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Abstract 

The ability to detect changes is crucial for safe driving. Previous research has demonstrated that 

drivers often experience change blindness, which refers to failed or delayed change detection. 

The current study explored how susceptibility to change blindness varies as a function of the 

driving environment, type of object changed, and safety relevance of the change. Twenty-six 

fully-licenced drivers completed a driving-related change detection task. Changes occurred to 

seven target objects (road signs, cars, motorcycles, traffic lights, pedestrians, animals, or roadside 

trees) across two environments (urban or rural). The contextual safety relevance of the change 

was systematically manipulated within each object category, ranging from high safety relevance 

(i.e., requiring a response by the driver) to low safety relevance (i.e., requiring no response). 

When viewing rural scenes, compared with urban scenes, participants were significantly faster 

and more accurate at detecting changes, and were less susceptible to “looked-but-failed-to-see” 

errors. Interestingly, safety relevance of the change differentially affected performance in urban 

and rural environments. In urban scenes, participants were more efficient at detecting changes 

with higher safety relevance, whereas in rural scenes the effect of safety relevance has marginal 

to no effect on change detection. Finally, even after accounting for safety relevance, change 

blindness varied significantly between target types. Overall the results suggest that drivers are 

less susceptible to change blindness for objects that are likely to change or move (e.g., traffic 

lights vs. road signs), and for moving objects that pose greater danger (e.g., wild animals vs. 

pedestrians).  

 

Keywords: driving; change detection; visual attention; change blindness 
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1. Introduction 1 

The ability to detect changes is crucial for safe driving: we must notice when another vehicle 2 

pulls out ahead, when an in-vehicle alert appears, or when advisory signs are updated. However, 3 

research demonstrates drivers often fail to detect changes (Charlton and Starkey, 2013; Zhao et al., 4 

2014), which is referred to as change blindness (Rensink et al., 1997). Accurate change detection 5 

while driving is associated with safer decision-making (Caird et al., 2005; Edwards et al., 2008), and 6 

in-depth crash analyses suggest approximately 9% of serious injury crashes involve a driver failing 7 

to detect hazards (Beanland et al., 2013). 8 

Several paradigms have been used to explore change blindness (Jensen et al., 2011). The 9 

most common methods used in driving-related research are flicker tasks, one-shot tasks, and 10 

simulated driving scenarios. In flicker tasks, two alternating images are presented for a fraction of a 11 

second each (240-500ms), separated by a brief (80-500ms) blank screen that masks visual transients 12 

(Rensink et al., 1997). The sequence “flickers” between images until the observer determines 13 

whether they differ. One-shot tasks use a similar format, but each image is presented only once and 14 

stimulus durations are often longer (e.g., 10-15s; Zhao et al., 2014). Simulated driving paradigms 15 

embed change detection tasks within a driving simulator scenario. Some simulator studies mask 16 

changes with brief occlusion periods (Lee et al., 2007; Shinoda et al., 2001; Velichkovsky et al., 17 

2002; White and Caird, 2010), whereas others have changes occur naturalistically, for example, 18 

changing between repeated drives on the same road (Charlton and Starkey, 2013; Harms and 19 

Brookhuis, 2016; Martens and Fox, 2007). 20 

Previous research has examined how change detection in driving scenes is affected by factors 21 

including target relevance, driving experience, familiarity with the road environment, and secondary 22 

task engagement. Key findings are summarised in the following subsections.  23 
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1.1. Target relevance  24 

Observers are faster and more accurate at detecting changes to targets that have greater 25 

relevance to the overall scene context (Rensink et al., 1997) or are personally meaningful (Marchetti 26 

et al., 2006). Similarly, drivers are better at detecting changes to driving-relevant targets, compared 27 

with irrelevant targets (Galpin et al., 2009; Mueller and Trick, 2013; Velichkovsky et al., 2002; Zhao 28 

et al., 2014). One caveat is that many studies use broad definitions of “relevant” and “irrelevant”. 29 

Relevant targets include vehicles, pedestrians, and road signs, whereas irrelevant targets include 30 

buildings, dumpsters, and mailboxes (Galpin et al., 2009; Mueller and Trick, 2013; Velichkovsky et 31 

al., 2002). This raises a potential confound, as irrelevant targets are typically stationary objects 32 

positioned off-road and farther from the driver’s central focus. Moreover, these studies group 33 

together multiple driving-relevant targets, which vary considerably in their importance to safe 34 

driving. 35 

Two simulator studies provided more systematic manipulation of relevance within a single 36 

class of targets (Lee et al., 2007; Shinoda et al., 2001). In the first study, a “no parking” sign changed 37 

into a “stop” sign, and target placement was systematically manipulated. Drivers were significantly 38 

less likely to notice the changing sign when they were following another car, or when it occurred 39 

mid-block, compared with when it occurred at an intersection (Shinoda et al., 2001). Arguably, stop 40 

signs are equally relevant regardless of where they appear; however, drivers expect signs at 41 

intersections to convey more meaningful information. In another study, Lee et al. (2007) tested 42 

drivers’ ability to detect changes to vehicles that were either parked, moving ahead, or moving 43 

behind. Drivers were most sensitive to lead vehicles moving closer to them (simulating sudden 44 

braking) and were least sensitive to changes involving parked vehicles. This suggests drivers are 45 

more efficient at detecting changes with greater safety relevance; however, safety relevance was 46 

confounded with target location (Lee et al., 2007). 47 
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Finally, a French study using a one-shot task manipulated the relevance of changes involving 48 

cars (Koustanaï et al., 2012). A car was either added or moved (e.g., to simulate turning, or to appear 49 

closer) within a driving scene, and task instructions were varied to manipulate the relevance of these 50 

changes. Participants were better at detecting changes when instructed to make driving-related 51 

judgements about the scene (e.g., whether it was safe to turn or cross the intersection). Participants 52 

were also better at detecting a car appearing in urban versus rural environments, which the authors 53 

suggested could be due to contrast and salience (which was lower in rural images) and/or 54 

expectations (i.e., drivers expect cars to appear suddenly in urban areas; Koustanaï et al., 2012).   55 

1.2. Driving experience  56 

Change blindness research in non-driving domains consistently indicates that domain-experts 57 

are less susceptible to change blindness for expertise-related changes, compared with domain-58 

novices (Feil and Mestre, 2010; Reingold et al., 2001; Werner and Thies, 2000). For instance, 59 

American football experts are faster than non-experts at detecting changes to football-related images 60 

that meaningfully alter game formations, but not at non-meaningful or non-football-related changes 61 

(Werner and Thies, 2000). Comparable findings have been obtained for chess masters (Reingold et 62 

al., 2001) and physics experts (Feil and Mestre, 2010). However, research examining the effects of 63 

driving experience on change detection has yielded mixed results (Zhao et al., 2014). 64 

One approach for examining experience effects is to compare drivers with non-drivers. An 65 

English study comparing non-drivers and drivers found no significant difference in performance on a 66 

driving-related flicker change detection task (Galpin et al., 2009). The authors suggested their driver 67 

group may have had insufficient experience (average 70 months). For example, novice drivers and 68 

non-drivers may show similarities because non-drivers have experience as “backseat drivers”, which 69 

can confer familiarity with road environments and driving routes (von Stülpnagel and Steffens, 2012). 70 

Following this, a Chinese study compared change detection ability in non-drivers and drivers 71 

with on average 33 months’ experience (Zhao et al., 2014). The Chinese study used a one-shot task 72 
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and inserted a central fixation point on half the trials. Drivers and non-drivers performed similarly on 73 

trials with no fixation point, replicating Galpin et al.’s (2009) results. When the fixation point was 74 

present, non-drivers were significantly less accurate than drivers at detecting driving-related and 75 

peripheral changes (Zhao et al., 2014). The authors suggested driving experience helps facilitate 76 

more efficient processing of driving-related and peripheral elements while fixating centrally.    77 

 Other studies have compared change detection abilities among drivers with varied 78 

experience. In a US study comparing young novice drivers (average 6 months’ experience) to more 79 

experienced young drivers (average 7 years’ experience), both groups performed similarly on 80 

driving-related changes but novices were less accurate at irrelevant changes (Mueller and Trick, 81 

2013). One explanation is that experienced drivers are more efficient at processing driving-related 82 

information, so they have greater capacity remaining for processing irrelevant information. This is 83 

consistent with Zhao et al.’s (2014) findings, whereby drivers showed superior detection of 84 

peripheral changes compared with non-drivers. Further, a French study comparing novice drivers 85 

(average 1.3 years’ experience) with more experienced drivers (average 5.6 years’ experience) found 86 

that the experienced drivers were significantly more accurate at change detection when the task 87 

required them to judge whether it was safe to traverse an intersection, but not when the task involved 88 

simply viewing the images (Koustanaï et al., 2012). 89 

Finally, an Australian study found that after accounting for simple reaction time differences, 90 

drivers with <3 years’ experience were significantly faster at detecting driving-related changes, 91 

compared with drivers who had >10 years’ experience (Wetton et al., 2010). Notably, this study’s 92 

“novice” group had as much experience as “experienced” drivers in some other studies (e.g., Zhao et 93 

al., 2014). Overall it seems that differences in change detection ability are most likely when 94 

comparing drivers with either non-drivers or very inexperienced drivers. 95 
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1.3. Familiarity 96 

Some studies have examined the effect of environmental familiarity on change detection 97 

(Charlton and Starkey, 2013; Harms and Brookhuis, 2016; Martens and Fox, 2007). These studies 98 

use similar methods: all recruited groups of drivers to complete 20-25 simulated drives over several 99 

days or weeks. Whereas most studies assess short-term changes (i.e., detecting a change within the 100 

past second), familiarity studies typically assess long-term change detection, such as when a speed 101 

limit has changed. Overall, these studies suggest that familiarity increases drivers’ sensitivity to 102 

certain environmental elements but impairs others. For instance, familiar drivers are faster at 103 

detecting a target vehicle (Charlton and Starkey, 2013). These benefits are offset by substantial 104 

change blindness to other aspects of the environment, even for safety relevant changes. Many drivers 105 

failed to detect when an intersection sign changed from granting them priority to requiring them to 106 

give way (Martens and Fox, 2007), when speed limits on dynamic speed signs changed (Harms and 107 

Brookhuis, 2016), or when signs changed from English to German language (Charlton and Starkey, 108 

2013). Drivers also exhibited robust change blindness to the addition or removal of roadside 109 

buildings, but were much better at detecting changes to road markings, even after repeated exposure 110 

(Charlton and Starkey, 2013). This suggests drivers pay relatively less attention to the roadside – 111 

including safety-relevant signs – on familiar routes, but maintain focus on the road itself. 112 

1.4. Secondary task engagement 113 

Studies examining the impact of secondary task engagement on driving-related change 114 

detection have indicated that engagement in a cognitively demanding secondary task significantly 115 

impairs change detection (Lee et al., 2007; McCarley et al., 2004; Richard et al., 2002; White and 116 

Caird, 2010). Specific aspects of change detection affected by dual-task engagement include 117 

accuracy, sensitivity and response time. Tasks that impair change detection include auditory working 118 

memory tasks, hands-free phone conversation, and responding to messages, but not passive listening 119 

(Lee et al., 2007; McCarley et al., 2004; Richard et al., 2002). Similarly, White and Caird (2010) 120 
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found young adult drivers were less likely to detect changes when accompanied by an attractive 121 

opposite-sex passenger, compared with participants driving alone. Notably, McCarley et al. (2004) 122 

found drivers were equally likely to fixate change targets when talking on a phone, but failed to 123 

consciously detect the change. Together these findings suggest that driver distraction can exacerbate 124 

change blindness. 125 

1.5. The current study 126 

Change blindness often occurs in driving environments, but the extent of change blindness 127 

varies depending on characteristics of the changed object. Previous studies have either defined task 128 

relevance quite broadly (Galpin et al., 2009; Mueller and Trick, 2013; Velichkovsky et al., 2002; 129 

Zhao et al., 2014) or have used only a single class of targets (Koustanaï et al., 2012; Lee et al., 2007; 130 

Shinoda et al., 2001), so there is scope for more systematic investigation of the relationship between 131 

target characteristics and change detection. The current study was designed to assess change 132 

blindness in urban and rural driving scenes across a range of target types including vehicles, 133 

vulnerable road users, signs, and roadside objects. All are potentially relevant to safe driving, so we 134 

systematically manipulated the contextual safety relevance of changes within each category. This 135 

allowed us to explore whether the type of target or its safety relevance is more influential in change 136 

detection, and whether these factors interact. In addition to standard measures of accuracy and 137 

response time (RT), eye movements were recorded to provide a more comprehensive understanding 138 

of how change detection occurs. 139 

2. Method 140 

2.1. Participants 141 

Twenty-six drivers (15 female, 11 male) aged 20-43 years (M = 22.9, SD = 4.7) participated 142 

in a single 1-hour session. Data from one additional participant was discarded due to technical errors. 143 

All participants had normal or corrected-to-normal visual acuity (measured using a near vision chart), 144 

held a current unrestricted Australian driver’s licence, and drove at least once a week within the local 145 
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region. Participants provided written informed consent and received AUD$20. Ethical aspects of the 146 

research were approved by the Australian National University Human Research Ethics Committee 147 

(protocol 2014/458). 148 

2.2. Apparatus 149 

Visual stimuli were presented on a 27” Apple iMac desktop computer. An Eyelink 1000 eye-150 

tracker, with a reported spatial accuracy within 0.25-0.5°, was used to monitor eye movements at a 151 

temporal frequency of 1000Hz. Head position was fixed using a chinrest with a viewing distance of 152 

95cm, yielding a display area of 30.3° × 19.4° visual angle. Stimulus presentation and data 153 

acquisition were controlled via SR Research Experiment Builder. 154 

2.3. Stimuli 155 

Experimental stimuli included 200 image pairs depicting driving scenes, which constituted 50 156 

urban change-present pairs, 50 rural change-present pairs, 50 urban change-absent pairs and 50 rural 157 

change-absent pairs. All images subtended 23.0° × 17.5° and were taken during daylight hours on 158 

urban and rural roads in the areas surrounding the data collection location (i.e., areas likely to be 159 

familiar to participants) using a digital camera mounted on the dashboard of a station wagon. In 160 

change-absent image pairs the two images displayed were identical, whereas in change-present pairs 161 

one of the images was edited to add, remove or alter a single driving-relevant target. Images used 162 

were selected from a larger sample (N > 2000) of photographs. Images for the change-present trials 163 

were selected and edited first, and then similar images (e.g., taken on the same road, with similar 164 

traffic density, but a different day or time) were selected to comprise the change-absent trials, to 165 

ensure that the images used in change-absent and change-present trials were matched in terms of 166 

visual features and complexity. 167 

Within both the urban and rural environments, five types of target objects were changed. In 168 

the urban scenes change targets were road signs, cars, motorcycles, traffic lights, and pedestrians, 169 

with 10 trials per category. In the rural scenes change targets were road signs, cars, motorcycles, 170 
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trees, and animals (kangaroos or cows), again with 10 trials per category. For the three categories 171 

that occurred in both urban and rural scenes (i.e., road signs, cars, motorcycles), changes were 172 

matched so that equivalent changes occurred in both environments.  173 

Within each target type the potential safety impact of the change was manipulated, ranging 174 

from high potential safety impact (e.g., vehicle appears/disappears immediately in front of the 175 

participant, 10 km/h change to speed limit sign) to low potential safety impact (e.g., parked vehicle 176 

appears/disappears, change to bicycle lane advisory sign content). The key differentiator between 177 

high- and low-impact images was that high-impact changes would require a driver to change their 178 

behaviour (e.g., adjust travel speed, brake, monitor a potential hazard), whereas low-impact changes 179 

would not require any response. As previous studies have found discrepancies between objective 180 

(expert-assessed) risk and subjective risk perceived by drivers (Charlton et al., 2014), to better 181 

capture the safety relevance of changes as perceived by participants, we had a separate group of 21 182 

fully licenced drivers aged 25-40 years (M = 29.1, SD = 3.6) rate the safety relevance of each change 183 

on an 11-point scale from 0 (not at all safety relevant) to 10 (highly safety relevant). Ratings for each 184 

image pair were averaged across drivers to derive a safety relevance score between 0-10 for each 185 

image pair, which was used as a covariate in statistical analyses for the current study.  186 

Image pairs were presented using a “flicker” sequence, in which one image was presented for 187 

500ms, followed by a 500ms blank grey screen, followed by the second image for 500ms and then 188 

another 500ms blank (see Figure 1). The cycle of alternating images and blanks continued until the 189 

participant responded, or for 30s, whichever occurred first. Participants were instructed to decide as 190 

quickly as possible whether a change occurred and then immediately press the space bar. They were 191 

then prompted to report whether a change occurred (yes/no) and, if applicable, the change target. 192 

Available response options for both urban and rural trials were: “vehicle”, “motorcycle”, “bicycle”, 193 

“person”, “animal”, “tree”, “building”, “sign”, and “traffic light”. If participants failed to respond 194 

within 30s the program automatically proceeded to a response screen that asked them to indicate 195 
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whether a change occurred. Change-present trials were considered “correct” if the observer correctly 196 

identified the change target, but were considered “incorrect” if they reported no change or failed to 197 

select the correct change target. Change-absent trials were considered “correct” if the observer 198 

reported no change, and were considered “incorrect” if they indicated a change occurred. 199 

The experiment contained 220 trials, which comprised 200 trials with unique image pairs 200 

(100 change-present, 100 change-absent, as described above) and 20 trials with repeated images (10 201 

change-present, 10 change-absent). For the current study, only the 200 unique trials were analysed. 202 

Trial order was randomised, such that urban and rural images were intermixed, with scheduled 203 

breaks every 55 trials. The experimental task was preceded by 5 practice trials (3 change-present, 2 204 

change-absent), which used driving-related images taken from a previous study. 205 

 206 

Figure 1.  207 

Example trial sequence depicting an urban change-present trial in which the change target is a 208 

car (the blue car appears/disappears). 209 

 210 

Image B: 500ms

Blank: 500ms

Image A: 500ms

Blank: 500ms
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2.4. Self-Report Measures 211 

Participants completed a brief demographic questionnaire and two self-report inventories, the 212 

Driver Behaviour Questionnaire (DBQ; Lajunen et al., 2004; Lawton et al., 1997; Mattsson, 2012) 213 

and the Cognitive Failures Questionnaire (CFQ; Broadbent et al., 1982). 214 

The DBQ requires respondents to rate their frequency of engaging in 28 aberrant driving 215 

behaviours on a 6-point Likert scale from 0 (never) to 5 (nearly all the time). Previous research has 216 

typically found that in English-speaking populations this scale reveals four subtypes of aberrant 217 

driving behaviour (Beanland et al., 2014): Ordinary Violations, or deliberately disregarding road 218 

rules and norms; Aggressive Violations, involving hostility towards other road users; Errors, which 219 

are dangerous non-deliberate acts, such as failing to detect oncoming traffic before turning; and 220 

Lapses, which are relatively minor failures, such as misreading road signs. For the current study, the 221 

Errors and Lapses subscales were of particular interest. 222 

The CFQ requires respondents to rate their frequency of 25 lapses of attention, perception 223 

and memory in everyday life on a 5-point Likert scale from 0 (never) to 4 (very often). Originally it 224 

was claimed that the scale measured a unitary construct, with specific subfactors varying between 225 

populations (Broadbent et al., 1982). Subsequent studies have found that multi-factor solutions fit the 226 

data better than single-factor solutions (Bridger et al., 2013; Wallace, 2004); however, the specific 227 

factor structure varies between populations and even within populations over time (Bridger et al., 228 

2013). Given this inconsistency, and the fact that overall CFQ scores are significantly associated 229 

with some aspects of visual attention (e.g., Forster and Lavie, 2007), for the current study overall 230 

CFQ scores were analysed. 231 

2.5. Procedure 232 

Participants were tested individually in a dark, quiet laboratory. After providing written 233 

informed consent participants completed the visual acuity screening test and self-report measures. 234 
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Participants were then seated in front of the computer with their head position stabilised using 235 

a chinrest. The eye-tracker was calibrated for each participant using a 16-point calibration grid and 236 

then validated to ensure that average gaze error was <0.5°, which is within the manufacturer-237 

specified margin of acceptable error. Each trial commenced with a drift check to ensure gaze 238 

calibration accuracy was maintained. The system was recalibrated if the error exceeded 1.0° for three 239 

consecutive trials, and after scheduled breaks.  240 

2.6. Data analysis 241 

Statistical analyses were performed using SPSS. Change detection performance was analysed 242 

using Generalized Estimating Equations (GEE; Liang and Zeger, 1986), an extension of the general 243 

linear model that permits analysis of repeated measurements even where different participants 244 

contribute a different number of observations. Analyses for continuous variables (RT, time to first 245 

fixation, dwell time) used linear GEE specifying a normal distribution specifying a log link function 246 

(as variables were positively skewed) and an exchangeable correlation matrix. Linear GEE functions 247 

similarly to repeated-measures analysis of variance (RM-ANOVA). The crucial difference is that 248 

GEE is based on individual trials (accounting for both within- and between-subjects variance), 249 

whereas RM-ANOVA is based on averages and requires that all participants have data in each 250 

condition. The RM-ANOVA requirements are problematic for change detection studies as RT 251 

analyses include only correct trials, but some observers may consistently fail to detect specific target 252 

categories (e.g., “tree” changes in the current study). GEE is therefore useful as it can accommodate 253 

missing data and provides greater statistical power compared with RM-ANOVA (Ma et al., 2012). 254 

Analyses for binary variables (accuracy, probability of fixating target, probability of looked-255 

but-failed-to-see errors) used binary logistic GEE specifying an exchangeable correlation matrix. 256 

Binary logistic GEE functions similarly to binary logistic regression, but because GEE permits 257 

repeated measurements it can be used to assess whether the probability of a binary outcome differs 258 

according to within-subjects variables (e.g., target type).  259 



CHANGE DETECTION IN URBAN & RURAL DRIVING SCENES 14 

For change-present trials, three analyses were conducted for each variable: urban change 260 

detection; rural change detection; and urban/rural comparison. The urban analysis used change target 261 

type (road signs, cars, motorcycles, pedestrians, traffic lights) as a categorical predictor, with safety 262 

relevance of the change as a continuous covariate. The rural analysis used change target type (road 263 

signs, cars, motorcycles, animals, trees) as a predictor, with safety relevance as a covariate. The 264 

urban/rural comparison also used change target type as a predictor and safety relevance as a 265 

covariate, but only included trials where the target was a road sign, car, or motorcycle (i.e., targets 266 

found in both environments). This was to avoid confounds due to the fact that different target types 267 

appeared in the two environments. In all analyses, road signs were used as the reference group 268 

against which performance for other target types was compared.  269 

Correlations and paired t-tests were used for other measures where overall performance was 270 

of interest. An alpha level of .05 was used to assess statistical significance.  271 

3. Results 272 

3.1. Participants’ driving patterns 273 

Participants had an average self-reported weekly driving frequency of 4.9 hours (SD = 3.3; 274 

range 1-18 hours) or 182 km (SD = 133; range 20-500 km). As shown in Figure 2, participants drove 275 

most frequently on urban roads. Nearly 90% reported that they drove on urban 60 km/h roads 276 

frequently or all the time, and 58-65% reported driving on higher speed urban roads frequently or all 277 

the time. In contrast, over 90% reported that they drove on rural roads occasionally, hardly ever, or 278 

never.  279 
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 280 

Figure 2.  281 

Participants’ self-reported frequency of driving on different road types. 282 

 283 

3.2. Change detection accuracy 284 

Accuracy on the change-absent trials was at ceiling (99.4% in rural scenes, 99.2% in urban 285 

scenes) and so was not included in any statistical analyses. As shown in Figure 3, accuracy on 286 

change-present trials differed between target types. 287 
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 288 

 289 

Figure 3.  290 

Change detection accuracy (top panel) and response time (bottom panel) by driving 291 

environment and target type. Error bars represent upper and lower 95% confidence intervals 292 

for estimated marginal means within each condition. 293 
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 294 

Within urban scenes, there was a significant main effect of target type on change detection 295 

accuracy, 𝜒𝜒2(4) = 143.39,𝑝𝑝 < .001. Compared to changes involving signs, participants were 296 

significantly more likely to detect all other types of changes (see Table 1), with the largest effect size 297 

for motorcycles. There was also a significant effect of safety relevance: the odds of detecting 298 

changes were greater for changes with higher safety relevance ratings (see Table 1). 299 

Within rural scenes, there was a significant main effect of target type on accuracy, 𝜒𝜒2(4) =300 

163.16, 𝑝𝑝 < .001. Compared with changes involving signs, participants were less likely to detect 301 

changes involving trees (only 8% detected), but were more likely to detect changes involving cars, 302 

motorcycles and animals (see Table 1). Safety relevance also predicted change detection accuracy in 303 

rural scenes, but the effect size was smaller than for urban scenes and only just met the criterion of 304 

statistical significance (see Table 1). 305 

Finally, for the separate analysis directly comparing urban and rural scenes, there was a 306 

significant main effect of environment on accuracy, 𝜒𝜒2(1) = 19.22,𝑝𝑝 < .001. Participants were less 307 

likely to detect changes in urban scenes compared with rural scenes (79% vs. 92% correct), B = -0.64, 308 

SE = 0.13, OR = 0.53, 95% CI OR [0.41, 0.68]. There was also a significant main effect of target 309 

type, 𝜒𝜒2(2) = 133.92,𝑝𝑝 < .001, consistent with the separate urban and rural analyses, but the target 310 

× environment interaction was not significant, 𝜒𝜒2(1) = 3.77, 𝑝𝑝 = .152. 311 
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Table 1 312 
Effects of target type and safety relevance on change detection accuracy, within each driving 313 
environment 314 
Parameter B SE Wald χ2 p OR 95% CI OR 

Urban Scenes 
Safety Relevance 0.65 0.07 83.62 < .001*** 1.92 [1.67, 2.20] 
Target Type       

Traffic Light 0.63 0.20 10.29  .001** 1.88 [1.28, 2.77] 
Pedestrian 0.94 0.18 27.00 < .001*** 2.56 [1.80, 3.66] 
Motorcycle 2.67 0.24 122.86 < .001*** 14.49 [9.03, 23.24] 
Car 1.71 0.20 71.34 < .001*** 5.55 [3.73, 8.26] 
Road Sign -      

Rural Scenes 
Safety Relevance 0.08 0.04 3.97 .046* 1.08 [1.001, 1.17] 
Target Type       

Tree -2.70 0.40 45.81 < .001*** 0.07 [0.03, 0.15] 
Animal 1.24 0.32 14.69 < .001*** 3.44 [1.83, 6.47] 
Motorcycle 3.92 0.58 45.38 < .001*** 50.41 [16.11, 157.70] 
Car 1.96 0.25 63.26 < .001*** 7.11 [4.38, 11.52] 
Road Sign -      

Note. Road signs were used as the reference category for both urban and rural scene analyses. OR = Odds Ratio. 95% CI 315 
= 95% Confidence Interval. *p < .05, **p < .01, ***p < .001. 316 

3.3. Change detection response time 317 

RT was analysed for correct trials only. Trials with RTs over 10s for change-present trials, or 318 

15s for change-absent trials, were excluded as these represented extreme outliers (≤1% of responses). 319 

Four analyses were conducted, examining RTs in: change-absent trials; urban change-present trials; 320 

rural change-present trials; and urban vs. rural change-present trials. 321 

3.3.1. Change-absent trials. RTs for change-absent trials were compared between urban and 322 

rural scenes. There was a significant effect of road environment, χ2(1) = 51.57, p < .001. The average 323 

time required to inspect urban scenes (M = 7046 ms, SE = 332) was significantly longer than to 324 

inspect rural scenes (M = 6623, SE = 318), B = 0.01, SE = 0.01, OR = 1.06, 95% CI OR [1.05, 1.08]. 325 



CHANGE DETECTION IN URBAN & RURAL DRIVING SCENES 19 

3.3.2. Change-present trials: urban environment. RTs for urban change-present trials were 326 

analysed with safety relevance as a covariate and target type as a predictor. There was a significant 327 

effect of safety relevance: participants were faster at detecting changes rated as having greater safety 328 

relevance (see Table 2). There was a also significant effect of target type, χ2(4) = 164.01, p < .001 329 

(see Table 2). There was a discrepancy between vehicles and other targets: compared to changes 330 

involving signs, participants were significantly faster at detecting changes involving cars or 331 

motorcycles, but were not significantly faster at changes involving pedestrians or traffic lights (see 332 

Figure 3). 333 

3.3.3. Change-present trials: rural environment. RTs for rural change-present trials were 334 

analysed with safety relevance as a covariate and target type as a predictor. The effect of safety 335 

relevance was not statistically significant, but there was a significant effect of target type, χ2(4) = 336 

82.01, p < .001 (see Table 2). RT results mirrored the pattern obtained for accuracy (see Figure 3). 337 

Compared with changes involving signs, participants were significantly slower at detecting changes 338 

involving trees, and significantly faster at detecting changes involving cars, motorcycles or animals. 339 
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Table 2 340 
Effects of target type and safety relevance on change detection response time (RT), within each 341 
driving environment 342 
Parameter B SE Wald χ2 p OR 95% CI OR 

Urban Scenes 
Safety Relevance -0.04 0.00 135.09 < .001*** 0.96 [0.96, 0.97] 
Target Type       

Traffic Light -0.03 0.02 1.28 .258 0.98 [0.93, 1.02] 
Pedestrian 0.00 0.03 0.02 .886 1.00 [0.94, 1.05] 
Motorcycle -0.12 0.03 20.43 < .001*** 0.89 [0.84, 0.93] 
Car -0.09 0.03 9.87 < .001*** 0.92 [0.87, 0.97] 
Road Sign -      

Rural Scenes 
Safety Relevance -0.01 0.00 2.68 .102 1.00 [0.99, 1.001] 
Target Type       

Tree 0.21 0.07 10.43 < .001*** 1.24 [1.09, 1.41] 
Animal -0.10 0.02 17.50 < .001*** 0.91 [0.87, 0.95] 
Motorcycle -0.18 0.03 41.61 < .001*** 0.84 [0.79, 0.88] 
Car -0.15 0.03 31.30 < .001*** 0.87 [0.82, 0.91] 
Road Sign -      

Note. Road signs were used as the reference category for both urban and rural scene analyses. OR = Odds Ratio. 95% CI 343 
= 95% Confidence Interval. *p < .05, **p < .01, ***p < .001. 344 

 345 

3.3.4. Change-present trials: urban/rural comparison. RTs were compared between urban 346 

and rural scenes for trials where the target was a road sign, car, or motorcycle. There was a 347 

significant main effect of environment, χ2(1) = 37.38, p < .001, with RTs being significantly longer 348 

for urban (M = 5105 ms, SE = 77) than rural scenes (M = 4803, SE = 86), B = 0.04, SE = 0.02, OR = 349 

1.05, 95% CI OR [1.004, 1.09]. There was also a significant main effect of target type, χ2(2) = 53.20, 350 

p < .001, but this did not significantly interact with environment, χ2(1) = 0.90, p = .636, consistent 351 

with the accuracy results. 352 
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3.4. Self-report measures 353 

CFQ total scores were computed by summing responses to all items, yielding possible scores 354 

of 0 to 100. Cronbach’s alpha (α) was .83 and the range of observed scores was 21-57 (M = 39.8, SD 355 

= 10.2). CFQ scores showed a non-significant small negative correlation with overall change 356 

detection accuracy (r = -.21, p = .307) and a moderate positive correlation with RT (r = .39, p = .051). 357 

Although these trends did not reach statistical significance, they suggest that CFQ scores have a 358 

small association with change detection performance. 359 

Scores for the DBQ Lapses and Error subscales were computed by summing responses to the 360 

items on each scale. This comprised 8 items for the Errors scale (possible scores 0-40) and 7 items 361 

for the Lapses scale (possible scores 0-35); one item pertaining to manual transmission cars was 362 

excluded because several participants indicated they exclusively drove automatic transmission cars. 363 

For the Errors subscale observed scores were 0-10 (M = 4.7, SD = 2.5, α = .47). For the Lapses 364 

subscale observed scores were 2-14 (M = 6.9, SD = 3.1, α = .53). Neither DBQ subscale was 365 

significantly correlated with either change detection accuracy (Errors: r = -.07, p = .749; Lapses: 366 

r = -.18, p = .372) or RT (Errors: r = .25, p = .216; Lapses: r = .16, p = .424). 367 

3.5. Eye movements: Fixations on change targets  368 

Three variables pertaining to fixations on change targets were selected for analysis: 369 

probability of fixating the target; probability of looked-but-failed-to-see errors (i.e., failing to detect 370 

the change, despite fixating the target); and dwell time on target. 371 

3.5.1. Probability of fixating the target. Probability of target fixation was analysed for all 372 

trials, regardless of whether the target was detected, as this represents implicit capture of attention. 373 

Binary logistic GEE was used to assess whether probability of fixation differed by target type and 374 

safety relevance, within both urban and rural scenes.  375 

Within urban scenes, there was a significant effect of safety relevance, χ2(1) = 9.74, p = .002, 376 

B = 0.13, SE = 0.04, OR = 1.14, 95% CI OR [1.05, 1.23], whereby participants were more likely to 377 
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fixate on targets with greater safety relevance. There was also a significant effect of target type, χ2(4) 378 

= 64.23, p < .001. Compared to road signs (43% fixated), observers were significantly more likely to 379 

fixate both cars (68% fixated; χ2 = 19.84, p < .001, B = 1.02, SE = 0.23, OR = 2.76, 95% CI OR 380 

[1.77, 4.31]) and motorcycles (65% fixated; χ2 = 18.12, p < .001, B = 0.90, SE = 0.21, OR = 2.46, 95% 381 

CI OR [1.63, 3.73]), but not pedestrians (40% fixated; χ2 = 0.26, p = .611) or traffic lights (42% 382 

fixated; χ2 = 0.04, p = .850). 383 

Within rural scenes, there was a significant effect of safety relevance, χ2(1) = 39.85, p < .001, 384 

B = 0.31, SE = 0.05, OR = 1.37, 95% CI OR [1.24, 1.51]. Like urban scenes, in rural scenes 385 

participants were more likely to fixate on targets with higher safety relevance, but the effect was 386 

even larger for rural scenes. There was a also significant effect of target type, χ2(4) = 56.48, p < .001. 387 

Compared to road signs (49% fixated), observers were significantly more likely to fixate cars (64% 388 

fixated; χ2 = 10.18, p = .001, B = 0.65, SE = 0.20, OR = 1.92, 95% CI OR [1.29, 287]) and were less 389 

likely to fixate trees (32% fixated; χ2 = 7.49, p = .006, B = -0.70, SE = 0.25, OR = 0.50, 95% CI OR 390 

[0.30, 0.82]). Probability of fixating motorcycles (51% fixated; χ2 = 0.25, p = .618) and animals (39% 391 

fixated; χ2 = 2.94, p = .086) was not significantly different to signs. 392 

Finally, an additional analysis comparing probability of fixating the target between urban and 393 

rural scenes (for sign, car, and motorcycle trials only) revealed no significant effect of driving 394 

environment on probability of target fixation, χ2(1) = 1.42, p = .233. The effect of target type was 395 

also significant, consistent with the analyses conducted separately for urban and rural scenes. 396 

3.5.2. Probability of looked-but-failed-to-see errors. This analysis focused on the 397 

probability of failing to detect a change despite having fixated on the target. As with other analyses, 398 

comparisons examining the effects of target type and safety relevance were made separately for 399 

urban and rural scenes, followed by a direct urban vs. rural comparison. 400 

Within urban scenes, participants experienced looked-but-failed-to-see errors on 8% of all 401 

trials in which they fixated the target. There were significant effects of both target type, χ2(4) = 52.52, 402 
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p < .001, and safety relevance (see Table 3). Observers were less likely to make looked-but-failed-to-403 

see errors for targets with higher safety relevance ratings, regardless of target type, but looked-but-404 

failed-to-see errors were most common when the target was a road sign (18%) compared with all 405 

other targets (traffic lights: 8%; cars: 5%; pedestrians: 1%; motorcycles: <1%) 406 

Within rural scenes, 10% of trials involved looked-but-failed-to-see errors; however, this was 407 

inflated by fact that participants experienced looked-but-failed-to-see errors on 71% of trials in the 408 

tree condition, compared to 0% for motorcycles, 2% for animals, 5% for vehicles and 17% for signs. 409 

Inspection of the data revealed that target type was confounded with both safety relevance ratings 410 

and probability of looked-but-failed-to-see errors, which precluded the possibility of reliable 411 

statistical analysis. Binary logistic GEE with safety relevance as the only covariate (i.e., target type 412 

was omitted from the model) revealed no significant effects, χ2(1) = 2.27, p = .132, suggesting that in 413 

rural scenes target type was the best predictor of looked-but-failed-to-see errors. 414 

Finally, an additional analysis comparing probability of looked-but-failed-to-see errors 415 

between urban and rural scenes (for sign, car, and motorcycle trials only) revealed a significant main 416 

effect of driving environment, χ2(1) = 7.49, p = .006, whereby looked-but-failed-to-see errors were 417 

slightly but significantly more common in urban (5%) vs. rural (3%) scenes, B = 0.62, SE = 0.23, OR 418 

= 1.86, 95% CI OR [1.19, 2.89]. The effect of target type was also significant, consistent with the 419 

analyses conducted separately for urban and rural scenes. 420 
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Table 3 421 
Effects of target type and safety relevance on probability of looked-but-failed-to-see errors in urban 422 
scenes 423 
Parameter B SE Wald χ2 p OR 95% CI OR 

Urban Scenes 
Safety Relevance -0.48 0.14 12.11 .001** 0.62 [0.47, 0.81] 
Target Type       

Traffic Light -0.97 0.44 4.97 .026* 0.38 [0.16, 0.89] 
Pedestrian -2.98 1.02 8.60 .003** 0.05 [0.01, 0.37] 
Motorcycle -3.91 0.93 17.68 < .001*** 0.02 [0.003, 0.12] 
Car -1.43 0.36 15.47 < .001*** 0.24 [0.12, 0.49] 
Road Sign -      

Note. Road signs were used as the reference category. OR = Odds Ratio. 95% CI = 95% Confidence Interval. *p < .05, 424 
**p < .01, ***p < .001. 425 

 426 

3.5.3. Dwell time on target. Dwell time indicates the relative difficulty of identifying targets 427 

that are fixated; longer dwell times indicate the participant requires more time to cognitively process 428 

the target. The analyses included only correct trials in which the participant fixated the target. As 429 

with other measures, separate analyses were conducted for urban and rural scenes, followed by a 430 

direct urban vs. rural comparison. 431 

Within urban scenes, there were significant effects for both target type, χ2(4) = 54.76, 432 

p < .001, and safety relevance (see Table 4). Dwell times were shorter on targets with greater safety 433 

relevance. As shown in Table 4, the results for dwell time mirrored the patterns for change detection 434 

accuracy: compared with road signs dwell times were significantly shorter for all other target types, 435 

with the effect being largest for motorcycles. 436 

Within rural scenes, there was a significant effect of safety relevance (see Table 4) but the 437 

effect was in the opposite direction to that found in rural scenes: targets with higher safety relevance 438 

were associated with longer dwell times. This is probably a statistical artefact, arising from the 439 

confound between target type and safety relevance. There was also a significant effect of target type, 440 



CHANGE DETECTION IN URBAN & RURAL DRIVING SCENES 25 

χ2(4) = 180.33, p < .001, as shown in Table 4. Compared to road signs, observers spent significantly 441 

less time looking at animals, motorcycles and cars, but more time looking at trees. 442 

Finally, dwell times were compared between urban and rural scenes, for trials where the 443 

target was a road sign, car or motorcycle. This analysis revealed significant effects of target type, 444 

consistent with the separate urban and rural analyses, but no effect of driving environment, χ2(1) = 445 

0.07, p = .797. 446 

Table 4 447 

Effects of target type and safety relevance on target dwell time (in milliseconds), within each driving 448 
environment 449 
Target Type M  B SE Wald χ2 p OR 95% CI OR 

Urban Scenes 
Safety Relevance - -0.06 0.18 9.47 .002** 0.95 [0.91, 0.98] 
Target Type        

Traffic Light 655 -0.20 0.08 5.71 .017* 0.82 [0.70, 0.97] 
Pedestrian 510 -0.45 0.08 33.44 < .001*** 0.64 [0.55, 0.74] 
Motorcycle 418 -0.65 0.09 47.37 < .001*** 0.52 [0.45, 0.63] 
Car 577 -0.32 0.07 23.04 < .001*** 0.73 [0.64, 0.83] 
Road Sign 786 -      

Rural Scenes 
Safety Relevance - 0.09 0.02 22.14 < .001*** 1.09 [1.05, 1.13] 
Target Type        

Tree 1606 0.54 0.22 5.89 .015* 1.72 [1.11, 2.67] 
Animal 328 -1.05 0.10 108.71 < .001*** 0.35 [0.29, 0.43] 
Motorcycle 428 -0.78 0.07 113.51 < .001*** 0.46 [0.40, 0.53] 
Car 667 -0.34 0.08 16.95 < .001*** 0.72 [0.61, 0.84] 
Road Sign 933 -      

Note. Road signs were used as the reference category. M represents the average dwell time for each category. Safety 450 
relevance was entered as a covariate (0-10) and so no category mean is available. OR = Odds Ratio. 95% CI = 95% 451 
Confidence Interval. *p < .05, **p < .01, ***p < .001. 452 

 453 

3.6. Eye movements: Non-target fixation patterns  454 

To examine scanning patterns more generally, several aspects of eye movements were 455 

compared between urban and rural change-absent trials. These measures included the average 456 
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number and duration of fixations made each trial, as well as the probability of fixating specific 457 

regions of interest within the scene and dwell times on those regions. Five interest area (IA) regions 458 

were defined on each image: the road itself; off-road left; off-road right; horizon (where road meets 459 

sky); and sky. 460 

As shown in Table 5, observers made more significantly more fixations per trial, but 461 

significantly shorter fixations, when viewing urban scenes compared to rural scenes. There were also 462 

differences in where observers fixated: the probability of fixating all five IAs was significantly 463 

higher in urban vs. rural scenes. Dwell times (as a proportion of the total dwell time for the trial) 464 

were significantly longer on the road IA for rural vs. urban scenes, but were significantly longer on 465 

the off-road-right and sky IAs for urban vs. rural scenes. This indicates that when viewing rural 466 

scenes, participants mostly focused their attention on the road itself, whereas in urban scenes they 467 

devoted more time to searching other areas of the scene.468 
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 469 

Table 5 470 
Patterns of fixations in change-absent images, comparing urban and rural driving environments 471 

Measure 
Urban Rural Difference  

M (SD) M (SD) M 95% CI Comparison 
Average fixations per trial 15.4 (5.5) 13.6 (4.8) 1.8 [1.3, 2.2] t(25) = 7.62, p < .001***, d = 1.49 
Average fixation duration 315 (52) 332 (52) 17 [12, 23] t(25) = 6.26, p < .001***, d = 1.23 
Probability of fixation:      

IA: Road 94% (10%) 92% (11%) 2% [0%, 3%] t(25) = 2.34, p = .028*, d = 0.46 
IA: Off-road left 92% (11%) 82% (14%) 10% [7%, 13%] t(25) = 7.08, p < .001***, d = 1.39 
IA: Off-road right 89% (6%) 75% (8%) 14% [11%, 17%] t(25) = 10.56, p < .001***, d = 2.07 
IA: Horizon  92% (6%) 86% (12%) 6% [3%, 10%] t(25) = 3.66, p = .001**, d = 0.72 
IA: Sky 84% (8%) 52% (15%) 33% [29%, 37%] t(25) = 17.06, p < .001***, d = 3.35 

Dwell time (% of trial)       
IA: Road 29% (9%) 34% (13%) 5% [2%, 07%] t(25) = 3.64, p = .001**, d = 0.71 
IA: Off-road left 29% (6%) 28% (6%) 1% [0%, 03%] t(25) = 1.61, p = .120, d = 0.32 
IA: Off-road right 26% (4%) 23% (4%) 3% [1%, 05%] t(25) = 3.43, p = .002**, d = 0.67 
IA: Horizon  32% (6%) 31% (7%) 1% [-1%, 04%] t(25) = 1.03, p = .312, d = 0.20 
IA: Sky 16% (5%) 10% (4%) 6% [5%, 08%] t(25) = 10.96, p < .001***, d = 2.15 

*p < .05, **p < .01, ***p < .001. 472 
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4. Discussion 473 

The aim of the current study was to examine drivers’ change detection ability in urban and 474 

rural driving scenes, for a range of objects with varying safety relevance. All participants were 475 

experienced, fully-licenced drivers who drove regularly and were familiar with the locations depicted 476 

in the stimulus images, although they reported driving considerably more frequently in urban areas 477 

compared to rural roads. The results confirm change detection performance varies as a function of 478 

the driving environment, target type, and the safety relevance of the change. 479 

4.1. Effects of driving environment 480 

When directly comparing performance between environments, with target type matched, 481 

participants were significantly more accurate and faster at detecting changes in rural compared with 482 

urban scenes. Participants were also less likely to exhibit “looked-but-failed-to-see” errors, although 483 

the effect size was small (3% vs. 5%). These differences are most likely attributable to the fact that 484 

urban scenes involve greater visual clutter and complexity. To our knowledge, only one previously 485 

published study has directly compared change detection in urban and rural driving scenes. Contrary 486 

to our results, the previous study found that drivers were more accurate at detecting changes in urban 487 

scenes; however, the authors noted that this finding was inconsistent with previous research change 488 

detection, and also that the salience and contrast of their rural changes were relatively lower than the 489 

urban changes (Koustanaï et al., 2012). The current study provided a more comprehensive and 490 

systematic exploration of urban-rural differences, and the findings are consistent with research on 491 

visual crowding (Whitney and Levi, 2011). Also, participants were significantly more familiar with 492 

urban driving and drove regularly in the areas depicted in the urban scenes, whereas they reported 493 

significantly less exposure to rural driving. In this regard, the results are consistent with previous 494 

research indicating that drivers exhibit greater change blindness in familiar situations (e.g., Charlton 495 

and Starkey, 2013; Harms and Brookhuis, 2016; Martens and Fox, 2007). 496 
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Despite the slight increase in looked-but-failed-to-see errors in urban scenes, there was no 497 

difference in the probability of fixating targets, or total dwell time on targets, when comparing urban 498 

and rural scenes. Analyses of eye movements in change-absent trials suggest this could be because 499 

participants adopted different scanning patterns when viewing urban scenes, to maximise their 500 

likelihood of detecting target objects in cluttered urban environments. Specifically, when viewing 501 

urban scenes participants made more and shorter fixations, and distributed their fixations more 502 

broadly throughout the scene, whereas when viewing rural scenes participants made fewer longer 503 

fixations and focused predominantly on the road itself. This is consistent with research on eye 504 

movements in driving, which has found that experienced drivers adapt their scanning patterns based 505 

on situational demands (e.g., Falkmer and Gregersen, 2005; Underwood, 2007). 506 

4.2. Effects of safety relevance 507 

In addition to the differences that emerged from the direct comparison of urban and rural 508 

scenes, the analyses regarding safety relevance of changes revealed different patterns between the 509 

two driving environments. Specifically, the effects of change safety relevance were larger and more 510 

consistent in urban scenes. In urban scenes, changes with higher safety relevance were associated 511 

with higher accuracy, shorter RT, increased probability of fixating the target, reduced probability of 512 

looked-but-failed-to-see errors, and shorter dwell times. These findings suggest that changes with 513 

greater safety relevance are more effective at capturing drivers’ implicit attention (i.e., probability of 514 

fixation) and are more likely to be consciously processed. This is consistent with previous findings 515 

that observers are more efficient at changes that are more central to interpreting the scene (Rensink et 516 

al., 1997) and those that have greater personal or task relevance (Galpin et al., 2009; Lee et al., 2007; 517 

Marchetti et al., 2006; Mueller and Trick, 2013; Shinoda et al., 2001; Velichkovsky et al., 2002; 518 

Zhao et al., 2014). 519 

In contrast to the urban results, the effects of safety relevance in rural scenes was 520 

considerably less consistent. Safety relevance of the change had only a marginally significant effect 521 
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on change detection accuracy in rural scenes and did not predict RT or looked-but-failed-to-see 522 

errors. The only measure that was clearly affected in the expected direction was probability of 523 

fixating the target, in that drivers were more likely to fixate targets with higher safety relevance. One 524 

explanation is that these inconsistent effects arise from differential task demands, which have been 525 

demonstrated to affect both eye movements (Hayhoe and Ballard, 2005) and change detection 526 

(Jensen et al., 2011). That is, urban scenes were more cognitively demanding to process and so 527 

observers preferentially focused on aspects of the scene that appeared to have greater relevance. 528 

Rural scenes were easier to process, which meant that participants had the capacity to process change 529 

targets that had lower safety relevance. 530 

4.3. Effects of target type 531 

Beyond the effects of change safety relevance, there were also significant effects of target 532 

type on change detection performance, especially for trees and signs. Change detection performance 533 

was at floor for changes involving trees, with most participants failing to detect all tree-related 534 

changes. Participants were also less likely to fixate on trees and were substantially more likely to 535 

exhibit looked-but-failed-to-see errors if they did fixate trees. These patterns suggest that drivers 536 

perceive roadside trees as irrelevant, as irrelevant changes are often overlooked (Galpin et al., 2009; 537 

Mueller and Trick, 2013; Velichkovsky et al., 2002; Zhao et al., 2014), even though target position 538 

was systematically manipulated so that half of the trees appeared directly next to the road where they 539 

pose a potential hazard in the event of an emergency. This is consistent with recent research which 540 

found that changing roadside foliage has minimal (≤1km/h) or no effect on travel speeds (Fitzpatrick 541 

et al., 2016). It is also consistent with research on risk perception, which found that participants 542 

consistently overlook subtle roadside features that increase the hazardousness of a particular road 543 

(Charlton et al., 2014). However, it is seemingly inconsistent with research which that drivers 544 

nominate lower safe travel speeds (Goldenbeld and van Schagen, 2007) and reduce their speed by up 545 

to 12-14% (Elliott et al., 2003) on tree-lined roads. A notable conceptual difference that can account 546 
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for this discrepancy is that research demonstrating effects of roadside foliage compared the complete 547 

absence versus presence of trees, whereas in the current study a single tree was added or removed 548 

(with other trees remaining), which would be expected to have a lesser effect. 549 

When changes involved signs, participants were significantly less efficient at change 550 

detection compared to all other types (excluding trees). In both urban and rural scenes, participants 551 

were less accurate and exhibited longer RTs and dwell times for sign changes. These results are 552 

consistent with previous research, which found that participants commonly exhibit change blindness 553 

for road signs (Charlton and Starkey, 2013; Harms and Brookhuis, 2016; Martens and Fox, 2007). 554 

One commonality across the non-sign, non-tree target types in the current study is that they are all 555 

objects that could plausibly change: cars, motorcycles, pedestrians and animals are all mobile, 556 

whereas traffic lights have a fixed position but update dynamically. As such, participants may have 557 

been preferentially attending to aspects of the scene that are most likely to change in a real driving 558 

environment. 559 

Another explanation is that participants preferentially attend to objects that are potentially 560 

dangerous. This is supported by RT, probability of fixation, and looked-but-failed-to-see error 561 

analyses. Specifically, changes involving pedestrians and traffic lights were not significantly 562 

different from sign changes in terms of RT, probability of target fixation, and looked-but-failed-to-563 

see errors. In contrast, when changes involved cars, motorcycles, or animals, participants exhibited 564 

shorter RTs, increased probability of fixating the target, and reduced probability of looked-but-565 

failed-to-see errors. The key difference between cars, motorcycles and animals on the one hand, and 566 

pedestrians and traffic lights on the other hand, is that the former category have greater potential to 567 

cause damage to a driver. 568 

4.4. Individual differences in change detection 569 

A final point worth noting is that the self-report measures of cognitive failures and driving-570 

related errors and lapses did not reliably predict change detection performance. This is reminiscent of 571 
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“change blindness blindness”, whereby observers under-estimate their susceptibility to change 572 

blindness (Beck et al., 2007). When driving, this could be problematic if drivers are not aware of 573 

precisely how difficult it is to detect changes, especially for changes involving road signs. Two main 574 

avenues are available for addressing this issue. First, driver education programs should aim to raise 575 

awareness of change blindness, highlighting the types of changes that drivers are most likely to have 576 

trouble detecting. Although some driver education programs do mention change blindness, they often 577 

use generic examples rather than focusing on specifics of when these phenomena are likely to occur 578 

on the road. Second, road sign design and placement should be rigorously evaluated and changed 579 

where appropriate, so that redundant signs can be eliminated and safety-critical signs can be 580 

redesigned to better capture drivers’ attention. 581 

5. Summary 582 

Overall the current results indicate that change detection efficiency is affected by several 583 

variables, including the driving environment, the type of object changed, and its safety relevance. 584 

Specifically, drivers are more efficient at detecting changes to other road users or potential hazards, 585 

such as animals near the roadside, as well as changes with greater safety relevance. Drivers are also 586 

better at detecting changes in rural scenes compared to urban scenes, which is likely because there is 587 

less visual clutter in rural areas, but could also reflect the fact that urban areas are more familiar 588 

(which has been demonstrated to exacerbate change blindness). Most notably, all the change targets 589 

in the current study were potentially driving relevant, in that they were road users or roadside objects. 590 

The results therefore demonstrate that not all “driving relevant” changes are equal, which has 591 

implications for future research in this area that seeks to understand drivers’ allocation of visual 592 

attention within their environment. 593 
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