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We describe the thermodynamics of a solution of rotaxanes which can change their length from a short

state of length L to a long state of length qL in response to their surrounding environment. We call

these rotaxanes “adaptive.” We show that such a system can exhibit both isotropic and nematic liquid

crystalline phases. The system shows several interesting kinds of behaviour. First we predict that

the fraction of short-length rotaxanes increases linearly with concentration and is a maximum at the

critical concentration that marks the isotropic to nematic transition. Second, the critical concentration

shows a minimum at a certain value of q. Our model suggests that the effect of adaptive length changes

is most dramatic at small q and where the long state is slightly favoured. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4943098]

I. INTRODUCTION

A rotaxane is a wheel and axle molecule, where a

molecular ring or rings are threaded onto an axle. This is

then stoppered at both ends so the rings cannot escape.

Their synthesis is an active area of research1–15 and the

production of these mechanically linked molecules opens up

many new possibilities for phenomena on the molecular scale.

Some rotaxanes act as two-state switches. They can do this

because they have 2 stations along the axle, and the rings

attach preferentially to these stations. The switching between

stations can be controlled by external influences such as

solvent pH, ion interaction, redox reaction, solvent quality, or

light. Another way of moving the ring is to attach a rigid rod

to it and then compressing it with an AFM tip. This was done

by Brough et al.2 Later Sevick and Williams16 showed how

such a system, with many rings, could behave as a molecular

shock absorber.17 Switching changes the length of this piston-

rotaxane molecule. In Figure 1 we depict such a switchable

rotaxane where there is a short state and a long state, the

ratio of the lengths of these states being q. This suggests that

switching rotaxane molecules between states might create

interesting, controllable liquid crystalline phases.

Liquid crystals18 are solutions of anisotropic molecules

which have no long-range positional order, like a liquid, but

can have phases which possess different degrees of molecular

orientation similar to crystalline ordering. The phases in

lyotropic liquid crystals are determined by the concentration

of the molecules, c = N/V (N the number of solute particles

in a volume V ) which can be altered by addition of solvent,

Figure 2. In dilute solutions, the fixed-sized anisotropic

molecules have no long-range translational or orientation

order—the solution is isotropic. However, with an increased

concentration, a nematic phase appears where the molecules

still have no translational order, but self-align to have

a)Electronic mail: Edie.Sevick@anu.edu.au
b)Electronic mail: D.Williams@anu.edu.au

directional order along their long axis. This orientationally

ordered nematic phase is birefringent, optically detectable

using cross polarised filters, and is the principle concept

behind liquid crystalline displays. The fundamental theory for

these systems was produced by Onsager in 1949.19–21 Recently

this work was extended to a two-state rotaxane system, where

an external influence,22 controlled by the experimenter, could

switch the rod length from short to long. This enables a

sudden transition from isotropic to nematic, without changing

the concentration of rods.

In this paper, we describe a somewhat different rotaxane

system. The rotaxane can exist in two different states, one of

length L and the other of length qL, but the molecule itself

decides which state to be in on the basis of the what minimises

the total free energy of the system. We call such rotaxanes

“adaptive.” This is in marked contrast to the recent work of

He et al.,22 where the rotaxanes are forced to be in one state

or the other by external control of the system, as for example,

by changing the pH.

As a simple example, consider a dilute solution of adaptive

rotaxanes between two plates a distance H apart. The rotaxanes

can choose to have lengths L or qL, with q > 1. If the distance

between plates is larger than the largest molecular dimension

H > qL, we would find 1/2 of the molecules of length L
and the other half of length qL. However, as H gets smaller,

there will be a gradual bias towards shorter rods because

the longer rods can only fit by re-orientating parallel to the

plates. The rotaxanes “adapt” to their external environment.

In the case considered in this paper, the rotaxanes

adapt, not because of an imposed confinement by plates,

but because of hard-body interactions with surrounding rods.

The remainder of the paper is organised in the following way.

In Sec. II, we review Onsager’s classical treatment of lyotropic

liquid crystals formed from homogeneous, fixed-length rods.

In Sec. III, we extend this theory to an adaptive 2-state rotaxane

and present results in the following section. In particular, we

show how the critical concentrations for the transitions, the

order parameters, and the fraction of rotaxanes in the short
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FIG. 1. Illustration of a 2-state rotaxane in short and long states and the energy of an isolated rotaxane switch as a function of molecular length, showing

the short and long states as minimal energy states. Attractive stations along the axles are depicted as green and red regions. When the rings reside within the

attractive red stations (left), the rotaxane is in its short state, characterised by the molecular length, L. When the rings reside within the attractive green stations

(middle), the rotaxane is in its long state, characterised by the molecular length qL. The ratio of long to short state lengths, q, is set by the synthetic design of

the molecule. In adaptive rotaxanes, the energy difference between states, ΔE , is small, on the order of kBT . If the long state has lower energy, it is favoured at

vanishingly small concentrations; but because ΔE is small, the short state may be favoured at high solution concentrations so as to lower the free energy of the

solution. If |ΔE |� kBT , the rotaxane will not be adaptive and solutions of rotaxanes will behave like solutions of fixed-length rods. For the adaptive rotaxanes

considered here, the energy barrier between the states is assumed to be large so that the individual rotaxane states (short or long) are the only allowed states.

Here we consider the equilibrium liquid crystalline phases of a solution of this adaptive two-state rotaxane.

FIG. 2. Illustration of lyotropic liquid crystalline phases for a solution of

fixed-length rods of one size and with simple hard-body interactions. The

volume-excluding rods are isotropic for concentrations up to ci, above which

appears a coexisting nematic phase. As concentration increases from ci to

ca, the volume of nematic phase increases at the expense of the isotropic

phase, until at ca, the solution is entirely in the nematic phase. Onsager

predicted the critical concentrations of rods of length, L and diameter d to

be ci = 3.34( π4 L2d) and ca = 4.49( π4 L2d).

state, depend on the synthetic design parameter q and energy

bias between the two adaptive states. The behaviour we

encounter is sometimes unexpected, and although we can give

post-hoc explanations of all of it, it would be very difficult to

predict it without the model and its numerical predictions.

This work should be seen in the context of other works on

adaptive systems. In particular, wormlike micelles,23 radially

compressible rods,24 and crowding of proteins.25

II. FIXED-LENGTH RODS

We start with a brief review of the classical Onsager

theory19 for monodisperse rods of length L, diameter d, and

concentration c = N/V , where N is the number of rods in

a volume V . The physics is essentially as follows. Onsager

assumes that the only forces between the rods are those of hard

bodies, i.e., the interaction is zero except in cases of attempted

overlap, and all overlaps are forbidden. In such a system, the

free energy is entirely entropic, and the system minimises the

free energy by maximising the entropy. The entropy is kB

multiplied by the logarithm of the number of configurations,

so that all we need to do is count the configurations. The en-

tropy is of two kinds, translational and rotational. First there is

the translational entropy of the centres of each molecule. This

is maximised by having the rods placed randomly within the

container. The second kind is the orientational entropy, which

is maximised by the rods pointing in every direction with equal

probability. At infinitely small concentrations, c → 0, the rods

do not interact and both the translational and orientational

entropy are maximised by having the rods uniformly distrib-

uted in space and in direction. However, as c is increased

towards the characteristic concentration ∼1/(L2d), the rods

begin to interact and we find overlap. At these low concen-

trations, the orientation is still totally random, but certain

positions of the centre of mass of two rods are forbidden.

These forbidden positions lead to a decrease in the transla-

tional entropy. The system can avoid some of these forbidden

positions by aligning the rods so that they preferentially point

along a particular direction. This decreases the orientational

entropy, but increases the translational entropy.

The free energy per rod (see Appendices A and B) of a

homogeneous solution of N rods of length L and diameter d
in a volume V is

F[Ψ]
N kBT

= ln
N
V
− 1 +

∫
duΨ(u) ln [Ψ(u)]

+
1

2

N
V

∫ ∫
du du′Ψ(u)Ψ(u′)2L2d |u × u′| . (1)

Here Ψ(u) is the orientational distribution function for the

rods and u is a unit vector specifying the rod direction.

The term ln(N/V ) − 1 is the translational entropy, assuming
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a homogenous distribution. The term in ln(Ψ) is the

orientational entropy, and the final term accounts for the

rod-rod interactions. In essence, this final term is the reduction

in translational entropy caused by rod-rod interactions.

The equilibrium orientation distribution is determined

by the condition that the free energy is minimal for all

variations of Ψ(u), subject to the mathematical condition that

the distribution is normalised. This results in a non-linear

equation for Ψ(u) which cannot be solved analytically. There

is then a choice of solution methods. One approach is brute-

force numerical minimisation. Onsager19 chose a more elegant

trial function approach, using the function (Figure 3),

Ψ(u) = α

4π sinh α
cosh [αu · n], (2)

where n is an arbitrary unit vector (the director) and α
is a parameter representing the degree of alignment, to be

determined analytically from minimisation of the free energy.

α = 0 corresponds to an isotropic state where rods adopt all

angles with equal likelihood or equivalently, Ψ(u) = (4π)−1,

and α = ∞ corresponds to a perfectly aligned collection of

rods, Figure 3. This trial function method replaces a function

with an infinite number of variables Ψ(u) with a single

variable α to be minimised over. It thus introduces some

approximation, but is in keeping with the other approximations

in the theory.

The parameter α is closely related to the order parameter,

S, which also measures the degree of alignment. S is defined

by S ≡ 〈 3
2
cos2 θ − 1

2
〉, where θ is the angle between the rod

and the nematic director, n. For the isotropic state, S = 0 and

any non-zero S implies a nematic phase. In the limit of perfect

alignment, S → 1. We can easily express S in terms of α via

S = 1 + 3α−2 − 3α−1 coth α (3)

so that for small α, S ≈ α2/15, while for large α, S ≈ 1 − 3α−1.

FIG. 3. Onsager’s trial function, Ψ(θ), versus angle, θ for several differ-

ent parameters, α ·θ = cos−1(u ·n) is the angle that the rod makes with an

arbitrary vector, n, the director. The parameter α characterises the degree

of alignment, with α = 0 describing the isotropic state with no orientational

order, where Ψ(θ)= (4π)−1. In our extension to adaptive rotaxanes, we use

this same trial function to describe the orientational ordering of rotaxanes in

nematic phases. As rotaxanes in the short and long state will be orientationally

ordered to different degrees, we introduce the orientation distribution ΨS,

with parameter αS to describe the orientational ordering of rotaxanes in the

short state, and ΨL and αL for rotaxanes in the long state.

At low concentration, the free energy is minimised when

α = 0; this corresponds to a single isotropic phase. At high

concentration, the free energy is minimised when α takes on a

larger value corresponding to a single nematic phase. However

between two critical concentrations ci and ca, there are two

coexisting phases, one isotropic at concentration c = ci and

the other nematic at concentration c = ca. In each of these

phases, the value of α is different. The first phase corresponds

to an isotropic phase of Ni rods and volume Vi. The free

energy per rod in this isotropic phase is Fi = F(Ni,Vi,αi = 0),
where F is of the form given by Eq. (1). The second phase

corresponds to a nematic phase of Na rods in volume Va with

orientation αa. The free energy per rod of the nematic phase is

Fa = F(Na,Va,αa). The number of rods in each phase and the

relative volume of the phases vary within the concentration

range ci ≤ c < ca, where c is the concentration of the entire

solution i.e., c = (Ni + Na)/(Vi + Va). These are determined

by writing the free energy as a sum of the free energy of the

isotropic and nematic phases,

F = Fi(Ni,Vi,αi = 0) + Fa(Na,Va,αa) (4)

and minimising F with respect to Ni,Vi subject to the

constraints of constant total volume and number of molecules,

V = Vi + Va and N = Ni + Na. Equivalently, we can determine

the phase compositions and volumes by equating the chemical

potential of the molecules in each coexisting phase

∂Fi

∂Ni
=

∂Fa

∂Na
, (5)

and by equating the osmotic pressure in each phase, or

∂Fi

∂Vi
=

∂Fa

∂Va
. (6)

These two thermodynamic relations coupled with the

constraints of constant total number of molecules and constant

total volume fully specify the concentrations and the relative

fraction of coexisting isotropic and nematic phases. In

practice, if we know ci and ca and we put N rods in a

solution of volume V , we can calculate the number of rods in

each coexisting phase and the volume of these phases using

the fact that Vici + Vaca = N and Vi + Va = V . To summarise

the results for a solution of homogenous hard rods, we have

the following:

1. 0 < c < ci the solution is isotropic,

2. ci < c < ca an isotropic phase of density ci coexists with a

nematic phase of density ca,

3. ca < c the solution is nematic.

In Onsager’s solution for homogeneous rods of fixed

length L and diameter d, the critical concentrations

are ci = 3.34( π
4

L2d)−1 and ca = 4.49( π
4

L2d)−1. Both these

concentrations contain the characteristic concentration ∼L2d,

which is essentially the inverse excluded volume of one rod.

III. 2-STATE ADAPTIVE ROTAXANES

Before we consider the free energy of the adaptive system,

we first need to determine how many coexisting phases there

can be in this system. In the case of rods of fixed length, the

Gibbs phase rule gives that the number of coexisting phases
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can be at most 2. In the system where we have rods of two

possible lengths, this is also true, for the reason that we only

have one species of rod, which can take two possible lengths,

i.e., the rod lengths are always in equilibrium with each

other. This in fact makes it less complicated than a system

consisting of rods of two different fixed lengths.26,27 We thus

expect coexistence of only two phases, one isotropic and

one nematic, just as in Onsager’s fixed length rod problem.

However, the critical concentrations for the transitions ci and

ca will of course be different.

To describe the liquid crystalline phase diagram of 2-

state adaptive rotaxanes, we extend Onsager’s treatment to a

solution of N molecules of fixed diameter d, a fraction x in the

short state, having length L and a fraction (1 − x) in the long

state with length qL. Molecules of different length may orient

differently: in a dilute solution, the molecules will be randomly

oriented irrespective of their length; however at higher

concentrations molecules in the long state will be oriented

more strongly than those in the short state. Consequently,

we introduce two orientation distribution functions, ΨS(u)
representing molecules in the short state and ΨL(u) in the long

state. Moreover, there can be an intrinsic energy difference

between short and long states (Figure 1) which will provide a

bias or preference for one of the states: we let ΔE represent

the energy of a rotaxane in the long state relative to the short

state, ΔE = EL − ES. We emphasise that this intrinsic bias is

independent of the local environment of the molecule, so that

in any case where ΔE � 0, there will be differing populations

of short and long states for an isolated rotaxane.

The free energy derivation is similar to that for the fixed-

length system (see Appendices A and B), with the exception

that, because of two possible states of each molecule, we

have two orientational distribution functions and the partition

function is augmented by a factor Z2[x],
Z[ΨS,ΨL, x] = Z0[ΨS,ΨL, x] Z1[ΨS,ΨL, x] Z2[x].

Z2[x] corresponds to the number of ways that N non-

interacting rotaxanes partition between the short and long

states

Z2[x] = N!

(xN)! ((1 − x)N)! exp

[
xNΔE
kBT

]
,

where x is the fraction of short states. The contribution

to the free energy associated with molecular switching is

F2[x] = −kBT ln Z2[x], or

F2[x]
N kBT

= x ln x + (1 − x) ln (1 − x) − x
ΔE
kBT

. (7)

The first two terms of the RHS are recognisable as the

entropy of mixing. Here they represent a configurational

entropy. Any deviation from equal numbers of long and short

is penalised. In the absence of any interactions between

the rods, and assuming that there is no bias (ΔE = 0),

the minimum lies at x = 1/2. With an inbuilt bias but no

interactions, we find the minimum is at x = 1
2

exp[− ΔE
kBT

].
The contribution to the free energy by distributing these non-

interacting rotaxanes with orientational distribution functions

ΨS and ΨL is F0[ΨS,ΨL, x] = −kBT ln [Z0[ΨS,ΨL, x]], and is,

following Sec. II,

F0[ΨS,ΨL, x]
N kBT

= ln [N/V ] − 1 + x
∫

duΨS[u] ln [ΨS(u)]

+ (1 − x)
∫

duΨL(u) ln [ΨL(u)]. (8)

Finally, the contribution to the free energy from the

interactions between rotaxanes requires the excluded volume

between the 3 possible pairs (short-short, short-long, long-

long). The excluded volume of a pair of molecules, β, depends

upon the molecular length, which can take on values of L, in

the short state, or qL in the long state. The 3 possible values

of β are

βL,L(u,u′) = 2L2d |u × u′|,
βS,L(u,u′) = 2qL2d |u × u′|,
βS,S(u,u′) = 2q2L2d |u × u′|.

(9)

Amongst the N2/2 pairwise interactions, x2 is the mean

fraction of the pairwise interaction that is between molecules

in the short state, (1 − x)2 is the mean fraction of pairs in

the long state, and 2x(1 − x) is the mean fraction of pairwise

interactions involving molecules in different length states.

Thus, the contribution to the free energy due to pairwise

interactions is

F1[ΨS,ΨL, x]
N kBT

=
N

2V

[
(1 − x)2

∫ ∫
du du′βL,LΨL(u)ΨL(u′)

+ 2x(1 − x)
∫ ∫

du du′βS,LΨS(u)ΨL(u′)

+ x2

∫ ∫
du du′βS,SΨS(u)ΨS(u′)

]
. (10)

Then, the total free energy of a solution of N rotaxanes, a

fraction x of length L and (1 − x) of length qL, all with

diameter d, is

F[ΨS,ΨL, x]
N kBT

=
F0[ΨS,ΨL, x]

N kBT
+

F1[ΨS,ΨL, x]
N kBT

+
F2[x]
N kBT

= ln [N/V ] − 1 + x
∫

duΨS(u) ln [4πΨS(u)] + (1 − x)
∫

duΨL(u) ln [4πΨL(u)]

+
1

2

N
V

[
(1 − x)2

∫ ∫
du du′βL,LΨL(u)ΨL(u′) + 2x(1 − x)

∫ ∫
du du′βS,LΨS(u)ΨL(u′)

+ x2

∫ ∫
du du′βS,SΨS(u)ΨS(u′)

]
+ x ln x + (1 − x) ln (1 − x) − x

ΔE
kBT

. (11)
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In complete analogy with Onsager’s treatment, we replace

the orientation distribution functions ΨS(u) and ΨL(u) with

parameters αS and αL (Figure 3) that characterise the

orientation of rotaxanes in the short (S) and long (L) states,

ΨS =
αS

4π sinh αS
cosh [αSu · n],

ΨL =
αL

4π sinh αL
cosh [αLu · n].

(12)

This allows us to express the free energy of a solution of

N rotaxanes at any concentration c as a function of the fraction

x and orientational parameters αS and αL. This expression

for the free energy is derived and given in Appendices A

and B, and is referred to using the notation F(x,αS,αL,c).
At any given concentration, the orientation of the rotaxanes

in their short and long states, as well as the fraction that

adjust to the short state will adopt values that minimise

the free energy. At the lowest concentration, c < ci, where

the solution is in a single isotropic phase, rotaxanes in the

short and long states will orient randomly or αS = αL = 0.

The fraction of rotaxanes in the short state in the isotropic

solution of concentration c is determined by that value of

x(c) that satisfies ∂F(x,αs = 0,αL = 0,c)/∂x = 0. At high

concentration c > ca, where a single nematic phase exists, all

rotaxanes are oriented, although rotaxanes in the long state

will be more highly oriented than those in the short state.

The orientation of the short and long switch states, αS(c) and

αL(c), as well as the fraction of short switch states x(c), will

adopt values that minimise the free energy and are determined

by the solution of the 3 equations

∂F(x,αS,αL,c)
∂x

=
∂F(x,αS,αL,c)

∂αS
=

∂F(x,αS,αL,c)
∂αL

= 0.

Between two critical concentrations, ci and ca, the free

energy is minimised simultaneously by two sets of {αS,αL, x}:

this corresponds to the coexistence of two phases, an isotropic

phase and an (anisotropic) nematic phase. The isotropic phase

with Ni rotaxanes and volume Vi, with fraction x rotaxanes

in the short state and parameters αS = αL = 0, has a free

energy per molecule of Fi = F(Ni,Vi, x(ci),αS = 0,αL = 0).
In the nematic phase, the free energy per rotaxane is

Fa = (Na,Va, x(ca),αS(ca),αL(ca)). The relative amounts of

the phases vary within the concentration range and this is

determined by equating the chemical potential of the rotaxanes

(irrespective of their state) in each of the phases, as well as

the osmotic pressure in each phase.

IV. RESULTS AND DISCUSSION

The free energy expression (Eq. (11)) provides numerical

results which yield the phase diagram of these liquid

crystalline rotaxanes as a function of the length ratio, q,

that is associated with the molecular design of the rotaxane.

As stated previously, the phase diagram is similar to that of

a system of fixed-length rods, in that there are three different

regimes: isotropic; coexisting isotropic and nematic and pure

nematic. The concentrations at which each of these regimes

occur, are different to the fixed-length case, as we detail

later. The system seems rather complicated, since we can

vary two different parameters externally. These are the scaled

concentration π
4

cL2d and the ratio of the long to short states, q.

Moreover, we have three different regimes (isotropic, nematic,

and coexisting), and in each of these regimes, we can measure

the order parameter, S for each of the different lengths,

and the fraction of short rotaxanes x. Against this apparent

complexity is the fact that the free energy is a simple sum of

4 terms. These are: the orientational entropy; the interaction

term; the configurational entropy; and the energetic bias. The

behaviour of the system can be understood as a competition

between all of these terms. We present the results under

a number of subheadings: the fraction of short states, the

critical concentrations, and the order parameters.

A. Fraction of short states

First we consider a solution of unbiased (ΔE = 0)

rotaxanes with q = 1.1, and consider the fraction of short

states, x, as we increase the total concentration, c, Figure 4.

In the limit of infinite dilution, when the rotaxanes orient

freely and randomly, the proportion of rotaxanes in the short

state, x, is determined by the energy bias in between the

states and the configurational entropy, Eq. (7), and is x = 0.50

for ΔE = 0, independent of q. As the total concentration

increases towards ci, the molecules begin to interact and in

order to maximise translational and orientational entropy, the

rotaxanes increasingly adopt a short state at the expense of

the configurational entropy. As we will see, this growth in the

population of short states is more dramatic, as the ratio of

long to short lengths, q increases—this is because switching

a randomly oriented long rod to a randomly oriented short

rod, increases the translational entropy of the solution. At a

critical concentration, ci, partial orientational ordering occurs

and a nematic phase appears which coexists with the isotropic

phase. The fraction of short rods in the coexisting phase is

xi for the isotropic phase and xa for the nematic phase. This

nematic or orientationally ordered phase has a larger fraction

of rotaxanes in the long state than the coexisting isotropic

phase (xa < xi)—this is because the translational entropy

penalty in the nematic phase is reduced by alignment. In an

isotropic phase, the randomly oriented long rod would greatly

reduce translational entropy (due to collisions) at c < ci,
whereas collisions within a nematic phase are significantly

less because the molecules are already well-aligned. As in the

case of monodisperse rods, these coexisting phases persist

over a range of concentrations ci < c < ca. As the total

concentration, c, changes within this range, the concentrations

of each phase and the fraction of rotaxanes in the short

state within each phase do not change—only the relative

amounts of isotropic and nematic phases change. At a total

concentration of ca, the isotropic phase disappears entirely

leaving a single nematic phase which grows more ordered

with concentration. Because of this, the length of the rods

becomes less and less relevant (collisions become rarer for

well-aligned systems), and there is not much translational

entropy to be gained by being short. The configurational

entropy again comes to the fore, and at large enough

concentrations, we expect x to approach its “natural” value

of 1/2.
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FIG. 4. Left: The fraction of rotaxanes in the short state, x, as a function of dimensionless concentration, π
4 cL

2d, for unbiased rotaxanes (ΔE = 0) and q = 1.1.

The solid line gives the fraction of short rods in the solution where we use red to denote the isotropic phase and blue for the orientationally ordered or nematic

phase. At and above a critical concentration ci (red circle), the rotaxanes are in coexisting isotropic and nematic phases, with the fraction of short states differing

in the coexisting isotropic (dashed red line) and nematic (dashed blue line) phases. As the total concentration increases within the coexistence region, the

nematic phase grows at the expense of the coexisting isotropic phase and the overall fraction of short states decreases. At a critical concentration ca (blue

circle), the coexisting isotopic phase vanishes leaving a single nematic phase. The fraction of short states in the nematic phase decreases slightly with increased

concentration and in the limit of very large concentrations, the fraction of short states is determined by the bias in the switch states, which for ΔE = 0 is x = 0.50

(dashed black line). Right: The fraction of rotaxanes in the short state, x versus π
4 cL

2d for q = 1.1 in the presence of an intrinsic energy bias towards long states.

From top to bottom, these are ΔE = 0 (unbiased), ΔE =−1kBT , and ΔE =−2kBT (chemical bias towards long states). When the energy bias |ΔE | becomes

much greater than kBT , the variation in x with concentration disappears, that is there is a lack of adaptivity, and the rotaxanes are effectively of fixed length.

We now introduce an energetic bias between the short and

long states by having ΔE � 0. In Figure 4, we compare the

fraction of rotaxanes in the short state versus the concentration

for the unbiased case ΔE = 0 with two cases where there

is chemical bias towards the long state, ΔE = −1kBT and

ΔE = −2kBT . The phase behaviour is similar to that in

the unbiased case except that the fraction of short rods

at infinite dilution, x(c → 0) = exp[− ΔE
kBT

](1 + exp[− ΔE
kBT

])
is significantly reduced and switching between states is

significantly reduced with an increased bias towards long

states. Likewise if the short state is energetically preferred,

0 < ΔE, there will also be minimal switching. Indeed, without

adaptive switching | ΔE |� kBT , the molecules become fixed-

length rods with liquid crystalline phase diagram approaching

that of Onsager’s. If an external switch is applied to these

non-adaptive rotaxanes, the rotaxanes can be forced into an

Onsager-like liquid crystalline phase behaviour predicted by

He et al.22

We now look at the effect of the length ratio q upon the

fraction of rods in the short state. This is shown in Figure 5

where we plot x, as a function of concentration, c(L2d)−1,

for unbiased rotaxanes for q ranging between 1.1 and 2.0.

As noted before, as q increases, the variation in the fraction

of short states becomes more dramatic for c < ci. Except in

the limits of c → 0 and c → ∞ where x = 0.50 for all values

of q, the fraction of rotaxanes in the short state increases

with q at a fixed c. In essence, this system has a choice

between a short state and a long state. Short states always

have less translational entropy penalty and thus are always

favoured whenever there is the possibility of rotaxane overlap.

Rotaxane overlap is not possible at infinite dilution, c = 0. In

the case of highly concentrated solutions, within the Onsager

approximation, there is perfect order, and the approximation

for the excluded volume interaction gives no overlap. Hence,

in both of these cases, c → 0 and c → ∞, q becomes irrelevant.

Apart from these numerical results, for the isotropic state,

it is possible to produce some analytic results, valid for low

concentrations. These will tell us how the fraction of short

rods depends on concentration, energy bias, and length ratio.

We start from the free energy per rod in the isotropic phase

(ignoring irrelevant terms)

F
N kBT

= x ln x + (1 − x) ln (1 − x)

+
πcL2d

4

[
x2 + 2qx(1 − x) + q2(1 − x)2

]
− x
ΔE
kBT

.

(13)

FIG. 5. The fraction of rotaxanes in the short state, x, as a function of the

scaled concentration, π
4 cL

2d for unbiased rotaxanes (ΔE = 0) and (bottom

to top) q = 1.1,1.2,1.3,1.4,1.8, and 2.0. As the ratio of the lengths of

the long to short states increases, we see a strong tendency to favour short

rotaxanes. In the limit of c→ 0 and c→∞, the fraction of rotaxanes in the

short state goes to x = 0.50 in the unbiased ΔE = 0 case. At intermediate

concentrations, the fraction in the short state increases with q, irrespective of

phase or coexistence.
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In the case of no bias ΔE = 0 and zero concentration, this free

energy is minimised when the fraction of short rotaxanes is 1
2
.

At non-zero concentrations, we expand the free energy with

respect to x about x = 1
2

and to lowest order in c, minimising

gives

x =
1

2
+

πL2d
16

c(q2 − 1). (14)

We are thus able to conclude that in the isotropic phase, the

fraction of short rods grows linearly with the concentration.

Moreover we also have the dependence on q from this

equation. A similar procedure allows the dependence on ΔE
to be included, but the results are more lengthy.

B. The effect of length ratio

The critical concentrations ci and ca,as well as the fraction

of short states in the coexisting phases, xi and xa, depend

critically upon the length ratio, q. First, it is important to

recognise that the case of q = 1 corresponds to rotaxane states

whose lengths are indistinguishable; that is, q = 1 is the same

as the case of monodisperse rods where ci = 3.34( π
4

L2d)−1

and ca = 4.49( π
4

L2d)−1.

Figure 6 shows the critical concentrations ci and ca versus

q for unbiased rotaxane states and the corresponding fraction

of short states, x, in each of the coexisting phases versus q,

again for the unbiased switch states. Taken together, these

FIG. 6. Left: The critical concentrations as a function of the length ratio of long to short states for different values of the energy bias. The full line is for the

isotropic to nematic-isotropic coexistence transition. The dotted line is for the transition from coexistence to pure nematic. At the top is the case ΔE = 0 (no

intrinsic bias towards long or short). At middle ΔE =−1kBT (a slight bias towards long rods). At the bottom, ΔE =−2kBT (stronger bias towards long rods).

Right: The fraction of rods in the short state (right) at coexistence, as a function of the length ratio of long to short states for different values of the energy bias.

The solid line is the fraction in the isotropic phase, and the dotted line is the fraction in the nematic phase. The values of ΔE are the same as for the left graphs.

Two things are notable on these graphs. First the critical concentrations exhibit a minimum as the length ratio increases. Second, for any finite length ratio there

is a substantial jump in x between the two different phases.
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figures show that the coexistence of isotropic/nematic phases

(for ΔE = 0) in the case of large q, (q > 2) approaches that of

the monodisperse or q = 1 case; that is, ci(q > 2)→ ci(q = 1),
ca(q > 2)→ ca(q = 1) and xi(q > 2)→ 1, xa(q > 2)→ 1.

That is, the coexisting phases become monodisperse in the

short state as q increases in the unbiased case. This is because

there is no energy bias between long and short states, and

(outside of infinite dilution) switching to short states affords

more translational entropy than the long state in both the

isotropic phase and in the nematic phase. Indeed, even if there

is a small chemical bias against short states, Figure 6, the

isotropic and nematic phases are dominated by short states

when q is significantly large. That is, as we make rotaxanes

where q is large, the liquid crystalline phase behaviour is

reduced to that of monodisperse short rods, outside of infinite

dilution. Rotaxanes designed with too large a value of q
do not utilise adaptability in all but the most dilute of

concentrations. This contrasts with the case of a mixture

of short and long fixed-length rods:26,27 the smallest fraction

of long rods results in a decrease in the critical concentrations

ci and ca, and the larger the ratio of the long to short

length or q, the more dramatic is this decrease in the critical

concentrations.

Figure 6 also shows that rotaxanes which switch between

states with 1 < q < 2 have lower critical concentrations ci
and ca, and that the critical concentrations are minimal at an

intermediate q, q∗. This quantitative result from the free energy

model is understood by considering the entropy compromises

made when a molecule in a long state switches to a short

state. When this happens, there is an increase in translational

entropy. This is true if the long rotaxane is randomly oriented

in the isotropic phase or oriented in a nematic phase, and

this gain in entropy is larger if the difference in lengths of

the states is greater. However, when a long state switches to

a short state, there is also a penalty paid in configurational

entropy, and this penalty is independent of the length of the

states. Consequently, for rotaxane states that are nearly of the

same length, (q is a little larger than unity), the increase in

translational entropy for switching from a long to short state

can be small compared to the penalty paid in configurational

entropy—and consequently switching from long to short

state is not favourable. We already mentioned that adding

long fixed-length rods to short rod26,27 lowers the critical

concentrations ci and ca and the larger the length difference

between the rods, the lower the critical concentrations. So

consequently, for moderate values of q where switching is

not entropically favourable, we see a decrease in ci and ca
with an increase in q towards q∗. Next, as q increases beyond

q∗, the length of the long state increases to such an extent

that the gain in translational entropy overcomes the penalty in

configurational entropy. At these larger values of q, switching

is entropically favourable and the rotaxanes readily adopt a

short state and the solution trends towards a monodisperse

collection of short rotaxane states. The numerical results of

the model confirm this: Figure 6 shows that the fraction

of short states grows roughly linearly from q = 1, but that

at large q, the fraction of short states is nearly constant at

x = 1. Again, from the bidisperse fixed-length molecules,

we know that when you decrease the fraction of long

fixed-length molecules, the critical concentrations increase:

In analogy, when q > q∗, the fraction of short states in both

isotropic and anisotropic phases approaches unity and the

critical concentrations ci and ca increase back to the q = 1

limit.

As a final note, it is clear from the graphs in Figure 6

that, provided the inbuilt bias, |ΔE | is not too large, for large

q that almost all the molecules at coexistence are in the short

state in the isotropic phase.

C. The order parameter, S

One other quantity of interest is the order parameter,

S which quantifies how well-aligned the molecules are. The

isotropic state has S = 0, and a perfectly aligned nematic phase

has S = 1. We plot S against the length ratio q in the coexisting

phase, for both the long and the short states in Figure 7. For

the long states, these graphs show little that is surprising.

The long molecules are better-ordered than the short ones,

because a lack of order for the long molecules automatically

gives more collisions and a reduction in translational entropy.

Moreover, the longer the rod the higher the order.

The order parameter of the short molecules in the

coexisting nematic phase exhibits a somewhat more complex

behaviour in that it is non-monotonic in q. Again, this is due

to a balance between translational and orientation entropy as

detailed in the free energy model; however we can understand

this in terms of the volume available to a short rotaxane in the

nematic phase and Figure 6. When the volume available to an

anisotropic rod decreases, it will orient, i.e., S will increase.

From Figure 6, the concentration of the coexisting nematic

phase, ca, decreases from q = 1 to some q∗, that is, there is

more volume per molecule in the nematic phase. Rotaxanes

in the long state, whose excluded volume grows with q align,

and the short rotaxanes, with fewer collisions in a larger

molecular volume, are more free to rotate. Consequently, the

order parameter for the short state decreases with q for q < q∗.
However, for q > q∗, the concentration of the nematic phase

increases with q, and there is less volume available to the

rotaxanes: rotaxanes in both the short and long state become

more aligned and S increases with q for both. This produces the

minimum in S(q) for the short state. As we increase q further,

the order parameter of the long state increases; however the

proportion of long states also vanishes at high q. Again,

the disappearance of the long state which has an excluded

volume that varies with q2, provides additional volume for

the growing population of short rotaxanes. With more volume

per molecule, the rotaxanes in the short state again gain some

orientational freedom and their order parameter diminishes.

This produces a maximum in S(q) for the short state. However,

in the limit of high q, the coexisting nematic phase contains

rotaxanes that are entirely in the short state and consequently,

it is indistinguishable from the coexisting nematic phase for

q = 1. That is, for the short state, S(q → ∞) = S(q = 1). When

the rotaxane has a small intrinsic bias towards the long state,

these changes in the order parameter with q become more

dramatic, primarily because the variation in the proportion of

short rods in coexistence varies more dramatically with q when

there is intrinsic bias towards the long state: from Figure 6, we
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FIG. 7. The nematic order parameter, S for molecules in the short state (full

line) and long state (dashed line) in the nematic phase at coexistence, as a

function of the length ratio for different values of the energy bias, ΔE . At the

top is the case ΔE = 0 (no intrinsic bias towards long or short). At middle

ΔE =−1kBT (a slight bias towards long rods). At the bottom, ΔE =−2kBT
(stronger bias towards long rods). Note that the order parameter for long rods

always increases, but that for short rods shows a minimum followed by a

maximum.

see that 0.5(q = 1) ≤ x ≤ 1(q → large) for ΔE = 0, but that

0.15(q = 1) ≤ x ≤ 1(q → large) for ΔE = −2kBT .

V. CONCLUSIONS

Here we examined the phase behaviour of 2-state adaptive

rotaxanes. These rotaxanes should be contrasted with those

studied earlier by the present authors,22 where the length

was externally controlled. Here the length is chosen by the

rotaxane molecule itself in response to the local concentration

environment. One major conclusion of this study is that the

2-state adaptive rotaxane forms isotropic and nematic phases,

just as the fixed-length rod system does. However, the critical

concentrations are different from the fixed-length system,

and moreover they show a minimum as the length ratio is

increased. In particular, for an unbiased rotaxane (ΔE = 0),

it is best to use a length ratio which is small q ≈ 1.2. Large

length ratios, q > 2, are counter-productive. The rotaxane

has a choice of being of length L or length qL, and if

q is made too large, the loss of translational entropy due

to collisions becomes prohibitive. In the limit of large q,

the system effectively ignores the possibility of having rods

of length qL and behaves as if it had rods of fixed short

length L.

There is a good reason why we cannot have q > 2 with

only two axles. This means that such an extension would be

geometrically impossible. Of course, we could have larger q
values by using more axles per rotaxane, but in such a case,

the flexibility of the extended molecule would need to be

accounted for.

In the isotropic state, the fraction of short states

increases with increasing concentration, because short states

undergo fewer collisions. However, once the coexistence

regime is entered, the alignment implies fewer collisions

and the advantage short states have is reduced. Thus in the

coexistence regime, the fraction of short states decreases

(because the nematic phase increases in volume), and keeps

decreasing when a pure nematic phase comes into being.

The initial increase in the fraction of short states (Eq. (14))

is perhaps the simplest experimental test of the theory,

because this occurs in the isotropic phase, and does not

require the existence of a nematic phase. In particular, the

linear increase in x with c should be relatively simple to

detect.

One referee has raised the question of our energy biases,

ΔE, in particular why they seem to have limited effect

on the transition concentrations, and why we do not push

them to higher negative values. The reason for their limited

effect is that even ΔE = −2kBT is not particularly large. For

ΔE = −20kBT , we would expect a large effect. However, if

we push |ΔE | to be large, we encounter a simple problem.

The system no longer behaves as adaptive, and becomes one

of the rods with a single length. It then reverts to the ordinary

Onsager system, and all novelty is lost.

The most unexpected conclusion is that the order

parameter for the short state in the nematic shows a minimum

and a maximum as the rod length ratio is increased. This

might be difficult to detect experimentally, because it requires

a measurement of the order of only one species, but it should

be easily measured in computer simulation.

An important question to ask is which experimental

systems should be used to detect these effects. In the review

by Bruns and Stoddart,1 there are many systems which undergo

extensions in the range we are interested in. What is required

is one for which the Onsager theory should be approximately

true. Such systems tend to have large ratios of length to
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diameter. The first test that needs to be made in such cases is

to take to axles individually, prior to rotaxane formation, and

ensure that at high enough concentration a nematic state is

formed.
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APPENDIX A: THE ONSAGER THEORY FOR RODS
OF FIXED LENGTH

Here we review Onsager’s theory19,28 for rods of fixed

length L and diameter d. The equilibrium partition function

for a solution of N rods with orientational distribution Ψ is

Z[Ψ] = 1

N!

∫
Ψ

∏
dui

∏
dRi exp

[
−
∑

i> j Ui, j

kBT

]
,

where ui is the unit vector, directed along the long axis of the

ith rod, Ri is the rod’s centre of mass position, and Ui, j is

the interaction energy between the ith and jth rods. We can

rewrite this partition function as a product of functions,

Z[Ψ] = Z0[Ψ]Z1[Ψ].
Z0 is the partition function associated with distributing non-

interacting rods with an orientational distribution Ψ(u), and

Z1 is the contribution from the interactions between the rods,

or

Z0 =
1

N!

∫
Ψ

∏
dui

∏
dRi

and

Z1=

∫
Ψ

∏
dui

∏
dRi exp

[
−

∑
i> jUi, j

kBT

]
∫
Ψ

∏
dui

∏
dRi

=〈exp[−
∑

i> j Ui, j

kBT
]〉Ψ.

Z0 is determined in the following way: the position of each

rod can be any location within the volume, so
∫

dRi = V
or

∫ ∏N
i dRi = V N . However, the orientation vectors of the

rods are constrained by the distribution Ψ(u). The set of all

possible unit-vectors, u, sweeps out the surface of a sphere,

which we divide into small regions of area (or solid angle) Ω.

As the rods are oriented according to Ψ(u), then the number

of rods oriented within ua ± dua, or solid angle of size Ω, is

na = NΨ(ua)Ω. Thus
∫
Ψ

∏N
i dui is evaluated discretely as the

number of ways of assigning N rods to a set of differential

solid angles, each of size Ω with population na or

∫
Ψ

N∏
i

dui =
N!∏
na!
ΩN .

Taken together, this yields

Z0 =
(ΩV )N∏N

i na!
.

As
∑

a na = N and
∑

aΩΨ(ua) = 1, then the free energy

(entropy) associated with distributing non-interacting rods

with an orientational distribution Ψ(u) is

F0[Ψ]=−kBT ln [Z0[Ψ]]
=N kBT

[
ln [N/V ] − 1 +

∫
duΨ(u) ln [Ψ(u)]

]
. (A1)

The contribution to the free energy from the interactions

between rods can also be found from the corresponding

partition function, F1[Ψ] = −kBT ln[Z1[Ψ]], or alternatively,

we can make simple use of a simple virial expansion of the

free energy written in terms of particle number,

F1[Ψ]=−kBT ln

〈
exp

[
−
∑

i> j Ui, j

kBT

]〉
=B2N + B3N2 + · · ·,

where Bj is the jth virial coefficient. In dilute solutions of

rods, we only need to consider B2N , first term in the virial

expansion which accounts for the pairwise interaction between

two rods of orientation u and u′,

B2N =
N2kBT

2V

∫
dudu′Ψ(u)Ψ(u′)β(u,u′),

where β(u,u′) is

β(u,u′) =
∫

dR
[
1 − exp

[
−U(u,u′,R)

kBT

] ]
.

For a pair of rigid rods which interact as hard bodies (or where

the interaction energy is U = ∞ when overlapping and U = 0

otherwise), β(u,u′) corresponds to the volume that one rod

excludes to another rod. For rods of diameter d, but of two

different, fixed lengths, L and L∗, the excluded volume for

two rods that make an angle |γ|≡|u × u′| is

β(u,u′) = 2LL∗d |u × u′|. (A2)

The contribution of pairwise interactions of rods of the same

length L to the free energy is

F1[Ψ]
N kBT

=
1

2

N
V

∫ ∫
du du′Ψ(u)Ψ(u′)2L2d |u × u′|. (A3)

APPENDIX B: CALCULATION OF THE ADAPTIVE
FREE ENERGY

(i) Free energy of the isotropic phase. In the isotropic

phase,28 all molecules are randomly oriented, irrespective

of whether they are in the short or long state, so that

the orientational distribution function is a constant, ΨS[u]
= ΨL[u] = 1

4π
. Consequently, there is no orientational

entropy of non-interacting rods in the isotropic phase and∫
duΨ[u] ln[4πΨ[u]] = 0. To simplify the three terms

for the free energy associated with pairwise interactions

between rods, we need to specify the excluded volume

of pairs of molecules. Let γ be the angle made by two

molecules so that we have

βS,S(γ)=2L2d |u × u′| = 2L2d |sin γ |, (B1)

βS,L(γ)=2qL2d |u × u′| = 2qL2d |sin γ |, (B2)

βL,L(γ)=2q2L2d |u × u′| = 2q2L2d |sin γ |. (B3)

du is a differential solid angle, expressible in terms

of polar and azimuthal angle or du = dφ sin θdθ. The

integrals are of the form
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∫ ∫
du du′βS,SΨ(u)Ψ(u′)= 1

16π2

∫ 2π

0

dφ
∫ 2π

0

dφ′
∫ π

0

sin θdθ
∫ π

0

2L2d | sin γ | sin θ ′dθ ′ =
πL2d

2
,

∫ ∫
du du′βS,LΨs(u)Ψs(u′)= πL2dq

2
,

∫ ∫
du du′βL,LΨ(u)Ψ(u′)= πL2dq2

2
.

These are readily performed by rotating the coordinate system so that one rod always lies along the z axis. The free energy of

the isotropic phase of concentration c with fraction of short rotaxane states x is

Fisotropic

N kBT
=

F0,isotropic

N kBT
+

F1,isotropic

N kBT
+

F2,isotropic

N kBT

= ln [N
V
] − 1 + x ln x + (1 − x) ln (1 − x) + N

2V

[
x2πL2d

2
+ 2x(1 − x)πL2dq

2
+ (1 − x)2πL2dq2

2

]
− x
ΔE
kBT

= ln c − 1 + x ln x + (1 − x) ln (1 − x) + πcL2d
4

[
x2 + 2qx(1 − x) + q2(1 − x)2

]
− x
ΔE
kBT

.

(ii) Free energy of the nematic phase. In the nematic

phase, molecules are oriented and those in the long

state will be oriented more strongly than those in the

short state. We use the angle, θ, that the molecule

makes with a director as a measure of the orientation

and define two orientational distribution functions, one

for the short state, ΨS(θ) and another for the long

state, ΨL(θ), using Onsager’s trial function, Eq. (2) with

u · n = cos θ,

ΨS(θ)= αS cosh (αS cos θ)
4π sinh (αS) , (B4)

ΨL(θ)= αL cosh (αL cos θ)
4π sinh (αL) . (B5)

The orientational entropy contribution associated with

distributing non-interacting rods in the nematic phase,

F0[Ψ, x], is then∫
duΨS(θ) ln 4π[ΨS(θ)]= log (αS coth αS) − 1

+
arctan (sinh αS)

sinh αS
, (B6)∫

duΨL(θ) ln 4π[ΨL(θ)]= log (αL coth αL) − 1

+
arctan (sinh αL)

sinh αL
. (B7)

As in the isotropic case, the three terms for the free energy

associated with pairwise interactions between rods can

be readily calculated by rotating coordinates. However,

unlike the isotropic case, the orientation distribution

function, Ψ, is no longer a constant but depends

upon θ as well as the state of the rotaxane, long or

short.

∫ ∫
du du′βS,SΨS[u]ΨS[u′]=

∫ 2π

0

dφ
∫ 2π

0

dφ′
∫ π

0

sin θΨS[θ]dθ
∫ π

0

2L2d |sin(γ)|sin θΨS[θ ′]dθ ′ = 2L2dI2(2αS)
(sinh αS)2 , (B8)

∫ ∫
du du′βL,LΨ(u)Ψ(u′) = 2q2L2dI2(2αL)

(sinh αL)2 , (B9)

where I2 is second order Bessel function.19 The contribution due to pairwise interaction of molecules of different size is rather

involved. Here we simply write down Onsager’s result; in his original work, he describes the derivation in great detail, referring

to this as the covolume,

∫ ∫
du du′βS,LΨS(u)ΨL(u′)

= qL2d
√

αS + αL

2παSαL

⎧⎪⎨⎪⎩1 − 3

8

(
1

αS
+

1

αL
+

1

αS + αL

)
+

15

128

⎡⎢⎢⎢⎢⎣
8

αSαL
−

(
1

αS
+

1

αL
+

1

αS + αL

)2⎤⎥⎥⎥⎥⎦ + · · ·
⎫⎪⎬⎪⎭ . (B10)

Like Onsager, we ignore the higher order terms in the last expression, so that the free energy per molecule in the nematic phase,

F2, reduces to
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F2[αS,αL, x,c]
N kBT

= ln [N/V ] − 1 + x
[
ln (αS coth αS) − 1 +

arctan (sinh αS)
sinh αS

]

+ (1 − x)
[
ln (αL coth αL) − 1 +

arctan (sinh αL)
sinh αL

]
+

1

2

N
V

[
(1 − x)2

[
2q2L2d

I2(2αL)
sinh2αL

]
+ x2

[
2L2d

I2(2αS)
sinh2αS

]

+ 2x(1 − x) qL2d
√

αS + αL

2παSαL

[
1 − 3

8

(
1

αS
+

1

αL
+

1

αS + αL

)

+
15

128

⎡⎢⎢⎢⎢⎣
8

αSαL
−

(
1

αS
+

1

αL
+

1

αS + αL

)2⎤⎥⎥⎥⎥⎦ + · · ·
⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦ + x ln x + (1 − x) ln (1 − x) − x

ΔE
kBT

. (B11)
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