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Abstract

Most rigid formation controllers reported in the literature aim to only stabilize a rigid formation shape, while the formation
orientation is not controlled. This paper studies the problem of controlling rigid formations with prescribed orientations in
both 2-D and 3-D spaces. The proposed controllers involve the commonly-used gradient descent control for shape stabilization,
and an additional term to control the directions of certain relative position vectors associated with certain chosen agents. In
this control framework, we show the minimal number of agents which should have knowledge of a global coordinate system
(2 agents for a 2-D rigid formation and 3 agents for a 3-D rigid formation), while all other agents do not require any global
coordinate knowledge or any coordinate frame alignment to implement the proposed control. The exponential convergence
to the desired rigid shape and formation orientation is also proved. Typical simulation examples are shown to support the
analysis and performance of the proposed formation controllers.
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1 Introduction

1.1 Background and motivation

Formation control for a group of autonomous mobile
agents has gained much attention due to its broad ap-
plications in many areas including both civil and mili-
tary fields. A key problem in this domain that receives
particular interest is how to stabilize and maintain a ge-
ometrical formation shape in a distributed manner. In
the recent survey paper Oh, Park, and Ahn (2015), dif-
ferent types of formation control strategies are reviewed
and compared, among which two most commonly-used
approaches are

• the linear displacement-based approach: the desired
formation is specified by a certain set of inter-agent

⋆ The material in this paper was partially presented at the
IEEE Multi-Conference on Systems and Control, September
21-23, 2015, Sydney, Australia (Sun and Anderson (2015))
and the 54th IEEE Conference on Decision and Control,
December 15-18, 2015, Osaka, Japan (Park and Ahn (2015)).
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brian.anderson@anu.edu.au (Brian D. O. Anderson),
hyosung@gist.ac.kr (Hyo-Sung Ahn).

relative positions which means that the orientation of
the final formation is implicitly fixed;

• the nonlinear distance-based approach: the desired
formation is specified by a certain set of inter-agent
distances, and the orientation of the target formation
is not implicitly or explicitly defined.

For the first approach, all the agents must have their
coordinate bases with the same orientation (while
the origins may be different) such that the desired
relative position vectors are well defined and con-
trolled between agents (see e.g. Ren and Beard (2008);
Xiao, Wang, Chen, and Gao (2009)). This means that
all the agents should be equipped with compass to guar-
antee their coordinate orientation alignments, which
may not be practical in e.g. compass-denied environ-
ment. The coordinate frame requirement was largely
ignored in early works on formation control (as reviewed
in Oh et al. (2015)). It is only in recent years that the im-
portance of coordinate frame issue has been recognized
in formation controller design and implementation. In
the case that initially all the agents in the 2-D plane have
different local coordinate frames, one needs to design a
combined control establishing coordinate frame direc-
tion alignment and linear displacement-based formation
stabilization to ensure the convergence of a target shape
Oh and Ahn (2014b). Furthermore, it has also been
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shown in Meng, Anderson, and Hirche (2016) that the
assumption that all the agents have coordinate systems
with the same orientationmay not be realistic in practice
as small perturbations in their local coordinate systems
will cause unexpected behaviors for the displacement-
based formation system. Thus in practice, a coordinate-
free formation control system is always favorable. In
Aranda, López-Nicolás, Sagüés, and Zavlanos (2015), a
coordinate-free formation control strategy was proposed
by including a rotation matrix in the formation con-
troller. The advantage of the coordinate-free property
of the proposed formation controller in Aranda et al.
(2015) is paid by the price that the relative position mea-
surements from all other agents should be available to
each individual agent, which implies that the coordinate-
free formation control in Aranda et al. (2015) is not
a distributed one. Recent efforts also show that the
bearing-based approach is another promising strategy
to achieve a desired formation Zhao and Zelazo (2016).
We note that such an approach however still does not
resolve the strict requirement of the global knowledge
of coordinate frame orientation for individual agent.

All these disadvantages on the coordinate frame re-
quirement can be avoided in the distance-based for-
mation setup. This is because that in the distance-
based setup any global coordinate system defining a
common orientation for all individual agents’ coordi-
nate frames is not required, and each agent can use
its local coordinate basis to achieve a rigid formation
shape (we refer the readers to Fig. 3 in Oh et al. (2015)
for a comparison of coordinate basis requirement for
these two approaches). Rigid formation control has
been discussed extensively in the literature, most of
which has focused on the convergence analysis of for-
mation shapes (see e.g. Krick, Broucke, and Francis
(2009), Anderson and Helmke (2014), Cortés (2009),
Dorfler and Francis (2010), Oh and Ahn (2011), Tian and Wang
(2013), Cai and De Queiroz (2015)). Note that in many
applications involving multi-agent coordination, a for-
mation with both a desired shape and a particular ori-
entation is required. However, for distance-based rigid
formation control, the orientation of the final formation
is not controlled and actually not well defined, 1 which
may limit the practical application of shape controllers

1 We need to distinguish different meanings of ori-
entation in the context of formation control. By re-
garding a rigid formation as a rigid body, the forma-
tion orientation relates to the overall rigid formation.
The orientation concept in e.g. Oh and Ahn (2014b);
Montijano, Zhou, Schwager, and Sagues (2014) refers to the
orientation of the local coordinate frame for each agent. We
will distinguish different meanings by referring explicitly to
either formation orientation or coordinate orientation. An-
other orientation concept refers to the definition of signed
area for a closed curve formed by a formation shape with
a specific ordering of all agents (e.g. a triangle with posi-
tive/negative area). This concept will not be used in this
paper.

discussed in these previous works. In this paper, we aim
to design distributed formation controllers to achieve
a desired rigid formation with a prescribed formation
orientation.

1.2 Related work

The stabilization control of rigid formations with desired
orientation was discussed in Pais, Cao, and Leonard
(2009) by using the tensegrity theory and a projected
collinear structure. However, the approach still requires
all the agents to have knowledge of the orientation of a
common reference frame. The problem of stabilizing only
the orientation of rigid objects subject to distance con-
straints was studied inWang, Markdahl, and Hu (2011),
Markdahl, Karayiannidis, Hu, and Kragic (2012), by
assuming that the rigid shapes remain constant which
are not stabilized. Thus, the approaches in Wang et al.
(2011) and Markdahl et al. (2012) cannot be applied to
solve the formation stabilization control task in question.
In our previous paper Sun, Mou, Anderson, and Morse
(2014) we showed a feasible approach to move or re-
orient a rigid formation to a desired orientation by
introducing distance mismatches; however, such orien-
tation control approach, which is a by-product of the
mismatched formation control problem, indicates that
the final formation is slightly distorted compared to the
desired formation. Furthermore, the orientation control
in Sun et al. (2014) also requires global information in
terms of all other agents’ positions which is contrary to
the formation control task using a distributed approach.

In this paper we propose feasible and distributed con-
trollers to achieve both rigid shape stabilization and
formation orientation control with minimal knowledge
of global coordinate orientation for the agent group.
The basic idea underlying the controller design is to
choose certain agents as orientation agents (definitions
will become clear in the context), for which some of the
associated relative position vectors should achieve both
desired distances and directions specified in the global
coordinate frame. We note that a very general con-
trol framework for stabilizing an affine formation was
recently proposed in Lin, Wang, Chen, Fu, and Han
(2015), in which a strict assumption that the target
formation should be globally rigid was imposed to gen-
erate a rigid shape with orientation constraint. Such an
assumption is not required in the control strategy pro-
posed in this paper. Also note that the formation orien-
tation problem discussed in this paper is a stabilization
control problem (i.e. to achieve a static formation with
desired orientation), while a motion generation problem
involving rigid formation orientation was discussed in
Garcia de Marina, Jayawardhana, and Cao (2016) with
a totally different control architecture.

Some preliminary results were presented in Park and Ahn
(2015) and Sun and Anderson (2015). This paper ex-
tends the results reported in Park and Ahn (2015) and
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Sun and Anderson (2015), by providing a general and
systematic approach to solve this control problem with
a minimal number of orientation agents. Compared to
Park and Ahn (2015) and Sun and Anderson (2015), the
main extensions and contributions in this paper can be
summarized as follows. First, the results to be discussed
in this paper can be applied to stabilize rigid shapes and
orientations without any restriction on agent numbers
and ambient space dimensions, while Park and Ahn
(2015) presented preliminary results focusing on prov-
ing asymptotic stability for a 2-D four-agent forma-
tion system. Second, we have removed the assumption
that the target formation shapes are minimally rigid,
which was a key assumption in Park and Ahn (2015)
and Sun and Anderson (2015). Instead, by developing
different approaches in the proofs, this paper only as-
sumes that target formation shapes are infinitesimally
rigid. Furthermore, by exploring several novel observa-
tions concerning the rigidity matrix from graph rigidity
theory, we will also prove an exponential convergence
to the desired formation shape with specified orienta-
tions. Note that the exponential stability renders the
robustness property of the proposed formation control
system in the presence small measurement errors or
perturbations.

1.3 Paper structure and notations

The remaining parts of this paper are organized as fol-
lows. In Section 2, we introduce some background on
graph and rigidity theory as well as the problem formu-
lation. Certain novel results on graph rigidity theory will
be shown in this section. Section 3 provides the main re-
sult. Typical simulation results are shown in Section 4.
Finally, Section 5 concludes this paper. Proofs for some
key lemmas are given in the Appendix.

Notations. The notations used in this paper are fairly
standard. R

n denotes the n-dimensional Euclidean
space. Rm×n denotes the set of m × n real matrices.
A matrix or vector transpose is denoted by a super-
script T . The rank, image and null space of a matrix
M are denoted by rank(M), Im(M) and null(M), re-
spectively. We use diag{x} to denote a diagonal matrix
with the entries of a vector x on its diagonal, and
span{v1, v2, · · · , vk} to denote the subspace spanned by
a set of vectors v1, v2, · · · , vk. The symbol In denotes the
n× n identity matrix. Let 1n and 0n denote an n-tuple
column vector of all ones and all zeros, respectively.
When the subscripts are omitted, their dimensions
should be clear in the context. The notations ⊗ and
∧ represent the Kronecker product and cross product,
respectively.

2 Preliminaries and problem setup

2.1 Preliminary on graph theory

Since formations of nmobile agents are best described in
terms of graph theory, we give a brief description of some
of the basic definitions and facts needed. Consider an
undirected graph with m edges and n vertices, denoted
by G = (V , E) with vertex set V = {1, 2, · · · , n} and edge
set E ⊂ V×V . The neighbor setNi of node i is defined as
Ni := {j ∈ V : (i, j) ∈ E}. The matrix relating the nodes
to the edges is called the incidence matrix H = {hki} ∈
R

m×n, whose entries are defined as (with arbitrary edge
orientations for undirected formations considered here)

hki =







1, the k-th edge sinks at node i

−1, the k-th edge leaves node i

0, otherwise

For a connected and undirected graph, one has
rank(H) = n− 1 and null(H) = span{1n}.

2.2 Rigidity theory

Given a vertex element i ∈ V we associate to it a point
pi of Euclidean space R

d. 2 The column vector p =
[pT1 , p

T
2 , . . . , p

T
n ]

T thus describes a framework (G, p) of n
agents, labelled by the set of vertices of G. For any edge
k ∈ E with head j and tail i which is consistent with the
construction of the matrix H , consider the associated
relative position vector defined as zk = pj − pi. Let

z = [zT1 , z
T
2 , · · · , zTm]T ∈ R

dm

Z(z) = diag(z1, z2, · · · , zm) ∈ R
dm×m

denote the associated column vector and block diagonal
matrix, respectively. Note that there holds

z = (H ⊗ Id)p (1)

With this notation at hand, we consider the smooth dis-
tance map

rG : Rdn −→ R
m, rG(p) = (‖pi − pj‖2)(i,j)∈E = Z(z)T z.

(2)
The rigidity of frameworks is then defined as follows.

Definition 1 (Asimow and Roth (1979)) A framework
(G, p) is rigid in R

d if there exists a neighborhood U of p
such that r−1

G (rG(p)) ∩ U = r−1
K (rK(p)) ∩ U where K is

the complete graph with the same vertex set as G.
2 In this paper we will focus on 2-D and 3-D formations, i.e.
d = 2, 3.
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Two frameworks (G, p) and (G, p̄) are equivalent if
rG(p) = rG(p̄) and are congruent if ‖pi−pj‖ = ‖p̄i− p̄j‖
for all i, j ∈ V . A useful tool to study graph rigidity is
the rigidity matrix, which is defined as the Jacobian
matrix R(p) = 1

2∂rG(p)/∂(p). By inspection, R(p) is an
m× dn matrix given as

R(p) = Z(z)T (H ⊗ Id) (3)

Note that the entries of R(p) only involve relative posi-
tion vectors z, and we can rewrite it asR(z). The rigidity
matrix will be used to determine the infinitesimal rigid-
ity of a framework, as shown in the following theorem.

Theorem 1 (Hendrickson (1992)) Consider a frame-
work (G, p) in d-dimensional space with n ≥ d vertices
and m edges. It is infinitesimally rigid if and only if

rank(R(p)) = dn− d(d+ 1)/2 (4)

Specifically, the framework (G, p) is infinitesimally rigid
in R

2 (resp. R3) if and only if rank(R(p)) = 2n−3 (resp.
rank(R(p)) = 3n − 6). Obviously, in order to have an
infinitesimally rigid framework, the graph should have
at least 2n− 3 (resp. 3n− 6) edges in R

2 (resp. R3).

From Theorem 1, one knows that the dimension of the
null space of R(p) for an infinitesimally rigid frame-
work (G, p) in the d-dimensional space is d(d+1)/2. The
following Lemma characterizes the structure of its null
space.

Lemma 1 (Null space of the rigidity matrix) Suppose
the framework (G, p) is infinitesimally rigid with the as-
sociated rigidity matrix denoted as R(p).

• The d = 2 case: The null space of R(p) is of dimen-
sion 3 and is described as null(R(p)) = span(q1, q2, q3),
where

q1 = 1n ⊗
[

1

0

]

; q2 = 1n ⊗
[

0

1

]

;

q3 = [(K3p1)
T , (K3p2)

T , · · · , (K3pn)
T ]T ,

and the matrix K3 is defined as

K3 =

[

0 1

−1 0

]

• The d = 3 case: The null space of R(p) is of
dimension 6 and is described as null(R(p)) =

span(q1, q2, q3, q4, q5, q6), where

q1 = 1n ⊗







1

0

0






; q2 = 1n ⊗







0

1

0






; q3 = 1n ⊗







0

0

1






;

qi = [(Kip1)
T , (Kip2)

T , · · · , (Kipn)
T ]T , i = 4, 5, 6;

and the matrix Ki is defined as

K4 =







0 0 0

0 0 −1

0 1 0






;K5 =







0 0 1

0 0 0

−1 0 0






;K6 =







0 −1 0

1 0 0

0 0 0







The proof and detailed analysis on how to construct
the above null vectors can be found in the appendix.
In rigidity theory, any motion that lives in the null
space of the rigidity matrix for an infinitesimally rigid
framework is called an infinitesimal motion consisting
of Euclidian motion (see e.g. Tay and Whiteley (1985),
Anderson, Shames, Mao, and Fidan (2010)). The struc-
ture of the null space of a rigidity matrix was shown
in e.g. (Zelazo, Franchi, Blthoff, and Robuffo Giordano,
2015, Theorem 2.16). The reason that we provide hereby
an alternative proof is to show a unified and clearer
structure of its null space and the corresponding trans-
lational motion and rotational motion. Such a clear
structure on the null space analysis will be helpful and
useful in the controller design and stability analysis, as
will be shown in the main part of this paper.

The infinitesimal rigidity also guarantees the following
property for a framework.

Lemma 2 Suppose the framework (G, p) is infinitesi-
mally rigid. Then for any node i, the set of relative po-
sition vectors pj − pi, j ∈ Ni cannot all be collinear (in
the 2-D case) or all be coplanar (in the 3-D case).

The proof can be found in the appendix. Lemma 2 will be
useful for defining a feasible target formation by choos-
ing some adjacent edges associated with certain agents
(which will be discussed in Section 3.1).

2.3 Gradient-based formation controller and problem
formulation

Let dkij
denote the desired distance of edge k which links

agent i and j. We further define

ekij
= ‖pi − pj‖2 − (dkij

)2 (5)

to denote the squared distance error for edge k. For ease
of notation we may use ek and dk interchangeably in the
sequel. This will also apply to dkij

and dk, zk and zkij
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in the following context when the dropping out of the
dummy subscript ij in each vector causes no confusion.
if no confusion is expected. The squared distance error
vector is denoted by e = [e1, e2, · · · , em]T . In this pa-
per, we suppose that each agent is modeled by a single
integrator ṗi = ui where ui is the controller to be de-
signed for achieving the formation control objective.

In Krick et al. (2009), the following formation control
system was proposed:

ṗi = −
∑

j∈Ni

(‖pi−pj‖2−d2kij
)(pi−pj), i = 1, . . . , n (6)

The above control describes a steepest descent gradient
flow of the following potential function

V1(p) =
1

4

∑

(i,j)∈E
(‖pi − pj‖2 − d2kij

)2 (7)

This potential function (7) for rigid shape stabilization
and the associated gradient flow (6) have been exten-
sively studied in the literature (see e.g. Krick et al.
(2009); Cortés (2009); Dorfler and Francis (2010);
Cao, Morse, Yu, Anderson, and Dasgupta (2011);
Oh and Ahn (2014a), Anderson and Helmke (2014)).
However, the above control and its extensions studied
in these previous papers only stabilize a rigid formation
shape, while the orientation of the formation is not spec-
ified. In this paper we will consider the problem of how
to simultaneously stabilize a rigid shape and achieve a
desired orientation for a target formation.

3 Main result

3.1 Target formation and control framework

Before describing the controller design, we first discuss
how to define a target formation with the given inter-
agent distance and formation orientation constraints.
As mentioned in the above section, the commonly-used
gradient-based controller (6) does not control the orien-
tation and there are certain degrees of freedom relating
to rotations for a converged formation. Intuitively, by
regarding the rigid formation as a rigid body and speci-
fying certain directions of some chosen edges in a global
coordinate frame, the orientation of the overall rigid for-
mation can be fixed. This will be the basic idea in the
definition of a target formation and the controller design
discussed in the sequel.

For simplifying the controller design and implemen-
tation, we choose one agent and a certain number of
its neighboring agents as the specified agents to im-
plement the additional orientation control task, with
the associated edges between them being assigned with

both distance constraints and orientation constraints.
We term these agents with the additional orientation
control task as orientation agents, and other agents as
non-orientation agents. Thus, the target formation is
defined with inter-agent distance constraints for all the
agents, and orientation constraint for the chosen edges
between orientation agents.

For the convenience of later analysis, we denote Go as
the underlying graph of the orientation control to dis-
tinguish it with the underlying graph G of the formation
shape control. If the edge (i, j) associated with agent i
and j is chosen in the orientation control in Go, we de-
note it as (i, j) ∈ Eo. The set of neighboring agents of
orientation agent i chosen in the orientation control is
defined as N o

i := {j ∈ V : (i, j) ∈ Eo}. The desired di-
rection for the relative position vector pj − pi for edge
(i, j) ∈ Eo is denoted by a given vector p̂ji := p̂j − p̂i.
Thus, the orientation control is to additionally stabilize
the relative position pj − pi to the desired one p̂j − p̂i
with (i, j) ∈ Eo. Due to the rigid body property of a de-
sired rigid formation, the formation orientation can be
determined by the directions of a certain set of desired
relative position vectors. We show two examples, a 2-D
four-agent rectangular formation and a 3-D tetrahedral
formation depicted in Fig. 1 and Fig. 2, respectively, to
illustrate the formation control framework.

Note that any two agents associated with one edge can
be chosen as orientation agents, and there is no need to
design a centralized algorithm for the selection of the
orientation agents. To define a target formation with
prescribed orientation, one can first choose one agent and
then select one of its non-collinear relative vectors (for 2-
D formations) or two of its non-coplanar relative vectors
(for 3-D formations) to specify the desired formation
orientation. According to Lemma 2, such non-collinear
or non-coplanar adjacent edges are guaranteed to exist
for any agent to define a target formation. To sum up,
we give a formal definition of a target formation.

Definition 2 (Target formation) The target formation
is defined as (G, p̃) which satisfies the following con-
straints

• Distance constraints: ‖p̃i − p̃j‖ = dkij
, ∀(i, j) ∈ E;

• Orientation constraints: p̃i− p̃j = p̂i− p̂j, ∀(i, j) ∈ Eo;

Note that there should hold ‖(p̂j−p̂i)‖ = dkij
so that the

orientation constraint is consistent with the formation
shape constraint. In order to well define the orientation
constraint, we need the following assumption.

Assumption 1 All orientation agents should be
equipped with coordinate systems with the same direction
aligned with the global coordinate system.

Take the formation control formulation in Fig. 1 as an
example. Since agents 1 and 2 are chosen as orienta-
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Fig. 1. An example of controlling a 2-D rigid formation with
prescribed orientation. Agent 1 and one of its neighbors,
agent 2, are chosen as orientation agents. The relative posi-
tion vector p2 − p1 associated with edge (1,2) is used to de-
scribe the desired orientation, which is denoted by red color
(in this example (1, 2) ∈ Eo).

1

2 3

4

x

z

y

Fig. 2. An example of controlling a 3-D rigid formation with
prescribed orientation. Agent 1 and two of its neighbors,
agents 2 and 4, are chosen as orientation agents. The relative
position vectors p2−p1 and p4−p1 associated with edges (1,2)
and (1,4) are used to describe the desired orientation, which
are denoted by red color (in this example (1, 2), (1, 4) ∈ Eo).

tion agents, their coordinate systems should be aligned
with the global coordinate system denoted by

∑

g. Such
a global coordinate system is required to define the de-
sired relative position vector (p̂j − p̂i) for (i, j) ∈ Eo.
Thus Assumption 1 provides a necessary condition for
the controller design and implementation.

3.2 Discussions on reflection ambiguity

By specifying the direction of one edge in a 2-D forma-
tion, there exists a reflected formationwith the same pre-

scribed orientation (in the example in Fig. 1 the reflected
formation, denoted by dotted blue lines, is obtained by
the reflection via the mirror edge (1,2)). Such reflection
ambiguity can be avoided by specifying the direction of
an additional relative position vector (such as the one
associated with edge (1,4)) or by assuming that the ini-
tial formation shape starts close to the desired one. In
the latter case the formation shape will converge to the
desired one instead of converging to the reflected one
(by the convergence property of the gradient property of
the proposed formation control system, to be proved in
Theorem 2). Similarly, in the 3-D case there exists a re-
flected formation via the mirror plane spanned by that
two chosen relative position vectors (in the example in
Fig. 2 the mirror plane is spanned by that two relative
vectors in edges (1,2), (1,4)). Such reflection ambiguity
can be avoided by specifying the direction of an addi-
tional relative position vector (such as the one associ-
ated with edge (1,3)), or by assuming that the initial
formation shape starts close to the desired one.

It might also be true that by setting the orientations
for more edges may lead to a larger region of attrac-
tion, but this results in more orientation agents requir-
ing the knowledge of the global coordinate system. Since
in this paper we only focus on local convergence, the
possibility of using more orientation edges will not be
further exploited. In the current problem setting, the
minimum number of orientation agents required in con-
troller design is 2 (for 2-D rigid formations) and 3 (for
3-D rigid formations). Such minimum number will be
formally proved in later analysis which also guarantees
the local convergence to a target formation with desired
shape and orientation.

3.3 Controller design

We propose the following formation stabilization con-
troller:

ṗi(t) =
∑

j∈Ni

(pj(t)− pi(t))(‖pj(t)− pi(t)‖2 − d2kij
)

︸ ︷︷ ︸

shape control term, if (i,j)∈E

+
∑

j∈No
i

((pj(t)− pi(t))− (p̂j − p̂i))

︸ ︷︷ ︸

orientation control term, if (i,j)∈Eo

(8)

It is obvious from Eq. (8) that the proposed control is
distributed since only local information from neighbor-
ing agents in terms of relative positions is needed. In the
later analysis we will also show that the overall system
consisting of n agents described by (8) is a gradient sys-
tem associated with a cost function.

The above formation control system (8) can be written
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in a compact form

ṗ = −RT e− (Lo ⊗ Id)p̄ (9)

where Lo is the Laplacian matrix of the underlying undi-
rected graph Go for the orientation control, and the vec-
tor p̄ = [p̄T1 , p̄

T
2 , · · · , p̄Tn ]T is defined as p̄i = pi − p̂i if i is

a chosen orientation agent 3 , or p̄i = 0 otherwise.

For the formation control system (9), the set of the de-
sired equilibrium is described as

M = {p ∈ R
dn|e(p) = 0, pi − pj = p̂i − p̂j, ∀(i, j) ∈ Eo}

(10)

which satisfies the constraints in Definition 2.

Example: We show an example to illustrate the above
controller design. Suppose a group of four agents is
tasked to achieve a rigid shape, with the additional ori-
entation control assigned to edge (1, 2) ∈ Eo , which is
illustrated in Fig. 1. The formation control system takes
the following form

ṗ1 =e12(p2 − p1) + e13(p3 − p1) + e14(p4 − p1)

+ (p2 − p1)− (p̂2 − p̂1)

ṗ2 =e12(p1 − p2) + e23(p3 − p2) + (p1 − p2)− (p̂1 − p̂2)

ṗ3 =e13(p1 − p3) + e23(p2 − p3) + e34(p4 − p3)

ṗ4 =e14(p1 − p4) + e34(p3 − p4) (11)

(note that in the above equations the subscript notation
for e is slightly different to previous sections, in that eij
here denotes the squared distance error associated with
the edge (i, j) ∈ E). The Laplacian matrix Lo for the
underlying graph of orientation control is constructed as

Lo =










1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0










and the vector p̄ is constructed as p̄ = [(p1 − p̂1)
T , (p2 −

p̂T2 ,0
T ,0T ]T . The formation system (11) can then be

written in the compact form shown in (9). �

3.4 Properties of the formation control system

In the following, we show several properties of the pro-
posed control (8).

3 Note that the vector p̄i is not an actual control input as p̂i
may not be available for agent i (the actual control term is
p̂ji := p̂j − p̂i). The introduction of p̄i is for the convenience
of analysis and for writing a compact form of the formation
system as in (9).

Lemma 3 The position of the formation centroid is pre-
served by the above control law (8).

Proof Denote by pc ∈ R
d the center of the mass of the

formation, i.e.,

pc =
1

n

n∑

i=1

pi =
1

n
(1n ⊗ Id)

T p (12)

One has

ṗc =
1

n
(1n ⊗ Id)

T ṗ

=− 1

n
(1n ⊗ Id)

T (RT e+ (Lo ⊗ Id)p̄)

=− 1

n
(1n ⊗ Id)

T (Lo ⊗ Id)p̄

− 1

n

(
ZT (H ⊗ Id)(1n ⊗ Id)

)T
e (13)

Note that (1n ⊗ Id)
T (Lo ⊗ Id)p̄ = ((1T

nLo) ⊗ Id)p̄ = 0

and
(
ZT (H ⊗ Id)(1n ⊗ Id)

)T
e = 0 because null(H) =

span{1n}. Thus ṗc = 0, which indicates that the position
of the formation centroid remains constant. ✷

Lemma 4 For all non-orientation agents, their local co-
ordinate systems are sufficient to implement the control
law.

Proof Suppose agent i is a non-orientation agent and
its position in the global coordinate system

∑

g is mea-

sured as pgi , while p
i
i, p

i
j stand for agent i and its neigh-

boring agent j’s positions, respectively, measured by
agent i’s local coordinate system. The controller for non-
orientation agent i can be written in its local coordinate
as

ṗii(t) =
∑

j∈Ni

(pij(t)− pii(t))(‖pij(t)− pii(t)‖2 − d2kij
) (14)

Clearly, there exist a rotation matrix Qi ∈ R
d×d and a

translation vector ϑi ∈ R
d, such that pij = Qip

g
j+ϑi. We

rewrite the controller (14) for the non-orientation agent
i in the global coordinate system

∑

g as follows

ṗgi = ug
i = Q−1

i ui

= Q−1
i

∑

j∈Ni

eikij
(pij − pii)

=
∑

j∈Ni

egkij
Q−1

i Qi(p
g
j − pgi )

=
∑

j∈Ni

egkij
(pgj − pgi ) (15)
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which has the same form as (14). Since Qi and ϑi are
chosen arbitrarily, the above equation indicates that the
designed controllers for non-orientation agents are inde-
pendent of the global coordinate basis. ✷

To avoid notation complexity we omit the superscript in
other parts of this paper for the convenience of analysis.
This controller property has been illustrated in Fig. 1
and Fig. 2. In the example shown in Fig. 1, agent 3 or
4 is not an orientation agent and its coordinate system
orientation does not need to be aligned with the global
coordinate system. As a consequence of Lemma 4, the
minimum number of orientation agents is 2 for a 2-D
rigid formation and 3 for a 3-D rigid formation, which
guarantees a minimum knowledge of global coordinate
frame for the multi-agent formation group.

3.5 Convergence analysis

We will first show that the gradient property of the pro-
posed controller and a general result on the convergence.

Theorem 2 The formation control system with the pro-
posed controller (8) describes a gradient control system
and the formation system converges to the largest invari-
ant set in the set O(z) defined as

O(z) = {z|R(z)T e(z) + (Lo ⊗ Id)p̄(z) = 0} (16)

Proof We choose the same potential function in (7) as
the potential for the shape control, and the following
potential function

V2 =
1

2

∑

(i,j)∈Eo

‖(pj(t)− pi(t))− (p̂j − p̂i)‖2

=
1

2
p̄T (Lo ⊗ Id)p̄ (17)

for the orientation control. The composite potential
function is then defined as V = V1 + V2.

The dynamical system for the relative position z defined
in (1) is

ż = (H ⊗ Id)ṗ

= −(H ⊗ Id)R
T e− (H ⊗ Id)(Lo ⊗ Id)p̄ (18)

and the distance error system is described by

ė = 2Rṗ = −2RRT e− 2R(Lo ⊗ Id)p̄ (19)

Note that the potential functions V1 and V2 are functions
involving only relative position vectors in terms of z and

e rather than the absolute position vector p. 4 Thus,
we can write the potential as V (z) for the self-contained
z system (18). We then calculate the derivative of the
potential V1 and V2 along the trajectories of system (18)
and (19):

V̇1 =
1

2
eT ė = eT (−RRT e−R(Lo ⊗ Id)p̄)

= −eTRRT e− eTR(Lo ⊗ Id)p̄ (20)

and

V̇2 = p̄T (Lo ⊗ Id) ˙̄p

= p̄T (Lo ⊗ Id)(−RT e − (Lo ⊗ Id)p̄)

= −p̄T (Lo ⊗ Id)R
T e− p̄T (Lo ⊗ Id)(Lo ⊗ Id)p̄ (21)

where in the second equality we have used the non-trivial
result (Lo ⊗ Id) ˙̄p = (Lo ⊗ Id)ṗ. The derivative of V can
be computed as

V̇ =V̇1 + V̇2

=− eTRRT e − eTR(Lo ⊗ Id)p̄

− p̄T (Lo ⊗ Id)R
T e− p̄T (Lo ⊗ Id)(Lo ⊗ Id)p̄

=− eTRRT e − 2eTR(Lo ⊗ Id)p̄

− p̄T (Lo ⊗ Id)(Lo ⊗ Id)p̄

=−
(
RT e+ (Lo ⊗ Id)p̄

)T (
RT e+ (Lo ⊗ Id)p̄

)

≤0 (22)

The above derivative calculation thus implies that the
formation system (8) describes a gradient descent flow
for the composite potential V . Furthermore, the sub-
level set of the potential V (z) is compact with respect
to the self-contained z system (18). By LaSalle Invari-
ance Principle, the solution of the formation system (18)
converges to the largest invariant set in the set O(z) =

{z|V̇ = 0} described in (16). ✷

In general, a global picture of convergence analysis for
a rigid formation control system is hard to obtain due
to the existence of multiple equilibria (see discussions
in e.g. Anderson and Helmke (2014)). Because the pro-
posed control is a gradient law, the set O(z) also de-
scribes the set of equilibrium points for (8). Note that
the desired equilibria set M is a subset of O(z). Simi-
lar to most works on rigid formation stabilization, in the
following we will focus on local convergence analysis. In
particular, we aim to show that the convergence to the
target formation with desired distances and orientation
is exponentially fast. The analysis is based on the lin-
earization technique. We first compute the Jacobian of
the vector field in the right-hand side of (9) around a

4 Also note that the distance error vector e can be written
in terms of z according to the definition of e in (5).
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desired equilibrium p̃ ∈ M:

Jf =
∂(−RT e− (Lo ⊗ Id)p̄)

∂p
|p=p̃

= −∂RT

∂p
e|p=p̃ −RT ∂e

∂p
|p=p̃ −

∂(Lo ⊗ Id)p̄

∂p
|p=p̃

= −(RTR+ (Lo ⊗ Id))|p=p̃ (23)

where ∂RT

∂p
e(p)|p=p̃ = 0 due to the fact that e(p) = 0

for a point p in the equilibrium set M, and ∂e
∂p
|p=p̃ = R

according to the definition of the rigidity matrix.

Thus, the linearization equation of (9) is described as

δṗ = −(RTR+ Lo ⊗ Id)δp (24)

In the following, we prove that the convergence is expo-
nentially fast.

Theorem 3 Suppose the target formation is infinitesi-
mally rigid and initial positions of all the agents are cho-
sen such that the initial formation is close to the desired
formation. With the proposed control law (8), the con-
vergence to the correct formation shape and orientation
is exponentially fast.

Before giving the proof of the above result, we first show
a key lemma on the property of the linearization matrix.

Lemma 5 Suppose the target formation is infinitesi-
mally rigid and the orientation edges are selected ac-
cording to Section 3.1. Then the linearization matrix
F := RTR + Lo ⊗ Id is positive semidefinite and has
d zero eigenvalues. Furthermore, there holds null(F) =
null(H ⊗ Id) = span(1n ⊗ Id).

The proof can be found in the appendix.

Proof of Theorem 3 As shown in Lemma 3, the
formation centroid is stationary. We construct an or-
thogonal matrix Q ∈ R

dn×dn whose first d rows are
1√
n
(1n ⊗ Id)

T . With Q, one can perform the coordinate

transform on p as

p̃ = Qp =

[

po

pr

]

(25)

where po =
√
npc according to the definition of pc in

(12) and the structure of Q. From Lemma 3, one has
ṗo =

√
nṗc = 0. We also define a reduced transformation

matrix Qr ∈ R
d(n−1)×dn, obtained from Q by removing

the first d rows. Note that there holds p = Q−1p̃ = QT p̃

and pr = Qrp. For the linearized system (24), one can
obtain the following coordinate-transformed system

[

δṗo

δṗr

]

= Qδ̇p = −Q(RTR+ Lo ⊗ Id)δp

:= −QFQ−1δp̃ (26)

According to the structure of the matrix Q, there holds

QFQ−1 =





1√
n
(1n ⊗ Id)

T

Qr



F
[

1√
n
(1n ⊗ Id) QT

r

]

=

[

0 0

0 QrFQT
r

]

(27)

Therefore,

δṗo = 0

δṗr = −QrFQT
r δpr (28)

According to the definition of Qr, the range space
of QT

r is the orthogonal complement of the subspace
span(1n ⊗ Id). This, together with Lemma 5, implies
that the linearization matrix −QrFQT

r is negative defi-
nite. Thus the convergence to the origin for the system
(28) is locally exponentially fast. Since the system (28)
is obtained from the system (24) by a linear coordinate
transformation described in (25), the above statement
also implies that the convergence to a point in the
desired equilibrium M for the original system (9) is lo-
cally exponentially fast ((Khalil, 1996, Theorem 4.13)).
For the linearized system, the guaranteed exponential
convergence rate obtained in the linearization analy-
sis is γ = λmin(QrFQT

r ). Note that by the Courant-
Fischer Theorem (Zhang, 2011, Theorem 8.9), the rate
γ = λmin(QrFQT

r ) is the same to the smallest positive
eigenvalue of F . ✷

Remark 1 One may ask what happens if the formation
is initially with a correct shape but needs to adjust the ori-
entation by applying the designed controller (8). As can
be seen from (19), e(0) = 0 does not imply ė(t) = 0 when
the proposed controller (8) is applied. Thus, during the
orientation adjustment the formation shape will be tem-
porarily lost until the formation converges to the desired
shape and orientation. If the formation shape should re-
main unchanged during the orientation adjustment, the
control action should live in the null space of the rigidity
matrix with a target formation shape derived in Lemma
1. A sufficient condition for the controller design in this
case is to ensure that the z system takes the form as
żi = ω×zi (where ω indicates the angular velocity and ×
denotes the cross product) which guarantees a constant
norm of z and thus a preserved formation shape.
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Remark 2 In the above analysis we do not con-
fine the formation to be minimally rigid (which is a
commonly-used assumption in most literature on rigid
formation control). Also we prove the local exponen-
tial convergence if the target formation is infinites-
imally rigid (a more relaxed assumption than mini-
mal rigidity). Exponential stability brings about sev-
eral nice properties such as the robustness to system
perturbations (e.g. measurement errors). This will be
considered in future research, along the same research
direction on robustness issues in rigid formation con-
trol Mou, Morse, Belabbas, Sun, and Anderson (2016).
Note that the exponential convergence cannot be directly
extended to the general convergence to a set stated in
Theorem 2. This is because, as indicated in the proof of
Theorem 3, the local exponential convergence to a target
formation depends on the maximum rank condition of
the rigidity matrix of a target formation, and for other
formations defined in the set (16) one cannot guarantee
that they are infinitesimally rigid.

4 Illustrative examples

In this section we provide several simulations to show
formation behaviors and controller performance of the
proposed control. Consider a 4-agent formation system,
with the desired distances given as d∗12 = d∗34 = 3, d∗23 =
d∗14 = 4, d∗13 = 5 corresponding to a rectangular shape.
The initial positions for each agent are chosen as p1(0) =
[0, 0]T , p2(0) = [−1, 4]T , p3(0) = [5, 3]T and p4(0) =
[3, 0]T , so that the initial formation shape is close to
the target shape. When the conventional controller (6)
is used, the trajectories of each agent and the final shape
are depicted in Fig. 3, from which it can be seen that
although the desired shape is achieved, the formation
orientation is undefined.

We then consider the simulation using the proposed con-
troller (8). We suppose the target formation should be
the one with the rigid rectangular shape in addition that
the relative position vector p2 − p1 associated to edge
(1, 2) should be aligned with the direction of the y-axis
and the relative position vector p4 − p1 associated with
the edge (1, 4) should be aligned with the direction of
the x-axis in the global coordinate. The desired relative
vector for edge (1, 2) is set as p̂2 − p̂1 = (0, 3)T and the
initial positions are chosen as the same as the above sim-
ulation setting, which can avoid the reflected formation.
The trajectories of each agent and the final shape are
depicted in Fig. 4, which clearly show that the desired
formation shape with the correct orientation is achieved
and the formation centroid is preserved. The trajecto-
ries of each distance error and the orientation error for
the edge (1, 2) are depicted in Fig. 5, which show an ex-
ponential convergence to the desired formation shape.

Lastly we show an example of stabilizing a rigid 3-D
formation with desired orientation. The target forma-
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Fig. 3. Stabilization of a rigid rectangular formation without
orientation control. The initial and final positions are de-
noted by circles and squares, respectively. The initial forma-
tion is denoted by dotted blue lines, and the final formation
is denoted by red solid lines.
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Fig. 4. Stabilization of a rigid rectangular formation with
prescribed orientation. The initial and final positions are de-
noted by circles and squares, respectively. The initial forma-
tion is denoted by dotted blue lines, and the final formation
is denoted by red solid lines. The black star denotes the for-
mation centroid.
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Fig. 5. Convergence of the distance/orentation errors with
the proposed controller (8). The orientation error φ12 is de-
fined as φ12 = arctan((p2,y − p1,y)/(p2,x − p1,x))− π/2.

tion is a tetrahedron, with the desired distances given
by d∗12 = d∗13 = d∗14 = 2, d∗23 = d∗34 = d∗24 = 2

√
2.

The desired orientation is that the edges (1, 3) and (1, 4)
should be aligned with the the x-axis and the z-axis, re-
spectively, which defines the orientation for the target
tetrahedron formation. Following the control strategy in
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Fig. 6. Stabilization of a 3-D rigid formation with prescribed
orientation. The initial and final positions are denoted by
circles and squares, respectively. The initial formation is de-
noted by dotted blue lines, and the final formation is de-
noted by pink solid lines. The red line denotes the formation
centroid.

Section 3, the desired relative position vectors for edges
(1, 3) and (1, 4) are defined as p̂1 − p̂2 = (2, 0, 0)T and
p̂1 − p̂4 = (0, 0, 2)T , in which agents 1, 2 and 4 are cho-
sen as orientation agents. The formation convergence is
depicted in Fig. 6, which shows the successful achieve-
ment of the formation control task with both desired
rigid shape and formation orientation.

5 Conclusion

In this paper we have discussed the formation control
problem to achieve both desired rigid shapes and for-
mation orientation. The designed controller combines
the advantages of displacement-based approach and
distance-based approach, by specifying a small num-
ber of agents as orientation agents which are tasked to
control relative position vectors associated with them
to desired directions. The proposed controllers are
distributed in that only relative measurements from
neighboring agents are required. For all non-orientation
agents, any information about the global coordinate
system is not required for them to implement the con-
trol, which guarantees a minimal requirement of the
global knowledge of the global coordinate system. Cer-
tain simulation examples are provided to demonstrate
the effectiveness of the proposed formation controllers.
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Appendix: proofs of several lemmas

We first show a useful result on the dimension of the null
space for two matrices and their product.

Lemma 6 Consider two matrices A ∈ R
m×n and B ∈

R
n×k and the matrix product C := AB. Then there holds

dim(null(C)) = dim(null(B)) + dim((null(A) ∩ Im(B)).

Proof According to the Sylvester Rank Theorem
(Zhang, 2011, Theorem 2.6), there holds rank(C) =
rank(B) − dim((null(A) ∩ Im(B)). Also, from the fun-
damental rank-nullity theorem one obtains rank(C) =
k − dim(null(C)) and rank(B) = k − dim(null(B)),
which implies the desired result. ✷

The following corollary is a consequence of Lemma 6.

Corollary 1 Consider two matrices A ∈ R
m×n and

B ∈ R
n×k and the matrix product C := AB. If

dim((null(A) ∩ Im(B)) = 0, then null(C) = null(B).

Lemma 6 and Corollary 1 will be used later for analyzing
the structure of null space of a rigidity matrix.

Proof of Lemma 1The results can be verified by direct
calculations. Here we aim to provide a full proof to show
how to construct these null vectors, as the analysis will
be useful in later proofs for some key lemmas.

From the assumption that the target formation is
infinitesimally rigid, one has rank(null(RTR)) =
rank(null(R)) = d(d+ 1)/2. The d(d+ 1)/2 dimen-
sional null space contains infinitesimal motions which
preserve inter-agent distances, with dimension d cor-
responding to the translational motion, and dimen-
sion d(d− 1)/2 corresponding to the rotational motion
Hendrickson (1992). Also note that R = ZT (H ⊗ Id).
Since the target formation is assumed to be infinites-
imally rigid, the underlying graph for shape con-
trol should be at least connected, which implies that
null(H⊗Id) = span(1n⊗Id). Then according to Lemma
6, there holds null(H ⊗ Id) ⊂ null(R), which implies
that span(1n ⊗ Id) is a d-dimensional subspace of the
null space of R corresponding to the translational mo-
tion. This proves that the null vectors q1, q2 are valid
bases in the null space of R for the 2-D formation case
and q1, q2, q3 are valid bases in the null space of R for
the 3-D formation case.

We now divide the rest of the proof in the following two
parts, according to the space dimensions:
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• The case of d = 2:
It is obvious that

Q3 := [(K3z1)
T , (K3z2)

T , · · · , (K3zm)T ]T

is a null vector of ZT , i.e. span(Q3) ⊂ null(ZT ) =
null(ZZT ). Also note that

Q3 = (Im ⊗K3)z = (Im ⊗K3)(H ⊗ Id)p

= (H ⊗K3)p = (H ⊗ Id)(In ⊗K3)p (29)

which means that span(Q3) is in the image of (H⊗Id).
Thus according to Lemma 6, (In ⊗ K3)p := q3 is a
null vector of the rigidity matrix R. Note that the null
space of R corresponding to the rotational invariance
is of dimension 1, which implies that q3 is the unique
vector basis corresponding to the infinitesimal rota-
tional motion.

• The case of d = 3:
It is obvious that the three vectors

Q4 :=[(K4z1)
T , (K4z2)

T , · · · , (K4zm)T ]T

=(Im ⊗K4)z = (Im ⊗K4)(H ⊗ Id)p

Q5 :=[(K5z1)
T , (K5z2)

T , · · · , (K5zm)T ]T

=(Im ⊗K5)z = (Im ⊗K5)(H ⊗ Id)p

Q6 :=[(K6z1)
T , (K6z2)

T , · · · , (K6zm)T ]T

=(Im ⊗K6)z = (Im ⊗K6)(H ⊗ Id)p

are linearly independent, and are three bases of null
spaces of ZT . Similarly to Eq. (29), Qj can be rewrit-
ten as

Qj = (H ⊗ Id)(In ⊗Kj)p

for j = 4, 5, 6, which implies that span(Q4, Q5, Q6) is
in the image of (H ⊗ Id). Note that the null space of
R corresponding to the rotational invariance is of di-
mension 3×2

2 = 3. Thus according to Lemma 6, the
three vectors (In ⊗ Kj)p := qj for j = 4, 5, 6 are the
three null vector bases of R corresponding to the in-
finitesimal rotational motion.

The proof is completed. ✷

Proof of Lemma 2 The proof is done by trying to
construct some null vectors of R which are not in the
null space spanned by the derived null vectors shown
in Lemma 1, thus leading to contradictions to the rank
condition of the infinitesimal rigidity in Theorem 1.

• The case of d = 2:
The infinitesimal rigidity excludes the case that pj −
pi = 0 for all j ∈ Ni. Now we suppose that at least
one pj − pi is non-zero, and all the other pk − pi,
k ∈ Ni can be described by a linear weight of pj − pi.
Then construct a vector q̄ = [0T ,0T , · · · , (K3(pj −
pi))

T , · · · ,0T ]T with the non-zero term K3(pj−pi) in
the 2(i− 1) + 1 to 2i block. It is obvious that Rq̄ = 0

and q̄ 6∈ span(q1, q2, q3). Thus, the existence of the
null vector q̄ in this case increases the dimension of
the null space of R and therefore rank(R) < 2n − 3,
which violates the assumption that the framework is
infinitesimally rigid. In conclusion, the set of relative
position vectors pj −pi, j ∈ Ni cannot all be collinear
for any i.

• The case of d = 3:
Similarly to the d = 2 case, the infinitesimal rigidity
excludes the case that all pj − pi = 0 for all j ∈ Ni.
The case that all pj − pi, j ∈ Ni are linearly depen-
dent can be excluded by using the same argument
as above. Now we suppose that two pj − pi, pj′ − pi,
j, j′ ∈ Ni are non-zero, and all the other pk − pi, k ∈
Ni can be described as linear combinations of these
two. Then construct a vector q̄ = [0T ,0T , · · · , ((pj −
pi) ∧ (pj′ − pi))

T , · · · ,0T ]T , with the non-zero term
(pj − pi)∧ (pj′ − pi) in the 3(i− 1)+1 to 3i block. By
direct calculations, it can be shown that Rq̄ = 0 and
q̄ 6∈ span(q1, q2, q3, q4, q5, q6). Thus, the existence of
the null vector q̄ in this case increases the dimension
of the null space of R and therefore rank(R) < 3n−6,
which violates the assumption that the framework is
infinitesimally rigid. In conclusion, the set of relative
position vectors pj −pi, j ∈ Ni cannot all be coplanar
for any i.

By summarizing the above arguments, the proof is com-
pleted. ✷

Proof of Lemma 5 First note that both RTR and Lo⊗
Id are symmetric and positive semidefinite. FromLemma
1 one knows that span(1n ⊗ Id) is a subspace of the null
space of R. Also, span(1n ⊗ Id) is a subspace of the null
space of Lo ⊗ Id. Thus, there holds span(1n ⊗ Id) ⊂
null(F). We then show that there does not exist other
null vectors in null(F).

We introduce a selection matrix, denoted by J ∈ R
m×m,

whose k-th row is ek (i.e. the k-th standard basis) if the
k-th edge is selected as the orientation edge, or the k-th
row is an all-zero vector otherwise. Note that JT = J .
Denote the incidence matrix for the underlying graph
of orientation control as Ho. By doing this, there holds
Ho = JH and thus Lo = HT

o Ho = HTJJH since the
underlying graph of orientation control is assumed to be
undirected. Thus F = (H ⊗ Id)

TZZT (H ⊗ Id) + (H ⊗
Id)

T (JJ⊗Id)(H⊗Id) = (H⊗Id)
T (ZZT +JJ⊗Id)(H⊗

Id). We now divide the proof in the following two parts,
according to the space dimensions:

• The case of d = 2:
From Lemma 1, Q3 is a null vector of ZT and q3 is a
null vector ofR. By direct calculation, it holds (ZZT+
JJ ⊗ I2)Q3 6= 0, i.e. Q3 is not a null vector of the
matrix (ZZT+JJ⊗I2), which together with Corollary
1 implies that q3 is not a null vector to the matrix
F . Thus, there holds null(F) = span(1 ⊗ I2), which
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implies that the null space of F is of dimension 2 and
F has 2 zero eigenvalues.

• The case of d = 3:
We fix j = 4, 5, 6. In this case, there are at least two
non-zero rows in J , corresponding to at least two ad-
jacent edges selected in the orientation control. From
Lemma 1, each Qj is a null vector of ZT and each
qj is also a null vector of R. Following similar steps
as above for the 2-D case and by direct calculation,
it holds that (ZZT + JJ ⊗ I3)Qj 6= 0. Thus Qj are
not null vectors of (ZZT + JJ ⊗ I3), which together
with Corollary 1 implies qj are not null vectors of the
matrix F . Thus, there holds null(F) = span(1⊗ I3),
which implies that the null space of F is of dimension
3 and F has 3 zero eigenvalues.

By summarizing the above arguments, the statements
in the lemma are proved. ✷
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