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Abstract

One fundamental problem in computer vision and robotics is to localize objects of interest

in an image. The task can either be formulated as an object detection problem if the objects

are described by a set of pose parameters, or an object segmentation one if we recover object

boundary precisely. A key issue in object detection and segmentation concerns exploiting the

spatial context, as local evidence is often insufficient to determine object pose in the presence

of heavy occlusions or large object appearance variations. This thesis addresses the object

detection and segmentation problem in such adverse conditions with auxiliary depth data pro-

vided by RGBD cameras. We focus on four main issues in context-aware object detection and

segmentation: 1) what are the effective context representations? 2) how can we work with

limited and imperfect depth data? 3) how to design depth-aware features and integrate depth

cues into conventional visual inference tasks? 4) how to make use of unlabeled data to relax

the labeling requirements for training data?

We discuss three object detection and segmentation scenarios based on varying amounts of

available auxiliary information. In the first case, depth data are available for model training but

not available for testing. We propose a structured Hough voting method for detecting objects

with heavy occlusion in indoor environments, in which we extend the Hough hypothesis space

to include both the object’s location, and its visibility pattern. We design a new score function

that accumulates votes for object detection and occlusion prediction. In addition, we explore

the correlation between objects and their environment, building a depth-encoded object-context

model based on RGBD data. In the second case, we address the problem of localizing glass

objects with noisy and incomplete depth data. Our method integrates the intensity and depth

information from a single view point, and builds a Markov Random Field that predicts glass

boundary and region jointly. In addition, we propose a nonparametric, data-driven label trans-

fer scheme for local glass boundary estimation. A weighted voting scheme based on a joint

feature manifold is adopted to integrate depth and appearance cues, and we learn a distance

metric on the depth-encoded feature manifold. In the third case, we make use of unlabeled

data to relax the annotation requirements for object detection and segmentation, and propose a

novel data-dependent margin distribution learning criterion for boosting, which utilizes the in-

trinsic geometric structure of datasets. One key aspect of this method is that it can seamlessly

incorporate unlabeled data by including a graph Laplacian regularizer. We demonstrate the

performance of our models and compare with baseline methods on several real-world object

detection and segmentation tasks, including indoor object detection, glass object segmentation

and foreground segmentation in video.
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Chapter 1

Introduction

One fundamental problem in computer vision and robotics is to make computers capable of

understanding three-dimensional scenes from visual information. Such capacity is one of the

most impressive features of the human visual system: we all have the ability to quickly, ac-

curately and comprehensively interpret the visual world. The various tasks involved here are

referred to as scene understanding in computer vision. Broadly speaking, scene understanding

aims at resolving the gap between low level image features and high level semantic concepts.

One of the core problems here is to localize objects of interest. Take the picture in Figure 1.1

(a) for example, a human can effortlessly (1) recognize the person, the horse, and the cars in

the picture, and (2) delineate where these objects are.

These abilities give rise to two popular paradigms for localizing objects in computer vi-

sion, i.e., object detection and object segmentation. Both tasks involve inferring the location of

objects belonging to a specific category from an image with different levels of details. Object

detection, as depicted in Figure 1.1 (b), parametrizes object location with a rectangular bound-

ing box. The bounding box has an associated category label (e.g., person, horse, or car) and

optional pose parameters (e.g., frontal-view, rear-view or side-view for cars). Object segmen-

tation, as depicted in Figure 1.1 (c), is more accurate in the sense that it computes a pixelwise

segmentation for the objects. The segmentation may additionally identify individual object

instances as shown in Figure 1.1 (d), because multiple object instances belonging to the same

category may spatially overlap.

Being able to localize objects is an essential functionality for many real-world applications

including autonomous vehicles, content-based image search, event detection in video surveil-

lance, inspection and quality control, etc. In general, localizing objects is arguably one of the

most essential steps towards understanding a scene, and it opens the possibility for interacting

with identified objects in the environment. In particular, object detection and segmentation link

together the semantics and the geometry of a scene, which means it has close ties with other

scene understanding problems in computer vision such as image classification and geometry

estimation.

Although localizing objects seems to be an effortless task for humans in most cases, it

1
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(a) (b) (c) (d)

Figure 1.1: Example of object detection and segmentation. (a) input image. (b) object detec-
tion with bounding boxes. (c) semantic segmentation. (d) object instance segmentation.

remains perhaps one of the most challenging problems in computer vision. The challenging

nature of this problem lies in the fact that objects in realistic settings exhibit considerable in-

traclass appearance variability due to multiple factors such as occlusion, viewpoint variations,

and background clutter. In addition, more image data obtained in unstructured environment are

constantly being created as low-cost consumer cameras become ubiquitous. There has been an

increasing number of pictures taken in cluttered environments from more arbitrary viewpoints,

with many potentially interesting objects being only partially visible. These objects would

adversely affect both the training and the evaluation of object detection and segmentation alg-

orithms due to their large appearance variations.

In face of the problem, the visual information from a single color image may be insuffi-

cient for computers to localize challenging object classes. In fact, information in the real world

comes through multiple input modalities, and we may utilize auxiliary input to explain away

some of the ambiguities in color images. The benefit of learning to localize objects with multi-

modal input is at least threefold. Firstly, different modalities may exhibit distinct statistical

properties due to the underlying fact that they typically carry different kinds of information.

This allows us to discover useful information about the objects and the scene. For example,

we may consider the auxiliary information provided by a textual input modality, which may

provide concepts such as the psychological perception of an object (e.g., beautiful, interesting,

valuable) that is usually not obvious from visual information. As an another example, one par-

ticular problem in 2D imaging is that it is challenging to infer 3D configurations of the objects

and the scene from a single color image. Without a depth estimation, it requires a lot of effort

to manually label the 3D configurations of objects and their parts. Therefore we may consider

the multi-modal input provided by depth-capable cameras. For example, the RGBD cameras

such as Kinect can collect high quality depth maps and registered color images for indoor envi-

ronments. The depth maps provide a 2.5D point cloud representation of the scene from which

we may infer credible cues for the underlying 3D geometry. Secondly, we may learn joint
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representations by fusing data from different modalities to capture real-world concepts and re-

solve ambiguities. Take depth maps again as an example, they encode useful information about

the interactions between an object and its environments, such as the distance between two ob-

jects and the occlusion relationships. This allows us, for example, to learn a depth-encoded

object appearance model. In addition, we may build a joint feature representation with better

class separability by including depth-aware features. Lastly, an important finding from our

work is that learning an object model with multimodal input helps even when some modalities

are absent during model evaluation. This opens up a new perspective to localizing objects in

which we use auxiliary information to help us train a better object model, and apply the model

to a test setting where the auxiliary information may be unavailable. Similar ideas have also

been suggested in both the psychological [181] and computer vision [191, 32, 22, 186, 234]

communities.

In this thesis, we make use of auxiliary information to build object detection and segmen-

tation algorithms, with a focus on modeling the object and its environments with multi-modal

input generated from RGBD cameras. We discuss both generic object detection and semi-

transparent object (e.g., glass) segmentation. The latter is a specific type of objects which

lacks homogeneity of surface appearance and therefore requires purposely designed features

and inference algorithms. It should also be noted that the amount of available depth data may

vary in practice. For instance, the majority of cameras equipped on handheld devices today

do not come with a depth sensor. Therefore, assuming depth maps as a part of an algorithm’s

input may limit its applicability. This reality prompts us to train an object model with auxil-

iary depth information and to test without depth maps as discussed. In addition, we address

a general problem in object detection and segmentation that it is expensive to obtain precise

and complete ground-truth for large datasets. More specifically, we address the four primary

challenges as follows:

1) Partial object observation. Localizing objects remains challenging for cluttered/crowded

scenes, such as indoor environments, where objects are frequently occluded by neighboring

objects or the viewing window. The partial objects being observed usually provide limited

information on the object position and pose, so many previous object detection approaches are

prone to failure as they solely rely on image cues from objects themselves. In this regard, it

is important to seek additional information from the environment. Specifically, the availabil-

ity of depth imagery enables modeling the environment in 3D. Depth maps can provide direct

evidence to resolve the ambiguities resulting from projecting the underlying 3D world to a 2D

image. In particular, occlusion can be viewed as a special type of contextual relationship in

3D, which would become an intrinsic component of object and scene models.

2) Partial sensory data. Localizing semi-transparent objects from a single color image is

challenging due to lack of locally discriminative visual features and homogeneity of surface

appearance. Therefore, the auxiliary information such as depth maps can be an important cue
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for localizing these objects. However, depth maps provided by RGBD cameras are imperfect

in the sense that they may contain incorrect or missing readings due to various local refractive

properties of the structured light being projected. Therefore, it is important for our algorithms

to adapt to the imperfections and counter their negative impact. In addition, we can improve

depth reconstruction of the scene if we are able to partially correct the artefacts in depth maps.

3) Fusing data from different modalities. It is a non-trivial issue to fuse data from dif-

ferent modalities, e.g., to integrate depth cues into conventional visual inference tasks. The

integration can happen at different granularities such as either at the local image patch level or

the object and scene level. It could also happen at various stages of the algorithm such as either

during feature extraction or model inference. Therefore, the integration of data from multiple

modalities is an important aspect of our methods.

4) Partial ground-truth annotation. Auxiliary information can also be provided by unla-

beled data. By designing a semi-supervised learning algorithm, we are able to work with large

datasets with only a fraction of images labeled. In addition, we may also relax the labeling

requirements for object segmentation. For example, we can train algorithms with coarse labels

(e.g., an object bounding box) without the need to specify exact object boundaries. In fact, a

generic semi-supervised learning technique can be applied to a range of real-world applications

that involve a classification problem.

In the following section, we discuss four specific research problems raised in this thesis,

addressing the primary challenges above. In Sections 1.2 to 1.5, we outline the main ideas of

our work in response to the research problems. Section 1.6 summarizes the content of each

chapter, and Section 1.7 lists the major contributions from this thesis.

1.1 Our research problems

To reliably detect or segment objects in the presence of background clutter and heavy occlu-

sion, and in order to address different levels of auxiliary information availability, we provide

solutions to the following four central research problems in this thesis:

1) Depth-aware context modeling. In each image, the structural prior information of its

scene essentially defines a context1. For a single intensity image, an important class of context

is the two-dimensional projection of 3D scenes. Co-registered RGBD imagery allows for mod-

eling contextual elements in the underlying 3D world. Context reasoning can be carried out at

multiple levels. We can discard relative geometric relationships between objects and context

and describe context at a geometry-free level, e.g., the presence of a table in an image raises

our expectation of seeing chairs. By encoding the relative geometric distributions between ob-

jects and context, we are able to provide more specific cues, e.g., the vicinity of a table is more

1There are many sources of contextual information (e.g., spatial context, semantic context and temporal con-
text). In this thesis we focus on the spatial context. See [40] for details on various sources of contextual information.
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likely to contain chairs. Another option is to discard the notion of objects and look at local im-

age patches and the interactions among them. For instance, we can reason about interactions

between local image regions and boundary. Therefore, it is a non-trivial issue to model the

spatial context in RGBD images. The discussion above presents our first research problem: at

what level, and how can we model the spatial context, in order to integrate the most relevant

information into an object detection or segmentation framework?

2) Inference with imperfect depth data. Low-cost RGBD cameras (with Kinect as a

prominent example) can provide depth maps as the auxiliary information. There is great po-

tential benefit from having a high quality dense depth map registered to the color image, as

geometric information plays a vital role in scene understanding. In fact, depth inference from

a single color image is a well-studied problem in computer vision (e.g., [177, 114]). However,

depth sensors are far from being a standard addition to RGB cameras. Furthermore, the Kinect

depth maps mainly work in indoor environments within a certain distance range, and tend to

contain artefacts such as missing or incorrect readings due to sensor limitations. Therefore,

our second research problem is: how can we work with limited availability of depth maps?

Further, when depth maps are available, how can we deal with the artefacts to counter their

negative impact, or even use them as a useful image cue?

3) Depth-aware features and label transfer. Object detection and segmentation with

static color images have been extensively studied. Yet, the popularity of consumer depth-

capable sensors put forward the question of how to sensibly make use of this additional depth

information. As discussed in our first research problem, depth cues can help resolve the am-

biguities in the underlying 3D world in terms of the scene geometry. Apart from that, depth

maps can also facilitate the design of novel features and feature manifolds for figure/ground

classification and label transfer. Therefore, our third research problem is: can we design ef-

fective depth-aware features for object categories that are difficult to localize with color cues,

such as semi-transparent objects? How do we integrate depth cues into conventional visual

inference tasks?

4) Learning with unlabeled data. In computer vision, many different types of sensory

data are available, with different levels of ground-truth annotation. Another type of the aux-

iliary information we focus in this thesis is the unlabeled data. For large datasets, detailed

object ground-truth annotation (e.g., pixelwise segmentation masks) can be expensive to ob-

tain. Therefore it would be appealing for object detection and segmentation algorithms to

either assume only a fraction of images as labeled, or require only coarse object labels. This

brings out our last research question: how can we make use of unlabeled data and relax the

labeling requirements for training data?

Our investigations reported in this thesis are centered around the four research problems

above. We will discuss these questions and provide our solutions by building an object detec-

tion system and an object segmentation system. The detection system jointly detects objects
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and estimates occlusion, while the segmentation system focuses on localizing semi-transparent

objects. Sections 1.2 to 1.5 present the main ideas of our work corresponding to the four re-

search questions, followed by thesis outline and our primary contributions.

1.2 Object detection with depth-encoded context

Although many context-aware object detection methods have been proposed [219, 201, 127,

16], most existing contextual models focus on 2D spatial relationships between objects on the

image plane and fewer works have extended the modeling to 3D scenarios [8, 193]. Modeling

context from a 3D perspective has several advantages over its 2D counterpart conceptually.

First, spatial relationships have smaller variations and are easier to interpret semantically; in

addition, more spatial relationships in physical world can be captured, instead of being limited

to relative positions on image plane. In particular, joint modeling of an object class and its 3D

context may provide effective constraints on the object’s scope on image plane and lead to a

coarse-level object segmentation. See Figure 1.2 for an example.

However, the appearance variability of the context around an object could be large. It is

therefore challenging to use context as a cue, because we would need to model the variability

in the appearance of all of the objects around an object of interest. One key challenge is to

generate proper training data to capture all the appearance variations. In addition, moving

from 2D to 3D (i.e., depth-encoded) context adds a dimension to be sampled, thus seems to

make the problem more difficult.

In response to the difficulty outlined above, the practicality of our method is based on both

the problem setting and the model design. Firstly, we consider indoor scenes where object-

context spatial regularities such as supporting and attachment are more restrictive (e.g., many

objects are either supported by floor or by tables), and scene regularities such as orthogonality

and vanishing points are more common due to features of man-made structures. In addition,

our model uses depth maps to guide us in building a cleaner context representation, such as

separating nearby co-occuring objects (e.g., tables and chairs, keyboards and mice) against

wall and floor structures further away. During inference, our depth-encoded codebook design

enables an image region to contribute to each object hypothesis in a different manner based on

its depth layer. Intuitively, context region produces less concentrated vote for object locations

as the increased distance from objects leads to higher uncertainty.

More specifically, we propose a structured Hough voting method that incorporates depth-

dependent context into a codebook based object detection model. We design a multi-layer

representation of context by sorting image regions into different layers depending on their

distance to the object. Each layer provides support for the object hypotheses with information

from different aspects of the scene. Intuitively, image cues from the object provide the most

informative estimation of object location. Further, the surrounding environment can provide
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(a) (b) (c)

(d) (e) (f)

Figure 1.2: Illustration of the proposed object detector. (a) RGB frame with object bounding
box (red) and visible part bounding box (green). (b) Object centroid voting from multiple
layers. (c) Combined object centroid voting results. (d) Detector output (red) with visibility
pattern prediction (green). (e) Object visibility pattern prediction results. (f) Final segmenta-

tion results.

less concentrated but useful information on object location, particularly when the contribution

from the object itself is weaker due to occlusion.

In addition to the depth-encoded context codebook, our model generalizes the traditional

Hough voting detection methods in two other ways. Firstly, we define a new object hypothesis

space in which both the object’s center and its visibility mask will be predicted. Each image

patch will generate a weighted vote to a joint score of the object center and its support mask

in the image. Secondly, we view occlusion as special contextual information, which could

provide cues for object detection and help with reasoning about visibility of object parts. The

overall output of our approach is a simultaneous object detection and coarse segmentation.

Finally, the varying availability of auxiliary information is a specific issue we wanted to

address in this work. Although RGBD cameras are gaining popularity rapidly, the majority of

image data are color images. Therefore, we would like our object detector to train with RGBD

data but to test without depth maps. The training process aims to learn a context-aware object

detection model which encodes depth cues and a coarse level of 3D relationships. The learned

depth-encoded object and context model is then applied to 2D images. More specifically, we

use depth to sort image features into different layers, and learn codebook entries so that they

minimize appearance and 3D geometric distribution variations.
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(a) (b) (c)

(d) (e) (f)

Figure 1.3: Illustration of the proposed glass object segmentation system. (a) Intensity image
with ground truth foreground mask overlaid. (b) Edge detector output. (c) Triangulation result.
(d) Boundary classifier output (magnified). (e) Superpixel classifier output (magnified). (f)

Reconstructed depth with joint inference result overlaid.

1.3 Glass segmentation by joint inference of boundary and region

We aim to localize semi-transparent surfaces by exploring multimodal sensors and incorporat-

ing depth information. In particular, we seek to exploit RGBD cameras to fuse the intensity

and depth information from a single view point for indoor environments. While recent work

with RGBD cameras is mainly for generic object detection [98, 99, 49], here our goal is joint

detection, segmentation and depth inference, which can facilitate many interactive tasks such

as robotic manipulation. There has been some work exploiting range devices to detect or re-

construct semi-transparent objects [209, 84]. Unlike those methods, we rely on a single view

RGBD image and combine both intensity and depth cues.

Unlike in Section 1.2 where we take an object-centric view and build an object model

that jointly considers the possible object shapes and poses, in this and the following section

we focus on the local appearance and depth properties of glass boundary and region. One

of the key reasons of taking this local perspective is that glass objects do not have just a few

canonical shapes in comparison to some object categories such as cups, bottles, and bowls.

See Figure 2.8 for some examples. Arguably, glass objects include subsets of the above object

categories: glass cups, glass bottles and glass bowls, etc. While the problem of exploring
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the shape and pose constraints for glass objects is interesting, here we focus on capturing the

properties of glass objects based on their being made of glass, and the interaction between

glass and non-glass regions. Additionally, modeling the specificity of glass material has been

proven effective for localizing glass objects in prior literature. For example, some early work

focused on detecting special properties of the glass surfaces and their interaction with the

opaque environment in images [151, 3, 144] while later ones model the relative features on

two sides of a local glass boundary fragment [135, 134] based on a combination of appearance

cues. See Section 2.2.4 for a more detailed discussion on the literature.

Taking the local perspective mentioned above, the key idea of our work is to incorpo-

rate the spatial context by constructing a Markov Random Field (MRF) [15] on triangularized

contour fragments and the corresponding superpixels. Based on spatial neighborhood, we in-

corporate constraints between local boundary pairs, superpixel pairs, and boundary-superpixel

cliques. More specifically, for each image contour fragment, we estimate if it is likely part

of the glass/non-glass boundary, and an orientation for the glass region. For superpixels, we

estimate their likelihood being part of the glass region. We add different potentials into our en-

ergy function to encourage valid configurations, and penalize incompatible ones. For instance,

the orientation for glass regions of two connected glass contour fragments must be the same.

For a local clique consisting of a glass contour fragment and two neighboring superpixels,

the glass/non-glass labels of both regions must be consistent with the boundary orientation.

In addition, a joint inference scheme is designed to predict the glass boundary and region si-

multaneously. Our work is the first that jointly optimizes boundary and region properties and

constraints for glass object segmentation.

Furthermore, we exploit the refraction and attenuation that will be experienced by an active

structured light signal passing through glass objects. This physical process is difficult to model,

but it provides a distinctive missing-vs-nonmissing pattern in the depth map. We integrate

boundary cues from color with region cues from depth to build a glass boundary and region

detector. After we obtained a glass region segmentation with MRF inference described above,

we fill in the missing depth values and reconstruct the scene in 3D.

1.4 Depth-aware features and label transfer

The third research problem we discussed in Section 1.1 is the design of depth-aware features

and the integration of depth cues into visual inference tasks. In response, we design a number

of novel depth-aware features for glass boundary estimation. Most importantly is the distinc-

tive missing-vs-nonmissing pattern which we found to be highly effective for coarsely local-

izing glass objects, so we compute the ratio of pixels with missing depth readings in a local

image region as a depth feature. Other features include range (depth) histograms and histogram

of oriented gradient (HOG) features computed on depth maps. We also explore building a flex-
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training data

...

...
...

...

feature manifold

Figure 1.4: Top: Illustration of feature manifold based glass boundary classification. We
use a learned feature manifold to match every boundary fragment in a test scene (shown as
image patches) to training set in order to predict its label. Bottom: Large variation on glass

boundaries: patches examples.

ible feature pool which contains both depth and color features. We augment the image cues by

sampling features on multiple scales and at multiple locations.

One key reason for the challenging nature of glass object segmentation is the large ap-

pearance variations at glass boundaries, as shown in a few examples in Figure 1.4. Training

a generic classifier for glass boundaries tends to produce unreliable predictions. Even with

RGBD cameras, the missing patterns on depth maps can be noisy, or distorted due to local

refractive properties. To address this feature variation issue, we propose an image adaptive ap-

proach to predicting glass boundaries. The main idea is to generate boundary proposals based

on a nonparametric feature model. Our model is represented by a joint depth and appearance

feature manifold, on which each point is the glass boundary feature of an image patch pair.

The boundary label of any pair of neighboring patches is predicted by a weighted voting of its

nearest neighbors on the feature manifold. The distance metric on the manifold is learned in a

supervised manner.

We then integrate the locally adapted glass boundary predictor into a superpixel-based

pairwise MRF for glass object segmentation. The MRF labels every superpixel as glass ver-

sus non-glass, in which our boundary prediction is used to modulate the smoothing terms in

random fields. Our work is the first to explore nonparametric label transfer within the context

of glass object segmentation, and exploit a joint depth-appearance manifold for transductive

learning.
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1.5 Learning from sparsely labeled data

The ground-truth annotation availability issue led us to the development of a boosting-based

semi-supervised learning algorithm. Our method adopts a novel data-dependent margin distri-

bution learning criterion, which utilizes the intrinsic geometric structure of datasets. One key

aspect of our method is that it can seamlessly incorporate unlabeled data by including a graph

Laplacian regularizer.

Boosting algorithms have achieved great popularity in a spectrum of computer vision prob-

lems due to their good generalization, robust performance, and intrinsic feature selection mech-

anism. One key observation related to our work is that the appealing properties of boosting are

closely related to the margin distribution (MD) instead of solely the minimum margin [168].

Notably, Shen and Li [182] proposed a totally corrective boosting algorithm, termed MDBoost,

to maximize the average margin while minimizing margin variance. The new boosting method

achieves competitive performance and faster convergence (i.e., fewer weak learners) on several

classification tasks.

Inspired by manifold learning, we propose to improve MDBoost by incorporating a local

representation of margin variance, in which only neighboring points on the data manifold con-

tribute to the variance computation. Intuitively, the data-dependent margin variance may give

a better description of the margin distribution. Due to its resemblance to the Laplacian Eigen-

map [10], we refer to this new boosting approach as Laplacian MDBoost. Importantly, our

learning criterion can be naturally generalized to a semi-supervised learning scenario. Given

both labeled and unlabeled data, we augment the supervised learning criterion with a graph

Laplacian-based regularization term, which encourages the classifier outputs on unlabeled data

to satisfy the data manifold constraint. This combined learning criterion provides a coherent

framework and admits a simple convex quadratic dual formulation such as MDBoost. We em-

ploy a column-generation (CG) based optimization procedure to incrementally add informative

weak learners, yielding a boosting-like algorithm. The efficacy of the proposed algorithm has

been demonstrated in our glass object segmentation experiment, in addition to another video

object segmentation task.

1.6 Thesis outline

The next chapter discusses some prior literature that is relevant to the problems addressed in

this thesis. It first reviews object detection algorithms, and categorizes them according to two

most popular paradigms: the sliding window detector and the Hough transform detector, and

their variants and extensions. Next, we discuss work on object detection with RGBD data and

context reasoning. The chapter then moves on to object segmentation algorithms, focusing on

foreground object segmentation and context modeling with MRFs. After that, we discuss work
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on glass object segmentation. Finally, we review work related to the proposed semi-supervised

boosting algorithm.

In Chapter 3, we describe a structured Hough voting method for detecting objects with

heavy occlusion in indoor environments. First, we extend the Hough hypothesis space to

include both object localization, and the object’s visibility pattern. We design a new score

function that accumulates votes for object detection and occlusion prediction. In addition,

we explore the correlation between objects and their environment, building a depth-encoded

object-context model based on RGBD data. Particularly, we design a layered context repre-

sentation and allow image patches from both objects and backgrounds to vote for the object

hypotheses. We demonstrate that using a data-driven 2.1D representation we can learn visual

codebooks with better quality, and obtain more interpretable detection results in terms of the

spatial relationship between objects and viewer. We test our algorithm on two challenging

RGBD datasets with significant occlusion and intraclass variation, and demonstrate the supe-

rior performance of our method.

Chapter 4 addresses the problem of localizing glass objects with a multimodal RGBD

camera. Our method integrates the intensity and depth information from a single view point,

and builds an MRF that predicts glass boundary and region jointly. Based on the segmentation,

we also reconstruct the depth of the scene and fill in the missing depth values. The efficacy of

our algorithm is validated on a new RGBD glass dataset of 43 distinct glass objects.

Chapter 5 also addresses the glass object segmentation problem with an RGBD camera.

Our approach uses a nonparametric, data-driven label transfer scheme for local glass boundary

estimation. A weighted voting scheme based on a joint feature manifold is adopted to inte-

grate depth and appearance cues, and we learn a distance metric on the depth-encoded feature

manifold. Local boundary evidence is then integrated into an MRF framework for spatially

coherent glass object detection and segmentation. The efficacy of our approach is verified on

our RGBD dataset where we obtained a clear improvement over the state-of-the-art both in

terms of accuracy and speed.

In Chapter 6, we propose a novel data-dependent margin distribution learning criterion

for boosting, termed Laplacian MDBoost, which utilizes the intrinsic geometric structure of

datasets. One key aspect of our method is that it can seamlessly incorporate unlabeled data by

including a graph Laplacian regularizer. We derive a dual formulation of the learning problem

that can be efficiently solved by column generation. Experiments on various datasets validate

the effectiveness of the new graph Laplacian based learning criterion in both supervised and

unsupervised learning settings. We also show that our algorithm outperforms the state-of-the-

art semi-supervised learning algorithms on a variety of inductive inference tasks, including

glass region classification and real world video segmentation.

Chapter 7 summarizes the main results from this thesis and discusses future research di-

rections.
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1.7 Major contributions

In this section, we summarize the main differences between our methods and other object

detection and segmentation methods, and list the most important results reported in this thesis.

• We propose a structured Hough voting model for indoor object detection and occlusion

prediction. We extend the original Hough voting based detection model by introducing a

joint Hough space of object location and visibility pattern. The structured Hough model

can naturally incorporate both the object and its spatial context, which is especially

important for cluttered indoor scenes.

• We utilize depth information at the training stage of the structured Hough voting model

to build a multilayer object-context model so that a better visual codebook is learned and

more detailed object-context relationships can be captured. We use depth information

only in the model training stage to learn an appearance model for the surrounding envi-

ronment of an object with higher quality, which transfers the depth knowledge for a test

scenario which uses color images only.

• We propose a novel joint inference approach to glass object segmentation with RGBD

cameras. By setting up an MRF which jointly encodes boundary fragment and super-

pixel properties and constraints, we propose a global optimization procedure for glass

detection, segmentation and scene reconstruction.

• We propose a glass boundary detection approach by label transfer on joint depth and

appearance manifolds. We design novel features for glass object segmentation and a

flexible feature pool for improving performance. In addition, our work is the first to

explore nonparametric label transfer within the context of glass object segmentation,

and exploit a joint depth-appearance manifold for transductive learning.

• We propose a semi-supervised boosting algorithm based on the margin distribution boost-

ing. We use the graph Laplacian as an effective means of manifold regularization on both

labeled and unlabeled data. The algorithm is totally-corrective and a column generation

based optimization technique is used to facilitate minimizing the objective function. The

efficacy of this algorithm has been demonstrated on two object segmentation tasks.
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Chapter 2

Literature Review

Object detection and object segmentation are two popular paradigms for object recognition,

which is a key aspect of resolving the gap between low level image features and high level

semantic concepts in a scene. There is an abundance of prior literature on both problems. In

addition, both problems are based on a classification model for the object/non-object member-

ship. In this chapter, we review object detection and segmentation approaches in the literature,

with a focus on those that overlap with our research problems discussed in Section 1.1: 1)

occlusion and context reasoning, 2) object detection with RGBD data and 3) semi-transparent

object detection and segmentation. We also review work on semi-supervised learning that aims

at utilizing unlabeled data for classification.

The rest of this chapter is organized as follows. We first discuss popular object detection

algorithms in Section 2.1. In particular, we look at methods with occlusion and context rea-

soning. Section 2.2 reviews foreground object segmentation algorithms, with a focus on those

based on Markov Random Fields (MRFs), a unifying framework for object segmentation and

image labeling. In addition, we discuss methods designed to localize semi-transparent objects,

a class of objects that are particularly challenging to detect due to their special refractive prop-

erties. We then discuss learning a classification model for these systems with partially labeled

data in Section 2.3, followed by a summary in Section 2.4.

2.1 Object detection in computer vision

The object detection task is to infer the location of objects belonging to a specific category

in an image. In most cases, we are interested in identifying objects from a basic and entry

level category [80, 150], which is at a level of abstraction in a taxonomy that carries the most

information, possesses the highest category cue validity, and are, thus, the most differentiated

from one another [172]. For the horse in Figure 1.1, for example, we will use the entry level

category horse instead of animal or Equus ferus caballus. Recognizing objects requires dis-

criminating them from other objects, while also generalizing over appearance variations within

that category. The challenge of this task lies in the delicate contention between specificity and

15



16 Literature Review

generality. For example, detecting horse requires us to differentiate them from cow, sheep and

person, while being able to detect different subspecies and from various viewpoints.

More specifically, suppose we have an image I and an object category of interest o. An

object is parametrized by a hypothesis x ∈ X where X is the object pose space in I . A basic

and common parametrization of x is a bounding box x = (ax,ay,as,ar), where ax and ay
are the image coordinates of the object center, as is a scale, and ar is an aspect ratio. Most

object detection systems define a scoring function S(o,x) for each valid location x on the

image plane, and all hypotheses with a score S(o,x) above a certain threshold are claimed as

detected objects.

Evaluation of bounding box predictions can be performed by the Jaccard index defined as

J =
area(x1∩x2)

area(x1∪x2)
(2.1)

where usually a predicted bounding box that has more than 50% Intersection-over-Union (IoU)

overlap with the ground-truth is considered correct [43].

In the next two sections, we discuss two popular object detection strategies, i.e., sliding

window detectors and Hough transform-based detectors. The former takes a top-down, object

centric view by examining all possible object locations, while the latter takes a bottom-up,

feature centric view by accumulating votes for object locations. However, we note the two

strategies are not fundamentally different from each other. The actual difference is more of an

algorithmic nature, i.e., how the score is evaluated for all possible object hypotheses [107]. In

Section 2.1.3, we continue our discussion by looking at the impact of RGBD camera on object

detection with the new challenges it presents. This is followed by discussions on difficult cases

for object detection, specifically occlusion reasoning in Section 2.1.4 and context handling in

Section 2.1.5.

2.1.1 Sliding window detectors

One of the most popular object detection paradigms is the sliding-window classifier, e.g., [207,

38]. The underlying assumption is the label (e.g., object/non-object) for each bounding box can

be obtained independently from labels of other bounding boxes, so the algorithm exhaustively

scans through the image with candidate object windows at various locations and scales. This

strategy is straightforward, as it evaluates one object candidate at a time and ignores the spatial

context that can be more intricate to consider. More importantly, the scan can be naturally

viewed as a matching process, so we can define a score that quantifies the match between an

object candidate and the object template (e.g., the parameters of the classifier). In its basic

form, the scoring function for object detection in this scenario can be written as a linear model:
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(a) (b) (c)

Figure 2.1: Visualization of HOG feature space. (a) input image. (b) HOG cells and local
gradient orientations. (c) A visualization of HOG features using method in [208].

S(o,x) = βT ·Φ(x,I ) (2.2)

where Φ(x,I ) is a feature function and β is the associated weight vector. The feature function

takes the image I and a bounding box x as input and returns a feature vector that encodes

the appearance of the bounding box. To counter the intraclass appearance variation within

a specific category, feature functions usually provide some level of invariance to color, shape,

deformation, etc. Although in principle it is possible to use raw pixel values from the bounding

box x as the feature vector, more effective features that can achieve a higher level of invari-

ance are commonly used, including Haar-like features [207], SIFT descriptors [121], Local

Binary Patterns (LBP) [146], and Histograms of Oriented Gradients (HOG) features [38]. See

Figure 2.1 for an example of visualizations of the HOG feature space. The weight vector β

is usually obtained by discriminative training algorithms such as Support Vector Machines

(SVM) [15] or Boosting [207].

Since the advent of deep Convolutional Neural Networks (CNNs) such as AlexNet [94],

ZFNet [231] and VGGNet [187], they have been successfully applied to object detection and

is now a key component of many state-of-the-art object detection algorithms. Girshick et

al. [58] proposed to use a computationally expensive CNN to compute features for a relatively

small number of image region proposals. The region proposal step has later been able to share

computation with feature extraction [57] and further fully integrated into the CNN as a region

proposal network [167]. The most important contribution of a CNN is its ability to extract low

dimensional (e.g., 4096-D) but high quality image features, due to the deep structure of the

network. Very recently, He et al. [68] proposed residual networks that are significantly deeper

than previously used networks. OverFeat [180] is another CNN-based object detection method

that uses an efficient sliding window scheme to share computations and apply a CNN densely
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over an image. YOLO [165], on the other hand, casts object detection as a regression problem

to provide a very efficient algorithm. The method regresses from an image to a fixed-sized

tensor and lacks the ability to detect densely populated objects.

It should be noted that the image region outside the bounding box, or the spatial context,

can also provide useful information for localizing objects. For example, the image from Fig-

ure 2.1 (a) shows a horseback riding activity so the person and the horse in that image can be

predictive of the presence of each other. Also, these activities usually take place in grassland

areas, therefore a grassland landscape can also support the detection of a horse. However,

such information is discarded in many sliding-window classifiers, if our aim is to capture the

appearance commonalities of an object category from within the bounding box x. We discuss

related work in the literature that specifically addresses this issue in Sections 2.1.4 and 2.1.5.

The sliding window detector in Equation 2.2 is also referred to as based on template match-

ing, as the feature function defines a rigid transformation of the image data. The template is

sometimes referred to as an appearance model, which is the characteristic and discriminative

appearance (e.g., shape) we learned for the specific object category. The model makes strong

assumptions about the rigidity of an object by only allowing small local deformations and ap-

pearance changes. However, many object categories present deformable shape variations, and

even with rigid objects their appearance can greatly change locally. To address the appearance

variation issue, there have been various extensions to the basic detector. For example, non-

linear template matching [171, 128] and a classifier cascade [207] can be used to encode high

order interactions among object features. Particularly, part-based models naturally allow for

appearance variations caused by shape deformations, as we will show next.

Part-based models. The appearance of most object categories exhibit some amount of de-

formation, and the strong rigidity assumption in the basic model does not allow certain parts

of an object moving too far from its anchored location in the template. Therefore, modeling

deformable objects may require a large number of templates and consequently more training

images. In fact, deformable objects can be represented in terms of other objects (e.g., object

parts) through compositional rules [47]. In part-based models, an object is represented by a

fixed number of rigid templates (primitive parts), and the deformations are modeled by the

spatial relationships among them.

In particular, the Deformable Parts Model (DPM) [46] defines a star-shaped object model

that combines a root node and a number of vertically symmetric parts. The root node is similar

to the rigid template in Equation 2.2, and each part captures detailed local appearance by a

rigid template at higher feature resolution. Deformation is modeled for each part with an

anchor position and a deformation term that penalizes parts moving away from their anchor

positions. Let (dxi,dyi) be a deformation vector for the i-th part from its anchor location, and

define
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Φd(dx,dy) = (dx,dy,dx2,dy2) (2.3)

as the deformation feature function, the scoring function for their model can be written as

S(o,p0, · · ·pn) =
n∑
i=0

βTi ·Φ(pi,I )−
n∑
i=1

di ·Φd(dxi,dyi) + b (2.4)

where the object hypothesis x in Equation 2.2 is replaced with the positions of the root template

p0 and n part templates p1, · · · ,pn. The first term on the right hand side of Equation 2.4 is the

score for each rigid template, and the second term is the penalty for part deformations. di is

the deformation cost for the i-th part and b is a real-valued bias term. For example, if we set

di = (0,0,1,1) the deformation cost for the i-th part will be the squared distance between its

actual position and the anchor position relative to the root template.

The parts in DPM are placed initially using heuristics and updated by discriminatively

training an appearance model. Bourdev and Malik [22] propose the notion of “Poselets” where

appearance and 3D configurations are jointly considered for selecting informative object parts.

On the other hand, although we can use a mixture of templates to handle extreme viewpoint

variations, it is usually difficult to use just a few templates to capture the large structural vari-

ations for highly deformable object categories (e.g., cats and dogs). Recent work by Endres

et al. [42] proposes to learn a collection of part detectors and use them to classify bottom-up

image regions. These part activations are then evaluated by a boosting classifier for bound-

ing box predictions. Wang et al. introduce a regionlet-based object representation which also

accommodates deformations by the regionlet group selection [214].

Many part-based models for object detection (e.g., [46]) are an instantiation of a more

general compositional model. For example, Girshick et al. [59] propose a grammar model that

allows for multiple part subtypes, optional parts, and explicit reasoning of occlusions. Other

work towards a more general compositional model includes part sharing [152] and building

hierarchical tree structures [237].

In summary, it is generally acknowledged that a move to compositional models is needed

for the detection of object categories that naturally present pose and shape variations. However,

it is a broad and challenging problem to move to richer models while maintaining a high

level of performance (e.g., [46, 59]). Richer models typically involve more computationally

expensive inference problems, and it is arguably impossible to find an “optimal” part-based

structure for a certain object category due to limited data and annotation availability at hand.

In this sense, this problem also relates to the automatic part discovery problem (see [154] for a

recent work and review). Once again, all the abovementioned object detection methods focus
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on exploiting the image cues from within the object bounding box and consider the spatial

context as a less relevant issue. We continue our discussion in the next section by looking at

another typical object detection strategy that takes a part-centric view. This alternative view

aligns well with the needs to reuse and share object parts and, more importantly, it allows us

to naturally incorporate contextual support into object detection under a unified and coherent

framework.

2.1.2 Hough transform detectors

It is a non-trivial issue to search over the pose space in an image with a sliding window detec-

tor. To avoid the time-consuming exhaustive search, methods based on selective search [101]

and object proposals [5, 204, 41, 242] have been proposed to reduce the number of object hy-

potheses to be examined. The Generalized Hough transform [7] provides a different way of

dealing with the complexity in searching over the object pose space. A visual codebook, in-

stead of a feature template, is learned to capture the appearance of object parts. This is usually

done by clustering of object (and background) features of image patches. During testing, each

image patch casts probabilistic votes for the object center. This is done by matching the patch

against the codebook to obtain similarity scores between the patch and each of the codebook

entries. These similarity scores will then be used to re-weigh the probabilistic votes stored in

the codebook.

The Hough transform defines object in terms of parts. It thus naturally allows for part lo-

cation variations as in part-based models discussed in the previous section. More importantly,

the votes for object center can be stored nonparametrically which makes the detector capable

of encoding sophisticated part location distributions. This is in contrast to the previously dis-

cussed part-based models such as DPM that define part deformation costs in terms of anchor

locations only. Consider a detector for side view of cars for example, the front and rear wheels

can be encoded as a single part in Hough transform-based detectors. This leads to a cleaner

representation of parts and, in particular, facilitates the reuse and sharing of parts for scal-

able object detection [164]. In addition, the voting process in Hough transform can be easily

extended to encode pose parameters beyond the object center. Indeed, the presence and ap-

pearance of certain object parts can be predictive of object pose such as orientation and scale.

In Chapter 3, we will show how to include object masks into voting for joint object detection

and occlusion estimation.

Mathematically, denote each image patch Iy by its location y = (bx, by) and feature de-

scriptor fy, the basic Hough transform detector assumes that the overall detection score S(o,x)

is obtained by factorizing p(o,x|I) into individual probabilities p(o,x,y, fy) over all observa-

tions:
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S(o,x) =
∏
y

p(o,x,y, fy)

≈
∑
y

p(o,x,y, fy)

=
∑
y

p(o,x|y, fy)p(y, fy) (2.5)

where p(y, fy) is the prior on features and locations. We note the “summation hack” used

here (i.e., replacing the product by a summation in Equation 2.5) has a natural probabilistic

interpretation as an outlier model [141]. Assuming an appearance-based codebook is learned

from the image patches in object class o, denoted by C = {Ci}Ki=1, and a uniform prior p(y, fy),

we can marginalize Equation 2.5 over the codebook entries or codewords Ci:

S(o,x)∝
∑
y

p(o,x|y, fy)

=

K∑
i=1

∑
y

p(o,x|Ci,y, fy)p(Ci|y, fy) (2.6)

We can further simplify Equation 2.6 by the fact that codebook entries are matched by ap-

pearance only, i.e., p(Ci|y, fy) = p(Ci|fy). Also, the distribution p(o,x|Ci,y, fy) only depends

on the matched codebook entry Ci and the location of the image patch y:

S(o,x) =
K∑
i=1

∑
y

p(o,x|Ci,y)p(Ci|fy)

=
K∑
i=1

∑
y

p(o|Ci)︸ ︷︷ ︸
weight

p(x|Ci,y)︸ ︷︷ ︸
location

p(Ci|fy)︸ ︷︷ ︸
matching

(2.7)

where the codebook likelihood p(o,x|Ci,y) is decomposed into a weight term and a location

term. We now discuss the common choices for the three terms in the basic Hough transform

detector.

The weight term. The weight term p(o|Ci) quantifies how confident we are that the codebook

entry Ci matches the object as opposed to the background. The simplest choice would be a

uniform weight, i.e., assuming each codeword is equally likely to be an object part. In fact,

when we have negative samples there is a better way for estimating the weight [129]:
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p(o|Ci)∝
p(Ci|o)
p(Ci)

(2.8)

where p(Ci|o) is the relative frequency of the codeword Ci on the object features, while p(Ci)

is the relative frequency of both positive and negative training images. The weight in this case

is referred to as a naive-Bayes weight, as the weight is set independently for each codeword.

The location term. The location term p(x|Ci,y) is the probabilistic Hough vote for the lo-

cation of the object. It can be estimated by a Mixture of Gaussian [106] or encoded nonpara-

metrically during codebook learning by observing the geometric distribution of the codebook

activations relative to the object center [109]. For example, in the implicit shape model [109]

each codebook entry Ci consists of a typical patch descriptor fci and a setDi that contains geo-

metric features of training patches associated with the i-th entry. A typical geometric feature is

the relative positions d of image patches w.r.t. the corresponding object centers. The location

term in this case can be written as

p(x|Ci,y) =
1

Z

∑
d∈Di

e

(
− ‖(y−xc)−d‖2

2σ2
d

)
(2.9)

where xc = (ax,ay) is the center of bounding box and (y−xc) is the offset from the object

center to the image patch, and σd is the standard deviation of a Gaussian filter for the object

center. We can also use other radially symmetric kernels for the density estimation.

The matching term. The matching term in Equation 2.7, which is the likelihood that the

codebook entry Ci generated the feature fy, can be estimated by the distance between the

codebook entry and the feature as follows:

p(Ci|fy) =

 1
Z exp(−γd(fci, fy)) if d(fci, fy)≤ t

0 otherwise
(2.10)

where Z is a normalizing factor, d(·, ·) is a distance function, and γ,t are positive parameters.

Here γ controls the sensitivity to distance variations, and t defines a cut-off threshold for

matching.

The basic Hough transform detector described above shares some similarities with the bag-

of-words model widely used for image classification tasks. Also, the simple and flexible nature

of the Hough voting process leads to various extensions to the original model. Progress has

been made in discriminative codebook learning [52, 226], efficient inference methods [106],

joint recognition and segmentation [109, 166], scalable multiclass detection [164], maxima
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search in high-dimensional Hough spaces [179, 139, 148, 163], and among others. We now

discuss several variants and extensions to the basic Hough transform-based object detector.

Bag-of-words model. The bag-of-words model can be seen as a special case of Hough

transform-based detectors. The spatial relationships of the features within an object hypothesis

are ignored; the model only captures appearance of object parts, not their geometric distribu-

tions. The location term in Equation 2.9 in this model only takes the presence of a feature in

the object hypothesis bounding box as

p(x|Ci,y) =

1 if area(x∩y) = area(y)

0 otherwise
(2.11)

Although the model is typically used for image classification [37, 45], it has also been used

for unsupervised object discovery and detection [189].

Implicit shape model. The Hough voting process implicitly reasons about the location of

object parts. Therefore it would be possible to link a detected object with the contributing

parts, in order to obtain a coarse segmentation. Furthermore, the part-object relations can be

used to verify detection results. This idea leads to the implicit shape model [109] that obtains

a segmentation of a detection, without any additional labeling. The main idea is to exploit the

influence of a given patch Iy on the object hypothesis:

p(Iy|o,x) =

∑K
i=1 p(o,x|Ci, Iy)p(Iy)

p(o,x)
(2.12)

where p(o,x|Ci, Iy) can be computed as shown in Equation 2.7. p(Iy) and p(o,x) are usually

assumed as uniform priors. For a specific pixel, the figure-ground probability is estimated by

summing up all patches that contain this pixel. The segmentation can be further used to verify

multiple detections with a Minimal Description Length (MDL, also known as the Occam’s

Razor) criterion.

Learning discriminative codebooks. The basic Hough transform-based detector uses cluster-

ing (e.g., K-means) to learn visual codebooks. While a certain level of discriminative power

can be achieved (e.g., by setting naive-Bayes weights for codewords in Equation 2.8), it is

preferable to adopt a discriminative codebook learning approach so that each codeword can

be optimized to be as discriminative as is possible. To this end, the class-specific Hough for-

est [52] has been proposed to learn a discriminative codebook where leaf nodes of each tree

directly optimize voting performance by minimizing class impurity and offset variance. At

each tree node, the algorithm picks one of those uncertainty measures at random, and splits the

image features into two subsets for its children nodes by minimizing the chosen uncertainty.
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More formally, each tree T is constructed through a series binary tests t(Iy)→ {0,1}
defined on a set of training patches {Iy = (fy, cy,dy)}, where fy refers to the appearance of

patch Iy, cy ∈ {0,1} the class label, and dy the offset w.r.t. object center (dy is undefined for

background patches, i.e., those with cy = 0). The class-label uncertainty measure is defined

by:

U1({Iy}) =−|{Iy}| ·Entropy({cy}) (2.13)

where Entropy({cy}) =−c · logc− (1−c) · log(1−c) in which c is the proportion of patches

with label cy = 1 in {Iy}. |{Iy}| is the size of {Iy}. The offset uncertainty is specified by the

variance:

U2({Iy}) =
∑

Iy:cy=1

(dy−dA)2 (2.14)

where dA is the mean offset vector for all patches reaching the node.

At each node during training, a pool of binary tests {tk(·)} is randomly generated. A tree

T recursively grows each node by finding a binary test that minimizes the following criterion:

min
k

(
U?({Iy|tk(Iy) = 0}) +U?({Iy|tk(Iy) = 1})

)
(2.15)

where ?= 1 or 2 which corresponds to the random choice of uncertainty measure. If the depth

of the node has reached the maximum depth of a tree or the number of patches associated

with the node is smaller than a threshold, the node is declared as a leaf. For the i-th leaf, the

confidence score cci ∈ [0,1] is the ratio of foreground patches in all patches reaching the leaf.

The offset vectors of the foreground patches, denoted as Di, are stored for voting at test time.

During testing, each image patch is evaluated against the binary tests until they reach a leaf

node. Given an image patch at location y, its vote for the object center x is computed by:

p
(
o,x|y;T

)
∝ cci
|Di|σ2

∑
d∈Di

e

(
− ||(y−xc)−d||2

2σ2

)
(2.16)

where cci and Di are the confidence score and offset vectors associated with the reached leaf

node, respectively. For the entire forest, the average of the probabilities coming from all trees

is used for the forest-based estimate.

Learning discriminative codebook weights. As discussed, the weight term in Equation 2.7

can either be set to uniform or according to Bayes’ theorem (resulting in the naive-Bayes

weight in Equation 2.8). Ideally, we would prefer to learn the weight term so that parts that

are both repeatable and occur at a consistent location obtain higher weights. In the max-



§2.1 Object detection in computer vision 25

margin Hough transform framework, once a codebook is generated we can discriminatively

learn weights for each entry to directly optimize classification performance [129].

Note that the scoring function in Equation 2.7 is linear w.r.t. the weight term p(o|Ci), we

can replace it with a weight wi for the i-th codebook entry and get

S(o,x) =
K∑
i=1

wi ·
∑
y

p(x|Ci,y)p(Ci|fy) (2.17)

For notation simplicity, we further define an activation vector AT = [a1, · · · ,aK ], where

ai(x) =
∑

y p(x|Ci,y)p(Ci|fy). The max-margin Hough transform [129] learns wi as follows

min
w,b,ξ

1

2
wTw+C

T∑
i=1

ξi

s.t. zi(w
TAi+ b)≥ 1− ξi,

w < 0, ξi ≥ 0,∀i= 1,2, . . . ,T (2.18)

where wT = [w1, · · · ,wK ] is the weight vector, Ai is the activation vector for the i-th training

sample, zi ∈ (−1,+1) is the binary label for each training sample. The formulation is similar

to the objective function of a linear SVM [15] with an additional positivity constraint on the

weights.

Learning the weight vector w requires negative training samples, and the number of nega-

tive samples in a typical object detection setting can be much larger than positives. To retrieve

hard negative instances, one can bootstrap the hard mining process by finding peaks in the

voting space using uniform weights.

The naive-Bayes weight in Equation 2.8 takes into account only the appearance of a code-

word, while the max-margin Hough transform weight jointly considers the codeword appear-

ance and the spatial distributions of feature positions w.r.t. to the object center to derive its

importance.

Beyond voting with patches. The Hough voting procedure does not have any restrictions on

the voting elements, i.e., it refers to any detection process based on an additive aggregation of

evidence coming from local image elements. Image patches are typically selected as voting

elements for their simplicity and ease of implementation. However, it would be useful to

consider voting elements beyond image patches that, for instance, carry more resemblance to

human perception. In particular, fragments of outline contour have been shown to be useful for

object detection. For example, Shotton, Blake and Cipolla [184] propose a codebook learning

scheme purely based on local contour features. Opelt, Pinz and Zisserman [149] use both
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image patches and boundary fragments, and then AdaBoost [207] to select pairs of these voting

elements as weak learners. Common to both methods is that the spatial distributions of the

image features are used as a cue for codebook learning, whereas in the basic Hough voting

model only appearance is considered for clustering.

In addition, regions can be an appealing choice for voting elements as they encode shape

and scale of objects naturally, and are only mildly affected by background clutter. Gu et al. [63]

propose to learn codewords from a bag of overlaid regions for Hough voting based detection.

Another work from Yu et al. [230] explores Hough voting under a joint detection-and-tracking

setting in video, in which they aggregate votes with both spatial and temporal structural infor-

mation.

High dimensional Hough spaces. One important advantage of Hough transform-based detec-

tors is their flexibility to encode different pose parameters. The basic Hough voting space is

the 2D image coordinate space, where each point (ax,ay) corresponds to an object hypothesis

centered at xc = (ax,ay), with a given scale and aspect ratio. It is straightforward that Hough

voting can vote for scales and aspect ratios. For example, Seemann, Leibe and Schiele [179]

propose a multi-aspect detection approach based on Hough voting. Ommer and Malik [148]

propose pairwise clustering of voting lines to obtain object hypothesis in the joint location and

scale space. We can also allow codebooks to encode other aspects of an object model. For

example, Mikilajczyk, Leibe and Schiele [139] propose a Hough voting method with rotation

recovery. In the latent Hough transform [163], Razavi et al. cast the grouping of object prop-

erties such as pose, color, shape, or subcategory as a latent assignment problem, and learn

the grouping from training data. In Chapter 3, we extend the Hough space to include occlu-

sion estimation and propose a mask voting scheme to efficiently search over the extended high

dimensional Hough space.

So far, we have shown that the implementation of probabilities p(o|Ci), p(x|Ci,y) and

p(Ci|fy) in Hough transform detectors are highly flexible, and this has been a major reason

for researchers to adopt this framework. In addition, the codebook-based representation allows

for designing a more structured representation of voting elements. In particular, under the

Hough transform framework it is not restrictive to assume that the voting elements must be

groups of object parts collected from within the bounding box. This naturally permits us to

incorporate occlusion and context reasoning within a unified framework. In Chapter 3, we

present a novel Hough transform detector that features a structured codebook representation

to explicitly reason about object parts, occlusions, and the spatial context. Closely related to

this issue are the recent advances in image sensors that allow people to collect high quality

depth data co-registered with color images. This provides a convincing understanding of the

underlying 3D configuration of objects in a 2D image. In the next section, we discuss object

detection with RGBD data, and then continue our discussion by looking at occlusion reasoning

and context modeling for object detection in Sections 2.1.4 and 2.1.5.
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2.1.3 Object detection with RGBD data

Color image Depth image Point cloud

Figure 2.2: Example of RGBD imagery. The point cloud was reconstructed from a video
sequence including the color and depth frames. Depth images are color coded so that pixels
close to the camera are shown in blue, and far-away pixels are in red. Missing depth values are

shown in white.

Despite the rapid progress in object detection we reviewed so far, generic object detec-

tion is far from a solved problem. In one of the most widely recognized visual recognition

challenge in the computer vision community, the VOC Challenge [43], average precision for

state-of-the-art object detectors hovers around 30% to 60% depending on the difficulty of indi-

vidual object categories. This prompts researchers to look into alternative sensory data, among

which depth sensors are the most prevalent. In particular, depth sensors make it easier to iden-

tify major scene structures, allowing the extraction of accurate geocentric information about a

scene. Depth can also be beneficial for context and occlusion reasoning. Indeed, contextual in-

teractions happen in 3D and depth would provide credible cues for the spatial relations among

objects.

Recently, the advent and popularity of affordable RGBD sensors have seen an increased

interest in building depth-aware object models. Foremost to the research is the availability of

high quality, dense RGBD data. There have been a few public RGBD datasets made available

for a range of scene understanding tasks, such as object detection, object segmentation and

image labeling [98, 145, 77, 55]. See Figure 2.2 for a sample RGBD frame and a point cloud

from [98].

The most easily perceivable opportunity for improvement is perhaps to design novel depth-

aware features. For example, Spinello and Arras [190] show that directly applying the highly

successful HOG features [38] on depth data can help improve pedestrian detection perfor-

mance. This feature has also been successfully applied to hand pose estimation [169, 170]

and generic object detection [98, 66, 30]. Lai et al. [98] compare the effectiveness of shape

and visual features on a large-scale RGBD dataset and demonstrate that the combination of

two gives best object recognition performance. The shape features used in their work include

spin images [79] and SIFT descriptors [121]. In their subsequent work [18, 19] they further

propose to use learned depth features leading to improved results. The detection results can
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also facilitate other scene understanding tasks, such as image labeling [100]. Yebes et al. [228]

propose 3D-aware features computed from stereo images for objects in road scenes.

In addition to depth-aware features, Choi et al. [34] develops a conditional random field

model that jointly reasons about object appearance, geometry, and scene-object relations with

RGBD data. Similarly, Lin et al. [113] recognize 3D cuboids by jointly exploiting 2D segmen-

tation, 3D geometry, as well as contextual relations between the scene and objects. Gupta et

al. [66] propose geocentric embedding for learning depth-aware feature representations with

convolutional neural networks. Liu et al. [119] detect objects with 3D sliding boxes using deep

Boltzmann machines to piece together appearance and depth features learned with [58].

One particular problem of the abovementioned methods is that they require depth informa-

tion in both model training and evaluation. As depth-capable sensors are far from ubiquitous

compared to color cameras, it would be advantageous if we are able to apply models learned

with depth information to 2D cases where only color images are available. This particular

angle that uses auxiliary depth information is not fully explored in the literature. In Chapter 3

we aim at learning a depth-encoded object detection algorithm that can be applied to 2D im-

ages. In fact, we can learn an appearance model with better quality when depth information is

available during training, and transfer the depth knowledge for a test scenario with color im-

ages only. For example, Zhang et al. [234] demonstrate that depth information in the training

phase can benefit scene classification and instance level object recognition. Shrivastava and

Gupta [186] propose to learn a geometry-driven DPM from RGBD images. In particular, Sun

et al. [195] use a depth-encoded patch selection process for Hough transform-based detection.

They use depth to prune out patches of incorrect scales, and to create a generative depth model

of an object.

Occlusion reasoning and context modeling, as will be discussed in the next two sections,

can also benefit from additional depth information. In particular, when modeling the context

in 3D, occlusion can be naturally viewed as a special type of contextual relationship, which

would become an intrinsic component of object and scene models. Also, if we reason about

geometric relations among objects in 2D we have to deal with uncertainties introduced by the

projection from the 3D world to a 2D image. By reasoning the context directly in 3D, we

can potentially eliminate some of these geometric uncertainties introduced by the 3D-to-2D

projection.

2.1.4 Occlusion reasoning for object detection

Most object detection methods introduced in the previous sections rely on one important as-

sumption: the majority of images used for both training and testing should only include fully

visible views of an object. There is no special handling for partially visible objects. Therefore

these objects could negatively impact the training and testing process. This is because the al-
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gorithms can confuse between the very different appearances of a fully visible object and that

of a partially visible one. See Figure 2.3 for an example. In Figure 2.3 (c), the appearance of

the table in front of the chair is very different from the chair seat and base being occluded, yet

it could still be predictive of the presence of a chair behind as these table-chair configurations

are commonly found in an office scene.

(a) (b) (c) (d)

Figure 2.3: The frontal views of two visually similar chairs (cropped). For each chair the
original image is shown on the left ( (a) and (c) ), with the visualized HOG feature map [208]
on the right ( (b) and (d) ). For the partially occluded chair, the seat and the base are occluded

by a table in the front. See text for details.

One possible way to deal with this partial visibility problem is to require all bounding

box annotations to include only visible object parts, and treat those partially visible objects as

separate subcategories using methods such as mixture models. For example, in the chair cate-

gory we may have a dedicated subcategory that detects backrests. In fact, this simple strategy

has been proven effective in state-of-the-art object detection systems such as the DPM [46].

The downside, however, is that it requires more training data to cover all typical viewpoint

variations. Conceptually, it is preferable to treat the backrests of the two chairs in Figure 2.3

as a single object part, and build an object model that allows certain parts of an object to be

occluded.

It should also be noted that the partial observation issue is more prevalent in indoor object

detection problems. This is primarily due to two underlying facts that produce two typical

partial observation scenarios. Firstly, due to the compact nature of indoor spaces, many objects

have to be arranged closely to each other. In particular, some objects are arranged in functional

groups to facilitate human interactions. Examples include the typical configurations of table

and chairs, and the various components of a desktop computer (e.g., a monitor, a keyboard

and a mouse). We refer to this scenario where one object blocks the view of another object as

occlusion. Another typical scenario is when the viewer (or camera) is too close to the object so

that the object is unable to fit in the viewing window. This results in a partially visible object

truncated by image boundaries. We refer to this case as truncation.

The presence of occlusion and truncation makes object detection more challenging. For

detectors not explicitly reasoning about occlusion and truncation, it is likely that inconsistent
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part appearances or geometric distributions will be mixed up with regular ones, resulting in

much larger intraclass appearance variations. The models introduced in the previous sections

could easily fail in the presence of occlusion, as features from the occluded parts will adversely

contribute to the score of object hypotheses. In this regard, explicit occlusion reasoning is

necessary for objects that are frequently being occluded.

Because of its prevalence in many real-world applications, occlusion has been well studied

in the computer vision literature. One basic strategy is to allow object detectors identify partial

occlusion so that the occluder would not adversely affect the score of an object hypothesis.

For the simple template matching based sliding window detector in Section 2.1.1, we can use

the scores of individual HOG cells to infer occlusion [213]. For part-based models, Girshick

et al. [59] use an occluder part in their grammar model when all parts cannot be placed. Tang

et al. [197] leverage the fact the occlusions often form characteristic patterns and extend the

DPM for joint person detection and tracking. Wojek et al. [218] combine object and part

detectors based on their expected visibility using a 3D scene model. Wu and Nevatia [220]

maximize a joint likelihood that involves responses of multiple part detectors for multiple,

partially occluded humans. Li et al. [111] present a method for detecting partially occluded

cars based on And-Or models. Brox et al. [26] use a part-based poselet detector and align

the corresponding part masks to image boundary cues. Another work that also reasoned about

occlusion within bounding boxes for object detectors is [53]. The bounding box representation

was augmented with a set of latent variables to generate a binary occlusion pattern. In addition,

they enforce consistency between visibility patterns of multiple objects and their relative depth

ordering. This is inspired by an earlier paper that uses structured output regression for detection

with partial truncation [206]. To reduce noise in occlusion classifications, local coherency of

regions is often enforced [50]. One common feature for the papers mentioned above is that

they mainly focus on modeling occlusion without complex reasoning about the underlying 3D

scene, partially due to the fact that depth data is not easily accessible, making it difficult to

study the real 3D configuration of objects in a scene.

Recently with accessible 3D data collected from affordable RGBD sensors, there has been

an increasing amount of work on occlusion reasoning in 3D. For example, Meger et al. [136]

use depth inconsistency from 3D sensor data to classify occlusions. Pepik et al. [157] leverage

fine-grained 3D annotated urban street scenes to mine distinctive, reoccurring occlusion pat-

terns. Detectors based on DPM with explicit occluder parts are then trained for each of these

patterns. Zia et al. [241] model occlusions on a 3D geometric object class model by enumer-

ating a finite number of occlusion patterns. Hsiao and Hebert [74] explicitly model occlusions

by reasoning about 3D interactions of objects. These works reason about 3D geometric con-

figurations of parts, objects and cameras in 3D that help to explain occlusions more naturally.

In addition, Bonde et al. [20] address the problem of object instance recognition in clutter that

allows them to learn discriminative 3D shape features for individual object instances. Simi-
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(a) (b) (c)

Figure 2.4: Example of indoor scenes. Note how objects are occluded or truncated by image
boundaries. Groups of objects are also arranged together to facilitate human interactions.

larly, Tejani et al. [198] propose a latent-class Hough forest in which the class distributions at

leaf nodes are treated as latent variables. Unlike our work, their method focuses on 3D pose

estimation where a dense 3D model of each object instance is needed.

Despite the progress, 3D occlusion reasoning in general is less studied due to poorer data

availability. As discussed in Section 2.1.3, although there have been a few large publicly

available RGBD datasets, most imagery data available and being created nowadays are color

images only. Therefore, one key issue here is to train a better occlusion-aware object detector

with auxiliary depth information and apply it to a test scenario without depth. Another issue is

to integrate the depth-aware occlusion reasoning into a coherent object detection framework.

In Chapter 3, we present an object detection system that aims at resolving these issues.

2.1.5 Context modeling for object detection

Most algorithms we discussed in the previous sections disregard information from outside

the object bounding box, which we referred to as the spatial context of an object. For human

observers, however, we understand a scene holistically and would utilize any part of the context

that is predictive of object locations to quickly identify possible image regions that may contain

an object of interest. In particular, occlusion can be viewed as an integral part of context in 3D.

As discussed in the previous section, occlusion can help improve object detection performance

if properly modeled.

Despite the obviously larger appearance variations of the context, it would be helpful if we

can roughly predict potential locations of certain objects with the help of their spatial context.

This is particularly possible for man-made environments where objects are typically arranged

in specific ways to facilitate human interactions. Consider the indoor scenes depicted in Fig-

ure 2.4 for an example. Most people will have little difficulty seeing the partially occluded or

truncated chairs in (a), the bed in (b), and the table in (c). Also, for small objects with limited

visual cues such as the mouse in (c), the surrounding context (e.g., the keyboard and monitor

near the mouse) makes it easier to recognize them. The same is true for the lamps in (b). Con-



32 Literature Review

textual relationships are an integral component of a coherent visual story told by an image, and

they can be particularly useful in indoor scenes as viewers are typically closer to the objects,

making them partially visible in many cases.

The basic frameworks for both detection strategies discussed in Sections 2.1.1 and 2.1.2 do

not explicitly reason about the spatial context. Object detection in those cases is solved locally

using cues from within the bounding boxes only and contextual cues are discarded. This results

in difficulty in recognizing certain objects that have limited visual information from the objects

themselves, but the spatial context explains away the uncertainties about their presence. Below

we review related work that specifically addresses these issues in object detection.

In both the psychophysics and the computer vision communities, it is widely acknowl-

edged that contextual information plays an important role in detecting and localizing objects

(e.g., [14, 73]). In general, two sources of contextual information are most widely used in

object detection methods. One is to rely on semantic contextual information at an object level

(e.g., in terms of previously detected objects). The drawback of this conceptualization is that

it renders the complexity of context analysis to be at par with the problem of semantic under-

standing of the scene (e.g., object detection). Another way is to use the entire scene informa-

tion holistically, e.g., using contextual features without explicitly reasoning about the semantic

context.

Context-aware object detection has been well studied, and many context-aware object de-

tection methods have been proposed. See [219] for a recent review and [40] for an empirical

study. For example, Wolf and Bileschi [219] use relative positions of other detected objects

in a scene as well as low-level cues such as global positions, color and texture to build a

map of the contextual support for the target object. Torralba and Sinha [201] show that con-

text can ‘prime’ an object detection system by providing strong cues for location and scale

selection, from a holistic representation of context based on the spatial layout of spectral com-

ponents. Torralba, Murphy and Freeman [202] propose boosted random fields, which learn

contextual relationships by assembling graph fragments in an additive model. Maire, Yu and

Perona [127] propose to jointly solve image segmentation, figure-ground organization and ob-

ject detection as a grouping problem based on a graph that captures interactions among pixels,

object parts and its surroundings. Blaschko and Lampert [16] use local and global context

kernels with SVMs to learn the importance of different context contributions during training.

Pan and Kanade [153] generate 3D geometry hypotheses with a generalized RANSAC algo-

rithm and integrate them into an MRF that jointly considers object-context and object-object

compatibilities. In addition, many works rely on semantic contextual information at an object

level (e.g., [185, 87, 161]). In particular, Mottaghi et al. [143] exploit both the local and global

context by reasoning about the presence of contextual classes, and propose a context-aware

improvement to the DPM. Zhu et al. [239] use convolutional neural networks to obtain contex-

tual scores for object hypotheses, in addition to scores obtained with object appearance. Yang
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et al. [223] have shown that reasoning about a 2.1D layered object representation in a scene

can positively impact object detection.

It should also be noted that context and occlusion reasoning is closely relevant to holistic

scene understanding approaches, e.g., those jointly solve object detection and segmentation,

among other scene understanding tasks. For example, Yao et al. [225] propose a holistic scene

understanding model that jointly solves object detection, segmentation and scene classification.

However, they did not incorporate explicit context and occlusion modeling.

Despite the progress, most existing contextual models focus on 2D spatial relationships

among objects on the image plane and fewer works have extended the modeling to 3D scenar-

ios. One main difficulty in modeling the 3D context was the lack of accessible 3D data. As

discussed in Section 2.1.3, it has recently become feasible to collect a large amount of high

quality depth and co-registered color images for indoor environments with the recent progress

in consumer-level depth sensors. Sudderth et al. [193] propose a system that models object

categories over the 3D locations and appearances of visual features. The 3D geometry re-

quired for training are obtained from binocular stereo images. More recently, Bao, Sun and

Savarese [8] proposed a coherent object detection and supporting surface reasoning algorithm

that maximizes the joint probability of having a number of detected objects on a few supporting

planes given the observations. They also propose a geometric context feedback loop [194] that

iteratively solves object detection, support region segmentation and layout estimation. Unlike

their work, we aim to utilize RGBD datasets to learn a context-aware object detection model

that encodes depth cues and a coarse level of 3D relationships in Chapter 3. More specifically,

we train a depth-dependent appearance model for each object class and its context. The learned

depth-encoded object and context model is then applied to 2D images during test. Our model is

a structured Hough transform detector that jointly solves for object detection and occlusion es-

timation. This is made possible by modeling occlusion as an integral part of the depth-encoded

context.

2.2 Object segmentation in computer vision

While object detection algorithms provide a good estimation of object locations within an

image, the bounding box representation may not be sufficiently descriptive for scenarios where

detailed shape or pose is desired. In such scenarios, we can instead infer a pixelwise mask

for objects belonging to a specific category, labeling every pixel in the image with either a

foreground or background membership. This problem is often referred to as (foreground)

object segmentation in the literature. More generally, if we assign a finite (possibly large)

discrete set of labels to every pixel in the image, the problem is also referred to as image

labeling.

For object segmentation, one typical solution is to use a statistical classifier for each and



34 Literature Review

every pixel (or superpixel) based on local appearance, then use Markov Random Fields (MRFs)

to incorporate contextual information. The MRF allows for joint reasoning of local and contex-

tual cues, and efficient inference methods exist in many scenarios. More importantly, one can

incorporate class-specific object appearance (e.g., shape) information to bias local segmenta-

tion results. Despite being one of the most widely adopted methods, the MRF is not a panacea

for any object segmentation problem. Some of the most common issues researchers need to

consider in their model design include difficulty in dealing with long-range contextual interac-

tions or a large number of semantic categories, and the combinatorial nature of the inference

problem.

In this section, we firstly review work on foreground object segmentation in Section 2.2.1,

and then discuss two major aspects involved in MRF-based object segmentation: context mod-

eling and inference in Sections 2.2.2 and 2.2.3. Particularly, an important yet challenging

problem in object segmentation is the localization of semi-transparent objects. These objects

are commonly found in indoor environments and play a key role in daily human activities.

The challenging nature of this problem lies in the fact that the appearance of semi-transparent

objects varies greatly and largely depends on the background. In Section 2.2.4, we look at

existing work on glass object segmentation, which is the problem we wanted to address in

Chapters 4 and 5.

2.2.1 Foreground object segmentation

Depending on the number of object categories we are interested in, foreground object segmen-

tation can either be a binary figure-ground segmentation problem, or a more general image

labeling one. In general, foreground object segmentation relies on two broad types of cues.

One is bottom-up cues based on local appearance. For example, one can first segment an

image into homogeneous regions and then classify them using local color and texture. An im-

portant assumption for this approach is the (local) uniformity and continuity of object appear-

ance. However, the appearance variation within an object instance can be potentially large, and

background clutter renders the problem of identifying accurate object boundaries even more

difficult. The top-down approach, on the other hand, reconciles object detection and segmenta-

tion by applying learned object detection models to guide the segmentation process. Properties

that can be used to guide segmentation include possible shape, color and texture of an object

category. The main difficulty for the top-down approach is similar to training object detectors:

the large structural variability for certain object categories can be difficult to capture using a

concise object appearance model.

Most researchers build their models by designing a method to jointly consider top-down

and bottom-up cues. For example, Liu and Sclaroff [117] propose a deformable shaped-based

segmentation algorithm where bottom-up segmentation and top-down deformable templates
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are combined by split and merge. The implicit shape model [109] discussed in Section 2.1.2

learns segmentation masks corresponding to visual codebook entries. Mori et al. [142] tackle

the problem of joint detection and segmentation of baseball players by assembling detected

salient parts such as limbs and torsos. Similarly, the ObjCut framework [95] uses a part-based

model to bias a bottom-up grouping process. Their model is among the first to combine MRFs

with pictorial structure models for foreground object segmentation. See [223] for another

similar work on multi-layer object segmentation. In particular, Ladicky et al. [97] propose a

hierarchical MRF model that jointly reasons about pixels, segments and objects with a single

global energy function. More recently, Guo et al. [64] harnessed the arbitrariness of foreground

appearance, the spatial-temporal smoothness of foreground, and the correlation of background

for foreground segmentation.

It should be noted that image contours are a natural link between low level image features

and high level semantics. For example, the classic active contour model [82] can be used to

segment foreground objects. Prasad et al. [160] propose to learn class-specific edges for object

detection and segmentation. More recently, Brox et al. [26] used image contours and texture

patches as two complementary bottom-up features for foreground object segmentation. The

link between bottom-up features and top-down semantics is established by non-rigidly align-

ing poselet activations to the corresponding edge structures in an image. Parkhi et al. [155] use

a template-based model to detect distinctive parts of an object, followed by segmentation with

image specific information to complete the detection spatially. This method has been proven

to be particularly useful for highly deformable object categories such as cats and dogs. In ad-

dition, the problem of salient closed contour detection is closely related to foreground object

segmentation. For instance, Mahamud et al. [126] develop a foreground segmentation method

using saliency relations based on the global property of contour closure. Arbelaez and col-

leagues [6] propose a method to transform detected image contours into a hierarchy of regions

based on Oriented Watershed Transform and agglomerative clustering. They also develop an

approach to detect occlusion boundary for video data based on motion cues [196], in which

they can use the above strategy for figure/ground assignment. Inspired by the prior literature,

we will show in Chapter 4 that contour-based cues are essential to glass object segmentation

performance.

For more flexible shape templates, Borenstein and Malik [21] use a hierarchy of image

segments at multiple scales for shape template matching. To deal with the weakly structured

object classes, Larlus and Jurie [102] use a bag-of-words based object model to allow for strong

viewpoint variations and ensure long range consistency of labelings.

Finally, MRF-based foreground segmentation such as GrabCut [173] can achieve impres-

sive figure-ground segmentation results with the help of user interactions. The key idea is to

estimate the color distributions of both foreground and background regions iteratively using

graph cut with the aid of sparse user input. More recently, Jain and Grauman [76] proposed
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a method to predict the easiest input modality that will be sufficiently strong to successfully

segment foreground.

2.2.2 Context modeling with Markov Random Fields

Figure 2.5: Two examples of neighborhood graphs for Markov Random Fields. Left Panel: A
4-connected grid of image pixels. Right Panel: An 8-connected grid of image pixels.

In this section, we discuss MRF-based object segmentation in detail. The MRF is a prob-

abilistic graphical model that provides a flexible and consistent framework for a variety of

probabilistic inference problems [89]. One of the most impressive features of the MRF is the

ability to jointly consider local and contextual information in a consistent optimization frame-

work. As opposed to object detection, object segmentation works on a finer granularity to

provide detailed object locations. This comes at the cost of more difficult contextual model-

ing, as the local perspective usually means less awareness of long-range interactions and, by

default, a lack of a model for individual object instances. Therefore, as we will show in this

section, there has been an abundance of methods focusing on context modeling both working

on the local feature level and the second-to-high order constraint level. In Chapters 4 and 5,

we will also show how context modeling can facilitate glass object segmentation.

Generally, an MRF models a joint probability distribution over a set of random variables.

For object segmentation, these variables are usually associated with image sites (i.e., pixels or

superpixels). Each image site has a corresponding random variable in the MRF and a node in

a neighborhood graph. See Figure 2.5 for two examples of the neighborhood graphs. Markov

models explicitly reason about only the connections between relatively few pairs of image

sites, typically between neighboring image sites. The explicit short-range interactions then

give rise to implicit long-range correlations with a knock-on effect. Researchers also devise

graphical models with more effective long-range interactions by adding context-aware features

or auxiliary nodes.

We begin our discussion by revisiting a standard pairwise MRF for foreground object seg-

mentation. Mathematically, denote the set of all image sites as S . Let G = (V,E) be the

neighborhood graph on S based on the spatial relationship in the image. Here V and E are

the vertices and edges of the neighborhood graph, respectively. Both V and S can be indexed



§2.2 Object segmentation in computer vision 37

f1 f2 f3

φ(d1;I ) φ(d2;I ) φ(d3;I )

d1 d2 d3

ψ(d1,d2) ψ(d2,d3)

Figure 2.6: The factor graph of the pairwise MRF in Equation 2.20. For simplicity, only three
nodes are shown.

by image sites, i.e., V = S = (1,2, · · · , i, · · · ,N). Note that in practice we may have auxiliary

nodes (e.g., nodes at regional or global levels) so S and V do not always have this one-to-one

correspondence. A typical edge (i, j) ∈ E is defined by (i, j), i, j ∈ V . Also in practice we may

have higher order cliques that involve explicit interactions among more than two nodes.

Denote D = {di}, i ∈ V as a set of binary variables associated with V , and we assume a

binary state space {0,1} for di, with 1 indicating foreground and 0 for background. Denote

F = {fi}, i ∈ V as the observed data (i.e., feature vectors) from an input image. In the MRF

framework, the posterior over the labels given the observed data is obtained with the Bayes’

rule:

P (D|F)∝ P (D,F) = P (D)P (F|D) (2.19)

where P (F|D) is usually assumed to have a factorized form for computational feasibility, i.e.,

P (D|F) =
∏
i∈V P (fi|di). In this case, the joint probability in Equation 2.19 can be modeled

by an MRF that minimizes an energy function of binary labels D:

E(D;F) =
∑
i∈V

φ(di; fi) +β
∑

(i,j)∈E

ψ(di,dj) (2.20)

where fi is the feature vector associated with the i-th image site. The two terms in the energy

function are referred to as unary potential and pairwise potential respectively. Note that the

energy can be seen as a negative log-probability so it essentially factorizes the joint probability

distribution into unary and pairwise terms. For ease of interpretation, factor graph representa-

tions are commonly used in the literature to explicitly illustrate how the joint distribution over

all random variables are factorized. Figure 2.6 shows the factor graph of the MRF in Equa-

tion 2.20. Each circular node represents a random variable. Each rectangular node represents

a factor. Shaded nodes are observations (i.e., image features).

Local classifier. The first and an essential step towards image labeling is to obtain a local
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estimate of labels. Due to the noisy nature of local appearances for a semantic category, the

resulting labeling with purely local information is usually not spatially coherent. Yet it provides

a good starting point for the more complex context modeling, see Figure 2.7(c) for an example.

One typical way of labeling an image is to use a statistical classifier based on local information

only. For example, Konishi and Yuille [92] propose to use Bayesian classification based on

local color and texture cues for image labeling. He et al. [69] use a multilayer perceptron

taking in color, edge magnitude and texture information. In general, when we use a classifier

for local estimations, the unary potential can be formulated as the negative log-probability from

the classifier output:

φ(di; fi) =− log(P (di|fi)) (2.21)

It should be noted that the factorization of P (D|F), i.e., P (D|F) =
∏
i∈V P (fi|di), can be

restrictive for the analysis of natural images where it is important to make use of the spatial de-

pendencies. In particular, different objects can share similar local appearances. For example, in

the Discriminative Random Fields (DRF) [96] work Kumar and Hebert consider a structured-

vs-nonstructured object segmentation problem. At a local image patch level, buildings (struc-

tured) and sky (nonstructured) can have similar color and texture. It is the regional and global

context that makes the semantic class clear to the viewer. Generalized Linear Models [133] are

used in their work to model the label posteriors given the whole set of observations, instead of

observation from a single image site. He et al. [69] propose to learn region and global label

features from labeled images in order to incorporate contextual cues at multiple scales. Shotton

et al. [185] propose a texture-layout filter to record patterns of textons, and exploit the textural

appearance of objects and its contextual layout. The inclusion of contextual cues helps resolve

the label ambiguities at the local level. In particular, local appearance exhibits large variations

for semi-transparent objects (e.g., the appearance of glass and non-glass surface could be sim-

ilar locally), and we will show how to incorporate spatial context for local glass segmentation

and build a flexible feature pool for glass boundary estimation in Chapters 4 and 5.

Label transfers of local estimates. Similar to object detection, the emergence of large databases

of images allows researchers to build nonparametric models for label prediction in image la-

beling. The basic idea is to explain an image by matching its parts to other images from the

database.

Many of these methods follow a two-step approach. They firstly generate a reasonably

sized retrieval set (or a few, see [232]) from a large database by coarse scene matching so

that the retrieval set contains scenes with similar object categories and geometric setup to the

query. The label transfer then happens at a local level (e.g., a few pixels wide) within the

retrieval set. For example, Liu, Yuen and Torralba [115] first retrieve nearest neighbors of
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a query image with distance derived from global scene descriptors such as GIST [147] and

spatial pyramid intersection of HOG visual words [103]. This is followed by a coarse-to-fine

SIFT flow algorithm to establish dense pairwise correspondences between the query scene and

each of its nearest neighbors. Finally, they use an MRF to combine the likelihood obtained

from SIFT flow, the semantic class location priors, and smoothness constraints. Similarly,

Tighe and Lazebnik propose SuperParsing [199] that performs label transfer at the superpixel

level to avoid the expensive inference via SIFT flow. This also lowers the need for finding

similar scenes in terms of the spatial layout of semantic classes. For both global and superpixel

matching they use an extensive set of image features, which is essential for the performance

of their method. Other related work includes integrating image parsing with per-exemplar

object detectors [200], and building a superpixel graph to allow metric learning for superpixel

matching [60]. In particular, Fathi et al. [44] take a semi-supervised learning approach to learn

a metric for label propagation in videos.

The benefit of nonparametric methods to scene parsing is at least three-fold. Firstly, we can

use simple matching schemes such as nearest neighbor search to obtain a local label estimate,

thus the methods are usually computationally fast. This also eliminates the need for training

a universal unary classifier, which could be time-consuming. Secondly, nonparametric models

can easily adapt to large datasets and a large number of semantic categories, and we do not

need to retrain the classifier when more data are added. Finally and perhaps more importantly,

appearance of local image regions (e.g., a few pixels wide) usually exhibit large variations.

Therefore, it would be difficult to train generic classifiers to capture the variations of small local

features. On the contrary, nonparametric models are well-suited for this scenario. Although

the work on context features discussed earlier in this section also aims to address this problem,

it still requires a universal classifier which makes it difficult to deal with extreme appearance

variations or a large number of semantic classes. Related work based on nonparametric label

transfer has achieved state-of-the-art results on large benchmark datasets such as the SIFT flow

database [115] and the SUN database [221].

In Chapter 5, we introduce a glass object segmentation method based on label transfer

on joint depth and appearance manifolds. Our work is the first to explore nonparametric label

transfer within the context of glass detection, and exploit a joint depth-appearance manifold for

transductive learning. Label transfer is particularly effective for glass objects as the appearance

variations at glass boundaries are large. We will discuss the glass object segmentation problem

in more details in Section 2.2.4.

Smoothing constraints. One important feature of an MRF is the ability to eliminate noise in

local estimates by modeling second or high order constraints among variables. In the pairwise

MRF as shown in Equation 2.20, the pairwise term is the summation of pairwise potentials

between each pair of nodes in the neighborhood graph. In particular, the Potts model, first

developed in statistical physics, is one of the simplest pairwise potentials commonly used in
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(a) (b) (c) (d)

Figure 2.7: Example of image labeling results with TextonBoost [185] using unary terms only,
and with pairwise terms added. (a) input image. (b) ground-truth labeling. (c) image labeling

result with unary terms only. (d) image labeling result with pairwise terms added.

computer vision:

ψ(di,dj) =

0, if di = dj ,

1, otherwise
(2.22)

This pairwise term gives a constant penalty for inconsistent neighboring labels. We also refer

to the binary case of the model above as an Ising model. An image-adaptive version of this

pairwise term, the contrast-sensitive Potts model, is also widely used in the image labeling

literature. It replaces the constant penalty in Equation 2.22 with an edge feature gij based on

the difference in colors of neighboring pixels [25, 173, 185]:

gij = θp +θv exp(−θβ||Ii − Ij ||2) (2.23)

where Ii and Ij are the color vectors of pixels i and j respectively. θp, θv and θβ are model pa-

rameters learned from training data. This contrast-sensitive Potts model penalizes neighboring

nodes in the graph having different labels except where there is a corresponding edge in the

image. See Figure 2.7 for an example of the smoothing effect of the pairwise potential. Note

how the rough edges and the small isolated regions misclassified as water are removed.

One main drawback of the pairwise terms above is that the interactions among observa-

tions are restricted to site pairs. The DRF framework [96] proposes to address this issue by

learning a data-dependent pairwise discriminative model in the pairwise terms, in addition to

the smoothing term of the Ising model. Another problem with the pairwise terms above is that

it has an over-smoothing effect in many cases, making the MRF incapable of following fine

contours of certain semantic classes such as trees and bushes. To address this issue, He et al.

use a superpixel representation of images with the assumption that all pixels from a particular

image segment belong to the same semantic class [70]. Instead of using this hard constraint,

Kohli et al. [88] propose a quality sensitive and robust high-order Pn Potts model that favors

all pixels belong to an image segment taking the same label, while setting the penalty as a lin-

ear truncated function to allow for variables in a clique taking different labels. Krahenbuhl and
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Koltun [90] propose a fully connected conditional random field model in which the pairwise

potentials are defined by a linear combination of Gaussian kernels. Both the last two methods

allow for efficient inference while being able to obtain high quality labeling results in terms of

preserving finer details at object boundaries.

2.2.3 Inference in Markov Random Fields

Inference in MRF-based object segmentation is the process of predicting the label values by

combining cues from different energy terms, or equivalently, minimizing the energy defined

by the energy function. In a probabilistic framework, the possible label configurations are fully

described by the posterior distribution of the label variables given the input. In practice, we

usually want to obtain a certain point estimator, such as the mean or mode for the distribu-

tion, as our labeling output. Each estimator has an associated loss function that quantifies the

discrepancy between the estimated configuration and the “ideal” configuration. The estima-

tor minimizes the corresponding loss function. In practice, the MAP estimate and the MPM

estimate are widely used:

• MAP estimate: Maximum A Posterior (MAP) of labeling D given image I is the mode

of the posterior distribution,

D∗ = argmax
D

P (D|I ), (2.24)

where the loss function is the 0-1 loss: L(D,D̂) = δ(D,D̂).

• MPM estimate: Marginal Posterior Mode (MPM) is the mode of the marginal posterior

distribution,

d∗i = argmax
di

P (di|I ),∀i, (2.25)

where the loss function is the Hamming loss: L(D,D̂) = |{i : di 6= d̂i}|.

Exact computation of the estimators is feasible for certain probabilistic models with special

structures. For all other model structures we have to use approximate algorithms since the exact

inference in NP-hard. We will discuss four types of inference algorithms as follows. Note that

the three latter types are all approximate inference algorithms.

Exact inference. In certain restricted situations, it is possible to efficiently compute the MAP

labeling in MRFs by constructing a specialized graph. In particular, [62] presents the graph
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cut algorithm, or the minimum cut/maximum flow algorithm for binary image segmentation.

In the case of a tree-structured graph, the Belief Propagation (BP) [156] algorithm is able to

compute the marginals or modes of the model distribution. The BP algorithm propagates a

set of messages carrying the interaction information through a tree model until they achieve

consistency.

Approximate deterministic inference. In the context of image labeling, the computation of

MAP is essentially a combinatorial optimization problem. Therefore, the MAP estimation

is an energy minimization in which the domain is discrete. In general, two approximate ap-

proaches are commonly used for this minimization-based labeling, i.e., heuristic local search

and relaxation-based methods.

Heuristic local search-based methods search for the local minima in a state space neighbor-

hood of an energy function from an initial estimate. Therefore, the quality of solution usually

relies on the initial estimate and the size of neighborhood. The neighborhood in the state space

is defined with respect to certain transformations of the state configuration. For example, the

Iterative Conditional Mode (ICM) [112] approach defines the transformation as changing the

label for a single node. Boykov et al. propose an effective local search method with a large

neighborhood [24]. The algorithm defines two transformations (or moves), the α-expansion

and α-β-swap, generating a much larger neighborhood in the state space. It greedily searches

for the local minima based on the current estimate, and in each step finds the locally optimal

transformation that gives the largest decrease of energy. In particular, the local search avoids

bad local minima, and can be shown to come within a factor of 2 of the energy minimum. Each

local move can be formulated as a graph cut problem that can be efficiently solved.

General discrete energy minimization can be viewed as an integer programming problem.

In relaxation-based methods, linear programming relaxations have been adopted for approxi-

mately solving for the MAP solution in MRFs [217, 224]. Firstly, the MAP problem is formu-

lated as an Integer Linear Problem (ILP). By relaxing the integer constraints, the problem can

be converted to a Linear Program (LP) that can be more efficiently solved. The integer solution

can be recovered from the fractional solution of the LP [85].

Variational inference. In variational approximation, we use an approximating family of la-

bel probability distributions that are simpler than the original distribution and in which the

inference is tractable. During inference, we choose a specific distribution from the approxi-

mating family to match the original distribution. The marginals or modes of the approximating

distribution are used as substitutes for the original ones.

The simplest approximate inference, called mean field approximation, is originally a method

of approximation for the computation of the mean of an MRF. Originating in statistical me-

chanics, mean field approximation uses an approximating family with a fully factorized form [229].

In general, mean field approximation can only obtain a result with good quality when the nodes

do not fluctuate a lot around their mean values. The algorithm can be thought of as a parallel
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message-passing algorithm where each node sends an identical message to each of its neigh-

bors at a particular time step. The message is, in turn, based on the message it received from its

neighbors. It should be noted that we can improve the approximation of mean field by taking

factorial distributions where each component is a larger but tractable subgraph of the original

factor graph, leading to the structured mean field approach [176]. The fully factorized mean

field algorithm is sometimes referred to as naive mean field in comparison.

A more sophisticated approximation based on BP, called the Loopy Belief Propagation

(Loopy BP), uses a more complicated approximating family that includes pairwise marginals.

In particular, the messages sent from a node to its neighbors at a given time step are different.

See [215] for a comparison between the mean field and Loopy BP algorithms.

Sampling-based inference. Sampling methods are a general optimization approach com-

monly used to handle intractable posterior distributions in MRFs. The Markov Chain Monte

Carlo (MCMC) sampling methods, including Gibbs sampling [56] and Metropolis-Hastings

sampling [216], are widely used in practice. The basic idea behind MCMC is to define a

Markov chain in such a way that its stationary distribution is the target distribution. After

drawing samples from the Makov chain, we can derive the distribution or statistics from those

samples. In contrast to deterministic methods, MCMC is guaranteed to be unbiased and con-

verge in the limit.

In Gibbs sampling, the algorithm repeatedly sweeps through the MRF updating one node

at a time. At each step, a node is updated to be a random draw from its conditional distribution,

holding all neighboring nodes fixed. Metropolis-Hastings algorithm provides a more general

approach that uses a proposal distribution to sample a candidate labeling given current config-

uration iteratively, and only changes the current labeling with a certain acceptance probability

at each iteration.

Theoretically, the estimates provided by sampling become exact in the limit as the sample

size grows to infinity. In practice, however, sampling-based methods are computationally ex-

pensive as many samples are needed to obtain a good estimate. Methods have been proposed

to improve sampling efficiency, particularly in graphical models with special structures [71].

Simulated Annealing (SA) [205] is another sampling-based algorithm that can be used for

MAP inference. It draws samples from the annealed posterior distribution as the temperature

decreases. When the temperature gets close to zero, only MAP states have significant proba-

bility mass. SA also provides the global MAP estimate, but the annealing must take place in

infinitesimal steps, and it uses Gibbs sampling each time the temperature is reduced.

2.2.4 Glass object segmentation

So far we have discussed generic foreground object segmentation with a focus on related work

based on MRFs. In this thesis, we are particularly interested in the glass object segmentation
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Color frames

Depth frames

Figure 2.8: Example RGBD image pairs containing glass objects. Note the distinctive but
irregular missing patterns in and around glass regions. See text for details.

problem. We make this choice because glass objects play an important role in daily human

activities and are commonly found in indoor environments such as home, office and laboratory.

Therefore, it is essential for a visual recognition system to be able to localize them.

Despite the progress in generic object segmentation, the segmentation of glass objects re-

mains a particularly challenging problem in scene understanding [75, 137]. The main difficulty

in detecting glass objects lies in the semi-transparent nature of glass surface that results in very

large appearance variations depending on the background. Therefore, there is a lack of locally

discriminative visual features to capture the appearance variations at glass regions and bound-

aries [135, 51]. For example, visual cues commonly used for image labeling such as color and

texture are less effective due to the changing background. In fact, a glass surface can be seen

as an overlay on the background so relative features that identify the difference between two

image regions may better help localize glass boundaries. In addition, glass objects are usually

made for a specific use, and could come in very different and irregular shapes. It is therefore

difficult to assume shape templates for glass objects.

In this thesis, we are interested in pixelwise segmentation for semi-transparent objects (in-

cluding not only glass but also some plastic objects, for example), and we use the term glass

objects and semi-transparent objects interchangeably. In particular, we are interested in mak-

ing use of RGBD data to localize glass objects. See Figure 2.8 for example RGBD image

pairs containing glass objects. Note how the appearances of glass objects in color images are

affected by background clutter, and the various overlay effects in glass regions such as blur-

ring, texture distortion, and saturation changes. In addition, notice the distinctive but irregular

missing patterns (shown in white) in depth images resulting from attenuation of structured

light signals passing through glass. Although these patterns may roughly tell us about the

presence of glass, the missing pattern could either be dilated or eroded based on local refrac-

tive properties. Moreover, these patterns could spatially overlap with missing patterns caused

by other reasons such as occlusion boundaries. These missing patterns can be a nuisance for

RGBD imaging but, as we will show in our work, can also be used as an effective feature for

glass object segmentation. In this section, we review related work on glass object detection,



§2.2 Object segmentation in computer vision 45

segmentation and pose estimation.

Localizing glass objects with color images. We begin our discussion with related work on lo-

calizing glass objects with color images only. In general, there are two major problems. Firstly,

we have to obtain effective visual features to identify glass regions and boundaries locally.

Secondly, we need to build an object model in order to piece together the local estimates and

suppress any local noise if possible. For the first problem, as it is difficult to design features to

identify a glass region by itself, most previous work has focused on detecting special properties

of the glass surfaces and their interactions with the opaque environment in images [151, 144].

Metelli [138] is among the first to study the perception of transparency in terms of spatial and

intensity relations of light reflected from a relatively wide field. See [188] for a review and

study on the theory of perceptual transparency from the psychology community. One of the

early works by Adelson and Anandan [3] in the computer vision community introduces a linear

model for the intensity of a transparent surface:

I = αIB +e (2.26)

where IB is the intensity of the background, α is a blending factor, and e is the emission

of the semi-transparent surface. They relate the characteristics of visual transparency to the

characteristics of the X junctions resulting from patterns on overlapping distinct layers. In

addition to this overlay model, highlights are another useful cue as glass is known to be highly

specular, and highlights can be found in color images by assuming a dichromatic reflection

model [86]. In particular, McHenry, Ponce and Forsyth [135] design a classifier that attempts to

find a glass/non-glass boundary based on a combination of visual cues. They compute relative

features at both sides of a boundary fragment to partially address the appearance variation

issue. Similar cues are also used in [91]. The cues used in their papers include:

• Color similarity: the color tends to be similar of both sides of a glass boundary;

• Blurring: the texture on the glass side is blurrier;

• Overlay consistency: the intensity distribution on the glass side is constrained by the

intensity distribution on the non-glass side. In particular, pixels on the glass side usually

have a lower saturation value;

• Texture distortion: the texture on the glass side is slightly different;

• Highlights and caustics: the presence of highlights and caustics increases the probabil-

ity of a possible transparent material around;

• Cross-correlation: distortion produced by a semi-transparent object can also be cap-

tured by region analysis, e.g., a cross-correlation measure.
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Usually these cues are considered as noise and discarded in object detection and segmen-

tation. However, they are characteristic of glass/non-glass boundaries. In particular, Osadchy

et al. [151] recognize objects from specular reflections using knowledge of their 3D shapes.

In terms of object models, McHenry and Ponce [134] propose two complementary mea-

sures of affinity and another of discrepancy between regions to group image regions into

glass/non-glass surfaces. The local predictions are combined using the geodesic active con-

tour framework [29]. Their work focuses on the binary criteria that answer if two regions are

made of the same material, and do not consider the unary region estimates.

Fritz et al. [51] model local patch appearances with an additive model of latent factors

in order to detect transparent visual words, and then use latent topic activations to generate

object hypotheses. The basic idea behind the additive latent model is that the appearance of

a glass region is a combination of factors including background and one or more patterns that

have been affected by refraction effects. Their method uses a sliding-window based approach

to infer latent topic activations based on linear SVMs. Therefore, it only generates bounding

boxes for likely glass object locations instead of a pixelwise segmentation.

Localizing glass objects with multimodal data. The challenging nature of glass object detec-

tion and segmentation encouraged researchers to utilize additional sensory information beyond

single-view visual cues. In most cases, range (depth) cameras are employed to detect semi-

transparent objects, in which the attenuation of signal intensities is exploited.

Klank, Carton and Beetz [84] use two images from a time-of-flight camera to detect and

reconstruct transparent objects. Their active infrared camera is robust to illumination changes,

however has a shadow-like behavior for glass objects. To deal with this, they adopt a two-step

reconstruction scheme and assume glass objects as piecewise planar to get an initial recon-

struction. Lee and Shim [105] use a stereo time-of-flight camera setup and derive a gener-

alized depth imaging formulation for translucent objects. They find that the depth readings

of a time-of-flight camera with semi-transparent objects present a systematic distortion and

that the distorted depth values can be refined using an iterative optimization. Phillips and

colleagues [159] use a stereo camera and exploit the fact that glass objects generate anoma-

lies in the stereo inverse perspective map. Glass objects are assumed to be standing on a

flat supporting plane. The plane needs to be somewhat textured to facilitate 2D homography

estimation. Their method identifies extruding points from textured surfaces that violate the

inverse perspective mapping, and use a dataset of 3D models to generate shape templates for

detailed localization. In particular, they use a similarity score that maximizes the homography

inconsistency inside the shape template while minimizing the inconsistency in the neighbor-

hood around the template. Wallace and Csakany [209] develop a time-of-flight laser sensor

based on photon counts to measure 3D data from transparent surfaces. Liu et al. [116] propose

a frequency-based 3D reconstruction method, which incorporates a frequency-based matting

method that is similar to structured light methods. Ma et al. [125] derive a formulation of light
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transport in refractive media using light fields and the transport of intensity equation. Ye et

al. [227] augment a Kinect camera with an ultra-sonic sensor that is able to measure distance

to any object, including transparent surfaces. Xu et al. [222] use linearity in light-field images

to estimate the likelihood of a pixel belonging to a transparent object or a Lambertian back-

ground. Lei et al. [108] use a LIDAR device along with a registered RGB camera for glass

object segmentation. Object candidates are proposed by highlight spots in RGB images and

refined by running GrabCut [173] on depth and laser reflectance intensity images. In addition,

when viewpoint is fixed, Han et al. [67] develop an approach for dense transparent surface

reconstruction based on refraction of light.

The closest to our work is from Lysenkov, et al. [123] in the sense that they also use an

RGBD camera for glass object detection and pose estimation. They propose a model taking

into account both silhouette and surface edges, and perform CAD-based pose estimation. An

extension to this work from the same group [124] focuses on pose estimation in transparent

clutter. Another extension proposed by Luo et al. [122] improves the method by integrating

visual cues so that non-transparent objects that produce unknown depth values would not be

considered as transparent objects. However, these methods require 3D models of objects ob-

tained by covering transparent objects with paint, in order to make their surface Lambertian.

In our work, we wanted to make our method more flexible with unseen objects and avoid using

strong shape priors. Albrecht and Marsland [4] also propose a detection and reconstruction

method for glass objects from point cloud data. Their method utilizes the shadows in RGBD

images that are left in two or more distinct viewpoints to facilitate reconstruction. In our work,

however, we are interested in glass object segmentation from a single viewpoint.

2.3 Boosting for learning from sparsely labeled data

So far we focused on two paradigms for localizing objects in computer vision, i.e., object

detection and segmentation. Common to both problems is the need for a classification model

that distinguishes image features between object and non-object. The training process of these

classification models requires annotation that can be expensive to obtain for large datasets. For

example, detailed object ground-truth annotation, usually being a segmentation mask, can be

laborious to create manually. Therefore, it would be advantageous if we can relax the labeling

requirements by assuming only partial or coarse annotation is available.

More generally, classification is the problem of assigning a class (or label) to a new ob-

servation, on the basis of a set of training data. The resulting model is commonly referred to

as a classifier. A classification problem is supervised if the class membership of observations

in the training set is known, or unsupervised otherwise. We call the training data labeled or

unlabeled, respectively. Due to the annotation availability issue discussed before, in this thesis

we focus on the semi-supervised classification problem where only partial class membership
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information in the training set is available. Semi-supervised classification studies the problem

of using both labeled and unlabeled data to learn a classifier. As we will show in Chapter 6, in

some practical applications including object segmentation, semi-supervised classifiers achieve

a level of performance comparable to fully supervised classifiers, therefore either reduce the

amount of required annotation or eliminate the need for detailed annotation.

There has been a large amount of literature in semi-supervised learning and we refer the

readers to the recent book [31] for a comprehensive review. Generally, semi-supervised learn-

ing methods can be categorized into either transductive or inductive based on the nature of

inference. Transductive algorithms can only predict labels of data seen during training. Typ-

ical approaches include label propagation [238] and LLGC [236]. The goal of transductive

learning is to predict labels for an observed and unlabeled transduction set, and the algorithm

commonly makes use of the geometric properties of the data distribution. More specifically,

many transductive learning algorithms are based on the manifold assumption which assumes

that data lie in a low-dimensional manifold in a (high-dimensional) input feature space. The

geometry of the data distribution can be captured by representing the dataset as a graph, with

data points as vertices and pairwise similarities between data points as edge weights. Induc-

tive methods, on the other hand, build a general decision rule over the input feature space and

therefore can be used to predict the labels of data that are unseen during training. Examples of

inductive methods include co-training [17] and semi-supervised SVM [12]. One of the most

widely used underlying ideas in these methods is the cluster assumption which assumes that

decision boundaries are more likely to pass through regions in the feature space with lower data

density. It should be noted, however, although the manifold assumption is inherently transduc-

tive, we can also use it to regularize decision boundaries in inductive methods. For example,

manifold regularization [11] adds a data-dependent geometric regularization term to the ob-

jective function of a max-margin classifier (e.g., an SVM). Our work in this thesis belongs to

the inductive category and is inspired by this manifold regularization idea. Specifically, our

method is based on the manifold assumption in Laplacian Eigenmaps [10].

Many classification algorithms are commonly used in the computer vision literature. This

includes decision trees, ensemble learning (e.g., boosting and random forest), k-nearest neigh-

bors, SVMs, to name a few [15]. In our work, we choose to make use of the boosting classi-

fication framework and, more specifically, extend the margin distribution boosting (MDBoost)

algorithm [182] to support semi-supervised learning based on manifold regularization. We

choose the boosting framework because the max-margin nature of boosting algorithms makes

it straightforward to introduce manifold regularization for semi-supervised learning and induce

an inductive learning algorithm. More importantly, the geometry of the (labeled and unlabeled)

data distributions can be assimilated into the margin-cost based objective function. As a result,

the algorithm can be efficiently and incrementally trained using column generation, thus retains

the stage-wise gradient descent training procedure. This is in contrast to methods such as the
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semi-supervised SVM [12] that involves solving a computationally expensive mixed integer

program for the semi-supervised case.

Several works have extended supervised boosting algorithms to a semi-supervised setting.

Semi-supervised MarginBoost [28] generalizes the margin concept to unlabeled data, and min-

imizes a margin-based loss by functional gradient descent. Chen and Wang also minimize the

margin-based loss and introduce additional local smoothness into regularization in the Regu-

larized Boost [33]. SERBoost [175] aims to scale up to large datasets by using expectation

regularization. In ASSEMBLE [13] and SemiBoost [131], authors introduce the notion of

pseudo-labels for unlabeled data and boost any supervised classifier by iteratively relabeling

the unlabeled data. Unlike those existing approaches, the algorithm proposed in this thesis

optimizes the margin distribution directly within a totally corrective framework, while incor-

porating manifold regularization on both labeled and unlabeled data coherently.

For completeness, we briefly review the AdaBoost and MDBoost algorithms below.

AdaBoost. AdaBoost is the first and most commonly used variant of boosting alogrithms [207].

Mathematically, let Dl = {(xi,yi)}i=1,··· ,M be the training data set, where xi ∈ X is the input

feature vector and yi ∈ {−1,+1} is the output label. Given the training data, our goal is to train

a classifier to assign a binary label to any input vector x. In the setting of boosting methods,

the classifier consists of a weighted combination of weak learners (classifiers).

More specifically, denote h(·) ∈ H as a weak learner that maps an input vector x into a

binary output. We assume that we choose K weak learners from the set H in our boosted

classifier, and define a matrix H ∈ ZM×K to be all the possible predictions of the training data

using weak learners. That is, Hij = hj(xi) is the label ({+1,−1}) given by the weak learner

hj(·) on the training example xi. We also use Hi: = [Hi1 Hi2 · · ·HiK ] to denote the i-th row

of H , which constitutes the output of all the weak learners on the training example xi. Let α

be the weight vector for the weak learners. We can write the output of the final classifier on

any training data xi as Hi:α, and the so-called (unnormalized) margin at data xi is defined as

yiHi:α.

AdaBoost can be viewed as a gradient descent procedure that minimizes the exponential

classification error (or loss) function. The training procedure of AdaBoost is a greedy al-

gorithm that constructs an additive combination of weak classifiers such that the following

exponential loss is minimized [36]:

L(y,f(x)) = exp
(
−yH(x)

)
. (2.27)

where

H(x) = sign
(∑N

i=1
αihi(x)

)
, (2.28)

Here αi is the weight coefficient for the i-th weak learner, and N is the number of weak

learners.
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Margin theory and MDBoost. One way of deciphering the success of boosting lies in mar-

gin theory [178]. Several papers, such as LPBoost [39], adopt the minimum margin as an

alternative learning criterion for boosting. Ryyzin and Schapire [168] point out that the gen-

eralization performance of boosting algorithms may depend more on the margin distribution

instead of the minimum margin. Based on this observation, Shen and Li propose MDBoost

and achieved promising classification performance by directly maximizing the average margin

and minimizing the margin variance [182].

Specifically, let ρi denote the unnormalized margin for the i-th example datum, i.e., ρi =

yiHi:α, ∀i= 1, · · · ,M. The cost function and the learning problem in MDBoost can be written

as follows:

min
α

1

2(M −1)

∑
i>j

(ρi−ρj)2−
M∑
i=1

ρi

s.t. α< 0,1>α=D, (2.29)

where D is a regularization parameter. By defining a matrix A ∈ RM×M , where

A=


1 − 1

M−1 . . . − 1
M−1

− 1
M−1 1 . . . − 1

M−1
...

...
. . .

...

− 1
M−1 − 1

M−1 . . . 1

 ,

the optimization problem can be rewritten into the following form:

min
α

1
2ρ
>Aρ−1>ρ,

s.t. α< 0,1>α=D,

ρi = yiHi:α,∀i= 1, · · · ,M. (2.30)

It has been shown [183] the problem in (6.2) can be efficiently solved by considering its dual

form, i.e.,

min
r,u

r+ 1
2D (u−1)>A−1(u−1),

s.t.

M∑
i=1

uiyiHi: 4 r1>. (2.31)

The form of the dual problem allows us to incrementally search the solution space by the col-

umn generation technique. At each iteration, we obtain a new weak classifier through searching
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the most violated constraint:

h′(·) = argmax
h(·)

∑M
i=1uiyih(xi). (2.32)

While the MDBoost learning cost incorporates the margin variance information, the global

variance can be restrictive and cannot describe the finer structure of the distribution beyond

the second order statistics. In our work, we propose to use the “local” version of variance that

considers the geometric properties of the data manifold. More importantly, the idea that we

can make use of the geometric properties of the data distribution can be naturally extended to

a semi-supervised learning setting. In Chapter 6, we propose the Semi-supervised Laplacian

MDBoost algorithm that addresses the above shortcomings of MDBoost. In addition, we apply

the new semi-supervised learning algorithm on a number of object segmentation tasks to verify

its efficacy.

2.4 Summary

Object detection and segmentation have wide application in computer vision and robotics. For

object detection, our task is to infer a bounding box-based parametrization of an object hy-

pothesis. We reviewed two broad groups of methods based on sliding windows and the Hough

transform respectively. Most importantly, the availability of RGBD data allows depth infor-

mation to be incorporated both in terms of feature engineering and model design. Our focus

in this thesis is to build an object detection system with better context and occlusion reasoning

made possible by the addition of depth data. In particular, due to the limited availability of

RGBD data compared to RGB imagery, we are interested in the scenario where depth data are

only available during model training.

For object segmentation, our task is to infer a pixelwise foreground object mask. We

reviewed relevant methods with a focus on those based on MRFs. In addition, we discussed

two main issues in MRF-based object segmentation: context modeling and inference. The

focus of our work in this thesis is the glass object segmentation problem, therefore we then

discussed related work in the literature. Our work is among the first to leverage the additional

depth data and the partial depth readings caused by irregular refractive properties of the glass

surface. Also, to the best of our knowledge, we are the first to explore nonparametric label

transfer for glass object segmentation.

Finally, we reviewed work on semi-supervised learning and boosting algorithms. We

showed that boosting algorithms are an essential component of many object detection and seg-

mentation systems. In addition, we revisited the MDBoost algorithm that directly optimizes

the margin distribution. Its formulation provides us the flexibility to incorporate manifold reg-

ularization and to extend the algorithm to a semi-supervised learning scenario.
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Despite the progress discussed in this chapter, many object detection and segmentation

models have certain limitations when only partial information is available during either the

model training or testing stage. Three main issues remain, although the auxiliary depth infor-

mation provides promising outlook for resolving these limitations. The issues are partial object

observation, incomplete and imperfect data modalities, and partial ground-truth annotation. A

key problem here is depth-aware context modeling in the presence of occlusion and under

varying levels of depth information availability. In this thesis, we are interested in utilizing

auxiliary depth information to model the spatial context for localizing both generic and glass

objects. Particularly, glass objects exhibit large appearance variations and depth information

obtained with RGBD cameras can be noisy and incomplete near glass boundaries. In addi-

tion, it is important to incorporate unlabeled data for object detection and segmentation when

precise and complete ground-truth annotations are expensive to obtain. This thesis proposes a

series of context-driven object detection and segmentation approaches to address these issues.



Chapter 3

Structured Hough Voting for Joint
Object Detection and Occlusion
Prediction

3.1 Introduction

Object detection remains a challenging task for cluttered/crowded scenes, such as indoor en-

vironments, where objects are frequently occluded by neighboring objects or the viewing win-

dow [53, 206]. The partial objects being observed usually provide limited information on the

object position and pose, so many previous object detection approaches are prone to failure as

they solely rely on image cues from objects themselves.

It is widely acknowledged that contextual information plays an important role in detect-

ing and localizing objects in such adverse conditions. Many context-aware object detection

methods have been proposed recently [219, 201, 127, 16]. However, most existing contextual

models focus on 2D spatial relationships between objects on the image plane and fewer works

have extended the modeling to 3D scenarios [8, 193]. One main difficulty in modeling 3D con-

text was the lack of accessible 3D data. With recent progress in consumer-level depth sensors

(e.g., Kinect), however, it becomes feasible to collect a large amount of high quality depth and

registered color images for indoor environments [77, 145].

Modeling context from a 3D perspective has several advantages over its 2D counterpart

conceptually. Firstly, spatial relationships have smaller variations and are easier to interpret

semantically; in addition, more spatial relationships in physical world can be captured, instead

of being limited to relative positions on the image plane. In particular, occlusion can be viewed

as a special type of contextual relationship in 3D, which would become an intrinsic component

of object and scene models. Finally, joint modeling of an object class and its 3D context may

provide effective constraints on the object’s scope on the image plane and lead to a coarse-level

object segmentation. See Figure 3.1 for an example.

Our work aims to utilize RGBD datasets to learn a context-aware object detection model

53
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Illustration of structured Hough voting. (a) RGB frame with object bounding box
(red) and visible part bounding box (green). (b) Object centroid voting from multiple layers.
(c) Combined object centroid voting results. (d) Detector output (red) with visibility pattern
prediction (green). (e) Object visibility pattern prediction results. (f) Final segmentation re-

sults.

which encodes depth cues and a coarse level of 3D relationships. We focus on training a depth-

dependent appearance model for each object class and its context. The learned depth-encoded

object and context model is then applied to 2D images during test so it can be used to facilitate

generic object detection [195].

Specifically, we propose a structured Hough voting method that incorporates depth-dependent

contexts into a codebook-based object detection model. Our model generalizes the traditional

Hough voting detection methods in three ways. First, we design a multi-layer representation of

image context for indoor scenes that captures the layout structure of scenes. An image region

contributes to each object hypothesis in a different manner based on its depth layer. Secondly,

we define a new object hypothesis space in which both the object’s center and its visibility

mask will be predicted. Each image patch will generate a weighted vote to a joint score of the

object center and its support mask in the image. Finally, we view occlusion as special con-

textual information, which could provide cues for localizing objects and help with reasoning

about visibility of object parts. The overall output of our approach is a simultaneous object

detection and coarse segmentation.

Our detection and segmentation are achieved by maximizing the joint score of object center

and visibility mask. We derive an efficient alternating ascent method to search modes of the

Hough voting score maps. To learn the model from partially labeled RGBD data, we adopt an

approximate learning procedure based on the max-margin Hough transform [129]. We evaluate

our approach on two public RGBD datasets and demonstrate its efficiency.

The remainder of this chapter is organized as follows. The details of our model structure
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are introduced in Section 3.2. Section 3.3 describes the inference procedure in our structured

Hough voting, followed by the max-margin learning for model estimation. Details on experi-

mental evaluation are reported in Section 3.4 and Section 3.5 summarizes this chapter.

3.2 Our approach

far-away layer

close-up layer

occluder layer

Figure 3.2: Top-ranked clusters (presented with the patches closest to the cluster centers) for 3
contextual layers on the Berkeley 3D object dataset.

3.2.1 Structured Hough voting

We first briefly review the original Hough voting based object detection method and introduce

notation. Hough voting methods (e.g., [109, 52]) generally use object poses as their hypothesis,

accumulate scores from each image patch into a confidence map for the hypothesis space, and

search for the highest voting scores from the map [7].

Mathematically, suppose we have an image I and an object class of interest o. Let the

object hypothesis be xs ∈ X , where X is the object pose space. To simplify the notation, we

assume each hypothesis is xs = (x,as) where x = (ax,ay) is the image coordinate location of

the object center and as is a scale. At a specific object scale as, Hough voting methods define

a scoring function S(x) for each valid location x on the image plane, which is a summation of
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Centroid voting (layered)

L2
L3

L1

L4

Final centroid

Mask voting (layered)

L2
L3

L1

L4

Final mask

Mask features

mL
d mG

d

y
d

x

Figure 3.3: Illustration of multiple layered object centroid and mask voting. L1 corresponds to
the object layer, and L2, L3, L4 correspond to far-away context, close-up context and occluder
layers, respectively. For mask voting, brighter regions indicate a higher response, while darker

regions indicate a lower response.

weighted votes from every local image patch. To compute the voting weights, an appearance-

based codebook is usually learned from the image patches in object class o, denoted by C =

{Ci}Ki=1. Each codebook entry Ci consists of a typical patch descriptor fci and geometric

features Di of training patches associated with the i-th entry. A typical geometric feature is

the relative positions d = (dx,dy) of image patches w.r.t. the corresponding object centers.

Given the codebook C, we can write the Hough score function as follows. Denote each

image patch Iy by its location y = (bx, by) and feature descriptor fy,

S(x)∝
K∑
i=1

∑
y

ωip(Ci|y)
∑
d∈Di

e

(
− ‖(y−x)−d‖2

2σ2
d

)
(3.1)

where ωi = p(o|Ci) is the entry-to-class probability, p(Ci|y) is the patch-to-entry matching

probability, and σd is the standard deviation of a Gaussian filter for the object center. Notice

that the object center x essentially specifies a bounding box. However, the bounding box

hypothesis space is limited in its representation power as it is incapable of describing partial

objects or visibility patterns.

We propose to extend the object hypothesis space from a single centroid x to a joint space

(x,v) and define a new score function S(x,v). Here x specifies the object center (or equiva-

lently its bounding box), and v is a visibility mask indicating which part of the object is visible,

as shown in Figure 3.3. The mask v has the same size as the image I , and v(y) = 1 if the image

patch at y belongs to the object o, and 0 otherwise. For notation simplicity, we reshape v as an
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1-D vector and denote its element at image location y as vy.

Our key step is, instead of using Gaussian kernels in Equation 3.1, we introduce a class

of voting masks that are capable of representing the relative positions as well as the object

visibility pattern. As illustrated in the rightmost figure in Figure 3.3, we include a local mask

and a global mask for each codebook entry. The local mask predicts if a local patch itself is

part of the object, and the global mask casts a vote for the spatial extent of the whole object on

the image plane based on the relative geometric feature d.

Formally, each codebook entry Ci includes a new set of geometric features D̃i = {d̃ =

(d,mL
d ,m

G
d )}, where mL

d is the local mask feature and mG
d is the global mask feature. The

local mask features describe local visibility of object regions, which is similar to the ISM [109].

The global mask features limit the scope of each object on the image plane. A natural choice

is an object bounding box-shaped mask as illustrated in Figure 3.3. Note that by choosing a

different family of mask features, our model allows for finer description of the object shape

and/or visibility patterns.

For an image patch at Iy and object center hypothesis x, we can compute two average

voting masks from the i-th codebook entry as follows:

mG
i (x,y)∝

∑
d̃∈D̃i

mG
d (x−y+d)∗G(0,σ2

d) (3.2)

mL
i (x,y)∝

∑
d̃∈D̃i

mL
d(x−y)∗G(0,σ2

d) (3.3)

wheremG andmL are the average global and local voting mask, respectively; m(x) represents

the mask with its center shifted to x, G(·) is the Gaussian kernel, and ∗ is the convolution

operator. See Figure 3.3 for an illustration.

We define the new score function as a matching score between the visibility mask hypoth-

esis v and a weighted sum of the voting mask values,

S(x,v) =

K∑
i=1

ωiv
T
[∑

y

γ(v(y))
(
mG
i (x,y)

+µmL
i (x,y)

)
p(Ci|y)−wb

]
(3.4)

where wb is a global bias to the mask voting score, and µ is the relative weight of the local

mask. γ(u) is a weighting function with γ(1) = 1 and γ(0) = δ,δ < 1. Intuitively, we give a

smaller weight to the votes that arise from features not on the object. ωi gives a relative weight

for each codebook entry. It can be shown that when v = 1, µ = 0 and the global voting mask

has the shape of an object bounding box, the new score function is equivalent to the Hough

voting score in Equation 3.1.
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3.2.2 Depth-encoded context

The structured Hough voting model can easily incorporate image contextual information by

extending the codebook and including votes from both object and context patches. In this

work, we design a multi-layer scene representation that captures different types of image cues

for detection and integrates them into the model. The overall object model does not have a 3D

or 2.5D point cloud like representation; it is a 2.1D (i.e., multiple layers) object-centric model.

However, our model does encode 3D depth information as we discuss below.

Concretely, we group image patches into four layers according to their relationship with

the target object: 1) An object layer which includes all the image patches from the object itself;

2) An occluder layer which has the patches occluding the object; 3) A nearby context layer

which consists of the context patches within 1 meter of the average object depth; 4) A far-away

context layer that has the rest of the context image patches.

We associate each layer with its own specific parameters as they contribute to object de-

tection and occlusion prediction in different ways. We first learn a separate codebook-based

appearance model for each layer using object labels and depth cues. Denote the i-th codebook

entry of layer l as C li , we define a context-aware structured Hough voting model by including

the votes from all the layers:

Sc(x,v) =

4∑
l=1

Kl∑
i=1

ωliv
T
[∑

y

γ(v(y))
(
mG
l,i(x,y)

+µlmL
l,i(x,y)

)
p(C li |y)−wlb

]
(3.5)

where Kl is the size of the codebook in layer l. Note that each layer has its own Gaussian

kernel width σld in the voting masks. The details of each layer are as follows.

A. Depth-encoded codebooks. We use HOG features [46] for image patches on the target

object and Texton like [185] features for patches from context layers. In particular, we use the

filter bank, color and HOG textons obtained with the implementation from [90]. The initial

codebooks are generated by K-means clustering of randomly sampled patches. To capture

discriminative patches, we also use an interest point detector to sub-sample the patch pool.

The Texton feature, which is a coarser level descriptor, is better for capturing context in a

scene. Some examples of image patches in our codebooks are shown in Figure 3.3. We can

see that different types of scene structure are captured. We further refine the initial codebooks

by utilizing depth information available during training. Specifically, we rank each cluster in

each layer by its 3D offset variance, and prune out those ranked in the last 25%.

B. Layer-dependent voting masks. We design the global mask feature mG
d and local mask

featuremL
d according to the properties of each layer. In this work, all the global masks have the

same shape as the object bounding box. Thus all active patches contribute to limiting the scope
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(a) (b) (c) (d) (e)

Figure 3.4: Illustration of the impact of patch pair terms on hypothesis scoring. Upper panel:
A specific example, with (a) RGB frame with an example of a patch pair (in blue rectangles).
(b) Object centroid voting results without patch pair terms. (c) Object centroid voting results
with patch pair terms added. (d) Shape voting results without patch pair terms. (e) Shape
voting results with patch pair terms added. Lower panel: The highest ranked patch pairs on
the Berkeley 3D object dataset. The first row shows on-object patches, and the second row

shows off-object patches. Each column corresponds to a patch pair.

of the object. For the local masks, the object layer has a positive 2D stump with 1/10th of the

object size, while other layers have a negative 2D stump with the same size. Intuitively, the

active image patches from context layers help localize the object center but also indicate the

local patches that do not belong to the object. In addition, we set the Gaussian blur parameter

σld such that the far away context layer has larger variances in terms of center prediction (3

times).

3.2.2.1 Second-order features

In addition to layered codebooks, which are built on single patches, we utilize patch feature

pairs to improve the discriminative power of the model [235]. In particular, we focus on

co-occurring object and contextual feature pairs. These feature pairs can refine the context

relationship and better predict the object boundary.

We incorporate the object-context feature pairs into our structured Hough voting model by

adding a second-order term to the score function: S(x,v) = Sc(x,v) +αSp(x,v), where α is

the relative weight, and Sp is the object-context feature pair term. Assume the first layer l = 1
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Algorithm 1: Alternating Inference for S(x,v).
Input: Input Image I; Layered Codebooks C = {Ci}, i= 1 · · ·NL; Offsets Di; Mask

templates md(y),m′d(y),∀d ∈Di; Entry weights {ωli,µlj ,ωlij ,µlij}; Model
parameters τ,α,δ,κ; Local maxima seeds Nseed; termination threshold ε > 0;
Maximum iterations Tmax.

Initialization: Let v = 1, search for Nseed local maxima for S(x,1): xi, i= 1 · · ·Nseed.
for each local maxima xi do

for iteration = 1 : Tmax do
1. Obtain a new v∗i by solving Equation 3.8;

2. Optimal solution check:
if S(xi,vi)−S(xi,v

∗
i )< ε,

then break and the problem is solved;

3. v← v∗i , vote again for x∗i with vi, xi← x∗i .

end
Mask Recalculation: Obtain a new v∗i by solving Equation 3.8, v← v∗.

end
Output: argmax(xi,vi)S(xi,vi)

is the object layer, Sp can be written as

Sp(x,v) =

K1∑
i=1

4∑
l=2

Kl∑
j=1

ωlijv
T
[∑
y,y′

γ(v(y))

(
mG

1,i�mG
l,j +µlmL

1,i⊕mL
l,j

)
·ϕ−w1,l

b

]
(3.6)

where� and⊕ are the element-wise product and addition operators, respectively. We omit the

variables (x,y) in m for clarity of the notation. ωlij is the weight for the object-context code-

book entry pairs. The patch pair to entry matching probability ϕ= p(C lj |C1
i )p(C1

i |y)p(C lj |y′)
and p(C lj |C1

i ) is estimated by the feature co-occurrence frequency matrix during training. We

also use depth information to prune out geometrically unstable or inconsistent codebook pairs

as in the previous subsection.

3.3 Model learning and inference

3.3.1 Joint inference for object detection and occlusion prediction

Once the structured Hough voting model is trained with depth-augmented image data, we can

apply it to 2D images for object detection and occlusion prediction. Our method infers the ob-

ject center hypothesis and its visibility mask by maximizing the Hough score function S(x,v).
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However, due to the large hypothesis space of (x,v), it is difficult to use the original Hough

voting approach, or conduct a brute-force search. In this section, we propose a coordinate-

ascent method which finds the local maxima of the score function.

Specifically, we alternatively maximize the score function with respect to one variable,

while keeping the other fixed. When v is fixed, the optimization is the same as the original

Hough voting. We only need to carry out a weighted Hough voting step and the local maxima

x∗i can be retrieved from the Hough map. When the object center is fixed, our Hough score is a

quadratic function of the binary vector v. To convert S(x,v) into its quadratic form, we notice

that γ(v(y)) = (1− δ)v(y) + δ. So we can write the first term (i.e., the global mask term) in

Equation 3.5 as

Sc1(x,v) =
4∑
l=1

Kl∑
i=1

ωliv
T (3.7)[∑

y

(
(1− δ)v(y)mG

l,i(x,y)p(C li |y)

+ δmG
l,i(x,y)p(C li |y)−wlb

)]

=
4∑
l=1

Kl∑
i=1

[
vT
(
ωli
∑
y

(1− δ)mG
l,i(x,y)p(C li |y)

)
v

+vT
(
ωli
∑
y

δmG
l,i(x,y)p(C li |y)−wlb

)]

The other terms in Equations 3.5 and 3.6 can be written in this form similarly. Summing

those terms together, we have the following overall scoring function:

S(x,v) = vTA(x)v+vTB(x) (3.8)

where

A(x) =



ωli
∑

y(1− δ)mG
l,i(x,y)p(C li |y)
...

µli
∑

y(1− δ)mL
l,i(x,y)p(C li |y)
...

ωlij
∑

y(1− δ)(mG
1,i�mG

l,j) ·ϕ
...

µlij
∑

y(1− δ)(mL
1,i⊕mL

l,j) ·ϕ
...


, (3.9)
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RGB frame
iteration #1 iteration #5 iteration #10

Figure 3.5: An illustration of how iterative inference updates the object centroid and sup-
porting mask hypotheses. The first row on the right shows object centroid voting, with the

corresponding supporting mask estimations shown in the second row.

B(x) =



ωli
∑

y δm
G
l,i(x,y)p(C li |y)−wlb

...

µli
∑

y δm
L
l,i(x,y)p(C li |y)−wlb

...

ωlij
∑

y δ(m
G
1,i�mG

l,j) ·ϕ−w
1,l
b

...

µlij
∑

y δ(m
L
1,i⊕mL

l,j) ·ϕ−w
1,l
b

...


, (3.10)

where � and ⊕ are the element-wise product and addition operators, respectively. Please refer

to Equation 3.5 for the definition of the variables. We choose to solve a relaxed version of this

problem by allowing v(y) ∈ [0,+1], which is a constrained quadratic programming problem.

We find an approximate binary solution by searching for an optimal threshold to binarize the

solution vector. Note that the constraint for the relaxed quadratic programming problem will

enforce invisibility for any image location y outside the bounding box x, i.e., v(y) = 0,∀y /∈x.

This greatly reduces the search space.

The inference algorithm is summarized in Algorithm 1. It initializes the object center

hypothesis with the original Hough voting method, and search for object hypotheses at multiple

scales. Figure 3.5 shows the iterative inference process.

3.3.2 Learning with depth-augmented data

Our model in Equations 3.5 and 3.6 is linear in terms of its weight vector w = {ωli,µlj ,ωlij , l =

1, · · · ,4, i, j = 1, · · · ,K l}. We utilize the max-margin Hough transform [129] framework to

train our codebook entry and entry pair weight parameters w = {ωli,µlj ,ωlij ,µlij}. During

training, our scoring function S(x,v) can be interpreted as a weighted sum of w so it can be

trained using the objective function of the max-margin formulation as follows
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min
w,b,ξ

1

2
wTw+C

T∑
i=1

ξi

s.t. zi(w
TDi+ b)≥ 1− ξi,

w < 0, ξi ≥ 0,∀i= 1,2, . . . ,T (3.11)

where zi is the label of the i-th training sample, ξi is the corresponding slack variable, and DT
i

is the activation matrix for the i-th sample defined as

DT
i =



vT
(∑

y γ(v(y))mG
l,i(x,y)p(C li |y)−wlb

)
...

vT
∑

y γ(v(y))mL
l,i(x,y)p(C li |y)

...

vT
(∑

y γ(v(y))(mG
1,i�mG

l,j) ·ϕ−w
1,l
b

)
...

vT
∑

y γ(v(y))(mL
1,i⊕mL

l,j) ·ϕ
...



(3.12)

We assume only a coarse labeling of the visibility is available for positive training data.

To speed up training, we generate a negative example set that consists of incorrect labelings

obtained from applying a simple version of our model with uniform weights, i.e., w = 1. For

all the other model parameters, we use cross-validation to find their values using a held-out

validation set.

3.4 Experimental evaluation

3.4.1 Dataset and setup

We evaluate the proposed structured Hough voting method on two challenging RGBD object

datasets: the Berkeley 3D Object (B3DO) Dataset (Version 1) [77] and a subset of object

classes on the NYU Depth Dataset (Version 2) [145]. B3DO contains 849 images taken in 75

different scenes, and 8 object categories.The NYU Depth dataset has a total of 1449 labeled

images. As the dataset was originally designed for pixelwise scene segmentation, it contains

many background classes (e.g., wall, ceiling) which are not suitable for our object representa-

tion. Therefore, we run experiments with only the following 5 categories: table, chair, door,

bed and sofa. For both datasets, we follow the training, validation and testing split supplied

with their respective versions. See Figure 3.6 for some qualitative detection results using our
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approach.

As the labelings of visibility masks are expensive to obtain, we assume only coarse-level

labels for our masks. Two bounding boxes are used: one for the whole object and the other for

visible parts. Some examples of the ground truth labelings are shown in Figure 3.6(a) (more in

Section 3.4.5). For evaluation of segmentation accuracies we also manually label the visibility

ground-truth using polygons on the B3DO dataset.

3.4.2 Model details

For codebook generation, we randomly sample 200 patches per image from the visible part

bounding box and generate 400 clusters for non-object patches using K-means, then rank them

according to the patches’ offset variance. We then prune these clusters by discarding clusters

with 20 or less members, and discard again remaining clusters with ranking in the last 25%.

For other layers (i.e., context and occluder), we sample 400 patches per image and generate 800

clusters as the appearance variability is larger with context and occluders. For these layers we

follow a similar pruning process after a second round of clustering is performed as discussed

in Section 3.2.

During test, we first prune down our search space for object hypotheses with edge boxes [242]

as a pre-processing step. Afterwards, our detector searches for up to 100 local peaks in the

Hough image with v = 1, and then runs a full version of inference and computes scoring func-

tions for each of these peaks. Our alternate inference algorithm is likely to converge in a few

iterations in most cases so we limit the maximum number of iterations to 20. The inference is

efficient and complete detection takes around 5 seconds per image with a quad-core i7 desktop

computer, using our paralleled MATLAB implementation.

After object location and the corresponding visibility mask are inferred, we run GrabCut

[173] in the bounding box specified by x to generate a final segmentation mask to utilize

bottom-up image cues and examine segmentation performance. Based on the shape voting

results, we set regions with highest responses as foreground seeds and regions with lowest

responses as background seeds, then run GrabCut for 10 iterations to get the final segmentation

mask.

3.4.3 Quantitative results

In this section, we present quantitative evaluation results on the B3DO and NYU Depth datasets.

Figure 3.7 reports the performance of our approach on the two datasets in comparison with

three baseline methods.1 Specifically, we compare our method with Deformable Parts Model

1Please note the results reported in our CVPR’13 paper [212] are not valid. There were errors in the experimen-
tal setup. Results obtained using the correct experimental setup are reported here.
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(a) Detection examples with illustrations of intermediate steps. See the caption of Figure 3.1
for meanings of each step.

(b) More detection results in some challenging scenes. The red, yellow and cyan boxes
indicate correct detections, false alarms and missing detections, respectively.

Figure 3.6: Detection examples of our approach. See text for details.
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Figure 3.7: Detection precision-recall curves on the Berkeley 3D Object dataset (left) and
the NYU Depth dataset (right). The solid curve corresponds to our approach (Ours). The
dashed curves correspond to baseline methods: Deformable Parts Model (DPM) [46], Max-
margin Hough transform (M2HT) [129], and Max-margin Hough transform with 2D geometric

context (2D). See details in text.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Precision vs. Recall

 

 

Single (AP: 26.7%)
P Off (AP: 29.4%)
S Off (AP: 29.6%)
Full (AP: 31.0%)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Precision vs. Recall

 

 

Single (AP: 18.7%)
P Off (AP: 20.0%)
S Off (AP: 20.0%)
Full (AP: 22.3%)

Figure 3.8: Detection precision-recall curves on the Berkeley 3D Object dataset (left) and the
NYU Depth dataset (right). The solid curve corresponds to our full model (Full). The dashed
curves correspond to diagnostic results with various components in our full model turned off,
i.e., single layer context (Single), patch pair term off (P Off), and segmentation off (S Off).

See details in text.

(DPM) [46] and max-margin Hough transform (M2HT) [129]. Note that both baseline meth-

ods use 2D image cues only, without encoding contextual cues. Furthermore, we include a

comparison with Hough voting using additional 2D geometric context, which uses 2D offsets

only in generating a single-layered contextual codebook. For modeling the object itself with a

depth-encoded codebook, we also tried M2HT with a codebook learned with 3D offsets, which

did not work well due to noisy labels of 3D object centers. It is clear from the results that our

method outperforms all baselines on both datasets. For results on each object category, see

Figures 3.11 and 3.12.

In addition, Figure 3.8 reports results from an ablation study on the contributions from

three components in our approach. Specifically, we run three diagnostic tests with one of the
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following components in our full model turned off: (1) multi-layer context (i.e., use single-

layer context instead), (2) patch pair term (second-order features), and (3) segmentation (al-

ternating inference). The resultant performance drops suggest all these components boost the

performance of our approach. In particular, the multi-layer context has the largest impact. See

Figures 3.13 and 3.14 for results on each object category. We note that on 11 out of 13 ob-

ject categories, our full model performs better than without the three components in term of

average precision.

Finally, Table 3.1 summarizes the per-class and mean average precision (mAP) values for

all experiments above.

We also make the following observations in relation to the abovementioned results:

• For baseline results, DPM [46] outperforms M2HT [129], on which our method is based.

The latent training process based on discriminative learning allows DPM to more effec-

tively capture object parts in the presence of heavy deformation and occlusion. We note

that the object layer in our method may be detached from the rest of the model, and we

may potentially improve over our current results by combining our context representa-

tion with more powerful object detectors.

• 2D geometric context contributes to baseline detection performance slightly on some

object categories. Further with the depth-encoded context, the performance of our struc-

tured Hough voting model is improved. This suggests context is properly modeled in

our method and suppresses object activations at unlikely locations within an image. It

may worth to note that, in general, we observe a higher precision in high-recall regimes

when context is modeled. This perhaps relates to the fact that context cues play a more

important role in objects that have lesser visual cue support from themselves, in line

with our intuition mentioned at the beginning of this chapter. An alternative view to this

precision characteristics at higher recall is that context layers essentially narrow down

the spatial search space for objects softly. In light of this, the linear addition of object

and context cues currently used in our method may be improved. In our implementation

we currently use log-scale context scores but a finer relation may be learned from data.

3.4.4 Segmentation performance analysis

Next, we present a segmentation performance analysis with different mask terms enabled. We

present the precision-recall of the visibility mask at the point of 50% recall in object detection.

For each object hypothesis, we obtain a soft segmentation score, which is used to compute the

segmentation precision-recall curve in Figure 3.9. We can see that both local and global mask

features help improve the segmentation performance. It is also clear that simultaneously voting

for the local mask position and the whole object mask yields best segmentation performance.
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Figure 3.9: Precision-recall curves on the Berkeley 3D Object dataset (left) and the NYU
Depth dataset (right) for segmentation at 50% recall rate in Figure 5.5. Simultaneously voting

for local feature position and whole object hypothesis yields the best segmentation results.

3.4.5 More detailed examples

Finally, we present some more detailed results in Figure 3.10. Each row from (a) to (f) cor-

responds to one specific object instance on a test image. From left to right, we present (1)

the RGB frame with ground-truth labelings as available in training. Specifically, these are two

bounding boxes marked in green and red respectively. The green bounding box indicates vis-

ible parts of the instance, while the red one indicates the whole object including both visible

and invisible regions. Note that we use a separate pixelwise labeling for evaluating segmenta-

tion performance. The pixelwise labeling was manually generated on the Berkeley 3D Object

Dataset [77], while on NYU Depth [145] it is readily available. Then, we show (2) votes from

different layers for the object centroid. From the upper-left corner, we show votes from the

object layer (red), nearby context layer (green), occluder layer (yellow), and faraway context

layer (blue) in the clockwise direction. In (3), the next column, the aggregated votes for the

object centroid are shown. After that, we show (4) results with our alternating inference algo-

rithm. The whole object hypothesis is shown as a red bounding box, with image cells inferred

as visible highlighted in green. Next, we show (5) the corresponding mask prediction. Finally,

(6) the segmentation results based on GrabCut are presented.

The examples presented in Figure 3.10 include some of the most representative results on

both datasets, and reflect various aspects of our model.

Firstly, we can see the multi-layer representation helps build a more discriminative centroid

voting codebook by suppressing false alarms in the object layer. This can be easily observed

from examples (a), (b) and (e). Our model allows the object layer to generate concentrated

peaks while raising or lowering the underlying terrain using the smeared votes from contextual

layers. If a local peak from the object layer lacks support from its surrounding context, the

vote will be weakened. On the other hand, if all layers have a consensus, the peak will be

strengthened.

Secondly, our model captures the appearance of some occluders and use that information to
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(1) RGB frame (2) layered center (3) final center (4) inference (5) mask (6) segmentation

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.10: More experimental results of the proposed approach on Berkeley 3D Object
Dataset [77] and NYU Depth Dataset [145]. Each row corresponds to a specific instance on a

test image. See text for detailed discussion.

strengthen local centroid peaks, as well as carving out the shape of an object. This is inherently

a very challenging task because the appearance of occluders varies greatly, and our model

learns their appearances from only coarse-level labels. Successful examples include (d) and

(f). In contrast, although the occluder layer gives roughly correct vote positions in (b), the

shape voting breaks down on the desktop occluding the chair. In (c), the chair occluding the

door is ambiguous and our model fails to fully recover the correct occlusion pattern.

Finally, our model is also capable of localizing truncated objects, as shown in (e) and there

are some similar examples in the previous sections.

3.5 Conclusion

In this chapter, we have presented a novel structured Hough voting model for indoor object de-

tection and occlusion prediction. We extend the original Hough voting based detection model

by introducing a joint Hough space of object locations and visibility patterns. The structured
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Hough model can naturally incorporate both the object and its context information, which is

especially important for cluttered indoor scenes. In addition, we utilize depth information at

the training stage to build a multi-layer contextual model so that a better visual codebook is

learned and more detailed object-context relationships can be captured. The efficacy of our ap-

proach has been demonstrated on two publicly available RGBD datasets, and our experiments

show we achieve improvements over the state-of-the-art 2D object detection approaches.
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Figure 3.11: Per-class detection precision-recall curves on the Berkeley 3D Object dataset
(B3DO). The solid curve corresponds to our approach (Ours). The dashed curves correspond
to baseline methods: Deformable Parts Model (DPM) [46], Max-margin Hough transform
(M2HT) [129], and Max-margin Hough transform with 2D geometric context (2D). See details

in text.
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Figure 3.12: Per-class detection precision-recall curves on the NYU Depth dataset (NYU).
The solid curve corresponds to our approach (Ours). The dashed curves correspond to baseline
methods: Deformable Parts Model (DPM) [46], Max-margin Hough transform (M2HT) [129],

and Max-margin Hough transform with 2D geometric context (2D). See details in text.
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Figure 3.13: Per-class detection precision-recall curves on the Berkeley 3D Object dataset
(B3DO). The solid curve corresponds to our full model (Full). The dashed curves correspond
to diagnostic results with various components in our full model turned off, i.e., single layer
context (Single), patch pair term off (P Off), and segmentation off (S Off). See details in text.
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Figure 3.14: Per-class detection precision-recall curves on the NYU Depth dataset (NYU). The
solid curve corresponds to our full model (Full). The dashed curves correspond to diagnostic
results with various components in our full model turned off, i.e., single layer context (Single),

patch pair term off (P Off), and segmentation off (S Off). See details in text.
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Chapter 4

Glass Object Segmentation by Joint
Inference of Boundary and Depth

4.1 Introduction

Semi-transparent objects are commonly found in indoor environments such as household or

office scenes, and play a key role in daily human activities. As such, it is important for scene

understanding and visual recognition systems to be able to localize them. Although the detec-

tion and segmentation for generic objects are well studied, localizing semi-transparent objects

from RGB cameras is much more challenging due to lack of locally discriminative visual fea-

tures and homogeneity of surface appearance [135, 51].

Most previous work on glass object detection and segmentation focused on detecting spe-

cial properties of the glass surfaces and their interaction with the opaque environment in images

[151, 3, 144]. In particular, McHenry, Ponce and Forsyth [135] design a classifier which at-

tempts to find a glass/non-glass boundary based on a combination of cues, such as color and

intensity distortion, blurring and specularity. In addition, contextual [134] or categorical [51]

information is employed to integrate a variety of local features into a coherent surface or object

model. Despite those efforts, glass object detection and segmentation still remain unsatisfac-

tory in practice due to the ambiguity and lack of cues in 2D RGB images.

Recently, range (depth) cameras have been employed to detect transparent objects, in which

the attenuation of signal intensities is exploited. Wallace and Csakany [209] develop a time-of-

flight laser sensor based on photon counts. Klank, Carton and Beetz [84] use two images from

a time-of-flight camera to detect and reconstruct transparent objects. The popularity of RGBD

sensors has allowed researchers to utilize both intensity and depth to localize glass objects.

Lysenkov, et al. [123] have proposed a model taking into account both silhouette and surface

edges, and a CAD-based pose estimation method with a robotic grasping pipeline.

In this work, we aim to localize semi-transparent surfaces more precisely by exploring

multi-mode sensors and incorporating depth information as a novel contextual cue. In par-

ticular, we seek to exploit low cost RGBD consumer cameras, such as the structured-light

77
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: Illustration of the proposed approach. (a) Intensity image with ground truth fore-
ground mask overlaid. (b) Edge detector output. (c) Triangulation result. (d) Boundary clas-
sifier output (magnified). (e) Superpixel classifier output (magnified). (f) Reconstructed depth

with joint inference result overlaid.

PrimeSense device (e.g., Kinect), to fuse the intensity and depth information from a single

view point for indoor environments. While recent work with RGBD cameras is mainly ad-

dressing generic object detection [98, 99, 49], here our goal is joint detection, segmentation

and depth inference, which can facilitate many interactive tasks such as robotic manipulation.

As discussed in Section 2.2.4, there has been some work exploiting range devices to detect

or reconstruct semi-transparent objects (e.g., [209, 84]). Unlike those methods, we rely on a

single view RGBD image and combine both intensity and depth cues.

In particular, we exploit the refraction and attenuation that will be experienced by an active

signal passing through glass objects. This physical process is difficult to model, but it provides

a distinctive missing-vs-nonmissing pattern in the depth channel. See Figure 2.8 for examples

and note the irregular nature of the pattern. We integrate boundary cues from RGB channel

with region cues from depth to build a glass boundary and region detector. In addition, we

incorporate spatial cues by constructing a Markov Random Field on triangularized contour

fragments and the corresponding superpixels [15]. A joint inference is designed to predict the

glass boundary and region simultaneously. Furthermore, we perform a plane segmentation of

the 3D scene in non-glass regions, and fill in the missing depth values caused by glass refraction

and other factors. Note that this step would be difficult without the glass boundary/region
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information. For the glass region, however, due to lack of depth measurement, we approximate

its depth by assuming a cardboard cut-out standing on its (non-transparent) supporting surface,

similar to the scene layout in [174].

The rest of this chapter is organized as follows. Section 4.2 describes the setup of our

Markov Random Field model. This is followed by experimental evaluation in Section 4.3 and

concluding remarks in Section 4.4.

4.2 Our approach

We address the glass object segmentation problem with a single view RGBD image, in which

we combine intensity and depth cues and jointly reason about image boundaries and regions.

Our main focus is to model the spatial context by constructing a boundary-region graph and

design effective constraints that help resolve local ambiguities. This is achieved by building a

Markov Random Field (MRF) on image boundaries and regions, and formulate the segmenta-

tion as an MAP inference problem of the random field.

To this end, we first propose potential glass regions and boundaries which help our graph

construction process to create more detailed image partitions where glass objects may be

present. Given the boundary-region graph, we combine intensity and depth cues for our lo-

cal glass/non-glass estimates, and design an MRF model to encode the spatial dependency

and label all image boundary fragments and regions. This also allows us to partially correct

artefacts in depth readings and improve depth reconstruction of the scene.

4.2.1 Boundary and region graph

Glass region proposal. To facilitate glass segmentation, we first propose potential regions that

may contain glass boundaries. Our boundary and region graph will then focus on these regions

(i.e., creating more detailed image partitions to make accurate glass boundary localization pos-

sible). As images are usually dominated by non-glass objects and surfaces, this preprocessing

allows us to maintain a relatively small number of image partitions, while having a high enough

resolution in regions near glass boundaries. We make use of the distinctive missing pattern in

the depth channel, as it is a good indication of the approximate location of a glass object.

Because the missing pattern is usually misaligned with ground-truth glass boundaries due

to varying local refractive properties, and in many cases there may be incorrect depth readings

in glass regions, it is unreliable to directly use missing depth regions as our glass region pro-

posal. See Figure 4.2 (a) and (b) for some image examples. In this work, we use a heuristic

approach based on image morphological processing to propose potential glass regions. We

begin with removing small missing regions in the depth image as they are more likely a result

from occlusion boundaries and other random noise. Next, we dilate edge fragments detected
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(a) (b) (c) (d)

Figure 4.2: Examples of the boundary and region graph construction. (a) Input intensity image.
(b) Input depth image (missing readings are shown in white). (c) Glass region proposal with

proposed glass regions in black. (d) Triangulation result.

near the remaining depth missing regions so that large connected components can be formed.

We use a disk-shaped structuring element with radius r for this dilation. In addition, we fill

in any holes to avoid hollow regions. See Figure 4.2 (c) for examples of glass region pro-

posals. Note that our goal in this step is to recall as many regions near glass boundaries as

possible, while keeping the radius r of the disk reasonably small, and we are less concerned

about precision. We report quantitative evaluation results on the glass region proposal step in

Section 4.3.2.

Boundary proposal. We would like our image partitions to follow glass boundaries where

possible, so that a segmentation similar to the shape of the glass object can be obtained by

assuming a subset of image partitions as glass regions, and the remaining as non-glass. How-

ever, the challenge of glass boundary detection is evident: glass boundaries are often weak and

exhibit large local appearance variations. Therefore, detecting glass boundaries may require

multiple types of information to deal with different local appearances. In addition, we would

like the partitions to follow depth discontinuities. This would allow us to fit a plane in 3D to

each image partition in order to reconstruct the depth of the scene. It should be noted that, as

shown in Figure 2.8, the irregular nature of the missing patterns on depth maps renders it a
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RGB Image Depth boundary (c) (d)

Glass boundary (a) (b)

RGB boundary

Figure 4.3: An example of boundary proposal including glass, depth and RGB boundary. (a)
BGTG boundary detector output. (b) Glass region proposal results. (c) depth boundary de-
tector output before alignment. (d) low-threshold RGB edge detector output. See text for

details.

non-trivial task to proposal glass boundaries.

In order to detect glass boundaries and depth discontinuities, we combine boundary cues

from multiple sources as follows:

gPb_rgbd= α1 ·gPb_glass+α2 ·gPb_depth+ (1−α1−α2) ·gPb_rgb (4.1)

where gPb_rgbd is the boundary map we use to partition an input image, gPb_glass a glass

boundary map, gPb_depth a depth boundary map, and gPb_rgb an RGB boundary map. α1

and α2 are weighting coefficients. See Figure 4.3 for an example.

Firstly, for glass boundary we empirically evaluated some popular edge detectors, in partic-

ular boundary detectors from [132], and found that the BGTG boundary detector is generally

good at recovering glass boundaries. Figure 4.3 (a) shows the output from a BGTG boundary

detector. It is then thresholded and filtered by our glass region proposal discussed earlier in

this section. The filtering ensures that BGTG is not applied to most non-glass image regions,

and helps reduce the overall number of detected edge fragments significantly. We link edge

fragments where possible to partially recover disconnected detections; then remove short, iso-

lated fragments [93]. Again, depth information is not used here as it is highly noisy near glass

boundaries and the missing patterns can either be dilated or corroded depending on the local
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refractive properties.

Secondly, we detect the depth boundary by computing a local depth orientation map a

smoothed depth image with missing regions filled in by a median filter [98], as shown in

Figure 4.3 (c). To address the misalignment between RGB and depth image pairs, we run a

Canny edge detector on RGB image with a very low threshold as in Figure 4.3 (d), then use the

benchmark suite that comes with [132] to compute a minimum-cost correspondence between

the depth boundary map and the RGB Canny edge map. The final depth boundary we use

are the correspondences of the depth boundary on the RGB Canny edge map, discarding the

original (noisy) depth boundary. In this way, any drifted depth boundaries can be realigned to

their correspondences on the RGB Canny edge map.

Finally, we supplement the glass and depth boundary maps with an RGB boundary map,

which again is a Canny edge map on the RGB image but with a higher threshold. This cap-

tures any weak glass and depth boundaries that co-occur with strong intensity changes. We

found this necessary to recover some depth boundaries between adjacent regions with differ-

ent orientations in 3D (e.g., the boundary between the brown desktop and the blue book in

Figure 4.3).

In Section 4.3.2, we quantitatively examine the effectiveness of the three distinctive bound-

ary maps, and show that their combination gives the best recall rate for glass boundary pro-

posal.

Graph construction. To model the spatial context, we construct a graph on proposed bound-

aries and planar regions as follows. We first break the linked boundaries into shorter lines and

perform Delaunay triangulation on their end points. To control the resolution of the graph, we

set the maximum length of these shorter lines to 50 px in the proposed glass regions and 100

px elsewhere. The triangulation generates two types of nodes and their connectivity: boundary

fragment nodes connected with their end points, and triangular superpixel nodes partitioned by

boundary fragments. Triangulation allows for a straightforward local neighborhood relation-

ship among boundary fragments and and regions. In particular, each boundary fragment has

exactly two region neighbors in our graph. As we will show, this allows us to design our en-

ergy function based on local cliques involving two neighboring superpixels and the boundary

fragment in between without double counting. As a side effect, the graph construction process

creates small artefacts along glass boundaries due to the linear nature of the sides of triangles.

However, as the resolution of the graph is higher near the glass regions in our work, it only

slightly affects the glass boundary recall rate. See Section 4.3.2 for a quantitative evaluation.

As shown in Figure 4.2, most glass boundaries and depth discontinuities are followed by our

partition, and this process partially recovers broken/missing boundary detections.



§4.2 Our approach 83

Boundary Nodes

Depth Nodes

ekl

ψE(eij ,ekl;I )
α di gi

φD(di;I )

φE(eij ;I )
fij eij ψD(di,dj ,eij ;I )

φD(dj ;I )
dj gj

Figure 4.4: The factor graph of the MRF model for our glass detector. Each black square
represents a term in Equation 5.2. Each circular node represents a random variable. Shaded

nodes are observations.

4.2.2 A Markov Random Field on boundaries and superpixels

We build a Markov Random Field model [15] on the boundary fragments and superpixels

w.r.t. the graph in Section 4.2.1, which defines a joint distribution over the glass labeling given

an RGBD image input. Note that our output includes both boundary and region labeling –

with which we are able to encode the spatial dependency in a more expressive way. We first

introduce the energy function of our model and then describe its components in detail.

Let the boundary fragments be E = {eij} and its subgraph be (VE ,GE). Similarly we

have D = {di} and (VD,GD) for superpixels. We define the state space of di as Di = {0,1},
indicating glass and non-glass. For boundary variable eij , we first assign a direction to it and

define its left and right side. eij is 0 if it is not a glass-vs-nonglass boundary, +1 if the glass

region lies at left side and−1 otherwise. Therefore the state space for eij is Eij = {0,+1,−1}.
The energy function we propose can be written as follows:

E =
∑
ij∈VE

φE(eij ;I )︸ ︷︷ ︸
boundary unary

+β
∑

(ij,kl)∈GE

ψE(eij ,ekl;I )

︸ ︷︷ ︸
boundary pairwise

+

γ
∑
i∈VD

φD(di;I )︸ ︷︷ ︸
superpixel unary

+λ
∑

(i,j)∈GD

ψD(di,dj ,eij ;I )

︸ ︷︷ ︸
superpixel pairwise

(4.2)

where I is the input image, and β, γ and λ are weighting coefficients. The factor graph is

shown in Figure 4.4.

Boundary unary potentials. The boundary unary potential is the negative log-probability
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from a classifier based on local cues:

φE(eij ;I ) =− log(P (eij |fij)) (4.3)

where fij ∈RN is the local feature vector for the boundary fragment eij . We evaluate two dif-

ferent local classifiers: a Support Vector Machine (SVM) with a Radial Basis Function (RBF)

kernel and a Random Forest (RF) classifier. The classifier input consists of features extracted

from both sides of a boundary fragment. In particular, we extract features from multiple pairs

of feature windows, each on either side of the boundary fragment. See Section 4.3.1 for details.

The features used for training the boundary unary classifier include:

• Hue and Saturation [135]: This feature is designed to measure the color similarity be-

tween both sides of a boundary fragment, as color on both sides of a glass boundary

tends to be similar. A twenty-bin histogram is constructed for hue and saturation val-

ues on both feature windows. The histograms are then normalized and the Euclidean

distance between them are used as our feature.

• Blurring [135]: This feature quantifies the relative smoothness between both sides of a

boundary fragment, as glass surface could have a blurring effect on the background. The

discrete cosine transform is used and the mean of frequency coefficients is chosen as an

indication of smoothness. After this, we use the difference of mean frequencies on both

sides as our feature, which reflects the relative smoothness. As this measure can be less

reliable on highly textured regions, the measured frequency difference is normalized by

a texture entropy measure (i.e., the standard deviation of intensity values on the smoother

side of the boundary).

• Blending and Emission: The feature is based on the overlay assumption of glass sur-

faces [3] and particularly, the linear model for the intensity of a transparent surface:

I = αIB +e (4.4)

where IB is the intensity of the background, α is a blending factor, and e is the emis-

sion of the semi-transparent surface. We follow the method in [135] by clustering the

intensities on both sides of the boundary and solving for α and e as a linear least square

problem.

• Texture distortion [135]: The feature measures the similarity of texture between both

sides of a boundary fragment. In particular, texture can be magnified or skewed when
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observed through glass. We use a filter bank as described in [130] to obtain a distribu-

tion of filter outputs. The texture similarity is then measured by the Euclidean distance

between the distributions observed on both sides of the boundary.

• Missing depth: This feature exploits the fact that depth readings of an RGBD sensor

tend to be missing on the glass side of the glass boundary while being valid on the other

side. Therefore, we can firstly compute the depth missing ratio of a feature window:

missing ratio=
No. of pixels with missing depth reading

No. of pixels in the feature window
(4.5)

Once the missing ratios of a pair of feature windows are obtained (one on each side

of a boundary fragment), we use their difference as the feature value. The underlying

assumption is that, for non-glass regions the missing ratios from both sides should be

low, while for glass regions they should be both high. Generally, a large difference in

missing ratio may only be observed near glass/non-glass boundaries.

For boundary fragment orientation we train a separate SVM classifier. We use only two

features: saturation and depth missing ratio. The two features were found to be quite robust in

identifying boundary orientation. We assign an associated direction to each boundary fragment

(i.e., viewed as a vector on the 2D image plane) so we can unambiguously define its left and

right. We compute features on the left and right patches respectively, and then subtract the

right from the left.

The boundary unary potential is illustrated in Figure 4.1 (d). Each fragment is assigned

with a probability for glass object contour (i.e., the darker the more possible), and the orienta-

tion is marked with red arrows pointing towards detected glass regions.

Boundary pairwise potentials. The boundary pairwise potential imposes a direction-sensitive

smoothness prior. Note that for each boundary fragment eij there are three possible states. The

model prefers configurations where connected boundary fragments have the glass region on

the same side. More formally, we define the smoothness prior for two connected boundary

fragments eij and ekl as:

ψE(eij ,ekl) = 1− δ(eij = ekl 6= 0)

+C1δ(eij = ekl = 0) +C2δ(eij 6= ekl) (4.6)

where δ(·) is the indicator function, and we choose C1 = 0.3 ∗ δ(π2 < α ≤ π) , and C2 =

(1− cosα)3δ(π2 < α≤ π) empirically. Here α is the angle between two fragments.
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Figure 4.5: Illustration of our angle preference for boundary pairwise term. In the top and
middle examples, the angles between connected boundary fragments are obtuse and straight
respectively. These are commonly found in ground-truth glass boundaries. In the bottom
example, however, the angle is acute and is more likely a result from incorrectly identified

glass boundary.

We prefer configurations where the angle between two neighboring boundary fragments are

obtuse, so additional penalty terms are added if there is no glass boundary (i.e., eij = ekl = 0)

or the boundary orientation is incompatible (i.e., eij 6= ekl). If the angle is acute, we simply

treat all states equally except if the orientation is compatible (i.e., eij = ekl 6= 0). See Figure 4.5

for an illustration of our angle preference.

Superpixel unary potentials. This term is similar to the boundary unary term except that fea-

tures are extracted from triangular superpixels. Similar to the boundary orientation classifier,

only saturation and depth missing ratio are used. This is because other features we exper-

imented with are less effective, particularly when compared to the depth missing cues. As

shown in Figure 4.4, we denote the local feature vector for superpixel di with gi. The result is

illustrated in Figure 4.1 (e).

Superpixel pairwise potentials. This pairwise term specifies valid configurations of a bound-

ary fragment and its neighboring superpixels. Any incompatible state will be penalized. Specif-

ically, for boundary fragment eij let di be the superpixel that resides to its left and dj to the

right. We set the pairwise potential as:

ψD(di,dj ,eij) = δ(di 6= dj ,eij = 0)

− δ(di = 0,dj 6= 0,eij = +1)

− δ(di 6= 0,dj = 0,eij =−1). (4.7)
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Figure 4.6: Illustration of our superpixel pairwise term. Assume the arrow points towards glass
regions in red, and the non-glass regions are in blue. See text for details.

The three terms correspond to the bottom, top and middle examples in the illustration in

Figure 4.6. The top and middle examples in Figure 4.6 are two scenarios where the orientation

of the boundary fragment (middle column) and the neighboring superpixels (right column) are

consistent, so we encourage them by adding negative energy terms. In the bottom example, the

labels of two neighboring superpixels are different, but the boundary fragment in between is

not part of the glass boundaries (i.e., eij = 0, illustrated as without an orientation arrow). This

is in violation with our graph consistency assumption so a penalty (positive) term is added.

4.2.3 Joint prediction

We greedily search for the global parameters β,γ and λ using a small held-out validation set,

and use β = 0.25, γ = 50 and λ = 20 in our work. To predict the boundary and region labels

jointly, we adopt an alternating inference approach to compute the marginals of the boundary

nodes and superpixel nodes. We start with no depth terms and use Loopy Belief Propagation

(LBP) [15] to compute an initial guess of the marginals of boundary nodes. In each iteration,

we first use mean field approximation [81, 215] to marginalize out the boundary variables and

compute the marginals on depth nodes. Then we update the marginals on boundary nodes in

a similar way. This procedure is repeated until there is no change on the marginals. Usually,

convergence can be obtained within 5 such iterations and the inference takes a few seconds

with our MATLAB implementation on an Intel i7 desktop.

We now describe some details on the mean field approximation. In particular, we approxi-

mate the distribution p(E,D|I ) with a fully factorized distribution q(E,D):
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q(E,D) =
∏
ij∈VE

µij(eij) ·
∏
i∈VD

νi(di) (4.8)

where µij and νi are variational parameters corresponding to marginal probabilities over bound-

ary nodes and superpixel nodes respectively. µij and νi are obtained in an alternating fashion

by minimizing the KL divergence between p(E,D|I ) and q(E,D) which is also equivalent to

minimizing the mean field free energy:

Fµ({µij}) =−
∑

(ij,kl)∈GE

∑
eij∈Eij
ekl∈Ekl

µij(eij)µkl(ekl) logψE +
∑
ij∈VE

∑
eij∈Eij

[logµij(eij)− logφE ]

(4.9)

Fν({νi}) =−
∑

(i,j)∈GD

∑
di∈Di
dj∈Dj

νi(di)νj(dj) logψD +
∑
i∈VD

∑
di∈Di

[logνi(di)− logφD] (4.10)

where the variables in the energy terms are omitted for notation simplicity.

Setting the derivatives with respect to µij and νi equal to zero gives the fixed-point equa-

tions for mean field approximation:

µij(eij) =
1

ZE
·φE(eij ;I ) · exp

( ∑
kl∈Nij

∑
ekl∈Ekl

µkl(ekl) logψE(eij ,ekl;I )

)
(4.11)

νi(di) =
1

ZD
·φD(di;I ) · exp

(∑
j∈Ni

∑
dj∈Dj

νj(dj) logψD(di,dj ,eij ;I )

)
(4.12)

whereZD andZE are normalization constants chosen so that
∑

ij∈GE µij(eij) = 1 and
∑

i∈GD νi(di) =

1. We use the value of eij from the previous iteration in ψD(di,dj ,eij ;I ). The mean field ap-

proximation for boundary nodes is done by iterating Equation 4.11, then approximating the

marginal probability p(eij |I ) by the steady state µij(eij). Similarly, we use νi(di) to substi-

tute p(di|I ) after iteratively updating Equation 4.12. It should be noted that the update for

fixed point equations can also be seen as a message-passing algorithm where every node sends

a message µij (or νi) to its neighbors. The message is, in turn, based on the message it received

from its neighbors in the previous iteration.
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4.2.4 Depth reconstruction

Given the segmentation, we can reconstruct the depth of the scene in a post-processing step.

First, we perform a plane segmentation of the scene directly in 3D by fitting each superpixel

with a plane. We assume a parametric planar form for each superpixel, i.e., −ai(xir−xi0) +

bi(yir− yi0) + zir− ci = 0 so the parameters for each superpixel can be expressed as a triplet

pi = (ai, bi, ci). We then identify major planes in the scene by running K-means clustering on

the plane parameters with an increasing number of clusters, or equivalently, planes. We begin

with 2 planes and use the plane parameters of the cluster centroid to reconstruct its member

superpixels, then measure the reconstruction error. We repeat with one more plane at a time

until the decrease in reconstruction error is small, or reaching a maximum of 20 planes for a

scene. Each glass object is modeled as a cardboard cut-out standing on, and perpendicular to,

its supporting plane. We use a simple assumption that the plane adjacent to the bottom of a

glass object is the supporting plane, and it works well for most glassware in our experiments.

See Figure 4.1 (f) for an example.

4.3 Experimental evaluation

4.3.1 Dataset and setup

We collected an RGBD Glass Dataset that contains 171 RGB and depth image pairs of 43 dis-

tinct glass objects taken from multiple views and with different levels of background clutter.

We manually generated a pixelwise ground-truth segmentation mask for each object. In the ex-

periment that follows, we randomly split the dataset into training and testing subsets, including

92 and 79 RGBD image pairs respectively.

For the local classifiers on boundary fragments, we extract features from multiple pairs of

image patches at the two sides (i.e., left and right) of the boundary. The locations of those pairs

are defined by a triplet li = (di, r1i, r2i), where di ∈ {3,5,10} is the pixel distance from the

patches to the boundary, and r1i, r2i ∈ {5,10,15,20} are the lengths of two adjacent sides. For

the Random Forests classifiers, we use a three-fold cross-validation process which resulted in

500 trees with 16 predictors sampled for splitting at each node. The superpixel unary poten-

tials are given by an SVM with an RBF kernel. We do not use Random Forest classifier for

superpixels as the feature dimension is small.

4.3.2 Recall statistics for glass proposal

As images are usually dominated by non-glass regions and surfaces, glass region and boundary

proposals are important preprocessing steps to ensure we have a manageable number of image

partitions in the construction of our boundary-region graph. In this section, we quantitatively
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Table 4.1: The overall glass region recall rate, near-boundary glass region recall rate, and the
proposed glass area under different dilation disk radii r. Setting r= 15 px gives a good tradeoff

between recall rates and the proposed area. See text for details.

Dilation (pixels) r = 5 r = 10 r = 15 r = 25

Overall Recall 0.967 0.987 1.000 1.000
Boundary Recall 0.892 0.970 0.995 0.996
Proposed Area 25.7% 36.5% 42.2% 57.9%

evaluate the recall statistics for our glass region and boundary proposals using the method

described in Section 4.2.1.

Glass region proposal. For glass region proposal, we would like to recall as many glass

regions as possible, particularly those near glass boundaries. We can therefore create detailed

image partitions in these regions to facilitate accurate glass boundary localization. However,

the area of the proposed regions should be relatively small, as a coarse segmentation would

suffice for non-glass regions. In our experiment, we tune the radius r of the dilation disk

described in Section 4.2.1 and observe the changes to relevant statistics. When r is small, we

dilate the depth missing pattern conservatively and may miss some ground-truth glass regions.

When r is large, we include areas around missing patterns more aggressively but run the risk

of including too many non-glass regions. Table 4.1 reports the overall glass region recall rate,

near-boundary glass region recall rate, and proposed glass area (out of the entire image area,

shown in percentages). The near-boundary glass region is created by dilating the ground-truth

glass boundaries by 5 px. The proposed glass area, shown in the last row, grows with r. As we

can see from the first two rows, the overall and near-boundary glass region recall rates roughly

saturate at r = 15 px and we use this value in our succeeding experiments.

Glass boundary proposal. We now evaluate the effectiveness of the three distinctive bound-

ary cues in Equation 4.1. The three cues capture different aspects of the image contours.

gPb_glass is the output from a thresholded BGTG boundary detector. In our experiments, we

set the threshold to the 50% quantile of the BGTG detector output in proposed glass region to

make it image adaptive. gPb_depth is the realigned depth boundary. gPb_rgb is the output

from a Canny edge detector to capture only strong intensity edges. We set the high and low

sensitivity thresholds to 0.40 and 0.16 empirically. Table 4.2 shows the boundary recall rates

measured with the benchmark utility from [132]. As we can see, although the BGTG boundary

detector alone performs well, the other two boundary maps are complementary and the final

combined result gPb_rgbd gives the best recall. In addition, we measure the boundary recall

after graph construction, to quantitatively measure the loss of recall due to triangulation. It

turns out that the loss is only 1.6% which suggests most glass boundaries are still followed by

our partition after triangulation.
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Table 4.2: The glass boundary recall rates from various boundary cues. The first three columns
give the recall rates for the three boundary cues in Equation 4.1. The last two columns give the
recall rates using the combination of the three cues, before and after triangulation. See text for

details.

gPb_glass gPb_depth gPb_rgb gPb_rgbd (before) gPb_rgbd (after)
Recall 0.853 0.301 0.257 0.975 0.959

Table 4.3: F-measures at 50% recall for boundary and region accuracy metrics, respectively.

Intens.+ Intens.+ Detached Joint
SVM Depth Inference Inference

Boundary 19.52 44.38 54.08 62.27
Region 28.06 55.84 61.85 65.96

4.3.3 Segmentation results and comparisons

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Precision vs. Recall Intensity+SVM
Intensity+Depth+SVM
Intensity+Depth+RF
Boundary Inference
Joint Inference

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Precision vs. Recall Intensity+SVM
Intensity+Depth+SVM
Super−pixel Inference
Joint Inference

Figure 4.7: The precision-recall curves based on boundary matching (left panel) and pixelwise
region matching (right panel).

The glass segmentation results are summarized in Figure 4.7, which shows the precision-

recall curves of our glass detector under two metrics: boundary pixel accuracy and region pixel

accuracy. For boundary accuracy, we use the benchmark utility from [132] and the matching

procedure. We compute a list of correspondences below a distance threshold between the

boundary estimate and the ground-truth boundary map. We also report the F-measure com-

puted at 50% recall rate in Table 4.3. Here the F-measure is the harmonic mean of the precision

and recall rates, i.e., F = 2/(1/Pr+ 1/Rc). Where we use both the SVM and the Random

Forest classifiers, we report the better performance from the two.

We can see that our method achieves much better performance than the baselines. For

the methods that use features from RGB images only, the performance is poorest due to the

challenging nature of our dataset. We have tested the same set of features on the dataset in

[135] and achieved similar results as theirs. The performance is greatly improved by using
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Table 4.4: Comparison of average runtime per image (in seconds) between detached and joint
inference. The numbers report here are a comparison of MRF inference times (not including

feature extraction and local classification).

Boundary Region Joint
Inference Inference Inference

Runtime (sec) 2.350 2.927 5.617

depth cues, and by almost 40% precision on average. For boundary fragments, the Random

Forest classifier with features extracted at multiple locations further increases the accuracy,

which provides around 20% precision increase at 50% recall.

The MRF model further improves the performance, particularly in maintaining high pre-

cision into high recall regime. We observe a 10% precision gap between local classifier per-

formance and results from the MRF. Joint inference is the most effective method of all. The

precision for both boundary fragments and pixelwise matching sustained at a high level until

around 80% recall. Our method is able to recall over 80% of glass boundaries and regions with

a boundary matching precision over 70% and region matching precision over 90% respectively.

We present some examples where our method performs well in Figure 4.8, and a few failure

scenarios in Figure 4.9. As shown in Figure 4.8, our method is able to deal with background

clutter and texture variations with the help of unary classifiers trained both on boundaries and

regions, and the joint inference. Although the most important cue for localizing glass objects,

the depth missing pattern, exhibits large variations we can still successfully identify glass re-

gions accurately in most cases. The piece-wise planar assumption for glass object gives a

reasonable depth reconstruction in most cases. Indeed, the planar assumption is not sufficient

for certain applications such as robotic manipulation with a gripper. We leave detailed shape

reconstruction as our future work. In Figure 4.9, we show examples of failure cases on our

dataset. Most failure cases are due to weak RGB cues, or strong local deformation of depth

missing pattern, or background texture incorrectly identified as glass boundaries. These usu-

ally lead to protrusion or erosion in our segmentation and inconsistent boundary and region

inference results. As a future direction, we may extend our energy model to encourage contour

closure [140] and the consistency in the prediction for boundary and region.

In terms of computation time, we are interested in the extra runtime costs for our joint

inference. We compare the average runtime per image between detached and joint inference

on an Intel i7 desktop in Table 4.4. In our experiment we observe that the first one or two

rounds of the alternating inference are the most time-consuming, as values of many random

variables may change. The latter rounds generally take much less time, and the increase in

computation time w.r.t. rounds of alternating inference is sub-linear.
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Figure 4.8: Examples of glass detection results on our new RGBD Glass dataset. Note that
missing areas are shown in white, and depth readings are recovered by a piece-wise planar

model.

4.3.4 Qualitative analysis for joint inference

One key contribution in our work is to jointly reason about boundary and region. Reasoning

about boundary and region jointly allows us to combine local features from a boundary and

superpixel perspective simultaneously. More importantly, the boundary and region graph can

capture more detailed interactions locally, such as the interplay between boundary orientation
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Figure 4.9: Failure examples of glass detection on our RGBD Glass dataset. See text for
details.

and neighboring regions. In Figure 4.7 and Table 4.3, we have shown that quantitatively this

results in a better glass segmentation performance; in this section we show some qualitative

examples to justify our design choice. We look at two aspects of our joint inference: the unary

terms and the iterative inference process.

Figure 4.10 shows some examples of boundary and region unary classifier outputs. In the

first three examples, the boundary classifiers do a better job at identifying local glass bound-

ary in general. The region classifiers in these examples give some spurious protrusions and

erosions. If we follow the region classifiers, incompatible boundary orientations will be de-

rived and penalties in our energy terms will apply to these configurations. In the remaining

examples, however, region classifiers are more reliable and this can guide us find the correct

boundary configuration.

Figure 4.11 shows some examples of comparisons among the boundary unary classifier

output, the boundary marginals with the initial LBP inference involving boundary potentials

only, and the boundary marginals with joint prediction after 5 iterations. Although the initial

boundary inference helps in strengthening some weak glass boundaries, it is not powerful

enough to identify true glass boundaries particularly near noisy predictions. Also, in the last

two examples, we have spurious glass boundary detections well outside the glass region. Joint

inference helps suppress these boundaries mainly because it is otherwise difficult to find a valid

configuration with our constraints on both boundary and region.
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4.4 Conclusion

In this chapter, we have proposed a novel approach to glass segmentation with consumer

RGBD cameras. By setting up an MRF which jointly encodes boundary fragment and su-

perpixel properties and constraints, we proposed a global optimization procedure for glass

detection, segmentation and recovery of the noisy depth maps. We validated the efficacy of

this approach on our new RGBD Glass dataset, which shows the superior performance of our

method.
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RGB Image Boundary Unary Region Unary

Figure 4.10: Examples of boundary and region unary terms (magnified, the viewing window
is marked as a red bounding box in the RGB images). The boundary orientation is shown
as a red arrow pointing towards glass regions. Local boundary and region classifiers provide

complementary information for glass object segmentation. See text for details.
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RGB Image Boundary Unary Boundary Inference Joint Inference

Figure 4.11: Examples of iterative joint inference. While the initial boundary inference
smoothes the unary classifier output, we obtain much cleaner boundary inference results with

the joint inference. See text for details.
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Chapter 5

Glass Object Segmentation by Label
Transfer on Joint Depth and
Appearance Manifolds

5.1 Introduction

In this chapter, we continue our effort to localize glass objects with RGBD images. In Chap-

ter 4 we proposed a joint inference algorithm for glass object segmentation. We exploited the

missing-vs-nonmissing pattern in the depth channel which can be used as an effective feature

to approximately localize glass objects. Despite our ability to produce high quality segmen-

tation from the local estimates through constraints on the joint configurations of the boundary

and region, this method has difficulty in handling glass objects with weak RGB cues or strong

local deformation of depth missing patterns, as shown in Figure 4.9 and 5.6. One main issue in

these cases is that the local estimates are too noisy due to the very large appearance variations

at glass boundaries, as shown in a few image patch examples in Figure 5.1. Although relative

features focusing on the difference between image patches on both sides of the boundary can

reduce feature variation, it is still difficult to train a generic classifier because glass overlays

can introduce many different effects such as blurring, highlights, texture distortion, depth miss-

ing, etc. The local effects with an individual object instance may be selective and depend on

a number of factors including the glass material, illumination, viewpoint, etc. It is therefore

difficult to single out each effect and extract more expressive features associated with it.

As a result, we move our focus to methods that are able to deal with large feature variations.

Particularly, we propose an image adaptive approach to predicting glass boundaries. Our focus

is still on the scenario in which inputs are captured with an RGBD camera. The main idea

of our method is to generate boundary proposals based on a nonparametric feature model.

Our model is represented by a joint depth and appearance feature manifold, on which each

point is the glass boundary feature of an image patch pair. The boundary label of any pair of

neighboring patches is predicted by a weighted voting of its nearest neighbors on the feature

99
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training data

...

...
...

...

feature manifold

Figure 5.1: Top: Illustration of feature manifold based glass boundary classification. We use a
learned feature manifold to match boundary fragments in a test scene (shown as image patches)
to a training set in order to predict their labels. Bottom: Large variation on glass boundaries:

patches examples.

manifold. The distance metric on the manifold is learned in a supervised manner.

We then integrate the locally adapted glass boundary predictor into a superpixel-based

pairwise Markov Random Field (MRF) for glass object detection and segmentation. The MRF

labels every superpixel as glass vs non-glass, in which our boundary prediction is used to

modulate the smoothing terms in random fields. As we will show in the experiments, our

approach generates more accurate glass boundary predictions, which simplifies the overall

model structure and the inference algorithm.

Our work is inspired by the recent progress in nonparametric, data-driven approaches on la-

bel transfer and propagation (e.g., [199, 115]). These methods first retrieve a subset of training

images based on global image statistics, and use the retrieved images for label transfer on the

superpixel level for dense image parsing. In particular, Fathi et al. [44] take a semi-supervised

learning approach to learn a metric for label propagation in videos.

Our contributions in this chapter are threefold. Firstly, we propose novel features for glass

object segmentation and a flexible feature pool for improving performance. Secondly, our work

is the first to explore nonparametric label transfer within the context of glass detection, and

exploit a joint depth-appearance manifold for transductive learning. Lastly, we integrate our

locally adapted glass boundary detector into an MRF framework for glass object detection and

segmentation, achieving a clear improvement to the state-of-the-art on a challenging RGBD

Glass dataset in terms of accuracy and speed.

The rest of this chapter is organized as follows. We describe the proposed approach in

details in Section 5.2, followed by experimental evaluation and analysis in Section 5.3 and a



§5.2 Our approach 101

brief conclusion in Section 5.4 .

5.2 Our approach

The main idea of our method is to treat every pair of neighboring superpixels as a data unit, and

build a feature manifold of such pairs for transferring boundary labels. We design a relative

feature for the superpixel pairs in a joint appearance and depth feature space to capture the dif-

ference caused by glass overlay. The transferred boundary label predictions are then integrated

into a pairwise MRF to generate spatially coherent glass object segmentation.

5.2.1 Superpixels and features

Superpixels. Our first step is to run SLIC [2] and partition image into superpixels. We choose

SLIC as it better follows glass and depth boundaries overall compared to alternatives (e.g., edge

detector and triangulation used in Chapter 4). Note that superpixel boundaries should follow

depth boundaries to facilitate depth reconstruction as a post-processing step. We compare

SLIC with our triangulation-based method in Section 5.3.2.

Boundary features. Suppose we have an input image I and denote each superpixel with

a single letter (e.g., i), then any boundary fragment can be indexed by two letters (e.g., ij,

indicating i and j are neighbors and ij is the shared boundary between them). The local

boundary feature vector fij includes: (i) Hue and saturation [135]; (ii) Blurring [135]; (iii)

Blending and emission [3]; (iv) Texture distortion [135, 130]; (v) Missing depth (same as

described in Chapter 4). See Section 4.2 from the previous chapter for details on these features.

Note that the above features are extracted from a pair of windows on either side of a boundary

fragment, and we use the non-oriented relative ratios in our feature vector.

In addition, we add three more depth-aware features in this work:

• (vi) Color histogram on boundary: a histogram of 30 bins with 10 each for red, green

and blue channels respectively.

• (vii) HOG [38] on depth data: for each feature window we extract HOG features on

depth maps with 2×2 or 3×3 cells depending on the scale of feature windows.

• (viii) Range (depth) histogram [98]: a histogram of 20 bins with each bin having a range

of 0.15m.

Note that feature (vii) captures surface orientations and depth discontinuities which may

be repeating in visually similar local structures. This feature has been proven effective in

other object detection tasks, and we refer readers to Section 2.1.3 for details. We augment the

image cues by sampling features on multiple scales and at multiple locations. Specifically, we

augment the feature set in the following two ways:



102 Glass Segmentation by Label Transfer on Joint Depth and Appearance Manifolds

Figure 5.2: Example of SLIC [2] superpixels with initial region sizes of 10 px (left) and 30 px
(right) respectively.

(A) We run superpixelization at a coarse scale and a fine scale, as shown in Figure 5.2. Label

transfer was performed separately on each scale (see details in Section 5.2.2). Afterwards, we

merge the local glass boundary proposals from the coarse into the fine scale. Merging is based

on the image spatial location, subject to a fixed pixel error tolerance.

(B) Multi-scale and pattern-based features are extracted for each boundary fragment. The

multi-scale extraction involves features within windows at 2-times and 3-times the default

feature window size, while the pattern-based feature sampling further augments the features

with randomly selected rectangular patterns, at both sides of a boundary fragment, similar to

TextonBoost [185].

5.2.2 Boundary label transfer

The main challenge of glass object segmentation lies in boundary detection, as the refractive

properties of glass lead to large variations in the relative features (i.e., features computed on

the difference at both sides of glass boundaries). Instead of building a single classifier in the

feature space, we explore the local feature manifold, and label transfer based on local matches

on the feature manifold.

More formally, let eij be a binary variable associated with boundary fragment ij, and

eij = 1 if the fragment is part of glass boundary and 0 otherwise. In order to reason about

the label for eij , we denote K = {uv} as a set of boundary fragments from training data with

known labels LK = {luv}. A weighted voting scheme is adopted to estimate P (eij |I ) usingK:

P (eij |I )∝
∑
uv∈K

wij,uv · δ(eij = luv)

=
∑
uv∈K

e−(fij−fuv)TΣ(fij−fuv) · δ(eij = luv) (5.1)

where fij ∈RN and fuv ∈RN are local feature vectors for boundary fragments ij and uv, Σ

is a diagonal matrix with diagonal elements being the distance between fij and fuv, and δ(·)
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is an indicator function. The weight wij,uv = exp
(
− (fij − fuv)

TΣ(fij − fuv)
)

is based on

a distance metric learned on the feature manifold. Since we assume Σ is diagonal, we can

rewrite the above equation into wij,uv = exp
(
−
∑N

d=1σ(d)(fij − fuv)
2
)

where σ(d) is the d-

th diagonal element of Σ. Therefore, |σ(d)| essentially indicates the “importance” of the d-th

dimension of fij for boundary label transfer. We visualize the accumulated values of |σ(d)| in
Section 5.3.4 in an attempt to decode the relative importance of various features used in our

model. We only estimate P (eij |I ) with k-nearest neighbors, i.e., |K| = k, and members in K
have the k highest weights wij,uv. We set k = 10 in our experiments.

The weight wij,uv is learned with manually labeled samples, by adopting the strategy pro-

posed in [44] which casts a distance metric learning problem as a binary classification task.

Let uv and u′v′ be two boundary fragments from training data. We define a target metric as

wuv,u′v′ = 1 if luv = lu′v′ , and wuv,u′v′ = 0 otherwise. Learning of Σ is performed with lin-

ear regression on training data. Intuitively, we prefer the similarity weight wuv,u′v′ to be high

if both fragments are part of glass boundary, or both are not. In Section 5.3.4, we compare

learning a single dataset-wide target metric and a set of subset-specific metrics.

5.2.3 Object model and inference

Our glass object model follows a pairwise MRF [15] formulation with unary and pairwise

terms on superpixel nodes. Denote the set of all image sites (i.e., superpixels) as S . Let G be

the neighborhood graph on S based on the spatial relationship. Denote D = {di} as a set of

binary variables associated with superpixels, and we assume a binary state space {0,1} for di,

with 1 indicating glass regions. Our energy function can be written as follows:

E(D) =
∑
i∈S

φD(di;I ) +β
∑

(i,j)∈N

ψD(di,dj ;I ) (5.2)

where β is the weighting coefficient between unary and pairwise terms, andN is the neighbor-

hood. The unary term φD(di;I ) is the negative log-likelihood given by a local SVM classifier:

φD(di;I ) =− log(P (di|gi)) (5.3)

where gi ∈ RM are features extracted for superpixel di. The features we use for superpix-

els only include (i), (v), (vii), and (viii) of those used for boundary (see Section 5.2.1 for

all boundary features). We also extract multi-scale image features for each superpixel. The

implementation of this unary term is similar to the superpixel unary potential in Section 4.2.

For the pairwise term ψD(di,dj ;I ), we utilize P (eij |I ) estimated by boundary label trans-

fer to modulate the smoothing prior. We set the pairwise potential between neighboring super-
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pixels di and dj as follows:

ψD(di,dj ;I ) = δ(di 6= dj)P (eij = 0|I )

+αδ(di = dj)P (eij 6= 0|I ) (5.4)

where P (eij |I ) is estimated by the locally adapted k-nearest neighbor voting described in

Section 5.2.2. This pairwise term is a simplified version of the superpixel pairwise potential we

used in Section 4.2 as we remove the orientation estimates of boundary fragments. It penalizes

two scenarios: (1) where labels of two adjacent superpixels are different and the boundary

fragment in between is not a glass boundary and (2) where labels of two adjacent superpixels

are the same but there is a glass boundary in between. In the experiments that follows, we use

Loopy Belief Propagation (LBP) [15] to compute the marginals for MRF inference. Model

parameters α and β were learned through cross-validation.

5.3 Experimental evaluation

5.3.1 Data specifications and setup

We test our approach on the RGBD Glass dataset used in Chapter 4, which contains 171 RGBD

image pairs with 43 distinct glass objects. We follow the training/test data split in Chapter 4.

As shown in Figure 5.3, the dataset was collected in various scene categories and many of the

glass objects are challenging to localize due to background clutter. The dataset consists of three

subsets: floor, laboratory and office, each contains images taken from a different environment.

We use SLIC [2] to generate superpixels, with initial region sizes 10 and 30 px. The pixel

error tolerance for merging the boundary proposals from the coarse superpixel layer is set to 5

px. For local boundaries, we extract features on 3 different scales, and each scale consists of

50 randomly selected rectangular patterns on both sides of the detected boundary, resulting in

300 feature windows. The local superpixel feature set is also generated at 3 scales, and we use

an SVM with an RBF kernel for the unary potential in our MRF. The model parameters α and

β chosen by cross validation were 0.5 and 0.25 respectively.

5.3.2 Ablation studies

In order to verify the efficacy of the various improvements on superpixels, features and label

transfer we proposed, we present our findings from three ablation studies in this section.

Firstly, we compare the glass boundary recall rates for SLIC [2] superpixels against triangulation-

based image partitioning we used in Chapter 4. The recall rates presented in Table 5.1 cap the

maximum attainable recall for the rest of the system. If a glass boundary segment is not cap-

tured by superpixelization, it is impossible to rectify it later using our method. Therefore, it is
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floor laboratory office

Figure 5.3: Example images from the three subsets of our RGBD Glass dataset. See text for
details.

sensible to choose a method which gives the highest glass boundary recall rate. As shown in

Table 5.1, SLIC performs slightly better than triangulation particularly when the pixel error tol-

erance emax is small. We note that although we choose emax = 5 px in our other experiments,

higher recall at an even lower tolerance (e.g., emax = 3 px) means SLIC follows boundaries

more closely, generating more visually pleasing results in general. We show some qualitative

examples in Figure 5.4. Note that clustering of pixels locally help SLIC achieve better results

where the intensity gradient is weak.

Secondly, we wanted to justify our design of the feature pool. More specifically, we report

the boundary label transfer performance improvements obtained from (1) image partitioning

at multiple scales, (2) sampling features on multiple scales, and (3) sampling features at mul-

tiple locations against a baseline without any of these components. Table 5.2 summarizes our

results. As can be seen from the table, all three components contribute to the glass boundary
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Table 5.1: Glass boundary recall rates for triangulation-based method used in Chapter 4 versus
SLIC [2] used in this chapter. emax denotes the pixel error tolerance. See text for details.

emax 3 px 5 px 10 px
Triangulation 0.8923 0.9592 0.9897

SLIC [2] 0.9211 0.9757 1.0000

Triangulation (magnified) SLIC [2] (magnified)

Figure 5.4: Qualitative comparisons between triangulation-based image partitioning method
(left two columns, partitions shown in orange) used in Chapter 4 and SLIC [2] superpixels
(right two columns, partitions shown in red). Note how SLIC superpixels more closely follow
glass boundaries, especially in regions highlighted with blue circles. The SLIC initial region

size shown here is 10 px.

classification performance, with sampling features at multiple locations being the most effec-

tive. In particular, the three components combined provide a large feature pool for distance

metric learning, which yield superior results compared to the baseline with a smaller fixed-

sized feature pool. In fact, a large and flexible feature pool is essential for both our models

in Chapter 4 and in this chapter as it allows the model learning process to pick up the most

effective features when appearance variations at glass boundaries are large.
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Table 5.2: Precision (in percentage %) and F-measures at 25%, 50% and 75% recall for glass
boundary label transfer. Column Base refers to baseline performance without the feature pool.
Columns (1) through (3) refer to (1) image partitioning at multiple scales, (2) sampling features
on multiple scales, and (3) sampling features at multiple locations. Column Full refers to our

full model with all of the three components. See text for details.

Precision (%) F-measures
Base (1) (2) (3) Full Base (1) (2) (3) Full

25% Recall 75.7 79.3 79.0 84.4 93.5 37.59 38.01 37.98 38.58 39.45
50% Recall 53.6 56.8 55.8 59.2 61.9 51.74 53.17 52.75 54.23 55.31
75% Recall 25.5 26.9 27.7 30.2 31.8 38.07 39.60 40.48 43.07 44.64

Table 5.3: Precision (in percentage %) and F-measures at 25%, 50% and 75% recall for glass
boundary label transfer. The first three columns refer to scenarios in which we remove certain
depth-aware features. Specifically, they refer to No Color histogram (NC), No HOG on depth
data (NH) and No Range histogram (NR), respectively. The fourth column, kNN, refers to the
case where we disable the distance metric learning. The final column, Full, refers to our full

model. See text for details.

Precision (%) F-measures
NC NH NR kNN Full NC NH NR kNN Full

25% Recall 89.5 91.2 88.1 67.9 93.5 39.08 39.24 38.95 36.55 39.45
50% Recall 60.6 61.5 59.9 43.4 61.9 54.80 55.15 54.51 46.48 55.31
75% Recall 30.7 31.4 31.4 16.5 31.8 43.57 44.31 44.23 27.02 44.64

Finally, we show that the choice of depth-aware features and the distance metric learn-

ing for label transfer are also important to our performance. In particular, we note that our

method is equivalent to a k−nearest neighbor classifier if we assign uniform values to the

weight coefficients σ(d) in Σ. In this case, we will be disabling the distance metric learning

step and working in the original high dimensional feature space instead of the joint depth and

appearance manifold. Table 5.3 reports precision and F-measure values when we disable the

depth-aware features or the distance metric learning, compared to the performance of our full

model. As can be observed from the results, all three depth-aware features contribute to preci-

sion rates slightly. Perhaps more important is the distance metric learning, as it provides a way

to “select” more important axes from a high dimensional feature space. We will look into the

feature selection mechanism with another experiment in Section 5.3.4.

5.3.3 Results and discussion

The quantitative and qualitative results using our method are shown in Figure 5.5 and Figure

5.6, respectively. We compare our approach with the joint inference approach proposed in

Chapter 4, referred as “Joint”. We also show the performance based on the boundary classifier
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Table 5.4: F-measures at 50% recall for boundary and region accuracy metrics. The final row
(Bound Region) is based on region pixel accuracy in the glass boundary neighborhoods (i.e.,

regions within 10 px of ground-truth glass boundaries).

Joint Ours Joint Ours
Unary Unary Inference Inference

Bound 44.38 55.31 62.27 64.02
Region 55.84 57.27 65.96 66.49

Bound Region - - 46.98 62.33

Table 5.5: Per-image runtime statistics for the method in Chapter 4 and the proposed method.
On average the proposed method is about 8 times faster. See text for details.

Local (s) Inference (s) Total (s)
Joint 0.257 14.542 14.799
Ours 0.928 0.898 1.826

output, and see why our method is capable of producing superior results with a simpler MRF

model. These local boundary classifier outputs are referred to as “Unary” in the figures.

The overall precision and recall on the RGBD Glass dataset is shown in Figure 5.5. The

left and middle plots present the precision-recall figures under two metrics: boundary pixel

accuracy and region pixel accuracy. For boundary accuracy, we use the benchmark utility

from [132] and follow the matching procedure. We compute a list of correspondences below

a distance threshold between the boundary estimate and the ground-truth boundary map. As

both the method from Chapter 4 and our method are capable of recovering major glass surfaces

(as a result of using depth features), region pixel accuracy can be less sensitive to noise at glass

boundaries as it measures pixelwise accuracy over the entire image. Therefore we additionally

present another region pixel accuracy based result in the right plot which only considers pixels

within 10 px of ground-truth glass boundaries. This metric directly reflects the region recov-

ery quality near glass boundaries, which is vital to accurately recovering the shape of glass

objects. We achieved superior results on both glass boundary detection and final inference re-

sults. While joint inference is able to boost the performance of noisy unary responses, having

cleaner boundary proposals allows us to adopt simple and more efficient inference algorithms.

F-measures corresponding to Figure 5.5 at 50% recall rate are reported in Table 5.4, where

F = 2/(1/Pr+ 1/Rc).

Figure 5.6 presents some hard examples for comparison between both methods. Note that

the noisy boundary estimate is the main reason for failure cases of the joint inference method.

The proposed method, on the other hand, shows reliable and accurate prediction results. Our

method eliminates circumstances where predictions on the boundary nodes and superpixel

nodes are inconsistent (e.g., the second example in Figure 5.6). As we can see, the success of
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the proposed method is primarily due to cleaner glass boundary proposals based on the learned

feature manifold. Even sophisticated inference is unlikely to recover the glass boundary if the

initial estimates are too weak or severely contaminated by their neighbors.

Finally, we compare the runtime of both methods with our mixed MATLAB and C (mex)

implementation. The runtime was broken down into two major components: local boundary

estimation and inference. The local part includes pre-processing, feature extraction and local

classification. The proposed method takes longer as we need to extract more features. The

inference part for the method in Chapter 4 requires up to 20 runs for LBP or mean-field ap-

proximations, while ours only requires one. The post-processing (i.e., plane segmentation and

depth recovery) takes only a fraction of the total runtime, and therefore is not timed. We report

the average runtime per image on an Intel i3 laptop in Table 5.5. Note that with a native imple-

mentation, our method may be further accelerated for real-time applications due to the simple

nature of the inference process.

5.3.4 Building subset-specific manifolds

So far we showed how to create a large, flexible feature pool for distance metric learning. In-

tuitively, not all features are equally important; in fact, many of them may be less effective due

to the large appearance variation issue we discussed at the beginning of the chapter. Therefore,

we need to adopt a learning technique to determine their relative importance. More impor-

tantly, working with a learned manifold can be more effective than working in the original

feature space. In this section, we investigate the benefits of working with a learned feature

manifold more closely. In particular, we show that learning subset-specific distance metrics

can further improve our achieved results in certain scenes.

An alternative view to the large appearance variation issue is that, for a specific scene setup

(e.g., images with similar objects, background, viewpoint, illumination, etc.) we only have a

limited amount of training data available. Fortunately, linear regression used in our distance

metric learning works well with a limited amount of data, which has also been found in [44].

In addition, it is difficult to find a single set of feature weight coefficients σ(d) that can work

for a variety of scenes. Therefore, in the followings we learn subset-specific distance metrics

and compare their performance to learning a single metric across all scenes.

More specifically, the glass dataset we use in this work contains three subsets: floor, lab-

oratory and office, containing 16, 29 and 126 images respectively. Figure 5.3 shows some

example images from each subset. The floor subset contains images of different glass ob-

jects with an identical background observed from similar viewpoints. The laboratory subset

contains pictures taken at a university chemistry laboratory. The office subset contains com-

mon glass objects in an office environment, which has the most diverse scenes. As we will

discuss shortly, the different scene characteristics of these subsets also affect glass boundary
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Table 5.6: Precision (in percentage %) at 25%, 50% and 75% recall for glass boundary label
transfer on the three subsets of our RGBD Glass dataset. Columns under “Single manifold”
refer to results from our proposed approach with a single manifold built on the entire dataset.
Columns under “Subset-specific manifold” refer to results obtained with subset-specific mani-

folds.

Single manifold Subset-specific manifold
Floor Lab Office Floor Lab Office

25% Recall 78.5 88.4 95.9 83.6 88.7 95.4
50% Recall 49.3 58.6 63.3 53.7 58.4 61.0
75% Recall 22.1 31.5 32.5 24.5 31.6 32.2

classification performance.

Table 5.6 reports the precision values under different glass boundary recall rates on each

subset of our RGBD Glass dataset. As a baseline, results from our full model are listed under

“Single manifold”. We use a single distance metric learned from the entire dataset and apply it

to each of the subsets. On the contrary, results under “Subset-specific manifold” are obtained

with subset-specific distance metrics. For the smaller and the more visually homogeneous

Floor subset, building a subset-specific manifold clearly is the better choice, as it provides

an average of 4% precision gain. This is similar for the Laboratory subset, with the subset-

specific manifold performs slightly better than building a single manifold across the entire

dataset. However, for the largest subset Office the subset-specific manifold does not offer a

performance improvement, perhaps due to the diverse nature of scenes contained in the subset.

In addition, we report the normalized accumulated weight |σ(d)| in Figure 5.7 to visualize

the differences between dataset-wide and subset-specific manifolds. As we can see, not all

features have comparable weights. For example, the missing depth feature is the most effective

in boundary label transfer, in line with our findings in Chapter 4. It should be noted that subset-

specific distance metrics capture some of the features which get less attention under a single

manifold setup.

Conceptually, it is more preferable to build scene-specific instead of subset-specific man-

ifolds, as the scene setups from within a subset can be large. In fact, the idea of building

scene-specific manifolds is conceptually similar to the scene retrieval step in prior literature

on nonparametric image parsing such as [199] and [115]. In this work we focus on validating

that (1) the distance metric learning used in our work is suitable for learning from a limited

amount of training data, and (2) using a subset-specific manifold produces superior results for

certain scenes. We would like to more thoroughly explore scene retrieval as a future work

which would potentially produce superior results on difficult scenes from our dataset.
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5.4 Conclusion

In this chapter, we explored a feature based label transfer approach to glass object segmenta-

tion. We propose a novel depth and appearance feature representation for glass boundary and

surface detection, and learn a distance metric on the relative feature manifold for glass bound-

ary label transfer. By integrating our glass boundary proposals into a pairwise MRF model,

we obtained a significant improvement to the state-of-the-art on challenging examples in an

RGBD Glass dataset. Our method can be used as a starting point for more sophisticated algor-

ithms that involve glass surface reconstruction. For future directions, we would like to explore

scene retrieval with our method, and learning depth-encoded feature manifolds with weakly

labeled data.
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(a) (b) (c) (d) (e)

Figure 5.6: Hard examples of glass detection results on the RGBD glass dataset. Column (a):
RGB image frame. (b): Unary responses from local glass boundary classifiers in Chapter 4.
(c): Joint inference and depth recovery results in Chapter 4. (d): Glass boundary label transfer
results. (e): Inference and depth recovery results with the proposed method. Note that missing
depth readings are recovered by a piece-wise planar model for glass region and smoothed out

using a median filter elsewhere.
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Figure 5.7: Normalized accumulated weight for different features on the RGBD Glass dataset
(All) and its subsets (Floor, Laboratory and Office). We add up the absolute values of weights
for feature dimensions belong to specific types of features. The resulting bar graph illustrates
the relative accumulated “importance” of various types of features used in our method. The
feature types are: Hue and Saturation (HS), Blurring (Blur), Blending and Emission (BE),
Texture Distortion (Texture), Missing Depth (Missing), Color histogram (Color), HOG on

depth data (HOD), Range histogram (Range). See text for details.



Chapter 6

Laplacian Margin Distribution
Boosting for Learning from Sparsely
Labeled Data

6.1 Introduction

In previous chapters we addressed object detection and segmentation with partial object visibil-

ity and limited sensory data availability. We continue our discussion in this chapter by looking

at another issue in relation to partial information. In many real-world applications complete

and accurate ground-truth annotations are difficult and expensive to obtain, usually requir-

ing extensive human effort. Although some previously impractical large-scale labeling tasks

have been made possible by online crowdsourcing services such as the Amazon Mechanical

Turk [1], the monetary cost involved scales with the number of images in a dataset. Also, for

annotators without domain knowledge, the quality of their labelings varies. Semi-supervised

learning algorithms that seek to make use of unlabeled data for training are an appealing alter-

native to supervised learning in these scenarios.

In this chapter, we propose a semi-supervised version of a margin distribution-based variant

of boosting algorithms. We choose to base our work on boosting algorithms because they

have achieved great popularity in a spectrum of computer vision problems due to their good

generalization, robust performance, and intrinsic feature selection mechanism. In particular,

they have been an integral part of many object detection and segmentation systems (e.g., [207,

203, 72, 185, 73, 42]). Despite their success, the classic AdaBoost and its variants suffer from

two disadvantages in real world applications. First, the exponential loss and greedy nature of

its learning algorithm tend to generate a classifier with many weaker learners, which can be

inefficient and prone to overfitting. Also, boosting usually requires a large number of training

examples to achieve high accuracy. As discussed, ground truth labeling is usually scarce and

difficult to obtain in practice.

Our work aims to address those issues within a unified framework based on the margin

115
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distribution theory of boosting [178, 168, 183]. One key observation is that the appealing

properties of boosting are closely related to the margin distribution (MD) instead of solely the

minimum margin [168] – which are commonly used in margin-based classification. It has been

shown that the margin distribution seems to play a more important role in attaining better over-

all performance empirically and provides a tighter generalization bound in theory [54, 168].

Therefore, several papers advocate optimizing MD-based criteria to improve the test accuracy

of boosting-like algorithms [120, 54, 182]. Notably, Shen and Li [182] proposed a totally cor-

rective boosting, termed MDBoost, to maximize the average margin while minimizing margin

variance. The new boosting method achieves competitive performance and faster convergence

(i.e., fewer weak learners) on several classification tasks.

While the additional margin variance provides a better measure of the margin distribution,

the overall criterion is based on the second-order statistics only, thus lacks capacity to capture

finer-scale structure of the distribution. Manifold learning refers to a collection of algorithms

for non-linear dimension reduction. Laplacian Eigenmap is an important manifold learning al-

gorithm that finds a low dimensional representation of a dataset using a spectral decomposition

of the graph Laplacian. The graph Laplacian can be considered as a discrete approximation

of the low dimensional manifold in the high dimensional space. More importantly, the graph

ensures that points close to each other on the manifold are mapped close to each other in the

low dimensional space, preserving local distances [9]. Inspired by this, we propose to improve

MDBoost by incorporating a local representation of margin variance, in which only neigh-

boring points on the data manifold contribute to the variance computation. Intuitively, the

data-dependent margin variance may give a better description of the margin distribution. Due

to its resemblance to the Laplacian Eigenmap [10], we refer to this new boosting approach as

Laplacian MDBoost.

More importantly, our learning criterion can be naturally generalized to the semi-supervised

learning scenario. Given both labeled and unlabeled data, we augment the supervised learn-

ing criterion with a graph Laplacian-based regularization term, which encourages the classifier

outputs on unlabeled data to satisfy the data manifold constraint. This combined learning cri-

terion provides a coherent framework and admits a simple convex quadratic dual formulation

such as MDBoost. We employ a column-generation (CG) based optimization procedure to

incrementally add informative weak learners, yielding a boosting-like algorithm.

We empirically demonstrate that the supervised Laplacian MDBoost is better than or com-

parable to AdaBoost(-CG) [183], LPBoost [39] and MDBoost in terms of classification perfor-

mance on most UCI datasets [162]. In addition, we design a set of semi-supervised learning

tasks based on UCI datasets, the YouTube Celebrities Face datasets [83], and our RGBD Glass

dataset. We compare the Semi-supervised Laplacian MDBoost with two recent approaches

to learning from partially labeled data: LLGC [236] and SemiBoost [131]. The results show

the Semi-supervised Laplacian MDBoost outperforms the baseline methods on most of these
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datasets.

We organize the rest of this chapter as follows. In the next section, we derive the supervised

and Semi-supervised Laplacian MDBoost based on the dual formulation of optimizing a novel

margin distribution cost. We demonstrate the performance of our approach by comparing

with several recent (semi-)supervised boosting methods on UCI datasets, a video segmentation

task, and an RGBD glass object segmentation problem in Section 6.3. Finally, Section 6.4

summarizes our conclusion and discusses future work.

6.2 Our approach

6.2.1 Margin distribution and Laplacian MDBoost

We first review the key ideas of the margin distribution boost (MDBoost) in [182] and introduce

some notation for formulating our Laplacian MDBoost. Let Dl = {(xi,yi)}i=1,··· ,M be the

training dataset, where xi ∈ X is the input feature vector and yi ∈ {−1,+1} is the output

label. Given the training data, our goal is to train a classifier to assign binary label to any input

vector x. In the setting of boosting methods, the classifier consists of a weighted combination

of weak learners.

More specifically, denote h(·) ∈H as a weak learner that maps an input vector x to binary

output. We assume we choose K weak learners from the set H in our boosted classifier, and

define the matrix H ∈ ZM×K to be all the possible predictions of the training data using weak

classifiers. That is, Hij = hj(xi) is the label ({+1,−1}) given by weak classifier hj(·) on the

training example xi. We also use Hi: = [Hi1 Hi2 · · ·HiK ] to denote the i-th row of H , which

constitutes the output of all the weak classifiers on the training example xi. Let α be the weight

vector for the weak learners. We can write the output of the final classifier on any training data

xi as Hi:α, and the so-called (unnormalized) margin at data xi is defined as yiHi:α.

Based on the margin distribution theory of boosting, MDBoost directly maximizes the av-

erage margin and minimizes the margin variance. Specifically, let ρi denote the unnormalized

margin for the i-th example datum, i.e., ρi = yiHi:α, ∀i= 1, · · · ,M. The cost function and the

learning problem in MDBoost can be written as follows:

min
α

1

2(M −1)

∑
i>j

(ρi−ρj)2−
M∑
i=1

ρi

s.t. α< 0,1>α=D, (6.1)
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where D is a regularization parameter. By defining a matrix A ∈ RM×M , where

A=


1 − 1

M−1 . . . − 1
M−1

− 1
M−1 1 . . . − 1

M−1
...

...
. . .

...

− 1
M−1 − 1

M−1 . . . 1

 ,

the optimization problem can be rewritten into the following form:

min
α

1
2ρ
>Aρ−1>ρ,

s.t. α< 0,1>α=D,

ρi = yiHi:α,∀i= 1, · · · ,M. (6.2)

It has been shown [183] the problem in (6.2) can be efficiently solved by considering its dual

form, i.e.,

min
r,u

r+ 1
2D (u−1)>A−1(u−1),

s.t.
M∑
i=1

uiyiHi: 4 r1>. (6.3)

The form of the dual problem allows us to incrementally search the solution space by the col-

umn generation technique. At each iteration, we obtain a new weak classifier through searching

for the most violated constraint:

h′(·) = argmax
h(·)

∑M
i=1uiyih(xi). (6.4)

While the MDBoost learning cost incorporates the margin variance information, the global

variance can be restrictive and cannot describe the finer structure of the distribution beyond

the second order statistics. We propose to use the “local” version of variance that considers

the geometric properties of the data manifold. Specifically, we adapt the concept of graph

Laplacian of data manifold [10], and use a data-dependent margin variance in the MDBoost

learning criterion:

min
α

1

2(M −1)

∑
i>j

wij(ρi−ρj)2−
M∑
i=1

ρi

s.t. α< 0,1>α=D, (6.5)

where wij is an edge weight defined on a neighborhood graph that measures the adjacency
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between xi and xj . The heat kernel, given by wij = exp(
−||xi−xj ||2

t ), is a typical choice

for this weight that preserves local information optimally when we consider a certain graph

mapping problem [10, 35]. Another common choice is to use a simple truncation function,

i.e., wij = 1 if and only if ||xi−xj ||2 < ε, or xi are among the k nearest neighbors (kNN) of

xj . See Figure 6.1 for examples of different choices for wij for the graph Laplacian. Note that

in [10] ε-or-kNN truncation is also combined with the heat kernel. We choose the heat kernel

without truncation in our work as it yielded best results in our initial experiments. We refer to

the new learning problem in (6.5) as Laplacian MDBoost.

Note that if we define the matrix A= {Aij} by the following terms,

Aij =

wij , if i 6= j,∑M
k=1,k 6=iwik, if i= j,

(6.6)
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Figure 6.1: Examples of different choices of

the edge weights wij for the graph Laplacian.

See text for details.

then we can derive new primal and dual prob-

lems with the same form as in (6.2) and (6.3).

The dual problem can be solved with a col-

umn generation method such as in MDBoost.

We notice that both MDBoost and Lapla-

cian MDBoost in their dual form are regular-

ized hard-margin LPBoost, but have different

types of regularizer.

6.2.2 Semi-supervised Laplacian MD-
Boost

The main idea in Laplacian MDBoost, which

makes use of the geometric properties of data

distribution, can be naturally extended to a

semi-supervised learning setting. Assume

we have an additional unlabeled dataset

Du = {xi, i=M+1, · · · ,N} and would like

to use it to help improve the classification performance. Similar to [10], we incorporate a graph

Laplacian-based regularization term into our objective function, which imposes a smoothness

constraint over the class output on the unlabeled data w.r.t. the empirical estimate of data

manifold structure.

Given a neighborhood graph defined on the dataset, we can define the graph Laplacian as

L=D−W where W is a N ×N matrix and wij = exp(
−||xi−xj ||2

t ), if xi and xj are adjacent

and zero otherwise. D is a diagonal degree matrix given byDii =
∑

iwij . A smoothness regu-
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larization term on the class output f(x) can be written as f tLf =
∑n

i,j=1(f(xi)−f(xj))
2wij .

In Laplacian MDBoost, the class prediction f(xi), denoted by fi, is the combined pre-

diction of all weak classifiers for the i-th example datum, i.e., fi = Hi:α, ∀i = 1, · · · ,M. By

adding a smoothness term into the primal objective function, we derive the following learning

criterion for Semi-supervised Laplacian MDBoost:

min
α

∑
i>jwij(ρi−ρj)

2

2(M −1)
+C

∑
i>j

wij(fi−fj)2−
M∑
i=1

ρi

s.t. α< 0,1>α=D, (6.7)

where D is also a regularization parameter as in (6.1). Here we have two quadratic terms: the

first one corresponds to the margin variance of labeled data, while the second is the smoothness

penalty on all data (including the labeled and unlabeled). C is the tradeoff parameter between

the two terms.

Denote A1 as the matrix defined in (6.6) on all the data points (including labeled and

unlabeled), and A2 as the M ×M upper left corner of A1 (suppose the data is sorted so that

the labeled data are the first M elements when defining the graph Laplacian), our optimization

problem can be rewritten into a concise form:

min
α

C′

2 f
>A1f + 1

2ρ
>A2ρ−1>ρ,

s.t. α< 0,1>α=D,

ρi = yiHi:α,∀i= 1, · · · ,M,

fi =Hi:α,∀i= 1, · · · ,N. (6.8)

where M refers to the number of labeled examples, while N is the number of all (labeled and

unlabeled) examples. C ′ is equivalent to C up to a constant.

Notice that the new Semi-supervised Laplacian MDBoost objective has a similar form to

the supervised version, thus we can derive its dual formulation as follows. The Lagrangian of

the convex optimization problem in (6.8) is written as

L(α,ρ,f ,u,v,r,q)

= C′

2 f
>A1f + 1

2ρ
>A2ρ−1>ρ+ r(1>α−D)− q>α

+
∑M

i=1ui(ρi−yiHi:α) +
∑N

i=1 vi(fi−Hi:α), (6.9)

with q < 0. The infimum of L w.r.t. to the primal variable can be computed as

inf
ρ,f,α

L= inf
f

[
C′

2 f
>A1f +v>f

]
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+ inf
ρ

[
1
2ρ
>A2ρ+ (u−1)>ρ

]
−Dr (6.10)

+ inf
α

[
(r1>− q>−

∑M
i=1uiyiHi:−

∑N
i=1 viHi:)α

]
.

Clearly, r1>− q>−
∑M

i=1uiyiHi:−
∑N

i=1 viHi: = 0 must hold in order to have a finite infi-

mum. Therefore, we have

∑M
i=1uiyiHi: +

∑N
i=1 viHi: 4 r1>. (6.11)

For the first and second term in (6.10), the gradient must vanish at the optimum:

∂
[
C′

2 f
>A1f +v>f

]
∂fi

= 0, ∀i= 1, · · · ,N. (6.12)

∂
[

1
2ρ
>A2ρ+ (u−1)>ρ

]
∂ρi

= 0, ∀i= 1, · · · ,M. (6.13)

This leads to f = −A−1
1 v; and ρ = −A−1

2 (u− 1) and the infimum is −C′

2 v
>A−1

1 v− 1
2(u−

1)>A−1
2 (u−1).

By substituting the results back to (6.10), we can write the dual problem as:

max
r,u,v

− r− 1
2D (u−1)>A−1

2 (u−1)− C′

2 v
>A−1

1 v,

s.t. (6.11). (6.14)

We employ a similar column generation strategy to induce weak learners incrementally. At

each iteration, we choose a weak learner that violates the constraint most:

h′(·) = argmax
h(·)

M∑
i=1

uiyih(xi) +
N∑
i=1

vih(xi). (6.15)

We summarize the proposed algorithm in Algorithm 2.

6.3 Experimental evaluation

In this section, we evaluate the performance of Laplacian MDBoost and Semi-supervised

Laplacian MDBoost by conducting a set of experiments on real world datasets. We first present

a comparison between the proposed Laplacian MDBoost and several most widely-used super-

vised boosting algorithms. Following that, we design a benchmark of semi-supervised induc-

tive inference tasks by removing a certain ratio of training data labels in UCI datasets. We

test the proposed Semi-supervised Laplacian MDBoost against two baseline approaches, in-

cluding LLGC [236] combined with MDBoost and SemiBoost [131]. Finally, we apply our
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Algorithm 2: Column generation based Semi-supervised Laplacian MDBoost.
Input: labeled training data (xi,yi), i= 1 · · ·M ; unlabeled training data

xi, i=M + 1 · · ·N ; termination threshold ε > 0; regularization parameter D;
maximum number of iterations Tmax.

Initialization: N = 0; α= 0; ui = 1
M , i= 1· · ·M ; and vi = 1

N , i= 1· · ·N .
for iteration = 1 : Tmax do

1. Obtain a new base h′(·) by solving (6.15);

2. Check for optimal solution:
if
∑M

i=1uiyih
′(xi) +

∑N
i=1 vih

′(xi)< r+ε,
then break and the problem is solved;

3. Add h′(·) to the restricted master problem, which corresponds to a new constraint in the
dual problem;

4. Solve the dual problem (6.14) and update r, ui (i= 1 · · ·M ) and vi (i= 1 · · ·N ).

5. Count weak classifiers T = T + 1.

end
Output:

1. Compute the primal variable α from the optimality conditions and the last solved dual
problem (primal-dual interior point methods [23] produce α in the meantime);

2. The final strong classifier is H(x) = sign
(∑N

j=1αjhj(x)
)
.

semi-supervised method and two other baselines to an object segmentation in video task, as

well as an RGBD glass object segmentation problem as discussed in Chapter 4.

6.3.1 Datasets and setup

The first set of our experiments is based on the 13 UCI benchmark datasets from [162]. For the

supervised learning setting, we randomly split each of the UCI datasets into 3 subsets. 60%

of the samples are used for training; 20% for cross validation and the rest for testing. For the

larger datasets (ringnorm, twonorm and waveform), we randomly select 10% for training,

30% for cross validation and 60% for testing. All experiments are run 30 times for accuracy.

We choose the model hyperparameters by cross validation. The parameterD for AdaBoost-

CG and all algorithms in the MDBoost family are chosen from {2, 5, 10, 20, 40, 70, 100, 150}.
The search range of coefficient C for Semi-supervised Laplacian MDBoost and combining

LLGC with MDBoost are set to {−3, −2, −1, −0.75, −0.5, −0.25, 0, 0.25, 0.5, 0.75, 1, 2,

3} in negative log scale. The trade-off parameter C for LPBoost [39] is chosen similarly. For

the graph Laplacian, we let t be proportional to the variance of data and normalize all feature
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values to [−10,+10]. We set parameters of LLGC and SemiBoost to their respective optimal

values given by [236] and [131]. For simplicity, we use decision stumps as weak learners in all

tests and limit the maximum number of iterations Tmax to 1000. The convergence threshold ε

are uniformly set to 10−5.

To evaluate the performance of Semi-supervised Laplacian MDBoost on real-world appli-

cations, we also choose a subset of the YouTube Celebrities Face Tracking and Recognition

Dataset [83], which includes 6 sequences, and apply our method to a semi-supervised object

segmentation task. In addition, we validate the efficacy of our approach with an RGBD glass

segmentation problem as discussed in Chapter 4.

6.3.2 Laplacian MDBoost for supervised learning

To demonstrate the effectiveness of the new Laplacian MDBoost learning criterion, we first test

our algorithm in a fully-supervised learning setting. The performance of Laplacian MDBoost

is compared with four other boosting algorithms, namely AdaBoost, AdaBoost-CG, LPBoost

and MDBoost. The experiments are run on 13 UCI benchmark datasets for 30 times, and

average test error with standard deviation are reported in Figure 6.2. As we can see, Lapla-

cian MDBoost outperforms its opponents in most cases. This result confirms our intuition

and shows that local variance is effective in representing the margin distribution. In addition,

we have the following observations in the comparison among the tested variants of boosting

algorithms:

• LPBoost converges most quickly among all 5 algorithms followed by AdaBoost-CG,

MDBoost and Laplacian MDBoost. These four algorithms are totally corrective, mean-

ing weights of every weak learner in α could change at each training iteration. AdaBoost,

on the other hand, does not change the weight of weak classifiers in previous iterations,

resulting in a slower coordinate descent rate and a larger number of weak learners. In

our experiments, all totally corrective boosting algorithms converge in 100 iterations.

• As extensively studied in the literature (e.g., [182]), LPBoost has the lowest average

training error yet its test error is weaker than other totally corrective variants on almost

all datasets. Once again this confirms that a lower training error does not necessarily

lead to a lower test error. We have similar finindings in our experiments in Section 6.3.4.

• The proposed Laplacian MDBoost improves test error of the otherwise best-performing

MDBoost at the cost of a small computational overhead. As the pairwise distance among

input feature vectors wij can be efficiently pre-computed before the column generation

procedure, Laplacian MDBoost is not significantly slower in training compared to MD-

Boost. Although LPBoost converges in the least number of iterations on most datasets,

its generalization errors are higher than other totally corrective variants.



124 Laplacian Margin Distribution Boosting for Learning from Sparsely Labeled Data

Table 6.1: Test error and standard deviation (in percentage %) of Laplacian MDBoost (using
only labeled data), Semi-supervised Laplacian MDBoost (SemiLap-MDBoost), Learning with
Local and Global Consistency combined with MDBoost (LLGC+MDBoost), and SemiBoost

on UCI datasets.

Laplacian SemiLap- LLGC+ SemiBoost
MDBoost MDBoost MDBoost

banana 57.1±4.8 41.6±3.2 51.5±7.4 41.7±2.3
b-cancer 38.5±14.2 31.4±9.1 34.7±9.2 33.3±9.4
diabetes 36.7±14.6 30.1±4.8 30.7±4.5 32.9±11.7
f-solar 46.3±9.3 44.5±7.9 49.0±9.6 43.9±8.6
german 39.5±16.1 31.6±3.4 31.4±3.4 32.4±3.3
heart 29.5±8.7 32.5±8.1 35.6±8.8 40.4±9.1
image 34.2±10.4 28.5±1.9 35.7±2.7 34.0±3.4
ringnorm 51.9±10.0 38.0±1.7 38.6±2.3 40.1±5.3
splice 36.5±28.1 25.8±3.7 26.4±3.9 26.2±5.8
thyroid 22.8±7.3 23.5±5.1 25.3±5.4 25.0±7.4
titanic 52.0±12.2 49.7±13.3 53.3±14.0 50.7±16.4
twonorm 18.1±5.1 29.8±5.7 30.0±5.5 33.4±5.3
waveform 19.7±2.6 23.4±3.5 25.1±3.7 25.8±3.7

6.3.3 Semi-supervised Laplacian MDBoost

We first evaluate the Semi-supervised Laplacian MDBoost on a set of partially labeled datasets

derived from the UCI benchmark. In this experiment, we followed the setup in Section 6.3.1

and choose randomly 10% of the original training data to keep their labels, while manually

removing the labels of the other 90%. Our approach is compared with two other state-of-

the-art semi-supervised algorithms: LLGC and SemiBoost. LLGC is widely used in different

applications as a transductive algorithm [210, 158]. In contrast, SemiBoost is an inductive

yet effective alternative [61, 110]. Note that LLGC is transductive so it does not by default

offer the capability for predicting labels unseen during training. Therefore we combine it with

MDBoost, by using LLGC first to predict the “fill-in" labels of unlabeled training data, then

cascading with MDBoost as if all training data are labeled. For data with “fill-in" labels, we

use a cross-validated coefficient during reweight sampling to limit their impact. This method

effectively uses LLGC as a mean of manifold regularization while Laplacian MDBoost uses a

Laplacian Eigenmap instead.

The results are summarized in Table 6.1. In 9 out of 13 datasets, utilizing unlabeled data

helps to improve test performance, among which Semi-supervised Laplacian MDBoost is lead-

ing in 6 cases, showing the superior inductive inference performance.

Another interesting problem which will naturally arise is the performance gain under dif-

ferent ratios of labeled data. We present the results in Figure 6.3, where the labeled data ratio
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changes from 10% to 100% with a step of 10%. We can see from the figure that, with limited

labeled data and abundant unlabeled data, Semi-supervised Laplacian MDBoost significantly

outperforms Laplacian MDBoost. However, with more unlabeled data turned into labeled, the

performance gain decreases and the error rates converge at a same level. This is reasonable if

we look at the objective function in Equation 6.7. When there is little (or no) unlabeled data,

the value of the second term will approach (or equal to) zero, making it close (or equal) to

Equation 6.5.

6.3.4 Video segmentation with Semi-supervised Laplacian MDBoost

In this section, we apply our Semi-supervised Laplacian MDBoost to an object segmentation

in video problem. We randomly choose 6 video sequences from the YouTube Celebrities Face

Tracking and Recognition Dataset [83]. For each sequence, we extract 15 consecutive frames.

The first 10 frames are used for training and the last 5 frames for testing. The overall task is to

accurately detect and label human face in each frame in a pixelwise manner.

To facilitate the labeling task, we first apply a frontal face detector [207] to find a bounding

box for human face as in Figure 6.4. This would approximately guarantee that the face is

in the center of the box while non-face located at the edges. Within the box we perform a

segmentation [192] for superpixels. Each superpixel is then considered a basic input vector

(datum) for the semi-supervised algorithms. Next, an automated training strategy was adopted

to train the semi-supervised algorithms. The superpixels in the center of the bounding box

(within a 20 pixel range) are labeled positive (face) while the superpixels on the brim are

labeled negative (non-face). Two examples are shown in Figure 6.4. The green areas are

labeled positive in training while the blue ones are negative. All other superpixels in between

are treated as unlabeled training data. This automated training process eliminates the need for

manually labeling the ground-truth (which can be a tedious task in real world applications),

while it also generates a more challenging task for classification. We use color and position

histograms as feature vectors, as faces are typically at the center of the face detector output,

and have similar color distributions.

Figure 6.4 visualizes the test results of Semi-supervised Laplacian MDBoost, LLGC+MDBoost

and SemiBoost on the two datasets. The performance difference is greater in the second case

because the test frames involve a pose change which is likely to cause failure to the baseline

classifiers. In both examples, Semi-supervised Laplacian MDBoost presents the best labeling

performance visually. Full test results are reported in Table 6.2. In all 6 video sequences,

Semi-supervised Laplacian MDBoost is the best in 5 cases in terms of test error, although

SemiBoost is better at training error. This may imply that the baseline is prone to overfitting

on these datasets.
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Table 6.2: Average test and training error (in percentage %) of Semi-supervised Laplacian
MDBoost (SemiLap-MDBoost), Learning with Local and Global Consistency combined with
MDBoost (LLGC+MDBoost), and SemiBoost on the YouTube Celebrities Face Tracking and

Recognition Datasets over 10 tests.

test error training error

0146 Al Pacino
SemiLap-MDBoost 13.7±2.1 5.9±1.2
LLGC+MDBoost 15.4±2.4 5.5±1.1
SemiBoost 19.8±3.2 4.2±0.6

0370 Bill Clinton
SemiLap-MDBoost 11.1±1.6 10.5±1.7
LLGC+MDBoost 16.8±2.0 8.5±1.0
SemiBoost 22.5±2.2 10.7±1.3

0564 Donald Trump
SemiLap-MDBoost 7.2±2.1 4.3±0.6
LLGC+MDBoost 16.8±3.2 3.9±0.7
SemiBoost 18.5±4.7 3.5±0.3

0727 Harrison Ford
SemiLap-MDBoost 12.6±2.4 4.9±0.3
LLGC+MDBoost 15.3±2.3 6.1±0.5
SemiBoost 11.5±1.9 5.5±0.3

0935 Jennifer Lopez
SemiLap-MDBoost 16.5±3.2 11.5±2.4
LLGC+MDBoost 16.9±2.9 10.2±1.7
SemiBoost 20.2±4.1 6.4±1.0

0950 Jennifer Lopez
SemiLap-MDBoost 19.8±2.1 9.8±2.2
LLGC+MDBoost 29.1±3.8 14.2±2.9
SemiBoost 28.3±3.5 7.9±1.2

6.3.5 RGBD glass object segmentation with Semi-supervised Laplacian MD-
Boost

We further validate the efficacy of our algorithm on the dataset for RGBD glass segmentation

used in Chapter 4 and Chapter 5. In Chapter 4, we demonstrated that we can substantially

improve glass segmentation performance by adding depth cues into the feature set for local

glass boundary and region classification. In addition, in Chapter 5 we showed that segmen-

tation performance can be further improved by building a classification model based on label

transfer.

However, both methods require extensive human effort to label the exact glass regions

and boundaries in every image from the training set. In this section, we aim to reduce the

required labeling effort in this task by assuming only coarse or partial ground-truth annotation

being available for training, and compare the performance of our algorithm against other semi-

supervised learning schemes, and also with baseline methods from previous chapters which

use the fully labeled dataset.

Glass region classification. For the glass regions, we use coarse labelings similar to what is

used in Section 6.3.4, by creating a bounding box for glass objects as shown in Figure 6.5. As
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the bounding box approximately guarantees that pixels at the center of the box belong to glass

objects and pixels near the brim and outside are non-glass, we label superpixels at the center

of the bounding box as glass (within a smaller, center-aligned bounding box which covers one

fourth the area of the original bounding box), and label superpixels on the brim and outside as

non-glass. All superpixels in between are treated as unlabeled training data. In our experiment,

we have 4429 positive, 46789 negative and 13388 unlabeled superpixels in our training set. As

the number of positive and negative training examples are unbalanced, we use a two level

classification cascade to mine hard negatives. We follow the experiment settings in Chapter 4

to ensure a direct comparison can be made, except that we extract features from rectangles

randomly sampled at multiple scales to capture local context, similar to TextonBoost [185] and

also similar to what we did in Chapter 5 for boundary features. Examples of the superpixel

labelings are shown in Figure 6.5.

During test, as the number of negative examples are approximately 10 times the number of

positive examples, we report the precision at 25%, 50% and 75% recall instead of test error as

in previous sections as the test error could be biased by the large proportion of negatives. As

reported in Table 6.3 (a), although all semi-supervised algorithms using the partially labeled

dataset suffer from a loss in precision compared to fully labeled baselines, our Semi-supervised

Laplacian MDBoost performs on a par with alternative semi-supervised learning schemes. In

addition, semi-supervised learning algorithms improve the results from Laplacian MDBoost,

which uses labeled data only under the partially labeled setting. These results suggest that

we are able to substantially relieve the labeling effort at a modest cost of glass segmentation

precision.

Glass boundary classification. For the glass boundary, we take a more straight-forward ap-

proach by assuming only a subset of images in the training set are labeled. Since the 92 training

images are unevenly distributed in 8 scenes, we randomly choose 30% of images from each

scene as labeled data, and assume the remaining images unlabeled. The results are reported in

Table 6.3 (b).

Similar to our observations on glass region classification, under the partially labeled setting

we experience up to 17% loss in classification precision when using only the labeled data.

However, the performance gap can be reduced with the help of unlabeled data, especially in

the low-recall regime. This suggests that unlabeled data is particularly helpful in avoiding

mistakes with large negative margins. Again, our proposed algorithm performs on a par with

other semi-supervised alternatives.

It should be noted again that in both experiments, although semi-supervised learning al-

gorithms improve the segmentation precision over Laplacian MDBoost which does not use

unlabeled data, the performance of these algorithms is still inferior to baseline methods under

the fully labeled setting. This is expected as we only assume only 9% and 30% of training data

are labeled respectively. The same is true to the results on UCI datasets from Section 6.3.3.



128 Laplacian Margin Distribution Boosting for Learning from Sparsely Labeled Data

Table 6.3: Precision (in percentage %) at 25%, 50% and 75% recall for glass region and
boundary classification using fully labeled dataset and partially labeled dataset, respectively.
Methods using fully labeled dataset include SVM and Random Forest (RF) from Chapter 4 and
MDBoost. Methods using partially labeled dataset include Laplacian MDBoost (without using
unlabeled data), Semi-supervised Laplacian MDBoost (SemiLap-MDBoost), Learning with
Local and Global Consistency combined with MDBoost (LLGC+MDBoost), and SemiBoost.

(a) Glass region classification
Fully Labeled Partially Labeled

SVM MDBoost Laplacian SemiLap- LLGC+ SemiBoost
MDBoost MDBoost MDBoost

25% Recall 65.7 68.0±5.2 50.6±3.9 59.7±4.4 52.3±4.1 58.0±3.3
50% Recall 62.9 65.0±3.0 35.6±5.1 43.9±5.3 38.1±5.5 40.1±2.8
75% Recall 44.9 52.8±4.6 23.2±4.0 25.7±6.1 23.3±5.4 27.8±3.5

(b) Glass boundary classification
Fully Labeled Partially Labeled

RF SVM MDBoost Laplacian SemiLap- LLGC+ SemiBoost
MDBoost MDBoost MDBoost

25% Recall 59.3 33.5 53.2±5.4 35.2±4.2 42.2±3.8 37.8±2.7 39.9±3.3
50% Recall 39.7 25.2 36.3±3.3 26.4±2.9 28.9±3.5 26.2±3.4 30.2±3.5
75% Recall 21.5 15.9 25.7±2.1 10.2±3.1 11.0±2.4 9.2±1.8 10.3±2.2

In our experiments, the performance of semi-supervised algorithms gets close to fully labeled

baselines only when we assume more than 80% training data are labeled. To maximize the

performance gain obtained by using unlabeled data, we usually need to assume less than 40%

data from the training set are labeled. This trend suggests that we may potentially improve the

results from the fully labeled setting in Table 6.3 if we collect more unlabeled data in addition

to all labeled data we have in our dataset.

6.4 Conclusion

In this chapter, we have proposed a novel semi-supervised boosting algorithm based on the

margin distribution boosting. Inspired by Laplacian Eigenmaps, we use the graph Laplacian as

an effective means of manifold regularization on both labeled and unlabeled data. Like MD-

Boost, the algorithm is totally-corrective and a column generation based optimization tech-

nique is used to facilitate minimizing the objective function.

The proposed Semi-supervised Laplacian MDBoost, along with its supervised version,

exhibits promising inductive performance in a variety of tasks including classification on real-

world data, video segmentation and glass object segmentation. Our experiments show that
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Semi-supervised Laplacian MDBoost outperforms LLGC and SemiBoost in terms of classi-

fication accuracy. In particular, we show that we can relieve the labeling effort at a modest

segmentation precision cost in the glass object segmentation problem discussed in Chapters 4

and 5. This is achieved by either assuming only a coarse labeling is available or only a sub-

set of images in the training set are labeled. In addition, the proposed algorithm is a generic

inductive semi-supervised learning method that can be applied to many more object detection

and segmentation problems with partial labelings.

Like many other semi-supervised classification algorithms, Semi-supervised Laplacian

MDBoost is currently a two-class algorithm. We are exploring the possibility to a multiple

class extension by introducing new similarity measures. We also want to test our algorithm

on more practical applications to further explore the strength of graph Laplacian on different

intrinsic geometric structures. One possible extension is to add more methods for manifold

regularization to adapt to different manifold assumptions.
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Figure 6.3: Performance of Laplacian MDBoost (dash-dot line) and Semi-supervised Lapla-
cian MDBoost (solid line) on UCI datasets banana (green), ringnorm (blue) and splice (red).
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detector training
output labels

SemiLap- LLGC+
MDBoost MDBoost SemiBoost

detector training
output labels

SemiLap- LLGC+
MDBoost MDBoost SemiBoost

Figure 6.4: Examples of video segmentation with three different semi-supervised algorithms:
Semi-supervised Laplacian MDBoost (SemiLap-MDBoost), Learning with local and global
consistency combined with MDBoost (LLGC+MDBoost) and SemiBoost. The video data
are sequences 0370 and 0950 from the Youtube Celebrity Face Tracking and Recognition

Dataset [83].
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RGB Image Labeling RGB Image Labeling

Figure 6.5: Examples of coarse ground-truth superpixel labelings used for our glass region
classification experiment. Each red bounding box covers a ground-truth glass object. The
center-aligned green bounding boxes cover one fourth the area of the red bounding boxes. A
superpixel is labeled as glass if it has 50% or more overlap with the green bounding box, and
non-glass if it has 50% or more overlap with the region outside the red bounding box. All
superpixels inside the red bounding box but outside the green bounding box are treated as

unlabeled data. See text for details.
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Chapter 7

Conclusion

This thesis has proposed and implemented a series of context-aware object detection and seg-

mentation models with varying degrees of auxiliary information availability. This final chapter

summarizes the main contributions of the thesis, and closes with possible future directions of

our work.

7.1 Primary contributions

Object detection and segmentation have wide application in computational vision, and it is one

of the most essential steps towards understanding a scene. Both object detection and segmen-

tation study the problem of localizing objects of interest in an image. The main difference is

the definition of the object pose space with different levels of details. For object detection, the

object pose is described by a set of parameters including the object center location, scale and

an aspect ratio. For object segmentation, the detailed pose is inferred with a pixelwise segmen-

tation mask. A key issue in these problems concerns exploiting the spatial context, as local

evidence is often insufficient to determine object pose in the presence of partial object visibil-

ity, varying sensory data modality, and limited annotation availability. This thesis addresses the

object detection and segmentation problems in such adverse conditions with auxiliary infor-

mation such as depth maps and unlabeled data, focusing on four main issues in context-aware

object detection and segmentation: 1) the effective context representations, 2) inference with

imperfect depth data, 3) depth-aware features and label transfer, and 4) the relaxation of the

labeling requirements for training data.

We discuss three object detection and segmentation scenarios based on varying degrees of

auxiliary information availability. In Chapter 3, we propose a structured Hough voting method

for detecting objects with heavy occlusion in indoor environments. First, we extend the Hough

hypothesis space to include both the object’s location, and its visibility pattern. We design a

new score function that accumulates votes for object detection and occlusion prediction. In

addition, we explore the correlation between objects and their environment, building a depth-

encoded object-context model based on RGBD data. Particularly, we design a layered context

135



136 Conclusion

representation and allow image patches from both objects and backgrounds to vote for the ob-

ject hypotheses. We demonstrate that using a data-driven 2.1D (layered) representation we can

learn visual codebooks with better quality, and obtain more interpretable detection results in

terms of spatial relationship between objects and the viewer. We test our algorithm on two chal-

lenging RGBD datasets with significant occlusions and intraclass variations, and demonstrate

the superior performance of our method.

In Chapters 4 and 5, we move our focus to the segmentation of glass objects, which are

commonly found in indoor environments and play a key role in daily human activities. Yet,

localizing glass objects is much more challenging due to lack of locally discriminative visual

features and homogeneity of surface appearance. Therefore, we seek to exploit low cost RGBD

consumer cameras to incorporate depth information as a novel contextual cue. In Chapter 4, we

developed a method for localizing glass objects with a multimodal RGBD camera. Our method

integrates the intensity and depth information from a single view point, and builds a Markov

Random Field that predicts glass boundary and region jointly. Based on the segmentation, we

also reconstruct the depth of the scene and fill in the missing depth values. The efficacy of

our algorithm is validated on an RGBD Glass dataset of 43 distinct glass objects. Following

this, in Chapter 5 we propose an approach that uses a nonparametric, data-driven label trans-

fer scheme for local glass boundary estimation. A weighted voting scheme based on a joint

feature manifold is adopted to integrate depth and appearance cues, and we learn a distance

metric on the depth-encoded feature manifold. Local boundary evidence is then integrated into

an MRF framework for spatially coherent glass object detection and segmentation. The effi-

cacy of this approach is verified on the same RGBD Glass dataset where we obtained a clear

improvement over the state-of-the-art approaches using statistical learning based classifiers for

local estimation, both in terms of accuracy and speed.

In Chapter 6, we propose a semi-supervised boosting algorithm to address the annotation

availability issue in object detection and segmentation. We choose boosting algorithms as they

attract much attention in computer vision and image processing because of their strong perfor-

mance in a variety of applications. Recent progress on theory of boosting algorithms suggests

a close link between good generalization and the margin distribution of the classifier w.r.t. a

dataset. Therefore, we propose a novel data-dependent margin distribution learning criterion

for boosting, termed Laplacian MDBoost, which utilizes the intrinsic geometric structure of

datasets. One key aspect of our method is that it can seamlessly incorporate unlabeled data by

including a graph Laplacian regularizer. We derive a dual formulation of the learning problem

that can be efficiently solved by column generation. Experiments on various datasets validate

the effectiveness of the new graph Laplacian based learning criterion on both supervised and

unsupervised learning settings. We also show that the performance of our algorithm performs

on a par with the state-of-the-art semi-supervised learning algorithms on a variety of inductive

inference tasks, including real world video segmentation and RGBD glass object segmentation.
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7.2 Future work

The discussion in the previous chapters has suggested directions in which we would like to

extend our work based on the specific problem settings in each chapter. In this section, we

describe more general directions in context-aware object detection and segmentation with aux-

iliary information.

7.2.1 3D scene structure reasoning

The work in Chapter 3 suggests a data-driven 2.1D (layered) representation can help us learn a

visual codebook with better quality. In Chapters 4 and 5, we also reported improved segmen-

tation performance with context-driven features and joint reasoning on glass boundary and

depth. Yet, the depth-augmented context representation described in this thesis is still coarse,

as we do not explicitly reason about the scene structures and surfaces in 3D. The problem

of understanding the underlying 3D scene structure from a single 2D image has been well

studied. For example, Lee, Hebert and Kanade [104] generate plausible interpretations of a

scene from a collection of line segments automatically extracted from a single indoor image.

Liu, Gould and Koller [114] studies the problem of single image depth estimation by exploit-

ing the fact that semantic class prediction strongly informs depth perception. Gupta, Efros

and Hebert [65] uses a qualitative physical representation of an outdoor scene with geometry

and mechanics to recover 3D scene structures. Recent progress in scene structure reason-

ing (e.g. [78, 233, 211, 240, 118]) allows us to recover the location and orientation of major

structures and scene layout with varying input information. This opens up the possibility of

designing a detailed object-context representation in 3D to facilitate object detection and seg-

mentation.

A natural extension to our object-context model is to incorporate the 3D scene structure. In

particular, occlusion can be viewed as an integral part of the scene structure reasoning process.

Currently, our model in Chapter 3 learns the appearance of occluders separately from the rest

of the spatial context to infer a visibility pattern of an object. In fact, the occluders can be

seamlessly merged with the rest of the context in a 3D object-context model, as the location

and orientation of 3D structures naturally informs their distance to the viewer, hence the occlu-

sion relationships can be straightforwardly inferred. In addition, physical relations between an

object and its context can also be inferred, providing a more detailed pose description of de-

tected objects. For example, pictures are commonly attached to a wall, while tables and chairs

are usually supported by the ground plane. On the other hand, an unlikely physical relation,

such as an object floating above the ground with no support or attachment, may indicate a false

positive in object detection.

One key challenge in this direction is to reliably recover scene structures and layout in

3D, particularly when depth data is not present during model evaluation. Conceptually, it is
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preferable to jointly solve for object detection/segmentation and scene structure reasoning, as

the cues inferred from one task can be beneficial for the others. Efficient inference could also

be a challenge in real-world applications.

7.2.2 Holistic scene understanding

Apart from jointly solving for object detection/segmentation and scene structure reasoning,

other related tasks in scene understanding may also provide important cues for object detec-

tion and segmentation. As discussed in Section 2.1.5, there has been literature in holistic scene

understanding which involves object detection and segmentation in both 2D and 3D. Holistic

scene understanding aims to solve problems such as scene classification, object detection, se-

mantic labeling, depth reconstruction and geometric layout estimation in a unified framework.

In this thesis, we address either object detection or pixelwise object segmentation as a

standalone problem. We wanted to explore the potential of considering these problems in

a detached manner although they could be integral to a more complete scene understanding

framework. This means that although our methods encode contextual cues, it is either from

an object level view (for detection) or a local feature level view (for segmentation). In fact,

a visual story told by an image contains a hierarchy of information, and the various scene

attributes can be best described at different levels in the hierarchy. For instance, it would be

difficult for our models to encode the scene-level information. It is an interesting question to

explore which subproblems of scene understanding are most relevant to object detection and

segmentation, hence could positively impact localization performance.

It should be noted that not all tasks in scene understanding may help improve localization

performance. In particular, certain tasks may be redundant in certain scenarios, i.e., they use

similar visual cues so their outputs can be highly correlated to an inherent component in object

detection/segmentation systems. From a holistic scene understanding perspective, we need to

make informed decisions on the scopes of object detection and segmentation systems and the

other scene understanding problems.

7.2.3 Other types of auxiliary information

In this thesis we discussed a few object detection and segmentation scenarios with partial

information. In fact, in many real-world problems there are alternative information sources we

can look into to address the partial information issues. In other words, the ambiguities induced

by the missing information may be resolved with information sources beyond static images

and the auxiliary information discussed in this thesis.

1) Video sequences. Compared to static images, video sequences provide more information

about scenes and the objects within. In particular, with additional temporal and spatial cues we

are able to identify moving and static objects (e.g., [27]) which may help resolve the appear-
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ance variations induced by occlusion, and build a complete and high quality context model.

However, the problem is also more challenging as we need to consider additional temporal and

spatial priors.

2) Descriptive text. Recent work by Fidler, Sharma and Urtasun [48] suggests text in the

form of complex sentential descriptions can help improve the semantic parsing performance

for an image. In fact, many images from the Internet are accompanied by text tags, descriptive

descriptions, and sometimes questions and answers. Particularly, contextual information can

be inferred from descriptive text (e.g., “the chair is behind the table”). Therefore, it is an

interesting direction to incorporate textual information into a context-aware object detection

and segmentation system.

3) Application-specific sensors. In some specific applications such as satellite imaging and

autonomous navigation, we may be supplied with application-specific sensors. For example,

spectral cameras provide multispectral imaging data beyond the visible spectrum. The prob-

lems are usually also highly domain-specific, meaning that additional domain knowledge can

be integrated into the localization task. In practice, more efficient feature extraction and in-

ference algorithms are usually necessary for real-time processing. It is an interesting direction

to explore some specific applications and make use of additional sensory data to address the

partial information issues discussed in this thesis.
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169. G. Rogez, M. Khademi, J. Supančič III, J. M. M. Montiel, and D. Ramanan. 3d hand

pose detection in egocentric rgb-d images. In ECCV Workshops, 2014. 27

170. G. Rogez, J. S. Supancic, and D. Ramanan. Understanding everyday hands in action

from rgb-d images. In ICCV, 2015. 27

171. S. Romdhani, P. Torr, B. Scholkopf, and A. Blake. Computationally efficient face detec-

tion. In ICCV, 2001. 18

172. E. Rosch, C. B. Mervis, W. D. Gray, D. M. Johnson, and P. Boyes-Braem. Basic objects

in natural categories. Cognitive psychology, 8(3):382–439, 1976. 15

173. C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extraction

using iterated graph cuts. ACM Trans. Graphics, 23(3):309–314, 2004. 35, 40, 47, 64

174. B. C. Russell and A. Torralba. Building a database of 3d scenes from user annotations.

In CVPR, 2009. 79

175. A. Saffari, H. Grabner, and H. Bischof. Serboost: Semi-supervised boosting with expec-

tation regularization. In ECCV, 2008. 49

176. L. K. Saul and M. I. Jordan. Exploiting tractable substructures in intractable networks.

In NIPS, pages 486–492, 1996. 43

177. A. Saxena, S. H. Chung, and A. Y. Ng. 3-d depth reconstruction from a single still image.

IJCV, 76(1):53–69, 2008. 5

178. R. E. Schapire and Y. Freund. Boosting the margin: a new explanation for the effective-

ness of voting methods. The Annals of Statistics, 26:322–330, 1998. 50, 116

179. E. Seemann, B. Leibe, and B. Schiele. Multi-aspect detection of articulated objects. In

CVPR, 2006. 23, 26

180. P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat:

Integrated recognition, localization and detection using convolutional networks. In ICLR,

2014. 17

181. L. Shams, D. R. Wozny, R. Kim, and A. Seitz. Influences of multisensory experience on

subsequent unisensory processing. Frontiers in Psychology, 2:27–38, 2011. 3

182. C. Shen and H. Li. Boosting through optimization of margin distributions. IEEE Trans.

Neural Networks, 21(4):659–666, 2010. 11, 48, 50, 116, 117, 123

183. C. Shen and H. Li. On the dual formulation of boosting algorithms. IEEE Trans. PAMI,

32(12):2216–2231, 2010. 50, 116, 118

184. J. Shotton, A. Blake, and R. Cipolla. Multiscale categorical object recognition using

contour fragments. IEEE Trans. PAMI, 30(7):1270–1281, 2008. 25



152 References

185. J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance, shape

and context modeling for multi-class object recognition and segmentation. In ECCV,

2006. xvi, 32, 38, 40, 58, 102, 115, 127

186. A. Shrivastava and A. Gupta. Building part-based object detectors via 3d geometry. In

ICCV, 2013. 3, 28

187. K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image

recognition. In ICLR, 2015. 17

188. M. Singh and B. L. Anderson. Toward a perceptual theory of transparency. Psychologi-

cal review, 109(3):492, 2002. 45

189. J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman. Discovering

objects and their location in images. In ICCV, 2005. 23

190. L. Spinello and K. O. Arras. People detection in rgb-d data. In IROS, 2011. 27

191. N. Srivastava and R. R. Salakhutdinov. Multimodal learning with deep boltzmann ma-

chines. In NIPS, 2012. 3

192. A. Stein and M. Hebert. Occlusion boundaries from motion: low-level detection and

mid-level reasoning. IJCV, 82(3):325–357, 2009. 125

193. E. Sudderth, A. Torralba, W. Freeman, and A. Willsky. Depth from familiar objects: A

hierarchical model for 3d scenes. In CVPR, 2006. 6, 33, 53

194. M. Sun, Y. Bao, and S. Savarese. Object detection with geometrical context feedback

loop. In BMVC, 2010. 33

195. M. Sun, G. Bradski, B. Xu, and S. Savarese. Depth-encoded hough voting for joint object

detection and shape recovery. In ECCV, 2010. 28, 54

196. P. Sundberg, T. Brox, M. Maire, P. Arbeláez, and J. Malik. Occlusion boundary detection

and figure/ground assignment from optical flow. In CVPR, 2011. 35

197. S. Tang, M. Andriluka, and B. Schiele. Detection and tracking of occluded people. IJCV,

110(1):58–69, 2014. 30

198. A. Tejani, D. Tang, R. Kouskouridas, and T.-K. Kim. Latent-class hough forests for 3d

object detection and pose estimation. In ECCV, 2014. 31

199. J. Tighe and S. Lazebnik. Superparsing: scalable nonparametric image parsing with

superpixels. In ECCV, 2010. 39, 100, 110

200. J. Tighe and S. Lazebnik. Finding things: Image parsing with regions and per-exemplar

detectors. In CVPR, 2013. 39

201. A. Torralba. Contextual priming for object detection. IJCV, 53(2):169–191, 2003. 6, 32,

53



References 153

202. A. Torralba, K. P. Murphy, and W. T. Freeman. Contextual models for object detection

using boosted random fields. In NIPS, 2004. 32

203. A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing features: efficient boosting

procedures for multiclass object detection. In CVPR, 2004. 115

204. J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object

recognition. IJCV, 104(2):154–171, 2013. 20

205. P. J. Van Laarhoven and E. H. Aarts. Simulated annealing. Springer, 1987. 43

206. A. Vedaldi and A. Zisserman. Structured output regression for detection with partial

truncation. In NIPS, 2009. 30, 53

207. P. Viola and M. J. Jones. Robust real-time face detection. IJCV, 57(2):137–154, 2004.

16, 17, 18, 26, 49, 115, 125

208. C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba. Hoggles: Visualizing object

detection features. In ICCV, 2013. xv, 17, 29

209. A. Wallace, P. Csakany, G. Buller, A. Walker, and S. Edinburgh. 3d imaging of transpar-

ent objects. In BMVC, 2000. 8, 46, 77, 78

210. M. Wang, T. Mei, X. Yuan, Y. Song, and L. Dai. Video annotation by graph-based

learning with neighborhood similarity. In ACM-MM, 2007. 124

211. S. Wang, S. Fidler, and R. Urtasun. Holistic 3d scene understanding from a single geo-

tagged image. In CVPR, 2015. 137

212. T. Wang, X. He, and N. Barnes. Learning structured hough voting for joint object detec-

tion and occlusion reasoning. In CVPR, 2013. 64

213. X. Wang, T. X. Han, and S. Yan. An hog-lbp human detector with partial occlusion

handling. In ICCV, 2009. 30

214. X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV,

2013. 19

215. Y. Weiss. Comparing the mean field method and belief propagation for approximate

inference in mrfs. Advanced Mean Field Methods–Theory and Practice, pages 229–240,

2001. 43, 87

216. M. Welling and C. Sutton. Learning in markov random fields with contrastive free ener-

gies. In AISTATS, pages 397–404, 2005. 43

217. T. Werner. A linear programming approach to max-sum problem: A review. IEEE Trans.

PAMI, 29(7):1165–1179, 2007. 42

218. C. Wojek, S. Walk, S. Roth, and B. Schiele. Monocular 3d scene understanding with

explicit occlusion reasoning. In CVPR, 2011. 30



154 References

219. L. Wolf and S. Bileschi. A critical view of context. IJCV, 69(2):251–261, 2006. 6, 32,

53

220. B. Wu and R. Nevatia. Detection of multiple, partially occluded humans in a single

image by bayesian combination of edgelet part detectors. In ICCV, 2005. 30

221. J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale

scene recognition from abbey to zoo. In CVPR, 2010. 39

222. Y. Xu, H. Nagahara, A. Shimada, and R.-i. Taniguchi. Transcut: Transparent object

segmentation from a light-field image. In ICCV, 2015. 47

223. Y. Yang, S. Hallman, D. Ramanan, and C. Fowlkes. Layered object detection for multi-

class segmentation. In CVPR, 2010. 33, 35

224. C. Yanover, T. Meltzer, and Y. Weiss. Linear programming relaxations and belief

propagation–an empirical study. JMLR, 7:1887–1907, 2006. 42

225. J. Yao, S. Fidler, and R. Urtasun. Describing the scene as a whole: Joint object detection,

scene classification and semantic segmentation. In CVPR, 2012. 33

226. P. Yarlagadda, A. Monroy, and B. Ommer. Voting by grouping dependent parts. ECCV,

2010. 22

227. M. Ye, Y. Zhang, R. Yang, and D. Manocha. 3d reconstruction in the presence of glasses

by acoustic and stereo fusion. In CVPR, 2015. 47

228. J. J. Yebes, L. M. Bergasa, and M. García-Garrido. Visual object recognition with 3d-

aware features in kitti urban scenes. Sensors, 15(4):9228–9250, 2015. 28

229. J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understanding belief propagation and its gen-

eralizations. Exploring artificial intelligence in the new millennium, 8:236–239, 2003.

42

230. Z. Yu, W. Zhang, B. Kumar, and D. Levi. Structured hough voting for vision-based

highway border detection. In WACV, 2015. 26

231. M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In

ECCV, 2014. 17

232. H. Zhang, J. Xiao, and L. Quan. Supervised label transfer for semantic segmentation of

street scenes. In ECCV, 2010. 38

233. J. Zhang, C. Kan, A. G. Schwing, and R. Urtasun. Estimating the 3d layout of indoor

scenes and its clutter from depth sensors. In ICCV, 2013. 137

234. Q. Zhang, G. Hua, W. Liu, Z. Liu, and Z. Zhang. Can visual recognition benefit from

auxiliary information in training? In ACCV, 2014. 3, 28

235. Y. Zhang and T. Chen. Weakly supervised object recognition and localization with in-

variant high order features. In BMVC, 2010. 59



References 155

236. D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Scholkopf. Learning with local and

global consistency. In NIPS, 2004. 48, 116, 121, 123

237. L. Zhu, Y. Chen, A. Yuille, and W. Freeman. Latent hierarchical structural learning for

object detection. In CVPR, 2010. 19

238. X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label propa-

gation. Carnegie Mellon Univ., CS Tech. Rep. CMUCALD-02-107, 2002. 48

239. Y. Zhu, R. Urtasun, R. Salakhutdinov, and S. Fidler. segdeepm: Exploiting segmentation

and context in deep neural networks for object detection. In CVPR, 2015. 32

240. W. Zhuo, M. Salzmann, X. He, and M. Liu. Indoor scene structure analysis for single

image depth estimation. In CVPR, 2015. 137

241. M. Z. Zia, M. Stark, and K. Schindler. Explicit occlusion modeling for 3d object class

representations. In CVPR, 2013. 30

242. C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In

ECCV, 2014. 20, 64


	Acknowledgments
	Abstract
	Publications
	Contents
	Introduction
	Our research problems
	Object detection with depth-encoded context
	Glass segmentation by joint inference of boundary and region
	Depth-aware features and label transfer
	Learning from sparsely labeled data
	Thesis outline
	Major contributions

	Literature Review
	Object detection in computer vision
	Sliding window detectors
	Hough transform detectors
	Object detection with RGBD data
	Occlusion reasoning for object detection
	Context modeling for object detection

	Object segmentation in computer vision
	Foreground object segmentation
	Context modeling with Markov Random Fields
	Inference in Markov Random Fields
	Glass object segmentation

	Boosting for learning from sparsely labeled data
	Summary

	Structured Hough Voting for Joint Object Detection and Occlusion Prediction
	Introduction
	Our approach
	Structured Hough voting
	Depth-encoded context
	Second-order features


	Model learning and inference
	Joint inference for object detection and occlusion prediction
	Learning with depth-augmented data

	Experimental evaluation
	Dataset and setup
	Model details
	Quantitative results
	Segmentation performance analysis
	More detailed examples

	Conclusion

	Glass Object Segmentation by Joint Inference of Boundary and Depth
	Introduction
	Our approach
	Boundary and region graph
	A Markov Random Field on boundaries and superpixels
	Joint prediction
	Depth reconstruction

	Experimental evaluation
	Dataset and setup
	Recall statistics for glass proposal
	Segmentation results and comparisons
	Qualitative analysis for joint inference

	Conclusion

	Glass Object Segmentation by Label Transfer on Joint Depth and Appearance Manifolds
	Introduction
	Our approach
	Superpixels and features
	Boundary label transfer
	Object model and inference

	Experimental evaluation
	Data specifications and setup
	Ablation studies
	Results and discussion
	Building subset-specific manifolds

	Conclusion

	Laplacian Margin Distribution Boosting for Learning from Sparsely Labeled Data
	Introduction
	Our approach
	Margin distribution and Laplacian MDBoost
	Semi-supervised Laplacian MDBoost

	Experimental evaluation
	Datasets and setup
	Laplacian MDBoost for supervised learning
	Semi-supervised Laplacian MDBoost
	Video segmentation with Semi-supervised Laplacian MDBoost
	RGBD glass object segmentation with Semi-supervised Laplacian MDBoost

	Conclusion

	Conclusion
	Primary contributions
	Future work
	3D scene structure reasoning
	Holistic scene understanding
	Other types of auxiliary information


	References

