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Integration of Bayesian regulation back-propagation neural network 

and particle swarm optimization for enhancing sub-pixel mapping of 

flood inundation in river basins 

Sub-pixel mapping of flood inundation (SMFI) is one of hotspots in remote 

sensing and relevant research and application fields. In this study, a novel 

method based on the integration of Bayesian regulation back-propagation 

neural network (BRBP) and particle swarm optimization (PSO), so-called 

IBRBPPSO, is proposed for SMFI in river basins. The IBRBPPSO-SMFI 

algorithm was developed and evaluated using Landsat images from the 

Changjiang River Basin in China and the Murray-Darling Basin in Australia. 

Compared with traditional SMFI methods, IBRBPPSO-SMFI consistently 

achieves the most accurate SMFI results in terms of visual and quantitative 

evaluations. IBRBPPSO-SMFI is superior to PSO-SMFI with not only an 

improved accuracy, but also an accelerated convergence speed of the algorithm. 

IBRBPPSO-SMFI reduces the uncertainty in mapping inundation in river 

basins by improving the accuracy of SMFI. The result of this study will also 

enrich the SMFI methodology, and thereby benefit the environmental studies 

of river basins. 

Keywords: sub-pixel; floods; particle swarm optimization; Bayesian regulation 

back-propagation neural network; algorithm integration 

 

1. Introduction 

Floods are one of the most common and costly natural hazards in the world. The 

effects of flood inundation can be local, affecting a community, or very large, 

impacting entire river basins. Flood inundation has spatio-temporal patterns. Remote 
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sensing technology has been an effective method to provide valuable information on 

inundation distributions (Chen et al., 2013; Chen et al., 2014; Chen et al., 2015; 

Huang et al., 2014b; Huang et al., 2015; Rakwatin et al., 2013). However, high 

temporal-resolution remote sensing imagery generally does not have high spatial 

resolution (Huang et al., 2014a; Li et al., 2015b). The accuracy of inundation mapping 

using high temporal-resolution remote sensing imagery is substantially compromised 

due to mixed pixels caused by spatial resolution constraints. 

Sub-pixel mapping can be applied to improve the accuracy of inundation mapping 

from high temporal-resolution remote sensing imagery. Sub-pixel mapping is to 

obtain the spatial distribution information within mixed pixels based on the spatial 

dependence assumption that observations close together are more alike than those that 

are further apart (Atkinson, 2005). There have been various methods developed for 

sub-pixel mapping, such as pixel swapping algorithm (Atkinson, 2005; Huang et al., 

2014a), spatial attraction models (SAM; (Mertens et al., 2006)), genetic algorithm 

(Mertens et al., 2003; Li et al., 2015a), artificial neural networks (Mertens et al., 2004; 

Zhang et al., 2008), and particle swarm optimization (PSO; (Li et al., 2015b)). 

However, due to the complexity and uncertainty of remote sensing imagery, sub-pixel 

mapping of flood inundation (SMFI) is still a difficult task. Therefore, there is a need 

to improve the mapping accuracy and to reduce the uncertainty of SMFI. SMFI is an 

optimization issue in essence (Li et al., 2015b). PSO is a relatively new swarm 

intelligence method which possesses an ability to search for the optimal solutions for 

optimization issues (Bratton and Kennedy, 2007; Kennedy and Eberhart, 1997) and 
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has the potential to improve accuracy in mapping inundation at a sub-pixel scale (Li et 

al., 2015b). Bayesian regulation back-propagation neural network (BRBP) is trained 

to map the input samples on the correct outputs through back-propagation based on 

Bayesian regulation. Bayesian regulation minimizes a combination of squared errors 

and weights, and then determines the correct combination so as to produce a network 

that is well generalized (The MathWorks, Inc., 2015). The assumption of this study is 

that the performance of PSO-SMFI should be enhanced if coupled with BRBP-SMFI. 

The results of BRBP-SMFI can be used as prior knowledge to be integrated into the 

evolution process of PSO-SMFI for optimal solutions. Compared with standard 

PSO-SMFI, the integration method is expected not only to improve the accuracy of 

SMFI, but also to accelerate the convergence speed of the algorithm. 

In this study, the above assumption was tested by developing an integration 

method of BRBP and PSO for SMFI (IBRBPPSO-SMFI) from remote sensing 

imagery. The main objectives are (1) to build the IBRBPPSO-SMFI algorithm; (2) to 

compare the effects of IBRBPPSO-SMFI with traditional SMFI methods using 

Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) images of 

river basins in China and Australia. 

2. Methodology 

SMFI is used to obtain the sub-pixel spatial distribution of flood inundation within 

mixed pixels by maximizing their spatial dependence while maintaining the original 

proportions of inundation within the mixed pixels (Li et al., 2015b). PSO is a 

relatively new evolutionary computing method which uses a swarm of individuals to 
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probe the best position in the search space (Bratton and Kennedy, 2007; Kennedy and 

Eberhart, 1997). Suppose the search space is M-dimensional and that there are N 

individuals in the swarm, then the position of the ith particle is denoted as Xi with Xi 

having coordinates (xi1, xi2, …, xiM ), which represents a possible solution. The value 

of xim ( Mm ≤≤1 ) here is restricted to 0 or 1. The best previous position discovered 

by the whole swarm represents the best solution of an optimal problem in PSO. The 

SMFI results of BRBP can be used as prior knowledge to be integrated into the 

evolution process of the PSO method for optimal solutions. A flow chart for 

IBRBPPSO-SMFI is shown in Figure 1. The fitness function of IBRBPPSO-SMFI is 

the same as that of PSO-SMFI (Li et al., 2015b). 

 
INSERT FIGURE 1 HERE 

 

Compared with PSO-SMFI, there are two characteristics in IBRBPPSO-SMFI: the 

acquisition of BRBP-SMFI results as prior knowledge and the integration of BRBP 

and PSO for SMFI. 

(a) Acquisition of BRBP-SMFI results as prior knowledge 

BRBP-SMFI constructs a local SMFI model describing the relationship between 

inundation fractions in a local region and sub-pixel distributions within the central 

mixed pixel of the region. Local region consists of 33×  pixels including a central 

pixel and its 8 surrounding neighbours. Therefore, there are 8 neurons in the input 

layer, corresponding to 8 surrounding neighbours. Let S  represent the scale factor 

between a mixed pixel and its sub-pixels. When 5=S , there are 25 neurons in the 

output layer, corresponding to the distributions of 25 sub-pixels within the central 
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mixed pixel. Compared with standard back-propagation (SBP), BRBP has better 

convergence performance in the training process, which benefits the SMFI results. 

(b) Integration of BRBP and PSO for SMFI 

Algorithm integration exchanges vector values between the position of the particle 

and BRBP-SMFI result to generate a new position. An example of the integration is 

shown in Figure 2 where inundation is represented by 1 and non-inundation is 

represented by 0. Each mixed pixel is made up of 55×  sub-pixels when 5=S . The 

vectors in Figure 2 are obtained by placing each sub-pixel row of the corresponding 

mixed pixels. The exchange point is randomly generated within the integer domain 1 

to 25. The integration attaches the first part (in pink) of the position of the particle to 

the second part (in green) of BRBP-SMFI result to generate a new position. The 

fitness value of the new position is compared with the fitness value of the previous 

one. If the fitness value of the new position is higher, then replace the previous 

position with the new one. 

 
INSERT FIGURE 2 HERE 

 

3. Case study 

3.1 Materials 

Two comparative study areas from China and Australia were selected for the case 

study. Landsat TM/ETM+ images were acquired when there were significant flood 

events in these areas. Key characteristics of the two study areas are summarized in 

Table 1. 
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INSERT TABLE 1 HERE 

 

Materials of the two comparative study areas are shown in Figure 3. Locations of 

the two study areas are shown in color composite (R5G2B1) images in Figures 3(a) 

and (d), respectively. Figures 3(b) and (e) are reference images which were obtained 

from the corresponding Landsat images at 30m resolution using the modified 

normalized difference water index (mNDWI; (Xu, 2006)). In the case study, the scale 

factor S  was set at 5, which was adopted from the value commonly used in 

sub-pixel mapping from remote sensing images (Ge et al., 2014; Li et al., 2015b). 

Figures 3(c) and (f) are inundation fraction images which were derived by aggregating 

the corresponding inundation reference images. The value of the aggregated pixel 

equals to the proportion of inundation pixels inside the corresponding 5×5 window. 

Therefore, the resolution of inundation fraction images is 150m. The inundation 

fraction images were used as the inputs of the SMFI methods for comparisons. 

 
INSERT FIGURE 3 HERE 

 

3.2 Study methods 

The five SMFI methods for comparisons in the study are SAM-SMFI, SBP-SMFI, 

BRBP-SMFI, PSO-SMFI and IBRBPPSO-SMFI. The inputs to these methods were 

the same flood inundation fraction images. The same surrounding neighbouring type 

was used for all SMFI methods. Descriptions of different SMFI methods are shown in 

Table 2.  

 
INSERT TABLE 2 HERE 
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3.3 Results and discussion 

Visual comparisons of the five SMFI methods in the two study areas are shown in 

Figure 4 and Figure 5, respectively. To ensure clarity in comparing the methods, the 

same small regions from the reference images and SMFI results are zoomed and 

shown in Figure 4 and Figure 5, respectively. In Figure 4, BRBP-SMFI performs 

better than SBP-SMFI. The result of BRBP-SMFI is more similar to the reference 

image than that of SBP-SMFI in visualization. That is because BRBP has better 

convergence performance than SBP in the neural network training process, which 

benefits the SMFI result. IBRBPPSO-SMFI obtains the best SMFI result among the 

five SMFI methods for the Changjiang River Basin. IBRBPPSO-SMFI maps the 

Changjiang River and its tributaries more continuously and smoothly than other SMFI 

methods. From Figure 5, IBRBPPSO-SMFI also obtains the best visual SMFI result 

among the five SMFI methods for the Murray-Darling Basin. 

 
INSERT FIGURE 4 HERE 

 
 

INSERT FIGURE 5 HERE 
 

Table 3 shows the quantitative comparisons of the five SMFI methods in the two 

study areas. We compare the SMFI results using the measures of overall accuracy 

(OA), Kappa coefficient, average producer’s accuracy (APA) and average user’s 

accuracy (AUA) (Foody, 2002). All pure pixels in the flood inundation fraction 

images are excluded from calculations. From Table 3, we can see that BRBP-SMFI 
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performs better than SBP-SMFI. Among the five SMFI methods, IBRBPPSO-SMFI 

exhibits the highest OA, Kappa, APA and AUA in the two study areas. For example, 

the OA values of SAM-SMFI, SBP-SMFI, BRBP-SMFI, PSO-SMFI and 

IBRBPPSO-SMFI are 72.4%, 69.6%, 74.2%, 77.7% and 78.8% in Study Area 1, 

respectively. The OA values of SAM-SMFI, SBP-SMFI, BRBP-SMFI, PSO-SMFI 

and IBRBPPSO-SMFI are 69.3%, 65.0%, 73.2%, 79.7% and 81.6% in Study Area 2, 

respectively. The combination of PSO and BRBP can lead to a better performance, 

because the combination takes advantage of the merits of both PSO and BRBP. The 

SMFI results of BRBP have been used as prior knowledge to be integrated into the 

evolution process of the PSO method for optimal solutions. 

 
INSERT TABLE 3 HERE 

 

We further compare PSO-SMFI with IBRBPPSO-SMFI in terms of the 

convergence performance in Study Area 1 because both are based on PSO which is a 

stochastic optimization algorithm. The results are shown in Figure 6 where IN 

represents iterative number. IBRBPPSO-SMFI has better convergence performance in 

SMFI accuracy and convergence speed than PSO-SMFI. For example, the OA value 

of PSO-SMFI is 78.8% at the 20th iteration while IBRBPPSO-SMFI obtains this OA 

value only at the 10th iteration. 

 
INSERT FIGURE 6 HERE 

 

4. Conclusions 

In this study, a new integration method called IBRBPPSO-SMFI is proposed to 
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achieve improved performance in SMFI in river basins. The IBRBPPSO-SMFI 

algorithm was developed. We assessed the results of IBRBPPSO-SMFI using Landsat 

TM/ETM+ images from the Changjiang River Basin in China and the Murray-Darling 

Basin in Australia. IBRBPPSO-SMFI obtains the most accurate SMFI results among 

the five SMFI methods in terms of visual comparisons and quantitative comparisons 

in the two river basins. IBRBPPSO-SMFI not only has a higher accuracy of SMFI, 

but also has a higher convergence speed of the algorithm than PSO-SMFI. Therefore, 

the assumption that coupled with BRBP, the performance of the PSO method can be 

enhanced has proved to be valid. IBRBPPSO-SMFI reduces the uncertainty in 

mapping flood inundation in river basins by improving the accuracy of SMFI. The 

result of this study will also enrich the SMFI methodology and facilitate the 

application of high temporal-resolution remote sensing imagery in inundation 

mapping, and thereby benefit the environmental studies of river basins. 
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Table 1. Key characteristics of the two study areas. 

 Study Area 1 Study Area 2 

Location Changjiang River Basin of China Murray-Darling Basin of Australia 

Area (km2) 225 3600 

   Data Landsat 7 ETM+ imagery Landsat 5 TM imagery 

   Date 9 August 2010 2 January 2011 

Image size (pixels) 500×500 2000×2000 

Image resolution (m) 30 30 

 
 
 
 
Table 2. Descriptions of different SMFI methods. 

Method Parameter description Parameter value 

SAM none none 

SBP 

 

number of hidden layers 

learning rate 

 

 

1 

0.01 

 

BRBP 

number of hidden layers 

Marquardt adjustment parameter (MAP) 

decrease factor for MAP 

increase factor for MAP 

1 

0.005 

0.1 

10 

12 
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PSO 

maximum inertia weight 

minimum inertia weight 

size of the swarm 

maximum iterative number 

0.9 

0.4 

10 

10 

IBRBPPSO 

maximum inertia weight 

minimum inertia weight 

size of the swarm 

maximum iterative number 

0.9 

0.4 

10 

10 

 
 
 
 
Table 3. Quantitative comparisons of different SMFI methods. 

Method 

Study Area 1 Study Area 2 

OA  

(%) 

Kappa 
coefficient 

APA 

(%) 

AUA 

(%) 

OA  

(%) 

Kappa 

coefficient 

APA 

(%) 

AUA 

(%) 

SAM 72.4 0.397 69.0 71.7 69.3 0.374 68.4 69.9 

SBP 69.6 0.346 66.8 68.1 65.0 0.293 64.6 64.8 

BRBP 74.2 0.445 71.7 73.3 73.2 0.459 72.9 73.0 

PSO 77.7 0.533 76.7 76.7 79.7 0.593 79.6 79.6 

IBRBPPSO 78.8 0.556 77.8 77.8 81.6 0.630 81.5 81.5 
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Figure 1. Flow chart for IBRBPPSO-SMFI. 
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Figure 2. An example of algorithm integration (S=5). 
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Figure 3. Materials of the two comparative study areas (S=5). (a) Location of Study Area 1 shown 
in a color composite (R5G2B1) Landsat 7 ETM+ image (500×500 pixels) at 30m resolution after 
image enhancement. (b) Inundation reference image (500×500 pixels) at 30m resolution. (c) 
Inundation fraction image (100×100 pixels) at 150m resolution. (d) Location of Study Area 2 
shown in a color composite (R5G2B1) Landsat 5 TM image (2000×2000 pixels) at 30m resolution 
after image enhancement. (e) Inundation reference image (2000×2000 pixels) at 30m resolution. 
(f) Inundation fraction image (400×400 pixels) at 150m resolution. 
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Figure 4. Visual comparisons of the five SMFI methods in Study Area 1 (500×500 pixels, S=5).  
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Figure 5. Visual comparisons of the five SMFI methods in Study Area 2 (2000×2000 pixels, S=5).  
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Figure 6. Convergence performance of PSO-SMFI and IBRBPPSO-SMFI in Study Area 1. (a) 
Convergence performance of OA. (b) Convergence performance of Kappa coefficient. (c) 
Convergence performance of APA. (d) Convergence performance of AUA. 
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