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Thrust Control for Multirotor Aerial Vehicles
Moses Bangura, Student Member, IEEE, and Robert Mahony, Fellow, IEEE

Abstract—This paper presents a novel control algorithm to
regulate the aerodynamic thrust produced by fixed-pitch rotors
commonly used on small-scale electrically powered multirotor
aerial vehicles. The proposed controller significantly improves on
the disturbance rejection and gust tolerance of rotor thrust con-
trol compared to state-of-the-art RPM (revolutions per minute)
rotor control schemes. The thrust modelling approach taken is
based on a model of aerodynamic power generated by a fixed-
pitch rotor and computed in real-time on the embedded electronic
speed controllers using measurements of electrical power and
rotor angular velocity. Static and dynamic flight tests were
carried out in downdrafts and updrafts of varying strengths
to quantify the resulting improvement in maintaining a desired
thrust setpoint. The performance of the proposed approach in
flight conditions is demonstrated by a path tracking experiment
where a quadrotor was flown through an artificial wind gust
and the trajectory tracking error was measured. The proposed
approach for thrust control demonstrably reduced tracking error
compared to classical RPM rotor control.

I. INTRODUCTION

The hierarchical nature of the typical control structure used
to control multirotor aerial vehicles has been widely explored
[10], [15], [21]. The lowest level of such a hierarchical control
structure is the motor-rotor thrust control. The current state-of-
the-art model for motor-rotor control is based on regulation of
the rotor angular velocity or RPM (Revolutions Per Minute)
[26], [27]. In order to regulate thrust, a static aerodynamic
model relating rotor speed to thrust for a rotor in static free
air is typically used [21]. Static thrust models have proven
effective in a wide range of applications, however, they display
significant errors in the presence of gusts or when the rotor
is moving. The strongest effects are due to vertical motion of
the rotor or updrafts and downdrafts, although lateral motion
or sideways gusts also cause small variations in rotor thrust.
Using computational fluid dynamics tools, [19] showed that
for lateral flights with velocities up to 10m/s, the maximum
power saved associated with the additional translational lift
is only 6%. Consequently, a constant power flight will result
in less that 6% gain in translational lift. The question of
providing effective control for multirotors in the presence of
wind gusts, or during fast and aggressive manoeuvres has
been raised by a number of recent papers [9], [17], [28],
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[30]. One approach that has proven to be highly successful
for repetitive high performance aggressive manoeuvres is to
use time varying parameter adaptation and iterative learning
[20], [23]. The resulting controller provides a learnt feed-
forward compensation for the highly non-linear aerodynamic
conditions encountered by each rotor during a given known
manoeuvre for which training has been undertaken. In the
absence of learning, then it is necessary to either estimate
or measure the actual thrust generated by the rotor. Possible
approaches include using strain gauges, or directly measuring
the airspeed using pitot tubes [31], [3] or estimation of the
aerodynamic state using inertial measurement units (IMUs)
[2], [24]. Direct force measurement using strain gauges suffer
from high frequency and high noise to signal ratio [29].
Direct airspeed measurements suffer from accuracy and slow
response of pitot tubes. Arain et. al. [3] used a single pitot
tube to measure the forward velocity of the vehicle while Yeo
et. al. [31] used four pitot tubes mounted underneath each
rotor to measure the axial velocities through the rotors. From
results in [3], low airspeed wind estimation for quadrotors
is a challenge and the airspeed measurements are unreliable
for velocities under 1m/s. The authors of [3] also obtained
errors of up to 2m/s for ground truth forward velocity of
6m/s. Yeo et. al. [31] used his wind estimates in designing
safe trajectories, though errors were observed of 0.4m/s for
a velocity measurement of 1.5m/s. More importantly, typical
pitot tubes display response times of 100ms which makes them
unsuitable for high performance control.

Shen et. al. [28] used a Kalman filter to estimate thrust
force in the presence of external disturbances arising from their
indoor flight experiments. The 50Hz limitation in the commu-
nication between the flight control board and electronic speed
controllers typical in quadrotor systems limits the performance
of such an approach. Another approach that has been proposed
is to use analytic implicit models developed from compu-
tational fluid dynamics (CFD) [16], [19] to estimate thrust.
These methods also consider the effect of wake interference
during translational motion of air. The computational load of
such an approach is infeasible for small scale aerial robotic
systems.

For marine thrusters, with the assumption of only axial flow,
accurate thrust computation/estimation and control is a well
studied problem [6], [14], [25]. In [14], a model that uses the
electro-mechanical dynamics of the motor along with propeller
hydrodynamics and thin-foil theory to produce a two-state
propulsion model was proposed. Bachmayer et. al. [6] further
developed this model to account for positive and negative
flow velocities and proposed a method for generating lift and
drag curves to achieve more accurate control. Sørensen et.
al. [25] proposed a controller that does friction compensation
and torque limiting through a minimisation algorithm that
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Fig. 1. The quadrotor aerial vehicle used for the experimental results obtained.
It is shown flying across a “nearly” laminar flow generator with the new thrust
controller. Despite the competing wake of the vehicle and the laminator shown
by the streamers, its path is undisturbed.

is unfortunately computationally infeasible in real-time on
existing embedded hardware.

In this paper, we present a scheme for computing and reg-
ulating aerodynamic thrust and estimation of the aerodynamic
conditions around individual rotors for multirotor aerial vehi-
cles, specifically fixed-pitch electrically powered quadrotors.
Figure 1 shows the experimental platform at the point of flying
over a crude flow laminator, a device that generates a laminar
flow over an area, in this case a plastic tube (a rubbish bin
with the bottom removed) with an internal fan that forces air
through an array of narrow tubes (glued drinking straws) at the
upper exit. The paper builds upon the power control approach
first presented in [7] and adds to this a more correct blade el-
ement momentum model that allows for accurate computation
of thrust and airflow rather than just regulation of aerodynamic
power. The proposed algorithm is designed to be implemented
at high bandwidth directly on the electronic speed controller
(ESC) of the vehicle and consequently has low computational
complexity and relies primarily on local measurements of DC
current, bus voltage, and rotor RPM made available on the
ESC. The aerodynamic power dissipated by the rotor is related
to the mechanical power supplied to the rotor shaft and in
turn to the electrical power supplied to the motor providing a
measurement that can be directly controlled. The combination
of power and RPM along with a suitable aerodynamic model
provides sufficient constraints to estimate the coupled vertical
inflow ratio, thrust and other aerodynamic variables in the rotor
flow. Once thrust is computed, a simple and highly robust
proportional integral (PI) [4] controller is sufficient to regulate
the desired thrust, although an inner high-gain current control
loop and feedforward compensation are critical to obtain the
required system response. The effectiveness of the proposed
approach and controller are validated against a classical RPM
controller in static and dynamic flight conditions. The results
demonstrate a significant improvement in thrust robustness

Fig. 2. Rotor control volume along with the streamtube, generated forces, and
the different air velocities. The vehicle velocity ~V and wind speed ~W have
an apparent stream velocity into the rotor of ~vs = −~V + ~W . The actual air
velocity at the rotor ~va is the sum of the induced velocity ~vi plus the apparent
stream velocity ~vs. The scalar thrust T and scalar drag H are shown in the
two dimensional plane associated with the longitudinal flight dynamics.

to downdrafts or updrafts. Furthermore, the performance of
a path tracking controller is significantly improved with the
proposed control architecture as compared to classical RPM
control when subject to gust disturbances.

The remainder of the paper is organised as follows: the
aerodynamics of rotors and the proposed power-based implicit
thrust computation scheme are presented in Section II. Sec-
tion III details the control algorithms that regulate a thrust
setpoint for a motor-rotor system. In Section IV, we describe
laboratory calibration procedures necessary to identify the
aerodynamic coefficients of the rotor and electrical parameters
of the motor. Section V presents experimental results that
demonstrate the performance of the proposed scheme with
reference to the standard RPM method.

II. POWER-BASED THRUST MODEL

In this section, we present models for the aerodynamic
forces, torque and power associated with a fixed-pitch rotor us-
ing momentum and blade element theories. With these models,
we propose an implicit thrust computation scheme for a rotor
in relative axial wind motion. The model development uses
macroscopic force and torque/power representation initially
and then transforms into scalar aerodynamic coefficients that
are better suited for use as variables for implementation on an
electronic speed controller (ESC).

A. Problem Formulation

The rotor hub/shaft and rotor blades of a rotor can be
represented in three separate frames of reference [11]: the
vehicle body-fixed frame {B}, the rotor reference frame {C}
that rotates with the rotor but does not tilt with blade flapping,
and the tip-path-plane (TPP) or {D}. The TPP rotates with
the rotor and is also aligned with the tilt of the rotor due to
blade flapping and, to first order, the rotor is stationary in this
frame. Throughout the paper, ~e1, ~e2, ~e3 are used to denote unit
vectors in the x, y, z directions respectively.
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Fig. 3. Different frames of reference of a quadrotor and its rotors. The inertial
frame fixed on the earth {A} and body-fixed frame attached to the vehicle
{B} along with rotor reference frame {C} and tip path plane {D}.

Consider the control volume shown in Figure 2 associated
with a slightly tilted actuator disc, a result of the rotor expe-
riencing both translational and axial air motion with velocity
~V ∈ R3. This is the relative velocity between the vehicle’s
body-fixed frame {B} and inertial frame {A} expressed in
{B} as shown in Figure 3. The stream velocity is equal in
magnitude but opposite in direction to the vehicle velocity ~V
when there is no wind but is the sum when the wind velocity
~W ∈ R3 expressed in {B} is present i.e. ~vs = −~V + ~W ∈ R3.
The spinning rotor induces additional air velocity ~vi ∈ R3

through the rotor so that the total air velocity through the
rotor ~va is ~va = ~vi + ~vs. We denote the velocity of the wake
far downstream by ~v∞. All these velocities are expressed in
{B}.

Remark 1: The induced velocity on a rotor is a nonuniform
distribution and its effect can be modelled by Mangler and
Squire method [12], [18], [11]. However, an average value of
~vi can be used in the modelling process in a similar manner
to the performance analysis for helicopters [12], [18]. In [11],
the authors showed this approximation has no effect on thrust.

If ~F ∈ R3 is the total force generated at the rotor mast
expressed in the vehicle body-fixed frame {B}, then

~F = −T~e3 + ~Fhor ∈ {B},

where T ∈ R is the axial thrust and ~Fhor ∈ R3 is the remaining
horizontal vector force. The thrust T generated by the rotor is
associated with the component of force ~F in the −~e3 direction,
that is T = −~e>3 ~F . This convention ensures that in normal
flight, the thrust T is positive. Note that in most helicopter
texts, for example [12], the thrust is modelled as orthogonal
to the tip-path-plane. However, we find that modelling the
thrust in the body-fixed frame −~e3 direction and introducing a
horizontal thrust component ~Fhor due to the tilting of the thrust
vector is a more effective modelling framework for small scale
fixed-pitch rotor systems used in robotic applications. Figure 2
shows the rotor tilting backwards with respect to the rotor
shaft as a result of blade flapping. The net effect of rotor
flapping is to tilt the lift force generated by the rotor disc and
contribute to the horizontal force ~Fhor. The horizontal force
also comprises other aerodynamic effects such as induced and
translational drag [11], [21] that in many cases are even more
important than blade flapping for small fixed-pitch rotors used
on quadrotor vehicles. Critically, these additional drag forces

can be lumped into the same mathematical model used to
model flapping [21] (cf. (1)) as long as all forces and velocities
are written in the body-fixed frame {B}.

As the air passes through the rotor disc, it is accelerated
creating an induced velocity component ~vi ∈ R3. The induced
velocity ~vi of the rotor on the air decomposes into a vertical
component viz = ~e>3 ~v

i ∈ R and a horizontal component(
vix, v

i
y, 0
)>

that lies parallel to the horizontal planar velocity
(Vx, Vy, 0)> of the rotor in {B}. The accepted model for the
horizontal force ~Fhor in typical flight conditions is given by
[1], [9], [12], [21], [22], [26], [28]

~Fhor ∝ −khor(Vx, Vy, 0)>, (1)

where khor is a positive constant at constant T . Since all
the aerodynamic variables in the problem lie in the two
dimensional (longitudinal flight dynamics) plane defined by
the apparent stream velocity ~vs and rotor hub axes ~e3, it is
possible to undertake the aerodynamic analysis using these
two degrees of freedom rather than maintaining the full 3D-
velocity and force information. We write Vh = |Vx, Vy, 0|
as the scalar magnitude of the body-fixed frame horizontal
velocity of the rotor and define a body-fixed frame direction

~ehor =

{
1
Vh

(Vx, Vy, 0)> for Vh 6= 0,

(0, 0, 0)> for Vh = 0,

where the zero vector is used to ensure ~ehor is always well
defined. Based on this construction, we define scalar values of
horizontal induced velocity and the horizontal force

vih = ~e>hor~v
i ∈ R, H = −~e>hor

~F ∈ R.

Due to the nature of the aerodynamic drag terms, the
horizontal force ~Fhor always opposes the motion of the vehicle,
that is

~e>hor
~F = ~e>hor

~Fhor ≤ 0,

implying H ≥ 0. Moreover, when vsh = 0, then vix = viy = 0

and the horizontal force ~Fhor = 0, yielding H = 0 as expected.
In the case where vsh − ~Wh 6= 0, the induced horizontal
scalar velocity vih is non-negative since the rotor tilt opposes
the horizontal motion of the rotor hub and consequently the
induced component of the velocity will be pushing air against
the direction of motion of the rotor. Note that due to the motion
of the rotor, the actual horizontal component of air through
the rotor will be negative as expected (see Figure 2).

The aerodynamic rotor power Pa is defined to be the power
supplied to the air streamtube by the rotor and is a key variable
in the following development. It comprises a component due
to the induced air velocity and a component due to the stream
velocity; that is

Pa = κ〈~F ,~vi〉+ 〈~F ,~vs〉, (2)

where the scalar κ ≥ 1 is the induced power factor [12,
pg. 92] [18, pg. 105]. The constant κ is an adjustment factor
that models the additional power dissipated due to wake
rotation, tip loss effects and non-uniform inflow that are not
modelled by classical momentum theory. It is constant in hover
conditions but varies for changing inflow conditions and will
be separately modelled in Section II-D. Note that aerodynamic
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losses only apply to the induced aerodynamic power and
not to the power associated with the physical motion of the
rotor. The aerodynamic rotor power is only a part of the total
aerodynamic mechanical power Pam that dissipates into two
aerodynamic terms

Pam = Pp + Pa; (3)

where Pp [12] is the blade profile power associated with
aerodynamic drag on the rotor blade and Pa is the aerodynamic
rotor power discussed above. A model for profile power will be
developed in Section II-C. In summary, the profile power Pp is
dissipated energy lost in pulling the rotor through the air while
the aerodynamic power Pa is associated with accelerating the
air through the rotor and contributes to thrust generation and
associated mechanical power supplied to the rigid airframe.

Remark 2: The induced power factor κ is closely related
to, but not the same as, the (inverse of the) well known
figure of merit η ∈ [0, 1] [18] used in hover analysis of full
scale helicopters. In the case where horizontal and vertical
motion are negligible, then H , Vh and Vz are small and the
dominant term in the aerodynamic power is κTviz . The term
Tviz is the aerodynamic power in the linear part of the wake
and is the primary term associated with momentum theory
thrust analysis. Thus one has Tviz = 1

κPa. However, this
expression does not include losses due to the profile power Pp
of the blades. The figure of merit η models the aerodynamic
mechanical power Pam applied to the rotor shaft in ratio to
the actual aerodynamic power in the linear stream flow

η =
T |~va|
Pam

.

That is, η models the losses modelled by 1
κ as well as the

profile drag of the rotor blades [9]. The figure of merit does not
provide sufficient discrimination for the analysis we undertake
and is not used in this paper.

Define the advance ratio µ and vertical inflow ratio λ as
dimensionless scalar variables associated with rotor operation

λ =
viz + vsz
$R

=
viz
$R

+
vsz
$R

= λi + λs, (4a)

µ =
vih + vsh
$R

=
vih
$R

+
vsh
$R

= µi + µs, (4b)

where R is rotor radius and $ is the speed of the rotor. The
scalars λi, λs, separate the axial inflow ratio into induced and
stream components while the advance ratios µi and µs do the
same for translational components of airflow. We also define
the Lock number of a rotor as

γ =
ρClαcR

4

Ir
,

where c is rotor chord, Clα is the blade aerofoil lift curve
slope, R is the radius of the rotor and moment of inertia Ir.

Finally, we define the thrust, drag and aerodynamic mechan-
ical power coefficients as [21]

CT :=
T

$2
, CH :=

H

$2
, CPam :=

Pam
$3

,

respectively. Since $ varies over a large range for high speed
rotors typical of small multirotor vehicles, then working with

the aerodynamic coefficients CT , CH and CPam is better
than working with the raw thrust and power when the key
equations (18) and (19) are derived. In hover analysis, where
|~vs| = 0, then the CT and CPam coefficients are constant
and one recovers the thrust and power models T = CT$

2

and Pam = CPam$
3 used in existing RPM control systems.

However, these relationships are only valid for static aerody-
namic conditions and are invalidated the moment the hover
condition is violated, in particular in the presence of updrafts
or downdrafts [18]. By modelling the variation in CT and
CPam in varying aerodynamic conditions and then measuring
Pam and $ on the ESC, we will be able to reconstruct
the aerodynamic condition of the rotor, compute CT and
consequently compute the actual thrust T even in the presence
of gusts. In hover, the drag coefficient CH = 0 since there is
no lateral movement of the rotor to create drag. If the rotor
displaces air, then H and consequently CH depends on the
horizontal velocity of the rotor as noted in a range of previous
works [1], [2], [22]. Modelling CH is not a focus of the present
paper.

B. Momentum Theory

Momentum theory can be used to model the effects of
the rotor aerodynamic power Pa in thrust generation. Using
conservation of energy, mass and momentum in the linear flow
component within the streamtube and working with Glauert’s
assumptions on the streamtube [13], [18], the models for T , H
and aerodynamic power Pa including the correction for power
lost in the wake modelled by the induced power factor κ, are
given by [11], [12]

T = 2ρAviz|~va|, (5)

H = 2ρAvih|~va|, (6)

Pa = κTviz + Tvsz + κHvih +Hvsh, (7)

where ρ is the density of air and A is the area of the rotor
disc. Note that (7) is simply a restatement of (2). In terms
of the inflow ratios λ and µ (4), and thrust, drag and power
coefficients, then Equations (5)–(7) can be rewritten as

CT = 2ρAR2λi
√
µ2 + λ2, (8)

CH = 2ρAR2µi
√
µ2 + λ2, (9)

CPa =
(
κCTλ

i + CTλ
s + κCHµ

i + CHµ
s
)
R. (10)

C. Blade Element Momentum Theory

Blade element theory considers individual elements of rotor
blades and uses the classical aerodynamic theory of aerofoils
to model the forces T , H , torque τ and therefore aero-
dynamic mechanical power Pam of a rotor. Blade element
momentum theory (BEMT) considers the blade geometry and
aerodynamic properties (lift and drag) of the aerofoil in the
aerodynamic conditions generated by the streamtube modelled
using momentum theory. Small fixed-pitch rotors designed
for quadrotor vehicles are designed with approximately ideal
pitch and ideal chord, i.e., the rotor pitches more steeply and
increases in chord length closer to the rotor hub in order to
maintain the same lift properties in the changing aerodynamic
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Fig. 4. An aerofoil section of a blade at a radial station r ∈ [0, R] from the
rotor hub. The figure shows the different elemental forces which include lift,
drag, and the horizontal and vertical forces on the aerofoil in {C}. The flow
angles and velocity components are also shown.

condition caused by the slower linear velocity of the aerofoil
element at closer radial stations along the blade. This design
improves the hover performance of a rotor and also improves
the validity of BEMT by allowing the rotor blade to operate
at a similar angle of attack across the full length of the blade,
with similar induced flow ~vi across the whole rotor disc.
Although clearly this is a simplification of rotor aerodynamics,
BEMT provides a robust yet relatively simple model that
captures the key physical processes required for the approach
proposed in this paper. We make the following assumptions:

Assumption 1:
1) The rotor blades are fixed pitch with near ideal twist and

chord.
2) During axial motion, |vsz| is such that it is less than or

equal to the vertical induced velocity.
3) The flow is steady, irrotational, inviscid, incompressible

and locally 2 dimensional.
The unsteady and irrotational components of flow are ac-
counted for in the induced power factor κ. The assumption on
|vsz| ensures that during vertical ascent

(
viz + vsz

)
= vaz ≥ 0,

T ≥ 0 and no section of the blades is in windmill state. The
assumption on |vsz| also ensures that during vertical descent,
the flow is everywhere downwards and the blades do not stall
and thus maintain the linear lift model.

Since we model the thrust T along the rotor mast direction,
we require a model for the blade flapping angle β(ψ) in terms
of rotor azimuth angle ψ, where ψ ∈ [0, 2π]. Given that the
rotor blades on quadrotors are usually stiff, as such do not flap
as much as full scale helicopter blades, we model β(ψ) using
only the first two terms of a Fourier series harmonic model
[12] with coefficients a0, a1 and b1

β(ψ) = a0 − a1 cosψ − b1 sinψ.

Let θ0 denote the physical pitch angle of the blade and γ
denotes the Lock number, then the model for these coefficients
are given by [12]

a0 =
γ

8

[
θ0
(
1 + µ2

)
− 4

3
λ

]
,

a1 =
2µ (4θ0/3− λ)

1− µ2/2
,

b1 =
4
3µa0

1 + µ2/2
.

Consider the rotor and a blade element shown in Figure 4. The
horizontal velocity component of the rotor blade at a radial
distance r and azimuth angle ψ is given by

Uh(r, ψ) = $r + (−Vh +Wh + vih) sinψ.

For the vertical velocity Uz(r, ψ),

Uz(r, ψ) = viz−Vz+Wz+rβ̇(ψ)+(−Vh+Wh+vih)β(ψ) cosψ.

Normalising or non-dimensionalising by dividing by the tip
velocity of the rotor $R, the following relationships are
obtained

uz(r, ψ) =
Uz(r, ψ)

$R
,

= λ+
r

R$
β̇(ψ) +

1

R$
(−Vh +Wh + vih)β(ψ) cosψ,

= λ+
r

R

dβ(ψ)

dψ
+ µβ(ψ) cosψ,

and

uh(r, ψ) =
Uh(r, ψ)

$R
,

=
r

R
+ µ sinψ.

The total or resultant velocity at the blade element is

|U(r, ψ)| =
√
Uh(r, ψ)2 + U2

z (r, ψ).

For “slow” moving quadrotors with |~V | < 5m/s, we assume
U2(r, ψ) ≈ U2

h(r, ψ). This is a reasonable assumption given
the much higher rotational tip speed of rotors used on quadro-
tors. For example, for a 10in diameter rotor blade (used on
the quadrotor shown in Figure 1), rotating at $ ≈ 5000RPM,
then Uh > 50m/s. Even if the entire velocity ~V is in the
vertical direction, Uz ≤ 5m/s and hence U2

z (r, ψ) is less than
1% of U2

h(r, ψ) and the approximation holds to well within
the expected model error. Indeed, a 5% relative error would
be acceptable, however, 5m/s disturbances are already toward
the limit of the normal operating conditions, both in speed
and expected updraft and downdraft disturbances expected for
small quadrotor vehicles.

The elemental lift dL(r, ψ) and drag dD(r, ψ) forces ex-
pressed in {C} are defined by

dL(r, ψ) =
1

2
ρU2(r, ψ)Cl(r, ψ)c(r) d r,

dD(r, ψ) =
1

2
ρU2(r, ψ)Cd(r, ψ)c(r) d r,

where Cl and Cd are the element lift and drag coefficients
respectively and are given by

Cl(r, ψ) = Cl0 + Clαα(r, ψ),

Cd(r, ψ) = Cd0 +KC2
l (r, ψ), K > 0.

c(r) and α(r, ψ) are the element chord and angle of attack
respectively. The constants Cl0 , Cd0 , Clα,K are the zero-angle
of attack lift coefficient, the zero-lift drag coefficient, the lift
curve slope and K a constant that depends on the blade
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planform geometry. From Figure 4, the element angle of attack
is defined by

α(r, ψ) = θ(r)− φ(r, ψ),

where θ(r) is the blade section pitch and φ(r, ψ) is the relative
inflow angle at the blade section. For |φ(r, ψ)| < 10◦,

φ(r, ψ) ≈ tan−1
(
Uz(r, ψ)

Uh(r, ψ)

)
≈ Uz(r, ψ)

Uh(r, ψ)
.

A consequence of Assumption 1, however, is that the angle of
attack α(r, ψ) is approximately constant along the entire blade
length of the “near ideal” rotor [11]. The elemental forces in
the ~e3 direction and in the horizontal plane span{ẽ1, ẽ2} in
{C} are given by [12]

dFx(r, ψ) = dL(r, ψ) sinφ(r, ψ) + dD(r, ψ) cosφ(r, ψ),
(11)

dFz(r, ψ) = dL(r, ψ) cosφ(r, ψ)− dD(r, ψ) sinφ(r, ψ).
(12)

To obtain the models for T,H and Pam for a ‘near ideal” rotor
in steady state, we assume the rotor aerodynamic parameters
Cl0(r, ψ) ≈ 0 and KC2

l (r, ψ) ≈ 0. In addition, applying
Assumption 1 along with the definitions for the elemental
forces ((11) and (12)), the forces can be resolved into T and
H in {B} thus the models can be derived for T,H and Pam.
Details of the derivations are found in Bangura et. al. [11].
They are summarised below in coefficient form

CT =
1

4
NbρctipR

3Clα
(
θtip(2 + µ2)− 2λ

)
, (13)

CH =
1

2
NbρctipR

3µ

[
Cd0 +

1

2
X

]
, (14)

CPam =
1

4
ρNbctipR

4Cd0
(
2 + 5µ2

)
+
(
CT (κλi + λs) + CH(κµi + µs)

)
R,
(15)

where

X = Clα

(
θtip(λ− b1 + λa0) + 2λ

(
4
θtip

3
− λ
)
− 2λb1

)
.

The variable Nb denotes the number of blades, ctip denotes the
tip chord and θtip denotes the tip pitch. It follows that BEMT
along with momentum theory analysis gives us the model of
profile power Pp. Recalling (3) and noting that the second
component of aerodynamic mechanical power Pam (Pam =
CPam$

3) in (15) which states explicitly that CPam = CPa +
CPP , with the rotor aerodynamic power Pa (Pa = CPa$

3)
given by (10), then the profile power component of (15) is
given by

Pp =
1

4
ρNbctip$

3R4Cd0
(
2 + 5µ2

)
. (16)

D. Modelling the Induced Power Factor κ

Recall that κ models energy lost to non-uniform inflow, vis-
cous drag, tip losses, wake swirl and wake contraction. These
effects are closely linked with the aerodynamic conditions
generated by the rotor and their effect is much more significant

on small rotor systems than full scale helicopters. Their effects
can be summarised into tip loss and rotor efficiency.

Define the disc loading of a rotor as

DL =
T

A
.

Note that the disc loading is closely related to the thrust
coefficient through DL = $2

A CT . Low DL rotors, that is
systems with large rotor areas relative to their generated thrust
such as helicopters have high CT but typically low induced
vertical velocity viz and rotor speed $. This makes them far
more efficient in hover conditions than rotors with high disc
loading. A dynamic increase in CT is commonly associated
with a decrease in λs, for example an updraft will result in
a λs < 0. Given the already high efficiency of such rotors
any changes in λs will have a little effect on the aerodynamic
efficiency of the rotor. However, changes in λs as a result of
an updraft or downdraft will have a noticeable effect on the
tip loss due to increase or decrease in tip vortex generation.
For high CT , low DL rotors, the induced power factor κ is
driven by tip loss and other parasitic drag effects. An increase
in CT results in a moderate increase in κ (see Fig. 5). This is
the typical regime in which helicopters operate [18].

Small rotor systems for quadrotors, however, operate with
very high disc loading and have correspondingly small thrust
coefficients CT while operating with relatively high $. As
such they operate with high vertical induced velocity viz
and are much less efficient (power efficiency ( T

Pam
)) than

helicopter rotors. The presence of an updraft (increasing −λs)
leads to an increase in CT and a noticeable increase in
aerodynamic efficiency. Such an updraft will also increase tip
loss, however, the overall efficiency gain strongly dominates
(see Fig. 5). Hence, for low CT , high DL rotors, increasing CT
leads to a significant increase in rotor efficiency while losses
due to tip loss are negligible thereby decreasing κ. This is the
typical regime in which a quadrotor operates.

With reference to Figure 5, we propose a general model for
κ to be

κ = const. + const.CT + const.
1

CT
,

where we do not provide symbols for the positive constants
for the moment. Figure 5 graphs κ versus CT for low disc
loading (helicopters) and high disc loading (quadrotor) rotors,
the rotor system used for the experimental work in this paper
and based on values obtained in Section IV. For the rotors on
our quadrotor vehicle where CT << 10−4, the dominant part
of the model is the hyperbolic term 1/CT . This is supported
by experimental results shown in Figure 7 of Section IV. Note
that the model plotted in Figure 5 is supported by Figure 3.18
in [18, pg. 105], although the nature of the high disc loading
model is not considered by Leishman as it is not relevant to
the helicopter rotors discussed [18].

In practice, the rotor for our vehicle will never function
outside of the dominant region where 0 < CT << 10−3. In
this region the linear term const.CT is negligible, while the
hyperbolic term can be approximated by a linear function

1

CT
≈ const.

C̄T
− const.

C̄2
T

(CT − C̄T ),
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Fig. 5. An illustration of the induced power factor κ and thrust coefficient
CT for low and high disc loading rotor blades i.e. quadrotors and helicopters.

where C̄T is an operating point. Thus it is sufficient to
approximate the κ model by a linear model in the region of
operation of such rotors by

κ = d0 + d1CT , (17)

where d0 > 0 is a positive constant and d1 < 0 is a
large and negative constant. Using a linear model of this
nature reduces the computational burden on the already heavily
loaded embedded microcontroller on the ESC.

E. Thrust Computation

The variables in Equations (13)–(15) are CPam , CT , CH ,
µi, µs, λi, λs, κ and $. At the local electronic speed controller
(ESC) level, it is possible to measure $ directly and estimate
Pam and therefore CPam by measuring the electrical power
into the motor and compensating for electrical losses (see
Section III-A) [7]. Thus, we have seven unknowns CT , CH ,
µi, µs, λi, λs, κ and four constraint equations ((13), (14), (15)
and (17)).

A number of authors have noted that the horizontal veloci-
ties vsh, v

i
h, force H and therefore µs, µi, CH are related to the

horizontal acceleration of the vehicle [1], [2], [22] and can be
measured using the accelerometers in an inertial measurement
unit (IMU). Using such measurements, it should be possible to
resolve the remaining four unknown variables from the alge-
braic constraints ((13), (15) and (17)). Although this appears to
be a promising approach, the ESC on a typical quadrotor is not
equipped with an accelerometer and the communication link
to the central IMU is far lower bandwidth (typically 50Hz)
than the ESC control loop operational frequency (typically
1 − 2kHz), making corrections for horizontal aerodynamics
difficult.

Rather than take such an approach, we argue that the
contribution of the horizontal variables to the aerodynamics of
the rotor is effectively negligible for most aerial robotics appli-
cations and can be ignored. Considering (13) and (15), we note
that the µ variable appears as a quadratic µ2. For quadrotors in
near hover conditions, typical of many robotic applications, the
advance ratio µ is naturally small and consequently its square

is negligible. Furthermore, with vsh small, consequently vih is
also small, such that the term CH(µs + κµi) ∝ µ2 and can
thus be ignored. Formally, we make the following assumption:

Assumption 2: The advance ratio µ is small such that µ2 ≈ 0
within the accuracy of the aerodynamic model.
Computational fluid dynamics results on translational flight
presented in [19] showed that for translational velocities up to
Vh = 10m/s, the total power gained by all four rotors is only
6%. This validates our decision to ignore the effect of trans-
lational lift for typical robotics applications. This assumption
decouples the dependence of (14) with (13) and (15). The hor-
izontal components of force CH , and velocity ratios µi and µs

no longer contribute to the vertical aerodynamics in Equations
(13) and (15). This leaves four aerodynamic variables CT , λs,
λi and κ along with three constraint equations (13), (15) and
(17). The final constraint is provided by the expression for CT
derived from momentum theory (8). To simplify the notation
in the sequel, we define lumped coefficients

c0 = R, c1 =
1

2
NbρctipR

3Clα,

c2 = θtip, c3 =
1

2
ρctipNbCd0R

4.

From Assumption 2, (13) and (15) can be rewritten respec-
tively as

CT = c1 [c2 − λ] , (18)

CPam = c3 + CT
(
κλi + λs

)
c0. (19)

Recalling from Assumption 2 that µ2 ≈ 0, then (8) becomes

CT = c4λ
iλ, (20)

where c4 = 2ρAR2 = 2ρAc20.
The relationship (20) along with (18) provides a constraint

between λi and λs. It is convenient to make this relationship
explicit rather than work with the two separate constraints.
Equating (20) to (18) and collecting terms yields,

c4
(
λi
)2

+ λi (c4λ
s + c1) + c1 (λs − c2) = 0. (21)

In summary one has aerodynamic variables CT , λs, λi and
κ, constraint equations (17), (18), (19) and (20), depending on
aerodynamic coefficients d0, d1 and c0, c1, c2, c3 and c4. The
aerodynamic coefficients are determined offline using linear
regression described in Section IV-B.

The proposed iterative scheme for solving (17), (18), (19)
and (21) (implemented as described in Section V) is outlined
in Algorithm 1. The approach taken is tailored to exploit
the fact that once the stream inflow ratio λs is known, it
is straightforward to compute CT , κ and CPam sequentially,
but difficult to compute a single function of all variables. We
generate two initial estimates λs1 and λs2 based on the previous
estimate λs and a small offset ∆ of the previous estimate. Then
for each estimate λsk, we compute the aerodynamic variables
one-by-one. We define an implicit function

f(λs) = CPam(t)− CPam ,

where CPam is the computed value based on the guess of
λs and CPam(t) is the measured value at time t. The goal
is to find λs that makes f(λs) = 0. The two initial guesses
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λs1 and λs2 form the first two elements of a Newton-Secant
iteration that converges to the optimum λs. A simple stopping
criteria based on decrease in f(λsk) with a precision ε is used
to exit the loop. In practice, the loop usually converges in
3-4 iterations (that includes the two initialisation values) and
rarely runs more than 5 iterations. The arbitrary limit N > 3
on total iterations of the for loop ensures that the code meets
run time requirements — although we use N = 20, in practice
and have never seen the for loop run to completion.

Algorithm 1 Thrust Computation
1: Data c0, c1, c2, c3, c4, d0, d1, N , ∆, ε.
2: Local state old[λsk].
3: For each measurement CPam(t) = P̂am

$3 at time t.
4: Set k = 1; Set λs1 = old[λsk]−∆
5: for k = 1 . . . N do
6: if k = 2 then; Set λs2 = old[λsk];
7: Use (21) to compute λi;
8: Use (18) to compute CT ;
9: Use (17) to compute κ;

10: Use (21) and (19) to compute CPam ;
11: Compute f(λsk) = CPam(t)− CPam ;
12: if k > 2 and |f(λsk))− f(λsk−1)| < ε then break
13: Compute λsk+1 = λsk − f(λsk)

λsk−λ
s
k−1

f(λsk)−f(λ
s
k−1)

; return

14: Set old[λsk] = λsk;
15: Output T = CT$

2;

III. THRUST CONTROL DESIGN

In this section, we propose a hierarchical controller for
thrust regulation based on the aerodynamic theory and thrust
computation scheme developed in Section II along with the
electromechanical properties of the motor-rotor system.

The proposed control architecture for the regulation of
thrust is shown in Figure 6. It consists of a cascaded control
structure with an inner current control loop, and an outer thrust
regulation loop. The inner loop is a positive proportional-
feedforward controller and the outer thrust control loop is a
proportional integral (PI) control with feedforward. Together,
this simple architecture effectively regulates the thrust of the
rotor at minimal complexity and fast transient response.

A. Motor Model and Power Estimation

If va, ia are the voltage and current through a motor and
$ is the speed of the rotor, the model for a brushless direct
current (BLDC) motor is given by [7]

va = Ke$ + iaRa + La
dia
dt
, (22a)

τ = (Kq0 −Kq1ia) ia, (22b)
Ir$̇ = τ − τD, (22c)

where Ra is the motor resistance, Ke is a constant that is
related to the Kv (where $ = Kvva) rating of the motor and
La the motor coil inductance. The constants Kq0 and Kq1

are the current to torque (τ ) constants. The quadratic term

Kq1i
2
a in (22b) accounts for the degrading torque efficiency

associated with high currents [7] and Ir is the rotor moment of
inertia and τD is the torque as a result of the rotor aerodynamic
drag. The power associated with accelerating or decelerating
the rotor is given by

Pr = Ir$$̇.

The full mechanical power supplied to the rotor through the
rotor mast is given by

Pm = τ$. (23)

The power balance for the rotor mast can be written as

Pam = Pm − Pr, (24)

where Pam is the aerodynamic mechanical power derived in
Section II-C. A suitable electronic speed controller (ESC)
provides direct measurements of $, ia and va. Measurements
of these quantities are noisy and to obtain usable data for
estimation and control, it is important to filter and condition
the signals. A set of complementary filters based on (22a)
and (22b) were proposed in Bangura et al. [7]. These filters
achieve reasonable signal conditioning îa and v̂a of the raw
measurements and also provide an estimate ˆ̇$ of $̇ . The raw
measurements of $ do not require filtering.

An estimate of the aerodynamic mechanical power input
into the air P̂am, can now be computed directly from the
measured and estimated variables

P̂am =
(
Kq0 −Kq1îa

)
îa$ − Ir$ ˆ̇$. (25)

Once power has been estimated, it is used in the computation
of thrust as described in Section II. This thrust is then regulated
using the outer-inner loop controllers shown in Figure 6
directly on the ESC.

B. Control Design

The proposed hierarchical controller for regulation of thrust
is shown in Figure 6. In the motor model, M1 is a combination
of (22a) and (22c) to model the non-linear model between
va and ia. M2 is the non-linear model that relates ia and
the aerodynamic mechanical power Pam and M3 represents
the non-linear model that maps Pam to T as outlined in
Section II-E.

The low-level current controller is crucial in generating fast
$ response using high gain inner loop control, hence avoiding
the need for exceptionally high gains in the outer loop where
noise in the estimated feedback signals would be a problem.
The low-level current controller is defined by

va = vff (Td) +K1
p

(
ira + îa

)
, (26)

where vff (Td) is a feedforward voltage, îa is the measured
current, ira = ica − ida is the reference control current; com-
prising the control current ica from the outer loop PI controller
minus the ‘desired’ feedforward current ida, see Figure 6. We
propose a positive (unstable) inner loop feedback, the +ia
term, in the control design which in turn dictates a negative
feedforward term −ida, with the feedthrough control term +ica
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Fig. 6. The proposed thrust controller architecture showing the two control levels, controller gains, feedforward terms, signal conditioning, saturation block
and motor models M1,M2,M3. The controller runs at 1kHz on the ESC [7]. The dotted thrust line indicates that thrust is estimated and not directly measured.

positive as is usual. The use of positive inner loop feedback is a
key aspect of the control design and is important in generating
the desired rise time of the full system. To understand the
role of the gain, consider the linearisation of the inner loop
current control around some fixed constant thrust condition.
The following model is derived in Appendix A:

H1(s) =
ia
va

=
K1
p [KeKq +Ra(Irs+ δ)]

Irs+ δ −K1
p [KeKq +Ra(Irs+ δ)]

,

where δ is a damping factor associated with the linearisation
of the aerodynamic damping [7] and Kq = (Kq0 − 2Kq1i

?
a)

is defined in Appendix A. By choosing K1
p > 0 suitably

then the poles of this transfer function can be placed close
to the imaginary axis but remain stable, ensuring fast rise
time with very high overshoot of the current response. A large
overshoot in the current response provides the surge of power
necessary to spin up (or spin down) the rotor. In order to
prevent over-current, the computed voltage is saturated based
on the maximum current through the ESC and instantaneous $
measurement using (22a). Since the actual control design is a
pure proportional control and the inherent current dynamics
are stable, saturation will not destabilise the system. The
stability bound K1

p ≤ δ
KeKq+Raδ

(32), Appendix A, ensures
that the poles will remain stable. The parameters in this bound
are relatively easy to determine (see § IV-A) from the electric
motor parameters of a motor-rotor assembly and tuning K1

p is
straightforward.

In the outer loop, governing actual thrust control, we
propose a feedforward and proportional integral (PI) feedback
controller. The feedback controller design of this system is a
straightforward linear design once the inner control loop is sta-
bilised. The overall control architecture includes only a single
integrator at the outer level to avoid dynamic complexity. The
feedforward terms are included to limit the offsets associated
with the simple proportional gains in the control architecture.

The feedforward terms are obtained by considering steady
state hover and static free air conditions (|~vs| = 0). The
feedforward term f1(Td) is derived from (22a). From the
voltage equation, 1

K2
e

(va − iaRa)
2

= $2, hence,

Td =
CT
K2
e

(va − iaRa)
2
.

Thus a quadratic model for f1(Td) derived above is used.
To obtain f2(Td), consider the electrical torque (τ = Kqia)

and aerodynamic (τD = CQ$
2) torque at steady state (i.e.

$̇ = 0) where CQ is the torque coefficient. Hence ia =
CQ
Kq
$2. From this, it is easily seen that Td = CT

Kq
CQ
ia, hence,

a linear function relating Td and ia is obtained for f2(Td).

IV. LABORATORY CALIBRATION

In this section, we outline calibration procedures used for
the proposed thrust estimation and control scheme presented in
Sections II and III. There are two calibration procedures: mo-
tor/electrical and rotor/aerodynamic. The procedures require
measurements of va, ia, $ provided by the electronic speed
controllers (ESC) [5], force and torque by a 6-axis force-
torque sensor [29] and the axial stream velocity vsz read from a
hand held anemometer. The calibration results presented may
appear to have large errors in many of the parameters. It
is important to recall however, that the predictive power of
equations (17), (18), (19) and (20) is more important than the
actual values of the coefficients. We demonstrate this through
the ANOVA analysis of the model fit. Although the calibration
described in this section depends on laboratory facilities, we
believe that field calibration procedures can be developed,
however, such a study is beyond the scope of the present work.

A. Motor Calibration
This involves determining the electrical constants

(Ke, Ra, La) outlined in Section III-A which are necessary
for the implementation of the filters in Bangura et al. [7].
With steady state measurements of va, ia and $, applying
linear regression to (22a), the constants Ke and Ra are
determined. With Ke and Ra determined, the transient data
to the different steady states can be used to determine La. In
addition, to obtain Kq0 and Kq1, the torque (τ ) measurements
provided by the force-torque sensor are used in a second
regression based on (22b). Results of these regressions are
available in [7].

B. Aerodynamic Calibration
The goal of the aerodynamic calibration is to determine

the aerodynamic coefficients c0, c1, c2, c3 and d0, d1. The
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available measurements are power Pam and rotor RPM $ from
the ESC, thrust T from the force-torque sensor. The power
coefficients CPam and CT can be determined algebraically
from this data. Since CPam and CT are constant at hover
condition, it is necessary to generate non-hover conditions
to observe the underlying aerodynamic constants. The most
direct way in which to achieve this is by placing the rotor in a
controlled wind environment. A crude laminar flow generator
for generating vsz is used and the motor-rotor system is
mounted on a force-torque sensor shown in Figure 8. Note that
the motor-rotor assembly is inverted ensuring that the external
flow is adding to the induced velocity (increased λ) rather than
opposing, a more robust experimental configuration that avoids
complex stream effects seen in descending rotor aerodynamics.

The aerodynamic coefficient c3 can be determined with a
single stand alone experiment. The rotor is fixed at a range of
RPM and then the velocity of the wind |vsz| is adjusted until
the average thrust is zero; that is CT = 0. There is still a
residual torque associated with the operation of the blade and
this is associated with the constant c3 (19). We performed a
set of 9 experiments with each experiment running for 70s.
The resulting estimate for c3 was

c3 = 1.2998× 10−8 ± 2.355× 10−8. (27)

The next stage is to determine c0, c4, d0 and d1 the
coefficients associated with the momentum theory model and
the induced power factor κ using (19) and (20) that are
independent of c1 and c2. The parameter c0 = R is nominally
the radius of the rotor. However, this parameter is primarily
associated with characterising the cross sectional area of the
stream tube in the momentum theory derivation and this
depends on the effective operation of the rotors. All rotorcrafts
suffer from some effective decrease of the rotor radius due to
tip loss and other effects. However, all quadrotor rotor blades
have significant tip and root cutouts and their effective radius is
significantly less than the Prandtl estimate. To account for this
reduction, we will estimate c0 as well as the other aerodynamic
coefficients.

TABLE I
ESTIMATED AERODYNAMIC COEFFICIENTS USING LINEAR REGRESSION.

Parameter Estimate 95% Confidence Interval
c1 6.1490× 10−5 [5.7215 6.5242]× 10−5

c2 0.2993 [0.2883 0.3135]
c3 1.2998× 10−8 [−1.0552 3.6548]× 10−8

d0 4.2959 [−3.0642 11.7926]
d1 −1.7154× 105 [−6.7367 3.2139]× 105

c0 0.0724 [0.0637 0.0811]

We will estimate the aerodynamic parameters by under-
taking a sequence of coupled regressions. The parameters
identified in each stage are denoted c0(k), c4(k), d0(k) and
d1(k) for k = 1, 2, . . .. For the initial stage, we assume
c0(1) = R the rotor radius and this leads to an estimate
c4(1) = 2ρπc20. Using measurements of thrust T , λs and $
and using (20), the following relationships are used to obtain

λi and λ

λi =
−λs +

√
(λs)

2
+ 4CT

c4

2
,

λ = λi + λs.

Now using (19) along with the estimate for c3 (27), one has

CPam−c3 = c0(k)CTλ
s+CTλ

id0(k)c0(k)+C2
Tλ

id1(k)c0(k).
(28)

A regression on this equation yields values for c0(2),
d0(2)c0(2) and d1(2)c0(2). The value for c0(2) is now used
to generate a new c4(2) and the λi and λ variables are
recomputed. The regression on (28) can be run using the
new inflow ratios and the whole process is iterated (by
hand by an available PhD student) until the values converge.
Performing this process, one obtains the results summarised
in Table I. From the regression, we obtain an effective radius
c0 = 0.57R; that is 57% of the physical rotor radius R.
This might appear low, however, considering the quality of the
construction of such cheap blades with significant root cutout,
it is not surprising that the effective cross sectional area that
is appropriate for momentum theory is quite small.

Remark 3: It is not possible to identify c3 in the same
process as c0, c4, d0 and d1 since both processes separately
model dissipation losses in the rotor model.

Finally we use (18) to identify parameters c1 and c2. This
is a straightforward regression on the lumped parameters c1c2
and c1. The results of this regression are also summarised in
Table I.

Due to the different units for the various aerodynamic
parameters, it is important to use preconditioning on the
data to avoid ill conditioning in various regressions. We use
a preconditioner based on the magnitude of entries in the
regression vector. The limitations of the experimental system
available meant that we only collected N = 5 data points
for vsz = (0.0, 1.5, 2.3, 3.3, 4.2)m/s and the associated CT ,
CPam , λi, λs. This limitation in data lead to the large 95%
confidence intervals for the parameter estimates as recorded in
Table I. However, the key requirement for the performance of
the model is not individual parameter estimates, but rather the
accuracy of the model. We demonstrate this firstly in Figure 7.
Here we have plotted the projected regressions for λ versus
CT , which corresponds to Equation (18), and CT versus κ
which corresponds to Equation (17). In particular, the increase
in efficiency (decrease in κ) with increase in CT is clearly
visible.

TABLE II
ANALYSIS OF VARIANCE (ANOVA) FOR THE SEPARATE REGRESSIONS.

CPam − c3 = c0eCTλ
s + CT (d0 + d1CT )λic0e

Source SumSq DF MeanSq
Corrected Total 4.9306× 10−15 4 1.2326× 10−15
Model 4.9288× 10−15 2 2.4644× 10−15

Error 1.805× 10−18 2 9.0251× 10−19

CT = c1c2 − c1λ
Source SumSq DF MeanSq
Corrected Total 2.3187× 10−12 4 5.7967× 10−13
Model 2.3157× 10−12 1 2.3157× 10−12

Error 2.9474× 10−15 3 9.8246× 10−16
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Fig. 7. Results for λ against CT and CT against estimated κ. The high
R2 values show good fit of the proposed models for the experimental data.
Furthermore, the linear relationship between CT and λ modelled by (18) is
easily observable.

To check the accuracy of the CT (18) and CPam (19) mod-
els, we performed an analysis of variance ANOVA analysis of
residuals. The results of this analysis is displayed on Table II
for the degrees of freedom (DF), the sum of squares and mean
square error. The obtained sum of squares and the mean sum
of squares are several orders of magnitude less than (CT )2 and
(CPam)2. Table III shows the adjusted R2 which are almost
unity implying that the models explain the experimental data
to a high level of accuracy. Furthermore, the root mean square
error (RMSE) for both models have magnitude of orders of
magnitude smaller than the model parameters of the regression
thus providing further evidence on the accuracy of the model.

TABLE III
FURTHER ANOVA RESULTS FOR THE CT AND CPam MODELS.

Model Adjusted
R2 RMSE

CPam 0.999 9.5× 10−10

CT 0.998 3.13× 10−8

CPam − c3 = c0eCTλ
s + CT (d0 + d1CT )λic0e

CT = c1c2 − c1λ

Carrying out regression on the following pairs of data:
(T, va), (T, ia), to determine the parameters for f1(Td) and
f2(Td) is a straightforward process.

V. EXPERIMENTAL RESULTS

In this section, we present both static experimental and
dynamic flight test results to evaluate the performance of the
proposed thrust controller. Experimental results for a state-of-
the-art rotor RPM ($) controller are also provided to provide a
comparison. The section starts by describing the current static
thrust model and RPM controller.

A. Classical RPM Rotor Control
The classical model for thrust is based on a static free air

model that relates thrust T to rotor speed $ and is given by
[21], [22], [23], [26]

T = CT$
2.

The inadequacy of this model in modelling actual thrust
generated lead to the proposition of a modified model to obtain
a good fit for thrust and $. The thrust to RPM model that is
currently the accepted standard in the literature is [5], [8], [10]

T = CT0$ + CT$
2, (29)

where CT0 and CT are constants determined from static tests.
For the rotors used on our quadrotor, with $ measured in RPM
and T in N , the coefficients obtained through regression are
CT = 1.9 × 10−7, CT0 = −1.77 × 10−4. The CT0 term is
added in particular to improve the thrust model at lower rotor
speeds. Operating at an RPM of approximately 4500, the effect
of the linear correction term is small but still important.

For a desired thrust Td, the desired $d is determined using
(29). The desired rotor speed $d is then controlled using a
feedforward voltage along with a PI feedback controller given
by [5], [10]

va = vff ($d)−Kp($ −$d)−Ki

t∫
0

($ −$d)dt, (30)

where Kp,Ki > 0 are the feedback gains and vff ($d) is the
feedforward voltage.

In summary, the coefficients CT0, CT , vff ($d) are experi-
mentally determined using a force sensor and ESC measure-
ments of $ and va and then the gains Kp,Ki are tuned in
static (|~vs| = 0) free air conditions. The voltage va determined
from the proposed controller of (26) and that of (30) are
implemented on the ESC as a pulse width modulation (PWM)
of the bus voltage.

B. Static Rotor Experiments

The aim of the static rotor experiments are to demonstrate
the improvements of the proposed scheme and controller
compared to desired RPM control for regulating thrust to
a desired setpoint in the presence of downdrafts of varying
strengths. The experimental setup is shown in Figure 8 and
consists of a 6-axis force-torque sensor [29], an anemometer,
a custom made laminar flow generator to provide controllable
wind conditions and an ESC equipped with both the RPM and
new controllers.

The experiment is undertaken by adjusting the flow gen-
erator until the desired stream velocity is attained. Then the
control on the motor-rotor is initiated at the desired thrust
setpoint and, after the transient has died out, data is collected
from the force sensor for a period of 60 seconds. The data
is averaged to obtain the results shown below. A summary
of the mean variation of thrust measured by the force-torque
sensor from the desired thrust setpoint (T = 3.2N ) when both
controllers are subject to downdrafts of varying strengths is
presented in Table IV.

From these results, it is clear that the new controller
outperforms the current state-of-the-art RPM controller in
maintaining the desired thrust setpoint in varying strengths
of downdrafts. Figure 9 shows the resulting variations in $
and the vertical inflow ratio λ in maintaining the desired
thrust setpoint T by the new scheme. The changes in λ
correspond to changes in the strength of the downdrafts. These
λ changes correspond to changes in CT given by (18) and
therefore thrust. In order to produce the desired thrust, the
new controller changes the desired aerodynamic mechanical
power P dam which in turn changes the desired $. Computed
λ and the corresponding $ along with 1σ variations in the
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ESC

JR3

Flow
Generator

Thrust

vs

Fig. 8. Experimental setup for calibration and the static downdraft exper-
iments. The rotor is inverted for simplicity and a downdraft condition is
generated by the ascending wind. The laminar flow generator is fabricated
from 10cm long sections of coloured drinking straws glued into the top of
the plastic bin in which a 10in propeller is controlled to generate constant
stream velocity ~vs directed in the axial direction. The velocity of the air is
hand measured using an anemometer. The experimental motor-rotor system
is mounted on a force-torque sensor and connected to an isolated ESC. The
isolated ESC has the RPM and proposed scheme implemented to control the
desired thrust force setpoint T .

TABLE IV
SUMMARY OF STATIC TEST RESULTS FOR MEAN VARIATIONS OF THRUST

FROM A DESIRED VALUE T0 = 3.2N AND THEIR 1σ VARIATIONS AS

PERCENTAGES
(

T−T0
T0

%
)

.

vsz (m/s)
RPM

Controller
New

Controller
0 0± 0.2324 0± 3.4257
0.8 −1.9897± 2.2923 0.0328± 3.6745
2.2 −10.4906± 3.2013 0.0342± 3.4153
3.5 −13.7860± 1.9289 0.0078± 3.4075
3.8 −15.8434± 2.5288 −4.5829± 3.4298
4.0 −18.6991± 3.7215 −0.0931± 3.3447
4.2 −20.7216± 0.6022 −1.8781± 2.8694

mean of a set of sub-experiments using the new scheme and
controller are shown as error bars in Figure 9. The measured
thrust by the force-torque sensor along with 1σ variations in
the mean are also shown to verify that the desired thrust is
maintained irrespective of changing vsz . Just as predicted, the
RPM scheme and controller is unable to maintain the desired
thrust and becomes less effective with increasing values of vsz .

C. Transient response

A key requirement of motor-rotor control is to obtain good
transient response for the rotor. Based on the stability bounds
on (32) of our proposed scheme, the choice of K1

p that gives
a high stable overshoot with damping factor less than 0.1
of the current dynamics is K1

p = 0.01. To verify that the
proposed scheme has a good transient response, a series of
step responses were undertaken for which one set of results is
shown in Figure 10. Both the RPM and new controller were
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Fig. 9. The figure shows mean variations and 1σ error bars in $ and λ
resulting from using the new scheme and controller to producing a desired
thrust of 3.2N in downdrafts (vsz) of varying strengths. It is these dynamic
changes in $ and computed λ at the local ESC level that enable the
computation and control of thrust to the desired physical value. The third plot
shows the measured thrust and error bars for 1σ variation in the measured
mean thrust per experiment for the different downdraft strengths resulting from
the two controllers thus confirming that we are able to maintain an almost
constant desired thrust with the new scheme in the varying aerodynamic
conditions.

tuned to obtain the best transient that we could achieve. The
transient response of both control architectures are in the order
of 50ms rise time. This transient response is constrained by the
physical limitations of the system, primarily current saturation,
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Fig. 10. Comparison of the transient responses of the current state-of-the-
art RPM based model and controller to the new scheme and controller to
step input in thrust. The filtered force measurements are provided by the JR3
force-torque sensor. The results show similar transient characteristics of both
controllers.

and the rise-time is the best that can be achieved with this
hardware. Both motor-rotor controllers contain integral terms
and will have zero steady-state tracking error up to the limit
of the thrust model. In this case, since the stream velocity
~vs = 0, the RPM thrust model should be accurate and the
steady-state response of both schemes is expected to be the
same. Circulation of wind in the laboratory will cause gusts
that lead to thrust variation.

D. Flight Tests

To evaluate the effectiveness of the proposed approach
in free flight, we perform a constant velocity flight (Vx =
−0.3m/s) at a constant height (z = −1.1m) using the
proportional derivative (PD) position and trajectory tracking
controllers presented in [8] for both the proposed thrust control
and controllers. The transient responses of the two motor-rotor
controllers are quantitatively equivalent as shown in Figure 10
and the same outer loop controller is used. It is reasonable to
expect that any qualitative difference in the performance of
the closed loop flight system will be due to sensitivity of the
motor-rotor response to un-modelled aerodynamic effects in
the thrust model rather than any fundamental difference in the
control design.

To excite the gust response of the vehicle, the trajectory was
chosen to fly directly over the “almost laminar” flow generator
of radius 0.35m located in the middle of the flying space and
blowing with a vertical wind of strength vsz = 3.5m/s. This is
a strong gust disturbance for the small quadrotor vehicle used
as the experimental platform. The results for the RPM based
scheme and the proposed method are shown in Figure 11 and
the accompanying video.

To interpret the trajectories shown in Figure 11, it is impor-
tant to realise that the gust is not applied evenly to the vehicle.
During forward motion, the tip of the front blade touches the
updraft when the centre of mass of the vehicle represented
by ⊗ is roughly 0.8m (arm length of the vehicle is 0.3m,
blade radius c0 = 0.127m and radius of updraft is 0.35m)

from the centre of the updraft. With the RPM controller,
the updraft induces a strong upwards pitching motion that
directs the centre of the quadrotor (⊗) towards an upwards
trajectory, even though at this time the centre of the quadrotor
is still some distance from the gust. Moreover, as the vehicle
crosses the gust, the front rotor exits first and the vehicle
descends even while the rear rotor is still in the gust. In
contrast to the RPM control, the thrust control algorithm is not
significantly affected by the gust and the quadrotor trajectory
is not significantly disturbed.

It is interesting to note that the lateral deviation of the
vehicle is even more extreme than vertical divergence. This
is due to the instability of the two opposing air columns
interacting with each other. The destabilisation of the air
column interaction causes strong roll (and pitch) disturbances
and lead to the vehicle veering strongly off course. This effect
is most significant during the entry phase as the quadrotor is
being forced to ascend and the controller is fighting against the
updraft. As the front rotor exits the flow region, the quadrotor
tips forward and accelerates, providing more lateral control
and allowing the quadrotor to regain control. It is clear that this
instability is significantly reduced when using the proposed
thrust control.

VI. CONCLUSION

In this paper, we have presented an implicit scheme based
on aerodynamic power for computing thrust that can address
changes in aerodynamic conditions around individual rotors
of fixed-pitch electrically powered multirotor aerial vehicles.
A thrust controller was proposed which has similar transient
properties to the current RPM based static model and con-
troller. Procedures for laboratory calibration of the proposed
algorithm are provided based on force-torque measurements.
Through static and dynamic flight tests, the power-based thrust
modelling scheme along with the controller has been shown
to be superior to the RPM based controller in maintaining
a desired thrust setpoint and a desired flight path in the
presence of updrafts/downdrafts using the same high-level
trajectory/position controller.
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APPENDIX

In this section, we prove stability and derive the stability
bounds for the hierarchical controller proposed in Figure 6
of Section III. Recall that in the motor model, M1 is a
combination of (22a) and (22c) and model the non-linear
relationship between va and ia. M2 is the non-linear model
that relates ia and the aerodynamic mechanical power Pam
and M3 represents the non-linear model that maps Pam to
T as outlined in Section II-E. If the linearisation about the
static hover condition M̄1(s), M̄2(s), M̄3(s) of the motor
models M1, M2 and M3 expressed as transfer functions, then
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Fig. 11. Comparison of the RPM and the proposed controllers for position/trajectory control. Data presented is taken over an average of 50 flights per
controller. The figures compare the heights and the standard deviations in the lateral y direction for both the RPM and new controllers. The quadrotor is
made to fly across a room at a desired Vx = −0.3m/s, Vz = 0, height= 1.1m, Vy = y = 0 in the presence of a gust generator centred at (0, 0, 0) with
distribution shown in green on both figures. A scaled graphic of the quadrotor with centre of mass indicated by ⊗ is superimposed on both figures to provide
an indication of when the front rotor encounters the flow region when it is at a distance 0.8m away from the centre of the gust. The deviation of the quadrotor
from its desired trajectory is clear for the RPM controller while for the proposed thrust controller the deviation is minimal.

recall the electrical and mechanical dynamics for a motor-rotor
system outlined in (22) (see also [7])

va = Ke$ + iaRa + La
dia
dt
, (31a)

τ = (Kq0 −Kq1ia) ia, (31b)
Ir$̇ = τ − τD, (31c)

where Ir is the moment of inertia of the rotor, the aerodynamic
torque τD = CQ$

2 where CQ is the torque coefficient.
Around a hover condition, one can approximate CQ$

2 by
τD = δ$ with any offset to be dealt with by the feedforward
f2(Td). Furthermore, we will write Kq = (Kq0 − 2Kq1i

?
a)

for the linearisation of the effective torque constant at the
current i?a drawn at hover condition. Combining (31b) and
(31c), we get the transfer function of the linear rotor dynamics
as Irs$ = Kqia − δ$. From which

$ =
Kq

Irs+ δ
ia.

To derive the motor model M̄1 = va
ia

shown in Figure 6,
consider the following algebraic process

va = Ke$ +Raia + La
dia
dt
,

= Ke$ +Raia + Lasia,

= ia

(
KeKq

Irs+ b
+Ra + Las

)
,

=
ia

Irs+ δ
(KeKq + (Ra + Las)(Irs+ δ).

Hence

M̄1 =
va
ia

=
(Irs+ δ)(Ra + Las) +KeKq

Irs+ δ
.

To obtain M̄2, from (25), recall from (19), the aerodynamic
mechanical power Pam = c3$

3 + κTλi$R. From Sec-
tion II-D, the linearisation of κ is such that κ = const 1

CT
=

a$
2

T , where a is a constant. Hence,

Pam = c3$
3 + aλiR$

3 = CPam$
3,

where CPam = c3 + aλiR. In a similar manner to the $2

term in τD, the cubic term of Pam can be linearised around
the hover condition i.e. $3 = $h +$ and $h is handled by
the feedforward term f1(Td), i.e.

Pam = bp

(
Kq

Irs+ δ

)
ia,

where bp is a positive constant. Hence,

M̄2 =
ia
Pam

=
Irs+ δ

bpKq
.

To obtain M̄3, using the models for thrust and power obtained
in (18) and (19), CT is constant given that c1, c2 and λi are
constant with λz = 0. i.e. T = CT$

2. Hence,

M̄3 =
Pam
T

= γ$ =
γKq

Irs+ δ
ia,

where γ is some positive constant.
The next stage in the design is choosing the controller gains

and deriving suitable stability bounds. Starting with the inner
loop current control,

H1(s) =
ia
ida

=
K1
pM̄1

1− M̄1K1
p

,

=
K1
p [KeKq + (Ra + Las)(Irs+ δ)]

Irs+ δ −K1
p [KeKq + (Ra + Las)(Irs+ δ)]

.

The original system M̄1 has two zeros and a pole which
translates into two poles in H1(s). H1(s) has a very fast pole
as a result of the motor inductance and a slow pole as a result
of rotor moment of inertia. Given that the motor control loop
runs at 1kHz, the fast electrical dynamics is within 1 sample
and therefore is beyond the limit of control of the controller.
Hence, one can neglect the fast electrical dynamics by setting
La = 0. With this,

H1(s) =
K1
p [KeKq +Ra(Irs+ δ)]

Irs+ δ −K1
p [KeKq +Ra(Irs+ δ)]

.
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Therefore the characteristic equation of the inner loop current
control is

(Ir −K1
pRaIr)s+ δ −K1

p(KeKq +Raδ) = 0,

from which

s = −
δ −K1

p(KeKq +Raδ)

Ir(1−K1
pRa)

.

Hence for stability of the closed loop pole,

δ −K1
p(KeKq +Raδ) ≥ 0 and 1−K1

pRa > 0,

giving

K1
p ≤

δ

KeKq +Raδ
and K1

p <
1

Ra
(32)

Since Ke and Kq are positive constants, the second constraint
is always satisfied if the first holds. For the motor-rotor system
used, K1

p = 0.01 was found to give the fastest decay time for
current or rise time for $.

From the model for M̄2 and M̄3,

M̄2M̄3 =
γ

bp
.

For the outer loop controller, let this be C, then

C =
K2
ps+K2

i

s
= K

s+ z

s
,

where the zero gives z =
K2
i

K2
p

and the controller gain K = K2
p .

Thus the closed loop transfer function for the thrust controller
outer loop is

H2(s) =
T

Td
=

CH1M̄2M̄3

1 + CH1M̄2M̄3
.

Thus the characteristic equation 1 + CH1M̄1M̄2 = 0 for this
is(
Ir +K1

pRaIr + γKK1
pRaIr

)
s2+(

δ +K1
p(KeKq +Raδ) + γKK1

p(KeKq +Raδ + zRaIr)
)
s

+ γKK1
p (zKeKq + zRaδ) = 0.

(33)

The design for K and z are based on the transient require-
ments, in this case a rise time of 20ms and a settling time of
50ms as shown in Figure 10.

Although the stability analysis is developed for a linearised
version of the system around hover conditions, the underlying
passivity of the aerodynamics and simplicity of the control
architecture provides confidence that the resulting controller
is highly robust. The expectation was confirmed in practice
and the proposed motor-rotor control has proven highly robust
and insensitive to parameter error over a very wide range of
operating conditions.
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