A nearby young M dwarf with a wide, possibly planetary-mass companion

N. R. Deacon, J. E. Schlieder and S. J. Murphy

1 Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
2 NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035, USA
3 Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany
4 Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia

ABSTRACT

We present the identification of two previously known young objects in the solar neighbourhood as a likely very wide binary. TYC 9486-927-1, an active, rapidly rotating early-M dwarf, and 2MASS J21265040–8140293, a low-gravity L3 dwarf previously identified as candidate members of the ~45 Myr old Tucana–Horologium association (TucHor). An updated proper motion measurement of the L3 secondary, and a detailed analysis of the pair’s kinematics in the context of known nearby, young stars, reveals that they share common proper motion and are likely bound. New observations and analyses reveal the primary exhibits Li 6708 Å absorption consistent with M dwarfs younger than TucHor but older than the ~10 Myr TW Hydra association yielding an age range of 10–45 Myr. A revised kinematic analysis suggests the space motions and positions of the pair are closer to, but not entirely in agreement with, the ~24 Myr old β Pictoris moving group. This revised 10–45 Myr age range yields a mass range of 11.6–15 M_J for the secondary. It is thus likely 2MASS J2126–8140 is the widest orbit planetary-mass object known (>4500 au) and its estimated mass, age, spectral type, and T_eff are similar to the well-studied planet β Pictoris b. Because of their extreme separation and youth, this low-mass pair provide an interesting case study for very wide binary formation and evolution.

Key words: planets and satellites: detection – binaries: visual – brown dwarfs – stars: pre-main-sequence.

1 INTRODUCTION

Very wide orbit (>1000 au) extrasolar planets represent a currently small but previously unexpected population of massive gas giant companions to stars. To date four such objects have been discovered by direct imaging by a variety of routes. WD 0806-661B (Luhman, Burgasser & Bochanski 2011; 2500 au 6–9 M_J; Luhman et al. 2012) was discovered with a targeted observation of a nearby white dwarf, GU Psc b (Naud et al. 2014; 2000 au, 9–12 M_J) was found with a targeted observation of a young, nearby moving group member, SR12 C by observations of a T Tauri binary in ρ Ophiuchus (Kuzuhara et al. 2011; 1100 au, 6–20 M_J), whilst Ross 458 C (Goldman et al. 2010; 1160 au, 5–14 M_J, Burgasser et al. 2010; Burningham et al. 2011) was discovered in widefield survey data and then identified as having a common proper motion with its host binary.

In this work, we present the identification of two previously known young objects in the solar neighbourhood, TYC 9486-927-1 and 2MASS J21265040–8140283, as a comoving wide pair with a probable planetary mass secondaries. During an examination of the literature we found that these two objects are separated by 217 arcsec and have similar proper motions. Hence we attempted to better determine their properties to see if they were a likely young, bound system. Using revised astrometry and detailed kinematic analyses of nearby young stars and brown dwarfs, we have determined that this previously known young brown dwarf/free-floating planetary-mass object and young low-mass star are a likely widely separated bound pair. We also present new spectroscopic observations and re-examinations of literature and archival data to refine the age of the system and estimate that the secondary is likely planetary mass and may be the widest orbit exoplanet yet discovered.

TYC 9486-927-1 was observed by Torres et al. (2006) as part of the Search for Associations Containing Young stars (SACY) programme (Torres et al. 2008). They assigned a spectral type of M1 and measured a radial velocity of v_rad = 8.7 ± 4.6 km s^{-1} from 10 observations. The large uncertainty is likely due to the star’s high rotational velocity (v sin i = 43.5 ± 1.2 km s^{-1}); suggesting it is either a single rapid rotator or a spectroscopic binary with blended lines. TYC 9486-927-1 also shows signs of activity in X-ray (Thomas et al. 1998), H α emission (Torres et al. 2006) and the UV (using
Table 1. Summary of the properties of both TYC 9486-927-1 and 2MASS J2126—8140.

<table>
<thead>
<tr>
<th></th>
<th>TYC 9486-927-1</th>
<th>2MASS J2126—8140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position (J2000)</td>
<td>21 25 27.52 − 81 38 27.88</td>
<td>21 26 50.40 − 81 40 29.38</td>
</tr>
<tr>
<td>$\mu_2 \cos \delta$ (mas yr$^{-1}$)</td>
<td>58.9 ± 1.9a</td>
<td>49.3 ± 9.7a</td>
</tr>
<tr>
<td>v_rad (km s$^{-1}$)</td>
<td>-109.4 ± 1.0^b</td>
<td>-105.5 ± 6.6^c</td>
</tr>
<tr>
<td>J (mag)</td>
<td>10.0 ± 1.0d</td>
<td>8.4 ± 2.1e</td>
</tr>
<tr>
<td>H (mag)</td>
<td>7.563 ± 0.027d</td>
<td>14.40 ± 0.05d</td>
</tr>
<tr>
<td>K_s (mag)</td>
<td>7.34 ± 0.04d</td>
<td>13.55 ± 0.04d</td>
</tr>
<tr>
<td>W_1 (mag)</td>
<td>7.241 ± 0.032f</td>
<td>12.910 ± 0.024f</td>
</tr>
<tr>
<td>W_2 (mag)</td>
<td>7.151 ± 0.021f</td>
<td>12.472 ± 0.023f</td>
</tr>
<tr>
<td>W_3 (mag)</td>
<td>7.039 ± 0.016f</td>
<td>11.885 ± 0.161f</td>
</tr>
<tr>
<td>W_4 (mag)</td>
<td>6.953 ± 0.061f</td>
<td>9.357f</td>
</tr>
<tr>
<td>Age</td>
<td>10–45 Myrg</td>
<td>10–150 Myrd</td>
</tr>
<tr>
<td>Mass</td>
<td>$\sim 0.4M_\odot$</td>
<td>11.6–15.0 M\odot</td>
</tr>
<tr>
<td>Distance (pc)</td>
<td>20.5–29.0h</td>
<td>31.9–25.8h</td>
</tr>
<tr>
<td>Spectral type</td>
<td>M2i</td>
<td>L3i</td>
</tr>
<tr>
<td>Separation</td>
<td>217 arcsec</td>
<td>~ 6900 au</td>
</tr>
</tbody>
</table>

bZacharias et al. (2013).
cThis work.
dSkrutskie et al. (2006).
eWeight et al. (2010).
fFilippazzo et al. (2015).
gTrigonometric parallax mentioned in Filippazzo et al. (2015) cited Faherty et al. in preparation.
hFaherty et al. (2013).
iMeasurement from a very low signal-to-noise spectrum.

GALEX data from Martin et al. 2005 we find log $F_\text{UV}/F_\gamma = -2.49$, log $F_\text{FGN}/F_\gamma = -2.11$. 2MASS J2126—8140 is an L3 first identified by Reid et al. (2008, although referencing Cruz, Kirkpatrick & Burgasser 2009 as the discovery paper). Subsequently Faherty et al. (2013) classified it as a low gravity L3y* (using the gravity classification system of Cruz et al. 2009). Recent VLT/ISAAC observations by Manjavacas et al. (2014) find it is a good match to the young, L3 companion CD-35 2722B (Wahaj et al. 2011). These authors also used the spectral indices of Allers & Liu (2013) to confirm that the 2MASS J2126—8140 is an L3 and shows low gravity spectral features. Manjavacas et al. (2014) also used the BT-Setter 2013 atmospheric models (Allard, Homeier & Freytag 2012) to derive $T_{\text{eff}} = 1800 \pm 100$ K, log $g = 4.0 \pm 0.5$ dex, albeit with better fits to supersolar metallicity models. Filippazzo et al. (2015) use photometry, a trigonometric parallax of 31.3 ± 2.6 mas (referenced to Faherty et al., in preparation) and evolutionary models to derive an effective temperature of 1663 ± 35 K. They also derived a mass of 23.80 ± 1.59 M$_\odot$, assuming a broad young age range of 10–150 Myr. Gagné et al. (2014) listed 2MASS J2126—8140 as a high probability candidate member of Tucana–Horologium association (TucHor) but noted that its photometric distance would be in better agreement with its TucHor kinematic distance if it were an equal mass binary.

2 TYC 9486-927-1 AND 2MASS J21265040—8140293

Our parameters for both components of this system are listed in Table 1. Below we outline how these were derived.

2.1 Astrometry of 2MASS J21265040—8140293

Using Two Micron All Sky Survey (2MASS) and WISE astrometry, Gagné et al. (2014) measured proper motions of $\mu_2 \cos \delta = 46.7 \pm 1.3$ mas yr$^{-1}$ and $\mu_3 = -107.8 \pm 10.4$ mas yr$^{-1}$ for 2MASS J2126—8140. This is deviant by σ in the RA direction from the UCAC4 measurements (Zacharias et al. 2013) for TYC 9486-927-1 of $\mu_2 \cos \delta = 58.9 \pm 1.5$ mas yr$^{-1}$ and $\mu_3 = -109.4 \pm 1.0$ mas yr$^{-1}$. Due to the very small uncertainty on Gagné et al.’s ($\mu_2 \cos \delta$ measurement and the availability of newer data sets we recalculated the astrometric solution for 2MASS J2126—8140 using data from 2MASS (Skrutskie et al. 2006), the WISE All-Sky release (Wright et al. 2010), one epoch of WISE post-cry data, one epoch of the reactivated NEOWISE mission (Mainzer et al. 2011) and the DENIS survey (Epchtein et al. 1994). For each of the three WISE epochs we averaged the single exposure positional measurements to produce three data points. We assumed positional errors (84 mas on both axes) from the quoted errors on the position for 2MASS J2126—8140 in the WISE All-Sky data release Source Catalogue and applied these to all three of our WISE data points.

For 2MASS we used the quoted positions and positional error and for DENIS we used the approach of Luhman (2013), measuring the positional scatter on objects of similar brightness close to the target. This latter calculation yielded positional uncertainties of 100 mas in both RA and Dec. which were applied to positions averaged from the different DENIS epochs. These measurements were combined in a least-squares fit which resulted in proper motion measurements of $\mu_2 \cos \delta = 49.3 \pm 9.7$ mas yr$^{-1}$ and $\mu_3 = -105.5 \pm 6.6$ mas yr$^{-1}$. These figures deviate by less than 1σ from the UCAC4 proper motion measurements for TYC 9486-927-1 from Zacharias et al. (2013). Our proper motion fit along with those from Gagné et al. (2014) and the UCAC4 proper motion for TYC 9486-927-1 are shown in Fig. 1. The congruent proper motions are readily apparent on the plane of the sky in Fig. 2.

2.2 The radial velocity of 2MASS J21265040—8140293

2MASS J2126—8140 was observed with the Phoenix spectrograph (Hinkle et al. 2003) mounted to the Gemini-South telescope on UT 2009 October 29 (Programme GS-2009B-C-2, PI K. Cruz). The observations consisted of two AB pairs with each exposure lasting 1800 s. The data was obtained in the H band with the 0.34 arcsec slit which provides a resolving power of approximately 50 000. Along with the science data, flat lamp, and dark calibration exposures were obtained on the same night. These data were downloaded from the Gemini Archive and reduced using a series of custom routines. We corrected for bad pixels then flat-fielded and dark subtracted the science frames using a median master flat and dark frame. We attempted to extract the one-dimensional spectrum from both sky-subtracted AB pairs, but the trace was only detected by our software in one pair. OH night sky lines were used to solve the dispersion solution and establish a wavelength scale. The final extracted spectrum covered 1.5512–1.5577 μm and had a SNR ~ 5. Prior to cross-correlation with model and observed templates, the spectrum was flattened by dividing by a fourth-order polynomial fit to the continuum to the continuum, flux normalized, and corrected for the barycentric velocity.

The WISE All-Sky Source Catalogue position is the average of multiple measurements at one of our epochs and thus the error on this averaged position will be representative of the error on our averaged position at each of our three WISE epochs.
To measure the RV of 2MJ2126, we cross-correlated the spectrum with a 1800 K, log(g) = 4.0, solar metallicity BT Settl (Allard et al. 2011) model spectrum (to match the parameters from Manjavacas et al. 2014) and observed M6, M7, and M9 Keck/NIRSPEC template spectra from Prato et al. (2002). Our analyses provide consistent RVs using each template, all four measurements are listed in Table 2. All measurements are in reasonable agreement with TYC 9486-927-1’s RV (10.0 ± 1.0 km s\(^{-1}\), see Section 2.3). We adopt a range of 8.4 ± 2.1 km s\(^{-1}\) for 2MASS J2126−8140’s radial velocity based on our measurements. We note that this radial velocity estimate comes from a very low signal-to-noise spectrum. However, we include this measurement to demonstrate that we have analysed the available archive data for 2MASS J2126−8140 and can find no data which suggests that it is not in a bound system with TYC 9486-927-1.

Table 2. The radial velocity measurements derived from the low signal-to-noise Gemini/Phoenix spectrum of 2MASS J2126−8140 by cross-correlating with different spectral templates. The three spectral template stars come from Prato et al. (2002) and the model template from Allard, Homeier & Freytag (2011).

<table>
<thead>
<tr>
<th>Template</th>
<th>RV (km s(^{-1}))</th>
<th>Cross-correlation power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800 K model</td>
<td>10.5 ± 1.1</td>
<td>18%</td>
</tr>
<tr>
<td>LHS 2065 (M9)</td>
<td>7.4 ± 1.8</td>
<td>23%</td>
</tr>
<tr>
<td>LHS 2351 (M7)</td>
<td>8.4 ± 1.4</td>
<td>24%</td>
</tr>
<tr>
<td>LHS 292 (M6)</td>
<td>8.1 ± 1.4</td>
<td>23%</td>
</tr>
<tr>
<td>GL 644C (M7)</td>
<td>7.6 ± 1.5</td>
<td>24%</td>
</tr>
<tr>
<td>Adopted value</td>
<td>8.4 ± 2.1</td>
<td></td>
</tr>
</tbody>
</table>

TYC 9486-927-1 was classified as an active M1 by Torres et al. (2006) who also detected a Lithium 6708 Å feature with an equivalent width of 104 m Å. We observed TYC 9486-927-1 with FEROS (Kaufer et al. 1999; \(R = 48,000, 3600−9200\) Å) on 2012 October 7 using all the standard settings, reductions, and RV analyses detailed in sections 2.3.7 and 3.11 of Bowler et al. (2015). We subsequently observed the star on 2015 August 26 and 2015 October 27 with the WiFeS instrument on the ANU 2.3 m telescope at Siding Spring using the R7000 grating (Dopita et al. 2007; \(R = 7000, 5250−7000\) Å). The WiFeS instrument set up, data reduction and analysis, including the derivation of line widths and radial velocities, was the same as that described in Murphy & Lawson (2014). Our FEROS spectrum showed emission in H\(\alpha \), H\(\beta \), H\(y \), and H\(\delta \) and yielded measurements of \(v_{\text{rad}} = 10.0 ± 1.0\) km s\(^{-1}\) and \(E(W_{\text{Li}}) = 85 ± 15\) m Å and \(\sin i = 40.0 ± 2.0\) km s\(^{-1}\), while the WiFeS observations measured \(v_{\text{rad}} = 10.7 ± 1.0\) km s\(^{-1}\) and \(9.7 ± 1.0\) km s\(^{-1}\), respectively, with \(E(W_{\text{Li}}) = 90 ± 10\) m Å in both observations. Table 3 shows the spectroscopic properties of TYC 9486-927-1 from our observations and the literature. Notably, the star exhibits no RV variations outside of uncertainties on the scale of months to years, strongly suggesting it is not a close to equal mass spectroscopic binary system. We adopt a radial velocity of 10.0 ± 1.0 km s\(^{-1}\) for the star, in agreement with the FEROS and WiFeS data, and lower precision measurements of 8.7 ± 0.6 km s\(^{-1}\) (Torres et al. 2006) and 11.9 ± 3.0 km s\(^{-1}\) (Malö et al. 2014). To further examine the possible binary nature of TYC 9486-927-1, we performed 2D cross-correlations on our FEROS spectrum with a variety of primary/secondary template mass ratio combinations. None of these tests yielded a reliable cross-correlation function with power larger than in the case of a single star.

To garner an improved spectral type, we made an additional observation of TYC 9486-927-1 with WiFeS on the 2015 November 28 with the lower resolution R3000 grating (\(R = 3000, 5200−9800\) Å). We visually compared the flux calibrated and telluric corrected spectrum to spectral type standards from the lists of E. Mamajek\(^2\) observed that night with the same instrument settings. Fig. 3 shows that TYC 9486-927-1 has a spectral type between M2 (GJ 382) and M2.5 (GJ 381), inconsistent with the M1 spectral type reported by

\(^2\) http://www.pas.rochester.edu/emamajek/spt/
Table 3. Properties derived from multi-epoch spectroscopy for TYC 9486-927-1 from both the literature and our work. Note the consistency of the radial velocity over long periods and the variability in the $H\alpha$ EW due to chromospheric activity. The last line refers to our lower resolution R3000 observation where the lithium 6708 Å feature was not resolved.

<table>
<thead>
<tr>
<th>Source</th>
<th>Date (UT)</th>
<th>SpT</th>
<th>RV (km s$^{-1}$)</th>
<th>EW Li (mÅ)</th>
<th>EW $H\alpha$ (Å)</th>
<th>$v\sin i$ (km s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torres et al. (2006)</td>
<td>2001-09-08</td>
<td>M1e</td>
<td>8.7 ± 4.6</td>
<td>104</td>
<td>−5.6</td>
<td>43.5 ± 1.2</td>
</tr>
<tr>
<td>Malo et al. (2014)</td>
<td>2010-05-25</td>
<td>–</td>
<td>11.9 ± 3.0</td>
<td>–</td>
<td>–</td>
<td>44.8 ± 4.2</td>
</tr>
<tr>
<td>Gaidos et al. (2014)</td>
<td></td>
<td>M3</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>This work, FEROS</td>
<td>2012-10-07</td>
<td>–</td>
<td>10.0 ± 1.0</td>
<td>85 ± 15</td>
<td>–</td>
<td>40.0 ± 2.0</td>
</tr>
<tr>
<td>This work, WiFeS</td>
<td>2015-08-26</td>
<td>–</td>
<td>10.7 ± 1.0</td>
<td>90 ± 10</td>
<td>−5.7 ± 0.2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2015-10-27</td>
<td>–</td>
<td>9.7 ± 1.0</td>
<td>90 ± 10</td>
<td>−9.5 ± 0.2</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2015-11-28</td>
<td>M2 ± 0.5</td>
<td>–</td>
<td>–</td>
<td>−6.0 ± 0.5</td>
<td>–</td>
</tr>
</tbody>
</table>

![Figure 3. WiFeS/R3000 spectrum of TYC 9486-927-1 (thick line), compared to spectral type standards observed the same night. All spectra have been normalized at 6100 Å and smoothed with a 5-px Gaussian prior to plotting. Based on this comparison the spectral type of TYC 9486-927-1 is M2–M2.5. The inset shows the weak (EW α = 90 ± 10 mÅ) and broad Li α 6708 Å line from a higher resolution WiFeS R7000 observation.](http://mnras.oxfordjournals.org/Downloaded_from)
2.4 Photometric distances and moving group membership

TYC 9486-927-1 lacks a trigonometric parallax measurement and thus any determination of its kinematics (and hence moving group membership) requires photometric distance estimates. To estimate absolute near-IR magnitudes for TYC 9486-927-1 we used our measured spectral type of M2. We then derived an effective temperature of 3490 K for TYC 9486-927-1 using the 5–30 Myr young star T_{eff} scale of Pecaut & Mamajek (2013) and applied this to the evolutionary models of Baraffe et al. (2015) at four ages (10, 20, 30, and 40 Myr) to estimate the absolute magnitudes. TYC 9486-927-1’s J, H, and K_s 2MASS photometry were then compared to these absolute magnitudes to calculate distances, neglecting the likely negligible extinction. We took the mean of these estimates as the adopted distance for TYC 9486-927-1 for each age (see Table 5). Binarity would change the photometric distances although our multi-epoch RV measurements and the high resolution imaging of Elliott et al. (2015) show no evidence of a close companion to TYC 9486-927-1.

To compare to the trigonometric parallax quoted in Filippazzo et al. (2015) for 2MASS J2126–8140 we used the young L dwarf photometric distance relations of Gagné et al. (2015a). Following a similar process to that described above but adopting the scatter on the relations as the error on our distances. As the Gagné et al. (2015a) relations cover a wide range of ages (up to 125 Myr) they also cover a wide range of luminosities for each spectral type due to young objects having inflated radii. Hence the photometric distances do not deviate randomly across bands but will be correlated. Thus, we do not adopt a weighted mean distance but take the distance from the band with the lowest scatter ($2d = 26.7^{+5.1}_{-4.7}$ pc). This distance, and those for TYC 9486-927-1 using the 10 and 20 Myr Baraffe et al. (2015) models agree well with the trigonometric parallax presented by Filippazzo et al. (2015).

To test the membership of TYC 9486-927-1 in several well known moving groups in the solar neighbourhood, we imputed our radial velocity (10 ± 1 km s$^{-1}$), the UCAC4 proper motions and the positions, along with the distance estimates for each age, into the BANYAN II young moving group membership probability estimation tool (Malo et al. 2013; Gagné et al. 2014). We assumed a 20 per cent error on our photometric distance estimates and that the objects were younger than 1 Gyr. For 2MASS J2126–8140 we used our proper motion, and both the photometric distance estimate and the literature trigonometric parallax. The results of these calculations are shown in Table 5. They suggest that the system is unlikely to be a TucHor member. Over the range of estimated photometric distances in Table 5, BANYAN II provides probabilities of β Pic membership ranging from about 4.9 to 74 per cent. The membership probability for 2MASS J2126–8140 is on the lower end of this range when we allow the radial velocity to be unconstrained. To further investigate the potential moving group membership we plotted the Galactic U, V, W velocities and X, Y, Z positions for TYC 9486-927-1 and 2MASS J2126–8140 (Fig. 5). We find that the reason BANYAN discounts TucHor membership is due to the system being a significant outlier in the Z coordinate. While β Pic remains the most likely moving group (both in

Table 5. Photometric distances and moving group membership probabilities (TH – Tuc Hor, BP – β Pic, YF – young field) for TYC 9486-927-1 and 2MASS J2126–8140. We assume errors of \sim20 per cent for the photometric distance estimates for TYC 9486-927-1. Membership probabilities come from the BANYAN II online tool (Malo et al. 2013; Gagné et al. 2014) and use the proper motions from Zacharias et al. (2013) for TYC 9486-927-1 and our own calculation for 2MASS J2126–8140. Calculations using measured radial velocities for TYC 9486-927-1 (10.0 ± 1.0 km s$^{-1}$) and 2MASS J2126–8140 (8.4 ± 2.1 km s$^{-1}$) are marked accordingly. We note again this latter radial velocity is derived from a low signal-to-noise spectrum. See Table 1 for a full list of derived parameters. The final line for each object uses the trigonometric parallax mentioned in Filippazzo et al. (2015).

<table>
<thead>
<tr>
<th>Object</th>
<th>SpT</th>
<th>Age</th>
<th>RV (km s$^{-1}$)</th>
<th>d_J</th>
<th>d_H</th>
<th>d_K</th>
<th>d_{W1}</th>
<th>d_{W2}</th>
<th>$d_{adopted}$</th>
<th>pTH (%)</th>
<th>pBP (%)</th>
<th>pYF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYC 9486-927-1</td>
<td>M2</td>
<td>10 Myr</td>
<td>10.0 ± 1.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>29.0 ± 5.8</td>
<td>59.1</td>
<td>40.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M2</td>
<td>20 Myr</td>
<td>10.0 ± 1.0</td>
<td>26.4 ± 5.3</td>
<td>26.0 ± 5.2</td>
<td>26.1 ± 5.2</td>
<td>–</td>
<td>–</td>
<td>26.2 ± 5.2</td>
<td>74.0</td>
<td>25.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M2</td>
<td>30 Myr</td>
<td>22.8 ± 4.6</td>
<td>22.3 ± 4.5</td>
<td>22.5 ± 4.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>22.6 ± 4.5</td>
<td>71.8</td>
<td>28.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M2</td>
<td>40 Myr</td>
<td>20.7 ± 4.1</td>
<td>20.3 ± 4.1</td>
<td>20.5 ± 4.1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>20.5 ± 4.1</td>
<td>55.6</td>
<td>44.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>10.0 ± 1.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>31.9 ± 2.9</td>
<td>95.6</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>2MASS J21265040–8140293</td>
<td>L3</td>
<td><125 Myr</td>
<td>26.9 ± 19.0 – 11.1</td>
<td>26.2 ± 10.2</td>
<td>24.9 ± 7.3</td>
<td>26.7 ± 5.7</td>
<td>26.7 ± 5.7</td>
<td>26.7 ± 5.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>31.9 ± 2.9</td>
<td>95.6</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td><125 Myr</td>
<td>8.4 ± 2.1</td>
<td>26.9 ± 19.0 – 11.1</td>
<td>26.2 ± 10.2</td>
<td>24.9 ± 7.3</td>
<td>26.7 ± 5.7</td>
<td>26.7 ± 5.7</td>
<td>26.7 ± 5.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>31.9 ± 2.9</td>
<td>95.6</td>
<td>4.4</td>
<td></td>
</tr>
</tbody>
</table>

A possible wide star-planet system
kinematics and in age) for this system to be associated with, a difference in the U velocity precludes us from claiming this is a bona-fide β Pic member.

2.5 Probability of chance alignment

While it appears that TYC 9486-927-1 and 2MASS J2126-8140 have matching proper motions and distances and both show signs of youth it is possible that they are a chance alignment of unrelated young objects. To determine the likelihood of this, we modified the method of Lépine & Bongiorno (2007). We first constructed a list of known and candidate young stars in nearby young moving groups from Torres et al. (2008), Shkolnik, Liu & Reid (2009), Schlieder, Lépine & Simon (2012), Kraus et al. (2014), and Malo et al. (2014). We then offset the positions of these stars by two degrees and searched for common proper motion companions in the 2MASS–WISE proper motion catalogue of Gagné et al. (2015b) around these offset positions. This should result in only chance alignments of unrelated objects. We ran this process 18 times, on each occasion offsetting the positions of our input sample by 2 deg but changing the direction of the offset by one-ninth of a radian each time. In this way we were able to sample a much larger area for chance alignments and thus reduce statistical noise. The results are shown in Fig. 6 and clearly show a low probability (~ 5 per cent) of chance alignment considering all objects in Gagne’s proper motion sample or only those with L dwarf-like colours ($J - K_s > 1.2$). There is also the possibility of the chance alignment between two unbound objects in the same moving group. Hence we carried out a simulation to see how often two members of one group would fall close to each other on the sky and have photometric distance estimates within 10 pc of each other. To accomplish this we generated a random realization of each of the eight young moving groups described in Gagné et al. (2014) using the parameters provided by that work. We then ran this simulation 50 000 times and determined that there is < 1 per cent chance that two objects in the same moving group would lie as close together on the sky as TYC 9486-927-1 and 2MASS J2126-8140 (see Fig. 6 lowest panel). We assumed that all chance alignments between members of one moving group would have matching proper motions due to both components having the bulk space velocity of the moving group. Note we did not consider the number of pairings between members of different moving groups (i.e. the number of chance alignments between AB Dor and TWA members). Even accounting for a factor of 2 or 3 missing members in the groups (especially at the lowest masses), it is clear that TYC 9486-927-1 and 2MASS J2126-8140 are unlikely to be chance alignments inside the same group.
A possible wide star-planet system

Figure 6. Top two rows: the results of our chance alignment using a modification of the offset position method of Lépine & Bongiorno (2007). The top row includes matches with all objects in Gagné et al. (2015b)’s catalogue while the middle row only includes matches with objects with $J - K_s > 1.2$. Bottom row: the probability of finding two members of the same moving group at a particular separation on the sky from each other and with distances which agree within 10 pc. Clearly it is unlikely that our proposed pair (marked by a star or a red arrow) is a chance alignment.
3 PHYSICAL PROPERTIES OF 2MASS J21265049−8140293

In order to estimate the mass of 2MASS J2126−8140, we used a Monte Carlo simulation. We drew temperatures from a flat distribution from the 1700–1900 K range quoted by Manjavacas et al. (2014) and ages from our flat 10−45 Myr range. We then compared with the COND (Baraffe et al. 2003) and Saumon & Marley (2008) (\(\sigma_{\text{opt}} = 2\)) evolutionary models. The Baraffe et al. (2003) models yielded masses between 11.6 \(M_{\text{Jup}}\) and 14.7 \(M_{\text{Jup}}\), and the Saumon & Marley (2008) models preferred solutions in the 13.3−15 \(M_{\text{Jup}}\) range. Hence we adopt a mass range of 11.6−15 \(M_{\text{Jup}}\), for 2MASS J2126−8140 placing it on the 13 \(M_{\text{Jup}}\) deuterium-burning dividing line between planets and brown dwarfs. A similar calculation drawing the age from a (Bell et al. 2015) \(\beta\) Pic Gaussian age distribution of \(24 \pm 3\) Myr yields a mass range of \(12−14\) \(M_{\text{Jup}}\). Such masses and ages make 2MASS J2126−8140 an interesting wide-orbit analogue to \(\beta\) Pic b (Lagrange et al. 2010), whose primary is a member of the eponymous moving group. Morzinski et al. (2015)\(\beta\) Pic mass and ages make 2MASS J2126−8140 an interesting wide-orbit analogue to \(\beta\) Pic b (Lagrange et al. 2010), whose primary is a member of the eponymous moving group. Morzinski et al. (2015)

4 CONCLUSIONS

In summary: we have identified two previously known young objects TYC 9486-927-1 and 2MASS J2126−8140 as having common period. We find that the photometric distances of the pair agree and that they are unlikely to be an alignment of two unrelated young objects. Using the strength of the lithium \(6708\) Å feature we find an age range of \(10−45\) Myr for TYC 9486-927-1 yielding a mass of \(11.6−15 M_{\text{J}}\) for 2MASS J2126−8140. We note that the system has a wider separation than any known star-planet system and that 2MASS J2126−8140 is similar in age, mass, and temperature to the known exoplanet \(\beta\) Pic b.

ACKNOWLEDGEMENTS

This research made use of the SIMBAD data base, operated at CDS, Strasbourg, France. This publication makes use of data products from the 2MASS, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This publication also makes use of data products from NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology, funded by the Planetary Division of the National Aeronautics and Space Administration. The DENIS project has been partly funded by the SCIENCE and the HCM plans of the European Commission under grants CT920791 and CT940627. It is supported by INSU, MEN, and CNRS in France, by the State of Baden-Württemberg in Germany, by DGICYT in Spain, by CNR in Italy, by FFwFBFW in Austria, by FAPESP in Brazil, by OTKA grants F-4239 and F-013990 in Hungary, and by the ESO CEE grant A-04-046. Jean Claude Renault from IAP was the Project manager. Observations were carried out thanks to the contribution of numerous students and young scientists from all involved institutes, under the supervision of P. Fouqué, survey astronomer resident in Chile. Based on observations obtained at the Gemini Observatory (PID GS-2009B-C-2, acquired through the Gemini Science Archive), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio de Ciencia, Tecnologia e Innovacion (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). The research of JES was supported by an appointment to the NASA Postdoctoral Program at NASA Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. We thank the anonymous referee for the prompt and helpful review that improved the quality and clarity of this manuscript. The authors would like to thank the Brass Monkey, Heidelberg for the opportunity to pit their wits against each other every week. Based on observations made with the ESO/MPG 2.2 m telescope at the La Silla Observatory under programme ID 090.A-9010.

REFERENCES

A possible wide star-planet system

Lagrange A.-M. et al., 2010, Science, 329, 57
Skrutskie M. F. et al., 2006, AJ, 131, 1163
Wright E. L. et al., 2010, AJ, 140, 1868

This paper has been typeset from a TeX/LaTeX file prepared by the author.