 behaviours on a 6-point Likert scale from 0 (never) to 5 (nearly all the time). Previous research has typically found that in English-speaking populations this scale reveals four subtypes of aberrant 217 218 driving behaviour (Beanland et al., 2014): Ordinary Violations, or deliberately disregarding road 219 rules and norms; Aggressive Violations, involving hostility towards other road users; Errors, which 220 are dangerous non-deliberate acts, such as failing to detect oncoming traffic before turning; and 221 Lapses, which are relatively minor failures, such as misreading road signs. For the current study, the 222 Errors and Lapses subscales were of particular interest.

223 The CFQ requires respondents to rate their frequency of 25 lapses of attention, perception 224 and memory in everyday life on a 5-point Likert scale from 0 (never) to 4 (very often). Originally it 225 was claimed that the scale measured a unitary construct, with specific subfactors varying between 226 populations (Broadbent et al., 1982). Subsequent studies have found that multi-factor solutions fit the data better than single-factor solutions (Bridger et al., 2013; Wallace, 2004); however, the specific 227 228 factor structure varies between populations and even within populations over time (Bridger et al., 229 2013). Given this inconsistency, and the fact that overall CFQ scores are significantly associated 230 with some aspects of visual attention (e.g., Forster and Lavie, 2007), for the current study overall 231 CFO scores were analysed.

232 **2.5.** *Procedure*

Participants were tested individually in a dark, quiet laboratory. After providing written
informed consent participants completed the visual acuity screening test and self-report measures.

Participants were then seated in front of the computer with their head position stabilised using a chinrest. The eye-tracker was calibrated for each participant using a 16-point calibration grid and then validated to ensure that average gaze error was $<0.5^{\circ}$, which is within the manufacturerspecified margin of acceptable error. Each trial commenced with a drift check to ensure gaze calibration accuracy was maintained. The system was recalibrated if the error exceeded 1.0° for three consecutive trials, and after scheduled breaks.

241 **2.6.** Data analysis

242 Statistical analyses were performed using SPSS. Change detection performance was analysed 243 using Generalized Estimating Equations (GEE; Liang and Zeger, 1986), an extension of the general 244 linear model that permits analysis of repeated measurements even where different participants 245 contribute a different number of observations. Analyses for continuous variables (RT, time to first 246 fixation, dwell time) used linear GEE specifying a normal distribution specifying a log link function 247 (as variables were positively skewed) and an exchangeable correlation matrix. Linear GEE functions 248 similarly to repeated-measures analysis of variance (RM-ANOVA). The crucial difference is that 249 GEE is based on individual trials (accounting for both within- and between-subjects variance), 250 whereas RM-ANOVA is based on averages and requires that all participants have data in each 251 condition. The RM-ANOVA requirements are problematic for change detection studies as RT 252 analyses include only correct trials, but some observers may consistently fail to detect specific target 253 categories (e.g., "tree" changes in the current study). GEE is therefore useful as it can accommodate 254 missing data and provides greater statistical power compared with RM-ANOVA (Ma et al., 2012). 255 Analyses for binary variables (accuracy, probability of fixating target, probability of looked-256 but-failed-to-see errors) used binary logistic GEE specifying an exchangeable correlation matrix. 257 Binary logistic GEE functions similarly to binary logistic regression, but because GEE permits 258 repeated measurements it can be used to assess whether the probability of a binary outcome differs

according to within-subjects variables (e.g., target type).

CHANGE DETECTION IN URBAN & RURAL DRIVING SCENES

260 For change-present trials, three analyses were conducted for each variable: urban change 261 detection; rural change detection; and urban/rural comparison. The urban analysis used change target 262 type (road signs, cars, motorcycles, pedestrians, traffic lights) as a categorical predictor, with safety 263 relevance of the change as a continuous covariate. The rural analysis used change target type (road 264 signs, cars, motorcycles, animals, trees) as a predictor, with safety relevance as a covariate. The 265 urban/rural comparison also used change target type as a predictor and safety relevance as a covariate, but only included trials where the target was a road sign, car, or motorcycle (i.e., targets 266 267 found in both environments). This was to avoid confounds due to the fact that different target types 268 appeared in the two environments. In all analyses, road signs were used as the reference group 269 against which performance for other target types was compared.

270 Correlations and paired *t*-tests were used for other measures where overall performance was
271 of interest. An alpha level of .05 was used to assess statistical significance.

272 **3. Results**

273 **3.1.** Participants' driving patterns

Participants had an average self-reported weekly driving frequency of 4.9 hours (SD = 3.3; range 1-18 hours) or 182 km (SD = 133; range 20-500 km). As shown in Figure 2, participants drove most frequently on urban roads. Nearly 90% reported that they drove on urban 60 km/h roads frequently or all the time, and 58-65% reported driving on higher speed urban roads frequently or all the time. In contrast, over 90% reported that they drove on rural roads occasionally, hardly ever, or never.

- 280
- 281 *Figure 2.*

282 Participants' self-reported frequency of driving on different road types.

283

284 **3.2.** Change detection accuracy

Accuracy on the change-absent trials was at ceiling (99.4% in rural scenes, 99.2% in urban scenes) and so was not included in any statistical analyses. As shown in Figure 3, accuracy on

287 change-present trials differed between target types.

288

Example 290 Figure 3.

Change detection accuracy (top panel) and response time (bottom panel) by driving
environment and target type. Error bars represent upper and lower 95% confidence intervals

293 for estimated marginal means within each condition.

294

Within urban scenes, there was a significant main effect of target type on change detection accuracy, $\chi^2(4) = 143.39$, p < .001. Compared to changes involving signs, participants were significantly more likely to detect all other types of changes (see Table 1), with the largest effect size for motorcycles. There was also a significant effect of safety relevance: the odds of detecting changes were greater for changes with higher safety relevance ratings (see Table 1).

Within rural scenes, there was a significant main effect of target type on accuracy, $\chi^2(4) =$ 163.16, *p* < .001. Compared with changes involving signs, participants were less likely to detect changes involving trees (only 8% detected), but were more likely to detect changes involving cars, motorcycles and animals (see Table 1). Safety relevance also predicted change detection accuracy in rural scenes, but the effect size was smaller than for urban scenes and only just met the criterion of statistical significance (see Table 1).

Finally, for the separate analysis directly comparing urban and rural scenes, there was a significant main effect of environment on accuracy, $\chi^2(1) = 19.22, p < .001$. Participants were less likely to detect changes in urban scenes compared with rural scenes (79% vs. 92% correct), B = -0.64, SE = 0.13, OR = 0.53, 95% CI OR [0.41, 0.68]. There was also a significant main effect of target type, $\chi^2(2) = 133.92, p < .001$, consistent with the separate urban and rural analyses, but the target × environment interaction was not significant, $\chi^2(1) = 3.77, p = .152$.

312 Table 1

313 Effects of target type and safety relevance on change detection accuracy, within each driving

314 environment

Parameter	В	SE	Wald χ^2	р	OR	95% CI OR
		L	Irban Scenes			
Safety Relevance	0.65	0.07	83.62	<.001***	1.92	[1.67, 2.20]
Target Type						
Traffic Light	0.63	0.20	10.29	.001**	1.88	[1.28, 2.77]
Pedestrian	0.94	0.18	27.00	<.001****	2.56	[1.80, 3.66]
Motorcycle	2.67	0.24	122.86	<.001***	14.49	[9.03, 23.24]
Car	1.71	0.20	71.34	<.001***	5.55	[3.73, 8.26]
Road Sign	-					
		ŀ	Rural Scenes			
Safety Relevance	0.08	0.04	3.97	$.046^{*}$	1.08	[1.001, 1.17]
Target Type						
Tree	-2.70	0.40	45.81	<.001****	0.07	[0.03, 0.15]
Animal	1.24	0.32	14.69	<.001***	3.44	[1.83, 6.47]
Motorcycle	3.92	0.58	45.38	<.001***	50.41	[16.11, 157.70]
Car	1.96	0.25	63.26	<.001***	7.11	[4.38, 11.52]
Road Sign	-					

315 *Note.* Road signs were used as the reference category for both urban and rural scene analyses. OR = Odds Ratio. 95% CI = 95% Confidence Interval. ${}^{*}p < .05$, ${}^{**}p < .01$, ${}^{***}p < .001$.

317 3.3. Change detection response time

RT was analysed for correct trials only. Trials with RTs over 10s for change-present trials, or 15s for change-absent trials, were excluded as these represented extreme outliers (\leq 1% of responses). Four analyses were conducted, examining RTs in: change-absent trials; urban change-present trials; rural change-present trials; and urban vs. rural change-present trials.

322 **3.3.1. Change-absent trials.** RTs for change-absent trials were compared between urban and 323 rural scenes. There was a significant effect of road environment, $\chi^2(1) = 51.57$, p < .001. The average 324 time required to inspect urban scenes (M = 7046 ms, SE = 332) was significantly longer than to 325 inspect rural scenes (M = 6623, SE = 318), B = 0.01, SE = 0.01, OR = 1.06, 95% CI OR [1.05, 1.08]. 326 3.3.2. Change-present trials: urban environment. RTs for urban change-present trials were 327 analysed with safety relevance as a covariate and target type as a predictor. There was a significant 328 effect of safety relevance: participants were faster at detecting changes rated as having greater safety relevance (see Table 2). There was a also significant effect of target type, $\gamma^2(4) = 164.01$, p < .001329 330 (see Table 2). There was a discrepancy between vehicles and other targets: compared to changes involving signs, participants were significantly faster at detecting changes involving cars or 331 332 motorcycles, but were not significantly faster at changes involving pedestrians or traffic lights (see 333 Figure 3).

3.3.3. Change-present trials: rural environment. RTs for rural change-present trials were 3.3.5 analysed with safety relevance as a covariate and target type as a predictor. The effect of safety 3.3.6 relevance was not statistically significant, but there was a significant effect of target type, $\chi^2(4) =$ 3.3.7 82.01, *p* < .001 (see Table 2). RT results mirrored the pattern obtained for accuracy (see Figure 3). 3.3.8 Compared with changes involving signs, participants were significantly slower at detecting changes 3.3.9 involving trees, and significantly faster at detecting changes involving cars, motorcycles or animals.

340 Table 2

341 *Effects of target type and safety relevance on change detection response time (RT), within each*

342 *driving environment*

Parameter	В	SE	Wald χ^2	р	OR	95% CI OR		
Urban Scenes								
Safety Relevance	-0.04	0.00	135.09	<.001***	0.96	[0.96, 0.97]		
Target Type								
Traffic Light	-0.03	0.02	1.28	.258	0.98	[0.93, 1.02]		
Pedestrian	0.00	0.03	0.02	.886	1.00	[0.94, 1.05]		
Motorcycle	-0.12	0.03	20.43	<.001***	0.89	[0.84, 0.93]		
Car	-0.09	0.03	9.87	<.001***	0.92	[0.87, 0.97]		
Road Sign	-							
		ŀ	Rural Scenes					
Safety Relevance	-0.01	0.00	2.68	.102	1.00	[0.99, 1.001]		
Target Type								
Tree	0.21	0.07	10.43	<.001***	1.24	[1.09, 1.41]		
Animal	-0.10	0.02	17.50	<.001***	0.91	[0.87, 0.95]		
Motorcycle	-0.18	0.03	41.61	<.001***	0.84	[0.79, 0.88]		
Car	-0.15	0.03	31.30	<.001***	0.87	[0.82, 0.91]		
Road Sign	-							

343 *Note.* Road signs were used as the reference category for both urban and rural scene analyses. OR = Odds Ratio. 95% CI = 95% Confidence Interval. *p < .05, **p < .01, ***p < .001.

345

346 **3.3.4. Change-present trials: urban/rural comparison.** RTs were compared between urban 347 and rural scenes for trials where the target was a road sign, car, or motorcycle. There was a 348 significant main effect of environment, $\chi^2(1) = 37.38$, p < .001, with RTs being significantly longer 349 for urban (M = 5105 ms, SE = 77) than rural scenes (M = 4803, SE = 86), B = 0.04, SE = 0.02, OR = 350 1.05, 95% CI OR [1.004, 1.09]. There was also a significant main effect of target type, $\chi^2(2) = 53.20$, 351 p < .001, but this did not significantly interact with environment, $\chi^2(1) = 0.90$, p = .636, consistent 352 with the accuracy results. 353

3.4. Self-report measures

354 CFQ total scores were computed by summing responses to all items, yielding possible scores 355 of 0 to 100. Cronbach's alpha (α) was .83 and the range of observed scores was 21-57 (M = 39.8, SD356 = 10.2). CFQ scores showed a non-significant small negative correlation with overall change 357 detection accuracy (r = -.21, p = .307) and a moderate positive correlation with RT (r = .39, p = .051). 358 Although these trends did not reach statistical significance, they suggest that CFQ scores have a 359 small association with change detection performance.

360 Scores for the DBQ Lapses and Error subscales were computed by summing responses to the 361 items on each scale. This comprised 8 items for the Errors scale (possible scores 0-40) and 7 items 362 for the Lapses scale (possible scores 0-35); one item pertaining to manual transmission cars was 363 excluded because several participants indicated they exclusively drove automatic transmission cars. 364 For the Errors subscale observed scores were 0-10 (M = 4.7, SD = 2.5, $\alpha = .47$). For the Lapses 365 subscale observed scores were 2-14 (M = 6.9, SD = 3.1, $\alpha = .53$). Neither DBQ subscale was 366 significantly correlated with either change detection accuracy (Errors: r = -.07, p = .749; Lapses: r = -.18, p = .372) or RT (Errors: r = .25, p = .216; Lapses: r = .16, p = .424). 367

368 3.5. Eye movements: Fixations on change targets

Three variables pertaining to fixations on change targets were selected for analysis: probability of fixating the target; probability of looked-but-failed-to-see errors (i.e., failing to detect the change, despite fixating the target); and dwell time on target.

372 **3.5.1. Probability of fixating the target.** Probability of target fixation was analysed for all
373 trials, regardless of whether the target was detected, as this represents implicit capture of attention.
374 Binary logistic GEE was used to assess whether probability of fixation differed by target type and
375 safety relevance, within both urban and rural scenes.

Within urban scenes, there was a significant effect of safety relevance, $\chi^2(1) = 9.74$, p = .002, B = 0.13, SE = 0.04, OR = 1.14, 95% CI OR [1.05, 1.23], whereby participants were more likely to

fixate on targets with greater safety relevance. There was also a significant effect of target type, $\chi^2(4)$ = 64.23, *p* < .001. Compared to road signs (43% fixated), observers were significantly more likely to fixate both cars (68% fixated; $\chi^2 = 19.84$, *p* < .001, *B* = 1.02, *SE* = 0.23, OR = 2.76, 95% CI OR [1.77, 4.31]) and motorcycles (65% fixated; $\chi^2 = 18.12$, *p* < .001, *B* = 0.90, *SE* = 0.21, OR = 2.46, 95% CI OR [1.63, 3.73]), but not pedestrians (40% fixated; $\chi^2 = 0.26$, *p* = .611) or traffic lights (42% fixated; $\chi^2 = 0.04$, *p* = .850).

Within rural scenes, there was a significant effect of safety relevance, $\chi^2(1) = 39.85$, p < .001, 384 B = 0.31, SE = 0.05, OR = 1.37, 95% CI OR [1.24, 1.51]. Like urban scenes, in rural scenes 385 386 participants were more likely to fixate on targets with higher safety relevance, but the effect was even larger for rural scenes. There was a also significant effect of target type, $\gamma^2(4) = 56.48$, p < .001. 387 Compared to road signs (49% fixated), observers were significantly more likely to fixate cars (64% 388 fixated; $\chi^2 = 10.18$, p = .001, B = 0.65, SE = 0.20, OR = 1.92, 95% CI OR [1.29, 287]) and were less 389 likely to fixate trees (32% fixated; $\chi^2 = 7.49$, p = .006, B = -0.70, SE = 0.25, OR = 0.50, 95% CI OR 390 [0.30, 0.82]). Probability of fixating motorcycles (51% fixated; $\chi^2 = 0.25$, p = .618) and animals (39% 391 fixated; $\gamma^2 = 2.94$, p = .086) was not significantly different to signs. 392

Finally, an additional analysis comparing probability of fixating the target between urban and rural scenes (for sign, car, and motorcycle trials only) revealed no significant effect of driving environment on probability of target fixation, $\chi^2(1) = 1.42$, p = .233. The effect of target type was also significant, consistent with the analyses conducted separately for urban and rural scenes.

397 **3.5.2. Probability of looked-but-failed-to-see errors.** This analysis focused on the
398 probability of *failing* to detect a change despite having fixated on the target. As with other analyses,
399 comparisons examining the effects of target type and safety relevance were made separately for
400 urban and rural scenes, followed by a direct urban vs. rural comparison.

401 Within urban scenes, participants experienced looked-but-failed-to-see errors on 8% of all 402 trials in which they fixated the target. There were significant effects of both target type, $\chi^2(4) = 52.52$, 403 p < .001, and safety relevance (see Table 3). Observers were less likely to make looked-but-failed-to-404 see errors for targets with higher safety relevance ratings, regardless of target type, but looked-but-405 failed-to-see errors were most common when the target was a road sign (18%) compared with all 406 other targets (traffic lights: 8%; cars: 5%; pedestrians: 1%; motorcycles: <1%)

407 Within rural scenes, 10% of trials involved looked-but-failed-to-see errors; however, this was 408 inflated by fact that participants experienced looked-but-failed-to-see errors on 71% of trials in the 409 tree condition, compared to 0% for motorcycles, 2% for animals, 5% for vehicles and 17% for signs. 410 Inspection of the data revealed that target type was confounded with both safety relevance ratings 411 and probability of looked-but-failed-to-see errors, which precluded the possibility of reliable 412 statistical analysis. Binary logistic GEE with safety relevance as the only covariate (i.e., target type was omitted from the model) revealed no significant effects, $\chi^2(1) = 2.27$, p = .132, suggesting that in 413 rural scenes target type was the best predictor of looked-but-failed-to-see errors. 414

Finally, an additional analysis comparing probability of looked-but-failed-to-see errors between urban and rural scenes (for sign, car, and motorcycle trials only) revealed a significant main effect of driving environment, $\chi^2(1) = 7.49$, p = .006, whereby looked-but-failed-to-see errors were slightly but significantly more common in urban (5%) vs. rural (3%) scenes, B = 0.62, SE = 0.23, OR = 1.86, 95% CI OR [1.19, 2.89]. The effect of target type was also significant, consistent with the analyses conducted separately for urban and rural scenes.

421	Table 3

422	Effects of target type	and safety relevance	on probability of	f looked-but-failed-to-see	errors in urban
423	scenes			-	

scenes						
Parameter	В	SE	Wald χ^2	р	OR	95% CI OR
		Urb	an Scenes			
Safety Relevance	-0.48	0.14	12.11	.001**	0.62	[0.47, 0.81]
Target Type						
Traffic Light	-0.97	0.44	4.97	$.026^{*}$	0.38	[0.16, 0.89]
Pedestrian	-2.98	1.02	8.60	.003**	0.05	[0.01, 0.37]
Motorcycle	-3.91	0.93	17.68	<.001***	0.02	[0.003, 0.12]
Car	-1.43	0.36	15.47	<.001***	0.24	[0.12, 0.49]
Road Sign	-					

424 *Note.* Road signs were used as the reference category. OR = Odds Ratio. 95% CI = 95% Confidence Interval. p < .05, p < .01, p < .01.

426

3.5.3. Dwell time on target. Dwell time indicates the relative difficulty of identifying targets
that are fixated; longer dwell times indicate the participant requires more time to cognitively process
the target. The analyses included only correct trials in which the participant fixated the target. As
with other measures, separate analyses were conducted for urban and rural scenes, followed by a
direct urban vs. rural comparison.

Within urban scenes, there were significant effects for both target type, $\chi^2(4) = 54.76$, p < .001, and safety relevance (see Table 4). Dwell times were shorter on targets with greater safety relevance. As shown in Table 4, the results for dwell time mirrored the patterns for change detection accuracy: compared with road signs dwell times were significantly shorter for all other target types, with the effect being largest for motorcycles.

Within rural scenes, there was a significant effect of safety relevance (see Table 4) but the effect was in the opposite direction to that found in rural scenes: targets with higher safety relevance were associated with *longer* dwell times. This is probably a statistical artefact, arising from the confound between target type and safety relevance. There was also a significant effect of target type, 441 $\chi^2(4) = 180.33, p < .001$, as shown in Table 4. Compared to road signs, observers spent significantly 442 less time looking at animals, motorcycles and cars, but more time looking at trees. 443 Finally, dwell times were compared between urban and rural scenes, for trials where the 444 target was a road sign, car or motorcycle. This analysis revealed significant effects of target type, 445 consistent with the separate urban and rural analyses, but no effect of driving environment, $\chi^2(1) =$ 446 0.07, p = .797.

447 Table 4

Effects of target type and safety relevance on target dwell time (in milliseconds), within each driving environment

Target Type	M	В	SE	Wald χ^2	р	OR	95% CI OR
			Urban	Scenes			
Safety Relevance	-	-0.06	0.18	9.47	.002**	0.95	[0.91, 0.98]
Target Type							
Traffic Light	655	-0.20	0.08	5.71	$.017^{*}$	0.82	[0.70, 0.97]
Pedestrian	510	-0.45	0.08	33.44	<.001***	0.64	[0.55, 0.74]
Motorcycle	418	-0.65	0.09	47.37	<.001***	0.52	[0.45, 0.63]
Car	577	-0.32	0.07	23.04	<.001***	0.73	[0.64, 0.83]
Road Sign	786	-					
			Rural .	Scenes			
Safety Relevance	-	0.09	0.02	22.14	<.001***	1.09	[1.05, 1.13]
Target Type							
Tree	1606	0.54	0.22	5.89	$.015^{*}$	1.72	[1.11, 2.67]
Animal	328	-1.05	0.10	108.71	<.001***	0.35	[0.29, 0.43]
Motorcycle	428	-0.78	0.07	113.51	<.001***	0.46	[0.40, 0.53]
Car	667	-0.34	0.08	16.95	<.001***	0.72	[0.61, 0.84]
Road Sign	933	-					

450 *Note.* Road signs were used as the reference category. *M* represents the average dwell time for each category. Safety 451 relevance was entered as a covariate (0-10) and so no category mean is available. OR = Odds Ratio. 95% CI = 95% 452 Confidence Interval. $p^* < .05$, $p^{***} < .01$, $p^{****} < .001$.

453

454 3.6. Eye movements: Non-target fixation patterns

455 To examine scanning patterns more generally, several aspects of eye movements were

456 compared between urban and rural change-absent trials. These measures included the average

number and duration of fixations made each trial, as well as the probability of fixating specific
regions of interest within the scene and dwell times on those regions. Five interest area (IA) regions
were defined on each image: the road itself; off-road left; off-road right; horizon (where road meets
sky); and sky.

461 As shown in Table 5, observers made more significantly more fixations per trial, but 462 significantly shorter fixations, when viewing urban scenes compared to rural scenes. There were also differences in where observers fixated: the probability of fixating all five IAs was significantly 463 higher in urban vs. rural scenes. Dwell times (as a proportion of the total dwell time for the trial) 464 465 were significantly longer on the road IA for rural vs. urban scenes, but were significantly longer on 466 the off-road-right and sky IAs for urban vs. rural scenes. This indicates that when viewing rural 467 scenes, participants mostly focused their attention on the road itself, whereas in urban scenes they 468 devoted more time to searching other areas of the scene.

469

470 Table 5

471 Patterns of fixations in change-absent images, comparing urban and rural driving environments

Maaguua	Urban	Rural	Dif	ference	
Measure	M (SD)	M (SD)	M	95% CI	Comparison
Average fixations per trial	15.4 (5.5)	13.6 (4.8)	1.8	[1.3, 2.2]	$t(25) = 7.62, p < .001^{***}, d = 1.49$
Average fixation duration	315 (52)	332 (52)	17	[12, 23]	$t(25) = 6.26, p < .001^{***}, d = 1.23$
Probability of fixation:					
IA: Road	94% (10%)	92% (11%)	2%	[0%, 3%]	$t(25) = 2.34, p = .028^*, d = 0.46$
IA: Off-road left	92% (11%)	82% (14%)	10%	[7%, 13%]	$t(25) = 7.08, p < .001^{***}, d = 1.39$
IA: Off-road right	89% (6%)	75% (8%)	14%	[11%, 17%]	$t(25) = 10.56, p < .001^{***}, d = 2.07$
IA: Horizon	92% (6%)	86% (12%)	6%	[3%, 10%]	$t(25) = 3.66, p = .001^{**}, d = 0.72$
IA: Sky	84% (8%)	52% (15%)	33%	[29%, 37%]	$t(25) = 17.06, p < .001^{***}, d = 3.35$
Dwell time (% of trial)					
IA: Road	29% (9%)	34% (13%)	5%	[2%, 07%]	$t(25) = 3.64, p = .001^{**}, d = 0.71$
IA: Off-road left	29% (6%)	28% (6%)	1%	[0%, 03%]	t(25) = 1.61, p = .120, d = 0.32
IA: Off-road right	26% (4%)	23% (4%)	3%	[1%, 05%]	$t(25) = 3.43, p = .002^{**}, d = 0.67$
IA: Horizon	32% (6%)	31% (7%)	1%	[-1%, 04%]	t(25) = 1.03, p = .312, d = 0.20
IA: Sky	16% (5%)	10% (4%)	6%	[5%, 08%]	$t(25) = 10.96, p < .001^{***}, d = 2.15$

472 p < .05, p < .01, p < .001.

473 **4. Discussion**

The aim of the current study was to examine drivers' change detection ability in urban and rural driving scenes, for a range of objects with varying safety relevance. All participants were experienced, fully-licenced drivers who drove regularly and were familiar with the locations depicted in the stimulus images, although they reported driving considerably more frequently in urban areas compared to rural roads. The results confirm change detection performance varies as a function of the driving environment, target type, and the safety relevance of the change.

480 4.1. Effects of driving environment

481 When directly comparing performance between environments, with target type matched, 482 participants were significantly more accurate and faster at detecting changes in rural compared with 483 urban scenes. Participants were also less likely to exhibit "looked-but-failed-to-see" errors, although 484 the effect size was small (3% vs. 5%). These differences are most likely attributable to the fact that 485 urban scenes involve greater visual clutter and complexity. To our knowledge, only one previously 486 published study has directly compared change detection in urban and rural driving scenes. Contrary 487 to our results, the previous study found that drivers were more accurate at detecting changes in urban 488 scenes; however, the authors noted that this finding was inconsistent with previous research change 489 detection, and also that the salience and contrast of their rural changes were relatively lower than the 490 urban changes (Koustanaï et al., 2012). The current study provided a more comprehensive and 491 systematic exploration of urban-rural differences, and the findings are consistent with research on 492 visual crowding (Whitney and Levi, 2011). Also, participants were significantly more familiar with 493 urban driving and drove regularly in the areas depicted in the urban scenes, whereas they reported 494 significantly less exposure to rural driving. In this regard, the results are consistent with previous 495 research indicating that drivers exhibit greater change blindness in familiar situations (e.g., Charlton 496 and Starkey, 2013; Harms and Brookhuis, 2016; Martens and Fox, 2007).

497 Despite the slight increase in looked-but-failed-to-see errors in urban scenes, there was no 498 difference in the probability of fixating targets, or total dwell time on targets, when comparing urban 499 and rural scenes. Analyses of eye movements in change-absent trials suggest this could be because 500 participants adopted different scanning patterns when viewing urban scenes, to maximise their 501 likelihood of detecting target objects in cluttered urban environments. Specifically, when viewing 502 urban scenes participants made more and shorter fixations, and distributed their fixations more 503 broadly throughout the scene, whereas when viewing rural scenes participants made fewer longer 504 fixations and focused predominantly on the road itself. This is consistent with research on eye 505 movements in driving, which has found that experienced drivers adapt their scanning patterns based 506 on situational demands (e.g., Falkmer and Gregersen, 2005; Underwood, 2007).

507 4.2. Effects of safety relevance

508 In addition to the differences that emerged from the direct comparison of urban and rural 509 scenes, the analyses regarding safety relevance of changes revealed different patterns between the 510 two driving environments. Specifically, the effects of change safety relevance were larger and more consistent in urban scenes. In urban scenes, changes with higher safety relevance were associated 511 512 with higher accuracy, shorter RT, increased probability of fixating the target, reduced probability of 513 looked-but-failed-to-see errors, and shorter dwell times. These findings suggest that changes with 514 greater safety relevance are more effective at capturing drivers' implicit attention (i.e., probability of 515 fixation) and are more likely to be consciously processed. This is consistent with previous findings 516 that observers are more efficient at changes that are more central to interpreting the scene (Rensink et 517 al., 1997) and those that have greater personal or task relevance (Galpin et al., 2009; Lee et al., 2007; 518 Marchetti et al., 2006; Mueller and Trick, 2013; Shinoda et al., 2001; Velichkovsky et al., 2002; 519 Zhao et al., 2014).

In contrast to the urban results, the effects of safety relevance in rural scenes was
considerably less consistent. Safety relevance of the change had only a marginally significant effect

522 on change detection accuracy in rural scenes and did not predict RT or looked-but-failed-to-see 523 errors. The only measure that was clearly affected in the expected direction was probability of 524 fixating the target, in that drivers were more likely to fixate targets with higher safety relevance. One 525 explanation is that these inconsistent effects arise from differential task demands, which have been 526 demonstrated to affect both eye movements (Hayhoe and Ballard, 2005) and change detection 527 (Jensen et al., 2011). That is, urban scenes were more cognitively demanding to process and so 528 observers preferentially focused on aspects of the scene that appeared to have greater relevance. 529 Rural scenes were easier to process, which meant that participants had the capacity to process change 530 targets that had lower safety relevance.

531 4.3. Effects of target type

532 Beyond the effects of change safety relevance, there were also significant effects of target 533 type on change detection performance, especially for trees and signs. Change detection performance 534 was at floor for changes involving trees, with most participants failing to detect all tree-related 535 changes. Participants were also less likely to fixate on trees and were substantially more likely to 536 exhibit looked-but-failed-to-see errors if they did fixate trees. These patterns suggest that drivers 537 perceive roadside trees as irrelevant, as irrelevant changes are often overlooked (Galpin et al., 2009; 538 Mueller and Trick, 2013; Velichkovsky et al., 2002; Zhao et al., 2014), even though target position 539 was systematically manipulated so that half of the trees appeared directly next to the road where they 540 pose a potential hazard in the event of an emergency. This is consistent with recent research which 541 found that changing roadside foliage has minimal (≤1km/h) or no effect on travel speeds (Fitzpatrick 542 et al., 2016). It is also consistent with research on risk perception, which found that participants 543 consistently overlook subtle roadside features that increase the hazardousness of a particular road 544 (Charlton et al., 2014). However, it is seemingly inconsistent with research which that drivers 545 nominate lower safe travel speeds (Goldenbeld and van Schagen, 2007) and reduce their speed by up 546 to 12-14% (Elliott et al., 2003) on tree-lined roads. A notable conceptual difference that can account

CHANGE DETECTION IN URBAN & RURAL DRIVING SCENES

for this discrepancy is that research demonstrating effects of roadside foliage compared the complete
absence versus presence of trees, whereas in the current study a single tree was added or removed
(with other trees remaining), which would be expected to have a lesser effect.

550 When changes involved signs, participants were significantly less efficient at change 551 detection compared to all other types (excluding trees). In both urban and rural scenes, participants 552 were less accurate and exhibited longer RTs and dwell times for sign changes. These results are 553 consistent with previous research, which found that participants commonly exhibit change blindness 554 for road signs (Charlton and Starkey, 2013; Harms and Brookhuis, 2016; Martens and Fox, 2007). 555 One commonality across the non-sign, non-tree target types in the current study is that they are all 556 objects that could plausibly change: cars, motorcycles, pedestrians and animals are all mobile, 557 whereas traffic lights have a fixed position but update dynamically. As such, participants may have 558 been preferentially attending to aspects of the scene that are most likely to change in a real driving 559 environment.

560 Another explanation is that participants preferentially attend to objects that are potentially 561 dangerous. This is supported by RT, probability of fixation, and looked-but-failed-to-see error 562 analyses. Specifically, changes involving pedestrians and traffic lights were not significantly 563 different from sign changes in terms of RT, probability of target fixation, and looked-but-failed-to-564 see errors. In contrast, when changes involved cars, motorcycles, or animals, participants exhibited 565 shorter RTs, increased probability of fixating the target, and reduced probability of looked-but-566 failed-to-see errors. The key difference between cars, motorcycles and animals on the one hand, and 567 pedestrians and traffic lights on the other hand, is that the former category have greater potential to 568 cause damage to a driver.

569 4.4. Individual differences in change detection

570 A final point worth noting is that the self-report measures of cognitive failures and driving-571 related errors and lapses did not reliably predict change detection performance. This is reminiscent of

CHANGE DETECTION IN URBAN & RURAL DRIVING SCENES

572 "change blindness blindness", whereby observers under-estimate their susceptibility to change 573 blindness (Beck et al., 2007). When driving, this could be problematic if drivers are not aware of 574 precisely how difficult it is to detect changes, especially for changes involving road signs. Two main 575 avenues are available for addressing this issue. First, driver education programs should aim to raise 576 awareness of change blindness, highlighting the types of changes that drivers are most likely to have 577 trouble detecting. Although some driver education programs do mention change blindness, they often use generic examples rather than focusing on specifics of when these phenomena are likely to occur 578 579 on the road. Second, road sign design and placement should be rigorously evaluated and changed 580 where appropriate, so that redundant signs can be eliminated and safety-critical signs can be 581 redesigned to better capture drivers' attention.

582 **5.** Summary

583 Overall the current results indicate that change detection efficiency is affected by several 584 variables, including the driving environment, the type of object changed, and its safety relevance. Specifically, drivers are more efficient at detecting changes to other road users or potential hazards, 585 586 such as animals near the roadside, as well as changes with greater safety relevance. Drivers are also 587 better at detecting changes in rural scenes compared to urban scenes, which is likely because there is 588 less visual clutter in rural areas, but could also reflect the fact that urban areas are more familiar 589 (which has been demonstrated to exacerbate change blindness). Most notably, all the change targets 590 in the current study were potentially driving relevant, in that they were road users or roadside objects. 591 The results therefore demonstrate that not all "driving relevant" changes are equal, which has 592 implications for future research in this area that seeks to understand drivers' allocation of visual 593 attention within their environment.

32

Acknowledgements

This work was supported by an NRMA-ACT Road Safety Trust Grant. Vanessa Beanland is supported by an Australian Research Council Discovery Early Career Researcher Award [grant DE150100083]. We thank Shannon Webb and Erin Walsh for their assistance with preparing the photographic stimuli used in the experiment.

References

- Beanland, V., Fitzharris, M., Young, K.L., Lenné, M.G. 2013. Driver inattention and driver distraction in serious casualty crashes: Data from the Australian National Crash In-depth Study. Accid. Anal. Prev. 54, 99-107, <u>http://dx.doi.org/10.1016/j.aap.2012.12.043</u>.
- Beanland, V., Sellbom, M., Johnson, A.K. 2014. Personality domains and traits that predict selfreported aberrant driving behaviours in a southeastern US university sample. Accid. Anal. Prev. 72, 184-192, <u>http://dx.doi.org/10.1016/j.aap.2014.06.023</u>.
- Beck, M.R., Levin, D.T., Angelone, B. 2007. Change blindness blindness: Beliefs about the roles of intention and scene complexity in change detection. Conscious. Cogn. 16 (1), 31-51, <u>http://dx.doi.org/10.1016/j.concog.2006.01.003</u>.
- Bridger, R.S., Johnsen, S.Å.K., Brasher, K. 2013. Psychometric properties of the Cognitive Failures Questionnaire. Ergonomics 56 (10), 1515-1524, http://dx.doi.org/10.1080/00140139.2013.821172.
- Broadbent, D.E., Cooper, P.F., FitzGerald, P., Parkes, K.R. 1982. The Cognitive Failures Questionnaire (CFQ) and its correlates. Br. J. Clin. Psychol. 21, 1–16.
- Caird, J.K., Edwards, C.J., Creaser, J.I., Horrey, W.J. 2005. Older driver failures of attention at intersections: Using change blindness methods to assess turn decision accuracy. Hum. Factors 47 (2), 235-249, <u>http://dx.doi.org/10.1518/0018720054679542</u>.
- Charlton, S.G., Starkey, N.J. 2013. Driving on familiar roads: Automaticity and inattention blindness. Transport. Res. F: Traffic Psychol. Behav. 19, 121-133, http://dx.doi.org/10.1016/j.trf.2013.03.008.
- Charlton, S.G., Starkey, N.J., Perrone, J.A., Isler, R.B. 2014. What's the risk? A comparison of actual and perceived driving risk. Transport. Res. F: Traffic Psychol. Behav. 25 (Part A), 50-64. http://dx.doi.org/10.1016/j.trf.2014.05.003.

Edwards, C.J., Caird, J.K., Chisholm, S.L. 2008. The effect of driving experience on change blindness at intersections: Decision accuracy and eye movement results. Proc. Hum. Fact. Ergon. Soc. Annu. Meet. 52 (18), 1243-1247,

http://dx.doi.org/10.1177/154193120805201819.

- Elliott, M.A., McColl, V.A., Kennedy, J.V. 2003. Road design measures to reduce drivers' speed via 'psychological' processes: A literature review. TRL Report TRL564.
- Falkmer, T., Gregersen, N.P. 2005. A comparison of eye movement behavior of inexperienced and experienced drivers in real traffic environments. Optom. Vis. Sci. 82 (8), 732-739.
- Feil, A., Mestre, J.P. 2010. Change blindness as a means of studying expertise in physics. J. Learn. Sci. 19 (4), 480-505, <u>http://dx.doi.org/10.1080/10508406.2010.505139</u>.
- Fitzpatrick, C.D., Samuel, S., Knodler Jr, M.A. 2016. Evaluating the effect of vegetation and clear zone width on driver behavior using a driving simulator. Transport. Res. F: Traffic Psychol. Behav. <u>http://dx.doi.org/10.1016/j.trf.2016.07.002</u>.
- Forster, S., Lavie, N. 2007. High perceptual load makes everybody equal: Eliminating individual differences in distractibility with load. Psychol. Sci. 18, 377–381, http://dx.doi.org/10.1111/j.1467-9280.2007.01908.x.
- Galpin, A., Underwood, G., Crundall, D. 2009. Change blindness in driving scenes. Transport.Res. F: Traffic Psychol. Behav. 12(2), 179-185,

http://dx.doi.org/10.1016/j.trf.2008.11.002.

Goldenbeld, C., van Schagen, I. 2007. The credibility of speed limits on 80 km/h rural roads: The effects of road and person(ality) characteristics. Accid. Anal. Prev. 39(6), 1121-1130, http://dx.doi.org/10.1016/j.aap.2007.02.012.

- Harms, I.M., Brookhuis, K.A. 2016. Dynamic traffic management on a familiar road: Failing to detect changes in variable speed limits. Transport. Res. F: Traffic Psychol. Behav. 38, 37-46, <u>http://dx.doi.org/10.1016/j.trf.2016.01.005</u>.
- Hayhoe, M., Ballard, D. 2005. Eye movements in natural behavior. Trends Cogn. Sci. 9(4), 188-194, <u>http://dx.doi.org/10.1016/j.tics.2005.02.009</u>.

Jensen, M.S., Yao, R., Street, W.N., & Simons, D.J. 2011. Change blindness and inattentional blindness. Wiley Interdiscip. Rev. Cogn. Sci. 2 (5), 529-546, http://dx.doi.org/10.1002/wcs.130.

- Koustanaï, A., Van Elslande, P., Bastien, C. 2012. Use of change blindness to measure different abilities to detect relevant changes in natural driving scenes. Transport. Res. F: Traffic Psychol. Behav. 15(3), 233-242, <u>http://dx.doi.org/10.1016/j.trf.2011.12.012</u>.
- Lajunen, T., Parker, D., Summala, H., 2004. The Manchester Driver Behaviour Questionnaire: a cross-cultural study. Accid. Anal. Prev. 36 (2), 231–238, <u>http://dx.doi.org/10.1016/S0001-4575(02)00152-5</u>.
- Lawton, R., Parker, D., Stradling, S.G., Manstead, A.S.R., 1997. Predicting road traffic accidents: the role of social deviance and violations. Br. J. Psychol. 88 (2),249–262, <u>http://dx.doi.org/10.1111/j.2044-8295.1997.tb02633.x</u>.
- Lee, Y.-C., Lee, J.D., Ng Boyle, L. 2007. Visual attention in driving: The effects of cognitive load and visual disruption. Hum. Factors 49 (4), 721-733, <u>http://dx.doi.org/10.1518/001872007x215791.</u>
- Liang, K.-Y., Zeger, S.L. 1986. Longitudinal data analysis using generalized linear models. Biometrika 73 (1), 13-22, http://dx.doi.org/10.1093/biomet/73.1.13.
- Ma, Y., Mazumdar, M., Memtsoudis, S.G. 2012. Beyond repeated-measures analysis of variance: advanced statistical methods for the analysis of longitudinal data in anesthesia research.

Reg. Anesth. Pain Med. 37 (1), 99-105,

http://dx.doi.org/10.1097/AAP.0b013e31823ebc74.

- Marchetti, L.M., Biello, S.M., Broomfield, N.M., Macmahon, K.M.A., Espie, C.A. 2006. Who is pre-occupied with sleep? A comparison of attention bias in people with psychophysiological insomnia, delayed sleep phase syndrome and good sleepers using the induced change blindness paradigm. J. Sleep Res. 15 (2), 212-221, http://dx.doi.org/10.1111/j.1365-2869.2006.00510.x.
- Martens, M.H., Fox, M.R.J. 2007. Do familiarity and expectations change perception? Drivers' glances and response to changes. Transport. Res. F: Traffic Psychol. Behav. 10(6), 476-492, <u>http://dx.doi.org/10.1016/j.trf.2007.05.003</u>.
- Mattsson, M., 2012. Investigating the factorial invariance of the 28-item DBQ across genders and age groups: an exploratory structural equation modeling study. Accid. Anal. Prev. 48, 379–396, <u>http://dx.doi.org/10.1016/j.aap.2012.02.009</u>.
- McCarley, J.S., Vais, M.J., Pringle, H., Kramer, A.F., Irwin, D.E., Strayer, D.L. 2004. Conversation disrupts change detection in complex traffic scenes. Hum. Factors 46 (3), 424-436, <u>http://dx.doi.org/10.1518/hfes.46.3.424.50394</u>.
- Mueller, A.S., Trick, L.M. 2013. Effect of driving experience on change detection based on target relevance and size. Paper presented at the 7th International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design.
- Rensink, R.A., O'Regan, J.K., Clark, J.J. 1997. To see or not to see: The need for attention to perceive changes in scenes. Psychol. Sci. 8 (5), 368-373, <u>http://dx.doi.org/10.1111/j.1467-</u> 9280.1997.tb00427.x.

Reingold, E.M., Charness, N., Pomplun, M., Stampe, D.M. 2001. Visual span in expert chess players: Evidence from eye movements. Psychol. Sci. 12 (1), 48-55, http://dx.doi.org/10.1111/1467-9280.00309.

- Richard, C.M., Wright, R.D., Ee, C., Prime, S.L., Shimizu, Y., Vavrik, J. 2002. Effect of a concurrent auditory task on visual search performance in a driving-related image-flicker task. Hum. Factors 44(1), 108-119, <u>http://dx.doi.org/10.1518/0018720024494874</u>.
- Shinoda, H., Hayhoe, M.M., Shrivastava, A. 2001. What controls attention in natural environments? Vis. Res. 41 (25-26), 3535-3545, <u>http://dx.doi.org/10.1016/S0042-6989(01)00199-7</u>.
- Underwood, G. 2007. Visual attention and the transition from novice to advanced driver. Ergonomics 50 (8), 1235-1249, <u>http://dx.doi.org/10.1080/00140130701318707</u>.
- Velichkovsky, B.M., Dornhoefer, S.M., Kopf, M., Helmert, J., Joos, M. 2002. Change detection and occlusion modes in road-traffic scenarios. Transport. Res. F: Traffic Psychol. Behav. 5(2), 99-109, <u>http://dx.doi.org/10.1016/S1369-8478(02)00009-8</u>.
- von Stülpnagel, R., Steffens, M.C. 2012. Can active navigation be as good as driving? A comparison of spatial memory in drivers and backseat drivers. J. Exp. Psychol. Appl. 18(2), 162-177, <u>http://dx.doi.org/10.1037/a0027133</u>.
- Wallace, C.J. 2004. Confirmatory factor analysis of the cognitive failures questionnaire: evidence for dimensionality and construct validity. Pers. Individ. Dif. 37 (2), 307-324, http://dx.doi.org/10.1016/j.paid.2003.09.005.
- Wetton, M.A., Horswill, M.S., Hatherly, C., Wood, J.M., Pachana, N.A., Anstey, K.J. 2010. The development and validation of two complementary measures of drivers' hazard perception ability. Accid. Anal. Prev. 42 (4), 1232-1239, http://dx.doi.org/10.1016/j.aap.2010.01.017.

- Werner, S., Thies, B. 2000. Is "change blindness" attenuated by domain-specific expertise? An expert-novices comparison of change detection in football images. Vis. Cogn. 7 (1-3), 163-173, <u>http://dx.doi.org/10.1080/135062800394748</u>.
- White, C.B., Caird, J.K. 2010. The blind date: The effects of change blindness, passenger conversation and gender on looked-but-failed-to-see (LBFTS) errors. Accid. Anal. Prev. 42(6), 1822-1830, <u>http://dx.doi.org/10.1016/j.aap.2010.05.003</u>.
- Whitney, D., Levi, D.M. 2011. Visual crowding: a fundamental limit on conscious perception and object recognition. Trends Cogn. Sci. 15 (4), 160-168, http://dx.doi.org/10.1016/j.tics.2011.02.005.
- Zhao, N., Chen, W., Xuan, Y., Mehler, B., Reimer, B., Fu, X. 2014. Drivers' and non-drivers' performance in a change detection task with static driving scenes: is there a benefit of experience? Ergonomics 57(7), 998-1007, <u>http://dx.doi.org/10.1080/00140139.2014.909952</u>.