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ABST.RACT' 

\\ 
.·This tl)esis ·is essentially concerned with the use of , . . r .. \ - . .. 

ele~troph~retically-d~tec;:tec;I geneti'c Vfiriation, in combination wit,:h 

-mark-recapture data, tb\ describe the genetic struct~re ;f a high 

vagility species, the sk:'i,pjack ~una (KatsUhJon_us_ peZamis> , in" the 

· ·Indo-Australian region.~ 

are . then considered, and 

t~plications for management of the resource 
. I 

the\·results related where possible to other 
•. 

nu~mbers of the family Scornbridae. 
,{' ,/; 

· With a ~avo~able return rate (7 .6%) ~rom .the 9547, releases 
( 

o;!T tqgged •skipjack, it has been possible to disc.ern cyclical f!lovement 

large scale 9c~anograp~~c 
. 'L _..,, 

An hypothes'j)s to expla~n 

patt.erns. The~e appear to be related to 

events. leading to enhqncod produ'ctivity. 

these movements recognizes resident (islan'd associated) and nomadic 

components of the r.esource. · 01} the basis, of these and subsequent 

tagging ex_periments, .dispersal of ~dults in quite limit:ed, with < l% 

of nett displacements. exceeding 1000 nautical miles. Providing 11 

dispersal of plankto~ic php.ses is of similar scope, the potential fo:r*

gene flow within one generation is. consi~e:r~bly lest th~~ in some 

other scombrids. 

·Although hampered to some extent by the reliance on varia

tion at one. enzYtne locus (serum esterase, E' ) the electrophoretic 
.. • SJ .. 

studies produced res'ults compatible with the mark-recapjtre data. 

The main ~e'ature of this va:r;iation was a cline in E~J frequencies 

acro;ii>-S 12,000 km, matching the longit1fdinal extent of both the known 

spawning areas and the distribution of islands. It therefore appears 
- ' 
likely that open ocean-island int ractions play an important role in#_ 

skipjack ecology, and in. selectfv action on the .E!:iJ locus. The 

relative roles of selection and.-mi ration in maintaining the cline 
' 

remain uholear !Jut an isolatioh-by- ·stance model may provide the 
~:--: 

·-best fit to the available data. 

.A notable. feature of the cline. is' that variance at any 

Time""serie·s point is considerab(-~ grec;1-ter t)1~n expected by cha!fce. 

sampling at a site in I:apua New· Guinea has shown that 'this· is 
" 

"· 

\) . ,. 
" ' ,,. 

.,• 

, 

\ ;: 

., 

.. .. 

., 
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..• , ... 
independen,t of fish si.~e and other factors and is· related in part to 

episod~C· . .i:nfluxes of· groups· of ·skipja~lc with atypic~! gene ·frequencies. 
. . d 4 

The ·corilplexit·y and continuity of recruitment into the study are9- dld 
' . f . • j 

not allow particular cohorts to be monitored gehetically . 

. 
Heterozygositi~s·at 26 loG~ in nineteen. Ind~-Australian ·, 

s~o~r~ds' sho~d <?onsidera.p,.J..e ,inter-locus' and 
1
inter-specific varia-1 

tion, with maximum ,values'' obserr ~ in !arge higMy mobile, widely 
t: f' '< " 

distributed-species. The data. not lend themselveg to critical 
• • t;> • .. 

test of neutraiist. and sel~ctionist byp~theses btit have been useful . . 
in d~monstrating that most scombrids harbour mar~ mar~e~~ on wpich 

.... , 

to base genetic studies than was the case cfor skipjack. 

I 
" The electrophoretic data were able to clarify the taxbnomic 

.. 
status of two G,rcurunatoraynus morphs, which are c.learly good species, 

and were .also used for Phenetic ·and cladistic ~aLyses of· inter7"' 

spe~ific relationships. Thes.e showed good agreement with existing 
'. 

schemes based on mor-phological charaCters, but indicated that majof.' 
·,~ .. » . 

groups within the Scombridae have long been separatedt.d· i~~erpret~-

tions of scombrid evolution. which regard morpho-physio gical 

specializations ·as sequential may need s~me re~pprais I. Zoogeograi'

ical st~~lies appear lik~ly to benefit from insights provided by 

~lectrophoretic comparisons . 

. , 
., 

.. :~ . 

! 

\ ' . 

'II' 
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CHAP~BR~". 
INTRODU.CTr*N 

-, 

/ 

. . Tunas .:nd thej,.r relatives, .• ,~. ',;og:~her ,compr~se the dive~e 
family· Scombridae1 possess a sultf ~f ·characteristi.cs d~ considerable 

interd'st to bio~ogis1;:s .. As ·"a group thJ~ have successfully colonize? 

the vast, nutrient-poor epipelagic zone .:of . .the world 1 s oceans; they' . '. ~ ' . 

• 

also ~ssess a range .of morphological (Kishinouye, __ .l92~; Magnm~on, 1:973;_ 

Collette, 1978) and physiological adaptations ··(ca;·ey an~ Teal, 1~66; 
.\ 

Stevens ·et aZ. _, 1974;. Graham, 1975), incl,ud~ng efficient hydrodynamic 

design, warm-bodiedness and high met~!JliC r'at;.e, wh"i~h· make ~Qem the 

most specialized hf fishe~ with ~"'regar~ to ~u{tained high spe~d loco

motory acti:vity. . Members of the fami .. )y ~re widely distributed throi.lgh8ut 

tropical, sub-tropical and temperate areas, and form the basis:or sub

stantial coinmercial, subsistence and recreational· fisheries. 

Natural populations of such widely distribut~d 'speeies'-~~e Ve'):y 
· . I a 

unlikely to comprise-a single pa~i<:tic unit (Li, ~976; Wright, 1969), 

~ and some. genetic differentiation typically occurs. Apart from its .. 

intrinsic'evolutionary interes't and significance, the extent to which 

genetic differenti~tion a.nd.other forms of population structuring occur 

has considerabl'e implications· for the ma;{agement o£ species subject to 

inte.nsive ,harvest... Hti.man exploitativ'e activity is rar§i\l:'y distributed 

', evenly ·acrO!i)S a sp'ecies 1 range 1 particularly Where the harvest is global. 

Such is the case with manY; tunas~ and in this situation 1 the p~ssibili ty 

that a spec~es might be resolved into a .series of partially or wholly 

genetically isolated populations has considerable :appeal to mana.gers: 

Even where harvesting activity is unifm:mly d{stributedl some knowledge . ' ' . ' 
of population structure and genetic; differentiation is desirable .. 

Ricker. (1973) · for e~ample 1 has postul•ate.¢1 from s.toclc/recn~.itment models 
-~ . 

t'hat when~ groups with e~en "partial genetic ingividuality" (in his 

case the progeny of spawning-aggregations of homing salmon) but differ-. " 
ing productiVity are fished in C0rnnl0n 1 a smalle.r' SUStainable yield 

thqn that ~xpected from. an equivale~t level of exploit-ation of a geneti

- cally homogenO'!JS grou~ will~ be obtained. c:;onsiderabl~ effort has 

·"' 

.· 



t~erefore~been directed toWardS' identifying and defining intra-specific 

~~oup.ings in ~i-shes geneially _and tunas· in parti_cular (~ 1957, 1963). 

\~ith ~oa~tal state~ acquiring ext~~ded juri~d~ctipn 'over mari~e resources 

s~h- effort.~, part;:l.c~larly under the aegis of' international management 

·. bod\es, '-cdn be 'e:xp-~ctep to increas~. 
\ ' .. 

, In natural populations, intra-specific grou'pl.ngs are not always 

definab±~ in strictly genetic ter:ns, that is as. Mende.Eian popu.lations 

-. (Do~z_h~nsk{, 1955) or even in b~oader' te~s 'as '"sub-,..populations"· (Marr, 

1957) .. Dem~graphic,· sociological and_ecological criter{a are also 

emproy~~ to .define gro~pings (Harriso~ ·and ~oyce, 19721.. . Indeed, eco

g~ogr~phical groupings Gr ·, s_tocks' ("the e~~loitabl~ group .of fish-
I 

existing iri ~ particula~ ar~a at ~ partie? tim~" - Ar;1on., 1976) are 

widely usedas a descriptive basic unit of fisher~es management. The 
'. '. ' ., '' ' -

concern of this study is howeyer directed ttowards detecting. genet.~ 

groupings·, or more _specifically; the tle.greEk to which geneti6 differ-. \ '·. ' 

entiation. occurs within natural populat~ons of scornb:i~ species, and in 
. ~~ ' . 

turn, its possible relevance· to the management of these h{ghly mobile,. 

widely distributed sg~cies-. 
~ (~,)" 

I In recent years, eiectrophoretic stud'ies in particular have 

·appeared to offer a convenient means of examining genetic dif,,f'~n\iation 

in fish populations (de Ligny, 19_69; Kirpichnikov ~ 1973; u~mie~ori,,, ~1974; 

A~l~ndorf and Utter, l97p). In'many cases however, resultsro~ ~~e~~ 

studies have been r:~ported in terms of gene and genotype frequencies 

without relating the conclusions to the species' ecology, and testing the 

relationsh~ps with ·independent observations. on other populations, or 

on other species with similar ecologies. The relative roles of gene 

flow and selection in opposing or maintaining genetic' differentiation, 
" 

for example, are subject to continuing debate. Tpe orthodox nee-

Darwinian viewpoint (Mayr, 1963; oobz'hansky, 1970) emph.asises the homo

genizing and integrating effect of gene flow in minimizing different±-
• 0 

ation and; as a corollary, the importance of mechanisms interrupting 

gene flow and i,solating populations. in mainta,~ning .~ifferentiation. This ~· 
view has been ch~llenged by Ehrlich and· Raven 'n 969) and others, who 

maintain that ~ene fiow in nature is much more restricted. th~. commonly ' . l 0 ' ! "( 

populations· compi~tely isolat,ed for long periods often' thought, that 

.show little diff-erentiation, that gene flow may not be random and that 
' 

populations freely exchanging genes put UJ;lder different selective regimes 
• , r . 

may show marked diff_erent1.·at1on. The influence of gene flow is th~s 
,// 

16 
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.. 

. ' 

~determi~ed by the prevaiiin• sele~tive regime an~may 

divTr~~nce (TJ:lo~~y, 1972f. 

enhance 

... ;; 
' One"s~!ftbrid species, the warm water cosmopol skipjack tlina 

' I (Katsuwonus pelamis! was chosen for intensive study, ing data obtained· 

by applying <~\ect.i:oph~retic :techniques to ~etect g.enetic va.ri!.tion; such 

vapiation ··is referl,'~d to as allozyme variation. T.o en~pass the' ~nt.l,r~ 
1 . 

range of -the spec;:ies would be c\~arly bey~_nO. the scope or t~is s~udy 

and aftention wa.p foc,ussed on ~he ~ndo-A~s.tral,.~~n region, with the 

Papu~ New Gui~e} ~rea as ,its cettre. This comb;nation ef species 'anp 

area was c.hosen for seve.ral reasons, 

(i) ' the l.nte~n'ational harvest of skipjack, curr'.ently considered 

\. 

(ii) 

(iii) 

to be an u~derexploited species, has been steadily increasing, 
t ) . I 

par_t:iculariy-·Jn the. western Pacifi~. This_ brings with it 

the .need to better underst~nd the population structure of •· .. . . 
the species at all levels. The extent to' which genetic 

dif~rentiation occurs is potentially an important aspeat cif .. 
' :., 

the biology of skfp~k tuna is better· known than that of many~ 
other scombrld spec~, an important _consideration when at~e~pt~ 
ing ~o inte:rpret aYlozyme variation.· -~ 

·-
fundamental to studies.of genetic d;ifferE,!ntiation, particulatly 

in organisms _of high vagilit~, is a knowledge of dispersal 

"' parameters. Suitable data were available from extensive mark-

vecapture experiments coQducted in the Papua New· Guinea area. 

during 1971-75. 

After a general introducti~'h to .the family Scombridae, skipjack'·, 

biology has been reviewep in som~ detail, particularly those aspects 
' . 

relevant to population biology (Chapter 2). ;rhe mark-.recapt,ure data 

is analysed (Chapter 3) and allozyme· variation in skipjack tuna from 

: . " ' both a broad geographical and bn is.otopic time-,eries viewpoin-t, has .. 
then beeh· discussed with· the bt;nefit of this irowrtant background 

I . 

information to ide~tify podsibl-a management impli'cations (Chapter 4)·. 

Levels of genetic variation in other Indo-Austral~an scombrid 

specie"s, which encompass a considerable ecological and biological 

diversity, were t;:hen i'ntres1tgated (Chapter 5). The observeo variation 

': 



.. . 

• 

.. · 

is assessed bot~in t~~ of its potential val~~ markers i~ studi~ 
such as th~ under~~keon with skipjack> an.? in 'tht'~ight W: ~r.edictions· 
deriv,ed f+om neutralist selectionlst hypotheses. rt is recogn~zed, 

however, that such species,· which"are not amenable to experimental 
. • • M· . 

manipulation, are unlikely to pr®vide~data for critical tests of these 

hypotheses. 
,. 

; ....--- ' 
The electrophoretic data· from the species array are then used . ~ 

to attempt to place th~ member~ of the scombrid species arra~ io their 
. .. 

phylogenetic and zoo<geographic context. Such data is increas.l,ngly:« . 

>being u,sed to good effect in a systematic tble (Avise, 1975) a~d· the\ ( 
r, '1" 

pres_eht data provides the opp~rtuni ty nbt only tb cl.arify taxonomic 

status iii. several cases but also·to 'examine inte.r:-species relati:onships 

w~ t~~th~ i?amily Scombrida~ fr'a~'~? phenetic and cladistic, viewpoint 

·ano in so doing, generate information usefu}.F.I in a zoogeographical se11se 

(Chapter 6~ . 
"' ~~, 

'" JJ 

.v tl ~ 
. "• ' ,, .'·y;l"7. 10 

'-·r. The preient study thuEit&,can be viewed on two l!~v~ls - as an ·~ .' .-.-,·,r.·,t.) 
~ ttempt to draw t·o~ether information from· several, dis~pl'ine"'s - ecology, 

genetics and systematics - to examine how evolutionar. forces working 

at various levels have shaped the extant members of a' ~rine telaost 

family and, from a. more appl.:j,.ed viewp<.int; as .. an attempl1 to evaluate 

the usefuln~~s of allozyme data, in ~onjunction with mark-recapture 
'" , .. 

data, to population studies, and ultimately management, of. scombrid" 

fishes. 
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';,_, ' CHAPTER 4: 
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" . 
' << 

,, 
' . 

THE .BIOLOGY AND ECOLOGY OF . SCdMBRID 

"' 
" . ·\ . 

·~·,. 

\· ·. •, 

.. 

\ \ ~ 

,, ,, ~~· ~ • '::f (I I ' . 

2. J,. .. THE FAMILX .s·coMBRrrip;/ ,. 
· It 

•• Tl}e ·most ~~cent Classi·fica~ioft of. the. Scombrir'lae. ~'Collette &~ . 

'1~7§'; coilE?'tte', 1978) reaogn.iz~~r ~5 ·genera and ·.abo~: .. 5;\species in. tw~o, '··\ 
• ./> J . ' ' 

sub-families, tpe~onotypic a~d aberrant Gasterochismatinae and the · · 
" 

Scombrinae. ""·.' . -- - ; .~ The Scoittbr;i.nae 1.s composed of four tribes, the mackerels 

, _(Scombrini), Spanish, macker~ls (pc~~ElJOmo .. ini) 1 bonitos (Sardini) .a~d 

tunas (Thunnini). The di~ribution of -genera and species within these . ·• 
,t:rj.bes .and sub-:'familtes is· shown in Figure 2 .l. · 

' Scombrids are .members of tlie ~arge order Pe.rc4.formes and their 

closest relatives include the sworafish (Xiphii~a.e), ·marlins and sPearfish 

' ('Istibphoridae) and luvar (Luvaridae:),. Although '•commonly regarded as a 
··' 

flourishing "modern" group, the'y .are k11own i~ the fossil :r:::,ecord· ,from 

Up,er Cretace_ous' deposits·,· (Shuqnikoy, ·197~), with most palaeo~tological' 

finds relating to the Eocene and Oli<joc·e!le (D'"iirtil' chenko, 

Morphologicai evidence (Collette, 1978) indicat.es a 
. "J,.• • • 

pr?g-7"ession f·rom Jijl primitive ~-ribe Sc?mb:ini through to. th~ advanced 

Thunnini. ·,Many of the external q,iagnos~i~: ·characters are adaptations 
• .J;} ' • ' i' 

· associated with con..tinuous high-~eed s.wiilUlling, e .'g. the specialized 
., • .. • 1 . ·~ 

_hypural complex enabling increased tail propulsion; the-caudal !<;eels· 

·accelerating wa~er floW' 'iac~s the tap· and ~~ducing tu;buience and drag 
.11 ~ ' 

(Fierstine & Walters, 196•8); the forked, .or lunate tail with high aspect 

ratio;. the dor,sal ·aiJd an~l finle,ts Jf co~~rol eros~ ~~6w and improve 

· 'j\i.i ·b~a~ ef~1ci~.ncy,:. s~uama;ion pa~terns (corselets) to·' r~duce form 

drag (Walters, 1962~ and hydrodynamlca~ly efficient shape (Alexander, 
7 ·-...... 

196·/,. Intern~·! modifications' include·, h.igh haemoglobin levels (Kltawe et 
' .. .. ' - ..... 
al. _, ·196-3) high, packed_. 'c~ll volumes (Alex~1e.r:. e't ctl. _, 1980) and gill 

f . 

mo'dificat,;ions. assoc:i,c1ted, w~~ ram-jet ventilation, namely very high gil~ . 

. area/body weight rat'ios '(Muir &· Hughes', ,1969)- and lamellar and filamentar 

fusio~ (M~i~ & Kendall, 1968)l 
•o ~;,_ ··: ii(W 

• . ' 

' . tfl ,\'i 

1'9 

. ' 

· •. r 
I 

'. 



<>. 

-, 
'--

''-
.;- ~ --.." 

"'<_ 
"' ) -.... .. -. ..._____ 

\ 

<!) 

•• 

_;. 

--~-

"" 
' 

FAMILY 

'· 

~ 

' 

-( 

.· 
"'-

)} 
• I 

Sco r.nb rid'ae 

/< 

.. 
·t 

.. 
_./· 'r 

~\ 

f{b 

"~· 

SUBFAMI'Lt-- - -· TRtBE GENUs•, ----- It •· 

/ " 

' 

Thunnus 

-{ 

~atsuwpnus 
Euthynnus 

A~ xis 

'Allothuni;ts 
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Figure 2.1 The ctassification of the family Scombridae. ~drawn ~lette (1978'). 
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m~\t~iking '. \ 

' ; ~.' . ' 
developments along this phylogenetic; lirie are The 

seen, however,. it\.:·· 

. ' 

.\ 
·-\. 

the· in~rease in proportion of red to white muscl
6
e .~nd the (a) 

..... ' • i .,.\. ..... 

degree. of int~,r~nalization. of this red m1,1scle ·(Sharp· & Pir~ges, 1978). 
' \ 

,,, Red muscle fun~tions aerobically an¢1 provides pGlwer for .'cruise' 

·, (sustained) swibning, · (Rayner & Keenan, 1967.), whereas whine muscle .. . !:-- \ \ f '* • .: • • • • , • • .. 

generaf"i,ly funct~ons c;tnaerobically in providing 'burst' speed; 
~¢ .,..v'~·.' '· ~~ '•., ' ' 

I / •..-I 
:' . .. ~ 

., (b) · the deveiopment o£ ~ounter' current heat exchangers (retia 
... \ ........ ~ ~ \ .. .., ~· () 

\.~~~~bi~i.\) whic::;~. counserve me,taboli~ ~eat and ma~ntain, body ~e<mper-

··a~l,lres _w~er t:m~ ¥ilii~nt.W,ater t~mp~raiure. (Car·ey et al., 1971; · 
' ··... .t' _. v-, .: I ., ~ 

Gra4am/ 1975)'. This is traribusly )l.ypoth~::;ized to increase qmscle 
•••• D 't'' , • .,~' ' • • o 

pow~ri·.~nd efficfen,cy, maxim1:1m. sustai!'e~urst spe¢ds (by in-

_ .. c:rea.si~·~· ;ed ;nd :--'hi,~e. muscle' temper~t,.~!respective,l~) , · thermal 

~nertia (Stevens p.nd N~ill, .19_78)' and ·to\pro~ote rap}d tligestion 

by warm~!lg the visceral, ·!Jlass\ _Some. speci~s ~re :also believed to 

passess ~ihermoregulatory~capacity (Dizo/ & .B.rill, 1979, and see also 
' ' ' \ 

Sectiqn 2. 3. 1) . } ~ 

-~ ' 

~ ~-- . . . , . These adaptations, which ·are considered in detail in S~ii~ Dizon 

·'I 

' 
1
• (1-978) , haV:e allowed the advanced scqJnbrids ( KatsW:Jonus,, Thunnus) to 

~ ., ' . . 
colon!,z.e the epipelagic zone where the patchiness of available -forage 

• j' - "' • 

' makes :the ne~d to winim~..ze time between ~atches and ability to cover large 

a.reas in se_at·ch of such 'patches acute. Other fast-swinuning 9-roups which 
' . 

have success!fully colonized this zone, e.g. the hit!l.l:fishes (X'iphiidae, 

Is tiophor ida.e) 

adaptations. 

and lamnid sharks,, show convergence in some .of tnese 

' If•"• 
. ~. ) " ' 

The ina:ximuin size attained by scombrids ·varies froih less than one 

kilogram in most mackerels (Scombrini) to more than 700 kilograms in the 

Atlantic· blu\=fin tuna (Thunnus thynnus thynnus). Jn the latter case,' this 

is associated with a 10
9 increase ~n hatching ~~ight (Klawe; 1979). Most 

species exhlbl t."' schoolir~g beh~viour to ,some degree. Dietary oppo:r;tunism 

is the rule, '·a~though speciali~ed .pJ,ank,tivores and active predators of 

large teleosts are represented. ·shubnikov (1974) discusses. the origin of 

ecological groups within tne family "(neritic, peripheral neritic, neritic

oceanic, and oceanic )rtf relative to their schooling and feeding habits . 

. ,. 
" .-
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I 

I 

.. 
' I Reproduct.;ion has not been well studied in the 'group. FE;rtilization 

/ ,p ' 

i~/.. external, sexuality normal and rriating asst1rned to be random. 
7' ~'!."" I . " 

Ejggs .and larva-e ani' invariably pelagic and most. sp~cies show moderate· to ., ' 

high fecundity relat.ifve to their size. The fecundity of tunas, for example, 

approaches_ 100,000 ~ggs p~r kg} of body weight. Consistent with their high 

vagii'lty, many species. unde.rtke extensive migrations, either for spawning 

or ~eeding . 

new 'Thirs"· spe,'cie,s o.f scombrid fishes, in°cluding one re/ognized as 
.\ / . . I 

the course of this :>tudy, occur in the Indo-Ay~·tralialr area, during 

defin'ed here as the waters surro~~ding Australia, 
( .. .... . 

Indonesia. Thes~ are liste4//II_Table 2. t~ ''Brief 

Papua New Guinea and 

unreferenced description~-. 

o-f 23 of? these ."species for which mate:r:Jiil was\dllected q.s part of the 

pre9ent study, follow. .. . , 
1: 

I 

• ,. ' 

•• '1.·· •• 
?.. I 

' 
• 

.. : 

,. 

\ 

f 

. ' 
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Table 2. 1 , ... ··. , .. · · ., . 

.( 

1)~~<-~~;, 
( ' 

'-. Common na.rltg_l?·"-ijj~::t:ed. here are used· throughout the ~ext _,.. 

:. ~~ .. g;~ .. 
SUB-F,ILY, ~ASTEROCHIS~TI~~~,., . . . ·~ 

., . ..··~, ·~··· . ' . 
. GaEif;erooahi:sma meZaTllf?u~·· .• (butterfly maqkerel) 

,. 

SUB-FAMILY SCOMBRINAE ~~!/. ~ m;~ 

'· i·~'. 

Tribe 
. . n ~~· \; ~ <1 • 

scombrinl . (Macke·r~ls ). ' . ~·. ~~"" '·· 
. • l._ .. __ . 

Saomber ~'tY.Jlasieus (sli.rtiymacker~l) 
RastrelZige · · anagurta (chYb mackerel) 
R. brachyso~a short-bq~e~~ackerel) 
R. fgughni {Faugp~'s mackerel)' • : 

Tribe Scombe'romorini (Spanish Mackerels) ~ 
,, 

Grammatol!cynus sp. A. '(shark mackerel), 
Groammatoroynus sp. · B. (scad) 
SQomberomorus aorrune·rson, (narrow banded mackerel) 
S. queerlS_Zandiaus (Qld .. _f?.9J!?ol macke.rel) 
S. munro-& (spotted mackerel) 
s. semifasaiatus' (grey mackerel) 
S. muZtiradiatus (Papuan mackerel) 
S. Zineolatus (streaked mackerel) 
,s; guttatus (Indo.-Pacific mackerel)' 
Aaanthoaybium soZandri (Wahoo) 

Tribe Sardini (Bo~itos) 
..... 

Sarda australis. -(Australian bonito) 
S. orientalis oriental bonito) 
CyQiosarda eZega s (leaping bonito) 
Gymnasqrda unic Zor (dogtooth tuna) 
AUothunn:us faZ (sle tuna) 

Tribe Thunn1ni (Tunas) 

Aiixis thazard (frigate tuna) 
A. roahei (bullet ~tuna) 
Euthynnus... affinis' (mackerel tuna) 
Katsuwonus :peZamis (skipjack tuna) 
Thunnus albaaares (yellowfin tuna) 
T. tonggoZ (lo~gtail tu~a) 
T. obesus (6ig~ye tuna~ 
T. aZaZunga Ciilbacore) 
T. maaaoyii (southern bluefin tuna) 

/ 
T. thynnus orientaZis (oriental bluefin 

I 

tuna) 

,( 

, . 
' . 
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Seomber australas-1-eus Cuvi~r ,. 1831 

Distribution: · 

Maxi~urn Size: 

Habitat: 

. I 
Abundance: 

Comments:. 

,, 

J~ 

, ... . 
Slimy or blue mackerel 

• 

J 
Western Pacific Ocean from· Japan to 
southern Australia, straggling eastwards 
to some eastern Pacific islands • 

.40cm, common 210-30cm. • I 
Coastal waters, in large schools at 
varying depihs; plankti vorous. ,.. 

More abunlnt in temperat'e waters 
where iJt1is c~mmerciall~ exploited. 

s. japinicus a polytypic.cosmopolitan 
speii s, occurs in Pacific' waters near 
Japa and in the eastern :pacific where 'it is 
how ver uncommon in the tropics. ) 
s. l1ustralasicus. takes its place in the 
sooth~western and tropical_west~rn P~cific 
(uncommon'in the latter)· and the two species 

may be mutually e~clusive . 

. ' 

'' .. 

l ' 10 

.• 

·' 

..... 

! ,, 
l 
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j ,' 

Rastre 'l 'lige: karuigurta (Cuvier, ~Bl7) 

Distril;>ution: 

Maximum Size: 

Habitat: 

Abundance: 

Conunents: 

.Ch~ or Indian mackerel 

indo-Pacific coastal waters from 
eas.t Africil to Micronesia an.d Melanesia, 
north to Japa.n" and south. to 2,5°S in Austral.i:an 
waters. 

35cm, commonly 15-30cm. 
I , 

Coastal waters, usually occurring in large 
schools; 'planktivorous . 

•• 
. Supp9rts very large fisheries in ,Productive 
S.E. Asian waters. 

Two le9s common cogeners have a more restricted 
range A::entr!=!d on the Indo-Malayari a:rea. R. brachysoma 
'is oocasionally taken in trawls in northern Australia. 
The;fecently described R. faughni (Matsui, 1967) has.. 
bel(h.rep_orted from Papua New Guinea (Lewis et al._, 1974) 
add probably occurs in northern Australia. 
I 

) 

. ' 

I 



\ 

... 

. . 
drdPrmator.c.ynus sp. A, . ' 

.. ,·_ 
I • 

•. 
-~~~~k .~~~;erel 

' '--- . . 

Distribution: 
i ~· •. 'I •(· ' 

In Australia, tropical water a with oscasional 
stragglers to 3o?s on both east and ·west 
coasts.. Also kn~wn from the Gu1f of:Papua. 

· Elsewhere, d.i~tribution uncerta1n. ' 

Maximum Size: 

Hal)itat: 

comlnents: 

/ 
/ .. 

• 

13.5 kgs: (110 em). ,. 
' ~. 

Usually the lee'side of coral re~fs; 
occasionally in more turbid water . 

Two morphs have been recognized 'in t;he study 
> 

and thel.r specific ~tatus is ex"'mined later. 
.Pis.,'oruy' one species, 9·· bicarinq.;tus ~- 'is 
currently recognized, d~tails of ~he,distrib
.ution ·and biology of the two n<'orphs ·will 

r • 

r~qui.r~ clarification . 

......... , 

' ' 

- ··c 

.. ·~ 
'" 
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Dis tr ibu tion: 
\ ' 

Maxi_mum Stize·: 

Habitat: 

Abundance,': 

. -~· 

0 10 20cm 
~----~------~~----------~ 

. ' 
. . 0 

In Australia, probably_ rare ~outn:of 2~ s. 
Occu:r;s throughout Papua N~w' .Guinea. 
'Distribution elsewhere un~er~ain. . . ' 

Probably 60cm_ (:<3 kgs). 

.. 
Adjacent tO"·cqial 'reefs• and cays; more 

. . 
frequently on the~ ocean side: . ·· 

Not often seen at the surface, but suspected' 
to be abundant at_intermedi~te depths, on 
the basis of echo soundings and the abundance 
of juveniies probably attributable to this 
specie~ i~ dip net.ca~ches. 

' . 

.. I 

"" J 

. .. 

() 
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.,.. 

• 
Scomberomorus· co""'!ersonr · ·(La;~ pede; 18~0) 

i· 

r 
. ~ 

Distribution: 

Maximum Size :-

Habitat: 

Abundance: 

Comments: 

N~rrow-banded· spapish mackere'l 
t •• 

0 10 
.. t 
~?: 

20 
' p 

.... 

., 

Indian Ocean and western Pad;fic dcea~ in coastal 
waters, from east Africa to Fiji. A recent 
immigrant into the Mediterranean Sea. Rare south 
of 32°s (Perth, Kempsey) in Australian wate'rs. 

230cm (59 kg)·~ commonly 60-120 em. 
The largest member of the gen·us. 

Coastal waters a~all depths~.found in smal~ 
schools as juveniles, becoming more solitary 
with age.· 

The inostc.abundant memb,er of" the gen 
the basis of important' subsistence 
fisheries in many areas. 

"' . forms , 
4 ommercial 

Adults frequently undertake lengthy. seasonal 
longshore migrations, a:;> apparently do several of 
its cogeners viz'. rrrunro& and queensZandicus . 

.. 

.•. 
q 
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... it 

Scomberomorus queens Zandia'L!.s Mun~o, 1~9.4 3 ., 
~: ' " 

QU:~enSland school mackerel 

0 lOcm 

Distribution': 
' ~ ' . . 

Northern Aus'tralia between northern NSW 
•• ..,..-·. ,6 

arrd Shark Bay (WA); th~:Gulf of Papua and 

-~. 
possibly Fiji. 

Maximum Size: ~OOcm (8 kgs), usually 50-80 em. 

Habitat: :J;nshore· coas·tal waters, generally in small 
schools. I 

\ 

I, 

Never as common as coT17{TieY'son but fn~q~~ntly 
found in associa'tion with that' species\ i makes 
an important contribution to GOmmer~ia'/ catches. 

.. Abundance: 

' 

~ 
I 
r--. 

j 

• 



. 
t . 

.. -·~ 

ScomberomoPU.s multit>adiat~s Munro,· 1964 

Papuan (spanisfi) mack~r~l. 

~ ... 

Distribution: _Turbid waters of· the Gulf of Papua. 

Maximwn Size: P.robably.35c;;m (0.5 kg). 

Habitat: 
'\ ...... · .... 

Within_ .. ·:i:'ts very re~tricted dist~i-butiQD, 

.. 
_,.,. ....... /' -·-

. ' . 
' . . 

Abundance: 

O~l.s-.1·{~'. in shall. OW n~r-sh~re waters only: 
~cho lJ.ng and other behaVloUr unknown; 

( N uncorrunon ··in certain areas within its 
\...,_ very 1 imi ted range. 

Comments: The smallest of the 18 knowrl ?mberomorus 
species. Described only'recently and 
biological details vi~ua.lly l,l1})1nowr:, 
btit sexually mature ·at ~'~-~ than 30 em. 

'· 

. · 

16 / 

./ 
./ .. 

/ r 

I 

\ 

I 

• 

• I 

30 



Scomberomorus 

Distfibution: 
< ' 

Maximum Size: 

Habitat: 

/ --

j)Jundante: 
'·· 

'-

;' 

1884) 

mackerel 

0 :LO.cm 

Northern A·ustralia between Shark Bay (WA) 
and nor"thern NSW, and· the Gu;tf of Papua. 

120 c~ (10 kgs). 

1(>!1•' 

Coasta\l waters, but more common in estuarine 
si tuatlons ·-than its cogeners. t--l,ay £orin Sijall 

schools; 

\'NOWh~re- ab. undant but::, c~n~ribute_ 
~o commercial catches. 
\..~' ll • 

/ 

/ 

-
~ I 

I ) ' 

consistently 

.! 
·· ... 

: 

I 
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:: 

SaombePomoru~ munroi Collette and 'Rus.so,' 1980 

Spot~ed ~p-anish mackerel 

Distribution: Northern Australia,. petween Abrolhos 
and Kempsey (NSW)I and the Gulf of 
Papua. 

'rs. (WA) 

-.........._~ 

M~x~ 100 em (8 l<gs), more commbnl~ 50-8~ em. 

Habitat.: ~-Inshore coastal waters -_,probably in small 

Abundance: 

Cbrrnnents: 

J 
1' 

{\; 

\\\ . 

~.cho.ols. 1., 
\ . 

'\c. f,..,;~o, " 
No. ~here"abundant, making incidental 
con ·ributions to commercial catches. 

'· ' 

''*' Previ\~sly grouped with S. niphonius a north-, 
wester4 Pacific species, but recently £ound 
to be distinct. Its centre of distribution 
may be ~~btropical rather tha~ tropical, i~ ' 

"- contrast 't;.o its cogeners ·~ 

\ ' 
\' 

, .. 

• e 

"" 1\ 

• 

() 

·"''--· 

t>D 
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IJ ·~· .... ,; ·. 
'' 

.. 

0 ; ~ o- ... ,., I) 

' ' 

'. 

.,, 
' .• 

't 

w • Acant?}qcybiwn ·so Zandri .~ (Cu~iel~ .183i) . . 
,. 

' ' 

, I 

Maximum .Size: · 

'. 
Habitiit: ... 

Abundance: 

I ' 

• 

..wahoo~· ono 

• . ~~---.:o--2_,; o_. ___ __,4 o c; · 
, - J./ ,.. 'l-

Cosmopolitan~: in tropfcal and sub-tropical 
wat;ers. Commonly t,aken seasonally as far .,.--
·south as southe.rn NSW and Perth.· 

70 kgs . · 
I ;, " . ,, ~ 

• OceaniG: waters, less 'commonly .. over continental 
. ~helves. Of~e!,l in associationd.With flo~ting_,. 
~jeats and current lines,., and generally 

.. ' • I "'· 

solitarY,, 
~- .. , ' . .,. 

No~here common. Important as a.recreational" 
rather· th'an a commerc;i~J.. species· .. 

..,_ IJ 

''· 

\ 
,\ 

l 
.t 

. ' 

. ' 

' ) 

. " .. ... . 
.. " ·. ' ! .• 
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Distribution: 

Ma;x:'imum Size: 

Habitat:;: 

/ 

Abundance: 

Comments: 

Australian bonito 

-~< 
~~:. 

R~st:ric~ed .~ t~ east. coa~t of Australi~. 
betw~·er.~ the trop1c of Capr1corn and nqrthern 
~asm..inia, and Norfolk I!?land, with isolated 
records 'from New Zealand. , " 

) 

Probably 8-10 kgs (90 em). 

Inshore c'oastal wate'rs, 'but rarely entering 
/ 

estua-ries. Occur in large surface schoo)_s. 

'. :ll. 

,j 

Sporadically abundantj othe:r; 8arda sp'ecies 

:::::t ~:~::::n:f c:::t::o::::e:::s 1:~ewhere, 
, history of any of' J:he bonitos occurring -'in 
the_ ar_ea. _ . " 

·-

t ) 
~-

'· 

~~~-- · .. . . ,."'' .. •• , 
/ 

,I 
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\ 

'. 

·. . 
orienta lis (Temminck and Schlegel, 1884) 

, ' 

Oriental or Indo-Pacific'bonito 
~ . . 

' / 

' / 
. . . .·/ \ 
Distribution.:/ !fldo-Pacifio 

' 
tropical and sub~tropical areqs, 

// 

Maximum S±2le: 

Habitat: 

.. 
Abl.mdance: 

between South Africa and South America, but with. 
large apparent gap? in .distri~ution: Recorded 
from Indonesia for ~ first time d~ring thi~ 
study. 

80 em; unconfi~e~ rep~rts' of larger .. fis{l. ( 
Occurs.at all 4epths, commonly below surface and 

,hence less consp~CUOUS than o'th~r SJ?ecies; • 
appears to ~m schools, but, large {J.sh probably 
solitary; ' · ~~~ 

Nowhere abundant, local 1 occurences patchy. 

• 

• ·~.!> 

Co 
Found o1it on the west pnd north ~casts i~ Australian . 
waters. Apparently replaced by the endem~c S. austral.1.-s 

• ' ' <1iliJ' 

• ,1'. •, 

orl the east coast. , 

\ 
\ 

' 
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Cy.biosarda e l,egans ·(Whitley, 193 5) 
~ ~I 

Abundance: 

Comments: 
}, 

;Le~ping·bonito 

Northern Australia, between Sydney and P.erth, 
·~. 

and southern Papua New Gu1.nea. 

50 em (2 kgs)-; • 

inshore coa~~al waters; commonly encountered 
in. small surface schools but not often captured. 

Apparently more common in tropical areas. 

: ~ ' • - .J.' • "- J 

Th~ smallest of;_,t,he boni t:!os and also the only 
~combriel genui endemic to the area. 

; 
'I 

'J -:t . ·RTOLOGY OF SKIP.IJ'\CK 'T'TlNr. 
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t .. , ' 
\ 

pyrrmosarda unicolor (Ruppeli, \s3s) .. 
; . 

Distribution: ,. 

Dogtooth tuna 

0 • 10 ' 20cm 

Coral reefs·of ~he tropical Indo-Pacific 
from the Red Sea to Fren.ch Polynesia. 
Unknown south of the Tropic of Capricorn 
in Australia . . ,_ 

(}P 

Maximum Size:~ 70 kgs. 

Habitat: 

Abundance: 

Comrtlents: 

A large solitary species inhabiting deep 
water near reef drop~offs. A lurking rather 
mobile predator; ecolog¥ and lift:! history 
poorly known. 

Apparently uncommon, but not a conspicuous 

species. 

With Scomberomorus commerson and wahoo, the 
largest ~·the pre-Thunnus species. 

•· 

.; 

( 
.. 

~. 

··. 
,. '! 
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Anothunnus· jaliai ·serventy, 1948 

Distribution: 

Maximum Size: 

Habitat: · 

Abundance: 

Slender tuna 

Cosm'?).?olitan in SO\ltl)ern oceans, ~th of 20°s/.' 
Isolated reports els~here. 

Possibly 100 cmt 

Schools in midwate~; essentially planktivorous; 
commonly co-occurs with Gasteroch)sma and 
Thunnus maccoyii · 

Thought to be rare-until large ca~es made off 
Tasmania in the early'l970's; possibly quite 
abundant in the West Wind Drift. 

The species was described as recently as 1948 
and is intermediate in some. features between . 
the Sardini and Thunnini. 

24' 
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Auris t~zatd Laeepede, 1800 

Frigat,e tuna 

Distribution: 

Maximum Size: 

Habitat: 

Abundance: 

· Comments: 

Cosmopblitan in warm w~ters; 
~ee~r~L ~s far south as Tas~ania in 
Austral1a. • . ' 
50 em (3.5 kgs), eo~only 25-40 em. 

Oceani'c and coa&ta], waters in large 
surface shoals; feeds on micronekton. · 

' . I r 

Probab"Iy exeee'ded in standing biomass ·~y. 
only skipjack and the Scombrini, but of 
limited commercial importance. 

Its cogerier A. rochei shares a similar 
distribution but occurs more .frequently 
inshore. Not taken during this study 
and less well known than thazard. 

<k 

I.. 



Euphynnus affinis (Cantor-, ,1849) ,, 

Dis_tribution: 

~laximuO>ize: 

.fi Habitat: 

Abundance: 

Mackerel tuna, kawakawa 

,Q lOcm 

Warm waters of ,the Indo-Pacif j.c- region, 
with isolated records from the eastern 
.Pacific.' Extends~. seasonally to southern 
NSW and Pet;th in ~ustralian ~aters • 

. •, 

90 em (14 kgs), commonly 35-60 em. 

~ 

Coastal w~ters, occurring as s~all-medium 
sized surface schools;· feed-s on micronekton. 
Barely encountered offshore. 

Common in tr;,opical areas, but subject to 
lar~e 1~1· f1uctuatio?s ·i? ~bundance. 
Replaced by other spec~es ~n the eastern 
Pacific (E. Uneatus) and Atlantic , 
(E. alletteratus). 

\ 
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' 
·~\ ',. \ 

Katswuonus pe lcunis 'Jt:innaeus ,, '1758) 

Ji 
Distribution: · 

Maximum Size: 

Habitat: 

Abundance: 

Comments: 

.SkiJ?jack tuna 

"•, 

~' ... ~ ..... ··~· .~·.~t~ ... 

\ ' ' 0 . 0" 
Cosmopolitan in warm waters bet~e~n 40 N and 40 ~· 

22 kgs (100 em) with unconfirmedreports of 
Yarger individuals. 

The epipelagic zone, but also over continental 
shelves. "Foirns very large surface s\chools; feeds 
on micronekton; small fishes .etc. 

' 

The most'. abundant tuna in terms of bi~ass, but 
amongst the smallest. 

\. 

Skipjack biology is comprehensively rev~ewed in 
Section 2.3 

'• 

J \ 
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atbacares (Bonnaterre, 1788)\ .• 

I 

(1)9:\,striput,ton:. 

Maximum Size: 

·Haqitat: 

Abundance: 

4 •! 

'· 

0 '20cm 

Cosmopolitan in warm_waters between 35°N and 35°5. 

" I 

180 kgs (195.cm), usually 50-150 em. 

'J 
Oceanicfand riear-shore. Occurring in s~rface 

'I "• • 

schools;~ frequently ih association with 
ski~jac~ ~nd bigeye as juv~nil~s;spending most~ 
time as adbl ts lower. down in the vertical p'i.-ofile. 
Feeds on micronekton, schooling_ fish etc. 

Provides the J.,.argest commercial catch of tunas 
after skipjack. 

~ QJ ,, 

. 
"' .. 

.. 

~ 
·-1 

0 

0 
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Thunnus tonggoZ (B1eeker,' 1851) 

\ 

Distributi<;m: 

.. 
Maximum Size: 

Habitat: 

Abundance: 

Comment: 

Longtail tuna 

0 

Warm waters of 
the, Red Sea to 
and"·southwards 

20cm 

the ~ Pacific 
Papua New Guinea 
to southern'NSW • 

Probably 35 kgs. 

from 

·' . 
Strictly a neritic species;·· oCcurs 
in small groups rather than large 
schools; 

Nowhere common; makes incidental 
contributions to commercial catches'. 

Doubts have been raised during'this 
study about the taxonomy of this 
"species" which may possibly comprise 
two allopatric sub-species or species. 
A similar species (T. atlan"-ticus) occurs 
in the western Atlant~, and these two 
species are the only exclusively neritic 

Thunnus species. 

• ;i' 
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·• 

Thunnus obesus (Lowe, .1839) 

Big~ye tuna 

- ( i 
1-

·f/' 

lOcm 

~ 

Distribution: Cosmopolitan in wai'Jn .. and temperate 
waters ~tween 45°W- 45°S. 

~Maximum 'size:_ Approximately 200 kg~. 

Habitat: 

' Abundance: 

Oceanic, ~ith juvenil~s schooling at 
the surf ace in tropical"· areas; ·and 
adults near or below the thermocline; 
feeds on mkronekton. etc. ; 

With the use"of gear which fishes deeper, 
has provea to be· more abundant than 
previously believed! 

·41 
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Thunnus aZalitnga '( Bonnaterre, "1788) 
l 

Distribution: 

1-laximum size: 

l
. 'b 0 0 

Cosmopo 1 tap . etween 50 N an~ 50 S, . 
although ne>t at the surface 1.n trop)..cal 
areas., apd absent from the e'astern 
tropical Pacific. 

42 kgs (140 emf, commonly 40~100 ern. 

'Habitat: ~oceanic, but·en.teri~g p;odyctive coastal 
-·--~~~s; forms smaller schools as adults 

than- s6in'e---othe:E tu_~_?; .fe~ds on rnicronekton, 

Comments: 

schooliAg fishes etc. 

Shown to ~ndertake trans-oceanic mig;ation~ 
spawns in relatively discrete sub-tropical \ 

?reas. 

l 

r', 

," 
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Thunnus maccoyii (Castelnau, 1872) 

Distribution: 

Maxim1.lffi Size: 

Habitat: 

Comments: 

,. 

' .. 

Southern. bluefin . tuna 

;, 
i' t), ' •• 

Cosmopol,tan in south~rn oceans, south o~28°s, 
except for th~ eastern India~ Ocean ,wAere rath~e~ . 
discre~e spiJ.\ihz_.areas extend no~"~hwards to .. 1 .. 0.0 rill-,~ 

200 em ( 150kgs), commonly 40-160 em. l .. . . 
. ., ~-. ~ 

O.ceanic; juvenile's at th~ surface aro111nd, Aust:J;ali·a~; '. 

s~uthern co~stline,, a~ul:ts\a_ t d~pth, 1:-etu~ning to .a· . 
slngie troplcal are~ ln the\Indla~ Ocean to SPfwn; 
feed on ·s:mall fishes, squid e·tc. Ma.y undertake circum-
polar movements in t:~e West Wind Drift. ~~ 

~Th,e ~;i~ri:tal bluefin (T. thynnus orientazi'ij 1 a 
north~rn P~ci:tic ~pecies, has.been r~corded ~n a few 
occaslons ln the Thdo-Australlal"' reglon (Coll"ette & 

Smith 1 MS) and one such' ind~duai was sampled for 
this study (se~~ater). 

L....AI( ~--
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THE EPIPELAGIC,·HABITAT,: r 
~ ~(} ~ ''·' ... , 1 

I i 

2. 2-
0 

A uni versai~ struct'llrai featuke of· the. world's oceans ;s th h · · 
. ·-0 , • .. ... e c aJ?,c:fe. ,;tn 

wat~r 'temper~ture 1 with d~pth. · 'A l1iy~,r of maximum temperature fadients, 

t~e thermocline, 
0 

occurs ~H.hin 200m or- so' of 'Qhe surface and rorms a physical 
; ,If . fo\ (!. • I I 

.. 'lower bOundary to.. the ~pipelagic habitat - the illuminated upper transitiqn 
/o. • . 

• 

; ' qr m~xed. lay~r _,'(:>f ·the ·ocean~~ It is usually considered an independent 

vertic at' z;ne of' ·life,_ as distinct from d~epwat~r ·pelagic zones, and has a 
. j • ' . 

characterist±c ichthyofauna (Parin,- 1.968) .• 

\ .. 

" a 

.. 

;» \f., l 

~:~ena;:~c:~~~:::~th varies from area to area w: thin the 
range 2· · 50m. In ~igher latitudes, a thermocline- typically 

develops only_' in swnmer, whereas in equatorial and sub-tropical 
b 

·aLeas it is well e~ressed at al~ times .. Vertical temperatures 

wi•thin the habltat_ tEmd to b~niform, i.e. isothermic. 

(b) the,se temper~ture_s 'vary zonally, iutpl! also st;z;:ongly 

., influenced by o~.eanic 'cir~u).ation and ~isposi tier of land masses • 

. •.. ~astern parts of oceans, with currents carrying ~?lder upwelled 

waters to.equatorial areas, tend to ~e consider~bl.y colder than . 
western parts ~ere pblewa:ds currents carry warm tropical water 

into temperate areas. 

(c) ,f' salinity fluctuates within narrow limits (33-38%~ in the 

open sea but terrestial run-off may cause local reductions in 

coastal areas.·, 

(d) ~ ~ssolved oxygen coritent usually approadhes saturation in ,, ~,. 

surface. waters; in some areas, such-as the eastern tropical 

Paci~ic, low oxygen waters are found-immediately below the 

~ thermocline. 

' ' 
' (e) surface c~rents arise b~sically from wind effects, their 

~ . . t' . 
dire_ction being modified by Coriolis force, J:;oastl1ne or~:nta ~on 

('' ' 
and ocea~JDottom topography. The major currents of the Pacific. 

Ocean,- whicha- vary in their, spatial constancy are shown in ."Figure 

2·.2. Sub-surface c~rrents, i.e. below the thermoc'line,. typi'cally 

flow'· in opposite· directions to surface cu~~ts. . ' 
· • d (convergences and divergences) can .current boun ary zones 

• 

·-:::-- .·· 

~tant physical and biologic.;! effects, .such ·.as vertical .... --

mixing ~nd incr~ased pioducti vi ty. 

1• 

-

l (I· 

.. 
·?'.;;o.c..':· 
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\ 

-~ 
i\ I "~ 

,(g) t~pe,af\lr~-·alinity .:. often ~sed tc~~a<>teri:~ water ' 

masses which in t~e epipel~g{~cfone o~igin~te from circulation 

systems. , Nakrunura (1969) prQE()seg" a c~usal relationsl1ip betw~.en 

distribution ~f water ma:sses and ~ha:t <5-f-var.i:~ Thunnus speci_e.s. 

',.·. --\·-· ' 

(h) rates of primary production are highly ·variabl.e, d~fering 
by at_ least two full orders of mag;itude from, richest to mbst 

imf>~Verished .region-s. Trophic food h~~· n dynamics also vacy \ // 
• 1'1 . • . ' 7 '•' 

w1dely 1n response to levels o~ 'pri y roP,uction; ,'this effe~l . /• 

,may\be addi tjve, producing m·arke.d patc~ines~ in food resouic~s .. 

(~'>,, m~an, productivity of thj/open: {~cea11 relativ~ to 
. ~ . 2 areas and upwell1ng . .:rreas, i9\ lqw (5.0 g carbon/m /yr, 

300) and ~-t ~as ·b~en des~~~/e~ as a jiological ,desert 
. . .,/ .. 

1969) ~ Redd (1962) an~Gorshkow .(1976) ind~cate that 

th'e Pacffic within/tlj~ ~0° parallels: cm·~ta~hs a.ve~~ge 
. l 9 . . ' . 

v.olumes of' 25 parts per 10 by volume .. Assuming adult .. · "- . ' , . 

coastal. 

cfl. 100 to 

(Ryther,· 

much of 

zooplankton \11 

a~. least one ttrophic level higher on micron.ek1fon, mean tor age 
• · l :.- • 9 r I f 

le'vels <;>f 2:5 parts per lOA must be characteristic of much of the 

epipel:ag''ic zone. 

(j) open ocean - island interactions are not .well understood, 

but P:r<?bably have far-reaching biological efrects through, for 

exampie'·;··~.~·nhariced productivity...;, and increased habitat diversity. 
" ................ ,., 'I '. ~' • 

.. ~ ~~ ... ,.)"~.;, 
:i:n ner~tic (coastal.. ori ctin'tifiental shelf) al)d peripheral neri'tic 

{1-1~ ·'.. ,'o\ ·' ",,,,\)"'; ·' ~ : ._,_,, 

(continental s\lope) areas (cf: ·1pce·anlc·).•i''' where many scombr1d sp··. 
. ,· •' , 'i· ;· ·r.'f-' \ 

all or part of their exi~'t;;ence, the'"~P~~eiagic habitat becomes a less 
.~-:.. : .• --. .ill) ".: \ : 1\1 : 

distinct zone of life because of th~.~riumerous factor_s promoting mixing 

A~.g. 'tides, terrestrial run-off, wiaves, re~s"etc?~ and environment· 

fluctuation§ becom~ more marke~. Relative tn otoher marine habitats, the 

physical aspects of the epipelagic habitat everywhere still show consider

a~le constancy; biological aspects, in 6ontrast, are likely to show 

marked ~atchiness in res12onse to the ;vail7~_9i\ity. '?~ nu~rients, which could 

best be depcribed as unpredictable rather than'~ycllc. 
~ . . ~ I 
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2.3 . -BIOLOGY OF -·~KIPJAC,K TUNA 

'r -: 

.•.. , 

skipjack biology and ecology has been the subject of several 
) ' , .. I '-· ~ 

e~tensive rev'i~ws ·(Waldron; 1963; Jones ·&· Sil~s, 1963; Postel, 1963; 

Kawasaki, 1965; Matsumoto & Skillma~-, M S).. The intention here is not to 

duplidate t!hese efforts, but 'rathe.r to sununarize and highlight 

. relevant 'to ~opu:i:-at;icfu stud.ies in the Indo-'A~stralian regio,n. 
. ' 

q.spects 

These 

aspects include life· history gharacter,istics; reproduction, .age a~p ---
. ~ 

growth, schooling behaviour, enviroruriental correlates of distribution 
} ." I .: 

and abundance, and mig~~tion. 
0 

;, 

2.3:1 F'\lllctional Morphology 

~ '· 
Further to the bfief species introduction and f'igure in ~ection 

2.1, detailed desc::r;iptions of external morphology and mer,istics are given 

by Postel (1963), Jones and Silas (1,963) and Waldron· (1963) and of anatomy 

by Kishnquye (1923), Godsi.l and Byers (1944) . and Godsil (1954). Colour 

changes associated with specific behavi0ur pat~erns are desc~ibed by 

Strasburg and Marr (1961). 

The far-reaching ecological implications,of the !?,Peci~lized 

internal morpholdgy arid physiology warrants their ··brief ?escri~i·on here. 

In conunon with most small scot'nb1;ids, sRipjack lack a swim bladder. This • 

adaptation permits rapid ver~ical~~ov~ents ·in the species' near s~rface 
" ... · )\ 

habitat - an-ascent from 10 m to the sm;face would result in a 100% 

increase in the volume of an unrestricted gas bladder and abrupt vertical. 

' ' div~ behaviour from the surface to 30-6.0 m during feeding has.been 
'• 

observed (Strasburg, 1961). The absence· -pf a swim bladder however increases 

the minimum speedr~quired to maintain hydro$~atic equilibrium .. Skipjack 

have short ~ectoral fin~ which incur little drag but provide very limited 

lift. As they are also the heaviest scoltlbrid fO'r a given length ( it is 

not surpri'sing in view of these attributes that th~y have the ~astest 
. ' 

relative minimum swinuning speeds ( 2. 2. body lengths/secondsh observed to . ' 

date (Magnuson, 1973). Sharp (1978) has calculated th~t a. SO em fish 

swims _60~5 km/day just for h~drodynam~c stability· and r~s.B.~.ration. 
' 

,. 
• 

The red muscle mas~, which 'functions aerobically t? power this 
I . r 

sustained bas~¥ swij~nfng, com~pises 7=-8% of the total body mass (Graham 

& Diener, 1~7'8; Magnuspn, 1973) and is com_()letely ii;~ternalized. Skipjack 
< 

white mus,~le is the site of some of the most intense anaerobic 'glycolysis 

'~ -



... 

known_ in nature (Hochachka et aZ. _, 1978); it also appE'!'~rs to have some 

aerobic capaci~ty (Guppy ~na Hdchachka, 197~~ and powers periods of high 

speed burst swimming such as pursuit of prey or escape from predators. 

Maximum burst speeds of over· 70 Jcm/hr have, been reported . f_or yel16"!fin 

tuna and waho~ (Walters and Fierstine, 1964); similar values would be 

predicted for skipj.ack. 

g}ven by lone'"' (1978). 

Hi~~oiogical details of muscle fibre types are 

The h'eavy ·oxygen demand occasioned by the high metabolic rates 
- . - . . ' /; 

(Neill et aZ._, 1976) is met by~remarkably efficient oxygen removal .(90% 
l ~ 

effective) from seawate:t::._during ram-jet gill ventilation (Stevens, 1972). 

The fatal gill ar~a is lJ.ge (Muir & Hughes, 1969) and the ~xtensi,ve 
fusi~--df secondary lamellae prevents filaments being forced apart at 

high flow rat~s. perrnittin~ high oxygen utilization levels.• As wito ,_ 

other tunas, the heart is. extremely/~l~r~e ( 2% of body- weight ...., . Basile 

et aZ._, 1976), as is the ~lood volume,• and level~ of haemoglobin ~re high 

(Klawe and Barrett~l963); other h~ematolo~cal characteristics of the 

; species ar~ given by Alexander et aZ. _, 1980. 

. ~ 

· Rete~tion of metabolic heat generated in the red muscle is 

~ccomplished br· a central ·counter current heat exchanger or 'rete mirabile', 
' .... I 

(Stevens et aZ. _, 1974, Graham & Diener, .~978) located in an expanded haemal 
- .('' 

a:r;th", and two pa1rs of. small lateral sub-cutaneons exchangers. Tpe less 
\ ' . 

advanced gene~a.. in the group (Auxis_, Euthynnus) have large central and 

Ieks,well developed lateral heat exchanger~, whereas in the more advanced 

Thunnus species, the central exchanger becomes diminutive and lateral 

exchangers more prominent. Exc~ss (over ambient) temperatures of 3.1 -
' -

ll.I
0 c, 5.9- 11.4°C, and 1.9- 5.6°C have been recorded in red muscle, 

white muscle and brain respectively by Stevens and Fry (1971) . Three 

thermoregulatory options are theoretically open to tunas (Dizon and Brill, 

1979) -
I 

( 1) behavioural therrnoregula.tion (by selection of preferred 

habitat ~r by reduci~g acti~ity levels) 
'\ 

i J ~ 

':. (2) ( -p~ve thermoregu{ation (water tempera~ye-related and 

':.swim velocity-related heat productio~,_-t:hen;;~l inertia and swim 

~elocity-related heat dissipation)r • 

. ., 
(~3) physioloijical thermoregulation (by the con~rol of the 

r~lative contribution of red and white muscle to p.ropulsion -

. 0 ·~ 

51' 



... 
he'at generated in white mu,scle is dissipated via gills and body 

-\'l:surface, whereas heat generated in the red muscle is retained.) 

The extent to whicQ._, some or all of these OJ?.tions, plus acclimatory 

processes. ?re -exe:r:cised over the wide range of temperatures (15 - 30°c 

Barkley et ai., (1978) experienc~d by the ~pecies remaihs unclear ~ 
skipjack do appear to possess fimited thermo~egl,!latory capability./ 

This cap<\}:>ility is i~adequate to free larger skipjack from 

problems associated with ret€mt;.ion of metabolic heat, a problem which is 

exacerbated in warm tropical waters· with their lower dissolved oxygen 

concentrations. 
(\ 

Using ·1.nformation gather~d on skipjack temperature ·and dissolved 

oxygen requirements from tank~periments and a heat balance model 

developed by N·eil+ et ·az., {1976 , Barkley et al., : {1978) have defined 

hypothetical 11mits of the sk pjack habitat. They sugges~ 'that only 

small (<4 kg.) skipjack can inhabit most surface tropical waters and 

the habitat of large {>6. 5 kb.) skipjack in the tropics is the vicinity 

of the thermoclin.,, adjacent to cooler water. Where this is poorly 

oxygenated, large skipjack would be excluded. Gross features of skipjack 
'k

distribution, including rarity of large ·skipjack in cex-tain areas {see 

2. 3. 7) appeaJ;: to broadly fit the hypothesis. 

Thus, the capacity for sustai'ned high speed locomotory activity 

and ability to efficiently exploit a three-dimensio·nal near-surface 

habitat is attained at the expense of some habitat restriction on larger 

fish. 

2.3.2' Distribution 
.... 

I 
·Skipjack is a: holoepipelagic species, in that all stages of' the 

life cycle .are spent i~ the epipelagic zone {Parin, 1968). Adults are 
0 ' 0 . h 

c'osmopolitan in the· W<?rld' s oceans between 40 N and 40 S, W~t some 

expansion of this. range in .the western Pacific and Atlantic Oceans and 

compression in the ~astern Pacific Ocean. .This rou~hly parallels . :.. 

'distribution of· the 1s0 c sea surface isotherm. Seasdnal occurrences in 

eastern Tasmanian waters {approximate~'{ 43°5), represent the most southerly 
I . 

regular occurrence, of the species (Rq'bins, 1952) • Simi:)..arl.y, ·the species ..... 

occurs seasonally across the Great ~ustralian 

I 

Bight, but becomes less 

I 
/ 

\ 



II 

0 
common of 140 E and,has not been recorded from central Bass strait 

(Blackburn Serventy, MS). 

The tion of larvae (Ueyanagi, 1969) and juveniles less 
~ '" ' 

length (Mori, 1972.) is more r..¢str~cted, ·occurring than 15'cm s tanda 

mostly between the 

isotherms (roughly 

rn and 11ortfuern limits of the 24°C surface 
0 

- 30 S); distribution of young skipjack between 

15 and 35 em parallels t of adults. 

These definitions of 
' 

are 'preferred to the more 

fe history stages, as given by Mori (.1972), 

definitions 'of Balon (1975) as more 

appropriate to the family nt characteristics. ~ 

Althot1gh there is some evide larvae (Strasburg, 1960), 
y 

juveniles (Hi,ggins, 1970) and adults ~pers. 'comm.) do occasionally occur 

below the thermocline, the species generally seems to be restricted to 

the surface layers of the ocean. In addition to the expected greater 
' . 0 0 

abundance of larvae year-round between 10 N and 10 S, Ueyanag~. (1969, 1970) 

reported a clear westward increase in larval density across the Pacific,·· 

whereas Kawasaki (1965) had suggested the centre of ab~ndance of skipjack 

tuna larvae lay in the ce'ntral Pacific, (5°N"- 4°S, 16~0E - 140°W). 

Matsumoto (1975) attempted to correct available data for diel, latitudinal, 

seasonal and- gear-related variability; of the ten areas he examined, 

maximum abundance was found in the central Pacific area' (10°S - 20°N, 

18 ° 0 . k'' t f 0 - 140 W) ~orrespond1ng most closely to Kawasa 1 s cen re o 

abundance. Little progress has since been made resolving this dichotomy 

of views (Ueyanagi, 1976; Matsumoto, 1976). 

The distribution of larvae in relation to environmental factors is 
. 0 0 

not well understood. Most larvae have been taken 1n 24 - 29 C water, 

with 22.1 °c the apparent lower limit. Tan and Chen (1975) i~~ated that, 

in the South China Sea, tBe optimum temperature range fo~ skipjack larvae 

was 28 - 29. 3°c and Fp~sbergn (pers. comm.) has shown that larval 
0 .. 

abundance increases with s~a surface temperat~re, especially above 28 C, 

although there is· p~esumably ~n upper limit to this. Wade ( 1951) and 

Ueyanagi (1969, 1970) 6bs~ryed diei vertical. migrations, with larvae more 

abundant in surface layers at night. Barkley (1969) suggests that larval 

distribution is associated wi til. thermohaline circulation, and. Ueyanagi 



(1976) indicated that higher larval the western Pacific were 

found in the Equa~orial Counter Curren (appr-oximately 4° - a0 N).. Nakamura 

and Matsumoto (196·6) found nb difference abundance ·with respect to 
.. . .· 

distance from shore' in Marque!jian wa6rs ( . 0 . 
mately 10 S) , whereas 

Ueya:i1agi (1976) reports that some studies revealed higher larval 

densities near land' masses than in offshore ·areas. 

Information currently available on la:r:vae· and thei~ distribution is 

,thus of limited value in understanding dispersal and spawning processes. 
/''\ 

:// / 
Although essentially/ oceanic, adults and young skipj ad( frequently 

/:' 

enter product~ve neritic arid veripheral-neritic areas to feed .. . / . 

• ''li 

;Early.Life Hist6ry 

·~ertili~ed eggs are sperical and planktonic, with a single oil 

droplet .and a diameter oC0.8 - 1. 20 rnrn (Brock, 1954; Yoshida, 1966; 

uey'anagi ei; al._. ..... -('1:·974')"~-- Their similarity to other tuna specie's makes ....... r 
identification difficult and has hampered studies of egg distribution and Q ... ' 

·abundance. Hatchirig occurs within 32 hours of fertilization, and the yolk 

sac is ab~orbed within two days. (Ueyanagi et al., 1973, 1974). 

Beyo~d morphological (Matsumoto, 1958, 1961) and distributional 

data (Ueyanagi, 1970; Tan and Chen, 1975; Richards and SilTUl)ons, '1971; 
,.- ,!) 

Gorbunova, 1963), details of larval phases of th: life history are minimal. 

The .length. of the planktonic phase, the siz~ .at which indepe-ndent mobility 

is achieved and the degree to which larval development is under the 
q 

control, of endogenous and exogenous factors- al,l information critical to 
' ...... ,,.. . 

assessinc;f;~~~per~al .in the early life history stages- are unknown.-
. 'I .,1 • ~· ~ ~~ 

. . ·. : ~· "'" '¥ I· , 
Cha~actez::i~ti'cs of the larval habitat and the extent to which patchiness, 

~ r ~, . t ' 

2:JQ:.,:·both· mic:J;o•.an¢' macro .. scales (Fasharn, 1978) occurs are also poorly 
. >\~;·~'\ . . ·_, ~>>_' \_+:~. :. . . :, . ': 
"' ... un<fe:r::.s t~d. ·. .. ··'" .,...;•:. . ... , . 

~~.{~.""~·-~~ /,,· '.:] ~ .. v ! •• :;;~;-~:·~~:.:;~ -~ -~· ·~-'..,,'; .. 
'i'• T I t_ -~ ~ -~ ' t ' •"' • ·,., • ~~ 

. 1{ · }. · ·· ':, ·, : Est:troit~_s ,of larval abundance on a macro scale, as .revealed by 
~,... ' .. _...\ '> I • • """ • .( ) 'J'' ,.,. ":' 

· pla~.td.n."~et _t~ have suffered f:r::om the low apparent density of larvae 
~ 1".... .... ."' ""'"<- - . 

in most -':a~t:ia$': (Mi1l,er, 1978) and the"' difficulty of standardizing results 
' . ' 1 . ~ ~ . ' 

obtaine·d by workers using different size nets and sampling strategies 

(Matsunio.to: 196~). 

/'~· ' 

( .. '. Information 

from ~ination of 

· '1 and young skip]: ack has been mostly, obtain'ed on; ,Juven1 e _ _ 

stomach contents of apex predators, especially bill-

.. 



•, 

fishes and larger tuna~ ·,t&ken by iongline geiir (Wat:anabe, 1960; Yoshidaf 

1971; Mori,l972). Their mobi].ity generally precludes net sampling, . , 
although high-speed mid-water trawls have been used succ.essfJ.llly (Higgins, 

1970) ~ Mori (1972) reported that the abundance of ju;veniles and YO\lng 
~ 

was highest in the·equatoriai western Pac;:ific and decreased gradual}-y to 

the east. The low year-round abundance in the eastern tropical Pacific 

supports the belief· that little spawning occurs in the area (see later)., '\ 

, I 

The developmen't of a" specialized raft-purse seine or payao fishery 

in the Philippines in the' 1970's, has seen commercial exploitation of 

young skipjack '(15- 35cm.) for the first time. The gene~al rarity1of 
\ . f 

young skipjack at the s1.1rfG\ce and hence their under-representation in 

commercial and survey catches, comb}ned with the need for juvenile skip

jack to avoid predation by t.heir greatest potential predator, adult skip-
. a).) . 

jack, suggests that they differ frorri adults in their schooling behaviour· 

and vertical distribution. This ha~ led Kearney (1978) to develop the 

following hypothesis: 

Juveniles aggregate lower in the vertical profile, near the 20°C isotherm, 

where they feed and grow whilst avoiding much adult predation and ·· 
,. «< ... > 

migrat{ng polewards to ev.entually emerge .i,n productive temperate areas 

at a size of approximately 40 em one year later. Migration intp tropical 

areas for spawning subsequently occurs. 

This h:'!:';p6thes.is is supported in '·part _by lfiggins' (1970) finding 

,..that deeper ~idwater 'trawl tows tended to catch larger juvenile i skipjack 

and that juveniles migrated towards the surface at night, when little 

adult feeding occurs; the ~redominande of 40 - 45cm skipjack in seasonal 

temperate fisheries also accords weJ.l with this theory. Waldron and 

,. 

Ki,ng· (1963) reported that. scombrid juvepiles comprised the most important 

food item by volume for Central Pacific skipjack a~d Nakamura (1965) 

found that 31% of skipjack stomachs in French Polynesia contained juvenile 
. ~ 

tunas of which skipjack were the most common. Although"studies in othe~ 

areas have generally enco~t~red juvenile skipjack in stomach contents 

less frequen~ly (Hot.ta and. Ogawa, 1955; Dragovich,l970, Raju, 1964) ~ 
' 1 

adult skipjack are potentially very important predators. of juveniles," 

partic~larl~ i~, open oce~n situations, and avoidance behaviour as suggested 

by Kearney may "have tonsiderable adaptive value. It may not always be 

.• 



.. 

I 
". 

I ' 
' 

favo'urabl~ for juveniles- to aggregate near the :thermocline'· however. 

The habi t~t of large skipjack. may be the vic.infty of the thermoclin.e 

in ~ertai~ areas (Barkley et aZ. ,197~) and preqation by ·other de.eper 

swimming tunas and bill fishes (king and Ikehar'a, 1956; J<eintjes and King, 

1953; Koga,l960; Watanabe,l958, Fourmanoir,l971)', 'also needs to be taken . , . 
. '· into account. 

2.3.4 Envir·onmental 'correlates of Adult Distribution . ' 

The long .list of. oceanographic properties and features known·to 

influence adult tuna distribution and abundance include temperature, 

salinity,- dissolve(.} oxygen, tl}ermocline 'topography·, bot:tom topography, 

transparency, ~urrent systems, water m~sses, and product~vity, (e.g. 
,~' .• 

Fors~ergh, 1969; Blackbu;~:n, 1965; Brock,, 19.65; Howard; 1963; Yab~, Yabuta 

and Ueyanagi, 1963). It is not intended to r~.view the voluminous liter

ature here, as in most case$, deficiencies .in the oceanogr~phic and bio

logical data preclude thorough evaluation of the phenomena. Blackburn 

(1969) concluded that temperature. and food supply have the major direct 
" }~· 

effects, and that other factors usually exert their influence indirectly 

through the·m. 
.~ : . 

Turbidity, for example, may 'affect the efficiency of food 

search "tor small transparent prey. 

Temperature effects are probably most important i.n determining . 
\ ~ 

species range, although limiting isotherms for skipjack se~m to vary from 

area to area (Blackburn, ~969). Temperature may all?O influence abundance, 

particula.rly in seasonal fisheries which operate. neat;,. the distri,bu.tional 
--~ 

lin':its of the species (e.g. Robins, .1952). Towards the"c~-ntre of the 

species range, i.e. equatori'al areas, tempe'rature 'seems less likely to , 

exert any direct affect, particularly as the therma'l sensitivity of tunas 

appears lnadequate for detecting the weak ~ra?ie?~s typical of such areas 

(Steffel et aZ. ,19(6; Dizon et al. ,1974). · Exce'J?tions to this may be· an 

apparent up,per temperature limit for la-rger. skipjack due to heat retention 

problems- the addjtive effect of low dissolved 0 levels ("thermal squ~eze" 
. 2 . -

- Neill et aZ., 1976, and se.e earli~r) , and ~emperature.,..relate~ survival 

of larvae (Forsbergh, per. comm.). ., 

The distr•ibutioh of zooplankton and m.l.cronekton ·would seem to be 

the more important determinant of distribution and abundance in tropi<7al 

( 

u 



I . 

I ,• 

and sub-·tropicpl ~egio~s~ .As Blackburn (1965) points 

re.lationship- is f.requently difficult to. establi~h . 
out, however, the 

.. . ·~ 

The abundance of micronekto~, several trophic 'levels above pnyto-
~ . . l 

plankton; may be 'temporally and spatially displaced -from the enrichment 

source because of passive drift. If 

total micronekton abundance may be a 

' 
skipjack show any prey selectivity, 

. ~ 

less ~eliable guide. Similarly, 
' 

indices of skipjack aJ;n,mdance as typically estimated trom catch data, 

are subject to numer.ous errors. Nonetheless, at the present time, the 

'patchy distribution of skipj.ack finds its best, if imperfect correlation 

in the distribution of zooplankton and micronekton. This may be 

particularly true 'in the . sub'"\tropics, where the standing c.r?P of zoo-

• plankton is generally very low (Reid, 1962; Gor.shkov, 1976) and productive 

patches stand out as "oases". 

Increased skipjack abunda.nce associate(! with is;I.ands and shoals 

is a well known occurrence.- . This may' be the re,sul t of increased food· 

supply in such areas. due to the_ island mass effect (Doty & Ocjuri, 1956d: 

Gilmartin & Rev~-q,nte, 197.4) . le~ding to inc-reased ~t;imary productivity, . 

concentration of forage by e.ddies and local current fronts associated . ith 

islands (Murphy & Shomura, 1972) and the 'leakage' 'from coastal ecosystems 

of nutrients and larval stages. Island points are held to~be more 

productive than the leeward and windward zones (Grandperrin, 1878). 

In the west.ern Equatorial Pacific, with its abundance of islands, the 
~ ' . ' 

attendant increased productivity is liable to considerably influence 

day-to-day pearshore abundance of·skipjack. 

On a. !arger scale, the importance of fronts or convergences 

(Blackburn, 1965) and upwellings {Sette, 19S5; Smith, 1968) to ski_(Jjack 

abundance has· long been, recognized. The latter bring to the suLface 
\'1 

/ 

nutrient-rich water hence enhancing productivity, whereas the"fofmer 

se~ve as con~entrating mechanisms; for drifting or weakly swimming biota 

such as zooplankton. 

In the western Equatori~l ~acific, a causal relationship between 
'• 

the·currents wHich 1cross the region (Figure 2.2) ana the incidence of 

high catch rates has b~en suspected (Kasaharc;t, 1977). ,Recent wo'rk 

( t 7 d th 35°L surface isohaline as a marker for Donguy e a&.J 1978) has use e ~ 

the convergence bet~een the upwelled, high salinity (>35°/oo) nutrient rich 

wate~ in the we.~twar-a· £lowing Equatorial ~urrent;, and the eastwar~~.1oWl~g 
North and s~uth Equatorial counter Currents with thei_r nutrient-poor, 



t . . , 
>" I ,. 

' . 0 

lower ~alinity ·(<35/oo) ~ater~ These convergences typically occur at 

about 5°N and 5 .. 
0 s respectively, ~ t d · h · ft 1 · · 4 · -u o,s ~ at~tud~np1ly from·month 

to month (Yamanaka.&_ Yamanaka; 1970). "'·· ·/ · ''. • 

.The cequatoria.l divergence and resU'fta~t upwell-i'ngi;-largely 

induced by winds _wi :~ an e~sterly component, the trade winds and their 

derivatives, blowing at the Equator. With the thermal Equator t.ypically 

situated n~rth of 0°, thE:Wequatorial upwelling is generc;11ly strongest · 

dttJ:ing the southern wi,nte~, from .May to September and is most constp.nt 
l ·~ 
ih the central Paci"fic. Its westward extent and duratiC!n fluctuc;ttes, 

' probably in response to the strength and duration of the south-~ast 

trade winds. This appears to greatly influence skipjack abundance and 
( 

availability. Donguy et. <;1-Z., (1978) have obtained a good correlation 

between the positioh of the 35°/oo isohalihe and the ~ncidence of good 

catches by the mobile .Japanese long range fleet. 

When this is6hal~he reaches westwax;d to th~ Papua New Guinea ar_ea, 

good catches have generall¥ resulted. Figure 2'. 3 pl.ots monthly average 

catch-per-unit effort (CPUE) in the Papua New Guinea fishery for the 
' .. 

years 1971-77. As expected, these peak during the April-Octo):>~r period 

when :he south-east tr;des and the equatorial upwel.l~g shoulc;l l?e 

strongest (Donguy· .- Henin; J.978), indicating that much of the production 
' -might be attributed to this factor. Fluctuations throughout the year are 

I 

not marked, however, ~s the timing of such events ha~ a high variance 
"-· . 

·between years. Additio~ally, another important seasonal enrichment • 

process occurs: ourLng tDe southern summer from November to March, winds 
&l . 

with a' westerly component sometimes prevail at the Equator producing an 

unproductive convergence but at the sfme time inducing a productive 
• 0. 

doming C\t around 10. s ~· These same winds also produce an upwelling along 

the north-coast of Papua Ne~ Guinea. With the New Guinea Coastal Current 

setting southeast thr.ough the Vitiaz Straits (Yamanaka, 1973; wyrtki, 1960), 

maximum zooplankton abundari"'ce. associated with the north coast upwelling 

is displaced' eastw_:3<~rds, occurring ih the Solomon Sea, and leading to in-. 

creased skipjack abundance there dqring January to April in some years. 

'· 

and 

Although the above IIfdence indicates that enr,ichment processes 

island-associated. effec~ may be th~ major influences on skipjack 

availability in the Papua New Guinea area, elsewhere other factors .' /i" 
probably need to.be cJnsidered, particularly in seasonal fisheries outs~e 
equatorial regions. Seckel (1972), for ex~ple, demonstrated an empirical. 
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. I 
relationsh.il(petween skipjack 

/ . 
. ·.1 b'l' ~ ava1. a,. + 1.ty 

--""' 

~ 
I · o., 

t.o the Hawaiian f:iJshery and 

envl~onment~l ~ndices . (time o~ ~armi~?, salinity) related to particular 

. cu~rent systems, rathe·~ than, seasonal\ ~hanges in productivity. ln most 
., ~ . ~ J h ~ Jl • • 0 

cases, however, t ere are s1.mply insufficien·t data on both the animals 

, and their en~i~onment t~ 'pro..gress f>eyond description of,1 su<?h; associati~s J 
to e.xJ?erimental testi.ng of hypotheses. 

• 
2. 3~ · Reproduction ~ · · " 

·~r- Spawn~ng has been observed neither in -nat~Jre" nor in captivitv, 
·.J . -1 

al ~ou-gh behaviour interpreted' as courtship has been observ~d ( I~rsen 

et ...... 1970).. Th~' species is' dioecious (hermaphrodites -bave occasionally 
f 1 • I 

been obse:x;ved'-'· Uchida, 1961; Raju, 1960), fer,tilization is external 

and mating is assumed to oe random. , Ripe (immediate pre-spawning) 

individuals are, only rarely- encounter
1

ed in commercial' catches . (Hatai et" 

aZ. _, 1941; Brock, 1954; personal observations). This may be associated 
'-. 

with some" foQll of avoidance behaviour. Alternatively, recent experience 

in Hawaii has suggeste~ that final ma·tuNtion ·may occur within 7-8 hours 
\- ,;~ ~ 

of being triggered, in this case by stress associated with capture. 
~ . - '' . 

. 
Estimates by various workers of the minimum size of females at 

first spawning are in· good agreemeA_t (Brock', 1954; Yoshida, 1966;:. Raju, 

l964a; Simmons, 1969;. Batts, l972c; Stequert, 1976; Nagamuma 'r 1979). 

For the purposes of this s·tudy, skipjack greater than 45cm in length are 

therefore referred to as vults. 
/ 

spawning seasonali t.y is generally inferred from macro and 

\ 

mirfoscopic exr-roinatiof'\ of g.ona~ (maturity classifica_tio~, ov.a diameters,_ 

gona.Q. and gondsmatic indices) and distribution of eggs and larvae. A 

general pattern emerges .. from the studies -carried out to date. In tropical 

areas, skipjack with- ripe or mature ovaries occur year round (Wade, 1950 -

~ppines; Stequert, 1976 - Madagascar; Wilson, MS - Papua New Guinea; ' 

Nagamuma~ 1978 - wester-n Pacific), as do larvae (Ueyanagi, 1970; Nishikawa 

et a_l ... 1978), although seasonal peaks in the relat-ive propor.tio'n of 

matLU"ing fish may occur. Towards 'the higher latitudes, spawning is 

progressively contined more to the summe~>mont.~s (e.g. Yao, 1955 -

Japanes~ waters; Yoshida, 1966 - Fre;>-eh Polynesia; Leg and,· 1971 - New ' ' . 
Caledonia) a~d. near the, limi~,:' ~/'distribut~·n: l~ ttle or ~o gonad 

develop~ent 1s observed (Ha9k~ 1978- N.Z., W1ll~~. pers. comm. -

southern N.S.W.). An /c~tion to this general pattern is found in the 

/ 
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., 

1' 

• . '.!;, ! . 

east;~fn tropical Pa~ific, .i.~h~'la~val density is low (Matsumoto, '1958; 

' Klawe, 1963), skipjaCk with mature ov~ries ar·e· rarely. encountered 

(Schaefer and Or~rige, .1965''· Ora~ge, 1961)' and little sp~wning is thou9ht 

to occur. Signific:antly, the few mature fish and larvae recorded have 
,, \l4 

generally been fouftd in the v~cinity of offshore· islands: 
. d 

. ...~·\ \ 
The pelymqdal configuration of ova diameter frequency polygons . . 

typi?ally obser~ea in maturirw skipjack ovar~is.taken to inGlicate 

muJ.tiple spawn,!ng durin? the· season lsrock, 1954;" Bunag, 195~; Raju, 

1964q; Stequert,•l976).. E:~mates o:( f~c;_.mdity are generaily based on 

the nwnber: of ova in tht~t.·advan~ed. mode and this may represent a . 
"' 

annua1 fecundity t:or multiple s'pawners . 
~., - .. 

very conservative estimat~'of 
..,_ \i l • • I " 

Published fecund1.ty est1.mates 
' -

(Joseph l963;•Raju 1964b; Sinunon~, 1969; 

Bqtts,l972c and Stequ~:r:t 1976) for skipjack of v~tious sizes range down 

· from 2 million .. • Although the fish size -. fe~ntH ty relationship varies 
l • 

amongsi;: these studies, . all indicate that for skipjack below 60 em. in i~ngth, 

· between 1.00, 000 and ope million eggs woul_d be rel·eased per spawning. 
' . 

·~~is relatively_ hiqh fecundity is ·presumably associated with l9w · 
· . ·In th~ likely event that · .' · · ·. ~-

survival to !reproduct;.iv'r s1.ze. · ·- ·· survival rates vary wid~lY._ between 
~ ~~ .. 

individual. ~ masses ·,''random ~ffects' on geneti~ composition such as 
.. ' } -~.,. 

ge~etic arift may need to be taken into account, ' Informat.*'n nee.ded to 
I) - .. ' ... .. 

asses~ this po£sibility ~- not ~rrently available. 

V'' {) \)>. ~ 

'o 

' 
a'il- .·and 

. 
As •' has no~. been observed at as ripe· female fish spaw,rnng_ 

;;tre rarely d\serve!d, availab!e data on gonad development do~s not allow 

spawni-ng· areas. to ye ·de~iried m~re precisely within. the wide area w~ere 
l&me and m~ture ·fish are f?und~ .~ales are in ripe con-ditiq~~ for 

ruch .of the time, the appar;ent :~;apid final mat~ration of ovaries could .•. 
allow spawving to occur within hour~ of the appropri~te stimulus being 

-------· 

.), 

6 . - ~ 

Details of how tnis oc;:curs· (eg. the nature of th'e stimul;us,• whether-
0 

or not_ spawning is roughly co-'ordlnate~ within a
1 

school etc·). ife \ :L.ackin~ · 
Recent studies. in Hawa1i have shown ,that the stress of capture is able to 

induce final m~turation., or q~lct{!~n withi~ 7-8 ~ours .. ·A compa.r'able 

environmental trigger would· .~··-repr9duct1.on to occur ·soon afte·r 

,. 

·' 

: -

_, 

\ \ 

rr ¥: 

>~ 

• I 

,,. 
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·' 

· .. 

~rrivaJ: in a situation favoural:>le to the survival of larvae, e.g. 
. ' 4 ~ 

.· pr6tfu-~i ve-a-t:eaz_~ear. i ~- iand.s etc. 
-----~---- . . 

2.3.6 $chooling Behavio~r-
~--l.l ~ 

The Aensity ' schools ·or aggregatiqns .varies considerably 

amongstflthe • (Shubnikov, 1974) and it.s adaptive significance to . .. .. ;./ ,. ' ' .. .. 
fishes in ge~eral h_as been ·iiiscussed by.many authors (Brock and Riffenburgh,. 

1960; Olson, 1964; Radakov, 196*; C\lshi_ng and'~~ Harden Jones~ 1968; Weihs, 1973; 

Breder, 196 7) • · · 
·w 

,, 
~- -~~ ' .• 

Skipjack a-re regat"d~d as a s_zhooling ~pe~ies, at least as adu:t~. , 

schools tend ·to be' more, size~selectiy~han those of other tunas (Brock1/ 

1954; Lewis et a~ .• 3, 197'4)", and Brock, has"sugges,!:ed this sele-Ctivity is 
~ 1'JJ , 'fl( • A 

maintained by difference·s in maximum. and/or basal speeds attained by fish 

of v~rious ~lzes .. In ~iUpport of .this·, Kawasaki (1964) and ~wasaki (1976) 

~xamined 'lE!n~frequenciE!s. with.j..n schools associat~d with various -~iofi~ 
. ' ' 

and' a?i?tic objects. and found thew less mobile the object:, the g:reater the 

size range of s.kipj ack associated wi'th ~ 

r· 
,., Associa~i.ois occur 'wi~J:l othe; tunas, es~ecially juvenile yellowfin, 

logs and other flotsa~, whale' sharks.' (Rhirwodon typus) 3 basking sharks 
~ . . . \ .. 

(Cetctr'hinus maxirfnJ.s)
3 

whales (esp.Balaenoptera borealis~ and in some areas, 

lfiii!IIIII'Jorpoises (SteY;LeZla spp) ~ The biological significance· ot'-·these associ

ations is not fully understood. 
-~ 

,·#,''' 

Although information is oavailal;Jle on the str;ucturai .. a.spect~ ·~f 
tuna 's'chools {Strasburg;& Yuen, 1958;. Yuen,. 1963; 9ahn, 1972)~ l-ittle or 

' ,,. / . ' -
no information is,-ayail:ab'le on "the integrity of the school as a unit over· 

time. Whitney,, 6~69) ah@. 'Scott & Flittner {1972) briefly. discuss diurnal . 
changes in the structur~ of tuna schools and Sharp {1978) introduces the 

o"' 

concept of the "cor~" schoQl, where fish within g.•. grouping have a high 

proBability of sha-ring one parent.. Core sizes of around 3 tons were 

sug_gested f~r yello~fin t':ma, with larger sch~ls seen as aggregates of 

individual c0re or primary schools. -. 
The implications for population genetic stud-ies 1 for exi:tmplt:f, of a 

high.ree. of sibsh.,i.o_. wi 'l;:hin schools, on the. one, h·and, and ~he school, as 
c~~ • ', ., 

a .random ass~ciatiori 'of uhreiated individuals w1t.~ little continuity i~ 
' . . ·. - ' \.... __ 

· 'time on the other, a-r\p __ consider-able. Dat(l gener.~tted by pole-and-ll.ne 
-:¥ ' . •<i., ' 

~ . v~l 

... 

/ 

.) 
/ 

/ 

\_. 
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fisheries are 'unlik.6ly t'9~1e 9f muc;;h/us~ in examining the problem, 

however,. since a V~r'iabie and :~.:0~ proportion of fish are ¥en from 

each school. · · · · 
I ·~ - ~··· 
' I ~ 

School sizes have been· esti~ated ~.rom .{?Urse ~elne ca:tches-pe:r-set . \ - . . . . . 
(Orange et aZ., 1957), pole-and-Hne ~atcnes per fishing station (Broad-

, . ' . ( . . '"" ' '• . . .... 
head and Orange, 1960) and by experienced a~r~al observers (West and 

Wilson, M S); size .;.f..requencies. geherally,tit a J-shaped curv~ and average .- . ( . "1 '-.._' ·' 
"sues" (catch per ~et or stop) may vary· from ar.ea to area (Sharp, !978). 

school sizes i~ ex¢·e~s .pf 200 .tonnes ba~e been reported. . 

Ajaln, .. ~he problem arises of ha~ing insufficient infbrmation to 

eval ua t'e an iu'ipqr'tan t aspect of· the species biology· i.e. wha.{ do schools 
• 1, 

represent. Large feeqing ~ggregations .are probably comprised of ~umerous · 

"s-chools" and samples obtained as a consequ~nce o.f commercial activity 
. lt;. . l . . . . 

probably show. biirs .. towards la:r;ge aggregations and hence greater hetero.,-· 

gene~t-y in biological characte·~j,stics· • 
. 

2.3.7 Age, Growth and Size . " '~ . . 
Growth estima.tes for' skipjack have been derived. from .ex~~ 

of presumed annuli on vertebral .centra (AiWhwa & Kato, 1938; Chi. & Yang, 

1973) and first dorsal spines (Shabotihiets, 1968; Bat:ts,l?_72b; Cayre! 1978), 

'modal progressions in length frequency data. (Brock, 1954; Joseph & Calkins, 

1969; Wan.kowski, .in pres~), data from tagging studies' (~othschild, 1967; 

.Joseph & Calkins, 1969'; Josse et' al. ~ 1979) and more recently, presumed . . 

daily rings in olol-(Uchiy~.a & . Struh~aker,l~78~ Wild 

197.9). Results from ~se studl.es. show w1.de var1.at1.on in 

& Fo;reman, 

the average 

increments (length) estimated. for fish of various ~iz·es. ' 
·-~~ 4( 

establishing 

(centra and 
.,., 

case by' the 

inherent biases or-weaknesses. The diffi~ulty ofS 

annual basis of ring formation in the hard paa:-t·~ . 

of.· ~ro~ical ~i~J;l- ~pe~ies I?ay be e~acer~rated in(thi~ 
effe~t of the species' thermal 1.nert1.a, the l~ngthy· 

. vagili-ty' all~£g. movement between habitats 

ined by Aikawa an~Kato ('19-:3BL; Chi & Yang (1973), 

. \. :. 
spawn1ng se'a,son and 

to occur. Estimates 

Batts (1972) and cayre '-.U9 n~vertheless agree: qu_ite closely with a 

growth .rate of approximate~y em per year for 40-60 em skipjack (Jos~e 

et al. _, 1979). 
tr Q 
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I • ~Analysis of ~Odal,_~progressions, the Peterson method, inevitably c involves a consid~rabl~ a~e~t ·of subjectivity (~oseph ,&, Calkins,. 1969). 

There may also be. difficulties with lack of obvious' progression, 
1::> 

presumably due t:o c6:ntinuous recruitment of fish of similar size 

(Marcille & St.equert, 1976;· personal observation), ~d inconsistencies 

in rates of progreS«lion between samplihg p~riods. ~J~~e et al. (1979), 
) 

·in reviewing the use of the Peterson method, conclude that little 

reliance can be placed on its applicatio~' to skipjack length frequency 

data, where· corrobora-tion by oth~·:t' techniques is lacking. 

Data generated by tagging experiments are potential_ly subject to 

error introduced ~Y. inaccuracies in measuring length• ;t release, retard

ation of growth associated with carriage of. the tag and'unreli~bility of 
'-........-- 0 ;: ' 

recapture data. .When efforts .are made to minimize these sources of error 

as was cfme in the Papua Ne}\l:~uinea tagging e-xperiments (see ChaJ?ter 3), 

consistent results ~have }?~em' achieved • 

. I· 

~t.Jsi'n~l tetra·cycline lai,:>elling of tagged skipjack, Wild and Foreman 

(1979) demonstrated thaL, because of periodic growth checks, skip~ck . 
otolith increments underestimate time by approximately ·24%, whereas . 

yellowfin incr~ments w~re deposited daily. Prev~ous estimates using the 

technique (U~hiyama and Strushsaker, 19'78 ) therefore p,rob'.ibly over-estimated 

skipjack growth. Although the m~thod is' tech ·.cally demanding and labour 

intensive, it,appears to hold some promise for 

growth, geographtcal comparisons and possibly 

larval and juvenile growth~ 

estimates of 

-needed estimates of 

., . 
Josse et al. (i979) conclude .that carefully design;~' tagging 

experiments should yield the most r~liable estimates of ~kipjack growth 

at this time, particularly as migration data produced by them should 

provide insights into m~dal progressions. 
.,. ~· . 

Where possible, otolith studies 
"({{ 

should be pursued concurr~nt'lY"'. . ' • ·f 

~., . 

Much interest ha's 'bee~ gen~rated by the apparent discrepa~cies. in 

growth rates ot:ta. for ;ad.ou~ areas (e.g. Kearney 1~75,,. 1978) par

ticularly the higne,r <gr6wth rates obt'ained for eastern and central Pacific 

skipjack (Brock,l954; Ro,ths~hild,l~67;·, Joseph & Calkins,l969) relative to 

western Pac;i..fic .g~pjack (Kearney, 1975; Josse et al. ~ 1,979; Wankowski, 

in press). Critical analysis of all avaqable tagging data' by Josse et al . ., 

·,! 
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I . 

<:)79) has /§howh horever, tha.t even though calculated growth :r:ates appear 

to diffe}:' ·slightly{,. the variance en estimates is so high that they do not 

differ significantly. Biological ·sourc~s of this variance may be 

par~itioning of Snergy budgets ~~~~en..-growth-or spawning requirements 

(Kearney, 1978), ·a sug<j'este<:L~&ffference in gr~wth rates between rtear-

shore anq ~~e-aiifc--~k~pj/c~ (Josse et al., 1979) and migration between 
-l 

I 

·areas with q_~fferent ?rowth regimes it>(l Added to· this individual variation, · 

the length of the spawning season in tropical areas makes it biolo9icall}' 

meaningless in most cases to arbitrarily.assign skipjack of particular 
. ' 

size to "a~e classes" • . , 

Recent published 'sty.dies (Bat.ts, 19!?; Maf~llle & Stequert, 1976; 

Cayre, 1978 i · Josse et aZ., 1979_;-Wan~ki i~ pres~.) show good agreement 
' ------- ~/ 

in ·indicating that. af{m:fai growth increments for 45-'60 em average· 6-10 em. 
i 

Available estima~ of growth during the first year o~ life are few , 

(Yoshida, 1971; Batts ,1972-; Cayre ,1978; Uchiyama and Strushsaker, 1978), 
• 1.. -

and fall in the range 30-45 em. Preliminary results from recent releases 
~ ' 

of tagged young skipjack suggest that growth may be more rapid (Kearney, 

pirs. comm.) than the'se previous estimates suggest, further underlining 

the doubtf=ul validity of as~igning ages from lengths. 

\ t ., 
~ ,, 

Information on size composition by area is restricted to adults 

(skipjack more than 40-45 em) since commercial catches are the primary 

source of such data~ ·Th
1
ere are indications of some size heterogeneity by 

area. Large skipjack of·greater than 65'cm or 6 kgs make a regular and 

significant contribution to catches only in cert~~ areas 

1975). T~ese incl~de Hawaii (.Ro~h,i~d ,·1965) and French 

(Doumenge,l973). Skipjack of, thfs size are comparatively 

(Matsumoto, 

Polynesia 

rare in the 

western·Pacific surface (Keq.rney 1975. Wankowski,in press) and longline 
..._il. . I ' 

(M~rphy & .ot~u, ·1954) fisheries. The ca~ch in fisheries t?~ards the 

periphery of the species range e.g. N.E. Japan (Suda, 1971), Ba.Calif

ornia (Broadhead & Barrett,~964) and New zealand (~abib,l978) terds.to 

be comprised of smail to medium size skipjac;:k, 40-45 Fm • 
.:...• '""I 

\ . . ·. ···)' 

In addition -t~ l:his regional variation in size composition, examples 

of ~orne size-speclficity within areas are known, e.g. Papua New Guinea 

(Kearney(. 1977 _ see 3. 5), _Japan (Higgins, 1966), eastern tropical Pacific 

(Broadhead and Barrett, 1964). Recent work in defining the hypothetical 

habitat of skipjack of various sizes (Barkley et aZ., 1978) S';,lggests 

. l 

j 



environmental factors 

:\ 
sus::h as 'dissolyed OxY~en 

temperature profiles may be involved. 
\ 

;· 
// 

level$ and vertical • 
'' 

Kitchell et al., (1978) constructe~ skip~ack energy budgets using 
,· \ 

data from available field and experimental studies, and suggesteq small 

~ skipjack from 0.6 to 4.,0 kg are gr~w,~iimited by thei~ ability to , 

consume and pr<?cess available food~;~ Their caleulated expected maximum 

size agreed closely with the fa~Jst skipj~ck on scientific record., 

namely 22- kgs (Magnuson, 1973). 

52 

\ 

\ 

\ 
I 
\ 

\ 

In summary,' it is clear that assigning ages to skipjack on the, bas~· s . \ 
1 

" \\ 
· , ~ length alone is inadvisabie, due to possible deficiencies in the . , 1\ 

r_nethodology, to individual ~.?riabili t¥ and to plasticity in growth rate·s. \\ 

It is also likely that skipjack do not 'distribute randomly by size, and \ 

this is important when assessing both tagging and genetic studies. 

2.3.8 Nutrition 
, I 

The many studies of skipjack stomach contents (e.g. Waldron & 

King, 1963;• Nakamura, 1965; Ba·tts,l972a; Raju, 1964) indicate that skipjack 

show little dietary preference in their consumption of the main forage 

categories, juvenile fish, crustaceans, and cephalopods. They can best 

be regarded'<!s facultative filter feeders (Walters, 1966) with the mean 

gap between gill rakers imposing some selectiv)ity in the miriimum size of 

prey, particularly crustaceans, retained (Magnuson and Heitz, 1971), 

but not preventing the~ from ingesting larger prey. ;he mean gill raker 

gap for skipjack was the sma~lest of the species~.studied by Magnuson and 
~ 

Heitz and only A Uothunnus amongst scon,lhrids has more gill rakers, 

emphasizing the. species' abi~ity to utilize. a wide s~ze range ~f prey items. 

A consequence of this trophic' opportunism is the ingestion of large 

numbers of juvenile skipjack in areas where they foirn a significant 

component of the nekt~n (se~ 2. 3. 3 ) . The rarity, of nictoepipelagic fishes 

in stomach contents ana. their more frequent occurrence in yellowfin 

collected conc:urrently (e.g. Lewis et al., 1974) confirm·that most skip-· 

jack feeding occurs in the epiperag'ic zone . 

. The rate of digestion was studied by Magnuson (1969) and. found to 

be very rapid relative to other teleosts, with tota~ digestion and absorption 

h · · be related to the elevat. ed internal ac ~eved within 12 hours. Th~s m~y 

\ 
\ 
' 



., bod~empe~atures. · It has the advantage of mak1ng energy available 

relatively rapidly and allowing the stomach to be filled mo.re frequently, 

thus maximizing the uti1~zation of food patches. Under experimental 

conditions the equivalent of 15,% of the body weight was consumed daily. 

Skipjack are thus,well adapted to li~e in·~ nutrient-poor enviro;/ 

ment. A wide variety o~ food can be assimilated ~':d digested quickly~/ 

allowing patches to be efficiently exploited :=tnd e~ergy' rapidly made. 1 

available. An interesting f~cet of this broad spe~1trum foraging fj·t.rategy 
\ 

is cannibalism of juveniLes, which may be a second-olrder benefitof high . \'•! ·, 
fecundity. 

2.3.9 Migration 
.. \ 

\ 

\ ,, 

The physiological and morphol&gical adaptations of tunas confer 

on them gre-A.t migratory -potential. VariWIS attempts to ~lucidate the 
\ \ 

extent of skipjack;.. movemen~ have been made_ from tagging ~nd genetic 

studies and examination of catch effort ~ata. '\ \ ' 

I , ' • l 
Most published information avail'able ·to d\te relates to the eastern 

and central Pacific. Based primarily on evidence\ that littl~ spawning 

of skipja~~ occurs in the ea~ter~ tropital Pacifid (see 2.3.2) and on a 
I . 

number of, tag return.s -in ~e central· Pacific from }Mexican releases, • 

Schaefer (1963) and Rothsthild (1965) postulated 'a central Pa'd\Jic origin 

for skipjac~ ~xploited in the eastern Pacific fisheries. According to 
. . . 

Rothschild, young sk.ipjac~ migrating from the central Pacific split 
.. ' 

I 
I 

into northern ang/~outhern groups which are recruited at a size of 35-40 em 

into the Mexican and Central-South Arneric;.an fisheries respectively. 

Tagging data (Fink ar{d Baylif£,1970) has subsequently indicated t~at . 
there is little mixing between these two groups, after their arrival in 

the eastern Pacific. A perslste.nt cell of warm, "oxygen-depleted (below 

\ 25m ) water off central Am,eric~ (Blackburn 1962), representing marginal 

\ f/ibi~t:. for skipjack of most sizes (Sharp 1978),, probably engenders this . . 

\split.~ Williams (1973) proposed three models to account for the migration 

of young skipj a·ck into the eastern Pacific. These models have yet to be 

te~ted although recent releases of young skipjack in the Marquesa~ Islands 

will be useful in this regard. 

Based on tagging and other data, Kawasaki (1965, and vafious 

earlier works) has proposed the existence of resident and_migratory 

gr f · ·t · M1' grat1' on into the«ishery. from oups o sk1pjack in Jai?anese wa ers. fJ 

, 

''l 

I 
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southern areas· (10 - 20°N) was postulated to occur along three major 
.·· 0 ... 

routes. south of 10 N,. mov~ments detected by taggin~ experiments 

6' appeared. random (Kawasaki, 1976). 

"I 

on ~.wider scale; Kawasaki (1965) proposed a ·common central 

rac1fic spawning area (160°E- 140°W) for all_Pacific Ocean ski~jack. 
. • 0 . 

This area was later extended westwards to 120 E, but· 't:he conunon origin 

was maintained .. Genetic studies since then (Fujino 1970, 1972, 1976; 

sharp, 1978) have suggested the e~istence of non-inte~breeding sub

populations in th~s area. Matsumoto (1975) identified fourteen "stocks" 

within the Paci.fic, based on shifts ih abundance of long line-caught 
'VJ 

skipjack. These all remain essentially hypotheses a,nd will be examined 

in greater detail where appropriate in sub~equent sections. 

,. 
Whether or nbt some of these movements are directed is unknown. 

Based on ultrasonic tracking experiments,"' Yuen (1970) suggests that.,, 

skipjack can navigate over short distances and do have a senset. of time. 

· Mechanisms by which this may be achieved can only be guessed at. A 

photoreceptive function has been ascribed to the pineal organ found in 

all tunas (Rivas, 1953); examination ?f a southern bl:uefin tuna (Thunnus 

maccoyii) obtained.by the author anc;i examined by Dr. q. Kirschvink 
• . 6 . . 

(Princeton University) revealed the presence of abo~t 10 s1ngle-doma1n 

magnetite crystals per cm
3 

of tissue, sufficient foi t.he fish to use the 

geomagnetic field as a navigational aid (Kirschvink,: pers. comm.). Since 

then, an unconditioned magnetic field re·spense in yellowfin to the ge~-
\ 

magnetic fie'ld has ·been observed (Dizo!l, fide Kirschvink} and the 

magnetite shown to 'be precisely located in y~llowfin, skip]~ck a,nd kawakawca 

on the frontal bone and thus well ·placed to functi'an in a ma,gnetic 
~ . , ' 

sensory capacity. As a result, there now seems a distinct possibility 

that skipjack can navigate in this way. 

I 

·A further cr:ucial question with far reacping. implications remains 

unanswered - are skipjack capable of directed migrations and by extensio~, 
' 

homing? ' 
'"" 

From this brief review, the following points relevant to the 

succeeding ~ections emerge: 

.. \ 

\ 

' 



(a)\ skipjack, by 

phy~~ological adaptation 

speeq_ locomotion, have 

""., aiv..e:.iit at high energy cos 
/ ·.. " . 

locate and ~tilize producti 
. .. 

unprod?ctiv~ habitat. \ 

the specialized morphological and .. 
equip them for sustained high 

a distinctive foraging strategy, 

These adaptations enable them to 

patches within their generally 
' 

(b) -the j:>otentia,f ·for dispersal v.ia· highly mobile adults ~nd 

young, as ~) -~s planktonic e~,9s and larvae,. is high. The 

reality has yet. to be de~'citrst~ated, and the role of stoc)1astic and 
•• 1 ~ 

deterministic factors (e.g! homin,g) in dispersal is unknown. 

(c) the spe~ies is iteroparous, with external fertilization, 

presurn~d .non-assorti ve mating ,and high fecundity. Whether 

spawning activity is continuously distributed across the broad 

area, is unknown. 

(d) details of some important aspects of behaviour and life 

. h 1.) history, notably larval development a:nd surv1val, sc oo 1ng 

characteristics, age structure and,. growth rates remain sketchy. 

I· 
I 
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CHAPTER 3 
l 

TAGGING EXPERIMENTS. W~TH SKIPJACK TUNA 

3.1 INTRODUCTION 

"The main:;object of a marking experiment is
1

\ to set up and examine· ·•· 

the properties of an 'experimental' population of xrlarked fish 
1
::i:n which \ . ' 

certain parameters, th~t would be difficult 9r impossible to estimate 
' ' • .• • \ -flllJ 

in the 'na.tural' .Population can be determined with s~me accuracy". 

(Beverton and Holt,· 1957). In the marine environmen~, where 

opportunities for direct observe.tion and exp~ritnental\manipulation of 

populat~ons ar~ much reduced, tagging, 'or mark.recaptu~e ~xperiments 
are widely _used to obtain information on fish populations. Parameters 

commonly estimated include popula~o,n size, mortality (both natural and

fishery-induce~), growth, ~ecruit;.ment, rates and ex-t:-ent of movement 

and geographical range (Paulik, 1963: Ricker, ·1956). 
~- . 

.. 
In this chapter 

results of tagging experiments are used to investigate the nature ~ 

sk~pjack movements within one area, 

r and then by extrapolation, to assess 

Papua '··~ew Guinea and its surrounds, ". . . 

the potential contribution to gene 

flow between ~reas made~by these movements. 

3.1.1 Assump!:ions 

Central to the use of this technique is the assumption that all 

animg.ls in the population are equally susceptible to capture. Failure 

of this assumption" may be due to unequal distribution of catchability over 

the popu:j.atiq~ (i.e. individual' heterogeneity) and/or the J>robability 

of capture being ~ffected by ~revious history of capture _(contagion -

'trap~shyrless' and 'trap addiction;) (Cormack, 1968; Carothers, 1980). 

The former case can only be investigated with a population of known size, 
' . ~ cls~rly not~possible with a cosmopolit~n oceanic species. The under-

representatibn of sexually mature (ripe) female ski~jack in catches by 

cert.ai.rt· g~ars (Brock, 1954) does indicate the basic assumption may ~ot 

inva_r;iahly hold. The iatte:r case has been examined by 'likelihood rat:io 

(Seber, 1965) and other statistical tests (Leslie et aZ._, 1953_; Orians, 1958; 

'-, 

,,• 
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'"· ... 
in fish (Beukema,;97 l and other gro'5's · (Orians, 1958 1 T•rner,: 1960). 

carotQe~s, 1971), andtdepartures from the assumption have again reported 

as~pt/ons regarding retention~f tags, unprejudiced. survival 

correct reporting and return of all t~gged fish,.equal of ,. I' 

mixing of 

' emigration 

varying de 

untagged fish and varying rates of"immigration and· 

study areawill affect particular estimates to 

.... ~~· 
The· present experiment:s.were undertaken as part of a~.:;,ra~r~rogramm~ 

accompanying the d~~elop~ent ot~a large scare tuna fisher;r in ~apua New 

Guinea in the early 1.970's (Kearney,, 1975), a~d thus involve commer-
' 

cially explo!~ populations. In contrast to research on closed' 

populations or populations where data collectiqn following release is 

(mder the investigp.tor•:s COJ)trol, in this ~a~se: "the· data are mainly 

collected as part of a commercial activity whose details are dictated by 

optimai use of ·.the- available resolirces, and not 
10 • ' 

The ~e-release.of captured i)'ldividuals is not a 

by the research worker. 
. ~1 

part ef this process, 
·./ 

I 

nor are point samples taken at pre-assigned· times. · The exploitation is 

usually continuous, the total, catch being divided aqcording to the time 

interval during wh,ich ,.it was. taken". (Gormack, 1;968) . Although 

commercial activin~ may be relatively continuous (at least~in non~se~son?l 
fisheries), level~ of activity typicall;t vary by area and in time, aQd 

'\"C:, ~ 

redaptures must be related to this spatio-temporal distribution of fish-
/ , I ~ ii ,!,•• ' ,,, 

in
1
g. activity. Reliable catch statistics~. usually expressed in terms of 
' v 

effort expended and catch by spectes, ·area and time strata, are th·e.re-' 

fore required; where the geographica;t•range of the,. population is large 

and recaptures are made by a variety of. gears in.' different ·countries, 
' 

difficulties may pe e~perienc'ed with standardizing estimates of effort 

and abundance and with varying reliability of available .. catch <statis,tics. 

3 .1. 2 Typ s of Movement 
( __ 

~h In a ecent comprehensive review of animal migration, Baker (1978) 

argues for the acceptance of a general term, migration, .to de fin~" the 

act of inQ ing from one spatial unit to another;'; this recognizes that a 

complet .. spectrum ofo movement patterns exist. Many other workers 

( 
1 · h h ' 1942,· Harden Jones,l968; Endler, e.g. Heape_, 1931; Landsboroug -.T ompson, , 

1977) have found it useful to distinguish between dispersal~ the roughly 

random or weakly directed' intra-habitat movements mad~ continuously rather 

.. 
' 

·' 
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tha~ periOdically as a resul
1
t of d~ily or season,~e :ctivities 'and 

. 1 . -..._ , I 

migratio~~ · inter-habitat long distance •fuovem~~ts mad~ larg.e 'riuilibers 

of individuals in approximately the same direction at apJ?:rq~imately the 

same time, and usually followe~ by a r~ular return movement'>- These 

t~s have become well ·established in the literature, the forme.r 

eJfe,ciall~ in the genetic literatur~, and will be used here iii that sense • 
.J .. 

·101 

. Fishes provide. some of the. best'-known examples o~ migration, 
, I 

nota~l:y the catadromous migrations of eel~( Anguilla spp.) and anadromous 

salmon (Salmo spp., Oruiorhynchus spp.) mfgrai:ions. In th~. marine environ

ment, migration can *equently be reduced to a simple triangular relation-

ship (Hare;n Jones, 1968) - ~ con:ranata~t migration of adults to a well 

defined s~ing area, denatant movement or drif~of young stages to 

nursery ot; feeding areas, and rec.rui tment ·into ~ ad4,:~/populaticm. 
' . 

Several t~na species, notably the bluefin tunas (see ear 'er), with their 

relativeiy disc~e spa~nw ~reas, proven lo.ng dista movements to . 
these areas, and pelagic larvae provide pertinent but ompletely' * . . 
documented examples ~f this general-ized pattern. 

Migration, 'however, need not be for spawning purposes (gametic) 
·-~ - • .f:i 

but can also •be climatic (sea19.na•l" avoidance_ o·f unfavourable conditions), 
' ,..IJ. 

·alimental (feeding !Jligrationsf~><'Heape, 1931) or compl~x~ combinations .of 

these _types.- Tagging experiments have been instructive in understanding . (. ,, 
migration, !?articular when fish ca be marked on spawntng grounds. Where 

severalq.spaW!1ing areal? exist; fish tagged outside these grounds may 
~ -~ I 

produce ret~t~ patte,rns whic\are diff.~cul t to interpret unambiguously. 

Dispersal is a prerequisite to gene flow between-areas,_ and as·. 

gene flow is very difficult to measure, serves in practice to estimate it, 

subject to various corrections and adjustments. 
. . ' True gametic m1grat1on, 

on the other •hand, should tend to maintain genetic continuity. 

Where large nwnbers of animals are marked and rel?resentative 

dispersal patterns documented, the observed dispersal distances, which 

typically show a leptokUrtic distr~bution, probably over-estimate the 

extent of gene f1.ow.. Dispersal distances ten. to be smal'l in most 

animals but in species of high vagility, wher ... large scale dispersal 

occurs, the term nomadism (Heape, 1931) is often used; Nomadism is well 

f• 

.. 
• 

\ 

\ 
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known in tnose. terrestrial spe.cies whose food--resources, like those of 
-....; . . . 

tunas, vary stro~gly between seasons and years, within a· given area, 
;· -

e.g. birds (Keast,. 1968; War~, 197.1)_, rodent predators (Krebs and Myers, 

V 1974) and desert .specie~ (Frith, 1967), and its adaptive significance 

' has been the s.ubject or\onside;able speculati~n. (e.g. An<;lerson, 1980; 

Tayl~or and Taylor, '1977; Gad gil, 1~71) . Where it is. acco~pani~d ·by even -v

limi ted· spawning, the potential for gen.e flow between areas is 

considerably increased. 
r 

As ·the presence of well defined spawning ~reas in skiJ=>jack ·h,is'· 

not been 'de:nonstrated observed .movements are desc'ribe~ as dispersal. 

similarly, the terms .I emigration 1 and 1 immigrqtion 1 are used in a general 

se~se to indicate the"direction. o'f movement relative to a given area 

and their use ~s not necQssarily assoc:i,ated with true migration. 

3 .1. 3 Prtvious work 

Successful tagging studies. with tunas)have a relatively recent 

history because' of the diffi~ ties a!:;sociated with catching and. handling 

~.hem.'~~arly a;tempts to tag tunas, including such ap.J?roaches as the 

indiv~al stamping of> commercial fish hooks, have been· discussed by 

Godsil (1936, 1938) and Rounsefell and Kask (1945). It' was not until the 

development o£ the loop tag (Wilson, 1953) 'i;ind its subsequent refinel!'ent, 
41 •• 

the d2.._.r.:t tag (Yamqshita and wal'dron,' 1958) iA .Gonjun,ct':ion with improved · 

handling techniques (Ma.r;r, 1963; Fink, 196S; B;:lyliff, 197.l~ tJat suc?es~"", 
was achieved. Tagg..:j,ng ~.,PE}~~~LT'ents have since contributed significantly 

to present tl;)derstandi~~ of 1the population structure of albacore (Otsu and 
' <5\:··· 

' Uchida, 1963), southern 6iJ~fin tuna (Chingu, 1965) north Pacific and 
. -~ -

Atlantic bluefin tun~ 1 (M~ther, 1963), all of which undertake lengthy and 

spectacula~ migrations to relatively discrete spawning areas. Although 

skipfack (and yellowfin) have been tagged in appr'il!t!1~e numbers, res4lts: 

from tagging experiments with these species have been less than definitiv~, 
"- \__ 

as suggested in 2.3.9. 

Fink and Bayliff (1970), an~lysing 4381 retu~ns from 90,412 

skipjack tagged in the ·eastern' Pacific Ocean, were able to distinguish 

northern 

( 196]) ' 

and s,outher~1 groups which underwent ·limited mixing. Schaefer 
{lj .. - . 

Rothschild (1965-) and !&wasaki (1965) had earlier hypothes.rzed 
/ 

"'., ... 

·,ll, 
,, ' 

\ ' 

'\ 
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not been demonstra observed movements are des.cr 
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as dispersal. 
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Similarly, the terms '@thigration' and 'immigrati used in a general 

a given area sense·to indicate the ction of movement re 
-· 

and their 'use is not sarily.associated' true ,:igra,tion. 
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a relatively rece~ .. 
catching and hpndlfng ~ 
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' I 
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have been discusse'a by· 

k (1945). It was not until ·the 

and its subsequent refinement, 

conjuncti~n with improved the flart tag d~ashi ta 

handling techniques (Marr 963; Fink, 1965; ayliff, 1973) that success 
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to present unders 
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,• 
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spectacular migr s to relatively discrete spaWning reas. Although 

llowfi~hav.e been tagged in appreciable 
- . • j{ . 

with these species have been less 
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aefini~ive, 
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Bayliff (1970), an~lysing 4381 returns from 

in t~e eastern Pacific Ocean, were able to disti 

and southern groups which ~erwent limited mixing. 

Rothschild (1965') and Kawasaki\(1965) had earlier 
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~--ntcrql Pacific orig~n: ,for .,,these eastern Paci"r.ic 'tish. Will:.iains 

". '. 73;- e~~in~d t.~'e ai-?~~nt i~. ~~m~· deta'i_l. and proposed' three models 

igrat1.on 1.nto th~ easter,n Pac1.f1.c .from· .t)'le cen-tral Pacific. 

Tag~ing .. in Hawaiian waters (.U~OO fi~~. '0V~~ lJOO.returns) Jroduced ... 
only local Hawaiian returns (Kawasaki, 196¥) .. Prior to 1967, tagging 

' ~ •I y 

experiments in .tl?-e. long established Japanese f.;i.shery haa generally been 
•• • • ' ' j • ()w 

~ unsuccessful, but returns from. over·. 6, ooq, releases auring ··196 7·-69 
' ~ 

(Kas~hara et aZ.:~· 1971) estab~is~t~at' ~he. fisher.~ r~lied in part on. 

\ seasonal migrat;ion from ~reas to the. SOUth ~d .that, move1nel).tS of different 
, 

fish wi t.hin ,the 
,. 

grO)lPS of area w~re ·complex~ varyin9 'between and within 

years. ··~ .. a· .'· .i . .,,, 
<> 

Resul~s from t'hese experiments , ' and r.e·leases on a small scale in 

other parts .·of the Pacifi<; (Bayliff ,• 1974) ~wh,Hst .. pontributing to the ( 
\ 

understaridi:ng of' mov.ement:s and stock stru~ture within particular local" 

\ a:t;eas, ·yi:eldEJL.n? ~nfornyation r~levan·~-t~ Papua 1/w Guin_ea p_opulations, .. ,.?> •• ,... 

~nd the pre'sen~ experiments .'tl~re undertak.~n·· without knowing what area 
. \. . ' . ' (' .. 

returns" might .. be expected to cove:r: .. ·It is useful, there·fore I to briefly:' 

~onsi-~~ the fishe~ies ~·~ the ~e~:Cn, and .:o describ~ the Pap~a New . . . 
Guinea flshiry, whfeh could re'asonably be expected to account for most 

short ~~rm ret~rn~, ~n s~e detail: 

-·· Surface fi-sheries 'which rely for their effic.-..cy on the schooling 

behC!viour of-skipjack account 
'1 • 

~or viitually the entire world skipjack 

cab;::h. Lon'3iine· v'essels take 
' I •-' .... 

- \ . . . 
~mall quantit-ies incidental to the catch 

o~ la.J;"ger deep swimniing tunas and biHfish. Predominant amongst the 
"' ,_, -

. various 'techniqves used' are po,le and line fishing where li "e ba.i. t i~ used 

~0 enhance ·the. school's _feed:lng response, enabliJ!<;J individual's to be 
I) 

caught u.si,ng a p.ole, .sho'rt lin.e anq lure with a barbless hQqk,· and purse 
~ ~ . , 

seining· wliere . .,_t.l-i'e' school of fish is encircled by_ a large net which ~s 
·.· 

.·purseCI.below, ··winched alongside and the catch brailed out) Lesser 

q4a~'titi'e·~ are' o,a.,_~gh~ by trolling.and gill netting. 

Within .the. ~pqian C}nd Pacifi.c_ ocei;ins,, annua_l ~omi.nal catc;es ?f 

skipjack, compi'\_ed from FAb st~tistic::s (Anon, 1976) and Klawe (197!3), 

years. 1971~75 in Table 3.lr and tne location are given·by country .f'or the 
• .4,• 'I •' 

of fisheries in'. Figure' 3.1~ ' '. 
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Table 3.1 Annual n~mi~a~ ~~~jack catch (I 000 tonnes) by 
country in the Pacl.fl.c and Indian Oceans, ~~7 ;, .... lp inclusive Q 

'""' 
'·." ~ .. 

4 J "--.. ... ___ 
.. 

.! 
\ ... 

1971 1972 1973 1974 1975 
" "" 

\Western Pacific l1t 
( • .. .. 

Japan IQS.l 156.8 201.3 134.7 136.5 

' Papua.New Guinea~ 16.9 -'- 11.7 2.7. 3 40.2 15.6 
., .. 

--~~--..,_-.. _, 
.Solomon Islands 4~5 6.8 

~-~ 10.0 7.1 

P.alau 1.0 0..4· 6.2 . 3,2 4.5 

Indonesia 12.4 19.6 22.3 \ 23.6 2'4. 5 

Philippi!nes (0. ifl . ( 0. 3) 27.2 17.4 20.0 est 

Kiribasi 0.2 0.2 

New, zealand 0.8 0 . 
~ore a 0.2 Q •. 5 1.7 0.7 4.2 

Taiwan NA NA NA NA· 2.2 
. '' 

Australia 0.3 1.*4 ~ 

Eastern Pacific 

U.S.A. 64.7 .40. 9 36,9 52.0 66.8 
; 

Canada 1.3 1.0 3.8 1.7 4.4 
\') 

Ecuador ,13. 9 5.5 6.0 8.5 16.9 

Mexico 4.5 2.4 2.5 3.9 6.4 
,.~., 

. Peru 5:7 2.4 4.8 • 2. 3 3.6 \ 
_,. l . 

NA 12.8 • Panama NA ~A NA 
. ' •( 

French Polynesia 1.0 1.0 1.0 1.0 1.2 

Indian ft . $ 

I .. , 
~ ..... ~~ 

.;' 

Maldive's 28.9 16.0 f,) 20.0 24.0 16.0 

Indonesia .... 2.4 3.7 4.1 4.4 4.7 
~ t 

II 
0.3 

•. Japan 0.1 I'· 

India \ NA NA NA 6.1 - ..:. 
\ N.[\ ...... 

Pakistan NA NA NA NA 5.8 

Sr~ wnka NA NA· NA 14.0 • NA ... ~~ r .r 

/'1 
0.5 Australia 0,1 

& 
\ ' .. 

'-\ ~ o. 

Catch < 10h .tonnes • ...... 
'\ NA: FiguJeS not available 

' 
-"' 
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The ·location of skipjack fisheries in the Irtdian apd Pacific·Oceans. 

Heavy lines mark the approximate· limits of the species aistribution . 
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The Japanese fisl:\eiy, which, dom1nat~ the 

two components, the hornewater fishery, north of 
' ' 

.water, or long r·ange pole-boat fishery south of 
. " 

catches, has at least 

20°N, and'the southern 
0 

20 S. With the advent 

of larger. vessels, the geograpt;tic::al coverage and catches from the latter 
J 

have increased dramatically since about 1965. (Kasahar?, 1977) and· the 

southern water fishery now account9 for over half the Japanese catch 

each year. Vessels from this fishen·first entered the Papua New Guinea 

area in 1.969, 'and by the end of 197 5 qperations ·extended eastwards . to' 

170°W and well sou~~ Of the Eq?ator (Figure 3.1). Geographical distri

bution of effort in. the southern water fishery is far from stable with'in 

the area outliqed in Figure 3.1 (Ka~·ahara: 1978;/~our and Gal:on,l979)' and 
/ . 
' . ' 

given the mobility and opportunism of the fleetl,rreflects 11 variations 
in availabili'ty as' expressed by ~atch rates. 

" I 

fishery next in size, the eastern Pacific 

The same is · f.the 

fishery, where pu se1ners 

account for most ·o·f the catch. 

•· The remaini,ng ,skipjack fisheries are restricted in geographical 
I 

,extent by comparison,. and effort within these areas tend to be more uni-

formly distributed throughout the ye~r. 'Fisheries in this category within 

1, 500 km of Papua New Guinea are the Solo.mon Isl-ands 'fishery, the Palau 

fishery and 'the ea!i1t Indonesian fishery (Figure 3.~). Wi'th the exception 

of the :)..ast .named, few if .any published data are available; unpublished 

data have therefore been obtained by approaching the Government agencies 
l 

concerned. 

The quality of statistics from particular fisheries varies. Those. 

from the Jap}ne.se fisher; are published on an annual basis giving details 

of species• catch by ohe degrt\e square (tonnes) for 10 day, monthly,and 

yearly time strata. Effort data by vessels of various~ze are also 

provided (Anon. 197~, 1977 a, b, c, d, covering the years 1971-75 
•" 

inclusive). It is estimated (KasaJ:lara, 1978 a) that 80% of larger (long 

rang4~ vess~ls and 70% of small and medium sized vessels are included in 

these statistics. As the 

~ata in this form (by one 

s~~arized in .. teTms of 5° 

of 20°N and six sub-areas 

are: s'hown in Figure 3. 2. 

' 
area ~overed by this fishery is very large, the 

degree square) is unwield.y and has recently been 

(latitude) x 10° (longitude) quadrangles south 
. 0 

·north of 20 N (Kasahara, 1978 b). These areas 

. { 
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statis~cs Qof th~ eastern· Pac.ific fishery are:. collected by the 

Inter-American Tropica·l Tuna C0mmission to assist in the form~lation of 

management policies. They comprise logged catches (in short tons by 

·l-degree and 5;-d~gree/areaE!, by months,' quarters and years, by ~ypes 'of 

gear (purse seine ~d bait-boat), and by size. c_l:asses of vessels), and· ..... . ' . 
th~ correspondi~g. effort, both unstandardized and standardized t~ particu~· 

lar classes of purse~ine and ba~t-boat vessels. The effort data 

obtained by the Commission represent·aboJt 90\ of 

are assumed to have the same distrlbutio~ by area 
\. 

the total effort and 

and time as tQe total 

effort. (Bayliff and Rothschild, 1974). 

J, 
as In~onesia and the Philippj~e~/ < 

" t· 
rn· less developed countries, such 

-~ 
where much bflthe catch is taken by small vessels for subsistence 

' ~ 

purposes or domestic consumption, reliable figures are more difficul~ to 

obtain. Estimates of total 9atch are available for most fisheries 

however, and other than the Japanese and Papua~ew Guinea fisheries, more 

detailed information has been sought only when the recapture of tagged 

fish rendered this necessary. 

3.2.1 The Papua New Guinea Fishery 

The development of the exclusively pole and line fishery ~rom its 

beginnings 1n 1970 is described by Kearney (1975) and features of later . . 

years by Lewis (1976) aand Lewis and Smith (1977)-. By 1973, four joint 

venture compan1es were operating 33 vessels and by 1974, the ca~ch had y . 
reached 40,000 t9nnes, placing the fishery amongs the world's largest 

ski~jack fish~ries. 
' ' ' 

Under th& conditions of 'licence,· individual vessels were required 

to provide figu~s on daily catch by species (tonnes), operating area 
. v 

(one degree grid squares coded ·as in Figure 3.3), average weight by 

species and limited environmental data. These dat~·were then processed 

to provide, on both a per-vessel, per-company and per-one degree square· 

J' basis, monthly and annual rep~rts on average ~aily catch, species 

tomposition, average weight by ,species- and effort (fishing days i.e • 

• ai t was carr'ied) . \ 

cr( 
Qperations by the company fleets were conducted on 

with vessels unloading each n,i.ght to a mother, ship. This 

is, 

" '7 '7 
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\ 
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Fig. 3.3 ~he waters of Papua ~i~ea 
The boundary of the•declared Offshore ·Seas is shown as a solid 

line and the yariOJ,lS sectors of the fishery shaded~ · ..One degree gr{d squares 
are code'd by a combination of a longitudinal letter (A-Q) and a latitudinal 

..r· nUJnber (00-12) as defined below. Sectors are shown as a 100 km rad:i.us from 
the central point of the baieing grounds. 
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;mposed a limit to their, operating range which was ex b d \h. ...... ace~ rate by t ~e 

need to secure live b~it e~ch night. Suitable fleet baitin9 aieas we\e 

relativelY few in .numbOr and~nO~-Contiguous (Lewis, 1977), with the , 

result that the fishery co\_\ld be resolved into six operational sectors, 

each described by a 100 km radius from the baiting ground, which showed 

lim:ited overlap (Figure 3. 3). These, with their. corresponding one-degree 

squar~s, are as follows:- ~ 

"(l) New Hanover (JOl, J02,.101, 102) 
\ 

J 
.· (2) Cape Lambe:rt (K~3, K04, J04, L0.3, L04) 

(3) Kimbe.,Bay (J05) 

(4) We~t New Brita~n (!04 1 !05, H05) 

(5) Madang (E04 I EOS, F04, F05) and 

(6) Manus Is. (FOl I GOl) 

Ta.Dle 3. 2 lists ptonthly effort (days) and catch per unit effort 
·~ / . 

(tonnes/day) by sector for the years 1972 to 1975 inclusive. 

Although Japanese J..ong~range pole boats had operated in the 

Papua New 'Guinea· area since 1,968 (Kasahara, 1977) ,· their area e>f oper

ations has overlap~ed to a very limited degree with the local joint 

venture vessels, reputedly as-a J!latter of policy by v~sthl owners' 

associations-. The two elements can therefore be treated as' separate 

fisheries in the ar~a, one characterized by continuity1of effort in 
-

localized areas and the other by patchy distribution of relatively large 

amounts of .e-ffort in both space and time. The catches from both sour.ces 
~ 

for.the years 1973-75 are as follows. 

CatcH by PNG. vessels 
* 

Catch by Japanese vessels 

I 

1972 1973 1974 1975 

11,718 27,234 40,214 15,624 

10,858 22,228 56,595 18,076 

* from Kearney, 1979 

f· ~-In vessels captured an estimated 3,500 tonn~s 
1976, purse seine 

of t~as, mostly skipjack, ~ithin the offshore seas of Papua New 
Guinea, 

,, 
(unpublishe.d data, Japan,Fisheries Agency) . 

.J 

Prior to this, however, 

,, 

C t 
'' b h · · G · t r and 1.' n ad]' acent areas had 

a cn1s ot wl. thin Papua New u1.nea wa e s 
been negligible relative to bait-boat catches and the activities of ·purse 

., .... 
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';rable 3.}-;;,c Monthly effort (fishi~ days) and catch per .unit ·effort (tonnes/day) by sector for the years 1972, 1973, 1974 and 1975 

A dash indicates no effort, no catch; a number followed by a dash, effort (days) but no catch. The So;Lomon Sea·· 
sector centres on I06 and was developed during 1975. ' · 

,, 

:t ~ 

1972 - J 6 F M A I M ·- J J A s 0· N i> 

New Hanover 37(0.3) 71(0.6) 102(1.1) 156(2.6) 267(2.5) 257(2.0) 208(2.5) 162(3.4) 136(0.9) 175(2.7) 170(4'.1) 78(2.7) 

i47(2.0)- 173(0.6) 322(3.2) 172(2.3) 178(3.3) 101(1.2) 164(2.6) 100(2.2) - 48(~ 109(4,.7) 176(?.4) 24,~3.9) 
18(J..O) 31(1..7) 71(1. 7) . 3(0.4) 3(1.0) 70(1.5) 50(1/) '. 86(1.6) 8~(2.9) ,86(1 .• 5) 

1 - 13(0.9) - - - - r::. ~ - 1(0). 2(5.1) 

53(0.3) 65(2.3) 108(0.8) 1.7(0.4) -:- 8(0.2) 20(0.6) 3(0.8) . 8co:1> 

Cape Lambert 

Kimbe Bay 

wl!s ~ New Britain l - 5(2.9) 

Madang 201(1.8) 103(0.2) 

·Manus 1 - 9(0.9) 1(0.6) 2(0) 

1973 J F M A M J J A s 0 N ri 

~· '::; 

¥:}~~~ ~~;:. 

·:;: ... 

: ..... 

,J .... 

· • ~ew Hanover 24(0.4) 8(0.1) 90(1.1) . 182(1.4) 195(4.1) 196(6.5) 204(8~4) 208(4.5) 173(6.9) 203(4.6) 194(5. 7) 105(5.6). 

. . Cape Lambert; 237(1.2) 116(1.6J 241(1. 7) 228(2.0) 479(3.9) 488·(2.5) 473(3.3) . 408(5.8\) 3.89(4.9) 260(2.3) 15.(0.6) 199(6.5)_ 

~ 
Kimbe Bay 64(0.9) 4(0.2) 

West New &ritain 

Madang 

Manus -
30(0.2) 126(0.1) 

3(0) 

51(0.3) 15(0.1) HO.l) 

~1 (0.1) 

2(1.5)· 103(4 •. 0) 171(313) 190(4.4) 151(0. 7) 158(i.3) 162(3._~ 

8(1.0) . 7(0.5) 60(5.3), 116(2.1) 145(2.8) 145{4.4) - - =n(L4) 

22(0.3) 110(0.8) 135(1~2) 61(1.2) .1(0.5) 2(1.0) 10(1.1) 

12(5.5) 200(5.4) 39(2.9) 26(0.2) 14(1.9) 
.,..-

&... ..-

/ 

'c 
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-
1.974 J F 

New Hanover - -
Cape Lam!)ert - 162(6.6) 175(8.3) 

Kimbe Bay - -
West-New Britain 59 (3. 2) . 56(6.0) 

Hadang 5(0.6) 4(0.3) 

Manus 7 (2. 2) -

1975 J F 

~ .. 
New Hanover 

· Cape Lambert 

·Kimbe Bay 

~ Wes·t New Britain 

~dang 

Manus 

Solomon Sea 

~
',;...' 

'\ 
6(0':8) 9(4.4) 

109(2.6) 79(3.4) 

- . -
19(0.7) 14 co. 5r 

I 

60(0.9) 16(0) 

- -
97(2.0) ;1.28(1.6) 

• 

·--

M A .M 

38(8.5) 247(4.4) 386(9.0) 

276(3.9) 33~(4.2)' 468(3.2) 

1(0. 7) 16(1.4) 47(2.27-

87(0;8) 18(Si0) 4(3.4) 

66(2.1) 90(5.9) 124(3.4) 

- - -

M A M 

- 6(5. 7) 71(4.2) . 224(2.8) 

130(3.8) 163(4.3) 383(1.6) 

- - - ~ 

23 (1.3j - 1 (5. 2) 

. 
6(1.9) 9 (1.1) -

- - -
' 

130(1.4) 29 (1. 3) -

~' 

.. -. 
J J A s 0 N D 

. 
340(8. 3) 327(6.4) 282(3/9) 2~4(3.7) 305(5.6) 310(6.0) it.3(4.5)' 

, 
438(3.8)1 378(3.6) .478(4.6). 450(4;2? 475(3.2)' 4~7(2;1) 292(1.8) 

- 144(3.3) - - -- - - . ... ·:--

45(4.9) l38(4.'Q) 168(3.3) 106(1.0) 12(1.0) 7(0,,2) 29(2.3) 
/ : ~. 

121(3.8) 99{4. 2) 86 (4. 6) - 10~ (2 .·]!) 170(2;0) 123(2.2) '89(2.0) 

-- I 

" - - -- - - -- -
i 1-

J J A s 1 
0 N.· D 

229(3.4) 236(3 .. 7) 224 (3.6) 279(3.1j . 402(1.7) 226(2.3) 235 (1. 6) 
' . ... 

467(2.9) 4q2 (1. 9) 440(1. 7) 265(1.9) 338(2.2) · 231(i.O) 313(2.2) 
~ 

~ .. · }' 
3(1.9) 2 (O) 

80(3.{)). 171(1.1) 

·- - - - - - -
- -- - - - - -; 

.. ' 

~':, { $1 

,.....;:---

'-
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• seine vesse:Ls during the period of the experiments, 1971-7S·, have 
• • 

been disregarded. 

Although traditional fishing activities for near-shore tunas are 

important in some areas of Papua New Gui~ea, the maih species taken is 

usuallY ~c,kerel tun~ Euthynnus affini~.__. Subsis:tence f~_shing was thus·· 

not expeGted--t:o-acc-(j(jjl£ for-~- -~i~nifi~ant number of recoveries. 

In summary, the Papua New Guinea fishery, with its relative con

tinuity of effort, .and proximity to the releaw area, represents ~he 
best prospect for detecting cyclical or seasonal components of obs.erved 

movemenM 'but .ofi;~rs limited g'e<;>,graphical cover-a:ge. The large Japanese 

bait-boat fishery, on the other hand,. shows little continuity of effort 

in any given area but provides the only compri)hensive coverage of the 

very large western Pacific region. Statistica1 data availabl~ from both . ( 
these sources. are reliable. 

', I 

3.3 RELEASES OF TAGGED SKIPJACK 
.. 

3. 3.1 Planning 

For the es~n of some parameters from ~ark-recapture 
~ experiments, such as Peterson estimates of population size, it is 

"" ,,, .. 

\ 

theoretically possible to. calculate ·.the number of fish which have to 

be- tagged and the a:mount of subsequent sampling neede9, to obtain est_imates ~ 
within pred.etermined confidence limits if some knowledge of population 

' 
size is available (Robson and Regier, 1964). In this cp.se, where the 

structure of a large mobile population. of unknown size was to be·.studied, 
' 

such an approach is clearly precluded and optimization of available 

resources becomes the major consideration. A .total of 10,000 skipjack 

tagged and released in or adjacent to ~he Papua New Guinea area over a 

three year period represented a realistic target wh{lst offering the 

prospect ..of building a solid data base if a modest return rate (5% or 

500 tags) could be achieved. 

A

0

20 met~.( vessel was made available for the work, modified and 
' .,. ~ ' 

commissioned· in mid-1971 (see Kearney et al. ~ 1972 for details)· Releases 

of tagged skipjack then proceeded in three phases: 

\ 

\ 



r- J-

· .. 

. . ·. .... ... I 

,(1) ~ during the .• ~.atter half of ~71, appropriate tagging 

·atechriiques were .d.eveloped ·and put into ope~at~on; 
. ·"'t."· _ ... __ _ 

~ -----·~--- ~ \l ·(2·)--:----rn the ~bsence_ of any :'knowledge of skipjack movements 
... ' !l' 

within the_) area, releases durin9 1972 were directed at a, •· 

single centrally. loc.atef sector of the fishery, the. cape · .. · 11 

Lambert ~ector~ 

. (3) re:leaSE(S during 1973' continued. in- this .same sector, 

/pr'ovlding ~t'he ~a~is for. between-year compari-sons;. the geo-
• • !'·""' : •• :~· \ •• ~"' • . -. • • • • • • ' .. 

g_raphical. tov~rage. ·of the 7eleases was also extended during 

1973' ·and 1974.,· ·and releases made in particular areas to test 

hypotheses bas'ed ·o'q early 'results. · 

" . J Relowses ~n areas whi-ch presented pp'E;rational problems for the original 
.. •' . .·· l..._./ 

,,.ve~.SE?_1, were facilitated. -'by parti.cipation in joint Japan--Papua New Guinea .. . -
.. tag~i~;· .crtiise~ .aJ'!d the .eh.arter of ~ CO!lUl)er~ial vess~l for a limited 

·to . ~ 

(, , ... ' . 
·f.' ' . . 

pedod: · 
' '., .. 

. ·With the s.ucces~ b.f the e~p~riments n!lyin•g heavily on {he co

'.' OQeration. of ~i:she~men., p~ess~.rs ~~~ other· sh~·reside pe~onne·l in 
' '·, ' ' ' • l. • • . !t. 
returning ,tqgs ~it.h· the r·~quired \"f(<;:aptur,e dqta, a publicity campaign 

i ,~ 

acco~panied t'h~. 'establi'skment cit tl;le, programme. Posters setting out 
, • --' ' • 1,. • • • ' • • ' .. 

the ~'iffi'g ~f- the e}Cp€rHnerits and 'the recapttire information" were circulated · 

widely thr~~h~ou·/ s8'uth·:._~ast Asia. ~-~d the Pacific, Q.QSi a reward of 
' • > * " . ' . 

A$2. 00 ·posted for the return of the t~g· .plu's associated information. 
t • • ' - ~4 • 

As the lo(::al ),o'i·nt~ventu.r~ compa.~ies ware expected' to account for most 

early rkcap~ure~, ·personal "approa.(::hes were made to these companies, with 
~ , "'' • ' .Jj; 

follow~ up at intervals. •.'. and· 'r'ecapt ure . da td'.: sheet~. (Japanese-Eng lis.h )-

distributep to ·each vesse'l. ~·' 

Margetts (1963) identifie.s -o~~r 
ljJ ' 

most. obvious fittor.s con-

tributing. to loss of r_ecapture tags as: (} 

(lJ, 

(2) 

(3) 

(4.} 

. tags' MOt, cons~~u~us · enou~h; . . 

inadequate pupl~c~ty·and ~nstruct~ons to finders 

what to.do with tags; 

"~ · t · and "inadequa~e reward ~nfen ~ve, 

~arele~sne~~ by tag find~~~; 

• origina],ly SO¢ but.--ipcreased after a few months. 

( 

' 

\ ·'' 

' \ 

\ 
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~ ,'_\·-.. .... 
• • ~ 01 ",. 

' · •· 1J"'e: ·of _ th"' brj.aht }~.~n'ow dart g "protud:lng !ii. • ~:. · :... • 

.-

. 
'. 

, ~ . "" . . . , , . / _ · · em ot "lnO}:'e .f·rom the fish's 

' 

-o ·,::,-
0
' r"~i.·surface. was ~fe.t. t._:to. negat, e l"' F.. t' ;!!. .' ( 2~ • " • ' . 

·q . .. ~a. .- _. ,,-:,:~ --~ ·• ac or:s :1 a~d-~(3) were 

giv:efh .ful,_l_ col}_s.tde~~tion and ~s .. a result. 11;-:''is hoped. that factor (4 ), 
• ',_ .• ~' ~· • ':· • "' . "t . ' 0:. : - :: p " , : • ·,. 

lar'gel_~·:bey~:~,t.?~ i~ves.tigator' s·. airest cont;rol, was rniniffiize~·. · .. ·. _: 
., 

.. ~ • •.' "I ' ' •. " • 

Tagg,.,i,ng,',Techniques 
I 3, 3 • 2 

._.';] . 
' ' 

, .. 
• p 

. ' •, 

·~·: ~~-. . ·It •' ~-
}s·::·no~~1· ~~J;,l.ier, ·,s~ip~ack ~r~~ent a. 'rartic;ular se_t of pi:obl~~s· 

for m~~~k--recapture ~expe:r;~ments.. !~e~~ e·xtreme1y. )::ligh metabo~:4f ·~ate~ find 

stt~ceptibilit,y• 't~ .'rapid":~hysi;l~gkai'" d~age req~.ir~s. 'that ~he 'time out 
}, • ' ., I ' ' 

' ' 
.~ .._~ ~-;;f wa~er ~nd th~ amount' 'Of handJ.ing pe:~ini~sed;· thei:J;:.:_hi~h"basal 

: · swinuning 'ds (Magnuson/J,I/.3) c;md eve·n. hi_· gh~r. burst speeds (Yuen 1966)' 
' . ~ .• . . f , 
', · ~$gui.re'' t :t.h~ .. tag useq ',be ·s~9_ure.,Iy anch'o~·ed without 'ca).lsing· dama~e to 

~- . ... -~ .. .. 
:the fish, yet not interfere with laminar f]ow. 

I. •. •• . ' 

/ ... .. '.;; 
// · • \' ... I ·• ~. , 

/Th~ ·technique developed. was m..odified .slightly. from that useq .for 
• ..' f'\ ' • . • \ 

tag_ginJ s~ll tunas, in oth.~r .a::eas _.(e.9. Y~c;tsniba~nd _waldr.on, 1958; 6 

F~nk,. i965; Bayl;i~f, -~~7~)·.~.,.~t involve~ the'use of dart;tags ~~'a ,;;inyl

~ined cradle (Fig_ure. 3. 4•) and enpbled skipjack tb be. tagged I rQeasured 

;an~. releas-~hin -~Q seco'~d·~··Of hook~~t·· w~thoutr &ufferin<:!'· appa~ent' 
.damage tLe~.is; 19B'Oa); i.'. 

, ' 
t'i.., 
'{)' ' ... -- .• ' 

Poled_ skipjaek were ~wung towards th'e gloved hands of an asystant 

' sta~ding at tbe~ head of the -.e•ta<:tie: The t~,'arbless' hook was gen-t;:ly shaken 

,. 'lOOSe in the ~r~dle.,•\l the fish EiUiCkly che'Cked for bleeding 1 partic\}larly ' 
• 1'., ,, 

• i'ronr;~e gills I 'an'tj' for injti.d~s ~ther than 5Uperf.ici9-l CUtS 1 then was 

., either ·gu-ided down the s_loping c~adle to.wards the t.agger' or.r.ejected.· 

't~ ' The tag w.as ins·ert:ed just behind, or level witht the poster~or 

end oft~ second.dors.al fin at .. an angl~·of approximately 45°·to the 
. .. 

longi tudi~al axis so as, to position the barb securely b'hind ,a neu~al 
;,. spine o~ second O.ors~l fi: ray 'suppor.t. T.he t~o elements overlap Kn this 

·region anr8 .provide am;~ifi!~' ;OJ::horage fs~ 1 
the ~ag (Figure 3. 4). Care was 

• {,,, ' • , '1 <•; I 

··taken to ins~rt. the tag neithe» to.o deeply· (to deere-as~ risk o_f damage, 
. .• '" ' • ,, 0 

particula,rly ·to the, hig):lly vasc,ula~ized deep red ·muscle), rid~ too 
~ . '·, , ' ' ' '" ' ' 

• -~~f>lerficially i~ the doiso..::latera'll)nusculature (to. ?ecreas~ the pos~~-:-

.. 

I' 

bili~ .or' 'slippage). Th~ ~pplicator was tqen 'withprawr1, leaving the 

tag with about -j c~.;of t~e shaft 'prdtrudi,ng ~ medium siz·e. (50-60 em) 

skipjac~. "Tagg~d fi"sh tof's~d ,gentty f.rom the c}ad,le ov~~ ~e" ab~ti.ng 
l 

' ~" I'll. .. 
$ 

,, 
"' 

.. 
J 

' ,. 
-~ 

~- ~ .'• ' 

.... 

~ ' . 

.• 

•. 

0 

I 
I 
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I ·Figure 3. 4, Details of the· tagging tipment, the areas of 
insertion of the tag an a tag in position on 
~ live skipjack prior t r~se. · · ~ 

;.;l .. ) Th~·-Jimposi te cutaway sket;ch; ba~~~ on a series 
of X- rays, clearl~ shows. the overlap. ii;t~een neutral ~pines 
and fin ray supports (dorsal P,terygio .. hies>.: . 

~ 0 

•• .. 
' J 

• 

''), 

i, 
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gunwale had a short fall, of two metres to the sea surface. The vast 

majority of fish were rel.:!ased ·with~in ten seconds of hookset and some 

within six se;onds. 

3. 3. 3 Releases 

t 
In general, skipjack tagged during a cruise, i.e. between 

syccessive por~. c lls, const~tute a release set. Table ].3 lists 
·n locaFty, dat.E:;S numbers of tagged skipjack release,d and the vessel 

used for the 9 ,,54 7 skipjack tagged in 2 3 release sets between December 
~ 

1971 and June 1974. . ~ 
The! success of particular cruises as measured by numbers of t ..,. ags 

released in. a ,specified ar_ea is inf.luenced by a variety of factors, 

most· important~y ·prevailing weathe.r ahd fi's.binfj conditions. For 

example, 1977 proved a p.oor_~··lear f~r the.Papua rew G~inea fl,.phery and 

average monthly .catch rates exceeding three to~es/boat/day we:r::e t 

experienced only in the ~~ctober-~Dcember period? (Table 3. 2). Reflecting 
' ' . 

this, October and November account d for 3,012 (&7%) of skipjack releases 
~ 

. during 1972. 

Difficulties at other times were experienced with shortages of 

suitable bait species, mechanical and logistical problems .. Nevertheless, . ' ~ .. 

the nunilier and distribution of: rele~ses accords well with the original 

plan. In the 'cape Lambert sector, 3, 454, 1and' 3,140 skipjack were released 

in 1972 and 1973 respectively to provide the basis of,bet~een~year 
compariElons1

, and the remaining 2 ~ 953 'releases we:;-e distributed widely 

through the Bismarck, . Solomon and Coral Seas. 

3.3.4 Size at Release 
I) 

As data from the experiments were to be used to provide estimates 

of growth (Josse ~t aZ.~l9j9) and as.si~e-related ~tfects on the degree 

of mobility, or migratory tendency, had b~en reported (Kawasaki, 19.65; 

Mori, 1"'974), it was 'clearly important to obtain measures of size at 
. ' 

release. 

'Length estimates 

Until late 1972 no ·indi~idual si~e estimates of tagged skipjack 

S 1
'ze.un1'fprm1'ty .within schools.is.high, 

were made on t·he premise that as ·, ' ~ . 

.~' 

·, .-

' ... 

'r 

i 

!'-
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Table 3. 3 Details of tagged' sk{pjack releas~s between December 1971 

~ and Jtine 1974. 

Release ""r• Dates 
~ 

set 

2 

3 

4 

5 

6 • 

7 

8 ' 

9 

10 

11 

12 

l3 

14 

15 

' 16 

11-14/12/1971 

3-4/4(1972 

9:..30/5/1972 

2-23/7 f1972 

7'-19/10/1972' 

29/10-4/l.l/1,972 
t . 

9-:-17/11/1972 

21-24/11/1972 

17-23/4/19n . 

5-14/6/1973 

' 23/6-5/7/1973 

11-12/7/1973 

5-8/8/1973 

28-30/8/1973 

"'5/9/1973 

19-28/9/1973 

/ 

/ 

Locality 

l 

New Britain south coast I06 

(~lomon Sea) • 

New~in south coast J06 

(Solomon Sea) 
:. 

- j 

Open Bay, Cape L~ert K04 

" K04 

" II K04 

/ 
I 

No. • Ves,sel 

74 FRV Tagula 

" 

14 " 

II 

143 " 

299 " 

577 " 

" " K04 1488 " 

.... 
' I . " K04 876 

Offshore, Cape Lambert K03 7} 
' 

Solomon Sea 106, J06 34 

Cape, Lambert K04 805 

" K04· 1252 

" L04 400 
J 

New Hanover 10l,J02 84 

.. 
Cape Lambert L04 471 

II L04 212 
/ :; 

New Britain - various KP4:+. 388 
K05 

.. 

" 

" 

" 

" 

" 

II 

" 

" . 

II 

" 

17 /f.'- 21/10-8/ll/73 Madang -
( . 

E04, C03 326 II 

. 18 2-12/12/1973 . 110, G09 nth co·ra1 Sea .. 300 " 

19 ' 16/2-4/4/1973 
" ,, . ~. 

Port Moie'sby .. ~.' . 
G09 62 FRV Rosse1 

('-

.:20 11-21/10/197~· New Hanover"' lti!J·ol, t.02 ," L03 '' 240,· RV Fuji Maru~ 

~ , ' ,., . 
-~. 21 29/10/197~ ~ . ' 

'(\ r.> ... lf! ::.. 

So1omo[l Sea .., 
, .. 

143 II 

\ ' 
22 11/6-28/6/19"74 New.Hanover 

I06, J07 

. JOl, J02 
!01, 102 

1066 MV Oaido MflrU 
- I 

9547 .. 
23 

. 
16/1-18/4/1974 G09 Port Mqresby 

(r ...., \ ~ . -
222. F,RV Rossel 

0. 

' .. · 

( 
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mea,n school size (o~tained from direct measuremen-ts of untagged fish 

on the deck) ca~ be used with,confidence as an estimate of size at 

release for individuals .tn th~t school {Rothschild, . 1967)·: This was 

questioned wh~n· ~ggregations with bimodal length frequency were en

counterea. In ~ddition, early returns indicated "that growth increments 
o I , 

in tagged fish were likely to be small, making ~t desirable to estimate 
- . 

length at release ~~ accurately as possible. if growth studies were to · 

be pursued. .Consequently, individual lengths were them estimated with . ~ . 
reference,to prominent lines at 5 ern intervals and smaller lines at 1 em 

r.' ~:t~ ·H • 

intervals on the vinyl lining of the cradle. Initial concern that this 

additional step in the _tagging procedure would add cpnsiderd.bly to the 

time taken {Kearney et al., 1~72- p. 109) and.so prejudice survival • 
proved unfounded, with an extra second required at ~OS' 

estimate} { t1) 
\" 

For the 197 2 releases, individual' length were 

available for .SOB skipjack only.,:r~qe mean length within each school {t 1 ) 

serving as an e~~~m~t'e of size at release for the reJilai.nder {Lewis, 1980a),. 

Individual length' e,s·tim.ates { t 1) were available ·for_ over 96.%' of the 
~ ~I • • ' "•~ 

1973-74 releases and are summarized by release set in Table 3.4. 

Size Composition , 
' 

--~ 
' . 

OL the. skipjack mE!asm;ed during the course 'of the 1972 releases,' 

..,..96. 4% of individuals .Jere in the 50-60 ern ~ange (Lewis et al., 1974 -

Figure 5); 85.7% of the 1973-74 t1's c"aiQ.e into this category with 95,.4% 

of £.1' s betWEJ~n 45 ~nd 60' ern' (Table 3. 4). If 45 em is accepted as the 

typiccri size at fi'J:'st'maturity (see 2.3 .. 5), .. relea,ses consist almost 
. jj.. . ·~ 0 

entirely of mature. fish. AlthQugh estirnat,es of skJ..PJ ack age and '{rowth 

vJ~y wi~ely, most recent estimate~ (see 2.3.7) would' place the ?ge of 

~ese 4.5-60 -em fish as 1+ ~ 2+ i.e. in their second q,nd third,years 

of lif~. The experiments thus pr?yide. no iqfprmation on the movements 

of ill1!11atu~e (0+) or larger (3+:) fish. I· 
As the stra~egy was to tag and release skipjaclc .of all sizes, 

th k · · · k t,p'g-g· ed and releas.ed simply re- · " 
e restricted size range of s l..PJ.ac 

fleets availabili t:y of,· particular size Classes rather [.l than selectivity 

_i~posed ~Y the technique or deliberate a~oidance of fish of .particular 

size. 

'V 

' ' 

,. 
·' 

'~··. 
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j 

<;.>_at release for skipjack t~gged dur'in~ 1973-74 

. } 

'/ ' ~ 

-7 
Release set ' ... / .. % of '. 

.1.1 12 .: 13 14. 9 10 11 15 16 17 18 19 20 21 22 23 Total total 
;; ,. 

. 
<40 1 )/> ,, 5 2 8 0.1 

40 4 . 1 2 2 .. 9 0.1 • '1, 

4l 3 2· 5 0.1 

' 42 2 1 2 3 8 0.1 

43 2 1 1· 5 1 10 0.2 
' 

44 1 1 . 8 6 1 17 0.3 . : 

45· ' 3 2 1 5 1 1 9 17 6 1 46 o.8-
I( 

46 1 l \ 3 4 4 8 5 9 '35 0.6 
. 

.. 
47 1 

. , 
1 1 2 

, . .. 4 12 qw 4 8 16 31 90 1.6 
_,]'., 

'. ·~ 

48 1 1 5 5 1 5 16 '9 . 7 18 25 97 1.7 
•, 

49 .5 3 4 7_ I } 20 23 

~ 
16 9 15 23 134 2.3 

so 34, 12 5 12 10 ~ 1 34 • 48 19 1 25 34 239 4.1 r. 

51 3 28 20 1_7 21 12 1 51 
. 

20 12 3 2 24 28 232 4.0 
... . 

52 3 6,2 52 57 9 34 44 2 36 4 24 . 5 15' 58 405 7 .'0 

\ ' 

53 2 57' .198 108 .17 38 6 35 7 30 1 33 2 7 49 590 10.2 

54 1 90 15_4 80 8 49 22 ' 30 569 
.•. 19 8 1 17 . 11 9 70 9.8 

55 3 113 290 66 ~ 76 45 19 p 35 1., 42' 20 9 150 902 15.6 

2s1· _49 ' 97. 46 \)3 868 
56 1 127 1 49 12 1 15 10 11 165 15.0 

.. ' .. \ 
66 6~0 

57 104 123 -1 7 88 . 49 113 6o • ,1 10 14 7 182 11.6 

58 1 71 62 4 20 '30 'l3 48 . 1 1 4 7 5 114 390 -6.7 

·l ·-~ 67) 
59 59 11 1 5 9 24 39 2 1 1 1 220 3.8 

60 25 6 1 2 8 35 2 1 • 3 38 121 ],.1 
" 

. 
61 9 1 ·1 4 19 1 15 so 0.9 

62 
1 

J 3 24 0.4 
1 4" 2 6 5 2 

" 63 1' 7 7 2 2 19 0.3 
(l, " 

. 
~ 14 o.'2 

64 to 3 1 \ 

65 1 "6 1 ,fC 4 12 0.2 

0 ,:. 4 0.1 

r 2 2 .. 

67 1 2 
3 0.1 

68 . 1 1 
2 0.1 

IJ:, 

69 Q . 
70 ' 

"' 33 792 1187 393 82. 450 ... 210 375 322 290 40 235 142 179 1064 5794 
) 

' 

.'l. 
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other sources of Data 
. ' 

From March 1972, length 
., ,. 

fishery to assist in resolving 

and to complement the tagging da. 

rigorous sampling procedures,cou 

have ~t been used. The 

average weight data from the 
' of such information during the 

•' 

~ta were collected from th~ 
·' 

into component size classes 

Because of ~o~istical pr.oblem~, 

not be maintained and tl)ese data . . 
(see later) and the 

of length frequency data from the P 

re~ain the only reliable sources 

·of these experiments. Colle~tion 

.New Guinea~'fis]1ery was however 
0 

resumed during 1977 and has proved a useful adjunct tq the genetic 

studies (see later). These data that the size composition of 

stocks exploited_by ~he Papua New Guimea fishery is similar to that of 

·the releases. (Wankowski, in 'press.) 

Modal progression 

\ 
I 
I 

Only releases in t~e Cap: Lambert\seotor (sets 3-8, 1972; sets 

10-12, 14-15, 1973) offel!' t~e cont:inuity 'which might enable modal 

progressions in length frequencies to be followed'amongst+~elease sets. ,) . .. . ' 

Some shifts .in ~ize distribution were evident in the 1972, data 

k 
. \ . k . . l' h d 1 and are ta en to reflect changes~ stoc compos1t1on. A s 1g t mo a 

progression in the researGh vessel}length frequency data can be followed 
.. 7--/ 1 

through May - October (F'igure · 3,. 5, sets 3 - 6). 
~ ' 

~his approximates the 

g~owth rates gi~en by ~osse et aZ. (197~) for skipjack of this size in 

the Papua New Guinea area and is consistent with a single group of fish 
0 ., 

remaining in the release ar'.eq during the period. ' . ., 

Ea;·ly .ip November, however, scYiools of smaller ~kipj ack appeared 

and by mid-November these fish had vtrtually replaced the larger skip-

groups wa.s apparently minimal, with m:an jack. Mixing.between ~he two 

lengths within schools showing 

54.6- 56.5),· and t;,wo distinct 

no 9verlap (il ~ 50~7 - 5~.1 em cf. i1 = 
e1r=ment~' Cl (larger) an~ 8 fi~h have been ~· 

Tecogni'sed in the analysis (see set 7, Figure 3. 5). The influx of; the 

smaller fish into the fishery was re~lected in a dramatic incre~se in 

catch' rates during October, continuing thr-ough November-Dece~e'r' ·and a 
. ) ' , 

decrease in averc~ge skipj9-ck si~e (Table 3.2) • 

f . 
• l 

"' 
,, 

: 

"··: 

·\ 
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Figure 3.5 

·;'~ 

.... . \. 
,a 

$ 
. Length ~requency data from the research vessel catch 

by _release set. 
,') 

Lengths· in one em groupings have been expressed in 
, terms o·f percentage frequency and smoothed by a runnin<;J average of 
thr~e: 1 

' 

II 
. -. .:,., ·:\, 

. ) 
' . ' 

\ 

,, 

) 
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~ . se·t 1 11-14/12/71 

,. n = 301 • • '"' set 2 3-4/4/72 . 

n =·· 74 
q. • ~~ 

• k 

Set 3 9-30/.5/72 
20 (a) . 

I 

I 
n = 136 

. 

I \ 
I 

? 

/ 

I ··I . 
20 I i -

Set 4 2-23/7/72 

I I (a) n = 247 . 
) - ·I 

I f 

I 

20 I I · Set 5 7-1,9/10/72 

>.. 
I (a f. n = 216 

u ' , I ' 
c w I :::> I 

,.. 

-..:J CT I (1) 
I.. 'l u.. 20 I 

Set 6 29/10-4/11/72 

/ ~. I (a) n = 847 . 

I 
~ 

.. 
Set 7 9-17/11/72 ) 

' 
20 

. " n0 = 134 

n~ = 159 
/ 

"'_) 

I . Set 8 21-24/ll/72 

20 I "" n-= 87 

I 
. I 

_ljl' 

60 
I . 

'. 

- LCF (em) ( 
..... 

(/' 

' ,· ... 
. ' 



In the November da~,, a third size class, comprising 45-49 ern 

skipjac~, can also be distnguish~,d.. L~ited numbers of· these fish were 

tagged and }eleased <luring a brief _[)er~od of fishing offshore and compri!?e 

part of release set .8. 

,·there were thus two major (a ,13 ') and one minor distinct size classes 

of sklpjack tagged and released in the Cape Lambert sector' during 1972. 

No clear progressions were evident in the 1973 d.ata. As 1973 was 
I"'~ I 4' • 

a much more productive year for the fishery with over twice the 1972 
• I 

catch this may reflect a Il\Ore complex recrui trnemt base. In any e:vent, 

it was not possible to separate and .follow pa.rticular siz~gro;ws~ between 

release sets. V 
.. 

3. 4 RETURNS OF TAGGED SKIPJACK 

3.4.1 Data Analysis 

Tag relUI'?i data 

Information potentia:t-ly available for each fish released was 
\ 

. '1'5' 
as follows: 

J .. · 

individual identification (the ·tag number) 

time and date of release .. . ,, 

t: - estimated size at release (nun)- 9.,1, 

mean length of fish in the schdol or agg~atiort (mm) - t1 

position of release to the nearest minute ~f latitude and 

longitude. 

Persons or agencies returning tagged fish were asked to supply the 

following~ 

date of r:ecap,ture 
., l. f . bl 

length at recapture (nun) and weight (kg) possl e 

recaptpre method 

position of ~ecapture (latitude and longitude) · 

These data were then used to calculate for each return where adequate 

.J 
data were available:. 

fJ ... 
~~ 

( 
'. 

.. , 
'1, 

' " . 
'I 

•}· 

'· 



~ 

·, 

.:¥;. 
' i 

Ja) mini~wm distance moved, great circle 

miles calculated from the fomula 

I , 
distance 

.. ,r ·t·, 
in nautical 

Distanc·e = 

' 

where 

and 

\ 

~ t~ • ' ' .. 
.. 

' -1[ ' 
,COS sin (LAT1 ~ sin J,LAT2) + cos (LAT

1
) 

.. (LA';l'2) cos (LNG
2 "".LNG1 ~] X·60 

" .LAT
1 

& LNGL = latitude and longitude of 
. , 

LAT
2 

& LNG
2 

:;:: latitude and longitupe of 

cos 

release 

recapture. 

' In the calculations, no allowance could be made- for land masses between ·, 
·.·t' 

•, 

polrits of release and recapt1,1re. Actual distance is und~restima,ted in .J If 

such ca$es, b1.1t the number of returns involved wa.s yery" small. · 

(b) direction of movement (azimuth) ~ 

"' 
(c) days at lib~rty. .. . 

To avoid cqnfusion amongst the many terms used in tagging 

experiments, the terminology adopted by ICNAF (Anon, 1961) and used by 

F_ink and Bayliff,, (1970} has been employed th:J;"oughout: 

\ "releases: 

recaptures: 

the (number of) f~sh taiged and released; 

the (number of) tagged fish c;:aught; 

recoveries: the (number of) tagged fish detected by. 

reports: 

returns:· 

•. ,,, 

fi~hermen ~r in any other way; 

the (number of) tagged ~ish concerning which -
any inforn\ation reached the tagging organization 

sDffibient to establish that they have been 

recovered; 

the (number of) reported tagged fish or tags 

.which are eventually returned to the tagging 

organization, or the existence of which is fully 
? ; ~~ II 

. authent'IIIJated. 

f' 

~., 

.'/'I, 
~r,..· ,.Y· 

'! ~ 

( 

dv . 

·~ 
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AnaLysis of dispersal 

Moveme~t of indiyisfual fish can j;)e regarded as t~e resultant or 

two ~omponents, random and airectional 

~hese compottEmts>llave beerAeveloped~ 
movement, ancf' several measures of 

I 
I ·. 

,ncorporat1ng Sk.ell,am' s (1951) 
.,;;; 

earlier work., Jone.s' s (1.959, 1976) m~al} q·square dis~ersion coeff:i,.cient. 
. . I ·. . 

(a2) measures the extent to .which il)divi:dual fish move independently of 

one another, or "tne 'av~rage amolll}t of ~~viations from thhean direction 
• I • 

of· movement"· (Bayliff imd Roths9hild, 1974) and so is a mea~~re of 

randomness. His mean velocJ ~/of dislocation (V) measures the ~verall 
displac,emept of the group, or directional inovement. Using ·Cartesian . . 

rather than polar co-ordinates, Bayliff and Rothschild M .. 974) de..;_,ised a 
" <!' ' I 

variance-covq.riance method. The determinant of the variance-covc;triance 

matrix is a:n ind~x .of. the dispersion of the fish and as such, is simila~ 
• I 

to Jones's a 2 • The 1 correlation coeffi~ient approaches 0 when movement v . ~-
is random and 1. when m~st movement is. unidir.ectional or in' two, opposing 

d.trections. n/rem~~~s far f:rom clear how these measures are q,~fected 

by scf!boling behaviour or changes in 'school integrity and .composition, con

siderations which are important in skipjack· (see earlier). Adjustments 
... .. 4. 

also need to be made for the' distributi,.on of effort. 

Here, ·a more simplified approach has been .preferred for the 

following reasons: I 

(a) The orieqtatis> ... n of the Bismarck Archipelago effectively 

restricts local movements from releases in ~he eastern Bismarck Sea (the 

f119.jority of relea;tes - see later.) t~ the northwe;;t-southwest quadrant 

(see Figure' 3., 3) .· furthermore, fishing effort to the west (central 

Bismarck Sea) and ~&st (north Solomon Sea) was low, with no effort by 

" . Papua. N~w Guinea vessels. anq effort by~ long ·range vessels either very · 

lo...,. o.r highly seasonal. Local di~per~al from t:,he relea.9e are,a could thus 

be detected a~ong no;th-west and s~uth~west axes only. 
" /./. 

\ 

'· 
0 ., 

(b) With the. restricted mode og·;perati~n of V~ssel~ based in 

Papua New Guinea, the relatively s~~li proportion o~ Papua New Guinea!s 

.sea area covered by them and ·toe limited overlap between sectors. ('Figure . 

J • J) I local returnS baSiC~lly' reveal .. sal·ta tOr>Y movementS between. SeCtOrS 

and as such,. 'are not 'weri sui ted to 'th'e ana.lyses described above. 
The 

' 

.. 

~ . 

;, } 
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I .· 
.;. . ·' . 

continuity of ef~oft, in mos~ ~sectors improve the po~sibilit . , • I ' . . , .. y 
cyc~ic~l _or p~r~qdic' e,uehts,. an importaqt coq.;idera". on. ;hen 

.I . . . .. . \ 
struc1;,1Jr:e is be;ng ~nv~tl.g_a~ed.;. ·· · ••••• . "' 

o.f.~et~ctl.ng 
populaficm 

The 9:~er:,..o~ retu~ns per sector ~er menth .. for each r~:)..ease •· sE!t .. ·· 
. ..- ·. \, - ' ~ 

was adjust~d by a fac~or ~hic'h corrects, albeit' injpeyfectly, for time/area: 
I . / • ~~ ' l ·. 

~aiiation~. in .~ffort ·over the· per?-l?f qf the exper.i,.~ent. Thi·s: adjust~d . !. 

· ' · . · . · · I I·· 
number· of· returns (N. , ) w¥s carculate'd ·as follows .· fo'liowing 'Bayliff and 

Roths.child (197 4) .. · >J 'i • . [. ·,. ·_' · . 

. "··. 

.N.. = 
l.J 

'. 

n. , 
l.J 

<r~'. 
l.J 

L. L ~ . . .n .. l. . J l.J . 
(----------) 

L ,.E .n · · 
. i . _u 

·:·. J f . 
'ij 

where n .. 
l.J 

= actual numl:>er of re6irns in sector i during month j. 

' ·'·! ;..- ....... • •. 
fij 'ii ef,ort _(day!?)' tn; ~~;t~r i during·· mon.th j,~ 

I 

'I 
When tabula~ed, the return da.ta are th1-n ih .a c'onvenient. fo~ for 

examini~g the dire~tion and. timing. of move~ents,.~.etween s~ctors .. 
•, 'I , 

Analysis of long~r ,distance' rf,'!t\,lrn!5, specitically, relating'to 

returns to ,the spatioc:-temporal oi~tribut_ion of effort, has been atte~pted .•. 

on a yearly basis only', because of the Felatively small number 9f. returns 

involved. 

"· 
Mar• tal·~ t;y estimates 

Estimates of. total mortality coefficients, dr losses from't~ / } . 
tagged population. (Z) can be useful in ·population studies in :allowing 

survival (S), th'e proportion 6f tagged fish remainin_g f'~r: a:r:ea after a 
Zt 

given period, to be ~alcuiated from the formulaS= e T~;ov~r.rates 
can then be gauged. such est'imate!5 are how~ver subject to nUJl)e,rou~ 
sources of error. lJ'sin~ the notation of Bpy&iH.f and Mob~~nd . (1~72)~he 

~ ~" . 
number of tags remaining on sl<ipj acl<. after tim,e t i.s given by: 

, -Zt 
~ N = • N 1l p;!.e 1' ' 
~ .o 
N no. of tags r'ema·in~nll!i!·on skipj acl< after time t 
t. ... ·~ 

.,.;' 

where 

N · = no. of tags releas~ 

p 0., = proport,ion, ·o~ ·ski. 

tagging•mort~~it~. 

alive after inunediate 

·. 

.. -.. ..-, 

.. 

·-:·(',. 

., 

. . 

." 

' ,.f 
~ , 

t. 
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~!ore spec-ifically, 

. .,. 
1tf where 

. 
Tf 

'• I' 
port~~ of "~ags 
she~ng 

' .. "'" 

retained after irnmed:Late 

...._Z == in$t"?ntane.ous' total losses 

z 
F 

M 

G 

F +. M + G + L '+ E 

inst~ntaneous fishing mortality 

instantaneous natural mortality 

instantaneous tag-induced mortality 

L i~tantaneous tag shedding 

E instantaneous emigration. 

~ usirig the regression method (Fink4 1965, Mather et al., 1974) 

" z estimates were made for release sets in the Cap~ Lambert 7ect r during 

1973. As dispersal proceeded, effort figures were summed over all 

sectors from w~ich ~eturns were received, and the estimates us repre-

sent loss'rates from the~smarck Sea. Attempts .were made to. estimate 

1 and p, 

1

~he inst.an.tan~us and immediate coefficients of tf slippage 

by double tagging experiments, Tr and G, the immediate and instantaneous 

co~fficients of mortality attributable to tagging, and ~~velp· of noR-

reporting of recap·ture:;; (L,ewis, l980b) .. 

3.4.2 Total Returns 

!>-

A total of 728 returns (7.6%). was rece<ived from the 9,547 '1." 

releases. They originated from the .!following s;:)Urc;es: 

Papua-New Guinea based vesse~ 

Papua-New Guinea mother ships 
a..nd shore bases 

Joint~i1ture vessels in other 
fisheries 

Long range pole boats 

Indigenous fishermen 

Canneries (mostly U.S. A.) 

Tagging vessel 

% return 

i~"Yl-72 
..J release's 

250 

- ~ 

J 

./. 2 
-

' 
I u\ 

4 ' 
4 

5 . 
~ 278 

7.8 

~I, '! 
~ 

1973-74 
relea£~5 
-

351 

11 

. 
6 

45 

, 1 

33 

3 

450 

~ 7.5 

601 

11. 

.II) 

8 

58 

., 5 
., 

37 

8 

..-
728 

~ 
7.6 

97 

\ 
\ 

/ 
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A limit~d number of additional recoverie were reported but 

these could not '·be verified and have not been c nsidered. As can be 

seen from the above I the Papua-New Guinea tis ery and the Japanese long 

range pole boat fis+lery accounted for· most returns, espec.ially :s 

nearly all the cannery returns could be traced to shipment~ from the 

Papua New G~i~e\~ fishery.\ The higher proportion of returns from pro

cessing faclllt~s (shoreibases and canneries) in 1973-74 was probably 

a function of the ~arger- 'catches during both years (Table 3. 2) when 

tagged fish were presumably more likely to be overlooked 

fishing vessels. Return rates, although varying widely 

board the 

een 

individual release sets '(see later) , did not differ S':ignificantly 

1971-72 and 1973-74 releases. 

3.4.3 Returns by time §trata 

Tables 3.5 and 3.6 gi~e return r~e$ and times at liberty 

stratified by 50-day intervals for 1971-V a-nd 1973-74 release sets 
I 

respectively. Times at liberty ranged from 10 minutes (recaptures by 

the tagging ve?E!ei) to 789 days. 78 (28%,) \of 1971-72 releases were re-
' 

covered withln 50 ~ay~, whereas 235 (52%) of 1973-74 returns were w~t~in 

this period. 'Conversely, corresponding figures for returns oL fish at 

liberty in excess 'of 200 days·w~re; 142 (51%) and 91 (20%) respectively. • 
~ 

3.4.4 Dispersa)" 

~ 

The largest net oisper.s-?-]:_ recorded 'from the point of release was 

1371 nautical miles and only four other returns beyond 1000 nautical 
tla 

/mires were re<c~ived. 
• I ~ 

·The calculated displacements, summed over 100 
"' 

85 
\ 

nautical mile intervals ,~or all r\elnu:-ns ~here adequate data was available -~ 

are given in 'Figure 3. 6. As this ·i~. bip.sed by the large number of returns 

immediately foJ.lowin~ ieleas~ the calculated displacement for fish at· 

liberty longer than 100 days is also shown. Approximately 70% of these 

returns still showed displacement less than 200 miles. The greater 
.q I • • 

number of returns in the 101-200 mile categqry results from the hlgh 
' ~ \ a.. 

return rate in the West New Brit,.cytin sector during mid-l~r3 f>ro,m 1~2 

releases in tlie Cape Lambert sector (see later)· 

The 

'~general in 

leptokurtic shape of the frequenc\listribution curve i1~ 
movement studies (e.g. Endler, f97 ) . Grant (1980) ~ints 

\1 / 

\ 

i r 

(' 
I 
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·~ 
Table 3.5 · Returns of tagged skipjack from the 1971-72 release sets 

'4ll b)V-so::d a y time strata 
<• 

r- r ., 
Release set (t/ 

Days at 
2 3 4 liberty 1 5 6 7 8 Total 

4 
~ 

6 "' 1-50 16 . 36 . 18 2 78 

51-100 5 17 . 1 1 24 

101-150 9 7 1 f 3 1 t 21 

151-200 1 1 7 3 12 
... 

201-250 1 1 1 6 5 14 

251-300 2 10 31 13 l 57 

301-350 12 15 ' 5 \ \ 32 ., 

~ 351-400 3 ..... ~ 2 2 
~ 

7 

1,01-450 2 5 1 l 9 
(' 

451-500 1 2 1 4 

501-550 ., 5 

551-600 ~ 3 2 

601-650 1 5 l 7 
I ~ 

"' 
651-700 i l 3 5 

701-750 1 1 

751-800 ' . 1 . 1 
// 

/ 

TOTAL l 1 17 ... 43 • llO 56 4 277 

\' of 7 L, /r14 143 299 577 1488 876 71 3542 .<0, 

rp leases 

:; return 1.4 7!.1 11.9 14.4 ' 7. 8 '7. 4 ~ 6. L, 5.6 7.8 
4 

' -d 

' ~ 

lf,~l;\,h., 
'•,,, __ 

•/ 
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fill 

,_ 

1.0 
1.0 

p 

"', 

~ 

~~-~--- -~-
- --,.- ---- - -- --~~- ---·--------- ~- -- ----

Cap'" Lambc,rt New Hanover Southern Solomon Sea Coral Sea 
Bismarck 

.--- -~ea 

Release set ' ~'-~~--n 12 14 15 13 20 22 1() 17 9 21 18 19 23 

' 
l- so 35 50 4L- · 54 8 4 4 36 tl 2 

- -

51-100 26 19 l3 l 2 - - 18 l l l . 
101-150 - 3 - 2 . - - l ll 2 3 2 

151-200 2 - l 2 - l - 7:t 3 ·. 2 

';-201-250 ' - l - - - 2 l l 3 5 
< 

. "'-'· 

251-300 2 - l l l - - 2 6 4 ..: i· 

-3ol-35o 2 - l 3 4 l l 2 l l l .· '-~,. 
. 

351-400 l 6 2 - - l 4 2 2 

401-450 l 2 3 2 l -·· - - 1 l 
' 
'~ 

~ 

451-500 2 - l l - l l 

501-550 l - l 1 
/ 

551-600 l .. . 
* 1t * Other 1 • 2 

\ 

TOTAL 72 81 64 66 16 8 9 ~83 22 19 2 4 3 1 0 
~ 

No. released" 805 1252 400 --..:" 471 212 e 84 240 1066 388 326 34 143 300 62 222 -
%·return 9.0 6.5 16.0 14.0 7.5 9.5 3.8 7.8 5.6 5.8 5.8 2.8 1.0 1.6 0 -

~-- ------- ------ - --··-·-- --- --

Table 3.6 
* Incomp~e recapture data · t 789 days at liberty 

Returns of ta~ skip1ack fr~m t~e 1973-74 release sets~by 50-day ·strata. 

~ Releases are grouped geographically " ' .. 
'· 

. ., ' ~ 

~ 

~ 

~ 

TotJ 
~ 

235 

82 

24 

18 

13 

18 

17 . 
18 

ll 

6 

3 

1 

4 

450 

6005 

7.5 
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Out that long distance movements are frequently d un erestimated, and that 

the tail of the curve needs to be considered when assessing gene ~low, 

particularly over time. 

\ 

Returns after 100 days accountJ?d for 94% of returns more than 2a0 

miles (320 km) from the release point,· suggesting that dispersal proceeds 

quite slowly. Williams (1972) assumed a figu~e of SO miles per'day to 

represent a reasonable dis~ance covered by skipjack during orienta-ted 

movement (migration) . Maximum rates of aisplacement observed during 

these experiments fall far' short of this figu\i~-~ 

Tag 
No. 

4425 

713 

14215 

Release details 
.s. ·,, . 

Recapture 

~' A 

d t . 1 Distance e al s 
nm 

(_,_) 
23/ll/1972 

3°54'S, 151°44'£ 
7/3/1973 

4°58 IN I l39°30"'E 

9/11/f-972 
4°SO'S, +Sl~33'E 

16/6/1974 
2°25'S, l493SS'S 

22/ll/1972 
4°16'S, l39°30'E 

20/7/1974 
2°48'N, 144°09'£ 

906 

391 

466 

Days 

104 

44 

34 

M~ 
Miles/day 

8.7 

8.9 

13.7 

.I 

3.4.5 Tag loss 
I 
i 

Other than natural mortality, four major sources of tag loss are 

relevant to these experiments and need to be evaluated. As movement 

r arame ters only are being invest~ga t~, they, become important only if 

the loss is large and non-random. 

(i) Tag smedding (slippage) 

From the 358 skipjack double tagged and released, 29 returns 

were receive"d. In all b~t two cases, both tags were returned . 
.1/Ji ' 

The two··single-tag returns, were froni' outside the Papua New Guinea 

area in'situations which could have resuJ.ted in tag loss after 

capture (a cannery and a lo~g-range pole boat). With only one 
•) 

return f.,rom greater than 365 days, the logical divisi8n of the 
<i'!ll 

data set for the ~urposes of estimating o (portion of tags re-

turned after immediate shedding) and- L (instan~taneous tag shedding) 

would be by six monthly periods. With 25 of the 28 retur~s in the 
I 

,t 



., 

\. 

,, 
; ' 

first 6 month period and 22 within the first 60 days, howeve:, 

this is clearly of limited value. I t' f nspec lon o comparable 

data sets (Laurs et al.',l976; Bayliff & Mobrand, 1971; Lenarz 

et al. , 1973) s~ggests that values of p and L might lie wi,thin 

the approximate ranges of .98-l.OO and .10-.01 r~spectivelr. 

Tag slippage therefore seems a relatively unimportant source of 

tag loss. r. 
(ii) 

~I 
Mortality attributable to the tagging process 

This has immediate ( rr) an~"instantaneous (G) compon~nts. 

\Two points would suggest that G may approach zero: more than 

half of the returns from.l912 releases were at liberty more 

than 200 days, and in the doubl,vtagging experiment;. return 

rates from single and double tags did not differ significantly 
2 

(X 1 0.42, P ~ 0.5). Short term or immediate effects are more 

90 

difficult to gauge - the normal practice of holding the tagged 

animals for a brief period after capture is clearly not appropriate 

here. All fish were observed to ~wim away rapidly and as all 

(f 

steps were .taken to reduce t~~ trauma of capture, the proportion 

surviving may be close to unity. 

· (iii) Non reporting of tags 

The performance of both individual vessels of the same 
'I 

company and com~anies fjshing the same area in returning_ tag.!, 

was examined by relating returns received to relative amounts of 

catch and effort experlded (Lewis, 1980b). Although significant 
\ 

between-:Vess;el differences were observed in two of the three 
'. . ' 

c\ses exa,mined, . cannery returns traced to this p~riod could have 

removed these rlifferences, suggesting that some vessels w~re less 

effective in detecting ta}pged fish J;-board rather than failing 

I to report recaptures. 1 
I 

I 

It is more difficult to assess non-reporting of recaptures 
I 

from sources other try~:m Papua New Guinea fishery· Th,r:: good 

correlatio~ o"btained(betwe~n levels of effort and number of tags 

returned b~~ong range pole boats (see later) suggests however 

levels of any non..!reporti~g we+,::S! probably constant and random. 

Non-reporting in other fisherie~'1:cannot be estimated· The return 

of three tags from artisanal fishermen in remote areas suggests 

however that the publicity programme had been effective. 



J{ 

3.5 

(iv), Tag Breakoown 

The tag in use during '!;he exp.eriments.was !?elatedly found 
! 1 . 

to become brittle and prone to fracture ·at);emperatures l~ss than 

-20°c. Lower temperature~ are common in ~h~~lds of lon~ range 

pole vessels, .though not ln the holds of Papua 9\ Guinea based 

vessels. Tags were usually noticed on deck befor~o~age of 

th~ yatqp, but failing this, tag brittleness could pe a sburce of 

ta~ loss. Returns from later releases in the Papua Ne~ Guinea 

area using tags which retain their flexibility at low ·temperatures 
;,t 

has not increased the geographical coverage of returns. ('4_e,.e 3. 6 .1). 

ffirl 
In summary, the findings of these experiments do not seem 

subject to serious bias introduced 

I 

/ 
I 

MOVEMENT·S 

A 
I I 

WITHIN THE/BilsMARCK 
/1 

by variable levels or tag loss. 

SEA AND ENVIRONS 

3.5.1 1972 Releases 

Figure 3. 7 ~~ts .the locality of all recaptures within the Papua 
I 

Nc1v Guinea area ·from 1971-72 releases. The clumping_ of returns by sector 

is evident. Table 3. 7 lists the adjusted number of returns per sector 

per month, N .. , calculated as in 3. 4 .1., for release sets 5, 6 and 7 i.e. 
lJ 

Cape Lambert sector releases in October-November, 1972. .Returns from , , 
earlier releases in this sector (sets 3, 4) have not been included in 

this analysis because of reporting irregularities in the initial stages 

of the experiments (Lewis, 1980 a) and resultant changes in the .size of 

~;reward offered. 

The expected exponential decay in the number of returns with time 

was not observed, with N .. 's in J-uly-August 1973 (i.e. 8 months or more 
lJ 

after release) approaching initial N .. 's. 
lJ 

( 1) 

( 2) 

Five feat~re.fii were common to all three sets:-' 

a t · · · 1 · t t the south-wt;,st during· November~D cember s rong 1~1t1a movemen o . 

lvhich was rna tched by a corresponding north~wes t movement ln t 7 
.c; . 

releases ~nly, 
(} 

virtual disappearance of tagged fish from the Bismarck S~a sectors, 

other than isolated recoveries i.n the Cape Lambert sector (K0 4 ) 

adjacent to the point of release, 

1U2 

• ,. 

.... 
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fLocat~on of_retu~ns 
. tagged and released . . "('. 

beyond the rele~se seator 
during 1971-72. . 

Arrows. highlight the less conspicuous returns. 
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,_. 
0 
Ln 

~ . 

Nev Hanover 

Cape Lambert 

Kimbe Bay 

West New Britain 

Hadang 

New Han6ver 

Cape Lambert 

Kimbe Bay 

West New Britain 

Madang 

New Hanover 

Cape Lambert 

Kimbe Bay 

West New Britain 

Madang 

0 

-

4.9 

-

* 
-

....... -
N D 

0.8 -.... 
(2. 7t) -
8.2 4.6 

* • 
* • 

14.6 1.1 

17.2 4.6 

• • 
* * 

7. 0+ 

? .o+ ,1. ot 
' 3.0 1.4 

* * 
* * 

SET 5 7-19/10/1972 

J F M A M 

- * - - -' 
' - - - - -

- * - - * 
* .. * * * 
- - - - -

SET 6 29/10-4/11/1972 

• - - -
- - - 2.5 0.8 

- * - - *\ 

• • * • * 
- - - - -

SET 7 9-ll/11/1972 

- * - .- -

"" - - 1.1 0.5 0.6 

- * - - * 
-. * * * * ? 

- - - - -

1973 -- ...... 

'J J A s 0 N .D 11 

- - 1.9 ·- 1.3 - -
0.3 0.5 0.3 - - it -

* - - - - - -
·' 

2.2 8.2 3.7 3.7 * * * 

- * • * • * * 

- - 2.7 1.6 2.0 

0.3 0.6 1.6 - - * ~--
* 0.8 ~ -

6.8 16.4 8.4 8.4 * * * 
- * * * * * * 

- - 1.4 

0.8 - 0.3 - - * 
* - - - 0.5 

2.2 - ·5. 6 4.6 * * * 
- * * * * * * 

TABLE 3. 7 Adj USl:ed recoveries by month (Nij) during 1972-73 for release sets 5, 6 and 7. All fish were r 
released in the Cape Lambert sector. ~ecoveries in 'the New Hanover sector and Kimbe Bay-West ~ 

Symbols; 

" . 
New Britain sectors represent north-westerly and SQuth-vesterly dispersal respectively 

* Less than 10 days I fishing effort; t research vessel recaptures; 

+ entirely a fish. 

~ 

JO ('T 

no returns; + en tire1y B fi.sh; 

'\ 
, ', \ ' 

- <11-'1;:.,.-

h .. ~ 

•· 

..( 

4 

\D 
w 



(J} high recapture rates in the West New'Britain sector (IOS) as soon as 

\ fishing c.ommenced there in June 197 3 
1

1,1nd continuing until its 
I 

cessation in September, ~ \ 

(4) restriction of returns for the New Hanover sector (J02) to August

October 1973, possibly indicating movement northwards from the West 

New Britain sector, and · 

(5) thirteen reCaptures during 1974 (not shown on Table 3.7) r~vealing 

the presence of tagged skipjack in the Bismarck Sea nearly two 

years after release. Eight of thde were'in the Madang ~e~tor (FOS) . 
...;. ,. 

That at least some tagged fish spent the January-MarcJt~eriod in 

' the Solomon Sea is indicated" by the r.ecapture of three set<: 6 skipjack by 

long range vessels in March 1974; there was minimal effort in that area 

by these vessels in 1973 (Anon., 1977b). Conversely, the only two re

captures from the limit~d Solomon Sea releases (sets l, 2) were made in 

the New Hanover (Augu$'t 1972) and Cape Lambert (May 1974) sectors. 

Returns from sets 3 and 4 releases from Octoner 'T97?fonwards ·. I 
parallel those desc;lri}?ed above, and the c~sistency and synchrony of the 

94 

return sequence ¢nongst release sets is a feature of the~ analysis. The 

following explanation seems tp best account for this periodicity. Although 
\ 

c;ome tagged fish underwent li'h tle translocation or moved northwards soon 
.I . 

~fter release, most moved t6 the southwest, apparently to enter the Solomon 

Sec~ for some months before reappearin-g in the southern Bismarck Sea in mid 
\ 

l'373. This pattern of limited northerly movement through the. New 1-IanoV'ar 6 
- -' ·,, 

'if'•:tor and oscillation between the Bismarck and Solomoh Sea was repeated 

tn approximately the same time frame during the latter half of 1973 and 

l974. ' 

J. s. 2 Between-year variation in K04 releases ~ 

Location of returns from releases in the Cape La~ert sector 

juring June-September 1973 1(sets 10, 11,' 12, 14 and 15) ar~ shown in 

!'iqure 3.8 and the adjusted number of recaptures by month (Nij) in Table 

3· 8 · Although qualitative similarity with 1972 results is evident the 

lT73 cl<1ta set differs in several respects: / 
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0 . ...,. 

3_8 ~djusted number of returns (Nij) during 1973-74 by' month for 
Ta!Jle release sets 10, 11, 12, 14 and 15 

All releases wer~ in the Cape Lambert sector 
)4 

New Hanover; 
~H: CL: Cape Lambert; KB: Kimb~- Bay; WNB: West New Britain; 

MD: ·Madang 

--
'k'nth 

~~·~·tor 

>; ~ I 

" 
' K~' 

~~·;;H 

~\:1 

-----,-

\;I! 

. ·:;:, 
1,1" 

... 

'• 

Symbols: * <io dSJ.¥& e·ffort; 
" 

~ 

, , no returns· 

~ SET 10 5-14/6/1973 

1973 1974 

J J A s 0 N ' D JFM AAJ .JAS 

3.0 6.9 - 0.. 9 
7.5 5.1 1.5 ·~ 

0.6 ... 13. 5 
6.0 3.6 * * ""-" * * 

4.8 6. 3 41.2 * * * 2.2 
* * * * * * 2. 8 3.0 2.4 41 ~' ~------------------------~--~------------------~-7.~0 

Ill 
~BET '11 23~6-5/7/1973 

0.3 
0.6 1.3.2 lG.1 

5. 7 5.4 
6.0 

(.J 
·k * 

----

- ~.o- ~- ---- ·-·--· 

1.8 

* 

~ 

- ---
·- ------

------~- 7. ---_ -~ 
3.6 4.5 
3.6 

- * 
2..1 * .. * 

·k * * 
1;. 

fiii~ET 14 ,, 28-30/8/1973 

3.6 4.5 
34.8 2. <I 

k 

* * 
k ·k * * 

SET 15 5/9/1973 
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5.4 
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* * 
* * * * 
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(ii) 

(iii! 

W-~}··, 

• 
' 

r~~urn rates within the 

persisted longer, 

97 

movements out of the release area to ··the northwest were much more 
.• 

pronounced (in 1972, they were seen in set;. 7 rel~ases, and to a 

much lesser extent set 3 and 4 ~eleases). The ~ovements may have 

continued beyond trd's sector, resulting in emigration or loss from 

the Bi~arck Sea, 

. ' ..... . 
movements to the southwest were, on the 2tner hand, weaker. In 

the c~e of set 14. and 15'\releases,. only returns in t~e Madang 
·., 

secto'r durin~ 1974 suggest this may have OG::curred. Although 

returns were received in the West New Bii tain sector during . -~--

July-Septernbe:J;' 1973 from stts :to, 11 and 12, only one return was. 
~ . 

received in the year after release. This is in marked con tra~t 
' wo the 1972 releases, when return rates from this time-area stratufn 

approached initial levels (Table 3. 7) . 

Partly as a consequence of (ii) and \iii), the attrition in return,s 

with time was signi:(:ica~tly greater for 1973 releases. 

Figure 3. 9 illustrates these points. With the lack of returns in 
' release regression Jines I • 

each' case for the April-November period following 
- ~ p • 

huve been filled for two time periods rath'er than to the total data(set. 

These4oul ts indiciite then thc;.t what differs between years are 

the relative proportions of sldpjack·~which movr northwards soon after 

release and are thereafter protably lost to the fishery, and the pro2ortion 

of skipjack which 

alternate be tween 

mov~ ~'}thwest and remain for lengthy periods to 

the Bismarck and Solomon Seas . .,• 

3. 5. 3 Other 'releases 

' 

:V.;;J !hywver :>ector I 

Relea~s in or adjacent tq this productive sector were accorded 

high· priority 
1 

and were made as follow~:~ 
\II 

; 
I 

I 

1\ 

I 
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in ~973 releases the 
4'..-

-~;~ · .. · As tbe relationship is usually exponential and as no 'returns were receJLv~o fo~ some 50-day 
regre-ssions of lo'! (N, + ~) , where N = n~er of return.s ~ aga.in~t ,th~ n~e~r of days representing the 
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.... 

/ Release set l3 

" " 20 

" 
II ~ 22 

~ 

5-8/8/73 84 

ll-21/10/73 240 

ll-28/6/74 1066 

Returns 

8 

9 

83 

( %) 

9.5 

3.8 

7.8 

/<lost information therefole derive~s from release set 22, made from a 

commercial vess~l chartered for a twp week period; adjusted numbers of 
! 

return:s (Nij) .. for these releases are given below and the location of 

I. l returns. from re ease sets 22, 13 and 20 in Figur~ 3.10. . 
..,., 

•• 1974. 1975 

J J A s \' 0 N 0 JFM AMJ JAS 

New Hanover 7.0 22.3 8.5 4.3 4.0 3.0 * 
Cape Lambert 1.2 d. 6. 0.6 1.2 5.9 1.8 

Kimb"e Bay * * * * * ~ * * * * 
w. New Britain 1.8 2.7 8 8 

Hadang - / 

\/ 
2 'a 1.8 

9 9 • 

---------------~~-----------------------------------------------------------------

* <10 days effort· 
no returns 

I 

iF.? -~ 
Host returns were made locally in the five months following release, after. 

which time (November 1974) they ceased in the fac;e of continuing effort 

' and good catches (Table 3.2), presumably indicating emigration out of 

this sector. Returns f~om the Ca~ La.ntbert and West New Britain sectors 

indicate that some soue1wards movement occurred, establishing a link be

tween the New Hanover sector and those further south. Returns to the north 

and northwest, including six within the five months after release, demon

strated ~at movement out of the Bismarck Sea also occurred. The small re

lease set 13 produced similar results: three returns within the New 
'<Ill. 

Hanover sector, one to the south, anc:\, the remainder over ·a wide area to 

the north. This is analogous to observed movements in the Cape Lambert 

sector, where northward movement soon after release, and south-westerly 

movements into other sectors were detected to varying degrees amongst 

r.l=' leC~se sets. 

Set 20 releases (October 1973) were made both in the New Hanover 

sector (n = 110) and at several points to the ~outh, offi the New Ireland 

east coast (n = 130). The former produced one local return, one canne~y 
IJ 
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return likely to have originated from the Cape Lambert sector and two some 

distance to thelnorth; the latter (n = 130) resulted in three returns soon 

after in the New Ha,nover sector, one there during 1975 and one :Srt the 

Solomon Islands. 

Southern and Western Bismarck Sea 

Returns from release sets 16 and 17 were able to confirm aspects 

of the "'periodic movements inferred in 3.5.1 and 3.5.2 (Figure 3.11). 

The set 16 rel~ases, spread over seven one,degree square.s <along 

the north coast of New Britain and showing considerable heterogeneity in 

size, produced returns, on the one hand, west of Wewak, in the Madang 

sector and in the Solomon Sea, as well"as,' during the ~Nove~er period, 

others northwards to the New Hanover sector and beyori.g. 

Returns from set 17 releases, 1n the Madang sector and near Wewak, 

extend around the eastern part of the Bismarck Sea and into the Solomon Sea . 

.Jolomon and Coral Sea Releases 

There were eight returns from a total of 265 Solomon Sea releases, 

sets 1 and 2 (1971-72), and sets 9 and 21 (1973) (Figure 3.12). These 

demonstrate that movement does occur both ways between the Bismarck and 

Solomon Seas. 

Similarly, two ret~rns from 584 releases in the Coral Sea (sets 18 

and 23) were received in the-Madang sector (Figure 3.12) linking the Coral 

and.Bismarck Seas. This suggests that movement out ,):lf the Bismarck Sea 

and into the Solomon Sea during the Nove~er-April period each year may 
I 

spil) over on occasions into the north,rn Coral Sea. 

I 

I . 
3. 5. 4 Size related effects I 

I I 
t and " fish> 1/J 7. 2 releases I ,) 

I 

I 
The a J 1· n the 1972 Cape Lambert releases on and " groups. sepa ated 

the busis of size Qifferenc~~j9.. 1n 54.9- 56.5, '£.1 13 50.7-
53

·
1 

em- see 

3.3.4) yi~ided Bismarck and ~loman Sea returns in corresponding time area 

strata thr~ugh 1973 and 1974) The smaller S skipjack showed stronger 

initial movement to thelnorA:hwest and accounted for a significantly greater 

r 

/ 
I 
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I 

\ 



Figure 3.11 

Figure 3. 12 

\ 

\ 

I 

\ 

Location of returns from release sets 16 and 
17 in the southern and western Bismarck Sea. 

, 

Location of returns from release sets 1, 2, 9 
and 21 .in the Solomon Sea a·nd ·release sets 18 
~nd 19 in the Coral Sea. 
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' No. released 
., Siz,e 'Ra.nge .( Cfl}~ ·Non-local returns 

··•" 

•J 
2763 53,1 - .60 5 

740. 
., 48 ._ 54 41 ~ 

A third smal)..er size class ffs-49 em) e;;omprising 'part of set 8 

, releases ( 41 released, 3 returns, 2 non""' local) alsq seem to account for a 

disproportionate nwnber of sue[) recoveries. 
I 

This suggests that emigratory tendency. may be influenced by .size, 

1
;ith smaller fish being more mobile. To test this, the total length 

frequency data for 1973-4 releases (Table. 3~·4) ·and the estimated sizes 

at release for the 69 returns beyond the P2\pua New Guinea fish~iy (see 
\ ... 

later) were subdivided into 4 size groups, <i50cm, 51-55cm, 56-60cm and 

>60cm. Differences in the number of these l~~ger distance recoveries 

amongst the size classes were not significant\~bomogeneit'y X~= 2.09, P>.05) 

when combined over all release sets. 

~o. released 

No. of non-local 
returns 

<50 em 

686 

11 

51 55 - em 

2664 

34 
~ 

I . 

56 '60 --1 em > 60 em 

I 

2247 126 

22 2 

As such an analysis ignores the many ·variables likely to affect 

movement such as month' and year of release, release location, distribution 

of effort, it '':is essentially naive, but does sugges_t either that no simple 
'ff 

relationship exists betwqen skipjack size and emigratory tendency, 

or that a multiplicity orl other variables obscures any such eff:cts. It 

1s worth reiterating that 

~5-65 em in length. 

:;;,· .·;' c:1:jici ty by area 

Kearney 

experiments invorve only mature fish 

has nqted the comparative stability'in 

lveru'lP. size of skipjack tal<en in th& various sectors of the Papua New ,"":, 

·;·llnea fishery, particularly in the Hadang sector where skipjack >5 kg in 

;ize or >60 em predominate. igure 3.13, the average weight by month 

hr the IV!adang' West New Britain and New Hanover sectors during the period 

lJ7l-7S illustrates this point. 
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The predil~ctio'i1 of large fish for the Madang sector finds con

firmation in tYie t-agging data. Of the 2 3 returns in the Madang sector 
~ ~ 

~~rom releases elsewhere, all b~t 3 were accompanied with adequate data 

won size-at-recapture. ~ean lengt)l: .. gr. those fish was 62 ± 3 em at an 

average weight of 5.2 ± 0.4 k9. Rele~se set 17, in or adjacent to the 
'if 

105 

comprised 326'.Jskipjack with a mq,dal length of 57 em Hadang sector, 
foo', 

Returns fr~m skipjack larger than 58 em at release were nearly all 

(_4 kg). 

(7/8) 
,-:· 

within the Madang sector and ·nearby Solomon Sea, whereas the majority of 

iliose less than 58 em at release were made in other sectors of the fishery. 

Average sizes in· other sectors fluctuate .... more widely, both within ... ~ 
' 

and between years. The New Hanover and Cape Lampert sectors almost 

invariably have the smallest av~rage size skipjack, with west New Britain 
I 

~d Kimbe Bay average weights intermediate. Length fr~quency data from 

luter years (Wankowski, in press) for the New Hanover and Cape Lambert 

sectors indicate that a wide range of fish 1is present but masked by the 
' 

averages. It is therefore likel) that ~kipjp,ck of between 45 and 65 em 
1 ""~J,.. t 

are present· in every sect,or at all times, but inrproportions which vary 

geographically. The underlying basis of this size stability by area 

rem\J.ins unknown. Recent work defining the hypothetical habitat of skip

JilCk of various sizes (Barkley et al. 1974) suggests that vertical 

temperature profiles combined with dissolved oxygen levels may be 

important in defining the habitat of large (>5 kg) skipjack (sf?.e 2.3.1). 

Integrity and Composition of Schools 

Inspection of the present tagging data provides examples of both 

.·oncomitant returns of fish released from the same 'school' some distance 

Jnd/or time after release and returns on the same day isolated by distances 

dec~rl y incompatible with their belonging to the same unit. Two such 

"Xumples of each situation are given. 

Oj_st. 
7.1'1 \ Details 

Days tv!oved 
:ro. Release Details Recapture Out n.m. 

"' 

•
1 y ll 30/10/72 i 4°51'5 151°37'E 28/4/73; 4°25'S, 151°3l'E 180 27 

2 ,, 3 2 4 
l !734 28/8/73; 4°03'S, 152°04'E 8/9/73; 3°57'S, 151°19'E 11 45 

ll7l ') 
" 150°43'E llblJ 28/8/73; 4°03'S, l52°14'E 8/9/73; 2°56'S, 11 113 

lU·l 'i 8/9/73; 3°57'5, l51°19'E 11 55 
II 

L423 l45°47'E 
0 149°13 IE 271 207 

8/11/7 3 i 4°40'5, 6/8/74; 5 09'S, 

l: 3J s 6/8/74; 2°15'S, 150°10'E 271 300 
II 

,.. 
' 

r$ 

.. .. s 

F 

\3 

l 

J . 

r 

i.~ 

-· f 

io 



The genetic analyses (Chapter 4) should provide information on 

homogeneity of 1 schools 
1 

at one point in time. Provid'l.ng uniformity of 

size is a valid guide, skipjack schools may be less heterogenou_s than 

those of other tuna. The following data on size range within schools in 

the Papua New Guinea area is taken from Lewis et al. (1974). 

Maximum Mean range and 
range (em) standard dev:ijation (em) No. of Schools 

Skipjack 10.9 5.2
1
± 

I 
2.0 84 

Frigate tuna 14.5 6.3 + 6 

Nackerel tuna 25.4 9.6 ± 41 

Yellow fin tune 23.3 8.8 ± 24 

\ 3.5. 6 Mortality Estimates 

"' 
, __ _ 

Estimates of Z (total mortality) and'S (sm!viv~l) of release sets 
' \ 

10, ll, 12, lJ)and 22 were obtained for the period following release 
/ 

(Table 3;9J<··' As it is not possible to account for emigration,· Z effectively 

represents a loss rate from the J;lismarck Sea and S an estimate of -the 

proportion of the release set remaining in the area at the end of this 

initial period. T~ese range between 0.22 and 0.46, and as they they drop 

further due to movement into the Solomon Sea (sets 10, ll, 12, 13) or in-

emigration ~et 22), give some indication of the high turnover of 

>kipjack numbers in these two productive sectors. 

·_j 

c' fCilSCd 

3. 6 RELATIONSl!IPS WITH J;~,P'JOINING AREAS 

Both movement out of the area, or emigration, as revealed by 

rnturns from skipjack tagged and released in the Papua New Guinea area 

tnd movement into the area, or inunigration, as reveq_led by returns from 

;!qt.' i<1r:k tagtJed and released in other areas, need to be considered· 

Emigrution 

I /' 

'•' .. - ',j 1'{,Zt'clDCA 

b d the various sectors 
A total of 69 returns were received from eyon 

' 
"f ':.h·· Pupu,l New Guinea fishery• There were 37 international returns 

I d th Ovef a wide area 
outside the offshore seas of Figure 3. 3) an - ese c · 

/ 

I 
( 

Rd 

~, I 

t, 

. . ' ~' 

. t' 
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Table;3.9 Estimat~s 
-~ 

~nds as £oLl,ows: number of returr'ls; 
.R number of returns/100 daY.s' effort; 
Zm calculated monthly total mortality; 

' ·,-\; Zf total mortality during months (£) exposed to the fishery 
-Sectors: CL Cape Lambert; KB Kim be Bay; WNB =West New- Britain; q 

NH New Holland 

r-
to 

Rl ~lun t h Sector Effort (days) R log Rl hd 

Release set~ 

CL ll88 23 ll. 71 0. 673 -~ .June 

~ Julv CL, KB 573 -14 2 .l1 L1 0.387 
_...,..,-August CL, KB, WNB, NH 933 lLI 1. 50 0.176 

lCJ , .. St·ptember CL, NH, HNB 707 8 1.13 0. OSLI .. 
fi Zm 0.200 

Zf 0.800 s 0. LIS 

Rdl'ase Set 11 

l ~~ l y KB 573 2LI L1 .12 0.622 [\! 
;.. 

in 
":\u.;us t CL, KB, l.fNB, NH 933' 30 3.22 0.507 

\,·ptL·mhL•r CL, NI-l, WNB 707 9 1. 2 7 0 .lOL1 
' 

Zm 0.259 
A 

Zf 0. 777 s -== D.46 It'll f . 
• L 

~~, 1 ease Set 12 ---------

4t \' ,12-31 CL 295 27 9.15 0. 96 
.\ :,::IS t' CL,· NH, WNB 762 ll1 1.6 0.20 

Zm O.LI33 

Zf 1.299tr'S 0.27 
~'·"; t' -1 se St• t 14 

)805 
.. ' 

6. L, ~· ·· :'t embl' r CL, KB, NH 756 l, 9 
' ~ t '" (, ~ll. r CL, NH- Lr 6 3 5 l.l 0. QL, 

"- . x· 
., Zm 0.765 

,f 

I 
Zf 1.530 s 0.22 

' ' ~. 'l '~ t' 
- Sl't 22 

304 27 8.88 0. 9L,8 ". NH '). - \ 
', >l;'..l:it 

l:ll-l \_ CL 928 11 1.18 0.073 
·.··• •·::1h,. r 840 8 0.95 0.021 N!l1 GL, WNB 

~ 0.63 0.199 
'·' 

I ~:'t, r 
N-U, CL 891 .) 

!t !0 
0.191 

' 
777 5 0. 6L1 

•'l 

1 
·, ~·~t)Pf 

NH, CL. 

Zm 0. 257 
... 

1.28'5 s 0.28 "' 
,, 

Zf 
~ 

- - ---I~ 
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0 0 0 0 
between 10 N and 10 S and 130 E to 17~ (Figure 3.14). The Japanese 

long ~ange pole boat fishery and joint-ventux:e opeTations';'in the 
-

neighbouring areas of ~loman Islan~s and Palau accounted for all but one 

' ' of these returns. The; return data therefore need to be related to the 

spatio-te£\'pqral distribution of effort in 'these \isheries. 

As a first step, 1974 returns· (51 out of 69), grouped according 

w the statistical areas used to analyze the Japanese bait boat fishery, 

have been compared with corresponding data for each area on unadjusted 

dJys effort (fishing days): effective effort and catch ( '000 to~-""" 

during 1974 (Figure 3.15, data from Kasahara, 197Ba). Equivalent; un

Jdlusted effort figures for the Solomon Islands and Palau fishery we~e 

obtained using the long rahge vessel catch per day in that area during 

, l97LJ as a standard da:i,ly catch rate and dividing t.ota1 eatch by this 

- figure. 

0 0 0 0 Within the area covered by tag returns ,(10 N - 10 s, 125 - 175 E), 

the number of returns in areas north of 5°S (14 quadrangles plus the 

Palau fishery) shows a reasonable fit to a second degree polynomial 

in unc1djusted effort (Figure 3 .16). 

. 
0 

In areas south of 5 S (3 quadrangles plus the Solomon Islands 

f i:;hery) the rctU.f._n rate was relatively much higher, indicating tha ~y 

~ith th0 pr~vailing distribution of effort during 1974, movements south 

~rom t h(• Papua New Guinea area were probably underestimated. The number 

: Jf!',J:; involved is insufficient to quantify the relationship between 

·.wu.·c·r of rl'turns and effort, but it appears almost linear. 

' '. ') 

Excunination of effort figur~s in the adjoining blocks 10° - 20°N, 

l7S~E and 20°N - 10°s, 175°E- 165°W (Figure 3.15) show effort ln 
. 0 

::,ly h;o clH'L!S (2/23) to exceed 1,000 days; effort south of 10 S does not ·, 

· x······l 1'11} cL1y~; in any square other than the three considered. The absence 

: r•:t '.lrns in these areas coulcl reasonably be attributed to these lower 

>;JL of effort. 

#' 
1\ · · h case for the western Pacific as a whole ·,ns 1s clearly not t e 

'"· ·;. r; l<1rqer fisheries (the Philippines, Indonesian and Japanese 

"'''"· 1'l'f l'i:.hf>ries- see T_flble 3.1) adjacent to the area covered by tag 

·'·1 · · suggest;ng that returns mirror the distrib-rr.; /'lPldl'd no retLu'ns, ... 

·'lJn "f f'ffort only within certain geographical·l:~m.its. 

\, 



IJO" 15~ 160" 

(/ • 

a GUAM 

q " 

* 

j, 

''• 

170' 180' 

o 1972 releases 

""'.~- "* 1973 releases 

o 1974 releases 

* \ 
* o Gil. BERT Is. 

ll. 

NEW 

\:3~. HEBRIDES 
6> jQ 

·, 

;· 1 run" 3 .lLI Location of re~rns of tagged skipjack from beyond the 

rJff:;hon: seas of Papua New Guin.ea. 

l 
., 

I 
1\ 

·~ 

•. 

\· 

' \ 

. ..... 

\ 
·L/ \ 

\ 



'li' 

• 

.. 

~ 

' 

f 

.-~ 

' 
~ 

).. 
y 

-----

Figure 3.15 

~ 

~" 

{ 

' / ' •' 

•J 

t? 

--d" 

"<\ 

I) 

t 

'-

~ 4<•· 
~ 

~ 

! 
j 

! 

' 
' 

·' 

! !' 
! m 

f 
j 

! ,.· 
... ·l"' 
" 

l97'4'outside sectors of the Papua ,New Guine~fish~ry; relative to distribu-

-· -· 

Tag re,tur.~rece).ved during 
tion .of effort ar catch. \ 

..~ 
€> 

~ For each so x 10° quadrangle, the number of returns is int.licated in bold "type, and from tof\.- to bot loin 
on the right hand side, unadjusted days effort, ~ffective days effort and catch ('OQQ. tonnes) du~ing 1974. Analogous 
cl_a,t.a ~or the Solomon Islands and Palau fisheries 'is also given. Each quadranJ;J1le.fan be coded by longitudinal letter 
(A-G) and latitudinal number (l-8). ~ 41 4,r 

... 
... 

.[<. 
--:-· ' -~· 

\ ., 
~-

"Q 

~ r , 
-1 

...-~ .... ~,... I 
~ 



~ 

N 

' ' 

----~ 

' ... 
Polo] 2:0 c J J~est 

10.0 est 
--"->. I - l 

' 1 

125~E A B 

.----~::---· 1021 130 1 ns3r 146 35 54 9 2 

~ 
0 1378 0 1451 0 1354 0 - 140 0 35 0 41 0 8 0 0 

- . 5.59 - 0.551 3.68 0.44 0.08 1 0.23/ 0.04 0 

o 704 164 69 50 · 47 c r ' 5 6 

'J .. ~'\)0 914 0.267 °,--0 100 0 43 0 58 0 4 0 6 
II- ~pQ<;) 4.33 ~.45 0..,13 . . 0.08 0.14 0.01 0.01 

• 203 l.J14 ) 198'l 555 410 76 77 
0 266° 1 1564 3 2576- a· ' 813 ' 0 507 0 .. BB .0 81.6. 

20'N 

~ 2 
\ ~ 

to· N 

3 
.. ~ 1.01 0.45 "' 10.62 2.54 2.52 - 0.56 0.96 

1- ~ 

143 2262 23ti 1350 1402 32 3 ...... 

' 0 , 166 5 2979 8 2913 ~ 1648 3 . 1~40 0 34 0 3 
._ ~~ =0.77 12.697 11.79 6.73 15.66 0.15 O.OL 

N 
c () ();;: "' - ~ 1673 2543 588 194 2 -c 

c:=:; J4~202_8 ~5 -~~80 0 698 0 249 0 \ 2· ' 0 -
~ <7 13.23--......__ 14.26 ..... 3.65 1.52 - ~--

- - .(} ~o-~14~8 C::~ ~ 6~3 21 - 5 - -

1 c:> ~ () r.{:l~-~ 1887 ./0 ~ 755 0 23 0 5 0 ~ -
~ <> /-;::? cJ 14.13 / 74"'- ~ ~5.14 0.09 - - . 

)}-~ ~- ~··~~·~~~-----~~*·--~----------~-----------#----------~ 
<;> (\ I -----..J72 ~22 13 19 I -
0 

: ~ o ·/ ().02 o 21.4 o 13.7 o 20.5 I o -
~-- 0 ./Z· 1 _ 0.16 LJ, 0.12 0.17 I ..,., 0 -

~-. 1 0 1 ~ • 1 C:1 - . -
13. 5 0 1 0 , I 0:;, - 0 -

., , . o.o1 o.o1 o 01 - I -
:;- Solomon ls:1205esl , · . • · 

6 N.A. \ II\) ~0 :· I 
10.27 "-0· ' 

4 

v. 
.., 0 

5 

I 

6 

10" 

7 

8 

20" 

I 

... ,. 

(J 
\, 

I 

~ ~ * T. r 



15 

I 
10 

V> 

c 
~ 

J 

~ 

~ 

0 

~ 

JJ 
E 
J 

z 

~) 

,. / ~'.' 
' ,, 

' 
', 

" \ 

·w 
I 

I 
(6 4' 

I 
I 

I 
I 

I 

I 
I 

Solomon Is o 1 

I 
06•/ 

/ 

I 
I 

I 
I 

I 
I 

I 

I/ 
I 

I 
I 

I ', 

/ \ 

/ .. B3 

• oPalau 
(3 

--Areas N of sos (n = lS) 

---Ar~as S of. sos .Jn = 4) 

\ 

A~~J 'q3· b 04 
~~~~~~·~~~~----~----·---------~--------~------l_ ______________ j 
I I I I 2 3 4 

E6 f:5 E3. 05 

Unadjusted effort \F) 1n '000 days 

. I 

N = -.07316 + .03427 F + .97996 F2 (r2 . 77) 
' 

, . 

.:,) N = -.21033 + .09434 F + 61917 F2 (r 2 . 81) where F effective 

\effort. e e e 

3) N -1.'06978 -1; 0. Sl34C .00781 c2 (r 2 . 69) where c = catch 

'000 tonnes. 

As only four points were available, the rel~tionship was not 
;untificd. 

. ..... ~ 

... c' .• 1 .• ~~JE:: ... ~.: .. ~~ - The rclari9.ru;·tti'; ·~ctween number of returns (N) and in 
.......... una'ci"]'U.s't;·d days effort (F) during 1974 for areas, north 

and south of 5°S respectively. 

in 
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Returns received during 19}~ (13) and 1975 (5) were too ~w for 

the above analysis 1 but show simi;Lar trends (Table 3 .10) . 

Releases since. 1974 

since the conclusion of the ,Papua New Guinea. experiments in 1974, 

additional skipjack releases have been made within Papua New Guj,.nea 

lvaters as follows: 

(a) 

(b) 

Japan Papua Ne~ G1:1inea joint_.....rese.arch cruis'es, November-December' 

1975 with 1600 skipjack. +.eleased (Anon, l977e) and November ).976 

with 262 skipjack released (Anon, 1978) 1 

" . . 
comme~al vessel charters-, Nqv;ember 1976 .and March 1979', with 

552 skipjack released, 

. ' . ' 
(c) South Pacifi-c Conunission -skipjack' Survey and Assessment Programme, 

\ ' November-December 1')77 ~ith :2347 skipjack. q:leased (.Kearney and 

Lewis, 1978), and .... 

(d) 
" 

as in (c), May-July 1979 with 7683 skipjack tagged and released 

(Kearney and-Hallier, 1979). 

The localities of returns other than those made by the Papua New 

';"uinea fishery and available at the time of w:ri ting are shown in Figure 

3.17. Their distribution closely parallels that of returns from the 

117~Jqreleases (Figure 3.14). Three returns were made south of 10°5. 

·,.;ith the southwards expansion of long range pole boa·ts since 1975 (Bour and 

~alenon, 1979), this would be predicted from Figure 3.16. The continuing 

eastwards expansion o'~this s~me fishery has however yet to increase the 

easterly extent of returns. 

3. 6. 2 Immigration 

Data on immigration into the Papua Ne"'(. Guinea area come from the 

following sources: 

(l) Releases north of the Equator but south of 20°N by 
I 

Japanese research organizations 

~"ler 8' 000 skipjack we:ve tagged and released by the Tokoku Regional 

~·lsheri~s Research Laboratory and the Far Seas Fisheries Research 
,.., 

,• 
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Figure 3.17 Location of returns from releases in Papua New GuiRea waters since 1974. 

Returns made in the various sectors of the Papua New Guinea fishery are not shoWn. 
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Table 3 .10 comparison of number of tags returned, unad3u~~ea effort 

(days) and catch ('000 tonnes) during 1973 and 1975 

f. 
)• 

1973 1975 -- --. 
Effort Catch Tags Effort ·catch 
(days) (j:.onnes) -

(days) (tonnes) 

' 

North of 5°S 
" 

(AJ 340 l. 89 -
l 

?S 0.13 
( ··-.., 

(Palau (1080) 6.00 - 296Cl 7.00 

M 186 l. 49 - 70 0.31 

B3 2336 13.15 - 548 1. 57 

B4 1453 9.32 2 5'65 
<> 

·1.88 

BS 346 2.51 1 256 0.-87 

'· . 
C3 2063 12.42 ... 1 

'•. 
1846 . 7.26 

C4 1495 9.66 - 1077 ·3. 97 

cs '1007 8.44 3 2772 8.73 

·~- ~ ,, 
03 1939 12.0$ - 1529 6.40 

rO 922 7.49 - 388 12.98 

l. 55 1 460 l. 70 I OS 272 I 
I 

i E3 1480 11.71 1 2063 10.69 
' I 
I 
' 

E4 183 l. 51 1 507 3.29 

•·· ' ., ! 
ES 41 0.16 - 52 0.19 

' 

~ South of 5°S 
. --· t-------

i '• 

·,c6 38 0.17 - 486 2.16 

' 
I 

1083 . 5.57 ( [)() 45 0.27 - . 
' ll 
I ( 

7.00 (Sol om~ (985) .,6-.DO· 3 
I 

I " 31 0.09 E6 2 o. 01' -
I 
l ____ 

) 

Tags 

-

-

-

-

1 

-

-

1 

1 

-

-

-

-

-

-

-

-

-
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Labor 
0 

20 N. 

by a n 

tory between 1972 

were made in 

r of different 

.. 

972 

973 

1974 

l97S 

1976 

and 1976 in the 

an area bounded 

vessels. 

Releases 

9l0 

4041 

1619 

393 

1040 

8003 

squthern water fishery south of 

by' S
0 

to 
0 ... 0 

20 N and 130 to 16S
0

E 

Returns 

s 

so 

9 

6 

s 

7S (0. 9%) 

,j' 

very few returns (<1%) were received £rom these releases, with relevant 

returns plotted on Figure 3.18. Although six returns crossed the 

Equator, none were ~ade in the Papua New Guinea fishery. One return was 
0 0 

made adjacent to the Madang sector (3 32'S, 149 4l'E- 2S/3/l974) and 

~nother in the Solomon Sea (8°44'S, lS2°37'E - 23/3/1974). 

The low return rate makes interpretation of this data set 

difficult. 
0 

It indicate.s some movement of fish from north of S N, into 

~he Papua New Guinea area does occur but that the fishery probably relies 

:o a minor extent on immigration from tnis area. Releases in the area· 

0 5 N would clearly have been a useful complement to'the above 

releases. 

( 2) Releases ov~r a wide area of the southern and western 

Pacific by fhe SoutK.:acific Commission Skipjack 

Survey and Assessmert Programme during 1978-79 

0ver AG,OOO skipjack were ~eleased during the period October 1977 to 

~1ay 1979. At the ti! of ("riting, only 11 of the 4,000 returns from 

~:1csc releases had been madl= in the Papua New Guinea area' (Figure 3.19) · 

:his requires some qualificbtion since effort by long ran~e pole vessels 

~ 15 gradually decreased in ~apua New Guinea waters since 1974, partly 

Jue to a deliberate boycottj of these waters by Japanese fishermen f<Dllowing 

I 

/ 

.I 
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Figure 3.18 

Figure 3.19 

I 

\ 

Location of returns 'from releases north of 
the Equator by Japanese research organizations . 

. • 

Returns in the Papua New Guinea area from 
releases el~e0here by the South Pacific 
Commission gkipjack Survey and Assessment 
Progi"amme. 

1/ 
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mile 

such 

introduction of licence fees for access to the Papua New Guinea 
200 

I r. \ fisheries zone (Kearney,. 1979). With the greatly dti d f 
/) re {e e fort, 

vessels accounted for a single return only. 

f.eturns from releases in the SCYlomon Islands (4), Palau (1) and 

Ponape, T.T.P.I. (1) correspond to observed emigrations. Ret-&rns from 

releases further east and south - New Caledoniq, · J2l, New Hebrides (1), 
~ 

wallis Islands (1). ·a1d Tuvalu ( 1), plus returns. in the Solomon Islands 

11 7 

from Australian releases (Figure 3 .19) indicate more interchange with 

" southern Hemisphere areas than norther Hemisphere areas 
1 

as the emigration 

analysis had previously suggested. Unfortur~ately 1 no releases by any-

agencies have been made west of Papua New Guinea in Indonesia or the 

Philippines, and ~mygration into the Papua New Guinea ~rea from ther~ 
~~~ .. '---.__... 

cannot be discounted. 

Country 

Papua New Guinea 

Solomon Is. 

~;c1v Caledonia 

Nr'W Hebrides 

!"i j i 

:ld 11 i :3 & 

~·uluna Is. 

Ar::r•r ir·,ln Su.moa 

'll be.r t Is . 

·T.T.P. I. ,Guam 

French Polynesia 

:ook Is. 

'i•!w Zealand 

Date 

2/10-1/11/1977 14/5-2/7~79 

l/ll-;j}l2/1977 

13/12/1977-19/1/1978 

5-13/12/1977 20-23/1/1978 

26/1-18/2/78; 28/3-10/4/78 

11/4 - 3/?/1978 

4 - 31/5/78 

6-14/6/1978 

3/5-5/6/78; 15-21/6/78 

25/6 - 4/7/78 

5-25/7/78 

26/7-15/8/78;2/10-15/11/78 

19-23/11/78 

6/12/78 - 3/2/79 
'~ 24/11-5/12/78; 4-11/2/~ 

17/2- 27/3/7.9 

1/4 - 13/5/79 

'\, 

" 
No. of Skipjack Released 

81847 

21225 .... 

' 
101 212 

11256 

81497 

11408 

131534 

11768 

74 

21573 

4,380 

3, 715 

\ 65 

81148 

1,235 

111614 

6,969 

86,520 

.. 

\ 

j"i 
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D~SCUSSION . •· Loc~'\,::wemen t~ 
\ 

Features of skip "Jack movements as inferred f rom t~e tagging 

experiments in.~the_ Papua New Gui~ea area can qe summarized as follows: 

"'' 
(i) net distance t~avelled, even after long periods at liberty, 

was relatively small, and site tenacity wai marked. Despite the species' 

dispersiv_e potential, over 70%' of returns recovered after 100 days had 

moved less than 200 miles (360 km) and only l% of all returns showed net 

dispfacemen t greater than 1, 000 miles ( 1600 km) . 

(ii) local movemen~ have a cyclical ~o'ffiponent, and are clearly not 

random. Ho~ement into the Solomon Sea and possibly the Coral Sea, with 

subsequent re-entry into the. Bismarck Sea, occurs during the Novernber.

April period. tvlovemer··n·o~th~estVI~~ds into· th-e N~w Hanover sector and 

beyond is largely reytricted to the J_uly-October period. The timing_ gf 

these I>\Ovements is consisten·t between years. 

(iii) between-year and between-release set variations occurred in the 

:roportions of skipjack which appeared to emigrate soon after release or 

n•fTlain near the release point for lengthy periods. Periods of gr,eater 

;lop jack abundance seem tr.o be C).Ssoc iated with the former. 

l1v) 
... . 

no obvious size related effects on-movement were observed, 

tlthouqh a 'tough size-specificity by area was apparent. 

l ~- ) • I,._ A·General Hypothesis Regarding Skipjack Dispersal 

An hypothesis to account for skipjack movements in the Papua New 

·lln~'.l .1rca would.>need to integrate these results with relevan~t ecological 

1~.1 biolocJicul data (Chapter 2). such an hypothesis with possible wider 

1: ill· .1tion is developed as follows: 

<L['J·l·:k in the arPrt ure surmised to be composed of resioents whose 

1' ::;i~y is related to the average ':local" productivity over a preceding 

'i:'lo• i·•·riod, and nomads which tend to arrive in synchrony with p~riods 

.. ~ .. ~. this local productivity is enhanced by oceanographic events on a 

: lt 1"r ·;r:al e .r Nomadic behaviour, combined with the tunas' morpho

;"/duloqical adaptations, should promote the efficient utilization of 

0 " 

I 

/ 



\ 
,\ 

Product-ivity patchy in terms of ooth space and time. 
r Several workers, 

e.g. Sharp apd-Dizon (1978) and Kawasaki (1965) have touched on the theme 

but it has not been developed to any degree. 

Residen-ts could be sustained in the B1' s·marck s 
ea"" and environs-

by the generally increased forage levels associated with islands (see 

ea.rlier) . They remain in the area, subject to natural mortality, for 

lcnqthy pet~s, showing limited dispersal and possibly m?-~~the, ~ajar 
contributi<tm to spawning activity in the area due to the 'lelative temporal 

stability of favourable conditions. During the southern summer, Noveffibe.r 

to April, many of these residenis shift into the Solomon sea to take 

advantage of the increased productivity there (2. 34), returning 'with the 

_1dven t of the south-east trades and resultant disappearance of ~he 

enrichment zone. 

These residei1ts provide the baseli_ne f:isheries production within 
; I 

~he area year-round and in 'bad' years, prob~bly make thEb,major contrib::--· 
i o. ,. 

uti on. Releases in 1972, ~or example, produced very few n?-local returns 

.llld over 50% of returns were made locally after 200 days...-at liberty/ "" 

~ whereas- releases in 1973 and 1974,/;Poth years of relatively high, jack 

.!lJundance 1 produced many more non-local returns and the• majori~ 
,., returns occm;red within 50 days of .release. 

.. 
Local enviror\mental characteristics may favou/ resident$ of 

tO icular sile, this sieving effect maintaining some size stability ,by 

tt•'d. It wu.s sugges-ted th~t knowledge of vertical temper<ftu4\ profiles 

,·.! d1:>solved ox~en levels in particular areas may assist explanation of 

': l ·; phenomenon, particularly with regan:'! to large<J:' ( >4 kg) ski'p.j ack (2 · 3 · 11). 

~ 
,';'om,rcln may rr;!present gr~s or indivi1uals surplus to an area -

'' ·tfic clL·n~>ity determined by 'c'f1rt area''s average productivity or 

tr r ':' i rt'J cupaci ty ove:r; a preceding period of time (Taylor and Taylor, 1977, 

:: I i ·1.: •' r I 196')) . Hence they arise as the rcsul t of den_7i ty-dependen t ~ 

The'ir continued survival rests on seeking C5ut produce::ive areas 

:· )rxl the 1· r proportional contribution to an area's P·lL,·hcs) and accordingly 

} · ' ds This is 1
' - 1 '>hould be ~ximal during the most product1ve perle · 

;t;t•'nL witl-: tht> tagging results, which show the proportion of skipjack 

\ 



'" which emigrate soon after release is mudh higher d · 
,_ unng pr·~.c~ ve 
''"-., ,-

IV 

• 
periods. 

The 35°/~o isohaline which has earlier been linked Wl .. th ·' 
~ • ~ productive: 

pe.r'iodsj) in. the Papl!a New Gulnea area ( 2. 3. 4) does not appear to extend 

wes~ward of l50°E and narrows latitudinally west of l60oE. This would 

.. gtcnerally favour influxes of nomads into the New Hanover and possibly 

•• ~ape LEunbert sectors, _tJ'liic[) ~s ·also ·~onsistent with the suggest-ion from 
' '• 

'j 

'tl"(e- tagtjiing 

through the 

penetration 

re~s ·that much of the movement into the Bismarck sea occurs 

Ne~qver sect~r. The results als~ suggest that limited 

of the Bismarck Sea occurs and residents may be displaced to 

the southwest by these 1 influxes of nomads. 

\-- f7 A 
Some nomads may remain in th~~rea following the disappearance of 

~
broad-scale productive cond~ tion?. This process• maY. be an important means 

.,.of s~lcmenting resident ;;umbers, and at the samAime may possibly 

' incraasa genetic heteiogeneity within 'resident' ~ch~6ls. 

Tag returns referable to nomads probably include those show_ing 

northerly movemene in€o the New ·Hanover sector (and subs,equent loss from 

the fishery) soon after release, the majority of· longer distance returns, 

and mJs t of the short term returns during periods of good \isN.,ng_. 
,Q 

Although alternative hypoth·eses to explain obse,rved dispersal 'patterns 

can be suggested, e.g. the pres.ence of two sub-populations in the study 

area (Fujino, 1970), both the re"?.ults of the tagging studies and obse(';;ed 

fluctuation~il{h skipjack distribution ahd abundance i111 the Papua New j' ~-
., " 

::;uinea area are well -served by this resident-nomad concept. It also has 

the advantage of being amenable to test. 

Given kn9wledge of an ,a>rea's 'background' productivity and t~ming 

of oceanographic proces~s inducing significantly 'higher productivity, the 

!':tttern of tag ret~n.s against the distribution of catch and effort in an 
·"" 

Skipjack tagged adj a.ce'n t to ephemeral Jrr•a should be rol!_Sinely predictable. 

' nd-ocean zones of eprichmen t should shbw considerabile two-way dispersal 

Jnd low sf·te. tenacity for 'e:x:aruple r 'whereas skipjack tagged in a0 area 

::iqhly productive all·yec\r round, and with conditions suitable for spawning 

1'-'·fJ· Sulu Sea) · h site tenacity, i~emigration (j.ncipient ~hould sho~ hlg 

nomads e the areas' c.arrying capacity) but very little imnligration 

• 

\ 
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from surrounding areas. I~ is significant in this context that e~her 
. I ~( ' '-' ' ~ 

the· Papua New fu1nea exper1ments no.r the South Pacific Commission 
' . 

r eleases in the western Equatorial Pacific have resulted in retur f' _. ., . . ns rom 

Indonesia :~d the Philippines. Skipjack tagged in the seas~l(ally productive 

temperate· areas of New Zealang and S.E. Australia should perh~p,s be 

expected to show the widest d~spersal of all. Data becoming av~':i.lable 
'I Q \ 

'• 
tagging programmes should enable such tests to b~'\made in . ,_,;:.. \ 

from large scale 

t;.he near future. \\ 
\ 

(/ \ \ .. 
Life histories of most of the larger tunas - albacore (Thunn,~s..,·· .. .., 

alalwy;a) ~ northern bluefin tuna~nus. thy"Jnus orienta lis)~ Atlantic 

bluefin tuna (Thunnus thynnus thynnus) and southern bluefin tuna (Thunnus 
\ 

"'lClCCdyii) can be seen as more advanced expressions of this ·strategy. They "t.'J 

·typically spend the m~jor,parts of their pre-adult life and. the inter

reproductive phase'-6 of the
1
;i.r adult life , in· productive temperate zones, 

making extensive migrations and returning to spawn ip ~e~l '>'caefined 

tropical areas. \..__/ r 

YeB.owfin tuna (Thunnus albacare·s)., considere? more primitive 

-~ than the above species (Collette, 1978), shows greater similarities· with 

s'kipj ack. Its centre 'of .distribution is tropic21:~nd ~rvae are widely 
' 0 . distributed between the 26 C isotherms (Ueyanagi, 1969). Analysis of 

13590 tag returns (9383 awc£,y:. from the point of release) from eastern 
. '. 

Pacific r_eleases (Sharp, MS using data by Bayliff) showed that for 

returns where distance moved c~ld be calucla~ed, 50% were recaptured 

·.vithin 80 nautical miles of the release point, 95% w±thi~660 miles and 

~~ l% in excess bf 1060 nautical\miles. These proportions vary when . 
the data set is subdivided;' but the result is remarkably similar to that ,, 
obtained in these experiments, and suggest adoption of similar resident-

~.omad 

""' 
strategies. 

These differences in expression of resident-nomad strategies can 

be expected_. to have impo.rtan t i1nplications for pop,ulation structure· 

3. 7. 3 Gene Flow 

.. 
Dispersal,...d6~s 11-GE#cessarily laad to gene flow for a fariety..<. of 

reasons (Endler' 1977) a~sho~ld be regarded as a prerequisite fpr gene 

fl . h f pr~de an estimate ow (Grant, 1980). The present exper1ment~ t ere ore ~ 

\. 
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/ 
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Of Only the p_otentiaZ for gene flow via movements of d . a ult skipjack 

between areas. 

~~e experiments, despite the constrqints imposed by,the 

distribution of effo_rt, indicate that disper"'sal of adult skip]' ack 
tag~ed 

in the Papl.ict New Guineq area is limited. No· returns< were received north 
0 . 0 

of 10 N and west of 130 E, d~spite, the presence of large sklpjack 

fisheries. 

of effort, 

To the east and south, lil,l1its are less clear due to low levels 
~ 0 . 

especially south of 10 S, and southward? movements may be quite 

extensive; 4-eastwards, expansion _of the long range fleet since 1975 has 
i\ 

heweve.r produced no correspo?ding enlargement in the area covered by the 
/. 

tag returns. ;A similar result is suggested for immigration. were such 
~ \, 

movements the primary source of gene flow, partial isolation by distance 

leading to differentiation across the Pacific Oce~n migh~ be predicted; 

long distance movemel!ts. do tend to be underestimated in such experiments 

(Grant, 19Bq), however, a~d 'dispersal over longer time scales of more than 
t 

one ~eneration need to be taken· intO'> account. 

In addition, other phases of the l~fe cycle need to be considered. 

The pelagic egg and larval stages of tunas complicate this issue, as they 

c~h be assumed to confer a high additional potential for gene flow. Studies 
·, . 

of wideJy distributed marine species wi.th,. pe.lagic larval stages are few, 
•.. . .. . 

but have produced interesting resul.ts .. .;(Winans (l980), for e:;:cample, 
JJ, 

examined populations of milkfish. (ChanC!£ ti{Janos)) a eu'ryhaline n~r9-r-~h0-J?~ 

::mine fish specles, acro·ss the P~cific ·~~~ found little genetic iffer-
.. ' .... \,·.r 

entiation, which he attributed to· ge.ne fldw via the planktonioo ·larval · 
- ·,' ;)I 

stages._ Similarly, Soule (fide Ehrli"~-~: ').96i'f foun~ little differenti~tion 

• 

in pomacentrid fishes with pelagic larvae across distances of 3,oop-5,000 km, 
~ . 

and striking differentiation in a species of a related genus show1ng 

parental care of young; ~ven between different parts of the Great Barrier 

~eef. 

·Information required to evaluate the potential for gene flow 

atforded by planktonic eggs and larvae includes length of the passive 

planktonic phase of larva·l lif'e,. ge.ogr~phical dis tribut,ion of J,arvae·, the 

role of oceanographic events in transport and/or co_n~en1ration and factors 

regulating la;:-yal. d.eve'l.opment .• For example' C. chal?.OS '/as an elopoid 

spr>c1· h . 1 _'1l·val stage 1· n whl' ch metamo. rphosis could - es as a leptocephalus-like ctT 

::onceivably be delayed. Passive transport also does not mean random 

• 
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transport because denatant drift; following contra t t na an adult migration 

may effectively return larvae to the area normally occupied by adults 

which spawne.a them. Once' limited mobility is achieved, diel vert.ical 

migration, combined with currents in opposing direc~ions at different 

depths (see earlier) , may effectively maintain weaklz swimming juveniles 

in an approximate location. 

123 

As we have seen in 2.3~3, details of skipjack larval history are 

minimal. Ueyanagi et al . ., (1974) report eggs ~atching wi~n 22-27· hours ~< 
' . 0 1\. 

of fertilization at~ C, and Ueyanagi (pers. co~.) estimates length of 

the planktonic phase not to normally excee'd three weeks. Unidirectional . 
movement in a strong ( 2 knot) current duri_ng this period could ~esul t in 

a displacement of 1,000 nautical miles, with the possibility of further

directed movement once independent mobility was achieved.· Alternatively, 
. ' . ''" ; , 
the fimi~ed larval distribution of some T~.unnus species (Ueyanagi I 1969) 

and the mechanisms mentioned previously indicate that wide dispersal does 

not inevitably occur. At present, the role of larval stages in promoting 

\or restricting gene _flow in skipjack remains ·essentially unknown. 

"'-
The relative contribution made ~ residents and nomads to 

·~ " 

spawning is problematical. Kawasaki (1965) recog~tzes five groups of ,_ 
skipjack in the Japanese fishery, two resident groups which appear to 

spawn and show slow growth rates and three migratory groups which grow 

'rapid~ut do not appear to spawn in the ¥ea. Spawning activity in 

the Papua New Guinea area, as inferred from monthly gonad index values 

(Lewis ct al . ., 1974i Wilson, MS) is probably con8inuous throughout the year 

but is least during the April-September period when, nomad numbers would 

~mrmally be greatest in the north-eastern Bismarck Sea. Influxes into the 

Solomon Sea during November-April would, on the other hand, coinciae with 

~art of tj;H{-;~~~~awning period, and have the greater po~ential to· Con

tribute to spawning in that area. successful spawning, a~ measured by 
' 

larval survival, is dependent on depositing eggs,in productive patch,is , 
• i 0~ 

conducive to larval survival. This should pose few problems fo~ ~esid~rit~. 

In their extensive movements' nomads may encounter such conditions more 

:=requently but an ener~y cost whl~ch precludes gonadal developmenJ=. The 

CJdaptive value of the nomac;!ic strategy may relate not to some increase .in 

:.-<.;productivE: fitness, but ·"the ability to exploit different resources to 

residents. Eggs deposited in near 

advantages - productive conditions 

'\ 

island-situations should ,have se~al 

shoul~ s~ow~me ,~poral st~bili ty; 

·~ 

_..:s 



. 
increasing the chances of survival to a stage where independent mobility 

is achievedi eddy effects may also serve to maintain ·larvae in th'e area. 

As no~ed in 2.3.3, predation by adult skipjack may be an 

important source of mortality in skipjack juveniles. This leads to the 

\somewhat ~vol~tionary pr6posi tion that any nomadic spawning whi~ occurs 

may be adaptive,· be.cause it can result in increased forage production (in 

the form of skipjack juveniles) in the unpredictable open ocean. Open 

ocean versus near-island larval densities would then need ·to be viewed 

in a different light, as 1~\.vae near islands are more liable to survive 

to aduithbod. Such a strategy retains flexibility, and should an area 

be depleted of oresiden ts for any reason, a pool of nomads is •available 

to fill the available niche. If disp~rsal is limited, as indicated by 

these experiments, this option is most likely to be exercised by fish 

from near-by areas. 

3. 7. 4. Predictions relevant to population genetic studies 

These genetic data may also provide an independent evaluation 

•Jf thf' resident-nomad hypothesis. Predictions, albeit not particularly 

I owerful ones, can be framed, as follows. 

I i) · · frequencl· es char:acteristic of residents, they ~ 1f th~re are gene 

should beOresent throughout the year, 

1:1) at some loci of at least some nomads assuming gene frequencies 

those Of resl.dents, the most likely period of will differ from 

" l·n the New L!anover sector is ApriJ.-September. their occurrenc~ r 

Should a ccordingly be modified during Basal gene frequencies 

this period. 



(iii) 

(iv) 

if there '«_ere gene frequencies characteristic of different 

geographical areas, nomad frequencies should be representa

tive of the area covered by tag returns. 

genetic heterogeneity at any point in time is liable to be 

conside:r'able, given 'the multiplicity of factors promoting it. 
I 

Iri particular, 
1
the observed gene frequencies should be more 

variable than that given by random (binomial) sampling of a• 

single frequency. 



CHAPTER 4 

POPULATION GENETICS OF SKIPJACK TUNA 

4.1 INTRODUCTION 

Population genetics, in its broadest sense, is the study of tfte 

origin and dynamics of genetic variation within and between populations 

(Lewontin, 1974) and as such, forms an integral part of evolutionary theory. 

In practice population genetic studies focus on the dynamics of gene 

frequency change. The concern of this chapter is with a subset of that 

field, the use of a1lozymic gene (and genotype) frequencies, in combin

ation with ecological data, to infer the genetic stru~ture of natural 

populations. It is useful first, however, to briefly review the basic 

concepts underlying such studies. 

.J.l.l The natpre of genetic variation 

Until relatively recently, a fW1damental constraint had been 

1mposed on population genetic studies by 1![1e difficulty of interpreting 

:nost observed phenotypic variation such.as in morphological, meristic and 

morphometric traits in genetic terms. The mode of inheritance of such 

characters is frequently polygenic, and the effects of single gene sub-
• 

"' .:;titu tion are often small with respect to variation induced by en·viron

~ental fluctuations. Advances in molecular biology, specif~cally the 

:levelopmen t of gel electrophoresis (Smithies, 1955) where proteins are 

.3eparated in an electric field according to their net charge and molecular 

size or conformation, and protein-specific histo-chemical staining 

ttecrmiques to visualize these proteins (Hunter & Markert-., 1957)' have 

however allowed a proportion of the genetically determined variation at 

i~Jividual structural gene lac~, notably those coding for enzymatic 

::rote ins, to be idef.ltified. 

Although it has been 'argued that only about 30% ·of single amino-

• 
1 b h in lcld substitutions lead to an ;electrophoretically detecta le c ange 

~.et sur face charge (King & Wilson' 197 5) and that this value may vary from 

~ocus to locus (Johnson, 1974; King, 1973)' recent studies (Ramshaw et al.J 



( l ~ 

1979 ) on completely ,characteri~ed v1iiants have shown thctt more sophis

ticated electrophoretic methods can detect approximately 90% of 

substitutions. Irrespective of the relationship between phenotypic 

and genotypic classes the amount of electrophoretic variation detected 
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has generally proved to be large. A. variety of animal and plant species 

has no\v been screened for electrophoretic variation using standard 

techniques (Powell, 1975; , Nevo, 1978; Brown, 1979) and althougl) estimates 

vary widely between species, most populations appear to be polymorphic at 

25 to JOV of their loci, with individuals heterozygous at 5 to 15% of 

their loci (Selander, 1976). Where the inheritance of the various 

electromorphs (King & Ohta, 1975) at a polymorphic locus can be demon.

strated ~ be Mendelian and c;odominan t, they are regarded as direct 

expressions of underlying alleles and in the case of enzymatic proteins 

are commonly referred to as allozymes (Prakash et al. ~ 1969). 

Although the discovery of this new class of molecular variatiot 
r 

has given rise to a wealth of theoretical, experimental and descriptive 

studies, controversy still surrounds its biological signific~ce and 

factors responsible for its mainteriance: The debate, in its extreme 

form, embodies two sharply contrasting views - the neutralist (or 

classical) view (Kimura, 1968; King & Jukes, 1969) which sees most poly

morphisms as selectively neutral or near neutral, with mutational input, 

random extinction and drift contributing to their main tenan'ce, and the 

selectionist (or balance) view which sees polymorphisms being maintained 
.,. 

by some form of balancing selection (Richmond, 1970; Wills, 1973). 

The neutralist-selectionist debate remains unresolved (see 

3pess (1977) and Roughgarden (1979) for recent reviews) Lewontin, in 
I 

1974, listed three principal reasons why this is so, and it appears that 

little progress has subsequently been made in overcoming these difficul-

t10s, namely 

( 1) 

(2) "'\ ,, 
\ 

neither theory is empirically sufficient - central to both 

are parameters and combinations of parameters which are not 

measurable to the degree of accuracy required, e.g. W 
~· ) ' t · · ) m (migration rate , (mutation rate per gene pe~ genera ~on r 

s (selection coefficient), N 
e 

(effective population size), 

in both cases, theory refers to e~uilibrium conditions, and 

to· ~derstand equilibria the knowledge of history necessary 

are simply not available and 



( 3.) the theory is ot dynandcally sufficient in that inter-

locus inter . ens (for example, epistasi' s . 
, co-adapted 

gene complexe~, linkage, h't hh' k' 
I c IQ Ing etc.) are not usually 

taken into acqount. 

Approaches such as that _described by Clarke (1975) & Koehn (1978 ) 

involving characterization of structural and functional differences 

between alleles at the molecular level and experimental testing of 

hypotheses developed, may prove ~uite powerful for detecting selectio; 

on a particular locus, at' least in species amenable to experimental 

manipulation, yet rtot identify the agents of evolutionary change (Gould 

& Lewontin, 1979). 

~-The debate has however undergone a subtle shift in direction 

s~ch that ~he question asked of neutralist/selectionist theory in 

explaining observed variation has become "how much of each" rather than 

"which of the two". 

4. l. 2 Population Studies 

For all the uncertainties surrounding mechanisms involved in 

ltS maintenance, electrophoretic variation has proved a very userul tool 
. ~ 

1n several field~. Syst.Bmatic studies have greatly/benefited, particularly 

# the value of allozymic Characters in this context does not rest on 

~lcctive neutrality or otherwise of alleles (Selander & Johnson, 1973). 

Anse (1974) details the many advantages of the technique and its limita

'l~ns, and the topic will be further explored in Chapter 6. 

The concern of this chapter is with anoth~r use of genetic 

iata generated by electrophoretic studies, namely the elucidation of the . 
:,)pulation genetic structure ·of marine fish populations frUlm gene and 

·;··notype frequencies in combination with ecological data. Prior to the 

'i•·velor,ment of electrophoretic techniques, the basis of fish population. 

;r:netics studies w~s, in common with other animal groups, variation 

ietnct~d in morphological, morphometric, meristic and serological 

,:~Jracters, supplemented by inferential data, such as apparent discontin

J~ cl•·s in distribution, age structure, parasite presence or absence and 

:"Jrk-rf'Captu;re results (Marr, 1957). Meristic and morphometric characters 

Jr•' " · · · 1 · c control and are often ~ont1nuous variables, typically under po ygeni ' 

~UL]ect to environmental infiuence (Taning, 1952; Barlow, 1961 ) which may 

r~"strict their usefulness as genetic discriminants; technic.:rl and 

,, 

/ 

. ) 

" 



theoretical problems, such as production of speci:U~ antisera and 

relating blood groups to genes, have similarly limi.ted the use of 

serological and immunological techniques (Utter et al., 1974 ). 

Electrophoretic techniques, on the other hand, 1 
a low a proportion 

of the genetically c:letermine'l.variation :·~t individual structurai gene 

loci to be identified, as d,iscussed earlier, and 'results can ·rse readily 
,I 

reproduced. , 

Two basic and somewhat fragile premise;s underpin studies of 

genetic differentiation in natural populati~~s. 

(a) '' Significant differences in gene frequency between sample!? reflect 
,tl,/<t\. .. 

some degree of reproductive isolation and 

(b) departures in genotype frequencies from Hardy-Weinberg expect

ations can be useful in detecting d.l_f~erentiation components 

such as'assortative matins.and geographic;al subdivision. 

There is considerable evidence to suggest that these assumptions 

are not always justified. 

The following qualifications are re.levan t to premise (a) 
~ 

(l) Populations freely exchanging genes but under different 
~ 

select'ive regimes may show marked d.i!f(ere11.tiation (Ehr)ich . ---
& Raven, 1969). An example of this from marine fishes is 

that of the catadromous American eel (Anguilla rostrata). 

All breeding of the species is presum~d to occur in the 

region of the Sargasso Sea, under conditions of panmixia, 
~ ( ' 

yet marked differences in allele frequ~ncy ar~,observed 

between localities along the eastern seabqa~d (Koehn, 1970; 
. '<r;;'J~· -

Williams et al., 1973). "'Although there ~does exist a slight 

possibility that micro-diffe:r:;e,nti~tion of the spawning area 

occurs, this example indicate~ that sel.:ction on the loci 

being used as markers must t!ne,r~fore be taken into account. 

(2) Providing a su~itable population, st.{.ucture can be postulated, 

any geographical pattern in allele frequencies at a single 

locus can be explained by random drift of selectively neutral 
(' 

( 



alleles (Kimura & Maruyama, 1971). Tw '~ 
o or mqre polymorphic 

systems should therefore be used, ~ince breeding structure, 

contrary·to selection and drift, ~tfects'all loci and 

alleles uniformly (Christiansen &··"f.rydenberg, 1974; Lewontin 

& Krakauer, 1973). To ensure that these loci segregate 

independently, the absence of linkage disequilibrium, or the 

random association of alleles at two loci should be 

established. 

(3) Non-significant differences in allele frequency between 

groups indicate only that groups are not necessarily different, 

and not that they are of similar genetic composition. An 

allied problem is essentially of a statistical nature - if 
'f 

large enough samples are taken, even v.ery small differences 

in allele frequency become statistically significant, although 

the biological significan~ of the observed difference may be ) 

ques~qpable. In practice,. 'sQme· a pr1..or1- decision is usuall~ 

made about what constitute~~ a significant difference between 

subsets (see later). 

(4) Population(s) being compared should not have been through 

recent bottlenecks which increase the probability of allele 

frequency cha0ges due to random genetic drift (Nei et al.J 

1975). In practice, such historical information is not 

readily available, but this possibility cannot be excluded 

when interpreting allele frequency data. 

(5) Although our interest is primarily in deterministic fqrces 

which influence gene frequency distributions (notaply . 

restrictions on gene flow, selection and recurrent mutation) 

drl'ft and founder effects- need to be stochastic effects -

considered, par~icularly in small populations or isolates. 

l f m studies of the Aspinwall (1.974) provides a good examp e ro 

anadromous pink salmon (Oncorhynchus gorbuscha) with its 

' ) d' cle Populations in unique two year (± 10 days bree lng cy · 

the same stream but breeding in alternate years are 

effectively isolates, subject to presumably very similar 

t d'ed showed considerable selective regimes; most streams s u l 

uniformity wi~hin either distantly-spaced odd or even-year 

\' 



f. 
populations, yet in many ca~Ejfs, marked differences w.-e 

detected between odd and even-year_populations in the 

same stream. 

"""', 
(6) Recent experience has shown that cryptic intra-allelic 

. ., 
variation exists (Milkman, 1976; Singh et al.~ 1975; 

Johnson, 1977)~ These alleles have been ~etected by heat 

resistance tests (Bernstein e·t al 11973) 1 ·~ , mo ecular 

sieving (Johnson, 1976), isoelectric focussing (Singh et al.~ 

1976) or a combination of·these (Coyne, 1976)~ This extra 

variation may provide increased discriminatory power in 

studies of genetic differentiation, as well as being of 

value in establishing the role of selective· versus non

selective forces, for example, where clines exist in 

parallel a.t some loci but not others (Singh, l£)79) . 

. ' 
Premise (b) , using deViations from Hardy Weinberg expectations to 

infer aspects of genetic structure, al.so needs some qualification. An 

excess of heterozygotes can result in deviations from equilibrium which 

Jrc coi11f!1only attributed to selective advantage or hete~is. However, 

'juite strong selectio"n can occur in two allele-system, on the hetero

Z)'']Ote, the al~e.rnate homozygot~s or any combination without signifi-

'cJntly disturbing this equilibrium (Smith, 1970; Leigh-Brown, 1977; 

K~hn & Willi0ms, 1917) .. Genotype proportions thus cannot be used in 

t11lation as evidencef.l of selection. Similarly, calculation of nett \ . . 

~ltnesses from genotype frequel'lcies has ~o statistical power for rea\1st1c 

;election values (Lewontin & Cockerham, 1959). A deficiency of hetero

.:·:Jotr:s (or excess of homozygotes) can result from at least three .,. 
:a.·tors'- inbreeding or departures from random mati;~g as observed in 

;r1,lll or subdivided populations; mixing of populations with different ... 
;nrH' frPquencies, the wahlund effect (Wahlund, 1928) and the presence of 

Jll ullcles. Distinguishing between the first and second of these 

~~·~tors may be difficult;., although comparisons of genotype frequencies 

1' ;evt'ral loci can be in forma tt·,,ve. 
~.~~ . 
'i 

A final problem is again related to sampling. As the Hardy 

·'"lnbercJ Law relates to populations of infinite size, sampling 'accidents' -~ 

d:viations by chance.. In fact, the problem is ~~ to significant 
for'Significance are very low 

Jj. 
:.c.t a senous one: since the power of tests 

(_/ 



Sample ~sizes <200 (Sing & obthman, 1975 A with "/ i non, 1980). 
i ~ 

A separate set of caveats are of a technical nature, and relate 

to unambiguously establishing the underlying. genetic ~as is of the 
' 

systems being used as markers. Phenotypic variation may arise through 

post~translational modification (Simonarson & Watts, 1969; uy & Wold, 

1977 ). This can .?ccur in a variety of w.ays especially during storage 

(Fairbairn & Roff, 1980), e.g. addition or removal of sialic acid resi

dues and ami'ae gro~p~, but also by the ac.tion of ·i~_j-r loci in the 

living organism. As mentioned previously, segregation of an inactive or 

null allele (H.arris, 1975; Trippa e·t al. 1 1978; Gauldie & Johnson, 1980) 

~Jn o~cur, particularly in certain protein classes such as esterases and 
> 

phosphatases. Detection of these effects r~lies heavily on ~he experi-
0 0 \ 

ence and care of the lnvestlgator. For understanding possibl~ selective 

action on a particular locus, it is impC5rtant to have some und~rstanding 
of the role of the enzyme being studied. Fq1ctors regulating the function 

of enzymes and the compartmentalization of enzymes wlthin cells is not 

well understood in 'the majority of cases. 

Finally, it is almost unnecessa{y to add that detailed knowledgelf 

t~w species biology and ecology is a prerequisite to the design of 

•'xperiments which will adequately assess genetic differentiation within 

'!IJt species, and that replicate and time series sampling within ~ given 

1rea are necessary to adequately represent the genetic str~ure 

1rea's population (s). 

~ol. 3 ~>'lodes of intraspecific variation 

of that 
\ 

\ 

Intraspecific variation in allele or isozyme frequency takes 

:,·_;:"erous forms, and pattt:rns of variation may differ widely even among 

lus~y related species. 

Different alleles may predominate in different barts of a species 

! 1:: :•o (litter et al. 
1 

],970) or alleles may be present in one population 

Y .• J dbsent in another (Payne et al; 
1 

1971). In the latter case, some 

i"lrt''' of isolation can be assumed, whereas the former would include 
( 

"X,lm!l"s of disruptive selecf?.i'-on. 

o b similar i'n all Allele1frequencies at polymorphic' locl may e 
1979) As this :'·f•Jlations studied. (Prakash 11et al.J 1969; Lester, · 

'UL; COmmonly in species with well developeq chspersal capabilities I a 



logical explanation would be tha\ strong gene flow ensures genetic' 

continuity. This homogeneity wou~d however, need to be confirmed by 

addl·t1· 0 nal criteria .. ijAn alternative selectionist e· 1 t' 
. . :l\P ana 1on w~uld 

that similar selectlve reg1mes across the geographical range ~ould 

produce similar_ gene frequencies through ~tabil'izing or· f.~equen~t·-
.; ' dependent selection. 

0 

be 

~ographical variation in allele frequency commonly occurs, and 

can be ~xplained either as a result of drirt i~. isolates, or l€)SaJ. 

!&adaptation. It has beer ~mo~t intensively studied wher~ changes in allele • ' ' tl ' ' . ' <: frequency are d1rect1on or cllnal (Huxley, 1938), e.g. Frydenberg et al .• · 

\• 

1965; O'Gowcr & Nicol, 968; Koehn & Rasmussen,'·.t-,1967. Some of the best 

evidence for selection in natural populations c(o~et1, from studies where 

trends in allele frequency can, be 1r~la ted to correJSponding trends in 
I 

" cnvuonmental variables," e.g. Scl;opf & Gooch, 1971.; Johnson, 1971; 

l'l72; Merritt, 1972. A: variety of conditio!ll.s cql~ result ~n clines 
Bishop, 

~ \ "' ' ''i 
LJ77) and these will 1;>.1= discl\lssed in a lat~r s"ection. / 

' ' 

(Endler, 

A-llele frequencies hctve been demonstrated to vary ~n response to 

fJctors such as population size (Krebs et al .• 1973), and age or year 

~·lass (Beardmore & Ward, 1977; Chilcote et al .• 1980). 

It is therefore clear that whilst demonstrating allele frequency 

Q ltffpn~nces is an important step in establishing to what degree of;,popu-

:Jtlon 1s genetically di,ferentiated, numeroust\tther factors need to be 

~...~k•·n 1nto account before a complete appraisal is possible. 

( .......------. 

Varidlfr6i1. in allele frequency observed between samples collected 

·:··r a lwrg'~ part of the 

;1.:1 J,L·k cdn be regarded 

range of a widely distributed species such as 

' ' ' ~ as having three 'components, geograph1c var1at1on' 

'-l••:;s the species range, within-area variation due to factors such as 

- l ff 1 d'ff and "chooll'nn, and variat,j_on •·<Jsona e ects, year, c ass 1 erences, "" ., 

J.,,uc.·tat"d w1th finite sample sizes. 

· · k t reviewed in the rn·vious yenetic studies. with sklpJac ·una are 

: : h•,nn'J s t · (4 2) These have revealed con-siderable geographical .PC 1011 . . 

··ltl.ltl"fl in wllele frequency at one locu~, from which inferences on genetic 
. ' \\) 

The cover~e afforded by ~is sampling, 

. ,_.: t:l ~;i'dC<' and time rplat.i,.ve to the huge area over which skipjack occur, 

l, ~ f ' . ' 
···-"r•'lltlwtlon have b,een drawn, 

'Jruosly inadequate. Because of 
\ 
\ 

the attendant logistical difficulUes, 

' . 
\l 0 

~-

~r. 
'. 



~.-~ ~··· 
it is unlikely that a sampling regime sufficiently rigorous to 

~escribe 
this variation in' toto,. pa:rticularly isotopically, 

1 • can•ever be put into 
effect. In the present s~udy, opportunistic sampling to increase the 

geographical cq"-erage o~ ~he Indo-Australian •region was undertaken. 

This has be'en integrated ti th previous ·work and ongo.i~ ~tudies elsewhere 

in s;ection 4. 4. , I 

I {J'i!-

. s'eries 1 · · th ·f-·h ..... 
Tlme samp l/g Wl l t e Papua New Guinea area, from which 

• baseline inropnation in t e form of tagging data (Chapte; 3) and some 

ecological data ( 2. 3) ~'<"w e available, was carri,ed out to examine the 

t o\VHhin-area component Of, allele frequency variation. This is analyzed in 
\• 

. 5·ection 4. 5. Sampling s T·ategy is considered in • section 4. 2. 1. 

4 .1. 4 Previous Studies 

Cushing (1964~~ de Ligny (1969) and Fujino (1970) review early •• 

serolquical and bio,chemic 1 studies on tuna populations. Skipjack has been 

th~o~t extensively stud'ed of al~ the tunas. Beginning with the wo~k of 

Cushing (1956), immuholog'cal techniques were used to identify genetic 

variation 'in C bl6od ,~rou~ (Sprague and Holloway, 1962), B bl.ood. group 

(Spr;gue ~e! Holloway, 19 2; Fujino, 1967) and!' blood gr~up sys'tems 
.. " 

(F'uJino and Kazama, 1968) '\ Despite ea::cly optimism, those systems.;_have 

fa~~ed to snow between-~r~a hJterogeneity in the Pacific Ocean when large 

samples were examined, alt,~h both Y and B groups (K
1 

·~osi tive) 

phcno~ypes wer_e of some vafue in sepa'tating Atlantic and Pacific Ocean 

specimens (Fujino, 19'69). , Other blood factd'r.s, have been 'detected using 
<, • ~~ l 

;'hytoagglL~inin.~ (Sprague cj.nd Holloway, 1962; Fuj inq., unpublished) but 

r,o definitive results are J<inmvn from this work. 

9· The use of electrophoret.flechniques has generally proved more 

useful and convenj.ent. Barrett" and Tsuyuki (1967) and Fujino and Kang .. 
(l9G8a) independently studied a three allele serum transferrin poly

:'lorph.l'§;;;·,·"'the ident.l"t\, of which was verified using Fe 59 sulphate 

labelieng.. No significant heter<;Jgeneity within or between areas tor 

:;kipjack tuna from the Atlantic,. western Pacific and central-el.{tst~rn , 

f'acific was observed. Fujif)o and ~ang. (1968a) however presented evidence 

fo: d~ff~rential fertility and vjkbi~ity amongst the phenotypes oand thei~; 
Js.,oClatlOn with fish of di~nt Slzes. Mechanisms maintaining this 

· • • 1 t' re discussed. oaLanced polymorphism in a randomly mating popu a lon. we 

Recent · ( MSb) suggested that gene frequencies re-analysis of this data Sharp, 

..... 
I 

·~ 
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. 
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not homogenous with r~~ec~, to size 1d were 

not appropriate for such analyses. 
the data were possibYy 

Fuj~ and Kang ( l96·8b) also' described a six-phenotype serum 

est~'rase~ (ESJ) system under the control of thrtlfe co-dominant autosomal 

alleles, independent of prevlfusly de~crib~d esterase s~stems and sex 

and size of fish. Analysis of nearly 15,000 samples in 196 lots (n ~ 
75

) 

~'from various areas o~ the Pacific Ocep.n (Fujino, l970b) revealed- marked 

heterogeneity in frequeJ¥:ies of the E~J allele. When subdivided into . 

western Pacific and combined cen't:r;al and ea;tern Pacific groups, " 
no . 

significant within-ar~a heterogeneity was observed in the E system (nor 
I ' SJ 

in serum transferrin and the three blood ~roup systems). Between-area 

heterogeneity in· E
1 
SJ frequencies was h~;,._,ever found to be marked, ~leading 

to the sug~on that a skipjack tuna sub-population existed-- in' the 

western Pacific which was to some extent reproductively isolated from 

skipjack in the central and eastern P~c. Skipjack of the western 
.--..../ 

Pacific sub-population were pcrstulated ~o~be presenE throughout the year 

ea~~ coast of Japan and Okinawa, in the Bonin-in inshqre wa te.,rs off the •• Marianas area and Palau. The boundary between the two sub-populations 

1.:as postulated tc; shift eastwarps in the northern summer and westwards 

in autumn' and winter: Collection of additional mater{al in the western 

Pacific and age composition analysis of commercial catches (Fujino, 1972) . 
led to the suggestion that the western sub-population was comprised of two 

=JrOups, A and B which spawn in piffere'nt sea'!3ons (northern an:J southern 

summers respective~y) and show. sem7S'tral recruitment, but are not genetic

ally isolate~ (Figure 4~1). Distinct migratory behaviour for each group 

·,.;as ill)pl4.ed. 

Collection of material (2267 individua·ls, 61 samples, n ~ 37) 

:rom the south-western Pacific (Fujino, 1976) enables shifts in the sub

r~opulation boundary'" as postulated for the nori'bern hemisphere (Puj ino, 

l'J70b) tQ be sketche'a for the southern hemi-sphere. The boundary was said 

to exist in the Tas~nJ1 Sea year round, shifting westwards close .to t~e 

N~w South Wales coast in early wint~r. Rejection limits at the 5% signifi

: 
1 
•. evels were r~~lculat~.S for the two sub-populations giving E 

1 
SJ 

Erequencies of 0.394-0.570 and 0.578-0.758 for the central-eastern and 

h·,,stern Pacific s.ub-plfpulations respectively. T.~J. validity of the 

s t a t.l. s tl. 1 . . t ··..,·or..,· separation in to two groups, ~ ca procedure used, 1.e. a pos er .... .... 
then test. f . . ' . ff .... l. s however doubtful, and the 1ng or s.1gnif1can t dl erence"', 



Fqure 4, 1 

/ 

E 140° 180° 

,. 

Hawaii 

I 

' 

\ 

<f)J • 

•• 

Approximate ranges of the hypothesized Pacific Ocean 
skipjack sub-populations 6fl Fujino (1972). 

N 

oo 
s 

The geographical range of the two groups 'in the wes te/n 
sub-pofl);!,lation is shown by vert.ical (southern swnmer spawners) and\ 

hoc"'" tel I nor th:rn sumn>«r spawners} sha~g respectively. 

136 

.. 

·, 

.·' 

'J 

) .. , 
•:\ .. , 

\ 
'i 

.._, 

"" "' ') 
\1 

\._ 



{ 

Small sample size detracts from the power of the test (see 3 3 .. 1). 

Dl'scovery of a •second polymorphic esterase in red. bl d v 
oo cells (Fujino, 

1979) has reportedly allowed genetic separation of the two eastern 
i 

Pacific sub-groups in Japanese waters. 
<( 

) I 

After working for some,years with yellowfin tuna, Sharp (1 978 
and fvlSb) organized co_llectionf of skipjack material (approximately 7 , 

000 

individuqls) from P91PQ9; New Gpinea, New Zealand and the eastern Pacific 

Ocean during 1975, 1976 and ~9-77 to evaluate genetic homogeneity of skip

jack samples fr~m th-~se fis~4ries relative to previous results with 

yellowfin tuna samples, and 1ho independently e~amine s)dpjacJs, population 
, l I 

genetics. Lege sample s1..zes were collected (n ;;, 170) and typed for ester-

ase and transferrin phenotypes. Although only 2 of the 40 samples showed 

significant deviation from Hardy-Weinberg equilibrium, both the estera~ 
anq transferrin frequencies were heterogeneous for each of the three areas 

examined according to the test used. -si:nilarly, re-analysis of Fuj ina's 

data including only the larger samples (n > 80) showed he terogen~ ty in 

sample sets from Hawaii; Palau and Japan. This led Sharp to postulate 

the existence of at least fi've 1 genetic componer\ts 1 in Pacific Ocean 

skipjack ~una· (Figure 4. 2). As had been the case with the earJ.ier Fujino 

hypothesis, no mechanism by which this $itua be maintained was 

proposed and the interpretation:was essentiall . subjective. The need for 

long term localized studies, sampling over a wi r area, and additional 
L 

biological information in critical areas such as 'reproduction, larval 
., 

distribution and survival, and the role of open_ ocean-island interactions 

in skipjack ··ecology was emphasized. 

Since 1977 further sampling in the south-western Pacific, specifi

cally New-~Zealand, Papua New Guinea and the Solomo~'rslands (Richardson, 

unpublished) ha~ been carri~d out, and since 1978, collections-ade 
'\ . 

Juring the South Pacific Commission 1 s 'skipjack ·survey and Asse ment 

Programme have expanded tshe geographical coverage in to many hitherto 

unsampled south-w.rn and south-central Pacific areas ~(Richardson, MS). 

A major problem remains the'reliance of current interpretations 

on a single genetic system, ser~ esterase (ElSJ). The serum transferrin 

4 · t within and between system, alth6ugh sho,;,ing considerable he terogene1.. Y 

Jreas • does not vary in a consistent or readily interpretable way and 

· · · ' reproductive explanation of this heterogeneity may lie in the spec1..es 

a d f a r· ecent search for new genetic n schooling strategies. The rfs"Ul ts o 

S'fStems will be described in· a subsequent section 
.I 

(4 .2. 4). 
•' 
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4.2 MATERIALS AND MET¥0DS 

4.2.1 sampling Considerations 

As was stressed in the review o·f previous studies, the question of 

appropriate sample. size strongly influences some facets of interpretation 

of genetic data.· In practice, the sample size chosen will represent ·a 

:ompromise between a theoretical optimum and a realistic mini1num 1 1 h. h 

is consistently possible to achieve under a variety of sampling co:::ti:n:~ /\ 
~e hypothesis to be tested will also have some bearing on this decision. 

~ I 

In the early stages of wpopulation studies, it is frequently 

~ecessary to decide whether or not samples are significantly differ,ent 

from one another. 

Sharp '(in 12ress) points out that under these conditions the choice 

of optimum size will be influenced by: 

:, ~uble of 

6, the minimum difference in allele frequency p
1 

- p
2 

one is 

willing to accept as being significant between two populations 

or samples. 

the significance level (a) for rejection of the null~hypothesis 

of no difference between populations. )This is traditionally set 

ata==O.OS. ~ 

the desired power ..... of ~he test (1 - S), that is, tik probability 

of detecting significance where'allele frequency difference is 6. 

the expected range of values for the allele frequency. 

of the test is lowest near 0.5 and highest near 1.0. 

the number of individuals per, sample which would permit 

The power 

differ-

·::.iution of and for various values of p, when a = .05, 1 - s = 0.5 
pl p2 

l:..~ il = ~(pl + p2). 

.95 .90 .80 .70 .55 

146 276 492 645' 760 

·50 69 123 162 190 

so 25 31 40 48 

~- 9 6 '•. so 25 13 

. ~: ., 

..• 

i 



A Sample size. qf 200 or more ind1' v1' d 1 1 ua s wou d thus allow d' .. .. lscrlmln-
ation of two samples or populations with 6 = 0.10 over a range of allele 

fr~qDencies. This may be a typical 6 value; p
1 

+ p
2 

for F1,ljino, s (
1976

) 
6 . 

two "subpopulations" were, for example, 0.668 and 0.482, giving~= 0 _186 ,· 

and Sharp (MSa) regarded a 6 value of 0. 07 as reasonable in his yellowfin 

tuna studies. The biologi~al significance of such differences is however 

unclear· . 
i 

The low power of X
2 

tests to detect deviations from Hardy Weinberg 

expectations in sample~ of <200 individuals has been discussed and sample 

sizes approaching 200 are clearly d_esirable if the null hypothesis of nG 

difference between populations is to be tested. 
'l> 

w~ere a certain amount of info~ation on geographical variation in 

allele frequenc~ already .exists, as is the 'case here, the more common null 

hypothesis is not p1 = p 2 , but whether p
1 

.differs from a number of other 

populations. The serious error then becomes not failure to discriminate 

tut incorrect classification. Under these conditions, a sample size of 1 100 

becomes more acceptable. l-Jsing the normal distribution as an approximation 

~o the binomial, the 95% confidence interval. of the gene frequency estimate 

is about ± . 065 for a sattlple of 100 fish, with a= .OS, and·p = 0. 7, as 

::posed to ± . 046 for a sample of 200. Simulations have also shown that the 

: :-obabili 'ty of misclassifying samples of 100 fish where p = 0. 7 was less 

=~an _5% (Richardson, per·s. comm.·) as opposed to 25% for samples of 20 fish 

c~~td H for samp/es of 150 fish. 

This result alleviates sampling problems. Experience had 'shown that 

·~llst sample sizes' of 200 from individual "schools" or aggregations could 

''2TJlarly be collected onboard purse seine vessels, such was not the case 

·•nh smalle-\. pole and lin.e v~ssels, the major souJ;,"ce of samples in the 

•~stern Pacific (and certainly not the case for non-commercial fishing 

oc:tivity) without sacrificing sample homogeneity by collecting from more 

:.a~d, ='€ 

"school". Sample sizes of 100 indi victuals could, on the other ._..__ 

obtained relatively more readily. 
,., ... 

1rthermore, for calculating the precision of estimates of p, the 

. ·-· · t th n 1' nd1' vidual s,ample ·•·lJ"r of s-1mp les bes;omes relatively more 1mportan a 

·:
2
"' since the confidence interval equals l:1 w;N where w is the confi

:"~·:::e interval width about p and N the number of sanip\les (~on.' 1980). 

/ \ 
j 

./ 
; 

I 
I 
I 



are simply not available and 

Larger sample sizes do however retain the additional advantage of allowing 

Statl. stl' cal comparison between sample-subsets e g t 1· sh f d · ff .J. • o l erent size, 
{i-1 ) 

sex etc. 1...-

In addition to the questions of appropriate sample size, the problem 

Of Sample homogenel.ty arises. Sampll'ng on board comme · 1 1 rc1a vesse s, the 

usual and most con"';enient strategy, introduces a bias towards large feeding 
/ 

a:Jgregations, possibly comprised of more than one "school" i~ which estimates 

of genetic heterogeneity may increase. One way in which this may be 

reflected is increased size ranges within schools. If fish size i~ likely 

to have some information on an individual 1 s genetic composition· at a given 

~oint in space and time, an intuitively reasonab;Le possibility, sampling 

ex~nsively without regard to mo~al groupings may reduce the biological 

significance of any statistical tests sUbsequently perf-ormed. Although 

this essentially remains beyond the investigator 1 s control, &'n ~ffort was 

made to minimize such effects by: 

(a) sampling from single schools or agg~egations wherever 

(b) sampling only the predominant size class in polymodal 

where this was not possible, increasing sample size to allow later 

subdivision by size. 

""' . ' 
In addition, replicate samples were taken in ma.ny cases to fu:tttther 

'cXillnine this phenomenon. 

The final cons train t on sampling is the obvious practical one. The 

:colems of co-ordinating the colle·ctim1 and despatch of samples over a wide 

::••a such as that covered by the present study are many; facilities taken 

:x cjran ted in one locality are often only ma1:-~.inally adequate in another. . ' , 
2.::h difficulties are often compounded when large sample sizes (>200) are 

~ 

:~.vol ved. In general, however, it proved possible to collect samples of 

: •; fish both extensively and intensively within the study area according 

·0 the guidelines described above. 

. ) . 
'· "· L F1eld collection 

Using disposable pla~tic syringes and 18-19 gauge needles, 2-5 ml of 

~.:)od were collected from each. fish by cardiac puncture. An equal volume of 

''"s 1 d 60% trisodium citrate ,._ ervative solution, con'sisting of 40% glycero an · 



rest · · t technical and rlct their usefulness as genetic discrimlnan s; 

) 

as a S% solut.ion (Fujino, 1966) was added as soon as convenient. 
Length of 

fl. sh (LCR-'.in mm) was re1==orded on the barrel of th · 
eaeh r- e syrlnge and in some ,.;;"\'' 
cases, biologlcal data (sex, gonad maturation) were available for individual 

fish. 

The majority of samples were taken on board pole-and-line vessels 

soon after capture. Others were taken from purse seine catches, gill net 

catches, unloading bays at shore bases, market consignments and game fishing 

tournament catches. In several cases, skipjack which had been captured up 

to a week previously and su-bsequently kept chilled were satisfactorily 

sarnpl ed, as were thawed frozen fish on one occasion. 

Where possible, a lot of 100 or so fish of similar size from ~ single 

schoo 1 or fishing station we:re isolated and sampled (see earlier). This 

degree of sampling rigour could not always be achieved and some samples~ 

particularly those collected in areas not previously sampled, wE)re collected 

over a period of several days. 

Samples were kept iced down or out of direct sunlight until trans

:erral to a freezer could be effected and then freighted (on dry ice when 

,ossible) to Canberra for analysis. Care was taken to minimize'tl'..:ontamination 

3':. all stages,, although the use of disposable needles and the syringe itself 

L the sample c0ntainer largely circumvents this problem. 

Prior to analysis, samples were transferred to labelled one dram 

·_:lass 0 0 vials for storage at -10 to -20 C. 

~.::. .. 3 Material 

During the period January 1978. to August'l980, 108 lots (10,436 
/ 

:~.dividuals, ~ = 96.6 ± 20.2) of skipjack blood samples were collected in 
• 0 0 0 0 h . ·: ..• Indo-Australian region bounded by 5 N-45· S, 95 - 160 E. T ey comprlse 

-
1"'-"rial gathered opportunistically to extend,,{~-~ complement the geographical 

-.;';llra'Je afforded by previous studies (54 lots, n 92.4 ± 27.2) and material 
'·· 

;:..lleuc ted sequentially" the time series sampling in the New Hanover sector 

=2 the Papua New Guinea fishery (54 lots, n = 100.8 ± 6.6) · 

~ 

For the purposes of this study' the region has been subdivided into 

areas (Figure 4 . 3) . 

·'Jlnea and environs (area 

The area of most intensive sampling, Papua New 

l); has been further subdivided into two sub-



areas. Collections were made for the geographical aspects of the study in 

the four areas above as follows:-

Area la 

Area lb 

t'uea 2 

Area 3 

.~rea 4 

~ 

sectors of the Papua New Guinea £ishery excluding the New Hanover 

sector - (12 samples, 1219 individuals) from pole and 1· lne catches. 

0 . ~ 

between the .Equator and 5 N, within or adjacent'to-Papua New 

Guinea Offshore Seas - (8 samples, 747 individuals) from purse 

seine vessels. 

the east coast of Australia - (25 samples, 2025 indivipuals), .from 

research vessel, purse seine, gill net and recreational catches. 

three sites across th: Indonesian ArcBipelago - Ambon (Banda sea), 

Pelabuhan Ratu and Padang (Indian Ocean) - (7 samples, 789 

individu,als) from markets, pole and line catches and troll catches. 

south-western Australia ~Albany, Esperance) - (2 samples, 211 

individuals) from pole and line catches. • 

Sample locations are shown in Figure 4. 3 and collection detarls given 

~:. Table 4. 1. 

.; ' 
Time series .samples were coll~cted in the New Hanover sector every 

· .. ree weeks. 'rnitially ~ single sample was collected, but from early 1979 --.\ 

.:·.ards, replicate samples (2 x 100) were taken on each trip wherever 

·:;;ible. With minimal fishing activity in this sector during the December

" lL!1 period, some gaps in the sequence of Samples have inevitably OCCUrred· 

'CJtal of 54 samples·, collected on ~1 occasions, are represented. Collection 

'11ls are given in Table 4.2. During this period, length frequency data 

,. ~·· :ollected in the same area (Wankowski, in press) with the aim of simul-:

. ::,,•ously monitoring .. movement of cohorts or size classes through the New 

::.'J'Ier sector and any changes in gene frequency. 

Elcctrophore'tic procedures 

:·"·: ;. ! dcctrorhoresis 

In the first instance, starch was used as the support medium for 

.... ·•r h g o.f starch (Connaught Medical Research · · · op oresis. Geis containing 3 2 ,_, 
-l~r:ntories, Canada) in 2~0 ml of buffer were poured into 18.5 em x 15.5 em 
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Table 4.1 Details of skipjack blood samples collected in the Indo-Australian region and analysed 
~y the author, 1978-1980. 

Time-series samples are not included. 

~~ 
SfjfP 

• 
Key to collectors: PNG - Fisheries Division, Dept. of Primary Industry, Papua New Guinea; 
LPPL - Marine Fisheries Research Institute, Jakarta; CSIR~~ Fisheries & Oceanography 
Division, Cronu1la; SPC - South Paci.fic Commission Skipjacklif'survey & Assessment Programme; 
DPI - Fisheries Division, Dept. of Primary I~dustry, Canberra; OM - 0. M~zitis, Triabunna, 

Tasmanla. · 

Sample Code Date Locality ' n Collector 

Papua New Guinea Area 

PG 

PE 

PA 

SA 

SB .. 
SQ 

CB 

CB
2 

ARA 

AM 

AN 

MAS-A 

Between 0° and S
0

N (lb) 

OS 

DT 

(la) 

~"\ 

\ 
l 

19-27/2/78 

18-21/1/78 

14/4/78 

20/1/79 

21/1/79 

21/1/79 

27/l/79 

14/2/79 

23/1/79 

20/5/79 

3/6/79 

"23/5/79 

21/10/78 

24/10/78 

~ 10°38'5, 146°35'£ 114 ~G 

10°34 I ,5' l,.48°i:i2'E 52r 

l0°38'S, l46°35'E 91 

6°30'5, 150°35'£ 163 
1(1 

Self 

6°30'5, l50°30'E 

0 
106 

6°20'5, 150°20'£ 114 II 

10°25'5, l48°10'E 82 PNG 

7°36'5,:~ 
,---

97 

86 

107 

4°04'5, 15 ° 'E 109 

SPC 

1°19 ··s, 146°40'£ 105 PNG 

l 0 44'N, 137°56'£ 
/, 

61 PNG 

1°42'N, 136°46'£ 10'2 

<\ 
\ 

/ 

/ 
' I'-



.·-~ l / 1 ... 1./ ').1 
C) (;, 

4 j() Nl l3'::./~4S'E '-''=> 
'Jc;B 3/lU/7H fJ 4°03'\N, W'0°39'E 99 

c ·~ n !-01E 3/12/78 2°51 1 N 1 14~0 06 1 E 102 " n 
c 

!>00°26 1 N 140°12 I E. 
1-j WA 6/12/78 ~ 96 " (f) 

I 

n WAB ll/12/7g 00°12 1 N1 142°33 1 E 99 " 0 < 

§ 1,.1""'-s 

WAC 14/12/78 00°29 IN·, 142°44 1 E 86 II 0 
::J 
I-' 

... '< 

~ 
Indonesia, (3) 

1-'· 
::J 

BC 15/12/79 3°43 1 s, l28°50 1 E 111 Self Ul -
' 'U 

BD 17/12/79 3°36 1 S 128°22'E 104 II I (1) 
I 0 

1-'· 

]:4-17/12/79 3°38 1 S, 12t(oo 1 E 113 " ~ 
(]) B MIX 
Ul 

"!'·~ 

2°20'S, 99°20'E - ~ yy 20/12/79 113 II 

1-'· 
(i" 

YZ 20/12/79 II 

> 
122 " ::r 

~ 
21/12/79 " 91 II ro IA 

I-' 
I-' 

IF 22-26/4/80 -7°15 1 SI l07°00'E 149 LPPL Q, 
(]) 

< South Western Australia (4) (]) 

I-' 
~ 0 

IC/IE ll-19/3/80 35°00'S 1 l52~09 1 E 139 Self 'D 
ro 1i 0, 

ID ) 16-20/3/80 34°00'S, 122°00'E 72 II 

0.• 
t-Jl 1(- . Ul 

~stern Australia (2) - 'D 
(]) 

1-i 
CA 21/l/78 34°09'S, l52°09 1 E 56 cs·::r:ro rn : PJ .... • I-' 

35°15 1 5, 150°57 1 E 
'> cc 23/1/78 64 " n - OJ 

CD 23/l/78 36°57'S l50°27'E 68 " 'D 
PJ I 

(' ty < 
CF 27/1/78 34°45 1 S, 151°l5 1 E 48 " 1-' \ f--

1-' 
CG 2/2/78 33°15'5, 152°27 1 E 55 " rt 

1-' 
(D 

' -
32°27 1 5, l52°5l 1 E Ul CH 3/2/78 71 " 

J - OJ 

/ 

' _;.-- -~ ~· 'i, 
.J 

p. 

~ 



- - :;ll!r- -
•'. ... 11 1 .. '/ ,, C(Jllc~c:tor - - - - ~ - --- - - - - - - - - - - --------------------

'.I -..1 / _: '7~ 32,~2°Sl'E 94 CSIRO ~ 

' 9/.2/78 32°33'5, l52°5l'E " 
. l CJ 59 

/ CK 9/2/78 32°33'5, l52°5l'E 127 
CL 13/2/78 32°33'S, 152°57'E 53 " 

3j33'S, 152°45'E 
.~ CM 13/2/78 51 " t-~-

co 21/2/78 3l 35'S, 159°10'£ 
~ 

64 <l'" 

\ • 
CP 21/2/78 31°35'S, 159°10'E 47 " 
CQ 22/2/78 31°35'S., 159°·10 IE 9fl' " - ../ 

36°04 Is," 150°24 IE 
.. ..,...... 5/4/79 I AF . BJ SPC J 

AG 8/4/79 35°06'S 1 151°04'E 144 ., 

j• / 
lit 

34°58__' s 1 151°05'E \ AH 9/4/79 101 " 
~ AJ 1/5/79 17°!!.6' S 1 

148°22 I _E:~ _____. 109 " 

) 
, 

AK q 2/5/79 17°3l'S 1 148°05'E 98 " 
AL 3/5/79 16°22'51 150°l2'E <tLlO II 

( c 

/ ~ 
36°15'S, 150°15'E 

~ , NS 8-9/3/79 47 Self 
::,;.. 

1-10/5/79 -42°30'5 -148°i5'E - " 
TA 

I 120 OM 
~~ 5E 21/ll/79 -36°25'5' 152°50 'E::; \! 99 SeJ.n:~ I 
. ' '> 

36°19'S 1 156°03 1E 
~l! FA 10/12/79 93 DPI "' 

FB 14/12/79 37°11'5 1 l55°46'E 70 

® Total 4991 
· Table 4.1 cont .. Mean 92.4 ± 27.2 ~ s I .. 7 •· '<'~-

~ 

' ~-81-
~-"'"-...._, @ 

~ 
-~, ...... 

' 0 /!!>. 
Q 

J'- ~ 

~~ 
"'~, . // 

' Q,_ ' 
~ "(! J tJ 

...... lJ ~ ,. 
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Table 4.2 

~- -: 
~ 

-;f Sam.t;le code 
--

KVA 

-
KVB 

KVC 
St~ 

' .__ 

"·· 
_d"-

r 
~1 KVD 

KVE 

KVF 

KVG 

KVH 
KYI 

• KVJ 
KUK 

·e? 
KVL 

~ 

KVN 
KVO 

KVP 

KVQ 

/ 

< • r 

--.g,l l!; 

'· /' ~ -.._/ \ 

feta~ls of skipjack time series bl9od samples ~ollec~ed in the New Hanover Sector of 
the Papua Ne~a1nea F1shery 

All samples were collected by staff of ~he Fisheries Division, DPI,Papua New·Guinea 
and analyse(! by the author. Replj_cate rmples have been paired·. 

~ ~-
0 

nrte Loca:tion n 
0 

.. 9/8/78 
9' 

2° OO'.S, 150° 45'E 107 
• 

25/8/78 1°.55'S, 150° 30'E 103 . 
15/9/78 ., '1 Q' 55 Is 1 150° 10d E 98 

5/10/78 ' . 
2° OS'S I 1s·oo 20 • E \ 99 

26/10/78 1°37's,' 149° 45'E 100 
~ 

16/11/78 "'3° 00 Is 1 151.0 40 IE 99' 

5/12/78 2C: OO'S , I 151° 05:' E ft . "' 97 

27/2/79 11 
.. 

-.-J 

~ 100 2° OD'S, 150~- SO'E . 
100 

22/3/79 
" 

2° 06'S, 150° 32'E 100 
100 

" p €-> 
-18/4/79 3° OD'S, 150° 30'E 109 

109 

.. 
29/4/79 3° 20'S, 150~ SO'E 105 

105 

17/5/79 3° 13'S, ls0° 57'E 104 
104 

-~ 

<? :.ifu, 
~ 
~ 

,. 
.., 

?-

- ,_ 

- -. 



•' 

-i 

)'" 

--------..; 

)> 

;" 

;;. 

'po 

KVR 
KVS 

KVT 

KVU 
KVV 

K'IY 

KVZ 

KVA-A 

KVA-C 
KVA-D 

K!vA-E · rt-F 
KVA-G 

I 
KVA-I 
KVA-J 

"-.. l_(VA- K 
~A-L 

I 

N1-!A 
NHB 

NNC 

NHD 

NHE 
NHF 

NHG 

NHH 

e 

-: 

' 

.. 

~ 

~ 
t 
1/ 

"' 

' 

7/6/79 

3/7/79 

23/7/79 

q 

4/9/79 

22/9/79 

·c 

16/f0/79 

6/ll/79 

27 /ll/79 

7/12/79 

17/12/79 

2/4/80 

17/4/80 

8/5/80 

29/5/80 

" 

~ 

2°17'S, 150° 03'E 
2° 17'5, 150° 03'E 

3° 16'5, 150° 55'£ 

1°45'S, 150° 18'E 
1° 45'S, 150° 18'E 

I 

2° SO'S, 150° ~1'E 
2° SO'S, 150° 14'E 

3°:12'5, 150° 11'E 9 

1° 47'S, 149° 40'E 
2° 15'5, 150° 10;E 

~0 55'S, 150° 39'E 
2° 12'5, 152° OO'E 

3° 10'S, 15Q
0 

40'E 

3° ~o·s, 150° 40'E 
0 ' 0' 

3 10'5, ~50 40'E 

2° 35°S, 149° 35'E 
2° 3S

0s, 149° 3S'E 

3° 20'S, 150° 55'E 
3° 20'S, 150° 55'E 

·t~~--
20, ro-•s, 151° 12'E 

3° 19'5, 150° 56'E 
3° 19'5, 150° 56'E 

.. 
2°-· 11' S, 150° 20 'E 
2° 11'5, 150° 3~'E 

0 
(/ 

'~ 

1,04 
105 

104 

"' 
0 

~ ~~ 
107 -......_ 

# 

} 

107 
104 

104 

107 
99. 

105 
'if 102 

103 

99 
95 

100 

- 99 

101 
104 

81 
106 

101 
79 

108 
104 

~ 

~ 
\ 

{if> 



~ .... 

~ 

I 
; ., -"¥ 

Sa.rri'ple code Date Location n 

NHI 26/6/80 
1° 40'S, 150° 10'E 105 

NHJ 1° 27'S, 149° SO'E lOS 
.< 

2°30'S', 150° 36'E NHK 17/7/80 
. 
~ 

100 

NHL '2° 25 Is 1 150° 44'E 1- 103 
:! 

N~· 31/7/80 2° 30'S, 151° JO'E 99 

NHN 2° 29'S, 15,0° 37'E 98 

NHO 24/8/80 2° 28'S, 150° JS'E 100 \ 
NHP 2° 30'S, 150° 42'E 93 

NHQ 11/9/80 2° 28'S, 150°~4'E 
82 

NHR 83 

NHS 16/10/80 
1° SO'S, 150° 24'E 101 

NHT 2° 11'S, 150° 25'E 103 
l --

'-::-..... Total 5445 
--

r 

\ ' Mean 100.8 ± 6.6 

\ 
I 

~ ~ 
( 

~ • p 

~ 
~ 

·' \ 
~ 

' . 
r-

""', 

/ 
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'~~"' 111 ::; Wlll be described in a subseguent section ( 4 ,..2 · 4) · 
}. 

149 
·•' 

~ I 

moulds' then allo'wed .to set for seV.eral hours and ,1 usua£ y overnight before 

use. The unlysed samples were applied to 9 mm x s. m:rii filter paper wicks 

and inserted into ten 'slot~ cut into t~e gel. i Horizontal electrophore'sis-

was Per formed in a cold room (5°C) for '3!..-4 h);,urs • \ by maintaining a current 

of apwoximat,:ely 3. 5 rnA per em of gel width. 'l.I'he gel was then sliced 

horizontally, and stained for esterase and trarl:sferrin. . ' 
•. 

Details of:the; buffers and stains used, which are modified slightly 

from Fujino and ~ang (l968a, b), .are as follows: '· 

Tank (running) buffer consis~ing of 11.8 g boric acid/1 and 

l. 5 g lithium hydroxide/1 in double distilled water (pH - 8. 2) . 

Gel stock consisting of 1.6 i citric ~cid/1 and 4.8 g tris (ttis 
""'>c~ 

[hydroxymethyl] aminomethane) in double distilled water. A 3:1 -, 

dilution of gel tank buffer comprised the buffer used to prepq.re 
• ,t(," 

the starch gel; two drops of bromophenol blue w~re · adde,P :tf 

allow. rate of movement <;~long the gel to be monitdred .. ·· ·, 

Stains 
:~ . 

• 
~ ~ < • • 

Esterase 

The freshly made staining solution containing· 3~ ·.fug p(~-.!,na,phifl.:t;l ",' 
... .· ' . ?· . : . 

acetate and 50 mg fast blue R.R. dissolved in acetone and'~oo ml 
..... - 'j, .: .... . 

reactihn': :allow~d ~ 
·;,. was poured over the gel and the 

to pi-oceed n the dark at room tempel1ature. 

distille~f!:~~e ed, 

acetate a so gave 
~~ . ~ , ... ' .. 

satisfactory ~nd in some cases'· superior reso.:...' 

lution of phenotypes. 

I 
Transferrin 

' ' 
I 

The gel was soaked in a staining solution consisting .of 7% 

'·· 

(by volume) glacial acetic acid, 25% methanol and 2.5 g/1 Coomassie 

(Brilliant) Blue for 5-15 minutes, depending on the condition of 

the stain. Destaining in a wash (7% glacial acetic acid, 25% 
I 

methanol) was allo~ed to proceed until the bands were clearly 

visible (usually about 24 hour~). 

'dlulo.sc acetate electrophoresis 

-~ 
· an important consideration 

The use of starch is howe~r time consumlng, 

When large numbers of Samples are to be run, and the methodS were gradually 

•.. I 

.. 

"· 

(!> 

\. 
•. . 

.- ~- :Hf .. 
' 

I 

-~· 
'~. 

',• 
' -1 

' 
-·· ··! 

: 
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I" 
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j 

" 'adapted to use with cellulose acetate as the support medium. No loss of 

resolution resulted af!d considerable· savings in time were achieved. Samples, 

again unlysed, were appli~d ·with. im adjust:le-gap draughtsman • s lining pen 

~0 10 x 7 em Cellogel .(Chemetron, Mi~an} strips. The gels had-previously 

b. n· so
1
aked in th.e running buffer for a minimum of 30 minutes. Horizontal ee · . · 

. . ; 0 

electrophoEesis wa~ performed in a cold room (5 C) although room temperature 

also proved satisfactory. Using adjustable-bridge tanks, samples could be 

appliec;1 along the. long~st axis (is' o:r; mo~e· per gel) or of! half ~els (10 x .< 

s~cm;up to 14 per gel) as convenient. 

~~ Buffers, running conditions and stains for were as 

follows: 

Esterase 

I .. .. 

Buffer - .05M TEB ~H 8.2 

6.05 g tris/1 

0,. 363 g EDTA/1 

Adjusted to pH 8 1 2 with bbric'acid 

Running conditions: 

Stain: 

\ 

Buffer 

25-30 min at 320v and 8-lOmA (per two 10 x 7 em gels). 

40 mg. Fast Blue RR in 100 ml of O.OSM phosphate buffer 

(pH ~.5), prepared by mixing X (O.lM Na H
2 

P04 2 H20) and 

y (O.lM Na HPO ) stocks in the rat~68:5:31.5 and adding 
'2 4 ~ 

f d~l.stilled'water; 4 ml of l% stock of an equal a;nount o 

t t l·n 50% acetone was then stirred in, a-naphthyl ac~ a e 

h 1 which was then incu-and the.mixture poured overt e ge 

bated at 37°C for 10-20 minutes . 

.OSM TM pH 7.6-7.8 

6.05 gm tris/1 

0.2 gm magnesium chloride/1 

7 'th Fluka maleic acid.· Adjus~ed to pH . 8 wl , 

Running conditions: 

Stain: 

1-H hr, 20-30 rnA per .geL 

minutes then desta~ed As for starch; stained for 1-5 

. ' 
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in ·a 50 methanol: SO distilled water:lO glacial 

acetic acid wash, usually for 1-2 hours. 

As a control, 5-10% of samples wer~ routinely retyped, and typings 

Checked after lengthy _periods~in storage. In ne1'th er case·~~ere discrepan-

cies discovered. 

v 

?henotypes 

serum Esterase 

In addition to the.three alleles and six phenotypes described by 

Fujino and Kang (1968a), a fourth allele was frequently observed. Although 

the fastest of the alleles, it has been designated 4. The additional heter

ozygotes 1-4, 2-4 and 3-4 were all, observed. Sharp (MS) also reported this 

C~lleJe and :r.elabelled the alleles l-4 in order of decreasing anodal mobility. 

The no~enclature (ESJ) and .superscripts ~sed by Fujino are •now so well 

established in the literature that their usage has been retained although 

his nomenclature does not follow established procedure (Giblett, 1976) and 

is at variance with the recent practice of assigning proportional mobilities 

relative to a~comrnon allele mobility of 100. 

Single examples of faster and slower presumed. alleles, designated 

5 and ESJ respectively were observed. A selection of observed phenotypes 

grouped on a single gel is sh-own in Figure 4. 4 .. .. 
Numbers of individual samples were retyped at rapdom, both immedi

ately following in.i tial typing and aft-er lengthy periods in storage at -10 to 
I 

-20°C. No discrepancies were obse~ved. Relatively little difficulty was 

experienced typing material from frozen fish, thawed to enable sampling, and 

from skiyjack kept on "'ice for several days after capture .and hence in fair 

condition only. Samples from skipjack store? in brine, even for brief 

~riods, ~ot unexpectedly proved very_difficult to type on t~e one occasion 

this was tri~d. Both the esterase and transferrin systems however seem 

robust enough to discount art.ifacts produced by det!';rioration during storage. 

Null alleles appear to occur relatively oft~n in esterase systems 

( · · that .such an allele occurs at e.g. Trippa et al. ~ 1978) and the possib1l1ty 

t-he t · d d I-Iowever whenever there was no - es erase locus needs to be consl ere · 
"st 'd · g or smearing, in individual - erase activity at all, as opposed to smu g1n r 

.. 
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Samples, a similar lack of activity was observed l·n t 
ransf~rrin, which is 

contrary to expectations if two enzymes are encoded lJy different loci .. 

}egregating independently. Such loss of activity can therefore be attributed 

(to sample contamination with other tissue flul'ds, t' 1 par lCu arly digestive 

fluids in stomach, leading to loss of activity. In the absence of breeding 

data, this and other possjbilities (post-translational modifications, 

switch mechanisms) cannot however be unequivocally excluded. The fact that 

very few samples were out of Ha:r!dy Weinberg equiiibrium a,nd that no hint 
. . h \. . 

of irregularlty was seen ln t e large number of samples typed (>10,000) 

supports the assumption that phenotypes at both esterase and transfer.ri~ ~ 

loci segregate as codominah·t autosomal alleles in simple Mendelian ~~shion. 
/ 

These observed phenotypes are thus regarded as expressions of. underlying 

alleles and wiLl hereafter be referred to as genotypes. 

Both Fujino. ('1968b) and Richardson (pers. comm.) have established 

~at the two loci ass6ciate ranclomly. They have thus been treated as 

independen~ loci in all subsequent analyses. 

Serum transferrin 

A rourth t'ransferrin allele, in addition to the three reported by 
r 

Fuiino and Kang (1968a~ and Barret and Tsuyuki (1967), was observed on one 

occasion. It is the slowest of the four alleles and has been designated 4. 

,i! Ltior1.al systems 

The screening of nearly 60 presumptive loci in skipjack blood samples 

(Richardson, MS) revealed genetic polymorphism (common allele frequency ~ 

<0.95) in four additional loci, ADA (adenosine deaminase, E.C.3.5.4.4.), 

:pr (glucose phosphate isorRerase, E.C.5.3.1.9.), GDA (guanine deaminase, 
I 

E. C. J. 5. 4. 2.) and PGO (phosphogluconate ·dehydrogenase (decarboxylating) 

E.C.l.l.L44.). 

With.the exception of GOA, whifh shows a weak longitudinal cline in 

~ho frequency of the GOA allele from east (0.11) to west (0.25) (Richardson, 

'IS)' all had common al.le~e frequencies' >0.,90 over 'a wide area and showe~ no 

· · d b the case with transferrin. :ons1stent geographic variation, as ha een 

Independent searches by Walker (pers. comm.) and Sharp (pers. comm.) produced ) 

sicillar findings, the former however reporting a GO (glucose phosphate 

d h h · h et to be confirmed, e Ydrogenase; E ,.C. 1.1.1. 4 9) • polymorphism' . T lS as Y · 
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bUt variable levels of breakdown amongst samples are SUSpected to be the 

source <at this :variatioff. Turner & Cederbaum (1975) document cases of non-\! 

genetic variation in this· enzyme. 

" 

As mentioned earlier, Fujino (in press) has recently described a red 

blood cell esterase~polymorphism. This system had"been partly described 

in a previous .Plublication, (Fujino ~nd Kang, l968b) .. Fujino (in,press _ 
,... R . 

Table 2) :eems to have bee~ able to t~pe approximately 60% of samples only 

and similar difficulties were experienced when the sys tern was investigated 

by the author. It appears considerably less stable than the serum esterase 

syst~m (ESJ) and its practical application at this stage seems restrict'ed to 

samples collected and pnalysed within a few ~ays of capture . 

. . 
A l~mited number of polymorphic systems are'known for enzyme loci 

present in .other tissues, but showing weak activity or not expressed in 

blood. McCabe et al. ~ (1970) repqrted a low frequency polymorphism in GPO 

(glycerol -3- phosphate dehydrogenase (NAD+) E.C. 1.1.1.8) and PGD and 

F~ino (1976) has referred to LAP (leucine ammopeptidase, E.C. 3.4.11.2 and 
. 

SOD ( superoxidase dismu tase E. C. 1.15. l. 1) polymorphisms in liver and pyloric 

caecae; Clegg & McCabe (fide Fujino, 1?70) discovered a fo.ur-allele dimeric 

esterase polymorphism in liver, and Fuj ino (1970) four:d three phenotypes in 

skeletal light muscle protein which appeared to be under gen;"tic control. 

The author (see -later) has o_bserved addi ti0nal low level variation in MPI 

(mannose phosphate isomerase, E.C.5.3.1.8) ICD (isocitrate dehydrogenase 

(NADP+), E.t.l.l.l.42), SOROH (sorbitol dehydrogenase E.C.l.l.l.l.3) and 

~OT (aspartate aminotransferase E.C.2.6.l.l), and highe;r level variation at 
~ 

a rather unstable ADA locus in liver samples. 

In general,the increased difficulties associated with handling tissue 

other than blood and the practicability of obtaining large samples from the· 

:na ior source, conunercial catches (which are generally. sold. as whole, un

•lamJged fish), have precluded use of any of these sys terns on the large sca.le 

:.ecessary for them to contribute to skipjack population studies; the serum 

nsterase and transferrin systems accordingly remain the basis of the present 

study. 

4. 2. 5 Statistical procedures 

· ff b rved in codom;i.nant .allele Estimation of statistical dl erences o se -

frerluencies usually 

I:lany asymptotically 

f f't test in one of its employs a chi-square goodness o ·l 

equivalent forms (for e~ample, the z te;t of Walpole and· 

\ 
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Myers (1972), the G-test or log-likelihood test of Sakal and Rohlf (lgig)) 

The tjsts 
/ 

rather than Fisher's maximu,m ~ikelihood method (Spiess, 1977 ). 

vary in their applicability to particular problems. As the G-test, for 

example, compounds gene and genotype frequency effects in one statistic a , 
s~pler ste~-wise .approach examining first allele frequencies fhen geno-

type frequencies was adopted. Presumably because of this cem6ounding effect 

the step-wise approach and G statistics have produced conflicting results 

when applied to some of the da~a sets ,considered in this Btudy (see later). 

Individual allele frequencies can be compared by grouping all other 

alleies to form a single alternative class and testing for homogeneity, 

using a 2xN contingency table;•3xN 

of_EsJ' it is necessary to combine 

l 
if one of the common ·alleles (E , 

"" ··:.--- . - , SJ 
rare alleles. 

tests can also be performed (in the case 
3 4 

the rare E and E alleles} to test 
SJ SJ 

2 <:> 2 3 
- ESJ or Tf ., Tf ) covary witb the 

SJ SJ 

Gauldie)and Johnston(l980) have argued that where'there are likely 

to be differences in fitness amongst al+eles, it can no longer be assumed 

that samples are indepen,den t and ~hi square test'5 are not appropriate. 

They suggest analysis of variance might be better utilized. As it is not yet 

feasible tp patti tion skipjack sampl ... es by age, area of origin and other 
) 

factors (see 2. 4) to provide. a basis for analysis of variance, this approach 

has not been considered in the present analyses. 

The power of tests to estimate, using genotype frequencies, 
' ~ 

deviations from Hardy Weinberg expectations as individual samples of the 

size collected during this study ( 200 > n > 80) is unifonnly low for the 

statistics 'commonly in use, namely F tests (Ward and Sing, 1970), G tests 

(Anon., 1980) and Smith's H test (Smith, 1970). Chi square-relq~ted tests 

have the problem of not be{ng able to distinguish betwe·en positi.ve and 

:,rorJative deviations i.e. between too many and too fe't heterozygotes. G 

statistics 
1 

in particular 
1 

have the advan tafe of incfseased deg~ees of free

lnm but the possibility of obtaining significant and possibly spurious 

/ i"viations may also be increased I as deviations are squared and summed, dis

rn:,arding sign. 

' ! l assocl.ated with s~bdivision of To overcome this and related prob ems 
· t' whl'ch now bears his name. It samples, Smith (1970) devised the statlS lC 

1S calculat~ 

) 
t from the formula simple two allele sys· em 

\/I 



2 
_..H = 4n pq- (2n-l)Y 

.!> 

4n(n-l) 

lvhere n = sample size' p &· q = gene frequencies and y = observed number of 

heterozygotes. Where n > 10, the variance of H is approximately p2q2/(n-~). 

A deviation of twice the standard error i.e. 2/ 2 2 l. s d d 
. p q /(n-~) regar e as 

equivalent to a 9~% confidence limit, and the test statistic is thus judged 

significant w6en the 95% confidence interval does not include zero. A 

further advantage of Smith 1 s H is its amenability to summation i~man'ner 
more acceptable both biologica)lY and mathematically than is the case with 

chi-square tests. A summed H with narrow confidence limits (due to increased 

sample size) is obtained without increasing the Wahlund effect. 

2 3 4 l 3 
A two allele Smith 1 s H (combining E -E -E and Tf -Tf 

SJ SJ SJ SJ SJ 
res~ectively in one class~ has therefore been used to examine deviations 

from equilibrium both within (H) and across samples (H). 

One problem wh;Lch potentially arises with three allele sys~ems where 

two of the alleles covary positively (see later) is that 2m excess of 

heterozygotes involving the two covarying alleles can result from mixing 

the Wahlund effect), rather than the deficiency of heterozygotes expected 

in a tw~-allele syste~ (Milkman, 1975). With a third allele frequency of 

·· .015, as is the case here with both systems, calculations have shown that 

this complication does not arise (Richardson & Calaprice, pers. comm.). 

~ixing should therefore lead to heterozygote deficiency over the range of 

lllele frequencies involved here. ' . ' 

4. 3 GEOGRAPHICAL VARIATION 

~. 3.1 Sources of Data 

The logistical problems inherent in obtaining adequate coverage of 

H " • • 1 Pacl· fl. c ocean between 40°N and 40°S and the .ne vast area ln questlon, t 1e 

PJ~crn Indian Ocean, are formidable. They are exacerbated by the lack of 

"U t · d · · h' t' · t the pr' ~ma.ry source of material for ' s a1ne commerclal fls lng ac lVl Y ,. .u" 

'J'·netic C~nalysis' over much of this area (see 3. 2) and the spatia-temporal 

:luctuations in the availability ru1d abundance of the target species. 

l. n par·t been offset by the extensi>.tf- cooperation The problems have 

·J;,d exchange of material and unp~blished inform~tion among interested 

.0' 
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research groups and individuals. Beginning vfi t~ co-ordinated sampling in 

papua New Guinea, New Zealand and the eastern Tropical Pacific in i 975 _76 

(Sharp, MSb), this approach has ~ince been fos.tered by the Sout,.h Pacific 

commission, (SPC) through its Skipjack Surve¥ and Assessment Programme. 

since 1978, during its skipjack tagging' c:,ru-ises, the Programme h~s 

collected blood samples in many hi tnerto unsampled localities throughout .• ~ 

its area of cQncern (Figure 4.5) as ~~ll as in the contiguous regions of 
·' 

New zealand and the Australian east coast. It has funded analysis of this 

material and organized two workshops to bring together and_ evaluate all 

available genetic data on skipjack within the area, in combination with 

results of its own large scale tagging programme. As of early october 

1980, when the second workshop was held, genotype numbers and gene frequen-
-

'cies from nearly 200 lots (n ~ 100, total n ~ 20,000) were. on file. 

.. 
Over half of this data set consists of material from the Indo-Aus-

tralian region collected and analyzed by the author (108 lots, areas 1, 2; 

3, 4 - see Tables 4. l, 4. 2) . This is of ·limited value per> se in examining 

'Jcographical variation thr.ou.ghout the Pacific Ocean and eastern Indian 

Oc~an and mu{ii.t be combined with.data from other areas. The reports of the 
6 , 

workshops (Anon, 1980, and in prep.),_ which integrate these data. with data 

from other areas, ill1d analyses of the SPC samples (Richaxdson; MS), espe

cic~lly those collected outside the Indo-Australian region, will thus be 

•·xtensively referred to in the discu_ssion which· follows~ In the above 

tnc~lyses, the SPC arPa was arbitrarily divided into four regions, A (130-
/ 

l7 1J 0 E), B (170°E - l60°W), C (l60°W - l25°W) and Temperate (south of 25oS) 
I 

t0 fc~cilitate data manipulation and discussion (Figure 4.5). Material 

~ollPcted by the author within the SPC regiop is from areas "A" and 

"Tempera to". 

Detailed informa·tion (genotype munbers etc.) has been obtained on 

'hrf'" relevant data sets generated p;rior to 1978: Ecuadors and 'pNGS (Sharp, 

"" ' · h d dlt f' le at the National Marine · ,\Sl•) und PalauF (Fujino, unpublls e a a on ·l 

:C!shPries Service Laboratory, Honol,lu). 0 er samp es, 

157 

'·, 

t t h 1 collected in the 

· h A data set ;~,;-solomon Is. area during 1976-77 ave been included ln t e area 

f Richardson. Material collected in the south-west Pacific by Fujino (1976) 

;nn,.rally involved small lots (n < 50) and has accordingly not been used: 

It should be poi-nted out that material collected since l9?8 has all 

t.,·en from areas south of l0°N. consequenGly attention will initially focus 
t# 

* \ . to fellow participants at these. 
The author acknowledges hlS d~bt 

4 
• • hts into the interpretatlon 

workshops for providing invaluabLe lnslg · lJ1 
and analysis of these data· J.iJ1 
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'ttln the equ?toriaJ and southern Pacific and the eastern Indian'- Ocean, still 

.an enormous. area oJ: _;;cec:n. .· 

In a~terT;ptlng to- ~~aw out wor)<ing hypotheses from the d~ta it has I 
I 

generally proved necessary to group sample lots both Y.Jithin some rather 
1

1 

broad .areas. and, across P.Ptentially disparate time strata and size classes. 

I 
I 

~ . ~~ 

Analysis of the time series samples should later provide some indication of 

whether in terpretc;J:~ions derived on this basis need qualification. 

'• 

For the. 54 lots collected in the Indo-Australian al'ea (i.e. e,Xcluding 

the time series samples) , s~ple _size, mean length, allele proporti6ns, -$ 
,1enotype frequ~ncies and SJnit)l_' s 1-1 values for esterase and t~ransfe/rin 

sys terns are gi yen ~n Table:;; /.I· 3 and 4. 4. For rna terial collected ~y other 

.workers, sumr.naries pubiishi:!d o:r .in pre-ss rather than raw data ha~~ been 

referred to. f· . ,··-...• 

A. sununary of basic 

f 
analyses by the 

I 
I 

I 

is given in Table· 4 ·-~ 

various geographicay groupings 

These .. groupings are distrib~d as 71lows :. 

c, 
Area la - PNG archipelag~ waters 

~·p~;tern 

l;.topicul 
I\1c if ic 

·f-it••; t:f~ rn 
;·n~l ,,, Ll te 
i'.1:: if ic 

~: Jl>ir·,d 

·,.;, ·;t-u'nlrul 
I ,J• ·if ic 

:r•Jr·i··,d Central 
t . .J• .1 f ic 

" -:-r)ri-:.:11 Eastern 
' l :if 1 c 

>.lJrH·~;i,l & trop:t,c;;al 
r. 1 ';': Indian Ocean 

;,.:'l[•·rat,, East 
:;\'han Ocean 

:JJbscripts - F ~ 

A 

lb - north of PNG 

general PNG area 

10~,1- 25°S· 
l30°E - l70°E · .. 

- 'V8°N l38°E 

·2 - Australian east coBgt 

' Temp. - S.E. Australia and N.Z. 

'a 

c 

Ecuador
5 

3 

4 

and analyzed by K. 
and an~lyi~d by G. 

··. 

~ 

\ 
\ 
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-~ 
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" 
eP 

"' 

{-~ 

"' Sample 

·Area la 

PG 
PE 
PA~ 
SA 
SB 1 

-ED . 

CB 

CB2 

ARA 

AM 

AN 

MAS-A 

Area lb 

DS 
DT 
VGA 
VGB 
HI "'E 

WA 
WB. 

WAC 

"" Area 2 

Cll. 
cc 
CD 

~ 

~ 

':1J .. 

<fj 

~-

-on 

114 
52 
91 

163 
106 

..J..l4 
81 
96 
81 

107 

l!f3"' 
) 105 

61 
102 

95 
100 
102 

96 
~ 99 

• 87 

56 
64 
68 

,r, ~ 

'$-
~ f 

--. ~ 

~~ 
;_. ' ~-

... 
..,. Table 4. 3 -~ 

Serum e~rase ~llele prop{rtions 
Australian area ~amples. -· ·. 

' ' 

~ 

s "---

~;, genotype fr~quef).cies in I.ndo-

,. 
Q 

' The ~ample size (n) mean leng~~ of skipjac~ in the s. {t) & 
two allele Smith 1 s H value ar~·~o ai vPn - . 

·. ... 
'cantly out of equilibrium. 

Allele proportions Genotype fre<:\uencies · 
.e. 

.55 
56 
49 
60 
49 

~so 

49 
51 
48 
51 
54 
52 

52 
53 

:~ 5T 

53 

52 
52" 
.52 

47 
49 
53 

1 

·. 781 
.1317 
.813 

~ . 79? 
. 722 

. 75 

. 75 
. 755 
. 728 
. 67-~ 
.697 
.652 

.622 
~- 622 
. 6.54 
.69 

"'c. 627 

.614 

.661 

.741 

.652 

.726 

.742 

2 

-; . 21_.') 
.. 183. 
.187 
.200 
.269 
.237 

. 25 . 
.234 
. 271 
. 313 
.298 
.323 

.360 
~58 

. 3,1 

.30 
:348 . 

.359 

.323 
~47 

3/4 "-

.004 

.003 

.009 

.013 

.01 

.014 

.oo5· 

.023 

-. 016r 
. OHl 

.o-oY' 
.01 

_.025 
lo26 
lo15 
Jop 
I 

J 
.339_/ .009 
-r2"58~--:-~ 
":-is . oo7 

11 

67 
36 
59 

106 
54 
64 
'43 
55 

I) 43 
45 

·55 
44 

12 

~ : 

43 
13 
30 
48 

_45 

. 41 
34 
33 
32 

,h-1 
41 

. 48 

24 27 
38 5tl 
40. 50 

50 37 
42 41 
32 49 
48 C!lf. . 33 
47 34 

23" 26 
33 26 

"38 .4 ... 
~ 

l3 

1 
"-··· 

1 

2 

2 

1 
1 

1 

1 
3 
3 
2 

'1 

1 
1 
1 

; 

~ . 

14 • 22 

.............. 

' , ' 

1 
,.._ 1 

1 

f> 

1" 

).. 

2 

"' 

1 

3. 
3 
21 

8 
'5 
6 
3 
9 
6 
8 

12 
.18 

4'8 

10 
4 

~1 
14 .. 
10 
15 

4 

6 
3 
5 

23 

1 
2 

·1 

1 

'1 

" 
1 

\ 

:""-<... 

2;1 

3 

1 
3 
1 
1 
1 

1 

... 
33 

"' 

4 

Smith 1 s H 

,Q .. 

-.021 
.026 

~.012 

.015 
-.011 
-.003 
-.024 

.004. 

. .002 

. o:n 

.019 
. - rOOS 

.007 

.. 014 
-.046* 

.025 

.019 
-.043 

.048* 
-.008 

-.012 
-.011 

.009 

" 

:/. 
,\\ 

..--' 

(~ 

•". 

... 

~ 

9 

t 
# 
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Cr·' 
CG 
CH 
cr 
CJ 
CK 
CL 
CH 
co 
CP 
CQ 

KAF 

KAG 
KAH 

KAJ 
K..J;K 

KAL 

TA 

NS 

SE 
FA 
FB 

Are. 3 

BC 
BD 
B MIX 

' yy 
yz 
lA 
lF 

Ar)By 4 

lC, 
lo· 

-¢> 

<:-:3 

... 

4CJ 

55 

7l 
94 
59 

127 
•. 53 

S_l 
64 

. 47 

98 
87 

1'44' 
101 
109 

98 
110 
119 

47 
99 
92 
64 

lll 
101 

' ( 113 
lOS 
119 

91 
149 

.· 

0 
47 
49 
53 
51 
53 
51 

57 

., 

(53) 
56 
45 
46 
46 
64 
48 

...,48 

47 
47 
48 
5.0 
48 

49 
48 
49. 
43 
~42) 
53 
54 

" 

.635 

. 755. 

. 7-ld6 

.777 

.780 

.795 

.679 
.. 774 

.554 

.606 

.617 

.661 

. 712 

.574 
~692 

.663 

.673 

.613 

.. 596 

.565 

.668 

.609 

.801 

.767 
.80 

.852 

.861 

.857 

. 822 

139 (51/54) . 838 
72 55 .854 

~~ 

~~ 

""" 
.. 

~ 

.364 

.236 

. l.97 

.218 

.203 

.204 

. 311 

.225 

.445 

.361 

.362 
,327 
.288 
.410 
.293 
.'337 
.309 
.382 
.393 
.429 
.315 
.375 

.189 

.212 

.185 

.133 

.126 

.138 

.171 

.151 

.132 

. 009 

. 007·. 
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.016 

. OQjL. 

'~ 
.032 
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. 011; ··-.._ 
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.011 
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Table 4.4 Transferrin allele propor_tions & g~:rype frequencies. 
~ • .6; ~ 

~ The s~ple size (n) m~p length,of skipjack in the 
sample (£) & two allele Smith's H value are also given: 

An aste~isk indicates samp~e significantly out of equilibrium. ' ~· 

"" Allele proportions > Genotype frequencies 
Sample n £ 1 2 3 22 '23 12 33 13 11 Smith's H 

--
Area_la 

PG 107 55 ' . 71~ .281 ~s6 12 9 .006 
PE 43 56 .72 .28 22 18 3 

.. 
-.0-G6· 

~ 
PA 88 49 . 795 .205 55 30 ~ -.oo7 
SA 163 60 .67Jl .322 76 69 .! .... .007 

·.:;; \, 

s~ 106 49 .006 .66 .334 4'5. 49 ll 1 -.010 
.. 

~ ..:.;: .. so 113 so .69 .31 55 46 12 .011 ... ,4.-

78 49 .603 .397 29 36 13 .010 
92 51 . 717 .283 47 3'R. 7 -.003 

' 
~- 80 48 .012 .663 .325 33 38 ., 2 7 

'b 
-.025 

AM 107 51 .005 .752 .243 61 38 "~ 7 .005 ·~ 
AN 109 54 .693 ~. 3{)7 52. 47 " ~f;s. -.002 . 10/ fJfi 

) • «>.' ~ ~ 
MAS-A lOS 52 .005 :714 .281 57 36 '0 ~ '"" ll. "'~ 1 .034 . "'· ·: ' 

~rr-

~ ~ v, 

·Area 1b 
- ' 

OS 61 52 .008 .606 .385 19 35 1 6 -.055 
' 

OT ,·'* 101 53 .005 ·. 713 .282 49 45 1 6 -.022 
VGA ' . 95 53 ~ .005 . 732·· .263 51 36 1 7 .003 
VGB 53 

~ 
NO DATA • ~ 

~ \ ~3 HME 102 - :005" .701 .294 50 8 1 0 
WA 94 52 . 005 .676 . .319 44 '39 10 lJ. .013 
WB 99 52 . 758 .242 58 34~. 7 .013 
WAC 87 52 .695 .305 45 31 11 .035 • / 
CA 55' 47 .772 .228 32 21 2 -.013 - ~ 

cc 61 49 .008 .680 .311 25 32 ], 3 -.051 
CD 67 53 .014 .701 .284 32 20 1 4 1 ' -.013 
CF 48 .74 .26 27 \ 17 4 .017 
CG 53 47 .018 .66 .321 25 20 6 2 .. .038 

... \\ ' . 
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CH G9 ( 49) .725 .275 35 30 4 -.Ol6 CI 93 53 .005 .677 .3l7 4l 44 7 l .-.Ol7 CJ 58 Sl .776 .224 '36 18 4 \ .020' CK 126 53 .012 - 706 .282 60 56 2 7 1 ~ .. -.022 CL 53 51 < .009 .67 .321 23 25 . ' 4 1 . -.012 CM 50 47/52 .02 .75 .23 29 15 2 4 .01'3 co 59 57 .627 . 373 24 36 9 ., .015 CP 46. (53) .652 .348 19 22 5 -.010 " <:;:Q 91 56 .758 .242 48 42 1 -.046* KAF 88 45 . 722 .278 4.3 41 ;;, 4 -.031 KAG 139 4~ .004 . 712 .284 70 57 1 11 -.003 KAH" 99 46 .712 .288 45t:" 51 3 -.051* KAJ 109 64 .010 .665 .325 49 ..-4~ l 12 1 .009 -KAK 98 48 ;633 .367 4} / 42 15 .019 KAL 108 .48 .005 .699 .296 51 48 1 8 ~ 

-.015 .. 
TA 119 47' .004 . 743 .252 66 44 1 8 - .. 002 NS. 47 47 .010 .723 .266 26 15 1 ' 5 .032 SE • 99 48 .010 .657 .333 41 47 1 . "9 1 -.015 " 

-.023 
FZ\. 91: 50 .016 .681 .302 40 42 ~ 6 l FB 66 48 .008 .652 .340 27 . 32 • 1 6 1 -. 01'3• "• 
Area 3 ./ 

---

' 
BC 110 .009 . 709 .282 ... 54 47 1 7 1 -. 011 BD 99 .010 . 65-6 .333 41 47 1 9 1 -.015 B MIX 112 .009 .652 .339 50 44 2 16 .022 .678 .322 

~ 

48 45* 11 
yy 104 

I;; . 003 YZ 118 .699 .301 59 47 12 .01'2 ... 1A 91 .016 .665 .319 40 40 1 8 2 0 IF 148 .007 .699 .293 75 56 1 15 1 .018 
. ----Area 4 

1C 139 .01 .701 .288 7l ~ 52 1 .... 13 2 .019 10 72 .694 .292 37 25 1 8 1 0 

' -S-· 

-~ 

"" 

·, 

,.. 
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' l 2 
E .SJ J/1 Tf 

SJ 
-A 

Area p Lots n Homogeneity.· H p Lots n Homogeneity 
' ' 

- " * xf1= 22.09 * 1a .743 12 1219 Xll = 32.33 -.0033 .699 12 . 1191 

·lb .660 8 742 I X~ = 10.92 \ -.0014 .702 / 639. X~ = 9.82 

* 
~ x~~ 29.3 ( 2 .677 25 2025 x~4 = 99'.23 -.005 .699 25 • 1992 

' .. 
x2 - -.003 78'2 3 .823 7 789 6 - 10.86 .688 7 X~ = 6.62' 

~ . 
4 .843 2 211 2 xl = 0.18 -.005 .699 2 211 Xf = 0.02 

· x}1 = 107. 4 * * .x~1 =.30.6 A .673 32 3249 .012 . 696 32 2918 
-

Xf9= 46.5 * Xf9= 23.3 B .547 2Q 2267 .0071 .720 20 2040 

c .427 ll lOll xf 0 = 1q. 2- .0039 .689 ll 999 ' Xf0 = 10.2 

Xh= 30.99 * Xh= 18.27 l?f)JGS .655 14 2302 .002 .695 14 2299 

X~ = 26. 12 * ' Ecuador
5 

.435 8 1591 .003 .698 . .8 1585 xz = 22 28 7 . 
. 

* ~ 

l?a·lau .679 21 1604 X·' = 2 7 ]LI .. 010\ .691 21 1495 xz = 19 23 
. F )0 . I 20 . 

I · 1 l . . Many se1mplcs wtthln Ol)e lot not typeab. e, so t ns lot not lncluded. 
..,. 

Table 4.'J 
~ 

Results.of basic statistical analyses by area groupings for Ester~se and Transferrin systems. 
. ~ ~ . . 

Mean gene frbquency (p), sample numbers (lots & total number), homogeneity test values and 
mean Smith'~ H values are shown for each of the areas defined in the text. Significant 
departures from homoqencity or equilibrium are indicated by an as~erisk (P < .OSl 
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~ 01.'stribution·of Genes 4.3.2 

The E~J and E:J alleles ·occur ~n all areas at lo.w frequencies, as 

can be seen in Table 4.6. Tests of homogeneity, performed on allele 

nw®ers in :hese area groupings rathe~ than between lots because of the low 

numbers per lot· in some genotype classes, show E3 frequencies amongst 
' 2 · SJ 

areas to be homogenous (X 10 = 10.0, P ~ 0.40) and E4 frequencies to be 
2 SJ ~ t' 

heterogenous (x10 = 30.1, P < .005) · As pointed o·ut previously, there is 

. a danger with such large ?ample numbers (total n == 32 198) that trivial 
r, 

'differences of no biological significance maY. assume statistical signifi-

cance .. This may be the c;:ase here, where E:J ~*tquencies. vary between . 001 

and . 007 .' Another possibility ls that l-4 genot;pes' have been identJsfied . 

in some cases as 1-1 ho~6£ygotes with a stronger thari us'ual forward break

down band (Figure 4.4). This.problem does not aris~ with the l-3, 2-3 and 
I 

2-4 genotypes. That thi~ occurs 

(1970, 1972, 1976, 1979)· has not 

to some extent is presumably why Fujino 
4 

recorded theE allele in over 20,000, 
SJ T 

samples. It ·thus seems reasonable to assume that the. observed hetero

gEJneity in E:J frequencies has no bi'Ological sig.r:_ificance. 

\ 

l 2 
The frequencies of the ESJ ~nd ESJ alleles covary negatively. As 

the E
1 

allele is gen~rally the more common, it will form the basis of 

'· 

SJ - , 

discussion. E
1 

frequencies wi fhin individual samples collected in the SPC 
SJ . " 

area range from 0.82 to 0.37, and p (combined estimates of the frequency) 
'·· ;) 

values within areas A, Band C were ~espectively .673 (n == 6498), .547 

(;>, = 543LJ) ; · 4 27 (n = 2022) (Table 4. 5) . Without making any a priori 

assumptions about th,e geographical distribution of E~J {requ\=ncies, a linear 

regr.ession of £1 f~;!quency against longitude (coded as negative degrees 
SJ 

~st of 180° and positive degrees ease of 180°) was plotted as a first · 

step. Frequencies wera not transformed, since over the range involved 

::ere (. 35 - . 85), transformation has negligible effect (Cox, 1970) :'\·The 
basic relatio,nship derived from t)1e 98 samples available at tha~ time, · 

l namely E 
SJ 

~. 
== .5576 _ .0035\L) where L =longitude coded as above, accounted· 

for 61% of mean square deviations from the mean gene trequency (Anon, 1980). 

0 0 
Collection of .. additional material within this ~rea (130 E -, 1 30 W) u . 

" · ( 2 0 81) w1· thout significantly "as c911firmed the fit of the regress1.on r = · 

altering the slope of the line. 

.. 

I 

I 
/ 
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Esterase 

Area ·/b la lb PNGS 2 3 4 

-~ 
2n 2438 1484 4604, 4050 1578 422 

Q ' ' ~ ~-.~--- -- -!- - -"-
No. 16 12 36',, 

3 
E 

'SJ Freq. 

:.4> -_-,-- 'H 

4 
No. 

E 
SJ Freq. 

'>,. 

Trans{errin 

Area 

2n 

,_. 

No. 
1 

TfS.J Freq. 

~ 

.007 

3 

~001 

lra 

~ 

5 

.002 

.008 

12 . 
.008 

> lb 

1278 

5 

.004 

.008 

32 

.007 

PNGS 

4598 

42 

.009 

.26 

.006 

'., ll 

.003 

2 . 

8 

.005 

10 

.006 

3 

3984 . 1564 

24 

.006 

ll 

.007 

2 

.00~ 

, 3 

.007 

c 

.....__ 4 

422-

5 

.012 

Table 4.6 Geographical Distribution of rare alleles. 

A 

6529 

62 

.014 

22 

.003 

A 

• 5835 

.008 

B 

4534 

~~2 
~-

. 009 

13 

.003 

.. 

c Temp 

2022 1386 

21 9 

• 61CT ----~.llQl) 

15 7 

.007 .005 

~c Temp 

4080 . 19·98 1422 

.009 .008 .002 

.,l>t--

Ecuador
5 

.... 

Total 
\ 

s 32,198 "~-1~~ 
-~ 

\ 
32 266 

.010 

18 

.006 

Ecuador
5 

3170 

42 

. 013 

.008 

146 
~ 

.005 

PalauF 

2990 

19 

.006 

. f - 4 
(The data set Pala~ has been excluded for esterase slnce theE allele was not recognized.) 

SJ. 

J 

~ 

---------
\ 

------,...._____ 

Total 

33,723 

~ 
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Figure 4.6 

4 
-, 

~-

\ .I 
~ 

~ 

<> 

~egression of E 1 frequency against longitude in the South Pacific Commission area. 
SJ Q ~ 

-~~-- This has been extrapolated westwards to include Indonesian and Westeyn Australian material (~), 

~ Prediction limits (95%) are shown, as are samples coll~ted in the eastern tropical Pacific (o). 

:"' 
..... 

... 

'-

a 

This figure is an expansion and modification of 
a figu;e comp~led~at the second SPC workshop (Anon., in prep.) 
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Material collected to the west of l30°E by th 

,.. 

e author at three 

sites in Indonesia (samples BC, BD, Bmix, YY, YZ, lA and lF _ see Table 

4_1 for details) and two. sites in Western Australia (lC and lD) has yielded 

E~J frequencies (. 77 - . 86) which lie on the westward extrapolation of the 

Previously fitted regression. These are superimposed on p· 4 6 d lgure . an 

'strongly ~uggest the clinal relationship holds into the east@rn Indian 

ocean. No material has yet been collected west/ of 100°E to determine the 

westHard extent of this phenomenon. 

Gene frequencies east of t~e SPC area, i.e. east of l3o0 w, from the 
, ~: 

.'1exica.n and Ecuador fisheries (Sharp, MS) are similar to those observed 
.-·"" 

in area C viz p = 0. 427 (n = 2022). This levelling-off of the clinal 
' relationship is consistent with observations that little spawning occurs 

east of l30°W a'nd might, also prove to be consiste'nt with the hypothesis 

that skipjack exploited in the Mexican and' Ecuador fisheries in the eastern 

ttopical Pacific are of central Pacific origin (see 2,3). 

Although it would clearly be desirable to have more material, 

. f 160° 17' 0 d 0 0 
. . . r~'urtlcularly · rom areas - 0 E an 170 W-160 W, the cllnal relatl_onshlp 

166 

does seem to be a real feature of the data set, with the following attrib~tes: 
"' ' 

(l) it appears stable, in time, or at l'east in a dynamic steady state, 

(2) 

~ . ' 
over the_relatively short p~riod for which data is available. 

. 1 
Most data is from the Papua New Guinea area, where mean ESJ 

fre~Jnaies have shown no appreciable change·between 1975 and 1980. 

Material collected in Palau (8°N, 13~0E)and Tahiti (18°S, 150°W) by 

Fujino during 1966-67 (PalauF, 21 lots, 1604 fish, ; ~ 0.679; 

Tahiti (16 lots, 627 fish, p ~ 0.4.5) yielded similar.frequencies to 

those during ~978-79-80 (Palau, 3 lots, 0.639- 0.684; Area C, 11 

lots, p ~ 0.427). 

· 1 · 1 · t d is wide. the variancedirr E freguency at any glven ongl u e 
SJ 1 

For examt at 15Q0 E the mean E frequency (0.66) has 95% confi-
~~ SJ 

donee li~ · t~-.· o.f :1·0 .1~5. The variance expected about this me'an with 

· t 1 100 re ±.07,· so the observed varisample s zes of approxlffia e y . , a 
, d · th th . ' X 2 

ance is nearly twice the ex_r::ected value. Asso~iate wJ. ~s 1 

· f ·:rcies within many homogeneity .tests (2xN 1 3xN) sl}ow esterase_ requ ~~:. 

• · 1 h the n r df lots exceeds geographical groupings par~lcular Y w ere 

81 ~o be highly ~~terogeneous (Table 4.5) · The time series sampling 

\ 

\ ./ 

I 

I 

) 

"'.' 
.) 
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was initiati with the 
aim of resolving this variance into 

components and will be considered in sectl· on 4 . 4. 

(J) Latitude effects appear- to account for a small amount of the 

variance observed at a given longitude. 

(4) 

ill1en samples from higher fatitudes (> 25°s, where little dr no 

spawning occurs) are removed, the fit of the regression line is 

only ma~ginally im~roved. However Richardson (pers. comm.) has 

shown that subdivision of the data setxelative to s0 N, the 

approximate position of the T~ermal Equator a~torial counter 

Current, enables two cliries t~ be fitted (Figure 4.7). Equivalent 

slopes are produced, but at any given longitude, the northern 

cline has a mean E!J frequency approximately 0.06 less than its 

southern counterpart. The number of sampl·es involved in this 
' 

northern area is relatively small, further collection is required 

to verify this interesti~g preliminary finding. 

Inspection of Figu.re 4.6 suggests that the variance ·about ~1e re-
~ I 

gress±on may decrease e\stwards. 

The relatively small nu~er. of samples taken east of 160°W preclude 

confirmation of this observation at this stage. Most were taken 

during the same~three month period in two separate years, which may 

'lower the expected variance if there are seasonal effects. 

~ ~ 
• • 0 01 

Gaps in the cline a~ around 165 E and 165 W appear to reflect lack 

of sampling otportunities rather than discontinuities in skipjack 

distribution, and there seems little reason to dpubt the continuity 

of the cline between l00°E and l30°W at this stage. 

. . 0 '11 b ExaminC::tion of possible mechanisms maintaining thls cllne wl' e 

1~ferred until gene and genotype distribution; of both variable systems 
~ . 

::u•:e been described, .as will discussion of various hypotheses which might 

~X!·lain the distribution of esterase frequencies· 

The Tf
1 

.allele occurred in 
SJ 

' rl 3 ;tb · ) , as was the case with the ESJ 

':or,oqeneity (2xl2) showed tl)at the 

~he various ge0grap¥c.al groupings. 

a•_tdbutable to the relatively h'igh 

\ 

all areas at low fre,quencies, ~ypically 

d E 4 a·lleles (Table 4. 6) . A test of. 
an SJ . 

frequency may be heterogeneous amongst 

(v2 = 36.6, p < .Q05). This is 
":1'1 

- of .the allele in samples from frequency . 
•' 

167 
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* - \ The author acknowledges his debt to fellow participants at t-hese 
workshops for providing inval~able .. insights into the interpretation 

and analysis of the~e data. 
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Ecuador and low freque~cy in·· g.roups la and Tempe,rate. Again, its· 

significance may b~ ;;i vi?l, :lthough the rang: of within-area f~etruen'cies 
is greater than for.. SJ·and ESJ namely _.002 ._ .013 compared with .005- .014 

and . 001 - . 008. ,'>' 

The frequency of the Tf
2 

11 1 d'd SJ a e e 1. not vary amon_gs t groups 

(X~ 11.7, P"' 0.40), although :two of the. groups (la,"Ecuado:i:) show-e:d· 
. ll ., . ' s 
intern~l heterogeneity:.~ A ]\On-significant regression against longitude 

~hows tran~ferrin gene frequencies. to be rel t' 1 ~ ~ 1.ve y constant across the· 

al7ea (Anon, 1980). 

, 
4. 3. 3 ~oistribu tion of genotypes ' ~. 

\},: . 

Of the lSS lots included' in this analysis, ·o.nly fo~ were signifi-

f . 1 . b . l . 2 "3 4 cantly out o · equ1. 1. r1.um on t 1e\ bas1.s of two allele (E E ·and E 
· . . SJ' SJ. SJ 

~lleles were combined) Smith's H tests. Three of· these devia t~d in ~ 

positive direction and 'one iri· a· negative directjon~ Given the size of ·the 
. 

individual tesEs and their number, four significant results are expected 
' ~ 

hy chance alone. 

The Smith's H value summec:l over the total data set, though p0sitive 
~,)i 

(f! = 0.0008) is-not significantly out of equilibrium. Two of the <:[eographi-

_·al groupings, Palau q.hd Area A, showed significant positive deviations 
F 

t .... a deficie~cy of heterozygotes (Table 4.5). In the former case 

l?tlauf) this may be partiy ~ttributable to non-recognition of the 4 allele 

by the investigator as noted earlier,. leading to an underestimate of het~ro-
'• 

:y1otes, but this effect is likely to be minor. 
\. 

" 

,, 
.~ 

t 

The large sample numbers involved leave little doub,t. that the 

lfproximat.ion to equilib;;,~um i;> a general effect, despite the possible 

t:twn of two forces promotin~ hete~ozygote deficiency (positive H), namely 

~t"ntial sibship within schools and the sampling bias towards large 
' 

~' "chrllJ dggrega tions in· which gene tic heterogeneity may be incr.eased. In 

1 ! li lion, lots have been grouped across till\,e-area strata in most cases· .. 
It may be that 

·~~ects in most areas. 

opposing forces such as heterosis cancel out such 

~t is interesting to note that the significant 

l·:vta\..lOns observed were g~nerally in the positive direction (3 out 

tr .. llV iduill schools, and both area groupings) · 
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Temperate East 
Indian Ocean 

-~ ... ··-:.·· 
. '·~ 

. ' 
Subscripts - F .~ ctffli~cted and 

4 

'. ,_ 

Th · are. ·A result, . based · 1 -.. • · · 
e . . on·~- _ ~;r_ge sa:nple ( 2 n ~- (i498) , may be 

r e-lated· to the. wider variance in ,. (and •&2 ) frequ~nc /es.. at th . _ . :, · . SJ' . SJ f ,. e wes_tern 
end 0( the _dJ::he ;_ incre;;t~~d Wahlunc;l ef.fe't:ts . cou~d· ·be e1pec'ted to resu~lt 
from m~xin~ ~f g-Jlou~s ~t:ssoc-iated· with this wi~e SJ?read/ in gen'e frequen~ies. 
combin,ing are_a,;a: an~ lb, ~esu~ts·to p{oduce a comparable data set did not, 

however,· pro~:lu\~;e a s.imilrr result ('}i "" -..o'001 (~S); p = . 711, 2 n = 3922). 

The area "'Pt. samp:les· cove1 a widE;;:- ar~a and aytalysis of the ti~e series data 

at one locality within. :hei>e .areas may gi:ve some indication l of how mu2l~of 
the ·observed ''significance can be attributed to a'rea-grouping. 

Ten, lots showed significant d-eviations from Hardy Weinberg expect-
, ' 

ations,·six in the n'egative direc:tion (i.e. heterozygote excess) ... and four 

170 

nosit.ive .. 1-\s with .e$terase·, the totaJ, Smith's H value was not signifi-. 

. ~antly q.~t of• eq~klibr~um, .but three areas (2, Ecuador and Palau.) showed .r 
S · F 

significant h.eterozygote excess. Although this is generally con~istent 

with Fujino and Kan;'s (1968a) 'findings, o~s~rved/expected ratios of th; .. 2-3. 

wnotype (around 1.05 in each of these three areas) were lower than those 
~ !'~·corded by them in two other areas, the Eastern Pa,cific 1.24 (n = 175) 

tnd Jc1pan 1.11 (n = 401). Their analyses were, however, based on ·rather 

;:'l,lll sample sizes. Sharp (MSb) found slight, though Bot significant hetero

c'/<lj:Ote e6<cess (0/E 1.00- 1.02) in his samples, in keeping with the ratio 

.l· ;,·rved in the pr_escnt study. 

Fu i ino and Kang (l968a), assuming that overdominance of th~ ;_3 
\ :•·not.ypr' was· a general phenomenon, postulated that differ~ntial fertility, 

l:;l viability of genotypes act to produce this balanced,polytnelrphism, anc:l' 

";•·ir study has o0en widely quoted as one of the few examples of hetero

:.; ;otc advantage known from natural populations. With th~~enefi t of 

lLlltiGnal sampli~g-, it now appears that ·the ,extept lC\_ which 'hetE.,ygote 

· x ·"ss occurs [las •be~1 -overestimated and that whatever selective forces 

1r" operating, they tend to maintain .an equilibri-um situati~ with regard 

~ ·) Hardy Weinbarg expectp.t_ions. 

-.-<:J 

Th n_ • l' n som,~areas may be related to the ' tendency to overoomlnance ~ 

' ; .. of transferrin sin"'ce, associated with its function as an iron-binding 

: r·)tein, transferrin has been implicated ~ esistance to infect~ous diseases 

Iron enhances the growt, virulence of invading 

:--~ -·roor,;anisms, whereas transferrin limits t~e amount of avaiiable endogenous 

'\. 

1\. 

I' 



. ~ ~ 

iron by" bindil it, thus render_~ tit .,.unavaili;tble for ba.cteria.l use 

(Weinberg, 1 ) . Suzurnoto Bt ~- ~19_77) have rec~ntly demonstra~ed 
di>:ffer
' ,: amongst transferr.in pheno-

entia.l re,sistance to. b~ria.l·,.kidney disease 
. ~ . 

types in co~o sa#-mon' (Oncorhyn_chus kisutch). 

' . . 
.:IJ'--

v It.fc.a-s therefore possibl~. that both the distribution of genes and 

genotypes e~se~:,iially reflects .the present and recent history of pathogen 

distr:i,bution ~;d 4._bundance 
~ 

~. If this interpretation is correct, the 

TfSJ system would provide little guide to population subdivision·. Selec~on 

for a particular heterozygote would also have the effect of flattening the 
~· . 't< 

sloptfi!i any cline in allele frequency whic~ might develop (Endler, 1977 and 
" 

"" later I . ( 

Before leaving .discussion of genotype distributions, so:i~~ther 

consideratiop of two points is warranted - inbreeding (or more sp~cifically 
f• L~ 

the degree of sibship witr-n aggregations) and differences in ~nt"c;:rpret-

ation engendered by the use of different statistical tests. 

:j 

As seen in section 2.3.6, direct evidence of any temporai conti,nuity 
' ·.·· $ within particular aggregations or parts thereof is not av.ailable.,~?Using 

. iudirect evidence of two kinds' distinctive morphometric' variance, patterns 
• t; 

.N11tl1in some sin~le-aggregat;ion 'samples and clumping of rare alleles by fish 
i ~ • • 

,size within certain samples, Sf:arp (MSb) has concl'uded that !::here is good '1. "' 

evidence for some degree of temporal cohesion with,in :• schools". It is 

rlifficuH to comment on the morphometric studies, as a variety of effects, 

•;uch as allometry and individual me':Ju;ing bias (·the data. 4:tere colle<)-~ by 

·:.1r~us workers) can contribute to such variat~on. The analysis of rare 

1llclc clumping, which involved.~electing schools with large numbers o~ rare 

·1lldes, then examining the probability of StUch an occurrence, can be · 

:ritic±sed on statistical grounds.' Richairdson (M~!:) has therefore ex~ined 

'h0 .dist~~ tion of rare ESJ and Tf s.::r _aileles .wi ~~in a l_arge number of 

s~hools (> 100) with n .). 100, and found their occurrence to fit a Poisson. 

•listribution '· i.e. the clu~ping occurred no more frequently than expected 

for such rare events. "'' ··' 
Ta e 4.7 shows the.ana ys1s bl l · 9 r two data sets, Ecuador

8 
and PNG

8
, 

using both 

the · · (G G · G · t'h.ese are "'as calculated by G statlStlCS~ p' H' T' 

l t to hl·s Hardy Weinberg G, heterogeneity G, Sharp and equiva en 

'" 

1 7 1 

'. 

\ 
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Table 4 · 7 Analysis of heterogeneity 

tbe ~t::;p-wise x2 - Smith Is 

'· ' 

with two da~ sets, using both 

H appro~d G-statistics. 

The G-Statistic values are as reported in Sharp (MSb). x2 a~d H 

· were ~alculate2r by the author from the raw data with sl.ight 
1 values 

modilica tion. His sample ZP-C, collected near the Phi.lippines, .was not 
~ 

ill'cluded in PNG5 , and the te} samples collected from north of the Equator 
\ 'f' " . 

. his ''Eastern PaC\L lC Ocea grouplngs were removed to generate Ecuador

5

. lD '\ 

An asterisk indicates significant deviatio~ from equilibrium (P <.OS). 

Esterase 

~ 
9' .~~t 

Transferrin 

Ecuador
5 

"rt 
0 Ill 

I 
33.49(7)* G 

H 

43 .·22 (7) * x2 22. is* X~ = 26.12* G 
H 

7 

8. 08 (8) GP 
H . 003 Gp 5.36(8) H - .'0084* 

G = 41.57(15)* 
T 

·"'!. "1:." 

t; = 48.58(15)* f T 

Y~ 36w99*-
o l ' 

G 68.03(12)* x2 18.27 G}l 32.18(12)* !-I »7 

-
-.002 Gp 25.92(13)* GP 12.69 H 

.fa 
H .. 002 

GT 80.72 (25) * t' 
GT 58.10 (·25) * 

... 

'. 

o\l ., I 

\ 

... ~ 

r 
... 

,,, 

~) 
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(ii) 

,:;tnd pooled G resp:5-tiY~ly) as descr1· bed 1· n 
'W 1 Sokal and Rohlf 
(1969) and 

the stepwise tests of independen~e/sm1't). 's H 
h approach. The 

major discr~pancies; the transferrin 

data, however~ offer a_ different _Fierspective. 1/n both data 

sets, op~site conclus1ons are reached with respect to goodness 

este~e data show no 

.. 
o~ fit to Hardy Weinberg expectations~ 

in the PNG set, the s 
step-wise analysis reve_als no heterog,enei ty in gene or geno-

type frequency, in contrast to the G tests which revearhetero

genei ty at all levels.. This_ pr6blem seems to arise be '}_l;lse the 

G-tests used compound both klnds of deviations, and al hough 

providing a sensitive test of "heter.oge~eity", do not i,,dentify 

the sources of that heterogeneity. This is important, as 

deviations from Hardy Weinberg expectations and from a p value 

' .... are not necessar:lly c.;:orr~lated and in fact are\~_ndependent, 
biologically meaningful variables. ~ 

4.3.4 Interpretation of observed variation 
I 
i 
I 

I 
Analyfis of the genetic variation observed in tran~ferrinr ADA and 

~PI systems usi~g standard electrophoretic techniques has•revealed no 

•;vidence· of systematic geographical variation in gene 

This appears to' be true o.f the rare 1 esterase aLreles, 

or ~enotyp~ frequencies. 
4 3 

E . and E , and the s.:;r SJ 
·;ar~l!)us blood groups (see Section 4. 2) as WEBr:l;l. As ind~cated previously, 

this does not imply an absence of structuring or close genetic relationship 

but rathe:r that these systems provide little information for detec.ting such 

lifferentiatiori. " 

A weak geographical tn~.nd was eve in GDA
1

/GDA
2 

fr~quencies across 

1reas A,· B, C, althfugh frequency diffe.rences between areas B and C were 

r:ot significant (Rithardson, MS). Departures from Hardy .Weinberg expecta

'ions (heterozygote geficiency) were observed i~ ar~s A, B and Tempe:r:ate 

genotypes but not in J area c genotypes.. Even tl(qugh the number of samples 

than for es ·terase a,J,d transferrin, it is lnvolved ( n = 42'45) is less ,,. 
d ' 

'''-'Vertheless quite large. That similar events, namely geographical t:reW in 

•;ene frequency and hetei-ozygote defftiency in some geographical groupin~s, 
- "f' '-"' th' and the esterase locus may >eem to be occurring to some. degree at bo....,, lS 

~ 
;crove to have some significance. 

(f 

.,. 

,. 



( 
The most 

1 
ob~ious component of observed genetl'c · 

varlation is the 2 • 
cline in ESJ (and ESJ {requencies) over a ·distance of 12,000 km (lOOoE -
uo0 w) within the latitudes l0°N to 2s 0 s. 

is an artifact of the data for several reasons. 

It could be argued that the smooth continuous ell' ne, 
as it stands, 

(i) the relatively small lot size (n '\, 100) ·and opportunistic 

sampling regime has giVen ri"se, by chance, to 

wide variance at any given loc.ali ty. This is 
, .. 

Firstly, collection of additional independer;t 
4 

a pseu7o-clinal pattern with 

doubtf~U for two reasons'. 

data ha~both improved the 
'•, 

fit of the relationship and extended it geographically. 
1.econdly, whi'lst 

the small sample size no doubt leads to a large variance at a given longi

tude relative to large samples, as .expected from the binomial distribution, 

the mean value (p) should not be affected, provided a reasonable number of / 

sample lots are available. ·· 
I 

(ii) \ 
As t~ data are not distributed evenly across th~ cline, it 

may not be continuous and C!'ollection of additional data may reveal "st~ps" 

in the cline. This remains a real possibility, although \i th the collection 

Of each new sample lot at longitudes not previously represented, this 

possibility has become less likely. 

It should be reiterated that the cline as proposed doe~ not ~~r0 tCJ the entire Pacific and Indian Oceans, but rather the area I00°E - 30 W, 

0 (Data outside that area, particularly north of 10 N, is much 
. 

There seems l~e 
more discontinuous, but will be examined in due course.) 
reJson to doubt the vaJ...idi ty of the clinal relationship within this ~ are·,· ' 

,,., .. 

r ·lrticular ly as most of the better known and oft-quoted cline~ in the t · st 

llterature are based on considerably less data. Discussion will therefore 

: roceed on the basis that the cline is real and probably in some form of 

l'/namic stability. 

Endler (1977) lists four sets of co'nditions which may favour the 

~"Velopment of cl.i:-nes: 

(1) chance differentiation among continuous groups of popu*'ations by 

t mutations in some localities drift 1 random dispersal ~ffect, recurren 

or combinations ot" these factors, 

12) 'G! ' have differentiate~ in iso7/ sec~ndary contact of po~ulatibns which / 

lati6n, either adaptively or by chance, 

.~ 

~ 
\ 

,,... 



(3) adaptive different1iation amongst continuous groups 

distributed along environmental gradients, and 
of populations 

(4 ) adaptive differ~ntiation among continuous grou~ of populations 
.~ . 

distributed a~ross abrupt spatial changes in environment. 

These conditions refer basically to stable clines, but clines can 

also exist as ephemeral figures. The diffusion of a favourable allele 
'\. 

throughout a populatlon (Fisher, 1937) or the formation and subsequent 

movement of demes within a structured population (Ward and Neel, 197:6) 

provide examples of this. In; "the absence of long term historical data, 

there is little point in considering such possibilities; the very limited 

short term data available point to some measure of stability. 

Endler (1977) points out that interpretation of a natural cline is 

impossible without knowing the geography of absolute survival values and 

the extent of gene flow. ' For a species such as skipjack, adequate know

ledge of these and other' important parameters may never become available 

and a more corstructive approach holds that alternative explanations should 

be considered and the most likely of- these adopted as a working hypothesis 

which can be ,subject to specific test and modified or rejected as additional 

data comes to hand. The available data will thus be related to Endler's 

four condi tiO'II\s or models. 

" Condi ti.on 1 (chanc~ diVerentiation) 

Al thopgh simulations by Endler (1971) have suggested that stochastic 

influences may produce iong lasting clines (but not stable stepped clines), 

several factors mitigate against such processes being important here. 

(a) the species is al;mndant and widely dlstrl u e . · 'b t d Wl'th a standing 

?aci fie skipjack biomass of at 

' 10 'Jcean alone migl)t approach 10 

least 10
6 

tonnes, a total N foE the Pacific 

Refgardless of the amount of population 

structuring, N s ·are l.ikely to be large, 

~or drift, whi:h has little effeJt where 

eatly reducing opportunities 
4 

(Chakraborty and Nei, 
H77). In an~ case, Maynard Smith (1970) argued that'the genetic ,...t 

' to the extent o£ differentiation withi) populations relative 
1 po 

~s independent of population size and that hence drift can 

be ruled.-G:'trt:- as § cause of differentiation and cline formation. 

'b) The slope of the. cli~e is apparehti~ constaAt over a very large 

'listance (12,000 km) of habitat with some latitu lna u d . 1 b t no obvious 

1(\f A I 

' 



~" ~ . :r -~ 

longitudinal discpntinuity~ J;t' .is Q.ifficult 
to regard this as being the 

end result of purely random pr\Scesses. 

The main etfec~ of drift on 'clines maintained not by stochastic 

forces_ but migfati6.r and ~ele'ct~o~ may be a re¢l.uction in the theoreti

cally expected. 'sl~J2e and ·some. ·va~.i,a~ion in -location reiative to environ

mental change (Slatf.in -and Maruyama~· 197'5; Felsenstein 
1975

). 
' - ' .' .• ,. .t-' ... ' 

Condition 2' (sec;ond~;ry x:ontact) 
' 

This model would see the cline as a contact zone between group~ at 

each end with different frequenc;:;:(es malntain·ed by strong differential 

selection. Selection in the contact zone would n~e-cl to be either minimal 

or show gradation to maintain the cline. The contact zone can also be 

regarded as a reproductive sihk~ ) 

/ 
Predictions from this model (and their correspondence with available 

data) would be as follows: 

(a) gene frequencies at either end should be fairly constant. This may 

be true of the eaEite~,rr e~d of the cline,. where Ecuador S frequencies do not 

differ signifi'cantly \from those in area C (French Polynesia). As little 

spawning is believed to occur in this area, east of l30°W, it would be 

:wcessary that area C b'e- the site of fairly intense spawning activity. This 
. ' 

would be in bro.~d agreement with Mats@llloto,; s (1975) views on larval· distri-

j>ution, but at direct odds with those of Ueyanagi (1970, 1~76) - see 

Gection 2. 3. · 

"' 
\ 

At the western end of the Indonesian ,archipelagb (area 3) , 

available data is limited (7 lots, 789 fish). 1 
Within this group, ESJ 

frequencies are homogenous (x 2 = 10.86 (NS) - Table 4. 2), a finding conunon 
6 

~a groupings where the numbers of loi!ls ise small ('Anon. , 1980, and. see 

earlier) .. Two groups (3 lots ec'ich) were collected within a few days ~f 
e~h other at two different sites approximately 30° longitude apart;P 

o'*rved differences i; gene freqw;ncy between these were consistent and 

:i1nificant (X2 = 9. 78, p < .005), thus strongly suggesting that the cline 
l 

loes not flatten_gput. U:t remains a possibility ::that this occurs westwards 

':lf l00°E. This would be important to establish in future studies . 
..... 

(b) V · · f · $.hould be maximal in the arlances ln gene · requencles contact zone.~> 

' .;;r~ • ff' · t data to critically evaluate Although tpere 'is agai.p lnsu lclen 

this possibility' I the variance does se.em greates_t at the western end of the 

~line, in area A, in contradiction with the prediction. 

·~ 

. h· .... 

.; 



.• 

.. ; 

;. 

(c) The ,cline.~~:ld ·_be ~ine.a~ for· all• loci which- differ in frequency 

the -~nds of the c'line ... r ..,. between. 

It appears thatc this may not be 'the cas·e for the GDA locus, although 
·~ this ne-eds confirmatiqn. 

r.'' 

Al th01;gh it .).s not possible, to de-~in.i t;~ly e;clude this hypothe$is, 
...,. . r 
~,the . ..,bulk of avai1able .~ey.idence proyides 'l\;ttle 'su .. pport, for l!·,·ts 

, . acceptance. 
"', .... , . . , . 

Coil.~ition 3 (se~.e~.~ion. ~ro0; a~ ~~~~irenment c:~di~t). -

In :Lts extreme ,form, thl£? mod~l ~cc:i~ld ,accommodate. pa.nmixia, with 

fish mixing, freely 'a~r:oss the ~~awni~~ zo.ne and~ strong' ~iffere.ntial sele-
" ,, 'flo 

, cti9n t~_ro~~~n~,a :-f~in..~. ~n' ·~l~el,e frequenc~~s, , either thro~~~- fer:~li ty 

or pre-adult. v:Lab:Ll:Lty d:Lff·erences. Sucf.l a .. s~tuation produces a paracj.ox -

:ish must .mi.x freely beifor~ .. s.paw~;i_ng·, .. ' Y.et·fei'r offspring must remaiJ;'l long 

~nough in t;he spawning area aft.er selection f:o .be sarripl:€!d ... This paradox 

r·ersists, even when sqme reaJ.i.stic quaJ,i~ic_ations such as limited" inbreeding 
' ' 

within sc;:hools and effective as opposed to in;:;tant~neo\,ls" mixing, are built 
" "' I. ' .... 

into the mod~l.- Although Ehrlich and ·Raven. (1969) have argued for such 

differentiq,tion in the _E:.ac_e of unrestricted gene flow, Jackson and Pounds 

(1979) · consider. that explicit examples a.pr so rare in nature as to raise 

~oubt about the prevalenc.e of this phenomenon. 
'· J 

Assuming that the panmictic form of this model is not acceptable, 

ti1e alternative forms are variations on .an isolation-by-distance model 

(t.'right, 1943, 1946) .with the forcJe.s of gene fJ:ow and selection ac!:ing to 

;.roduce 'l!(}e cline. 

Assumptions inhe';rent in this model would be tha,t the probability 
~ 

· F fish mating is a~deic:t.easing function of the distance between their birth 

>LH:es and .trrt ther-e ar~ n.o severe restrictions to gene flow across the 

~·line. 

It is 

r-
possible to conceive of several klternate forms of this model 

· · t' d~t These must e¥plain not only :ons:Lst:_ent with the available gene lC a a. 

~ow the cline is maintained, but also the wider-than-expected var~ance . ' 

dS~ociated.~{th it~ ·The latter may be attributable to factors sueh as . 
;; atio-teinpo~~l var.i'a~\ons in the env~ronmental 

'iata needed -to critica~-r, evaluate these models 

areas. 

\. 

gradient itself. Again, 

is lacking in several key 

,J 

. ' 
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(i) the amount and type of gene flow via adults. 

Tagging data remains the on~y available index of potential gene 

flow. The on+y data set which offers something approaching intei1sive 

longitudinal coverage 1 that from the SPO Programme ha t t b 
1 s ye o e analysed 

l. n detail. Although it remains difficult to adequatel I t f 1 
. . . < ~oorrec or 

distnbutlon of effort, rnortal1 ty and other factors 'the · t · 
• 1 • propor 1on o 

longer distance recoveries ( s.ay > 1800 km) from o~her studies and from 

preliminary results of the ~PC study has inevitably bee; ·low. No trans

Pacific recoverie~ are on record 1 e~n thoug_j;( tagging of two other tuna 

species (alb~core Thunnu~ alalunga~ luefi~/ tuna~·Thunnus thynnus orientalis) 

in much smaller numbers has yielded nu.metus such examples. 

"~· 11 ,.-

Migration/dispe;rsal may also have' a selective comp~nt1 a point 
'). critical to evaluating resident/nomad hypothes1s . 

(ii) 
.(, 

.,/ .., . 

larval dispersal 
~ 

As discussed in seotion' 2. 3 knc.Mledge of the extent of larval dis-

persal is completely lacking. This may be an important source of potential 

qene flow between areas; alternatively if both adult. and larval dispersal 
' . 

is r~stricted 1 much weaker selection could maintain the cline. 

(iii) spawnin~·abi~s 

Knowledge in this area is fragmentary. There is. particular need to -know 1-{ha t trigger;:; spawning activity 1 if discrete spawning areas occur 

·..:ithin the broad general area 1 and if any homing to spawning areas occurs. 

?at terns of tag recapt::ures would be easier to interpret from the gene tic 

-.·icwpbin t if fish in imrnedia te pre- spawning condition could· be tagged and 

re lease';l. 

I 
(iy) the mode of selection. 

~- The function of serum esterases in fishes is unknown. They have 

:"'''en .;~scribed a detoxifyirig role in other vertebrate groups but as they 

're not subst~ate specific in their action, they may have a variety of 
\ 

r•Jlcs. Severa~ environmental parameters, notably temperature density and 

;alinity show a\we:k' gradient across the equatorial Pacific (Gorshkov, 

;J76) (Figure 4.~. "se,.a surface tempe,rature, in parti~ulEli:, shows a 

r":'larkably even de!ease of 3° .- 4°c ac~oss the :outh equatorial re~ion . 

r h · .-<1·. · d · t provide a potential bas1s :"dec lng the exten·t of the c 1ne. Thes:;e gra 1en s 

'rr 1 · \- ' h h mortaJ_i ty which mu t 
·J se ect1ve action \~f genotypes. Given t e uge 

J<::cur in the pre-~dul t\ stages I stro;)g selection seems mast likely t occur 
\ 

\ 



Sea Surface Salinity (%{,): AUGUST 

" ~35,-----..: 

Sea Surface T emp*=roture (°C): DECEMBER 

Figure 4.8 St.lrface isohalines and isotherms in the Pacific during 
selected months. 



during that phase. 
\ 

Indirect'eviqence of selection on 
pre-adult stages 

may come from events at the easte-rn end of the ~line. d 
.... A ults in the ge;o-

graphically separate area C·and Ecuadors·sa~les share similar El frequen-
SJ Cl. es and are hypothesized to have shared d 1 

pre-a u t habitats. If correct, 
th is suggests that migration into a new area has h_a .. d 

1 
· 1 

lttle qr no effect 
On El frequency, implying tha.t these are 

SJ , desermined during early life 
histo~y or ref,1ect parental genotypes. 

~. I 

Predictions whic~ ~~ult be made accordihg to isolation by distance 
models ··are 

~ 

(a) 

(b) 

• 

~ariance across the cline should ~e ~elatively constant. 

This generally holds, subject 
'i, , . .. 

vlariance (see earl'ie:l;'). 

t\ range of gene ::~qqencie, 
sh\uld bear some relationship, 

di~\ribution of tag re~urns. 
' 

I 

to ~larification of area c 
\• 

observed at a given locality 

albeit tenuous, 'to the 

i.,.·. 
(c) differences in gene fr~q_uency between samples should be 

posi ~ively correlat~d ~i th the longit/uir. Cll distance 

~e tween sampling localities. · 
1 

-
' . ' ~ 

, 
The regularity and close fit of the cline attests to this, although 

tn temperate aieas, the correlation is less adequate, as will be seen 

.;'Jbsequently. 

Despite limitations of the dat~, this selectionist model clearly 

·•arrants workin<g hypotl\~sis status at this stage. 

1.'muH t ion 4 (stepped environment or ecotone model) 
~· 

Under this model eith~r gene flow is restricted along sections of 

.-.':w enviroru!l~tal gradient or selection a~ong the gradient is discontinuo.us. 

:.;~l're t11e numb~r of res·trictions or discontinuities becomes even mode~-

•1tdy large, most data sets could not disti~uish between conditions 3 and 

·l, ·1nd the biological distinction ;;.,oul,d become doubtful. Previously 

:ublished hypotheses (Fujino, 1970; Sharp, 1978) approach this model most 

losely. 

tha ·t s·tepped clines can evolve in the Endler (1977) points out 

and thc~t s·table stepped clines cannot be l:~s·~nce of stepped envirDl;llTients c• 



r 

~-produced by stochastic influences. Predl'c'tl'ons f th 
q e model would be as 

follOWS: 

(a) if steps represent barriers to gerne flow,., gene f 
requency di~::: i. 

This m~y not be true of 
continuities should coincide at each loqus. 

selective discontinuities. 

• l t. h. b t . It ~) 
(b) the .re a ,lens lp e ween l--sample gene frequency differences 

and longitudinal distance between. sampling localities should be stepped. 

This model appears to fit the data less adequately than did the 

previous one, but in view of its prominence in early studies, it will be 

retained for further scrutiny together. with model 3 after examination of 

the within-area patterns of variatio·n. 

~. 4 WITHIN-AREA VARIATION 

~.4.1 Gene and genotype distribution 
f) 

Fifty four lots collected sequentially in the New Hanover sector 

of the Papua New Guinea fishery between August 1978 and October 1980 

(Table 4. 2) make up the sequential series which will be used to examine 

· . .;i thin-area variation. Sample size, mean length, allele proportio~s, 

1enotype frequencies and Smith's H values for e·sterase and transferrin 

s;stems are given ln Tables 4.8 and 4.9 respectively. The general 

idl'1plinq locality has been shown on Figure 4. 3, while Figure 4.9 shows 

lr,dividual sampling locations within the New Hanover sector . 

. · 
~ total of 5,541 individuals from the 54 

:u:cessfully typed for serum esterase, yielding 

sam~les (n = 98.9) were 
1 

a mean ESJ frequency of 

,f,'J'J. This is similar to mean values previously listed for, area. 

;rrJupinqs la, lb, PNG and A (Table 4. 5) . A test of independence showed s 
tllcle frequencies to be heterogenous (x 2 165, P < .005), with eleven 

53 
·~ the frequencies (20%) falling outside the 95% confidence limits of 

.~11 • .07 wheie .n approximates 100. The variation seen at this point 

~~rce approximates the variance abou~ the cline reported in section 4.3. 

:·i lUre 4.10 shows the distribution to be strongly skewed, and it is most 

>.·Jically viewed as a normal distribution about 0. 73 with approximately a 

;
11

rter of the samples ( 14) with lower frequencies of 0 · 65 or less· 

In contrast, the transferrin data (5299 ind{viduals, n = 98.1, 
') 

:l• 111 TC 
SJ = 0.697) was homogenous (x 2 0. 5), with Tf

2 
52.9 P "' SJ 

: r'"{Uenc ies 53 
approximating a normal distribution. 

- ·- Only three values (6%) 

.. ~ \ 
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Sample 

r 

KVA 

\. KVB 

'~ KVE 

KVF 

KVG 
(KVH 

(KVI 

(KVJ 
(KVK 

(KVL 
(KVH 

~ (KVN 

(KVO 

(KVP 
(KVQ 

(KVR 
(KVS 
KVT 

(KVU 
(KW 

(KVY 

(KVZ 

..J .;;~ 

* 

·Q 

Tdblc 4_1:3 

.. 
a 

St_·ru;;:. •-·~-jt_t'r,_l~"f"" dll<•l(! prc)[,L::>rt_lr.>n:~ and . .;-•·:•rJt~i :r" r, 1• l r. .._ : , ~ · 
timc·-spr: les samt_ l~·s 

The sample size (n), mean len-=1th of sklpJack .tn the; sar:".:;le (;-) and <:» 

two-allele Smith's H value are also given. An aS;te~.tsk ind.tca~es 
sarnpl~ significantly out of equilibrium. ~ 

_.. 
·~ Allele proportions Genotype frequencies 

n 

l06 
101 

98 
99 

100 
99 
97 

100 
100 

99 
94 

103 
106 

105 
1-05 

104 
104 

-
£ 

53 
51 
53 
61 
51 
50 
49 
53 
53 

53 
53 

54 
54 

55 
54 

57 
58 

104 61 
105 61 
101 (59) 

101 
103 

107 
103 

49 
48 

53 
53 

1 

.613 

.554 

.576 

.722 

.645 

.616 

. 784 

.655 
• 725 

. 6sl'\ 

.697 

.68 
.632 

.652 
.-69 

.716 

.755 

.736 

.738 

.767 

.604 

.563 

.659 

.621 

2 . 
/} :·~~ 

J 

.382 

.436 

. ;408 

.263 

.345 

.343 

.206 
.34 
.27 

.343 
·. 303 

.31 
. 358 

.324 
. 31 

.255 

.226 

.25 
.233 
.228 

.376 

.417 

.336 

.344 

3/4 

. 00'5 

.010 

.015 

.015 

.010 
. 04 
.·01 

.005 

.005 

.01 
.009 

.023 

.028 

.019 

.014 

.029 

.005 

. 02 

.02 

.005 

.033 

"-., 

11 

41 J 
30 
29 
55 
38 
34 

/61 
42 
~4 

42 
48 

47 
42 

48. 
53 

54 
60 

56 
59 
61 

34 
32 

45 
40 

12 

47 
50 
54 
30 
52 
50 

;!# 29 

46 
37 

4;6 
35 

44 
48 

..... ___ . 
41. ·'• 
39 

36 
34 

38 
33 
32 

53 
so 
50 
41 

13 

1 
2 
1 
1 
1 
3 
1 

2 

2 

4" 
2 

1 
3 

2 

14 

2 

1 

1 

1 
1 

2 

1 
1 

1 
2* 

5 

22 

17 
19 
12 
11 

8 
7 
5 

11 
8 

ll 
11 

10 
14 

11 
13 

8 
6 

7 
7 
7 

10 
l7 

11 
15 

23 

l 
2 

2 

l 

1 

2 

2 

1 

24 

2 

J2 

1 

•'1 

3 

1 

1 

1 

33 Smith's H 

.012 
-.00'9 
-.035 

.035 
-.035 
-.035 

.016 
-.008 

.015 

- .. 006 
.026 

-.005 
-.002 

.033 

.029 

.007 

.008 

-.002 
.018 
.016 

"'"'027 
-.005 

-. 013 
.003 

-<T 
0\ 

-< 

I' 

.f 



,f 

\ 

-"' 
.$-

~ 

~ 

J:(I.!A-A 

(KVA-C 
(KVA-0 

(J:(I.!A-E 
(J:(I.!A-F 
KVA-G 

(J:(I.!A-I 
(J:(I.!A-J 

(KVA-K 
(KVA-L 

(NHA 

(NHB 

(.NHC 

(NHD 

(NHE 
(NHF 

(NHG 
(NHH 

(NHI 

(NHJ 

, (NHK 

(NHL 

NHM 

(NHN 

,(NHO 

(NHP 

(NHQ 
(NHR 

(NHS 
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8. 
_, 

~ 
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97 

• 
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~01 

92 

98 
92 

9'6 

,. 

34· 

52 
52 

34 
62 

( 36) 

( ?Sl 
(57) 

~ 98 
51 
50 

f' ~ 

.., 
'fi •.,. 

-

100 
95 

34 
37 

77 , 35 
105 37 

99 
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7Z 50 

97 51 
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98 
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93 

82 
83 
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... ·~ 

~-··. 
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52 
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60 

51 
42 
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•.• -4 .. 
,_ 
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.733 
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.005 
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.Oll 
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~ 
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.Oll 
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39 
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1 
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Sample 

\ 

fi 

KVA 
KVB 
KVC 
KVD 

KVE 
KVF 
KVG 

(KVH 

(KVI 

(KVJ 
(KVK 

(KVL 

(KVM 

(KVN_ 

(IQ/0 

(KVP 

(KVQ 

(KVR 
(KVS 

"-.' KVT 

f,J 

(KVU 

{KVV 

b 

"-

Table 4.9 

"-\. 

1> 

"" ' 
7'' 0 

.• 
t .· 

Transferrih allele propo,rtJ.ons ...:Jnd geno~<pe frequencies in trre time-series samples.~ ...... . . ~ 

The sample size (n) , m~an length \of skipjack ij,n the sample (i) anp two-allele Smith's 

H value are also given. An ~teri~ indicate's; sample significantly out of equilibri\lll\-..., 

g. \ 
\ Q 

-
All~le proportions 

Genotype frequenc~es $· 

' ' 

n £ ·;:;. j 1 2 3 22 23 12 33 l3 11 Smith.'s H 

I '' 

106 ~ 53 
10~ 51 

98 53 
97 61 
99 51 
99 50 
94 49 

99 53 
98 53 

97 
90 

99 
105 

1a4 
lOS 

104 
104 

104 
104 

102 

100 
102 

l. 

53 
53 

54 
54 

55 
54 

57 
58 

61 
61 

(55) 

49 

48 

.. 
~ . ~89 . .t_G7 .005 491 48 8 " 1 // -.011 

. 72 . 2 6 5 . 015 4 9" 4 4 '-' 2 4 ., 1 ~ /-/ - . 0 2 8 
.684 .311 ,.005 46 42 .. 9 1 / .003 

.753 .242 .005 55 36 5 ) / ···ll " .002 

.657 .339 .0(15 43 43 1 12 .004 

.702 .293 .005 51 37 10 l .023 

.676 .324 / 44 39· -11 .013 

.732 
.,7 4 5 

. 711 
. 728' 

.712 

.709 

. 663 

.7..09 

.697 
;673 

.663 

.625 

.716 

.670 

.676 

~ 

.263 

.255 

.289 

.267 

.283 

·. 286 

.322 

.281 

.274 

.317 

.317 

.370 

.275 

.325 

.294 

.005 51 
52 

.005 47 
7 46 

.00~ ~~ jl} 

. 005 49 . so 
.014 
.010 

.029 

.Q.lQ. 

~8 

49 

46 
45 

~ 
~ 43 

4.2 

44 
38 

43 
. 49 

60 

49 

47 
50 

~.lH9 

.005 
48 40 
3% . , 52 

.009 

. 005' 

.02? 
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I> 

-~ 

-~ 

·~· ~: 

50 J 45• 
' •<3) 
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50 

l: 
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35 

,. 
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2 

6 

2 

l 

3 
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4 

4 
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5 
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5 

3 
5 
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12 

s-

7 
11 
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1" 

1 

2 
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1 

1 
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99 
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34 
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80 35 
lOS 37, 
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99 
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Figure 4. 9 . : Indivi?-~.al samplihg locations within the New Hanover 
Ysector·, (defined 1y a sixty mile radius from the bait 

fishing grounds A) . 
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lay o~tside ~the 95% confidence liml ts , consistent with chance occurrence 

(Figure 4. io) . 

The rare alleles E
3 

, E4 Tfl SJ SJ' SJ occurred at similar frequencies to 

those re~ded previously in all other areas. 

- ) . 
One esterase and flve transferrin lots wer · 'f' 1 out of e Slgnl lcant y 

Hardy Weinberg equilibrium on the basis of two allele Smith's H tests. 

i~ the c.ase of transferrin, these .''deviations, although occurring slightly 

m~re frequently than expected by drance (9%) were not consistent in 

dire't:tion. (3 positive,. 2 negative),. 

. I 

The su~4'ith's H value for esterase was slightly negative but 

in' equilibrium (H = -. 0013), as wer(- H values for areas la and lb (Table 

4.,5)·. Area A, which includes these'groupings, however showed a signifi

cant positive deviatiqn. The H value for transferrin was significantly 

* ' negative (H = -.0050 ). The scale Gf heterozygote excess ( 0 /E = l. 0 3 ) . is 

;i'fl keeping ~ith that observed in other areas, and its possible signifi-

cance has been discussed earlier. 

As with g.~~aphical variation, the 

variation~thus appears to be E
1 

(and E
2 

) 
SJ SJ 

4.4.2 Replica~e sampling 

'b. 

main source ot ~ithin-area 

On 21 occasions during the time series sampling, replicate samples 

were taken on the same da~ and in the sa~e general area but from different 

aggregations. These include two replicate sets taken on the same day but 
v !> 

in areas approximately 70 nautical miles apart (KVAI - J and KVAK-L) and a 

set of three samples ( NHN-0-P) taken on the same day. In accordance 

with the sampling strategy laid down, leJ1gth frequency distributions of 

replicate members show good correspondence in 18 of the 21 cases (Figure 
1 2 

4.11). Comparison of ESJ and TfSJ frequencies between members of these 18 

replicate~ reveal no significant differences, not a~urprising result 
.. 

given th~·power of this test when n = 100 (see 4.2.1). Of more releva~ce 

is that each frequency lies within the 95% confidence limit (±.07) of each 
1 

frequency in all but one case for both enzymes (E SJ- KVH, KVI, 6 = .075; 

Tf~J- K:VN, KVO, 6 = .09), with mean 6's for E
1
SJand Tf

2
SJpairs of .035 

and .025 respectively. 
If' 

This result would seem to indicate that skipjack of a given siz~ 
' 1 

within a local area at a point in time share a common E SJ allele frequency, 
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Figure 4.11 Length frequency distributions of replicate samples. 

The first named sample in each case is represented by 

the heavier line. 
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,, 
with the implication that a sin~le.: sample taken at that time would 

l <· ' 

adequately represent the E 'SJ ~reqJency for fish of that size: The 

samples collected to examine geographical variation contain several 

replicates which also bear th. is out 
I (see SB-SD & CJ-CK ~n Table 4.3). . /)' 

A further implication is that a given allel'e. frequency is related to a 

spatia-temporal dimension rather than to an individual school. 
<> 

The time scale over which this within-area-by-size ~onstancy 

hol~s true is proitablyhighly variable. The available material contains "'· . ' . 
both examples of samples ;f similar size skipjack collected within a 

few days of each other showing remarkable consistency (for example, the 

Indonesian material) and of similar size sample~ collected a few days 
l 

apart in the sam·e area differing greatly fn E SJ frequency (e.'1. KAF, KAG 

& KAH, southern N.S.W., 0.574- 0.7}2,_LCF- 46). ~latter may be 

associated with periodic recrc::j..tmerit events, wherea~ foD!Ier may be 

the more usual. 

The replicate.samples, because of their relative size uniformity 

within sets, provide little~nformation on E
1

SJ variability with size at a 

given point in time and space. That two of the three sets which are I 
grossly dissimilar in size (KVAE-F .. NHQ-R) have 6 ,·s > . 07 indicates 

that extrapolating an allele frequency derived from fish of one size to 

fish .. of o~er s-izes even in the same time-area stratum would be inadvisable. 

4.4.3 Size effects 

The suggestion that fish of different sizes within a given area 
l 

at one point in time may have different E SJ frequencies leads to con-
.-

sideration of size effects on gene and genotype frequencies in general. 

As sample sizes do not allow examination of size}genotype effects within 

individual aggregations and as grouping across schools requires that 

~umerous assumptfons be made, sample mean size has been plotted against 

l 2 ' E d Tf f f 51 Samples with apnr,oximately unimodal size · SJ an requency or L-

S0 ~. 
distributions (Figure 4.12). 

In both cases fitted regr.essions account for less' than 2% of the "" . 

Tf-2.. frequencl· es vary uniformly across the size range 
observed variation. . SJ 
considered (34.-6 2 em) whereas El frequenc:ites show a slightly different 

SJ. 
f d.· · (45 55 em) fish exhibiting a 

patte>rn , with aggregacions o me lum slze -

than either smaller (< 42 em) or larger (> 55 em) 
wider range of frequencies 

* LCF ~ length to caudal fork 
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·~ 

·fl. sh~ Although the numbers o\f d · · · . me lum Slze flsh are greater, ~omparison 
2 I 

with the Tf SJ distribution suggests the effect ~s real, and that fish of 

this size make the greatest conbfibution to th~ wide variance in El 
~J 

frequencies. They also provide the bulk of the fishery's production and 
' -

form the _basis:of the tagging experiments considered in Chapter-3. On 

the basis of results obtained in those experiments, it i$ tempting to 

conclude that the smaller and larger fish represent "residents", whereas 

medium size skipjack include nomadic elements from other parts of tr\e cline 

with lower ge~e frequencies. 

·the section. 

This possibility will be C()n.~~~later in 

The, relative scarcity of 40-50 em fish in samples :Ls not an artifact 

of sampling and reflects the size compositicun of the catch. Although 

probably partly attributable to gear and fisherman selectivity, it pro

vided some of the impetus for t-he .theory developed by Kearney (see earlie:d 
,~ r 

to account for the distribution of skipjack by size. 

The relatio~ship between mean school size and Smith's H was exam

ined (Figure 4.13). No ~bviou~ trend with greater size towards increased H 

values (which might be expected if for example, aggregations of older fish 

are comprised of numerous genetically distinct "core school" remnants), or 
l 2 

E SJ or Tf SJ In both cases, re-detreased H values was observed for .... 
gressions accounted for very little of the observed variation, viz -

1 
\ 

H (E SJ) -.00927 + . dool714 ( Q,) (r2 . 005), where !<-= mean 

I> l"ength in em 

2 .04389 - . OQ09464 ( Q, ) (r2 .074) H (Tf SJ) 

There w~s· no evidence of a wahlund effect in the 45_-65 em range where mixing 

· d f El and l·n fact, negative H values were'more might be anticlpate or SJ' 

numerous. ·The slight decrease in H values for Tf
2

5J is a~ odds with the 

Fujino & Kang (1968) model, which has H values increasing with size to 

approach zero. 

It is concluJed that size-related effects on gene and genotype 

frequencies in skipjack > 30 em are. min9r. It remains to partition samples 

d · ·to age, but as has been seen . earlier, this or groups of samples acCOE lng 

is currently not feasible. 

t' 
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4.4.4 

,, 

Temporal variation r 

Replicate sampl~ng has demonstrated that t 1 frequencies of compar
SJ 

able size skipjack from the same time area stratum are generally similar; 

additionally direct size effects on these frequencies a're likely to be 
"- ( I 

minor, and temporal variation might therefore be e~pected to account for 

some of the observed variation. Figure 4 .. 14 is a chronological plot of 

the 54 E
1

SJ frequencies, with monthly CPUE fi9ures (tonnes/day) arrayed 

below·: -

Gaps in sampling during the late December - early March period are 
1.1 

the result of cessation in fishing activity in the New Hanover sector over 

this ~eriod with the seasonal onset·of unfavourable north-west monsoonal 

conditions and fishing company holidays. Sampling elsewhere in the Papua 

New Guine~.r~gion during this period, notably in the northern Coral Sea 
1 

near Port Moresby, has yielded consistently high E SJ frequencies,· as below. 

\ 

\ 

Sample Pate 
~ 

SW* 2:7-2-77 

sex* '.' 

pr; 19-27-2-78. 

' PE 18-21-l-78 

ARA 23-l-79 

CB 27-l-79 

CB2 14-2-79 

SA 20-l-79 

SB 21-l-79 

so 21-l-79 

*from Richardson, MS. 

I' 

Locality 

N. Coral Sea 

" 

" 

" 

Solomon Sea 

" 

" 

. 'TOTAL 

\ 
\ 
\ 

El Tf2 n 
SJ SJ ~~ 

(.iii 

.823 .692 62 

.757 NA 111 

.781 .719 114 

.817 .720 52 

.728 .663 81 

.., .603 81 

.717 96 

.797 .678 163 

. 722 . 660 106 

.75 .690 114 

.756 .682 ' 930 

\ 

.. 
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As earlier analysis suggested .that in the study area, variation 
l 

in E SJ frequency was ass6fiated with medium size rather than smaller or 

larger size skiRjack, the former have been removed and grouped with all 

other unimodal samples in this size category (42~55 em mean length) from 

group la and those from PNGS col~cted south of the Equator. Analysis of 

deviance (analysis of variance for proportions) has been performed on this 

data set, comprising 52 sample lots collected on 38 occasions between 

November 1975 and October 1980 and including 13 replicates, to enable 

resolution of the observed variation into temporaJ,. and other components" 

19.4 

In the first instance', E
1 

frequencies, after logit transformation, 
. SJ 

have been fitted against the following variables 

(i) ·Days - days since the beginning of the year when sampiing was 

(ii) 

(iii) 

(iv) 

Source 

Days 

Season 

initiated (to seek long term t..rends in the data) i.e. Jan. lst', 197 5 

Season - sinusoidal ~ithin-year variation, as expressed by ~he 

relationship 
'-.;.,.~ 

y = a + b cost + c sin t 

where t 2TI (T-~) i.e. mid-monthly intervals 
12 (T = time in months) 

and El can be ~alculated from the transformation 
SJ 

more Subtle Sub-harmonic variation associated Sub-Season -

In \his 

olasion 

df 

l 

2 

with time of the year. 

a + b cost + c sin t + b
2 

cos t + c 2 sin 2 t case, y = 

· h' repll'cates and between occasions variation wlt ln 

can be compared 

Deviance Mean Deviance F * 14 
' 

F* 32 
' 

6.8 

59.7 

Sub-S~ason 2 1.2 

6.8 

29.9 

0.6 

3.37 4 .·13** 
Residual 32 107.8 

~ 

Between 
occasions 37 175.5 4.74 

Within 
occasions 14 ll. 4 0.82 

• I 



little evidence of long term trends or sub-

harmonic wi tninr:-replica.te constancy is good, as established 
\ ~'\. \ 

previously, and unspecified. s~asonal effects a,re highly significant. This 

can be seen ln':tFigu~e \" 1~ where data from all years is grrayed by time 

of year and the fitted .\curve shown. A good deal o;f ,.the varian~.e however 

remains unexplained. \ 

In conj~nc tio~w: th season effects, %oth ~ear•specif ic effects 

(year) and 1 season:'al eff~-cts specific to a particular year (year-season) 

were then examined. 

Season 

Year-Seasonal 

Year 

df Deviance· Mean 
DE;'viance 

2 63.0 31.5 

10 58.9 5.89 

4 10.32 2.58 

.. F*,l4 

15.3*** 

2.86* 

l. 25NS 

Resi~-1 ___________ 2_1 ________ 4_3_._2_2 _________ 2_._0_6~-----2-._5_2_* ____________ __ 

Betw~ 
occas~ns 

Within 
occasions 

Total 

37 175.5 

14 ll. 4 

51 186.9 

4.74 

. 0.82 \ l 

A 

~ '\-
\ \ 
~ 

allowing for different ampl-ituc)es and phase differences ln After . . 1 

each yea~, the years did not differ in ~ean geke frequency (F4 21 = 1.25, 

NS). However the amplitude and phase differen~es did differ between 
. \ . b . 1 . t f th 

( P < . 05). This can be -seen·~· the varla l l -y o · · e years F ' = 2.86, 
12, 21 E1- frequencl)f" s~oul.d- ~ccur ac year, as calculated 

day on which maximum SJ -. _1 c 
I . curQvc for that year (day 36~ta (-b)), 

from the f fitted slne 2n "--, 

" nam~ly '- 1976 Day 5 (January) 

'• II 40· (February) 1977 

\ 1978 
II 59 (February) 

\ 

\ (January) 1979 
'II 3 

'I- 1980· \ II 191 (Ju1 y) 

\ samples were collected in 1975, no 
(as only. 2 

calculation has been made). 

/ 

\' 
I 
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The effect of vru:;ying c~h ·levels on EIJ. f_requenciesJ aft
1
et 

\SJ .... 
seasonal and annual effects had b t 1 een 51-ken into a1ccount, was not s:jtgnifi-

cant .. Catches do show marked ~easonal fluctua£iom (see earl~~r),,nd :ny 

effects have probably been~tlready removed. 
1\ 
I '~ 

II' 

The residual dayiance remains significant (X2 = 43.?**, 
21 

. 001 < P ··> • Ol), indicating t;hat .Qther effects have yet to be accounted . ~ ~' 

for.. As has been d,iscussed previously \section 2. 3) the main environmental 
~ . . 

..;~ . 
influence on ~kipjack availability in th.e tirl\€-series sarnpli;,g d.rea. m.':lY be 

~ ' ... . . . . . . .. ~. 
the position of the equatorial upwelling as marked by the 3Sfoo isohaline. 

Although this most commonly irnpinges~on the area in question during the same 

June'-September pe:i.iod, :1. t does show consid~rable between-year var_iation in 

location an~ streng~h. 
~ 

Througl) the co-operation of ORSTOM 1 Noumea 1 it has 
' 

information on the posit:ion of the 35/o o isoha:)..ine b~en possiR~ to ob~ain ~ / 
duringpart of the study period (June 1979- March 1980). Unfortuh.ately 

\ ..., 
data for t:.he entire sampling period is not available precluding its in-

\· . 
' corporation in the analysis of deviance. 

-' One must expect that chance events· will always erysure a consider-

~ able amounti of resicrGal variance. The 1980 samples 1 ~or example 1 showed 

~ . 'l little change in E SJ frequency dur~ng the year. Relatively few of the 

stirnples (7/20) were unimodal and w'ithin th~2-55 ern mean size range and ~I 

:many were coll~cted tloser insho~e than usual. These factors alone may 

r be sufficient· to· obsc~:r;e general seasonal effects (and incre~se "year- "' 

s~ciric" seaso\!.al effects) when 1,the numb•H of _)amples involved in relatively 

small. ~ 

# " FluctuatiC?ns i~ ElSJ frequency seasqnally, plus year-to-year 

variation in t[le timing at•td amplitude 'of this seasonal fluctuation will . ~ 
obviously, explain a considerable amount of the variation seen at a given 

-~ 

longitude. By extension, the time of year at which samples were collecte,__d 

should be considered in their interpretation. The various sample groupin~s;; 
provide good examples of this. over half of the PNG samples (8/14) were ,/) 

collected in JUly-Anous t 1976, gi V1ng a. lower P (0: P~S I than the geo- • . l, 
L ~' 

graphically compara.ts~e Area la sampl~s (p ;= 0. 743) which contain only · \~:;, 
v ' 

J J t 
' l. ".,.,.ea c 1-arnples ¥om the eastern end.,_ of the~line at 

anua~y- une~ma erla . - -ru. c 1:' !;!}" 

pres~nt' show little varian.ce aBout p, which ~s some significance when 
- ' 

evaluating alternate explanations of the fline. All ll samples available 

have however been collected o'{er a three months period, wni'ch may help .to 

explain the reduced·variande. 

0 



':0 

To examine how general seasonal fluctyations in esterase 

frequency might be, two independent data h , , . sets ~ve been. considered rgure 

4.16) . \ 

time se;rj:es samp•},'e··.-s., (78_ lo.ts·, 7853 · a· '·'a \1 ). \ l\ . _ .~· . ln lVl u~~lect~<;:I/and 
analy.z,ed by Fujino\""'in Hawaii (1965-1967) and sununari"Z:e.d by 

(i) 

Sharp! (MSb) . 

(ii) PalauF samples (21 lots, 1604 individuals) collected in·Palau 
"' 

between September 1~66 and November 1967 . 
.. ,:--., 

• Tne Hawaiian materi~l is difficult to cqmpar~ with the present 
• o,.;ita as the fishery is seasonal. T,here are· consequen:tly large gaps in the 

_, 

data and no information on fish size was available 'at the time of writing . .. ~--~ 

::t:~:a:f f~;:t~:::o:: t.~n w:::e n:::::::c:a~;:8e::::: t ~u:~:d:h:h:e::rlo:s::: 
dence limits, shows similarity with the New Hanover data. E~even amples 

.p 
(l4%),occurred outside the 95% confidence limits as calculated by Sharp, 

mostly (9/ll) -~? t·he 

. appears to ace~. 
1:. 

higher side . Little year-to-year variation in p 

The Palau sampies, although limited in number, are more comparable 

) is 
with the PNG samples. The fish(HY from which they were collected 

-
0 further west than the PNG fisf1ery 1 it shows rough 

year roundi although· 15 

lati·tudinal syn:unetry with respect to the thermal equator/Equatorial counter-
a o o ~ 

current (8 N & 2 s 
1 

compare'd wit)l 4 N), It is theref?re ,rarticularly 
.. l t h 

inte:r:esting to note the/ sharp ·increase._._in E SJ frequency ave'± t e .January-

h 
· d · t -., . ..._~ .. _. _ ·. l·n ~base with the drop in 

!VIarq perlo , as l occurs - . _ ~ .1:' 

frequen~;ies seen in· the PNG time series a ta, · · · .... 
' ....... 

"' 

f 
) 

As the author has no detailed knowledge o:L-t:-fu_s fishery, 

it i,s difficult to advance a plausible __ explanation at this 
. '~) ..... 

• time. 

•• ., ., 
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'4. 4. 5 Coh~rt continuity 

Another approach to the exami~ation of temporaY variation has 

""' -involved, thro'ugh the co-operation of the Fisheries Divis'ion, Papua New 

Guinea, collection of length frequency data from the New Hanover sector 

concqmitant with collection of the time series samples. Modal groups were 

extracted. from these data and an attempt made to relate the time-series 

samples for genetic analysis to particular size groups or.Rohorts and follow 

them:· tf),rough time. \,., 

' .\ 
Ten skipjack were,.. s~ected at' random from each of the 50•:· or so 

vessels operating in the fishery during each daily unloading operation and 

\ fork length measu~ed to the nearest em. Over the period Th~d-1977 to 

September 1980, l~,S, 7,87 skipja~k were measured. These d'ata were "analyz-ed 

on a monthly b'asis a~d polymodj1 l distributions resolved into 'a ser{efo- of 

unQmodal distributions using t e method of successive maxima (Daget & Le 

Guen, 1975). The model lengths, were plotted against d:te of collection, 

and'von Bertalanffy gr~wth 'cur~es derived from the Papua New Guinep. 

tagging data by Josse _e-t al. J 11979) added at six monthly intervals to ~ 
·provide a frame of reference fbr evaluating modal progression. Finally, 

I 

the mean lengths of time seri~s samples, with their E
1 

frequencies and 
I SJ 
I · d th b-'- d . 95% confidence limits (± .07J, were super1mpose on e a uve, an an 

attempt made to match these.lengths_to modal lengths to follow obvious 

progressions. 
Because of its complexity, this figure has not~een shown. 

The analysi~ wEts however beset by several problems: 

(i) within any month, up to eight size modes could be recognized, with 

4 or 5 distinct modes typical. The size structure of the resource 

therefore appears very complex; 

iJ 

(ii) the stationality and blurring of modal groupings, presumably ~ 
· -1 s continuous recruitment patterns, 

associated w1th more-or- es ~ 

lengthy spawning periods and variability in g~owth sequences, as 

\ 



(iii) 

(iv) 

' 

I 
·'-· 

·g 
reviewed earli~r, maki it dl'ffl'cult to · ..-e: assess modal continuity; 

the decision becom~s ultimately subjective and E~e connection 

between succes9ive modes speculative. Many modal groupings are 

probably transient, as previous estimates of loss rates from the 

fishery u9ing the tag data have suggested. 

mean lengths of genetic samples do not always correspond to modal 

grou~ngs. This may be partly attributable to the depa.rture from 

unimodality in some samples, but probably also ·indicates ·that the 
.. 

composite monthly analysis, in converting a lar~RWieldy data 

set into a more usable form, results in the disappearance·er in
.1. 

corporation ot many minor modal groups. 

individual samples with finite confidence limits on both allele 

frequency and size, are not unique and within a system of this 

compiexity, affinities and distinctionJ are virtually impossible . 
to ~stablish. 

It is to be ~xpected that simi~ar difficulties would pla~e other 

studies in productive tropical areas and it might be more use£~1 to refine. ,.,..-.)1 
\"! 

the approach first in a seasonal temperate area fishery such as New Zealand. "\ 
_/ 

The chancss_of success might be improved if: 

(a) limited tagging of fish, ideally within the same aggregation, could 

accompany the sampling to supply information on persistence of 

particular modes within the fishery; 

(b) length frequency data could be processed rapidly, enabling samples 

to be taken from primary modal groupings; 

(c) mor@~ samplep could be collected and analyzed. 

Practical limitations would remain severe, however, and given the 

subjective ·nature of, and assumptions involved in, length frequency analysis, 

effort may be better directed to other areas of investigation. 

4.4.6 

cou~hed 

Evaluation of predictions from tagging data 

~ th taggl'ng· experiments discussed in Chapter 3t 
Predictions from e 
\ 
in terms of the resident-no]Tiads hypot,is.' were as follows:-

.-.._, 



(i) if there is a gene frequency h · · ~ c aracter1st1c of residents, this 

should be present throughout the year. 

assumlng gene frequencies of at least some nomads will ~iffer (ii) ' 

from those of residents, the most l'k 1 ely period of their occurr-

ence in the.New Hanover sector is April-September. 

(iii) - ~f. there prove to be gene frequencies characteristic of geo-

... 

(iv) 

graphical areas, nomad frequenc1'es h ld b · s ou e /epresentat1ve of 

the are~ covered by tag returns. 

genetic heterogeneity at any point in time is liable to be con

siderable, given the multiplicity of factors promoting it. 

~key assum~tion prefaces prediction (iii). Replicate sampling 

has indicated that similar sized fish within an area at a given point in ~ 
t

' d h ' 'l( l 1me an space s are a Slml at E frequency. The clinal relationship 
SJ 

~also has predictive value 

' 1 f g1ven E SJ requency at a 

in assessing the probability of encounte~ing a 

given longitude. On this basis, the E
1 

~ SJ 
freque~cy of a sample of skipjack can be assumed to broadly reflect affinity 

of those fi~h with a gf~en area. This refers only to young and ad'Ult 

skipjack (> 30 c~ and makes no presumptions about how 
l 

the E 
SJ 

frequency .. 
characteristic of a broad area has arisen, ~d whether it represents, at 

-one extreme, gene frequency of parents which "home" to or are re,sident in 

partic~lar areas, or, at·the other extreme, strong area-specific selection 

within one generation on widely dispersing larvae and juveniles. 

data is 

Figures 4.12 and 4.15 suggest the first prediction from the tagging 

' l generally fulfllled because E SJ frequencies centering on -.73 were 

found in all sizes of fish in all months of the year and may represent a 

'resident' gene frequency. Samples from large relatively seBentary fish 

characteristic of the Madang sector would be a useful fu,:r,ther test of this 

prediction. 

·~ 
The appearance-of atypicalJY low E

1 
frequencies during the July-· 

...,_~ SJ 
September period is in agreement with'~rediction (ii). As skipjack abund-

anc~ is ge~erally higher at this time~'tesident frequencies may be "swamped" 

and not sampled when a small number of samples is taken. Alternatively, 
•\" 

'nomad' gene frequSncies could be expected to approximate those bf residents 

in many cases and may swamp abnormal frequencies on other occasions. 

test of the prediction is therefore not particularly powerful. 
&. 



) 
Tag returns have indicated that immigration but of the area and 

immigration into the area, is unll'kely t · 1 o o lnvo ve regions north of 10 N 

l80°E, with areas south f 1o0 s 1' . o lkely to be particularly 

According to the confidence limits about the cline, El 
SJ 

of 0.55 could be anticipated to occur between 150°E and 145°W. 

Immigration into the New Hanover-sector has been recorded from as far 
o" east as Wallis Is. (176 W), the centre of this 

111' . 
range, and capt"res of 

long range immigrants have generally been made during the predicted period. 

'!I 

Tag No. Origin Distance Recapture 
Date 

SA 1516 New Caledonia 
0 

l66°02'E) (21 l4'S, 1460 n.m. 29/7/78 

SA 5626 II (20°43'S, 166°18'E) 1142 n.m. 24/9/78 

SE 2658 Wallis Is. (13°34'S, l76°12'W) 2070 n.m. 5/9/78 

SK 22715 Tuvalu (8°59'S, l79°04'E) 1783 n.m. 19/10/79 

0 Emig:r;ation as far east as 175 E has been recorded, and there has been an 
. 0 0 

unconfirmed report of a recapture at 5 N, 150 W (Line Islands). 

From the occasional presence of very high E
1

SJ(> .80) frequencies, 

_particulatly in the Co~al~Sea, recaptures from Indonesian releases would 

be predicted; no tagging has however been carried out in this area as yet. 

Returns from north Coral Sea releases have been received in the Madang 

' and New Hanover sectors (Lewis, 1980b; Cooper and Wankowski, 1980) and it 

is possible that two-way movement along the New G~inear{' north coast and 

into the Coral Sea occurs. In accordance with the resident-nomad theory, 

movement into the Indonesian region with its high year round productivity 

•<should be limited, and no returns have been made west of Irian Jay a. 
'· Prediction (iii) is therefore generally met by the genetic data, but the 

tagging data presently available appear to provide a conservative estimate 
~ 

of the occurrence of particular gene frequencies. This may change if 

greater numbers of fish had been tagged; it may also suggest a possible 

bias in tagging experiments towards tagging reside'nts rather than nomads. 

The final prediction, 

as evidenced by the spread in 

again ~ot a powerful one, is clearly met, 

marker (E1 ) amplitude and phase of E
1 

SJ ., SJ 

frequency fluctuations. The time-series analysis has enabled some sources 

of· this heterogeneitY. to be ident.ified. 

"" 
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4.5 DISCUSSION 

Analysis of geographical variation in allozymes has shown clinal 

variation in esterase allele frequency to be the most · 'f' t . s~wnl lean component 

of this va:riation at present· The other polymorphic sy~·tem considered, 

transferrin, showed constancy in allele frequency across the Pacific Ocean 

(and Atlantic Ocean, Fujino, 1969), whilst genotype numbers Bhowed a slight 

heterozygote excess in some areas; this pattern may be associated with the 

protein's function. Other systems were either insuff~9i.ently polymorphic 
~ .. 

or subject to severe practical constraints to be of 

although there is some chance that variation at the 

ately prove useful. 

value to the study, . ' ' 

(iDA lo-cus will ultim-

The low level of variation may in itself be of significance (see 

Chapter 5); the reliance on variation at so few loci has undoubtedly in

creased the difficulty of detecting population sub-division. 

The time series data have brought to light se.veral important 

points rel.evant to interpretation of the observed variation: 

(i) 

(ii) 

(iii) 

l variation in E SJ frequency at a point source is- representative of 

the variance about the cline at that longitude and is about five 

times that expected from binomial sampling. 
~-• < 

in the Papua New Guinea area, much of this extra variation can be 

'traced to the seasonal or 

medium size skipjack with 

intermittent appearance 

l f . lower E requencles. SJ . • 
to the 

of groups of 

Tagging results 

east and south-suggest these fish may originate from areas 

east where E1 frequencies of skipjack are 
SJ 

typically lower. 

•·· the appearance of these lower frequencies has a strong seasonal 

basis but shows considerable between-year variation. The period 

in question (July-September) is generally assgciated with high 
More 

productivity, suggesting nomadic elements may be involved. 

importantly, this period is also one of minimal spawning activity 

and reduced gene flow may accompany these movements (Figure 4.17). 

f Y 
for rish > 30. em seem to be minimal.~ 

size effea~s-~n gene requenc 

N G · e'a' data can be considered repre-
Providing the Papua ew uln . 

( l udl'ng the eastern tropical Pacific), 
sentative of other tropical areas exc 

) 
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these data increase the plaus\bility of· the isolation-b;:..distance model, 
·'t: 

with selection a1ong an envircmmental gr~dient and some ~estrictions dh 
". ·~-c \' 

gene flow across the area int~rac.ting to produce the obse~ved~cline in 
\ 

Slatkin (1973) defines 2 , the characf~ristic length 
c 

for the spatial variation in allele frequencies as Q, 
2 

\.1h •, '' Q, • th 

net mean square gene flow distance and s is the sele~t:o~s:tr~::h o::r- e 0 

esterase frequency. 

, I , , 0 
ating over distance 6. The population cannot respond to ch'ange\S ln envlron-

' \ men tal conditions which occur over a distance < Q, • .As the paraJ{leters 2 and 
c 

s are both poorly known here, Richardsol) (pers. comm.) , following the 
I 

approach of Endler (1973), has employed si~ulation techniques to examine the 

effect of varyi!ng migration rates and selection levels on maintenanc'\:! of 

the observed continuous cline. Using six populations with 2000 anim~')\.s in 
\ 

each, (a number o~ this size was used to overcome drift effects, yet keep 
\' 

computing time reasonable) in a linear· array, and taking ten samples of \100 ,, 

fish at random in the fiftieth generation, the following conclusions were\ 
I 

reached. 

(i) with a very strong gradient (6%) in selective differentials on 

the heterozygotes (or either homozygote) across the populat"ions, 

nearly 50% migration between populations was required to eliminate 

a cline in allele frequency. A migration rate of 3% produced the 

closest fit to the observed cline at this leyel of ~election. At 

lower but still high l~vels of selection (1%, 0.5%), very 

restricted migration (< 0.1%) would be necessar~ for the cline 

to persist. 

(ii) steps in the cline were difficult. to induce by varying selection 

and/or migration. 

(iii) 
· from Hardy-Weinberg equilibrium was no significant d1vergence 

produced. This is in general agreement with actual observations'· 

where however several cases (area A, PalauF) of heterozygous dis

advantage/Wahlund effect were recorded. 

Endler~(l977) suggests that dominance relationships amongst geno-

b l
'mportant ~Man the effects of gene flow in 

types may e more (!} 

Heterozygous disadvantage, for 
determining cline steepness. 

example, leads to cline steepening. 

\ 
\ 

(iv) f Se lection/mig~ation did the heterogeneity 
with no combination o 

,f ~ d ~ Such hetero-
induced at one point match that observed in the a a. 
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geneity may be exRlained if, as suggested by the time series data, 

much dispersal is not accompanied by gene flow. This again high-

·lig~ts the problem of estimating gene flow from dispersal. 

The distance across' which gene flo,w effectively occurs ·(9.,) will 

be less than the dispersal distam;e est'imated from the tagging experiments. 

In the Papua New Guinea experimer{ts -;: the only ones analysed in 'detail so 

far- not only was dispersal distance limited (even after 100 days, 70% of 

returns showed less than 200 nauticai miles displacement) but the timing of 

influxes of novel gene frequencies would further reduce possibilities for 
,• 

gene flow. Preliminary results from the SPC programme have yielded similar 
~ ~, 

results, with a very small percentage o,f returns showing more ~han one """ 

thousand miles absolute displacement, and none more than 4,,000 miles; the ~;;<, 
I 

longitudinal displacement involved is often considerably less. Although the 

scale of long..tdistance move~ents is likely to be underestimated (Grant,. 

1980) a variety. of barrlers would generally prevent their contributing :6-
effective gene flow (Endler, 1977): ·Providing the pattern of larval dis

persal is not .markedly at odds with that described for adults and that 

additive across-generation effects do not greatly increase 9.,, the apparently 

quite restricted 9., may mean at rather modest selective differentials 

may be sufficient to maintain the cline. 

It has-been previously noted that selection is most likely to occur 
. 1 

on larval and juvenile stages; the finding that E SJ shows little or no 

change with size above 30 em in the Papua New Guinea area lends further 
I 

support to this. Similarly, the "weak" grad:i,ents in several environmental 
: tJ 

parameter~, notably temperature and salinity, may provide a basis f(i: 

selective action - they are at least within the limits of resolution in field 

studies, unlike many instances where attempts are made to measure selection. 

Detailed studies of serum esterase kinetics and function would be a valuable 

aid to increasing our understanding of selective action on this locus. 

The suggestion that ~sidents may make a greater contribution to 

spawning in tropical areas find support in the predominance of presumed 

"resident" gene frequencies during t,he peak spqwning season in the Papua New 

Guinea area. If this proves to hold generally true, island-open ocean inter

actions may also be critical to understanding the selection process. We 
0 

have seen, in the area south of the counter-current, that east of 130· w, both 

a flatening-out of the cllhe 
and cessation in spawning _ac ti vi ty occurs_\ .. -~rt:' 

\ . 
h t th myr iad of islands and reefs 

seems highly significant t a- - e 

d0 no t extend east of lJ0°W 
Pacific south of the Equator also 

which dot\the 

(see Figur' 4.5). 

,. 
"• 



It is useful now to examine available data for the Pacific Ocean north of 

the counter-current, where, apart f t . .,n.. · rqm n~ lS?lated Hawaiian~pain, islands 

· a e a a conslsts of are virtually non existent east of l75°E Aval'l bl d t · 

PalauF material (or~y those with n > 80 (18 lots) have been plotted),, 

Japanese material collected and analysed by Fujino and with n > 80 (ll 

samples, as in Sharp, 1978), ·one Philippine sample (Sharp, (MSb)lO samples 

from Richardson (MS), the Hawaiian time series 

in the eastern Pacific and anal:rsed by Sharp .. 

data and 9 samples collected 
~ 

The Ecuador material is s 

also shown, 1-
/ 

A regression line fitted through 
0 0 

above 5 N has been extrapolated to 175 E, 

points from the western Pacific 
I; 

the approximate eastern limit to 

island groups, then a second horizontal line extrapolated eastwards 
' .. 

(Figure 4 .18). The fit of available data about these two lines is good ... 
.; 

The very wjj{e spread in Hawaii.an material sugges~s movement inJP the ·arra 

from as far west as l50.0 E, and possibly from Ecuador/French P~~sia./ Tag 

returns in Hawaii from releases east of Jap~ (31°N, l55°E) and conversely 

a return in the Marshall Islands (l2°N, l5~E) from Baja California releases 

(Sharp
1 

(t"'Sb) provide further evidence that sk~pjack e')(pJ,.~ited ec:.§.J;; ..... o.L1i.HQ
0

e. 
' '- •••• • ...... ~·p ... 

in the Hawaiian and Eastern tropical Pacific fisheries may i6riginate from 

well to the west, ~it,~1 frequencies 
spawnings in th~~icinity of islands 

.shaped by selective forces in this area showing little 
change in adults 
r 

As foreshadowed earlier, island-open ocean inter
"'t.. 

. 0 
found east of 175 E. 
actions may thus play a very important role in skipjack population ecology. 

The hypoth.esis as it now stands appears to expfain the available 
' 

tagging data better than does a discrete sub-population or stepped cline ~. 

model. If El frequencies are however best described by two similar -' 
SJ 

,/ 

clines i.e. north and south of the Equatorial Counter-~urrent with in-

flexion points in different places (l75°E, l30°W), the model described by 

Sharp (1978) from considerably less data, with five overlapping "genetic 

units", is' not too differe·nt from the present modeL The essential differ-

ence between 'the two can be seen in neutralist-selectionist terms. Whilst 
l f . h t 

the Sharp model appears to im~licitly assume that E 'SJ ·requencles c arac·er-

istic of particular groups and which have arisen as a result of stochastic 

rather than deterministic (sel~~ive) forces might eve~Eually be defined, 

the. current explanation sees El SJ .6-_n~quencies as determined by selective 

forces on larvae and juveniles in island-a'ssociated areas an~ lying on .a 
0 0 

continuum within the area 100 E ·to 130 W. "\ 

.. -
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Figure 4.18 
Relationship between E

1 
. and longitude across the area north of 5°N. SJ 

in Both regression lines have been fitted by eye, and the Hawaiian and Mexican frequencies are shown 
histogram form. Other symbols are as follows: ~ 

tl 

• Fuj ino Palau samples. ?J1d one Sharp Philippine sa.rnple . 
~ 

Fujino Japan samples. 0 

* 
6 SPC samples (Richardson, MS) 

Ecuador samples for comparison. t.~-

No·te that these more closely match area C frequencies rather t:;han Hawaiian frequencies. • 
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The key questi<::>n from both a population genet1· c and managemen;t 

~ viewpoint is - does strong· selection act 1 ~ on arvae.and. juv iles to produce 

. h. ' t' 1 . ~ ·,. Wl t ln on~ genera lOn' an E SJ fr~quency Gharacter1st1c of the area inde-

pendent of parental El f · 1 

'j 

~ ~ requency or do E SJ frequencies reflect parental 

1 fr;qu§ncies sligntly mo~fied by relatively weak selective forces? TQ~ 
!extent to whicb nomads contribute to gene flow and the extent to which they 

are selected for or against also need to be ascertained. Apparently limited 

. !/, ·•values suggest;; • that, modest.· selection may be enough to maintain the cline. 

8 ~y amount of homing occurs or ~f residents c:ntribute dis-

proportioKy to spaw,ning, the required level of selection cou-ld be very 

modest indeed. r;nplications for management would then represent a ·clear ft 
chal-lenge to orthodo~ - protection of tropical spawning areas would be of 

paiamount importance,. wi:th lit~. need to regulate harvest in eith'er 

temperate areas br tropical areas-inhabited by nomadic non-spawners, such as 

,J;he eastern Pacific. ·' /' 
\ 

As it is not possible to take analysis o,f the skipjack •genetic 

data any further without further info!rmation in key areas of the species 

biology becomin9 available, it may be useful to briefly review available 

data on yellowfin tuna, which shares many similarities with skipjack and has 
. . 

~een the best studied tuna After that species. 

,€ 

although attaining a much greater size and possessing more 
(i) 

advanced physiology, yellowfin dispersal .. patterns are str~kingly similar 

to those of skipjack as noted earlier. Less than l% of returns in extensive 

easte~n ~acifi~ tagging experiments showed disp:J,acemen·t > 1060 nm, and ·~una 
tagg~d nea~ bMks and islands show limit'd dispers~l (Schaefer et al., 19611. 

As w1th sklpJack, tagglng exper1ments maybunderestlffiate the extent of long 

' distance movementi yellowfin contaminated as a ~esult·df nuclear t:sts at 

Bikini At;ll ultimately ~ppeared over much of the Western Pactfic (Suzuki • 
ct aL ~ 197'~). ~net~e:)_ess, trans-Pacific .migrations as observed in other 

species have ~ot been:recorded and dispersal, :and hence potential gene flow, 
r-"' 

is-probabl~restricted. 

(ii) anaiysis of morphome~ric data (Royce, 1964) has shown a 

cline in most' characters from the western (l30°E) to eastern Pacific I lead:i.;J.: .. 

(1963) 
anr~SQ.7uki et al. , (1978) to suppbrt~· . 

Royce (19~4), Kamim~a and Honma v ~ . 
;0~rcept of "semi-.independent subpopulatiohs" or stocks:. (No comparable 

tric stud~es have yet been catried out for skipjack.) 

.. 

. . . 

L 
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(
iii) \ .. although yellowfin spawning t ··., l.?) s ratE?gyl is liable to be qg_i te ·· 

different - spawning for example ace · " ··., .. ' , urs ln the eastern tropical Pacific ···· .... 

' ( cf. ski~ ack) and samples taken there · \ 'Q •• •••• · . ln offshore areas had a higher per-

centage of spawners than those in inshore areas (Knudsen, 1978 ) _ the 

limited gen~tic data provid~s some interesting 

from Sharp· and Kane (MS) ,.demon~trates. 

parallels 1, as the summcrry belOW 

Hean Allele Frequency 

Area 

Eastern Pacific 
(7 5°W - 141 °W) 

Marquesas Is. (l40°W) 

Western Pacific 
, " 0 (l38°-l54 E) 

Estl 
YF 

~.969 'J 

~·· 958 

,. 975 

TfA 
YF 

.727 

.757 

.726 

2 
GPI 

YF If 

.340 

.533 

.674 

n 

14,240 

94 
'r.'P 

1,516 

Serum esteras:;e showed .no useful variation, 'and transferrin 
2 - Tf · SJ' 

n' appear relatively constant at a level similar to frequencies 
YF GPI
2 

shows variation of an amplitude '(,_ 0.35) comparable to that seen.'in 

the E1 SJ cline ove.r the same region 1 and mil( p:rove to be clinal in a 

sim·L),ar but not identical manner to thqt a"escribed for skipjack - no 

flattening of the 'c'l§;ne at its eastern end would be pr,edicted, for example. 
. ~ ~ . 

Finding variation similarly expressed in two enzymes with quite unrelated ' 
functions in different ~ut related species is interesting but difficult to 

interpret. Finding sue~ similarity in several enzymes within the same 

species wo~ld be good evideace that breeding s tru~ure of the species and 

not selection alone; were involved in ~hapi.ng the clines. 

The comparative approach. may well provide some insights into popu

lation genetics or scombrid fishes and high vagility species in general. 

As we will see in the following chapter, two tuna species hypothesized to 

have hemispheric and circumpolar (panmictic) population structure respect

ively, albacore (T. aLa'lunga) and southern blue fin tuna (T. maccoyii) 1 

possess quite high levels of genet'ic variation and have been successfully 

aged ... Examfnation of this variation over a wide area may provide informati9n ( 

on the· selective proc<ass; no dff ference in allele frequ.cy over wide areas . 

would be predicted in its absence. Carefully designed experiments may 

further allow selection on particu:tar loci to}be it'sigl1ed to life histo.ry 

s ~ages. 
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Whilst ~t is clear that many questions remain unanswered the 

\ II), •· , 

. t' f'th . . ~ characterl~ lCS o \. e specles, the pa_uci ty of useful known electrophoretic 

variation and the daunting logistics of high seas sampling also suggest 

that these questions are not especially tractable ones given existing 

methodplogies. The economic importance of the species d~es provide con

siderable incentive for further studies~however and it is suggested that 

these·would most usefully focus on the following areas: 

- (i) 'biological aspects of oven ocean-island interactions, e.g. vertical 
(1. 

and horizontal distribution. of larvae relative to distance from 

land; _
1
zooplankton distribution, etc. 

,g 

(ii) distribution of larvae in time and space, complete with details of 

(iii) 

development. Recent successful spawning of skipjack ''in 

aquaria has been an encou~agiing development in this dire~tion. • 

\. 

charact~rizing electrophoretic ~ariation in 
... 

juvenile.s. 

,c. 

eg/~rs, 
7 

I 

·' 
(iv) limited additional sampling of adults to investigate specific 

hypotheses. This may inclu'9e collection in the J:ndian Ocean and 
' 

possibly time-series collection in O'C.her areas, for example, a 

tropical area intermittently productive (Kirabasi) compared with 

a t~oplcal a~ea with higp year-round productivity (eastern 
.· 

Indonesia). 
JJ, 

!:\.*' .... ~ , .. 

! ., . 
.I ... ·., 

1 

J 

~· 
~· 
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CHAPTER 5 

J 

GENETIC VARIATION WITHIN THE FAMILY SCOMBRIDAE 

() 

5.1 INTRODUCTTON 

The.rD._receding chapter has, given some indickion of both the 

potential value of electrophoretically detected variation to population 

genetics studies, as well as the constraints imposed by h~ving few 

suitable polymorphic systems on which to base such stu4ies. Apart from 

recent sur\reys by Richardson .(MS) and Sharp (MS) of enzymes active in 

skipjack and yellowfin blood re~pective~y, levels of genetic variation 
~\4 

in scombrid species have not been adequately screened, although individual 

enzyme polymorphisms have been described (Fujino, 1970; Serene, 1971; 

Edmunds and Sammons, 1971). In this chqpter, attempts _to estimate levels 

of genetic variation in most Indo-Australictn members of~e family 

Scombridae are described. 

Genetic data for scombrids should'also provide a useful'test of 

some of the hypotheses which have been advanced to explain the levels of 

variation observed in natural pop~lations (Chapter 4). For example, to 

determine if selective forces ar'e, involved in shaping the amount of 

variation maintained, one strategy has been to seek correlations between 

observed variation and ecolog_ical/biol~gical characterist}cs of the 

organism concerned (Hedrick et aZ .• 1976~ Nevo, 1978; Nelson & Hedgecock, 

1980). The pr~sent large species array within the family Scombridae 

exhibits considerable diversity in such characteristics' as habit~t, range, 
. . 

~:.. 

maximum size and physiologi'cal adaptations, and, a_ppears ideal for this 

purpose, particulariy as it is unnec~ssary to ~urvey across higher taxa 

in order to secure an adequate range ~f ecological and biological 

characters. 

" 
5.1.1 

Criferia for' ;stablishing levels of variation 

to Lewon
tin (1974) , reasonably reliabl~ estimates of 

According_ 
genetic ,variation in_ d:i,_rectly sampled -natural populations require that 

four basic criteria be satisfied: 

'\ 

~ ... 
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(a) 

(b) 

(c) 

50 genomes per locus should b~~ampled; 

a large number of loci (ideally 100+) be examined; 

particular enzyme functions should not be d' lsproportionately 

represented; 
"m( 

(d) the ~oci should be selected without regard to known variability 

and represent as near as possible, an unbiased sample of the 

genome. 
~-

In pr:actice ,· sample sizes of 50 individuals are not always easy 

to obtain. For example in this study whilst only a handful of individuals 

.;. belonging to .the, ryre species Scomberomorus rmd tiradia·tus are on record 

·. }n the scientific literature, 15 individuals were collected for this study 

and S<,? this was \a considerable ach,t~v~ment. Nei and Roychoudhury (1974) 

also poi'nt out that. in estimating average heterozygosity per locus, .a 
large number of loci is pref~·rable to a large number of individuals typed 

per locus. In this study, with 27 loci examined for all species, a 

sample size of 25 wa's set -as reali~ic and acceptable 7 It prov'ed possible 

to 'attain this number in 14 species, 13 or more individuals in another 7 

The number of loci one individual of·two rarer species. 
s.pect'es and only 

sere ·,~¢!, whil-st 
falling well short;. of Lewontin's ideal, exceeds that 

examined in many published studies (for example, Neva, 1978). The loci 

were chosen with regard to ease of resolution of phenotypic classes and 

cost of analysis, and fortuitiously embody a rela~ively unbiased sample 

with respect to enzyme class, enzyme functions and quarternary structure 

(see later). 

Even when the ab.ove criteria are fulfilled, there remain some 

additional qualifications. Firstly, single collections provide estimates 
To adequately 

sampling across 

As the concern 

of variation within populations rather than species. 

characterize variation in widely distributed species, 

the species range sho_uld be carried out (Nevo, 1978). 

here is with the comparative aspects of genetic variation withih a single largely 

region, the Indo-Australian area, this difficulty lsl\avoided. Secondly, 

only structural loci can be studied using electrophoretic techniques 

( 
· le.'v els of var;ation not representative of the entire 

these f!jY show "' 
discussed pre~iously~1not all variation at individual 

looi ,~;an be detected using standard techniques. Examin-
genome) and, as 

structural gene 

loc
; us;ng l. den tical techniques in all species should 

atioh of the same "' ~ 
' be made. 

ensure that 'ialid comparisons can 

/ 
I 
I 
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pro e t e body cavity through the marketed whole, it was necessary· to b h 

~ranchial region and excise liver materl'al wl'thout damaging the exterior 

of the fish.,,. Approximately 10 gm of material were placed in labelled 

t~mperature~~ta~t plas;ic snap~c~p vials and dropped into liquid 

nltrogen. Where tQtS w~s not p~ssl~le, dry ice was carried. Every 

effort w.as made to 
1

0bta~terlal ln premium condition, although 

experience subse9Dently show~~~at preventing temperatures rising above 
0 ' 

-20 C during storage was at least -~"8----.i.__mportant. On return to the 

laboratory, material was catalogued aAd stored at -70°C; at this temper

ature, material stored for 2 years still ?rovided satisfactory results 

I for all enzymes used in this study. 

'Liver presents more problems with deterioration than other: tissue 
\. 

such as muscle and bloo,, an~ ~as chosen because of the ·:r;ange of enzymes 

availa'ble and the stron.~) actl Vl ty shown by most of these enzymes. Many 

of ·the loci coding foffliver enzyme;:; are also expr~s.sed in blood, the 

tissue of choice in most population studies with large commercial fish 

species because of the ability to take samples without damage to the 

product. 'lllb It is likely, therefore, that most polymorphisms discovered in 

this study will also be present in blood a~d hence valuable for use in 
' ' 

population~tudies. 

'· Table- 5 .l lists the sample location, date of collection, size 

range of indiv~duals, method of collection and collector for all species 

studied. In nearly all cases, a single locality and sampling occasion 

is involved, but with several rarer species or species of solitary 

habitat (e.g. wahoo), it has been necessary to collect on several 

occasions to obtain a reasonable number of specimens. Sampling localities 

listed in Table 5 .l are shown in Figure 5 .l. 

Two 
9

ther epipelagic species which commonly co-occur with various 

scombrids ,i"ere also screened for comparative purposes. These were the 

black mariin (Maka·ira indica> Family I~tiophoridae) a closely related 

species wi'thin the same sub-order £combroidei, and a more distant:y 

related species, the rainbow runner (Elegatis bipinnulatus> Family 

Carangidae). 
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5.1.2 Measures of variation 

The most widely used measurement of gene variability is the ., 

~xpected frequency of heterozygotes, or heterozygosity (H); this is 

expressed as either. H, the mean heterozygosity per locus, or H. , the 
1. 

mean heterozygosity per individual. Although H =H., the variance 
l 

about Hi tends to be normally distributed, while this is not generally 

expected with H, and the standard error associated with H. is typically 
. l 

lower than for H . 

~A less precise measure is P, the proportion of loci polymorphic at 

a predetermined level (usually common allele frequency <0.95 oi <0.99). 

Other measures, such as the number of alleles per locus, ·ate less 

commonly used and rather less satisfactory (Nei, 1975). 

After establishing levels of inter-locus and inter-specific 

variation in Indo-Australian scombrids, it is intended to test pre

dictions from both neutralist and selectionist theor.y by seeking corre

lations between heterozygosities and various environmental and biological 

predictors. 
Fundamental problems for studies of this type are inevi t-

ably posed by the difficulties associ"ated with quantifying variables of 

·inter~st, e.g. niche breadth, envi'ronmental grain, N , (effective e 

population size) T (time since divergence), trophic stability and vagil-

ity; in practice, resort is made to indicators which can be ordinated, 

or to pair-wise comparisons between contrasting species. 

5. 2 MATERIAL . ! 

specimens were c6llected by a variety of methods, including 

trolling, pole-fishing, trawling, purse-seining and gill-netting from 

its preservation and 

themselves, has ~een 

storage often at con~iderable inconvenience 

gratefully acknowledged earlier. 

In all cases, liver sample.s were taken. 
This could be achieved in 

most cases by simply opening the body cavity w.ith a mid-ventral incision 

and excising the sample. 
In other cases, where the fish were to be 



Collection details of material available for screening 

'Only liver material in good condition has been listed 
levels of genetic variation 

~-.r 

Family Scornbridae 

Scomb~ini (Mackerels) 

Scomber australasicus (slimy mackerel) 
Rastrelliger kanagurta (chub mackerel) 

Tribe Scor.:beromorini (Spanish mackerels) 

Grammatorcynus sp. A (/shark mackerel) 
Grammatorcynus sp. B (scad) 

Scomberomorus commerson (nqrrow banded mackerel) 
S. queenslandicus (Qld. school mackerel) 
S. multiradiatus (Papuan mackerel) 
S. semifasciatus (grey mackerel) 
S. munroi (spotted mackerel) 

Acanthocybi~,solandri (wahoo) 
~ 

Tribe Sardini (Bonitos) 

Sarda aus~ralis (Australian bonito) 

S. orientalis (oriental bonito) 
Cybiosarda elega:ns (leaping. bonito) 
Gymnosarda unicolor (dogtooth tuna) 
Allothunnus fallai (slender tuna) 

/ 

No. Location 

32 Port Stephens 
30 Ambon (Indonesia) 

15 Cairns 
7 Ciiirns 

60 Cairns 
43 Moreton Bay 
18 Gulf of Papua 
21 Gulf of Carpentaria 
15 South-West Rocks 

( 3 Port Stephens 
( 4 Narooma 
( 6 !1oreton Is. 
(10 Hawaii . 
( 4 Narooma 
( 2 Port Stephens 

(11 Port Stephens 
( 13 Narooma . 
25 Albany 
13 Sydney Markets 

1 Sahul Shelf, W.A. 
1 S.E. TasmanL 

"""\ 

Date 

24.2.79 
14.12.79 

19/10-23.1.80 
8.12.79 
19-29.10.79 
18-23.4.79 

NA 
22-23.4.80 
March 1980 
25.2.79 
9-11.3.79 
3-4.4.79 
5-22.7.79 
7-9.3.80 
29.2.80 

19-21.10.79 
9-ll. 3. 79 
10-16.3.80 
March, 1980 
28.6.79 
July, 1980 

Size (LCF) 

19-28 em 
23-26 em 

60-86 em 
40-45 em 
56-114 em 
18-33 em 

NA 
60-78 em 

NA 
114-128 em 
113-157 em 
122-145 em 
113-149 em 
130-163 em 
140-156 em 

48-63 em 
53-76 em 
50-64 em 

NA 
73 em 
85 em 

\ 
\ 

-
Method 

Handline ADL 
Fish market ADL 

Trolling L. Chapman 
Trolling P. Coo;2er 
TrolliiJ ADL 
Trawl ADL 
Trawl D. Gwyther 
Gill net 

G. McPhers.on 
Trolling D. Mitchell 
Game fishing ADL 

II 

AD'L 
II 

J. Pepperell 
Trolling J. Uchiyama 
Game fishing J. Kalma 

II 

ADL 

J; 
II o 

](alma 
ADL 

Trolling ADL 
Seine Net J. Pepperell 
Handline G. West 
Trolling T. Jenkins 



Tribe Thunnini (Tunas) 

Auxis thazard (frigate tuna) 

Euthynnus affinis (mackerel tuna) 
! 

" 
Katsuwonus pelamis (skipjack tuna) 
Thunnus albacares (yellowfin tuna) 
T. tonggol (longtail -tuna) 
T. obesus (bigeye tuna) 

T. alalunga (albacore) 

T. maccoJii (s. bluefin tuna) 
T. thuvrnus orientalis (oriental bluefin tuna) 

Family Istiophoridae 

Makaira indica (black marlin) 
TetraptvYuS audax (striped marlin) 

Family Carangidae 

ELegatis bipinnuLatus (rainbow runner) 

~ 

( 9 
(16 

(29 
( 

(49 
54 

-30 
29 

7 
(13 
( 9 
25 

l 

24 
9 

14 

-, 
'·-, '\ 

Narq_oma 

Port -~hens 

Cairns 

Hawaii 
Willis :fslets 
Kia Is., Fiji 
Moreton Bay 
Padang, Indone,sia 

NaroEJma 
" 

Eden 
Port Moresby 

Port Stephens 
" 

Willis Islets 

* Total length 

9-ll. 3. 79 38-41 em Game fishing ADL 

''"'•1_9-21.10. 79 38-43 em " J. Kalma 

19.10.79- 46-74 em Trolled L. Chapman 
l. 2. 80 

~ 

29.5-1.6.79 ) 38-73 em Pole & line J. Uchiyama 
I 

3.5.79 I 42-52 em " ADL 

23.4.80 46-53 ·em " R. Gillett 

~l & 1179 89-119 em Handline ADL 

22-~.79 40-50 em Pole and line ADL 

9 -ll. 3'>--7 70-82 em -Game fishing ADL 

7-9.3.80 55-82 em 
II J. Kalma 

2l- ll. 79 100-105 em Purse seine ADL 

1:r. 4. 79 233 em Game fishing B. Smith 

* 
24.2-2.3.80 182-238 em* Game fishing ADL 

l-2.3.80 150-281 em " ADL 

3.5.79 51-72 em Pole and line ADL 

.. 

.. 
"-----'-
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5. 3 METHODS 

5.3.1 Electrophoretic procedures 

All enzyme systems were separated on cellulose acetate strips as 

described previously. This contrasts with most previous surveys of 

gen\=tic variation ~hich have used starch a~ the medium. Comparisons of 

known polymorphisrns have shown the two media to yield i¢lentical results, 

and cellulose· acetate has been preferred because of its convenienc~. ''1\ r 

small p,iece of liver was cut from the still-frozen liver sample an<;l 

placed Ar glass centrifuge vials. An equal voX~e of lysing solution 

(0. 2% f3-~~rcapto-ethanol in do;t~ble disti:j.led ;_,ater) was added, and the 

.rrrat:erial vigorously macerated with a swab s'tick. :rhe samples were then 

centrifuged at 3,500 rpm for 10-15 minu~es to separate the lysate con

taining the soluble proteins from the cell debris. Fat globules witJ:in 

the liver ce1ls often coalesced to form a dense surface layer; with care, 

lysate could be run down the side of the"vial without disturbing the fat 

plug. 

~s'<lng an adjustable gap .pratlghtsman' s lining pen and perspe) rule, 

samples were applied to the gel which had previously been soak~or 
about 30 minutes in the appropriate buff.er'. Running times and voltage ' 

1 

applied for each enzyme were determined by experience as those necessary ,, 

to produce optimal resolution, usually involving anodal migration over 

about 4 to 6 ern of gel. The gel was then allowed to rest in an enzyme

specific histochemical stain mix to visualize the zones of activity. 

In some cases, these required viewing under ultra-violet light. 

Buj'fer.s 

' varying the molarity, pH and EDTA content of tris maleate, tris 

borate, phosphate and sodium barbital solutions produced a variety of 
.v, 

buffers for test when working up new systems. It was faund however, that 

for most enzymes, a standard .05M tris-maleate buffer, pH 7.8, provided 

good resolution. In relatively few cases it was found necessary to 

develop other buffers. Furthermore', buffers developed for one species 

invariably proved suitable not only for other species in the family, but 

also for the other two species screened. This seems to be largely attrib

utable to the excallent condition of most of the material, which appeared 

to be very tolerant of buffer choice. 

'\\ 
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o such a study were thus Some of the time consuming aspects f 

considerably reduced_· and with ex.oerience, l. t ~ '~ pr~ed possible to run up 

to 2 5 indi victuals fo.r the 2 7{ sta~dard loci in a d~y·. 9 
. . «<, 

·/.i· _,_.)· 

Stains stains ·wet modifi~~ o~ly· {:htly from those :escribed by shaw 
.., 

(l970).?nd Harris •. 9-nd Hopkinson (1977). Details of the buffers 

used are listed in Table 5.2. As electrophoretic mobility of 

and Pra1ad 

and sta4.ns 

some enz'imes show considerable variation between species, optimal running 

times will vary accordingly and the times listed in Table 5.2 are 

approximatio~s only. 

5.3.2 The enzymes 

As the data from this survey of electrophoretic variation were 

also to'form'the basis of biochemical comparisons for systematic studies 

(Chapter 6), three criteria were strfngently applied to the 30 or so 

presumed enzyme loci initially screened before they were included in the . ' 
data base. 

(i) the locus had to be clearly expressed in all species studied. 

These included a 
On this bqsis, ·several enzymes were r~ected. 

presumed s'iow ADA locus ~hich showed clear variation (dimeric * 
' q 

heterozygoteEi.l in SQlne specieS 1 whereaS in otherS 1 resolution 'waS 

poor and activity low. Activ·ity at second ICD and GPI loci showed 

a.simi~ar pattern. As material was not subjected to sonication, 
I 

i~ is prObable in some cases that such loci are membrane-bound or 

mitochondrial, rather than cytoplasmic, with.available activity 
o> 

levels varying between species. 

(ii) between-spE.'ties homologies needed to be established with reason-

An example of an enzyme failing to satisfy this 

* 

able certainty. 
requirement was a peptidase using 1-leucine-alanine itS a substrate. 

Two clear zones of activity, both with occasional dimeric hetero

zygotes, were expressed in ~orne species, and one zone in others. 

As homologies in this situation would have been difficult to 

estctblish,~~is otherwise satisfactory and variable locus was not 

included. ~ 

ADA is no
19
mally a monome as the fast locus demonstrates. It i~-kely 

that activity of another enzyme has been visualized by ):.he //in. 

)'-

~-. 
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Table 5.2 
't' ~~ .. 

Running conditions & stAins for the enzynies used in' Uie study. 

Enzyme 

ADH 

GPO 

SORDH 

"'" 

LDH 

MDH 

ICD 

PGD 

GAPDJI 

SOD 

GOT 

GPT 

PI( 

Abbrey,.iations used are as follows: 
TEi'i ·:: tris EDTA borate. Molarities 
stated. 

' ,IJ , 

TM J'tris maleate; 

Running Condition~ 

TM pH7.8, 
2SOV, 1 hr. 10 mins. 

TM pH7.8 
2SOV, l hr. 10 mins. 

TM pH7.8 
2~0V, 1 hr. 20 mins. 

TM pH7.8 
250V, 1 hr. 40 ruins. 

1'M pH7.8 
250V, 1 ru:. 10 mins .. 

0.03M TM pH7.2 
2pOV, 1 hr. 

I 

1'M pH7. 8 
2SOV, 1 hr. 15 mins. 

TEB pH7.8 
300V, 45 mins. 

TM pfl7.8 
250V, 1 hr. 

TEB pll7.8 
250V, 45 mins. 

1'M pH7 .8
0 

, 

1 hr. 15 mins. 

TM plJ'l, 8 

250V,, 1 hr. 30 minst 

TM pH7,8 
250V, 1 hr. 

™ pll7.8 
2SOV, 1 hr. 

( 
~· 

ar~ all .OSM unless otherwise 

Stain· 

1. Oml. 1'ris HCl pHS. 0, 1 drop Ethanol, 
O.lrnl. NAD (lOmg/ml), O.lml. PMS (2m•Vml) 

l.Oml Tris HCl pHS.O, O.lml a-glycero 
phosphate (25mg/ml), O.lml NADP 
(lOmg/rnl), O.lrnl O.lM MgC1

2
, O.lml PMS 

(2mg/ml), O.iml HTT (4mg/ml). 

l.Oml. Tris H~pHB.O, O,lml. Sorbitol (25 
mg/ml), O.lm~odi~pyruvate (25mg/ml), 
O.lrnl. NAD (lOiiig/ml), O.lml.PHS (2rng/ml) 
O.lrnl MTT (4mg/ml) ' 

l.Oml O.lH Tris'"ncl pHB.b, O.lrnl Lactic 
acid (25mg/ml) ,· O.lml NAD (lOmg/ml) 
O.lml PHS (2mg/ml), O.lrol MTT (4mg/rnl). 

O.Bnll O.lM Tris HCl pHS.O, O.lrnl Malic 
acid (2Smg/ml), O.lrnl NAD (lOmg/rnl), 
O.lml Pt:ts (2mg/rnl), O.lml MTT (4 mg/ml). 

~0. 7rnl O.lM Tris HCl pHS.O, O.lrnl Malic 
acid (2Smg/rnl), d.lml NADP (lOmg/ml), 

·O.lml O.lM MnC1
2

, O.lml PMS (2mg/ml), 
O.lml MTT (4mg/ml). 

0, 7m1 O.lM Tris HCl pliS.O, O.lml Sodiwn 
lsocitrate (25rng/ml), O.lml NADP 
(lOmg/ml), O.iml O.HI MgCl , 0.1ml PMS 
(2mg/ml), O.~ml MTT (4mg/mf). 

l".Oml O.lM Tris HCl pHB. 6, O.lrnl 9-phospho
gluconate (2Smg/ml), MgCl2, O.lml NADP (lOmg/ 

\, ml), O.lml PMS (2mg/ml), O.lml HTT (4mg/ml). 

1. Oml Tris HCl ptJ7. 5, 10\ll Glyceraldehyde-
3-Phosphoric acid, 0.2ml NAD (lOmg/ml), 
O.lml Sodiwn arsenate (lSmg/~1), O.lml 
PMS (2m~/ml), O.lml MTT (4~1). 

l.Oml O.lM Tris HCl pHB.O, 0.2ml PMS 
(2mg/ml), 0. 2ml MTT (4mg/ml), After 
incubation white bands appear on a blue 
background. Best seen on GDA gels. 

l.Oml O.lM Tris HCl pl!B,O, O.lml 
Aspartic acid (70mg/ml), O.lml 
aketoglutarate (2Smg/ml), O.lml Pyridoxal 
phosphate (5mg/ml), O.lml Fast Violet 
(20mg/ml). 

1. Oml 0, Ui Tr;is F!Cl O.lrnl DL-Alanine 
(53mg/ml), O.lml a-ketoglutarate 
(25mg/ml), O.lml NADH (lOmg/mlJ, 1.0 

.I.U. Lactate dehydrogenase. ~iew under 
uv light. 

As for AX, but with O.lml Phosphoenol 
pyruvate added. 

lmJ. O.lM Tris HCl Pl'JB.O, O.lml A\JP 
(lOmg/ml), O.lmlO.lMMgCl, 0.1~11 
Glucose (40mg/ml), '0. lrnl N~P '(lC\ng/ml) , 
O.lml MTT (4mg/ml), O.lml PMS (2m'1/ml), 
2I.U. Glucoso-6-phosphate dehydrog~nase, 
2I.U. Hexok.lnase. \ 

\ 
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Table 5.2 

Enzyme 

PGK 

PGM 

-, 
PEP 

GOA 

ADA 

FUM 

KPI • 

GPI 

cont. \ 

,h 

R1,lnning Conditions 

' 
TM pH7.8 
250V, 1 hr. 30 mins. 

TM pH7.8 
250V, 1 hr. 20 mins. 

.r 
TM pH8.2 
250V, 55 m;i.ns. 

TEB pH7.8 
45 mins. 

O.OlSM TM pH7.2 
250V, 1":!-2 hrs. 

TM pH7. E! 
250V, 1 hr. 15 mins. 

TM pH7.8 
250V, l hr. JO minS. 

TM pH7 .8 
250V, 1 hr. 50 mins. 

0 

:,:: '·'" "i¥'" '"J:"~ .~v' 
phosphoglycerat~ '(SOmg/ 0. 2ml ATP 
(30mg/ml), O.lmg;.o.·J:M J:\ 1 , O.lml NADH f 

(20mg/ml), 2I. 0~?,_"-f>}r:<erald~hy~e-
3-phosphate deh~ogenase. 'Monitor ~ 

''-'· under UV. 

l. Oml 1'ris HCl pHS. 0, O..lml GlUq>!;e-1-
phosph,ate (25mg/ml + 0 .lmg Glucose 1, 
6-diphosphate), O.lml NADP (lOmg/ml), 
O.lml O.lH MgC1

2
, '2I.U. Glu~e-6-

phosphate dehydrogenase, 0•. l'rlll PMS (fmg/ 
ml), O.lml HTT (4mg/ml) • 

'- I 

0.5ml O.lM Tris HCl pH7.'4, C.lml 
1-leucyl-glyclglycine (25mg/ml), O.lml 
Amino ~cid oxidase (5mg/ml), o.lml 
Peroxidase (5mg/ml), O.lml d-~i':flisidine 
HCl (.25mg/f.J,l • \ 

l.Oml O.lM Tris HCl pH7.6, 0.04ml 
Guanine ( 2 Smg/ml. 0. SM Na04) 0. 6 I. U. 
Xanthine oxidase, O.lml PMS (Jmg/inl), 

O.lml MTT (4m'!)/ml) • 

lml 0.05M Phosphate buffer pHi. 5, O.lml.,.. 
Adenosine' (25mg/ml), O.J.ml PMS (2mg/ml), 
O.lml MTT (4mg/ml), O.GI.U. Xaothine 
oxidase, O.JI.U. Nucleoside phosphorylase. 

lml 0.05 Phosphate buffer pll7. 5, 0. 2ml 
Fumaric acid (neutralized, 25mg/ml), 
0.2ml NAD (lOmg/mll. 0.2ml P~IS (2mg/ml), 

0. 2ml f!TT (4mg/ml) , 2I. U. Malate 

dehydrogenase. 

l.Oml O.lM Tris HCl ~H7. 5, O.lml 
Mannose phosphate (25mg/ml), O.lml O'.lM 
MgCl , O.lml NADP ( lOrng/mll , 0. lml PMS 
(2mglml), O.lml MT'): (4mg/ml), 2I.U. 
Glucose phosphate i\omerase, 2I.U. 
Glucose-6-phospbate dehydrogenase. 

1.et1 Tris BCl pB7.0, O.lml Fructose-6-
phosphate (25mg/mll, O.lml NADP (lOmg/ 
ml) 0 .lml Hl.C: ( 2mg/ml);, 0. lml MT'I' 
(4mg/ml), 2I.U. Glucose-6 phosphate-de-

hydrogenase. 

,.,. 

,, 
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(iii) there be no reason to doubt. the · underlying genetic basis of 

a 

the variation. Although breeding exP,eJ:iments repr.esent the "" 

ultimate such confirmation, inheritance patterns in all the 

u for humans (Harris and · • enzymes. studied have been es .... abll' shed 

Hopkinson, 1977) and given the conser\@~Sm in phenotypic 

expression across vertebrate groups, have been 

here unl~s obvi~~ grou~~<· doubt existed. 

assumed to apP,lY 

•'-·..:L ........... ";". 

Patterns of variation in three preslimed loci, G-6-PD, xo 
t<'5'~· and AK

1
, )'Jere difficult to interpret unambiguously due to ~ari-

able break&twn. As a result, th~se were not included. 

\ 

An exception was made to crit~rion (i) with'the presumed ADH 

:[.ocus, where e:J:<:pression in more'1~" ~gvanced" forms (Sardini, Thunnini) 

was cons_istently weaker and has some'• potential as a taxonomic character;. 

ADH was included but scored in only 9 of the 19 species. 

ApplicatiOI\ i(l,f these criteria left C\ total of 26 presumed homo-
- ... J 

logous .lo/i common to all species and 27 to 9. Brief description of 

~the phen<Jtypic variation encountered at each of tl1est! loci follows 

(Table 5. 3). ·In all cases where g-e~netic polymorphism was detected, 
. " ~ 

,phenotype proport:Wns. were .. cons is tent with Hardy-Weinb~rg expectations. 

~ 

. ~ . ' 
A conservative a~proach was adopted at all times, i.e. clear banding 

pa~terns were ~uired 0 to score heterozygotE{s as such. 'Consequently I 

tr H'values are more likely to represent underestimates of actual levels 

. of ~ariatioj:l;l :z;ather than overes~in1ates. ), 

In vlew of the many esterase loc'I active in liver samples and the 

comi:;lex interactionso between these loci 1 no esterase has been included 

in the study. In ~ren~e to the widespread use of serum esterase as 

a mctcker in population studie.s however, available blood samples were 

analyzed and comparisons made with published findings (Table 5.4). 

~- varia ti~n at this" locus was found to be common among· the. scrombrid 

species, but not ubiquitous. 

J 

.. 

..... 

·~ 
''II· 



222 

Table 5.3 
Phenotypic variation encountered at the 27 presumed loci studied 

-;C~------~~· ~~~----~----------~~ No of 
,..Enz:yme E.C. No. loci Variation Structure Comments 

~----------------------~~----~==~----------
O~OOREDUCTASES (12) . 
Alcohol dehydroqcnase (ADH) 

Glycero1-3-phosphate fGPD) • 
dehydrogenase 

sorbi tel dehyd,rogenase 10 

(SORDH) 

l.l.l.l. 

b 
1.1.1.8 

1.1.1.14 

Lactate dehydrogenase (LDH) l.l.l. 27 

Malate dehydrogenase (HDH} 

Malic enzyme (HE) 

I soci tra te dehydrogenase 
• (ICD) 

Superoxide· dlsmutase (SOD) 

TRANSFERJ\SES (9) 

Aspartate aminotransferase 
(COT) 

Alanine aminotransferase 
(GPT) 

Pyruvate kinas-e ( PK) 

( 

1.1.1.37 

1.1.1.40 

1.1.1.42 

1.1.1.44 , 
1.2.1.12 

1,15.1.1 

2.6.l.i 

2.6.1.2 l' 

i:< 
p dimeric 

lY 

p dimeric 

,QII"t\IZYIC.. 

p tetrarner lc 

M tetrameric? 

p tetrarner ic 

~ dimeric 
~ 

~ ··dime ric 

M tetramcric 

H dimer ic 

dime ric 

M dimeric 

M monomeric 

Strongest activity with primary alcohols as substrate; 
weak act;ivity in most of the Sardini & Thunnini; 
indistHict fas.tcr bands on most gels, possibly 
corresponding to other alcohol-oxidising enzymes 
(Chambers et aL, 1978) 

Presumably tetrameric in all spet:ies; as the mobility 
of SOD is almost identical in most species, heterozygote 
banding patterns were not ~lear in some cases. 

'I'wo loci, presumably coding for two polypeptide chains, 
with a pattern of J-5 isozymes produced as a result; 
rare heterozygotes at either locus in the Scomb.rini. 

Often seen as five-banded phenotypes, possibly hetero
polj~ers,.betwccn an active slower locus & a weaker 
(mitochondrial) locus, the latter weak or absent in 
the Thunnini. No variation observed; scored as one 
locus. 

Two J.oci, pr~·babi'Y determining soluble (ME
1

) & 

.m~~ochondrial (ME
2

) fonns; the faster locus'more active, 
but difficult to obtain sharp resolution. 

A second slower locus, plus heteropolymers, often 
~xpressed but not scored. 

A weaker faster band of activity not included. 

Weak, faster band in some species not scored; dimeric 
heterozygotes reported for T. thurmus thynnus; no 
clear variation observed, but more t.han one band in 
soJ,nC S.mu!!:iru.Jt"u.t;.u..'l samples. 

In s. carvnerson & S .queens l,andicus, more complex 
phenotypic patterns, with presumed homozygot;:es three
banded & hcterozygoteS~<ninej,Panded. 

Positive stain also visualizes ~, therefore scored by 
comparison with gel stained for A.K only; no clear 
variation observed, but PK, lqcus possibly polyrrorphic 
.Ln· A. thazm·d. 

----------------------------------------------~------------------------------~ 
Phosphoglycerate kinase 

(PGK) 

Adenylate kinase (AK) 

Phosphoglucomutase (PGM) 

HYDROLASES (3) 

P':ptidasc (PEP)~ 

Guanine dcaminasc (GOA) 

\ ,,_ 

Ad enos inc dc.:uhin!se (ADA) 

~(1) 

Fumara.ae (fUM)~ ~ 

ISOKERASES (2) 

M('l.nnose phospha\e 
lao~rade (MP!j 

Glucose rhonphatc 
isomerAse (GPl) 

2.7.2.3 

2. 7. 4. 3 

2.7.5.1 

3.4.l.i 

3. 5. 4. 3 

3. 5. 4. 4 

.!!Iii 4.2.1.2 

5.3.1.8 

5.3.1.9 

M 

p 

p 

\ 
p 

p 

p 

.'1 

monomeric? 

monomori:c 

monomeric 

dime ric 

dimcr ic 

monomeric 

totramcrlc 

monomeric 

A faster locus with variable breakdown patter.rs tiot 

scored. 

TwO zones of activity with a weak intermei'iate .band, 
possibly a third locus. PGM

2 
more active. 

Typically with forward breakdown bnnds. 

In S.CDm"nOT'BOrt & S.(7ue•:wtlanJz'cunJ as with GOT, complex 
breakdo....n baJJdS. Sq~ond locus not scorod (see text). 

A second slower locus wodkly expressed ' not neared, 
but .,.ctl.vo in blood o( mont Thunnlni. 
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Table 5.4 Level~ of variation observed in serum esterases of various scornbrids, based 
on pUblished ~tudies & analyses performed by the author . 

., . , 
•. 

Spec~es n Comm~>n No. of Area Source 
allele frequency· alleles 

Scomber sccmbrus 3593 ,;; . .37 - .75 5+ North Sea Jff'ie~on et aZ., 1971 

Scol"t!bercmorus 288 ~,.~ .91 4 PNG/N.Aust. Sharp, pers. conun. 

" corrvnerson (confirm. by author) 

' 
\ 

AcanthocybiWl! 51 .50 - .64 3 Hawaii/l).ust Author. 

solandri 
X)" > .... 

. Sarda australis 45 .811 3/ Aust. Author. 

s. oriental is 50 l.O l W'. 
\ 

AU >;it Author. 

• ., 
Euthynnus affirris 50 (L.O) l Ha"{aii Author. 

Auxis thazard 33 .955 3 Aust. Author. 

Katstihlonus pelamis >40,000 .3 - . 85 4+ All oceans See Chapter 4. 

:{~~ . ., 
''\ ;::J-Thunnus tonggol .,127 .84 4 Aust. 

T. albacares - 65 .985 3 Hawaii FuJ~no & Kang, 1968. . 
a. 

" 1967. 
" 46 .957 2 Sprague, 

, . >14,000 .952 - .986 4 Pacif;ic Sharp, MS 

-
T. alalunga 84 .952 3 Atlantic Fujino & Kang, 1968. 

···-- ' 
" 175 .954 2 " Serene, 1971. 

·• 22 . 86 3 E . Aust. Author. 

\ 

" 
,. 103 .961 2 Pacific Fujino. 

abe sus 184 . 917 3 Hawaii Sprague; 1967. 

T. 

' .935 2 "' Fujino & Kang', 1968. 

" _107 
~ 

. !>~9 4 Aust. If Sprague, 1967. 

T. maccoyii 70 l) 

( 

.. , 

J 

"' ' ') 
I 
\ 

'· '· 
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5.4 RESULTS 

5.4.1 Levels of heterozygosity 

In Table 

for eac~ of the 

5.5, heterozygosity values at 

19 scombrids where acceptab~e 

individual loci are .listed 

numbers of individuals 

' (>13) were screened. Mean heterozygosities at,each locus were obtained 

by directly averaging the~e values across the species array. For com

,parative pprpos-es, heterozygosity values for the two non-scombrid species, 

plus the two, ~b.ombrids collected in smaller r:umbers, are also listed. 
1.. 

~Observed pol~orphism is clearly n@t distributed uniformly ac,ross 

loci - 7 of the 27 w~mono~orphic (i.e. invariant across the species 

ar?ay) and a majority of~he ov~rall variation besides at five loci:

GDA (.264), ADA (.224), GP~2l4)_, PGMl (.126) and ADH (.123). 

In 
- fiave 

Table 5.6, H, H. and %P (at the 95.and 99% levels) been 

l 

calculated for 
- (and H.) (Sarda 

all species~ . H values range from .013 
l 

australis) to . 109 (A . solandri) and %P (95) -values from 0 to 26. 

Although heterozygosity per individual shows a unimodal'-Clistribution 

within each of the 19 primary species\ (the frequency of individuals with 

va'rious numbers of loci heterozygous were plotted for each species to 

check this), Bartlett's test of homogeneity of variances showed the 

variance about H. to: be significan ly heterogenous amongst species ( 
l 

x2 = 73.6, p <.01). A contingency ~ble, rather than analysis of vari-

18 
ance,was therefore used to test the 

ecies. for homogeneity of H values. 

heterozygou~ in four 
" A 4 x 19 table (number of inoividuals 

wfrequency classes 0, l, 2, 3+ for eich species) reve~led high hetero-

geneity (x 2 
54 

198.59, p <.005). 

This heterogeneity is not attributable to any one scombrid tribe. 
•. . b .. ( 2 

as it is also observed within most tribes, V'l-Z. Scorn eromor1-n'Z- X . = 56.12, 18 

p < .005) Thur;.nihi (X2 = 72.36, P <.005), Sardini~(3 x 3 table, since a ' \ 

I " 18 I • ~· 
zero in class 3+ otherwise - x2 = 13.63, P <.01) a 5 Scombrini (x

2 
== 5.8, 

J ' ll 3 
The re~idual variance obtained by subtracting within-tribe from 

"' p <.~. 

tota~2 
· · that between-.tribe vari~nce is considerable but 

valw~s lndlcate,s 
l. 34 I p <.OS) . 

not significant (F 
11 lf3 

I 

· clearly therefore needs to consider inter-locus 
Su~sequent analyslS 

d 
' t · 'f' aspec·ts of variation. 

an ln er-s£ecl lC 

• 

' . 
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Primary GPD SORDH LDH 
spp. 1 

1 

2 

3 

5 

6 

7 

8 

9 

10 

11 

12 

13 

15 

16 

l7 

18 

19 

21 

22 

0 

.29 

0 

.14 

0 

0 

0 .04 

.32 .08 

0 

0 

0 

0 

.10 

.13 

.11 .05 

0 0 

.04 0 

.38 0 

.04 0 

0 

.04 

0 

0 

0 

.01 

0 

. 04 

0 

.03 

0 

0 

.18 

.08 

_.:;:. 

LDH
2 

MDH MEl ME2 
ICD PGD GAPDH SOD )"" 

.03 0 .11 

,03 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

.03 

0 

.07 

.07 

0 

• 07 

.04 .12 .39 

0 0 0 

0 .20 ;JJ 

0 0 0 

.07 .13 0 

. 32 .OS .OS 

o .08 .o8. o 
0 .24 .04 .16 

.15 0 0 0 

.60 0 0 0 

0 

0 

.04 

0 

0 

0 

0 

0 

.09 0 

0 0 

.OJ . 35 

.04 

.04 

.o8 
0 

0 

.04 

0 

.04 

0 

.44 

1~: 
0 

.60 

0 

0 

.13 

.05 

.---.A-70 
~.,.., :04 

0 

0 

0 

.02 

0 

.08 

~ 
0 

0 

.03 

0 

0 

.04 

0 

0 

0 

0 

0 

0 

.23 

0 

0 

0 

0 

0 

0 

0 

0 

0 

pl(l pl(2 Al(2 PGK 

0 0 0 0 

• 53 

I 
•J 

0 0 ,028 0 

... 

PGMl PGM 2 

.18 

.11 

.C57 

.15 

.16 

.27 

0 

.07 

.16 

.08 

. 24 

0 

0 

.07 

.02 

0 

.19 

.os 
.. 40 

,126 

0 

.03 

0 

.04 

.o8 
0 

0 

0 

0 

0 

0 

0 

.04 

0 

0 

0 

.04 

.59 

. 04 

'045 

PEP
2 ., 

.07 

0 

.08 

0 

.07 

0 

0 

0 

0 

0 

0 

.o8 

0 

0 

.28 

0 

0 

.04 

.055 

GDA 

.57 

. 07 

0 

0 

.12 

.13 

.40 

• 07 

• 53 

0 

• 2'4 

0 

.12 

. 35 

. 38 

.60 

.39 

.59 

.56 

.269 

ADA 

0 

.07 

0 

.77 

0 

.20 

0 

0 

• 53 

0 

0 

.08 

.12 

FUM 

.OJ 

0 

. 07 

.04 

0 

.13 

0 

0 

0 

0 

0 

0 

0 

.14 •-' 0 

.12 0 

.56 0 

.62 .o4 .6, 

.40 

.224 

.05 

.04 

.021 

MPI 

0 

• 21 ' 

.40 

:04 

0 

.07 

0 

0 

0 

0 

0 

.15 

0 

,a 
.08 

:o 
.04· 

0 

.04 

.054 

l<EAll .064 .045 .001 .001 0 .054 .039 .048 .085 0 0 .048 .016 

Ot:.her app. 

24 I 0 0 25 -0 

/ 4 0 

_,. 20 I 0 

0 0 

0 

0 0 

.14 0 

0 

(.07) 

0 

0 

L 

2. 

3. 

4. 

5. 

6. 

0 

0 

0 

0 

(.12) 

0 0 

f o~o 
0 

0 .04 

.07 0 

.14 0 

.42 0 

0 

0 

0 

0 

0 9 
0 0 

0 0 

0 0 

·0 

0 

'14 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

-Q • 08 

0 ,67 

0 0 

0 0 

0 

0 

0 

0 

0 

. 07 

0 

0 

0 

0 

0 

.14 

.56 

0 

0 

0 

.04 

0 

.43 

0 

Table 5. 5 Heterozygosity values per locus for the 19 primary species and four additional species. 

Species are coded as below, and other loci known to be polymorphic but not 
included in the analysis are listed. 

Scorrbqr austral.asicus 

R. kanagurta 

Grammatorcynue sp. A 

G:rcurma tore ynu.a sp. s 
Scomberomorue commerson 

S. queeTUJ Landicw. 

7. 

8. 

9. .. 
S. muLti.rad.iatus 

S. eemifaecia"tus 

S. munroi 

13. 

14. 

15. 

Acanthocybium soLandri 16. · 

Sarda aw. t:ra Lis 17. 

S. orientalis 18. 

Cybiosarda eLegans 

Gy.mnoaarda unicoLor 

Auxis thazard 

Euthynnus affinis 

Xatsuwonus peLamis 

Thunnw. albacares 

19. T. tonggoL 

20. T. obesus 

21. T. aLaLunga 

22. T. maccoyii 

23. T. t. orientaLis 

2 4. Makaira indica 

25. ELegatis bipinnuLatUB 

.04 

0 

0 

.14 

GPI 

.OJ 

.OJ 
, 0 

.31 

.12 

• Q7 

.so 
0 

.63 

.04 

.04 

0 

.64 

.10 

.04 

.36 

.15 

.41 

.60 

• 214 

.17 

.14 

0 

.28 

ADH 

8 

.07 

.11 

.07 

.15 

• 24 

0 

0 

0 

.47 

',. 

.123 

0 

0 

(.14) 

NA 

:!D 

28 

15 

26 

25 

15 

20 

15 

19 

25 

25 

13 

25 

29 

so 
+-----

25 

26 

22 

25 

24 

24 

14 

Other loci 
polymorphic 

PEP
1

, ADA2 

PEP 1 ,~ 

ADA
2 

PEP1 
PEP

1 

1 

PEP
1 

ADA
2 

. 

PEP
1 

P)'P
1 

ADA
2 

ADA
2 

1ill~2 
~Ai-

ADA
2 

7 I ADA2 
7 ADA

2 

~ '~ l*'' •, ·: .q:·-. > 

.- ·' ·~ 

N 
N 

'-.Vl 



·' 

Table 5.6 Meah heterozygosities per locus per individual (}i) mean hetero
zygosities per individual per locus (H.), and perc~ntage of loci 

1 h' . ~ po ymorp_~c at_two levels, for all species, with confidence limits 
for the H and H

1 
va~ues. 

-~ 

species N H. i'i \P (95) 

' ~ 

Scomber austral-asiaus 28 .063 ± .055 .063 ± .170 19 

Rastrel-1-iger kanagurta 28 .040 ± .043 .040 ± .121 19 

GraJ7I'Tiatoraynus sp.A 15 .028· ± .027 .028 ± .080 4, 

(G. sp. B) (7) (. 032 ± .033) (. 032 ± . 033) 

Scomberomorus commerson 26 .080 ± .051 .080 ± .169 22 
-

queens 7.-and.icu; s. 25 .065 ± .052 .065 ± .134 22 

s. munroi 15 .052 ± .052' .052 ± .074 26 

s. semi fasciatus 20 .037 ± .021 .037 ± .121 11 

s. mu 7.-tiradiatus 15 .030 ± .021 .030 ± .108 7 

.f.canthocybium sol-andri· 
. 

19 .109 ± .049 .109 ± .196 26 

' 
' 

sarda au?traHs 25 .011 ± .018 .011 ± .026 0 

s. oriental-is 25 .040 ± .037 0 040 ± .083 15 

' 
Cybiosarda el-ego:ns 13 .0~8 ± .041 .038 ± .090 15 

Auxis thazard 25 .064 ± .033 . 064 ± .165 15 

Euthynnus affinis 29 .040 ± .034 .040 ± .097 15 

Katsuwonus pelamis 50 .031 ± .0.31 .031 ± .076 8 

Thunnus albacares 25 .072 ± .p38 .072 ± .,).68 15 

T. tonggol 26 .061 ±").052 .061 ± .140 15 

(T. obe~) (7) (.050 ± .041) (. 050 ± .103) (19) 

T. alalunga 22 .102 ± .044 .102 ± .196 19 

T. maccoyii 25 .102 ± .046 .102 ± .188 19 

' 
't 

.. 

MEAN (19 spp.) 24 ' .056 
~ 

.056 16 

'" 15 . 040 ± .022 .040 ± .131 7 

BLACK MARLIN 

24 .040 ± .035 .040 ± .112 ~-1 

RAINBOW RUNNER 

226 

; ... 

\P (99) 

41 

44 

/ 
44 

33 

41 ... ~ 
11 

15 

41 

15 

31 

19 

27 

23 

35 

23 

42 

(19) 

35 

38 

31 

1· 
22 

30 



5. 4. 2 Correlation of heterozygosity with enzyme structure and function 

Tabie 5.7 lists, for the 27 locl· studied, the following values: 

(i) 
-Hi and% P (95), obtained from Table 5.6. 

(ii) quaternary structure. 

Where no heterozygotes were observed(PK
1

, PK2 , GPT, PGK), the quarternary 

structure as given by Harris and Hopkinson (1977) for humans was 

assumed to apply, as agreement had been found with all other enzymes. 

(iii) 
function I - whether enzymes are glucos.e-metabolizing (G) or non-:-

')< 

glucose metabolizing (NG) (Gillespie and Kojima, 1968) . 

• 
(:i.:v) func-tion II - whether ~nzymes are designated by Johnson (1974) 

as being variable substrate (V), regulatory (R) and non-regulatory (NR). 

Following his usage, enzymes were classifed as non-regulatory when ~ 

reported substra:te/product ~t.;hos (Ba;hnan, 1969, 1974) did not deviate 

by greater t!'an one order of magnitude from equilibrium. 

(v) fu~tion III - classific<;1tion of enzymes according to the type of 

reaction 'catalyzed (i.e. dehydrogenases, hydrGlases, isomerases, and so 

on- see Table 5.3). 

1nzyme quaternary struc-t;ure 
.A 

Comparison amongststructural groups show monomers and dimers to 

be significantly more polymorphic than tetrarners i~ sco~rid species 

Monomers were not significantly more variable than dimers 
(Table 5. 8). 
and accordingly monomers were no~more variable as a group than multimers. 

Table 5.8 

Monomer vs 

, Monomer vs. 

Dimer v~. 

Monomer vs. 

Relationship between enzyme heterozygosity and quaternary_ 

structure 

Mann-Whitney U Test Value 

dimer (6, 12) 

tetramer (6, 9) 

tetrarner ( 12· 9) 

multimer (6, 21) 

36 (NS) 

12 (P < .. 05·) 

J.9 (P < .Ol) 

50 (NS) 

-~ 

I 



Table 5.7 

Enzyme 
"'"" 

GPD 

SORI{H 

LDH
1 

LDH
2 

MDH 

PGD 

GAPDH 

SOD 

PKl 

PK
2 

AK2 

PGK 

PGMl 

PGt-<1
2 

PEP
2 

GOA 

ADA 

FUt<l 

MPI 

GPI 

ADH 

Levels of variation observed at the enzyme loci studied 
and their structurai and functional characteristics. 

Abbreviations a~., follows:- G - glucose-metabolizing; 
NG- non-gluoese, metabolizin~; V - variable substrate; 
R - regulatorY"; ff~- non-regtllatory; 0-R - oxido-reductases; 
T - transferases; H- hydrolases; L - lig~ses; I - isomerases 

-
H." 

J_ 

. 064 

.045 

0 

.003 

0 

. 054 

.039 

.048 

.085 

0 

0 

.051 

.Ql6 

0 

0 

0 

.028 

0 

.126 

.045 

.055 

P ( 9 5) structure 

21 

21 

0 

0 

0 

16 

11 

16 

21 

0 

0 

11 

5 

0 

0 

0 

0 

0 

47 

5 

11 

68 

53 

dil)leric 

tetrameric 

tetrameric 

tetrameric 

· tetrameric 

tetrameric 

t.etrameric 

dimeric 

dime ric 

tetrameric 

dime ric 

dimeric 

dimeric 

dimeric 

tetrameric 

tetrameric 

monomeric 

monomeric 

monomeric 

monomeric 

dime ric 

dime ric 

monomct"ic 

Function I Function II Function III 

G 

NG 

G 

G 

G 

G 

G 

G 

G 

G 

NG 

G 

G 

G 

G 

G 

NG 

G 

G 

G 

NG 

NG 

NG 

R 

NR 

NR 
..tl 

NR 

NR 

R 

R 

NR 

NR 

R 

NR 

NR 
'J ... 

NR 

(R) 

R 

R 

R "' 

R 

R 

v 

NR 

R 

NR 

""' 

O-R 

T 

H 

H 

H . 269 

.224 

.021 5 

16 . 

53 

44 

b • 
tetramerlC G 

G 

G 

L 

I 

I . 054 

.214 

.12 (9) 

monomeric 

dimeric 

dimeric NG 

NR 

R 

R OR 

/ 

)':. 
f 



ln ormation Be .. ~~use ~f lack of · f , it was nqt possible to in~esti-

gate the relationship reported between subunit size and H (Harris et al.~ 

1977), and molecula~ weight and H (Koehn and Eanes, 1977; Leigh Brown 

and Langley, 1979; Nei et al.~ 1978). 

~ Enzyme function 

Two hypotheses maintain. that the degree of polymorphism observed 

in a particular enzyme is related to: 

(a) environmental·variation in its substrate(s). Gillespie and 

Kojima (1968) suggest that substrates of non-glucose metabol

izing enzymes frequently originate externally and that this 

~ay be reflected in greater variability. 

(b) involvement in regulatory reactions. Johnson ~1974) suggests 

that enzymes exerting control over flow through metabolic 

pathways should be most sensitive to the action oft> selective 

forces and therefore more variable . 

. 
Comparison of over&ll H levels at loci classified as,G versus 

NG and V, Rand NR respectively (T~ble 5.6) provide tests of these 

hypotheses. 

Non-glucose metabolising enzymes showed gfeater variation at a 

level verging on significan·t (one-tailed Mann-Whitney U test, .10 >P>. OS; 

corrected for t.ies, £ = 1.62 and P = .052), in accordance with the first 

hypothesis. In the latter case, regulato.ry enzymes (R) wer;,e not· 

significantly mo•~ variable than non-regulatory ones (NR) (one-tail'd 

U = 78.5, NS) .. As only one variable substrate (V) enzyme was studied, 

4 
V-R and V-NR comparisons were not possible. 

·' 

The 27 enzyme loci were not equally distribut-e'i:i with regard to 

the type of reaction catalysed (Function III in Table 5.6), reducing the 

power of the test used. However, it seems~likely that some of the 
* 

variation observed may be related to enzyme class (H = 9.02, .10 >P> .05). 

5.4.~ correlatioh of heterozygosity with species characteristics 
... 

Where the biology of species is poorly known, as is frequently 

the case with scombrid fishes, it is difficult to define characters which 

* 1-l Kruskal - Wallis one-way analysis of 

variance by ranks statistic. 

,, 



at once reflect the essence of particular hypotheses as well as being 

ross e range of species amenable to ordination or quantification ac th 

examined. The followin~ descriptors have been defl'n.ed for consideration. 

(l) taxon 
some ln ~rnal consistency in species The four tribes which show · t 

ecology and biology (see earlier) suggest themselves as a suitable test 

of whether or not H varies 'amongst taxa above the species level. 

(2) max~mum size 
This is defined in weight rather than length terms; as body shape 

shows some variation within the family; it should provide a test of 

Selander and Kaufman's (1'973) contention that larg_r mobile animals have 

lower levels of H than small, less mobile p.nimals. Since all scombrids 

can be considered highly mobile in teleost terms, the test·is only a 

partial one. 
\. 

(3)' trophic breadth (aduUs) 
Al thou.gh ava~lable data indicate that the scombrid diet is varied,' 

Magnuson and Heitz (1971) have demonstrated that there is some selectivity 

ass6ciated'with gill raker gap which is in turn directly proportional 

to t~e number of gill rakers. A mean gill raker number obtained from the 

taxonomic literature for each species has been used,er-s an index of 

trophic breadth, a~ all specie sf) take large and small prey i terns down to 

the size,retained by khe minimum gill raker gap. A mobile species with 

a large, number of gill rakers can therefore ingest food of the widest ··-.. ~ 

s.ize range. ,Some correction for fish size might improve the value\ of 

this descriptor. 

(4) vagility 
As available data is inadequate to direct\y assess vagility, an 

i~dex was devis~d, b~sed on the sum of two variables: 

( i) 
maximum size on a scale l-4 (0-5 kgs == l, 6-25 

2' 

.. 
25-50 = 3, >50= 4). 

(ii) degree of internalization of red muscle/development of 

heat exchangers (and hence capacity fo~ sustained 

cruising) on a scale l-4 (l = primitive lateral wedge 

(Scombrini) Scomberomorin~)J 2 = lateral wedge extending 

between epaxial and hypaxial muscle blocks (Sardini)J 
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re muse ·e, complete dorsal aorta, 3 = internalized d l 

lateral and central heat exchangers ((luxis, Euthynnus, 

Katsuwonus, T. aLbacares, T. tonggoL), 4 =deeply 

internalized red muscle, dorsal aorta v~stigial, 

lateral heat exchangers only (other Thunnus spp.) ~-
?,,.W 

Although presence or absence of a swim bladder and certain 

hydrodynamic features might also be incorporated, the indices correlate 

well with the extent of known migratory abilities. 

( 5.) geographicaL range 
Scombrids provide a poor test of any latitudinal gradient in 

~ observed variables for several reasons. 
Firstly, their habitat is 

three-dimensional, and species with quite different preferred temper

atures can exist at the same latitude but at different depths. Nearly 

all scombrid species spawn in tropical or subtropical areas and p 

accordingly . spend some part of their life there. · However many pass 
\:, s;ecies range has therefore been 

l-4, viz. l = cosmopolitan (all 
other life history phases elsewhere. 

( 
\ 
' 

expressed on a geographical scale of 
oceans), 2 = tropical and sub-tropica) Indo-Pacific, 3 = northern Australia, 

4 = localized distribution. 

Note that this index relates to ~he species rather than the 

population, as population structure remains inadequately known for most 

species. Gramnatorcynus sp. A has not been included as its range re-

I' quires "re'appraisal in the light of findings discusseP. in Chapter 6. 

(6) habitat 
Shubnikov (1974) has defined five ecological groups within the j , 

scombridae on the basis of schooling characteristics. and feeding strategy. / 

Four of these are c:plicable to the present species. 

l. neritic speci'e's feeding on plankton and small schooling 

and occurring in large schools. 

- -·"'/ 

fishes 

2. 
feedl

'ng m~re on schooling fish and cephalopods, 
'neritic predators 
also occurring in larger aggregations. 

3. 
neritic predators feeding on schooling and solitary fishes, 

Crust~ceans and.forming sparse small schools. 
cephalopods and 

t''. 
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4. s ecles eedlng both on schooling Beritic-~ceanic and oceanic p · f · 

and solitary organisms and forming smaller schools in oceanic 

areas, but dense aggregations in productive inshore areas. 

On the basis ;of personal observations, several 9f ·the species have 

' ' ... " v ~w a gplng from Shubnikov Is group 3 to been reclassified here, wl· th Cyb"'os"'"'d · 
2 and T. tonggol from 2 to 3. Contrary to Shubnikov's assertion, wahoo 

(A. solandri) does not sit Wily in group 3 (or any other group) and 

has initially not been ino::luded. .. 
tf 

(7) other descriptors 

it would be desirable to have adequate descriptions of 
Whilst 

other variables, particularly neu~list terms such as N , T etc. but 
e I 

stability, larV·~l. ecology etc. , thi~ has not 
also measures 

~ possible. 

~ 

of trophic 

-
Table 5.9 lists Hand the various 

primary species. 

19 

ed to be taxon-

2.28, p-> 0.50), as 
independent at ··the tribe level (Kruskal-Wallis 

determined previ~usly cii1d unrelated to gill ra er number (Spearman Rank 

Correlation Coefficient ( s) = .066, t = .272, NS) and habitat (Kruskal-r 

Wallis H = 3.04 P -0.4). Adding wahoo to habitat category 3 did not 

alter the last result (H 3.0, P -o.4). Heterozygosities were however 

positively correlat'ld with maximum size (rs = 0.6, P < .01), vagility 

(!:-I= 6.5, P < .05) and geographical raf}ge (Kruskal-Wallis H = 9.15, 

p < .05). \-

-These three variables (maximum size, vagility and geographical 

range) are interdependent to some degree and their relationship with H 

levels demonstrates that large highly mobile species with•wide geo

graphical distribution exhibit the highest levels of H within the family. 

5.5 DISCUSSION 

The average 
H observed across the 19 primary scombrid species 

(.056, Table 5.6) is within the rarige of average value/described for 

teleosts by other workers (se~elow) · 

of specie_:;/ Loci per species source 

H No. 
.EEE~lations 

21 Selander, 1976 

0.078 'J.4 + 0.012 

o.ds8 
'}l 

NA Powell, 1975 

+ 0.006 
NA Neva, 1978 

Sl 
0.051 ± 0.034 NA Winans, 1980 

0.048 ± 0.033 82 

.. 

··, 



I 

11 

.:>' 

Table 5.9 Heterozygosity values and descriptors of species 
character for the ~9 prima~y scombrid species. 

l 
J 

_The results of statistical tests for correlation 
beyeen Hand the various·descri,ptors are indicated. 

~,.,. 

-
Species H Taxon GR' Max. si·ze Vagility Range 

Sc. ausi;raLasicus .063 l 37 0.7 2 2 

R. kanagur-ta .040 l 48 0.5 2 2 

G. sp.A .028 2 14 ll 3 

s. commerson .080 2 6 60 ? 2 

s. queennLandicus .065 2 7 8 3 3 

s. multiradia-tus .030 2 22 0.3 2 4 

8. munro1.. .052 2 12 8 3 3 
' 1 • v s, semifasciatus .037 2 10 10 3 

A. solandri .109 2 0 70 5 l 

Sa. a:usi;ralis O.ll 3 ll 9 4 4 

Sa~ orieni;aLi's- .040 3 20 9 4 2 

3 '3 
ele?a:ns I .038 3 14. 2 

r;. 
A. thazard .064 4 40 3.5 4 l 

~ 

4 31 14 5 2 
E. affinis · .040 

pelconis .031 4 58 22 5 • l 

K. 
J 4 30 18.0 7 l 

T. albacares . 072 / l ,.., 

tondgol 4 23 3-G 6 2 
T. .061 

4 28 42 7 l 

T. alalunga .102 

35 140 8 l 

T. maccoyii. .102 4 

* * * 
Statistical test result (NS) (NS) 

q ~, I 

/ 

H{:lbitat 

l 

·l 

3 

3 

3 

3 
9 

3 

3 

(3) 

2 

2 

(2) 

(2) 

2 

4 

4 

3 

4 

4 

(NS) 



same loci 

.040) a~d 

(H -

studied by 

Ayala and Valentine (1979), suggest that l~igh or low 

-
H values are typically associated with the epipelagic e. 

{ -
The ,-range of H values (. 011 .109) is to the ri_nge 

given by Neva (1978) for a variety of marine and freshwa er teleosts 

(. 006 - ~180) and is consistent"4- with hi'S finding that le els of varia·tion 

may differ as much within taxa as between taxa. 
a 

The variation observed was not r£:f1domiy dis tribut :1 across loci, ...-....-... 
with ·five·loci (GOA, ADA, GPI, PGM and ADH) accounting fo. a disproportion-

ate amonnt of this variation. Johnson & Mickevich (1976) similarly f~und 

GPI, ADA, PG~ along with Est to be the most variable enz nes, in that ft'> 

order, across populations· of ·five Menidia (Atherinidae: elebstei) species 

(Ci~ am1 1\DH were not studied), suggestin,g that; enzyme c 1aracteristics 

(s ture, f1,;1nction) m.:wy be implicated. 

Examination of H values relative to entyme struct re showed that 

levels of variation observed are likely ~o be influencec by the relative 

proportions of' monomers, dimers and tetramers e.xamined. Perhaps e'lven 

more important ~ay be the proportion of multimers whicn form inter-
- I 

locus hybrid molecu!~s (Harris et al., 1977), althoughfthis could n6t be 

tested. such variation most likely arises independen~.ly of environmental 
I 

influences and is sonsistent with neutralist theory. ~ 

sa'tisfactor~ · 
• )! 

proved less 
.Rel t · enzyme function to ~~ levels 
~- a lng 

· · d t enzymes here, particularly those in the 
Functions have been asslgn~ o /) . 
R vs. NR categories, on the basis of in vi. tro ex~rimen~s with other """'j/ 

confirmation of the suggested function in vivo is 
animal groups, ~nd , . · J h ' (1971 i974) classific~tion, 
generally lacking. Even acceptlng' o nson s , 

which has been subjec·t to criticism (Selander, 1976), regulatory enzymes 

were found to be n~ore variable than 

metabolizing enzymes,\(hose substrates 

externally, were however found to show 

non-regulatory ones. Non-glucose 

are more likely to originate 

greater, (though not quite 

0 

r 



.... 

signifiaan.~) _variability than glucose-metabolizing enzymes, ( .lO >P>. 05 ) 

in a~cordance with the predictions of Gill · d · · esp1e an KOJlma (1968) and 

KoJ· ima et al. J (1970) (The .... 1 · · ex~erna environment may therefore exert 

e erozygos1ty at individual some influence in shapin,g levels of h t · 

scombrid loci. \. 

Some of the variation,observed may also be related to enzyme class 

(~10 >P .05) but it~ not. clear why this should be so. An understanding 

,of the kinetics of pa~ticular enzymes may ultimately be required to 

expl,ail). the apparent predis.position of certain loci to allelic variation. l't 
Richardson 

(LDH, MDH, 

(in prep .. ) has to date, examined thr~ invariant enzymes 

GAPD) in four scombr~\pecies ~ut similar analysis of the . . / 
>\) 

products of polymorphic loci will be'required to evaluate the above 

results. 
I • 

En~yme stru·cture ·and /uncti~ may therefore influenc~ ·the amount 

Jof variation observed through the· choice of loci studied. With the 
,, • I 

\ . 
relatively low proportion of NG 0/27) and V (1/27) loci examined, it 

. • ~ • ·li -
could be argued for i2xa!J1ple that the absolute fl values obtained in this 

study are underestimates. As a comma~ suit.e of homologous loci is 

. as.sumed · t~ have been studied, th'is source o.t; variation cannot however 'be 

expected to. expl~in th~ considerable in:J -specific" variation i~ H, and ~~ . tef . 
i.t is necessary to consider alternative explanations for this aspect of 

variation. 

~ 

sou]-e (1.976) classifies the many selectionist hypotheses which 

att7...mpt to relate levels of genetic variation to envirom;nental heter9-

" ' 
geneity into 

(a) 

(b) 

(c) 

t~ree gr\.ps: 

environme~tal 1-Jrain 

Kaufman 1973( 

(spatial) 
... . 
(Levene, 1953; · Selander and 

resource predictability (V~lentine, 1~7\; Ayala and 

_Valentine, 1918; Valentin~ and Ayala, 1978) 

·, width - . ... (temporal) niche 
ertvironml'!ntal amplltude or 

(Dobzhansky; 1951; so~le.r 1974) . 
d 

.. 

v' 
. defining suitable 'environmental and 

Despite th~ difficulty 1n • 
one general result - (higher H values in\large 

biological descriptors, 

.1 

II 
.fl 

' ~· 

,,, 



geographlS?l range) was obtained. This, v highly mobile species with wide · 

howe-Ver, stands in direct contrast {; ~d" ·· t' , · . ;
1 

. r-e lC lons from env1ronmental 

·grain theory, i.e. lower H in large highl b '1 · · \ . . Y mo l e spec1es wl th greater 

homjostatlc control - these perceive the · · · envQronment as 'f1ne gra1ned'. 

It lso contradicts predictions from the re"" t d · · · . . .La e resource pred1ctab1l1 ty 

ry, as enunciated by Va~entine. (1976) ~z. higher H in least mobile 

sp cies, low H in large mobile predators, highe; H in more trophic ally 

sp cialized ~ecies .and so on. The morpho-physiological specializations 

scombrids are presumably related to the efficient of. the advanced 
J 
exploitation of patchy, broad-spectrum food (and possibly other) resources. 

w . 

wnilst such adaptations ~ay serve to reduce patchiness, it is difficult 

to regarq the food resources of particularly the nomadic elements of tuna 
~ . 

populations as either predictd.ble or dependable and under these conclition5/ 
. -

low rather than high levels of.variation would be predicted by resource 

stability theory. 

The niche width variation models preqict higher H levels in 

widespread, vagile, common species ('generalists') as ari adaptive 

strategy for increasing fitness in spatia-temporally het.erogenous or. <::::? 

uncertain environments. Such predictions are~consistent with the results 

obtained here, ~nd witb those of Neva (1978) who found high~st.H (and P) 

values in 'habitat generalists'; th~ problem with this model is that 
~ 

similar predictions would be made under neutralist theory (Soule, 1976) -I 

'local, sedentary or rare species also have small lb' s, a high pr;;babilit.Y 

of bottlenecking, inbreeding or drift and a high probability of a recent 
/ 

-orig~n and founder effects' and hence. low H. Within the Thunnj.ni, the 

low H value for skipjack (.031) relative to albacore (.102) and southern 

bluefin tuna (.102) might, for 
1~, be readily explained' in this way. 

Albacore and scfU't~ern bluefin lieved .,t.0 have hemispheric and,-

mictic population structure respectively, whereas skipjack populations 

have been hypothesizt·d tef fit an isolation-by-distance model with a ~eries 
(, ,. ;1.• • ', 

of QVerlapping partially isolated populations and consequently lower 
On the other hand, the small very ... 

· 1 N 's J;:"elative to other scombrids 
abundant Scombrini have very arge . e ~ f h \ ~f st:AUcturing yet H values are not especiallY 
regaraless o t e amCYun""'~"' 1 .' _ . , <tl 

large .. · .1 

H acc;rding to neutralist predictions. ' 

Other neutralist-relate4.hypotheses are equally difficult to 

l t 
· history of the family 'ScombrHll,.ae 

evaluate. Although the long eva u lonary , .. ! 

··~ 

\, 

.·· ;.·· 
,.······· 



is p~tially known (Danil'chenko, '1964 h ; S ubnikov, 1974; and see Chapter 

6), histories of individual species are not, and Soule's 'time-divergence' 

hypothesis ~emains untestable. The loss of varia~ion reported in small 

isolated populations (e.g. Avise and Selander, 1972) or bottleneck 

effects could both explain the low H values seen in the two scombrid 

species with very limited ranges - 8. multiradiatus and Sarda australis. 

Thus the difficulty of unequivocally evaiuating most neutralist predict

ions remains a major problem, but they seem unlikely to account for all 
... 

the variation observed in this case. 

Nelson and Hedgecock (1980), in a study of ~yme polymorphism 

and adaptive strategy in 44 species of decapod crustacea similar to this 

one (26 loci/species, 24 1~ividuals/locus), opted for a hybrid 'environ

mental heterog~neity - trophic diversity' model to explain observed 

·variation. A specific conclJJsioh of this model wa~, as follows "Large 

marine vertebrates such as tuna and porpoises are reported to have 

unusually low heterozygosities .... Hybrid model-explanation: they are 
i trophic~y 'specialized homeothermic predato~s· on fish or squid." Basic 

life 
ass~p~on~ and conclusion were both wrong in this case. Tunas in 

partlcflar, with resident-nomad strategies ,broad trophic spectra, 

history heterogeneity (pelagic larvae, poikilotherm juveniles, neo-

homeotherm adults), wide range and high vagility, appear archetypal 
~ 

generalists ~nd H values as observed in this study, are generally higher 
.. 

than average for teleost&. 
( 

we are thus left with a hypothesis to explain observed levels of 

variation in scombrids which can broadly be interpreted in selectionist 

(niche.width variation) terms but may be equally w~ accommodated 

'within neutralist theory. It is this very difficulty in unequivocally· 

exclu~ing alternative explanations which has do~ged,studies such as the 

t (H d 
· ck· e·t al 1976) Nevo (1978) concl~ed that genetic 

presen one e rl •J • 

polymorphism and heterozygosity are correlated with eco]..ogi.cal hetero.-

. 1 heteroge~eity is a major factor in 
geneity, and that environmenta 

· · ti n in natural populations. 
maintaining and structuring genetlc varla o 

This attracts qualified support fr~m the present study. 

l 
identified and characterized genetic 

The present study·has a so 

~~rTatlo-rr·i·FI-.E! group attracting increasing a_ttention from population 

t
he. way for future attempts to define one aspect·. 

biologists thereby paving 
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of population structure of these species usi~g the electrophoretic 

approach. Th~ large, mobile, widely distributed, commercially important 

Thunnu~ species are the desirable choices for study, both from a genetic 

and fisheries management point pf view. Ironically it may be that the 
~ 

species which harbour the highest amounts of useful electrophoretic 

var~ation, thus enabling subdivisionto be detected, will, as a corollary, 

show the least a~ount of differentiation . 

. ' 

~ I ~I 
I 

q 
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CfiAPTER 6' 

BIOCHEMICAL SYSTEMATICS OF INDO-AUSTRALIAN SCOMBRIDS 

6.1 INTRODUCTION 

The challenge presented to classical evolutionary theory by the 

discovery of large amounts of genetic 

techniques and,the debate as to wryat 

neutral or selectively maintained 

using electrophoretic .. 
of this variation is 

for a review of these 

topics) has tended to obscure the value of elec.trophoresis as a system

atic tool for both clarifying taxonomic problems and inferring phylo-

genetic relationships . 

. Avise (1975) reviews the advantages of electrophoretic data 

relative to the morphological and meristic data traditionally used in 
~ 

.ciassical systematic studies. These include its objectivity (relative 

protein mobilities are scored directly), constancy (scored characters 

are nor~ally_independent of age, size, sex etc.) and precision (single 

gene products are characterized). A further important advantage relates 

to sample size.' Gorman and Renzi (1979) have determined empirically , 

that gerretic distrnce ~-stimates are hardly affected by sample size and 

suggest that a·single individrial may be used to represent a species for 

inter-specific comparisof}S, prov~ding ~arge number of loci is studied. 

Two to five individuals per species are commonly used in systematic 

studies. 

The ele~trophoretic technique does, however, have some dis-

advantages: 

(a) 

(b) 

t. 
Its(\pplication is restric;ted to living organisms; 

As'evolutionary rates appear to vary amongst loci, the 

choice of loci has some influence on phylogenetic 

l 
extent, species delineation; 

analyses and to a esser 
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(c) 

(d) 

Wl ln electromorphs (see' as c~yptic variation ca.n occur 'th' 

earlier) , identical mobilities may not represent identical 

amino-acid sequences; 

as there are a finite number of mobility states on a gel, 

chance events lead to identl'cal b' · rna l~lty state and in 

pr~ctice this defines the taxonomic r~nk below wbich elec

trop~oretic data is useful.for inferring phylogenetic 

relationships. 

In balance, however, the ~dva~tages of the technique generally out

weigh the disad~antages ~d ele~trophoretic data has increasingly been used 

in systematic studies of a variety of vertebrate, invertebrate and plant 

groups, including marine teleosts (Johnson, 1975; Utter et al., 1973) ,fresh

water teleosts (Avise & Smith, 1974; Turner, 1973), and marine crust~ceans 

(Mulley & Latte.r, 1980) . 

The family Scombridae, although not particularly speciose,by com

parison wit:h other tropical marine teleost families, has caused taxonom

ists some problems in the past. Because of the demands of the epipelagic 

eAvironment and·a high speed mode of life, converg~nce in external charac-

ters is marked in this group and elucidation of intra-.familiar relation-~ 

ships has to·a large extent relied ~n internal characters (Kishinouye, 

1923; Godsil, 1954; Gibbs & Collette, 1967). The widespread distribution 

of a number of scombrids has resulted in many nominal new species being 

created on a parochial basis, and a' long list of syn'onomies accompanies 

most formal species descriptions. The most .recent and widely accepted 

classification of the fami:l)' Scombridae .(Collette & Chao, 197 5; Collette, 

1978) is depicted in Figure 2.1. with the exception of a few species 

complexes (see later), species identification presents ;ew problems 

nowadays and interest in the group has shifted more towards inferring 

relationships between taxa. Sharp & Pirages {1978) used electrophoretic 

comparisons of fifteen ehzymes in the h8art, red and white muscle of 
· b' h · al phylogeny Although directed 

eighteen species to construct a lOC emlc · 
. primarily at the c;renus Thumms and inc~uding a number of species (8/18) 

·t l' an regl· ·on, their study did produce a phyla
not found in the Indo-Aus ra l 
genetic sequence similar to that propo$ed by Collette (1978) from examin-

ation of anatomical chara~ters and provided some inqication of .the ·poten

tial of the electrophoretic approach to scombrid ~volutionary systematics.; 

, •. 



In this chapter, electrophoretic data obtal'ned f rom the protein 

produ7s at a presumed 26 genetic loci have -been used to examine re-

latl.'onships amongst 23 Indo-Australl'an rnb 'd sco rl s at several levels. Two 

. '-
_A cases where the dlscovery of intra-specl.fl'c · ~ ~ varlants has challenged the 

vali~Y of currently accepted species were invfstigated (section 6.3.1). 

The a are used_to classify species on the basis of similarity (phenetic 

analysis- section 6:3.2); cladistic-methods are then used to infer 

phylogenetic relationships £rom the same data (section 6.3.3), and finally 

the zoogeography of Indo-Australian scornbrids. is reviewed in the light of 

these findings. ~ 
"' 

6.2 MATERIA1s AND METHODS 

6.2.1 Material 

u. 

.( 

In addition -~to the specPes .analyzed in Chapter 5, liver samples 

were collected from another three.species, dogtooth tuna (Cymnosarda 

unicoZor - one individual), bigeye tuna (Thunnus obesus - seven individ

. uals) and. oriental pluefin tuna (Thunnus thynnus orientahs - one 

individual). Concerted efforts were also made to obtain material from 

the two Crcurrmotc/t;cynus morphs of unknown specific status (see section 2 .l). 

Both the author and various north Queensland game fishermen had inde

pendef'itly noticed differences in maximum size attained, size at first 

maturity, gross morphology and habitat preference in forms known 

commonly /{"shark mackerel" (sp. A) and "scad" . (sp. B). Fifteen an¢1 

seven individuals respectively of these two morphs were sampled. 

[Coll~ction details of this material hav:previously been givan in Table 

~· 5. l. J only a 'single sample in poor condition was obtained for slender 

(tuna (AUo-thunnus faUai), and it was not possi~le to type all enzymes 

for this species. No materiai was obtained from the .. primitive aberrant 

Casterochisma meZampusJ the only r~presentative of the sub-famil~ 
basterochismatinae, or frOm several tropical specie~ which ~re rare in 

R 
.-J- 1 1 • ,r> z,rachysomaJ R. -~-'aughni J Scombero-

Australian watars, namely aif~re&&~g~ / J' ,-
monts Zineo Zatus and S. auttatus. The coverage provided neverthel,ess 

· 23 ·taxa l. n 'll nominal genera of the 29 species 
remains comprehens l ve --'-. 

known from the region dsee Table 2.1). 

c 

\ 
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6.2.2 Electrophoretic techniques 

As material f.or the. :).9 species utill. zed l. n ~hapter 5 p~us that. 
l' 

from T. obesus and Crammatorcynus sp. B had already been type9 during 

the course of examining heterozygosities·, l't . was necessary only to run 

o eac species whose sirnul taneous comparisons with one indl' vl· dual f h 

rea y een established. A larger size phenotypes at the 26 loci had al d b 

cellulose acetate strip (10 em x 20 ern) was used and samples were applied 

in the order listed in Table 6.1, with skipjack material (species 17) 

also inserted between 'species 8 and 9 as an add~ional control for scoring 

relative mobilities. 

As outlined in the previous chapter, only those enzymes for 

which homologies could be established with some certainty were used. The 

slower LDH locus (LDH
2
) was finally not included as· the homotetrarner band 

to be scored (the slowes.t of five) was often so weak as to introduce the 

possibility of error in scoring mobilities. This left 26 loci. As 

mentioned earlier, Arn1 activity was very weak in the Sardini and Thunnini, 

and rnobili ties ·were not available for ali species. 

Because of the large number of species involved, it was not 

possible to cross-match the mobility of every allele at all loci for all 

sp~cies in t~e available time. Primary intra-familiar relationships have 

therefore been based on common allele comparisons, as described by 

'Lakovaara e"t al. > (1972) and others. Although the acquisition of 

particular alleles may have cladistic significance, it is felt that with 

the relatively large nwnber of loci used, the amount of information lost 

has probably been negligible (Nei & Roychoudhury, 1974; Gorman & Renzi, 

1979). The .G. unicolor and T. -t. orienUx/Jis rnateri'al (one individua~ 
in each case) .was in tair condition only and some caution has been used 

Since visualized bands 
in interpre tin~ results for these two species. 
are of finite width and subject to slight retardation or advancement due 

to a variety of effects, for example, binding of sialic acid residues and 

cofactors and· imperfections in the medium, bands showing any overlap and 

thus of the same nett suJ.>face charge, were treated as equivalent w.hen 

scoring rnobi li ties. 

) 
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•• 6. 3 RESULTS 

~ 6. 3 .l Observe~variation and species identity··· 

Table 6.1 lists ' ~ common allele mobility states for the 23 taxa, 

coded alphabetically in order f d · i o ecreas·lng m~lity. Figure 6 .l 

ln mobility states with gels stained illustrates the variation observed · 

for ICD and GOA and Figure 6.2 for PGD and SORDH. 

,. 
~ o moblllty states exhibited. Loci varied consider~_bly in the number f · · 

None showed identical common allele mobility across the range of species 

but only three positions were observed at the MPI, LDH1 , PGK and AK 2 loci 

and only four at the ICD locus. As might be expected, the loci with t~e 

highest H va-lues showed the maximum number of common allele positions 

GOA- (17), ADA (13), GPI (ll.)', and PGM
1 

(ll), possibly indicating that 

these are evolving most rapidly and again emphasizing how the choice of 

loci needs tO be considered when interpreting ;r:es.ults from studies of 

this type. 

Although a fixed allelic difference at a single locus is theo

retically sufficient to establish separate specific status in sympatric 

diploid species, most closely related species show allelic differences 

at 20% - 50% of their loci (Avise, 1975). Haverstock (MS) suggests 

apparent fixed differences at 15% or-more of loci as a rule of thumb for 

establishing specific status, although recognizing that exceptions do 
~ 

occu'r. Differences here between species have been expressed in common 

alle~e terms. Where loci being compared are not polymorphic such 

diffe:ren~es are also of course fixed differences, but generally the number 

of fi:!.ced differences between species will be less than the number of ' T 

commor\ allele differences. All taxa examined here differed in common 
\. ( b 

allele ''terms at one or more loci. Two species pairs, yellowfin T. al a-

cares) and bigeye tuna (T. obesus), and oriental bluefin (T. t. orientalis) 
• and longtail tuna (T. tonggol)> showed common allele differences at only 

two loci 
(7.5%), and the maximum difference observed amongst the tunas was 

h t Sll'my mackerel (5. austral-
At the other end oft e.spec rum, 

only 25%. 
asicus) and frigate tuna (A. thazard) shared no common alleles. 

morp
hs showed fixed differences at six 

The two Gra;runatorcynus 
(
23

%) of the 
26 

loci ( GPO, ADA, AOH, GOA, PK2 , & PGM 1) with apparent 

t 
t thers (FH, MPI). Fixed 

common allele frequency differerces a wo 
0 

' 

differences were also observed at several other loci no.t used in this 

l l good Species,· and are now 

d Xo TheY are c ear Y 
study, namely ADA 2 an · 
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Figure 6.1 Variat~on in ICD mobility. 

• Species have been applied in the order used · 
previously, with skipjack (17) inserted as a cont{ol between 
species 8 and 9 on all gels. . Dimeric heterozy-gc)'tes can be 
seen i,n species 16 and 20. The species 1 sample failed to 
stain up before fixation of the gel on thi~ occasion. 

~I' 

'», 

Variation in GDA mobility. 

Dimeric heterozygotes can be seen in species 
10, 13, 18 and 21. 
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0.048 ± 0.033 82 
Nf\ 

Figure 6.2 Variation in PGD mobility. 

Species ~3 failed to stain up before 
fixation on this occasion. 

Variatiqn.in SORDH mobility. 

An indistinct tetrameric heterozygote can 
be seen in species 20. 

\ 
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GPO SORDH LDH 1'-!DH MEl ME
2 

ICD PGD GAPDH SOD GOT J_ GOT 
2 

GPT PKl PK2 AK 2 PGK PGM1 PGM2 PEP 2 GDA ADA FU/1 MPL· GPI 
ADH 

1 A H A B D B A .F B B B c F F E B B I G A, H A A c H F 
" -

2 A D c D D B D F B B A E c F G A B K E D p M E A F c 
.-

3' A A A. !? B B B A B A c c c c B A B G B D B F B B D B 

' 
4 c A A B B B B A B A c c c c A A B D B D D D E B D H 

5 A D c B c B. c ,D c B A C- c A D A P... D B B 0 F E B ,E A 
I 

, 

6 A D ;c B c B c D G B A c c ~A B A B D B B 0 F E B \_ B A 

-A._-)]>. 
r 

7 A F c B c- B D B A- c c B B A A B A B L I E B c E 

8 A E· c A A B c ~ B E B A c c B B A A B A B K .L E B c -

9 ~ .t: c A A B A A G B A c D A B .P... B D B E L J J~ A J 

10 A • B B B E B c A G A D E -- A c B A' c G F B E G E B K c . 
ll B c c c c 

B. 
I B E E A E c c B B H c E J G D B I -

B 1·' 
. 

12 B. c c E c t-'· .. , I B E E A E c c B B H c c L G D B I -

13 B I c E E c' <'-- c B 
•, c E D c D c A B F c E c B D B G E 

14 E I c B c A D E F B c B B c B B c H D c Q G c B K F ~ 

15 F J c F c c D E A D E D c G FC1iltA • A J c E N G c B K -

16 c J c- F c B D G B D D D iir- E B A B· F c c G H F B J D 

17 c .-;J c - F c - D D E A E E D c E B B A J c F M H G B J G 

18 D G c B B c c H B E E F c H B g· B c c E F E I B K I 

19 D G c B B c c H B E tE F c H B B B E c E A E I B J (I) 

' 
. 

4: 20 , D G C. B c c c H B _E F c H B B B E c E F • E I B K (I), 

21 D G c B B c c H B p E F c -H B B B c c E I K I B K (I) 

22 D G c B B " c c H B F E F C- /j_ H B B B c c E I K I B K (I) 

23 D G c B B c 4-c /H B E E F c H B B B E c E A E I B K (I) 

' 

Table 6.1 CoTILrnon allele mobility state.s for the specie·s studied·, coded alphabetically in ord'er of decreasing mobility. 

~ 

~ 
!£>· 

'* 

Species are ended as previously. 
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f . :\ 
awaiting :Eormal desc:r;-lption. ~y o \ ~ r. B. Collette, U.S. National Museum, of 

Natural History, in. c_ onJ.-U!'Ctl' on. · th h '· .. , Wl , t e author .. 

An attempt was 'also made t. a· examinE;e . a.ntr~-;speci:fic variation in 

'"1 J ...., l,. erences ,similar to those· th~ 'n~minal tuna species_ T. tonrtgol. "'S ·a· ff 

described for_the Gramma'toPCL.J~Us morphs h db ·' a een noticgd i~ S.E. Asian 

individuals compa·r::ed to nolfthern A t · 1'· · us ra lan on~s. With much dif~iculty, 

a number of _blood samples (n = 22)·-v~ere obtal· n-ed· ,f· o"'m' p ( ... J~ • , . . , . r enang Malaysia)'"' -

but' d~e to incorrect consigJ;{ment p;ocedure ,· thesE? arrived in poor 

condition: It did however prov<7 possible to compare mobilities at three 

~~aoc~ ,_ Est ('seru-, GPI
1 

and Gl"_l
2

. The results indicated a fixed al·lelic 
. ! 

difference at the Est locus ·and allel~ frequency differences at the 
. " 

Detailed co_mparisons using fresh liver material are needed 

0 

GPI
2
, litcus. 
~!~ 

to verify this preliminary 
• 

finding. 
. . 

' It is a com1nent on the power of t.,he te-chnique that 'it has led to 

add.i t±ons to .'"t;he complemen~ of known species wi thinj:l family already 
:i 

studi~d extensively d1.,1e to its great commercial importan<;;e. 

,_41//1, ·. 
.JIIffj. 2 

I . 
Relat:ionsh.ips inferred fr'om phenet<ic analysis 

"' ~ eJ A variet:t, of phenetic procedures has been used in sy.stemat~ 
stif.dies to express, .• as a two-dimen~ional dendo~;ram, the t\:-elationships 

hetween species (Sneath & Sakal, 1973). Electrophoretic data is 

particularly w~ll suited to such proce~ure~ as no weighting ot ch~racters 
is necessary. !n this case, a phenogram was constructed frol)1 a matrix .,. 
of similarities derived from Tabi'e 6. l, usJ..ng arithme.tic average cluster

ing (SMath &_ Sok~l, 1973): Generic -and tribal s~Of the ;;{species 

as per Figure,' .1 hre indicated on this phenogram (I'igu;;;~ 
Cle'arl~ ·evident from t~e comparison of- Fig}lres ~} l and 61j is the 

s:i.niila);'ity il} species groupings b<;tsed on anatomical ani electrophoretic 

data res·p~cti v~ly. 'Levels of ~'imilari ty be tween closely related species 

vary' markedly. 0 

• 
{our of the 11 ,jenera studied contained -mor~ than one spec~es. 

qpec ies' wjtthin three of· these genera, GrammaJorcymLs 5 Sdrda and Thunnus . 
21re s'lmilar at the 79% level or ~gher. The six Thunnus species, in 

particular, d'tww strikj.ng similar±\;¥,_ with the species pairs T. albacares 

(species ·lB) - T.· •obesus .(20) and T. 'tor;L{Jgol (19) - ~~ t. orientqhs (23) 

., ' ~-

'·' 
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Figure 603 ... 
Phenogram constructed from corr;?on allele rnobiliti'es of the 23 scornbrid sp·ecies 0 

Species comprising a genus are underlined and those cornprisi~g atribe are bracketed. 
species is according to previous usage, i.~~· . 
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exhibiting ·alternate conunon ' alleles at only two f 0 the 26 loci with no 

fixed' differ~9ces. T. albacares and T. tonggol share the-'n\Ci~t conunon 

u:rnus species', and' T. 1 1 alleles, on average, with.other Th ', at-at-ungq the 

In contrast, the genus Scomberomorus appears to b b•. 

1
' · . e more . etero-

enous, wl th- S .. munroi showing only 42% (ll/26 l . ) . . . . . OCl Slmllarlty Wlth ltS 

./ cogeners. S. commersc;n (5) - S. queenslandicus (6) and S. multiradiatus 

. (7) - S. semifasciatus (8) appear to form cl.osely . . ~ related species pairs, 

and the unique break.down patterns seen ·a.t the ADA and GOT loci in 

S. commerson and S. q~eens~andicus (see section 5.3.\l fu~thet support 

the close relationship between these two specl· es. h d · 
T e egree of simi-

. • %, the five Australian 
larity between the·pairs is however low at 50 and 

m_:=mbers of the genus Scombeloomorus studied here may represent three 

relatively·~istinct lines of . .. 

I , 

Supra-ge~e~ic re\ationships· '\ ~ 

e'{oiution. 

(J~ 

they vary over the range 
Similarities b~tween genera are 19w; 

20-58%, and, s~ra-c;reneric relationships are not readily~ apparent as a 

result. The scombrine genera (species l, 2), are very distinct from one 

another (30% similarity) but even more distinct fJ;om other scombrids and· 
" 

appear to represent a discrete group., The three genera comprising the 

current Scomberomorini .D-4~ 5-9, 10) also form a loose grouping possibly 

closer to the Sardini and Thunnini than the Scombrini. Gymnosarda appears 

to have no close affinities wit~ a~y other species studied, including its 

three fellow Sardini, which otherwise form' a close-knit grouping. 

However, the result obtained here requires confirmation because of the 

poor condi'tion of the single Gymnosarda sample .. obtained. 

The Thunnini appear to be comprised of two quite distinct groups, 

the genera Auxis, Euthynnus and Katsw»anus (species 15, 16, 17) and the true 

tunas (Thunnus sppJ. This represents a slight deviation from the existing 

classificati-ons (e.g. Collette, 1978) • 

attemp
ts to trace affinities beyond the genus 

For ~everal reasons, 

bl ms Pa
rticularly when comparing genera across 

level encounter pro e , ·· , 

The dl
·scriminatory power of technique dimini~~s with 

existing tribes. .to '
1
the point where similarities re'maining may· be 

increasing divergence 

~ ... · ... '·~·.;.,•., ;.-,~:~·'~ :' ' 

0 

.···~ 

~-
1 



due to chance or secondary convergence. The 1 k f . ' ac o conf1dence limits 

to ~ccompany dendograms, an inher~nt weakness of numerical taxonomy, 

further indicates that little weight can be placed on minor differences 

in % similarities. 
! 

The pertinent point is probably that beyond the generic 1~Je1, 

relationships are 

indica~long 
difficult to establish 

' 
this ·amount of divergence 

separation of the ~ajor groups. 

6.3.3 Relationships inferred from cladistic analyses 

Phenqgrams are c..ommonly assumed to reflect 'phylogenetic relation

ships, as was the c~sy with Sharp & Pirage's (1978) earlier study of 

scombrids. This is true only- if the rates ~of evolution of the· 
J" 

characters (electrophoretic mobilities) are ~onstant between lineages 

(Mickevich, 1978). Although inevitably based on phenetic data (Sneath & 

Sokal, 1'973), cladistic analyses attempt to reconstruct branching 

sequences without making any assumptic5Q-s about rates of evolution. Quite 

different results are ~ften obtained by the two appro~hes. Lakovaara 

et al. (1972) and Farris (1974), for example, obtaited confliceing 

results for the Drosophila obscura- group using phenetic and cladistic 
• 

analyse~ respectively, as did Mickevich & Johnson (1976) analysing 

---morphometric and electrophoretic data onthe atherinid genus Menidia. 

In addition to the phenetic approach, two cladistic approaches .have 

th;;:efore- beer: considered .in this analysis. 

Wagner networks (Wagner, 1961; Farris, 1970) were constructed ,, {i) 

from the data using a BASIC programme on file at the Zoology Department, 

University of N.S.W. and run on a Cyber 72-76 comput~r. This method 

estimates the minimum number of evolutionary steps needed to generate a 

given set of species characters and thus produ~es Ute most parsimon~ous 
set of relationships between species, using maximum likelihood es-timates. 

The possibility of reversals, convergences and varying rates of evolution 

is not exluded (Farris,· ~973). Branch lengths on the networks represent 

such schemes are unrooted although this can be over-
patristic distances. 
come by using a closely related outgroup or "sister ~roup" to producr ~ 

· h' th Scombridae an obvious outgroup would have been 
rooted tree. W1t 1n e ' . • 
Gasterochisma melampus, the single member of the sub-family Gasterochis-

matinae, •but it was not possible to collect material from this species. 

,, 



An alternative widely used method was therefore ~mployed. This method 

arbi ~rari·ly locates the root at th.~e::' midpol· nt b etween the most distant 

points on the ~ree. It however · l' 'tl lmp 1c1 Y assumes approximately equal 

evolutionary rates per lineage, b t u ~s we shall see, this assumption 

is not of critical i~.portance in the . present analysis. 

here, 

With a large number of species being analysed, as is the case , 

the total number of trees which ca· n be' fl' tted to h t e data becomes 

impossibly large (Lundberg, 1~72). Tw&nty seven runs, representing 270 

trees, were executed, and selected networks converted to dendogram and 
~ 

tree form to facilitate compari~on witl1 Figures 2.1 (the ';lassica·l 

currently acc~pte~ schem~) and 6.1 (the phenogram derived from the same 

date\ set) .. ~he most. parsimonious~{ these ne.tworks involved 308 steps/ 

This was achleved twlCe I and both networks are ,;hown ·in Figures 6. 4 amd 
. (\ '· ' ! 

6.5. Note that, in the dendograms, only vertical distances bave pat1 

••• -:~""''"> . ~ ristic relevan·ce; hor1zontal distances provide spacing to assist clc;lrity· 

of presentation. 
I 

( ii) · The Hennig approach which determines the branch,i,.ng ~~quence 
by grouping taxa which share derived as opposed to ancestral ch~~acte;L • 

states was also utilizeo·. With the large number of species ancf~cl:laracter 
states inv6lved and the low levels ;? similarity between manY ~pecies, 

'() 

this app~oacfl succeeded only in defining relationships withi¥ groups 

(genera) and was of little va.lue in examining relationships/between 

groups. Consequent.,ly, it added little to the Wagner analysis and only the 

In the great majority of Wac;rher tree runs, 
~atter Ras been considered. 
there was remarkable co:f!s,tancy ·in 'the association betwe.¢n species, as 

exemplified by the two most parsimonious trees sh~wn i)'l Figures 6.4 and 

6. 5. Species 1 and 2 were markedly divergent but ah(ays paired; within 

the scemberomorini, species 5 & 6 and 7 & 8 were inevitably paired, 

whi}st species 9 was variously linked to these pai~sJand as a result of 

its diver9ence' frOJTI them, occasionally linked tO ott{er species 1 •\ 

P
articularly the scombrini. The Grcorunatorcynuq, speci~s '(3, 4) were . • i '\ ., 

always paired and s?em to have iong div~rged /rom the other Scomberomorini, 

appearing as· a sep~.rate ,entity in most trees. In teres ting_,t-Y, they were 

most often linked to species 10, Acanthocybium solandri. Affinities of 

f Gymnosarda (14 l. (both are considered 
this species (10), plus those o 

·d monotyp1'c genera ~n ~he basis of ,morphological and 
highly specialize ~ 

,, 



w 
u 
z 
<( 
I-
U) 

·t&o 

u 
1-
U) 

01:: . 
1-
<(• 
a... 

I 

' 

. ' 

1. 

,1} 
), .. 

( 
17 

5 6 1.5 

3b 10 
4 

2 3 7 8 9 
13 18 20 

\ 

20 

.l() 

0 

Figure 6. 4 

.. ~. 
·' ,. 

16 

one of the two ~qually parsimonious Wagner 
networks (308 steps). for the 23 scombrid 
spec.ies, expressed in tree and dendogram 

form. . 

speci eo are c~e~ ao prev iouoly. 

0 

.. 

19 
23 21 22 



w 
u 
z 
-<( 
~' 
(./) 

0 

u 
~ 
(./)_ 

r.oc:: 
~ 
-<( 
a... 

40 

30 

0 

\ 
'\ 

7 
Figure 6.5 

2 
10 

.. 

10 
2 

14 

f 

.. 14 

5 

6 

15 17 

15 

9 

3 
7 8 4 

'" 

The secpnd of the eq~ally parsimonious Wagner 
networks for the 23 scombrid species•exptessed 

c 

in tree .and dendogram form. 

( 

l 
\ 



. . 

:::>Luuy, J.&.u...~.~, ...... .-.1 

,!., •• '• 

ecological evidence) vary considerably,from ~ree to tree. Given tne 

large patris~ic distance to the t neares species in the majority of, 

cases they are best regarded as long divergent i~dependent lineages 

whose affinities a~e now difficult to tr.ace. 

Of the three remaining S~>rdini, the 'two Sarda species (ll, 12) 

were invariably paired 'and more distantly linked with Cybiosarda. As 

in the phenetic a_nalysis_, ~pecies 15, J:6 and 17 we.re nearly always 

grouped, but wit~ consi?erable divergence between them. Species 15 · 
--. 

(Auxis) and 17 (KatsWJJonus) were usually linked. The tight grouping .. 

within the genus Thunnus (species 18-23) was apparent in all trees, 

with species 18-20 and 19-23 generally forming pairs, and spe<jfts 21 

quite divergent in most cases. 

Beyond the generic level, affinities varied considerably. 

Primary branchings o·csfurred very c;:lose to the· root in nearly all cases 

and as with the phenetic analysis, the discriminatory power of the 

ele:c;::trophor_etic technique is approachipg its limits at this level. 

The m6st reasonable interpretation is that six major groupE (species' 

l-2 1 3-41 5·{{-'7-'8-9, ll-12-lJ, 15-16-17 am1 18-19~20-21'-22-23) .,. plus ""' 
... 

species 10 and 14, have diverged to the extent that it is no ~onger 

posE?ible to t;;race phylogenetic a.ffinities with any certain~ using the 

available electrophoretic data . 

{jl. 

6.4 DISCUSSION 

6.4.1 Electrophoresis as a taxonomic tool 

A rigorous evaluation of the taxonomy of the Scombridae is neither 

within the scope of this study nor within the level of competence of the 
' 

author. Wbilst recognizing the difficulty of comparing the two types 

(F 
· " 2 1 and 6 3) it is nonetheless' encouraging to 

of den{J.rograms · :tgures . · , 
) ndence at least at lower levels, between the 

note the close correspo , 
• ~ h · · · ferred here £iom electrophoretic data and the 

phenetic relat~ons Jps :tn 
b d n morphological and eco-physiological 

most recent classifications ase '? 

9 ~~ Collette, 1978; Zharov, 1967). 
data (Collete & Chao, l 1 ..;,; r; 

and 
I 

I 

~ 
a previously undescr:t.')?ed G'Y'Gl77lmqtorcynus species 

Clear separation of 
Thunnus tonggol-morphs illustrates the 

preliminary separati R~ two 

I• 



usefulness of the ele t h ~ c ra.p oretic approach l. n resolving problems of 

specific identity. Whilst the taxonomy of the family presents ~w 

difficulties nowadays, the technique could profitably be brought tp 

bear on at least two acknowledged' bl • · .. pro em specles complexes, Rastrell-

iger spp. (brachysoma-neglectus) and Auxis spp.(thazard-rochei)~ and on 

ose lscontlnuous distribution or polytypic widely distributed species wh d' · 

morphology raise questions of species identity (see later). 

6.4.2 Evolutionary history of the"'scombridae 

a a o ln er e evolutlonary ~istory The use of electrophoretic d t t · f th · 

of Indo-Australian members of the family is of interest to this study. 
@ ' ' Both the cladistic and phenetic analyses suggest that extant species are 

members of long-separate groups whose affinities are accordingly diffi-
' 

C)Jlt to establish. Whilst tJ::,is may be a most significant result,' as we 

shall see later, it needs firstly to be placed in historical perspective. 

There are two ways of approaching this. 

\ 

(a) ~ ,; Assuming evolutionary rates at the molecular level are relatively 

' ) I, constant across the species array, amino-acid sequencing techniques can 

be used to estimate time since divergence for species pairs. The con

cordance of results from the phenetic and cladistic analyses of scombrid .. ' 

species suggests that this assumption is a reasonable one. ·Material from 
,, • I 

two species, Thunnus alalunga (21) and Kc¢swJonus pelCD11is (17) has in 

fact been analysed. Results from cytochrome c s.equencing (Na§ayama et 

al. ~ 1971; Kreil, 1965) suggest a time since divergence of approximately 

20 miLLion years (Dayhoff, 1'{72). With only one difference between the 

respective sequences, the confidence limits on this estimate are probably 

broad. J?ublished data on insulin sequences wE;Xe of doubtful reliability 

and hence not used. 

l more Useful l·s the available, but limited, fossil 
(b) Considerab y 

The family scombridae may have originated as early as the Upper 
(Nikol'ski, 1971 fide reqDrd: 

~ 
\ 
I 

\ 

C etaceous approximntcly 70-80 million years ago. 
fWI~ · · t' ·on to obviously related families 
hub~ikov, 1974). Its phylogenetl~ posl l 

· · h 'd Gempylidae and Trichuridae remains 
uch as the Xiphiidae, Istlop orl ae, 

The earliest k~o~.scombrid fossil genera, from the upper t 
unclear. 

Eocene 

morini 

· · • !3'- p. ·) can be placed in the present. SGombero-
(50 mllllon years . . · , 

By 
the lat( Eocene-oLigocene. (30-40 million 

(Danil!chenko·, 1960) · ;_I 

·I 

) 
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recogn1zable as ScomberJ SardaJ Scombero-years ~- ., ) , species clearly · · 

morus nd Thunnus are present in the f · 1 ( · oss1 record Danll'chenko, 1960, 

1964), although not as well defined morphologl'cally from one another as 

they are today·' The radiation, from neritic tropical ancestors hy;othe

sized to r:sernble~ the extant Gas-terochisma to a variety of temperate and 

. l I ' d trop1ca ocean1c an neritic forms, t h seems o ave involved extensive 

early !?peciation. Fifteen Thunnus forms, compared with 7 today, five 

Auxis (cf.. 2), three Gymnosarda (cf. l), ten Scomber• (cf. 3) and at least 

ten Scombero~orus species (cf. 18) are·known from various fos~il deposits 

in the late Eocer:e, Oligocene and Miocene (5-30 million years B.P.). 
~ 

Collette (1978) and Sharp & Pira.g_zs (/'978) on the basis of morpho

logical and bioch~~icai,evidence respect~y, have argued for a linear 

evolutionary progression from forms represented by the 'primitive' 

Scornbrini to those represented by the 'advanced' Thunnini. Whilst some 

fossil forms morphologically interm'ediate between extant g'enera; SL\Ch as 

Eo-thynnusJ are known, the fossil record'is too sketchy to evaluate this 

possibility. The long per.iod of time for which genera have been separated ~ 

would necessitate that such an 'ascent' occurred relatively rapidly in 

the late Eocene-early Oligocene, rendering confirmation from the fossil 

record an ·un lik J 1 y event . Sh~ bn i kov' I 19 7 4) reg a rdfoscombr i d evo 1 uti~ n 

as having proceJded in two maln d1rect1ons from a polymorphous nerltlC 

group: towar~s an exclusively pr~datory mode of life on the one hand, 

giving rise to present day GymnosarJaJ Scomberomorus (and presumably 

Sarda) and to an oceanic mix~d planktivorous-predatory mode of life 

represented by Thunnu:J Euthynnu~) !luxi~J Katsuwonus and AUothunnus on 

the other. 

An equally plausible alternative to both the above hypotheses and 

one which gains some support at the molecular level (see +ater) is the 

'b'l't f m ye or-less concomitant origin of several independent 
pOSSl l l y 0 o,. - Q· . . 

O
f ancestors, with considerable subsequent 

lineages £rom a common group 

morpholbgical cotivergence. 

6.4.3 
· relat1'onships between extant species 

PhylogenetlC 

The phylogenies pres'ented here are based on the most parsimonious 

Wagner trees (Figures 6.4 and 6.5) · 'f' t' with the highest internal 
d Phylogen.etic class~ lca·1ons 

Mickevich (1978) concluded that 

such trees pro uce _ 

{ '· . 
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stability. Although · t l would be a relatively \ simple task to code the 
available morphological d " . an eco-ph'fsiological d t _ a a to generate a simil 

tree for comparison the congrue b ~ • , nee o served between· the current 

traditional <das'sification (Figure 2 .l) and the two schemes based on \.. 

el13ctrophoretic data (Fig~res &. 3, 6. 4 & 6. 5) suggest the a·bove interpret-

ation would not be h ll " (-' ,. c a enged, at least at lower taxonomic levels. It n -- ., 

remains however a ~orthwh1'le · task for future study. 

The Wagner. aralysis, as 11ell as the phenetl' c · a~alysis of the same 

data, have indicated; that at least two aspects of current scombrid clas~i-

ficiation need. closer examination. ~ '' ·,, 

(l) The clear separation of munroi from other Scomberomorus 

species requires comment, because on both phenetic~and phyletic evid~nce, 
!'J 

it is as di verg~nt from its cog.e'ners as some genera are from each other, 

e.g. A:tlxis-Ka·tsw.uonus-Eicthynnus or Sarda-Cybiosarda. One can onl~ 
a'Ssume it is C). relatively old species within the phylogenetically 'old' 

genus which has mai~tained its~lf in Austr~lian ~aters in the face of 

later arrivals of other more modern species. It also highlights the 
~ 

problem of accurately relating lineages of different ages. Scomberomorus-

1 

" 
like forms, it wi·ll be reca~ed, are th,e oldest known fossils. 

(2) The present study clearly indicates that AuxisJ Katsuwonus 

and Euthvnnus shar~ a common lineage, and that they have diverged less 

than some othe:t;: genera. This was particuiarly the case with !luxis

Katsw.JonusJ and is in accordance with the findings of Zharov (1967), 

Nakamura (1965) and Sharp ~ Pirages (1978), who have suggested according 

KatsuwonusJ Euthynnus (and presumably Auxis) closer, if not congeneric 

status. Collette & Chao (1975) however group Katsw.Jonus with Thunnus and 

disti(lct from Auxis-Euthynnus. The present phenetic and cladistic analyses· 

cohtradict this finding in regarding the Thunnus species as no more closely 

related 'ht ~he molecular le.vel to the lower Thunnini than they are to the 

sardini. T~s represents 'the only significant disagreement with previous 

and assl®ing the electrophoretic results are representative of 
schemes, 
the actual 'sttuation, suggests considerable morphologica:l convergence has 

pccurred. 

As noted preViously,· the extent of divergence between groups· re-

. d f t
1
'me for which most of them have been separate 

fleets the long per1o o , . 
entities. This severely limits the discriminatory power of the el~ctro-

·ic levels. 
phoretic data at supr~qener r 

\ 
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~hylogenetic relationships 'th' wl ln genera/groups appear less 

problematical and warrant br1'ef d' · lSCUSS~on. 

Although clearlY<, related, the two gen~ra Scomber and Ras-treUiger 

appear to have div~rged extensively at the biool)emlcai J.evel. However, 

both adult (Matsui, i967) and larval morphology. (Ok' & u · "' 1 . · 1yama eyanag1, 19781. 

of these species sh~w considerable similarity, p~esumably due to the 

conservativ~ retention of synplesiomorphic traits. The iong term 

stability of the morphology of this group can be seen in extant Scomber 

species (scombrus~ dustralasicus and japonicus) which are so similar to 

each other as to cause. identification problems. The group is so liJtle 

changed from fossil forms that japonicus is recorded as such from the 

Oligocene (Danil'chenko, 1960). Whilst australasicus and scombrus are 

known only ·fl;'om the _:pacific. and A~antic Oceans respectively, japonicus 

is considered a polytypic world-wide antitropical species (Collette, 1978) .... , 
Q.nd given the morphological conservatism of the group, it would not be 

surprising if electropho·retic comparisons revealed the existence of more r 

than one species . 

. 
Tribe Scomberomorini 

The present s budy shows that the three generii (Scombcromorus) 

Jlcan_thocybiwn and Grconmatorcymw) which comprise this speciose group are 

not clos~ly re~ated. conrad (1938), Mago Lec~ia ~1958) and Devaraj (1975) 

•.1!. 'd 1 th b,'1un t be related to the S. cavaHa group, 
"have all considere I can ocy ~ · ·a 
which includes commerson (5}. However, Okiyama & Ueyanagi (1978) found a 

." unique mosaic of larval characters which distinguished' Acanthocybiwn from 

:Jcomberomorus and in fact indicated a closer relationship with Sarcia. 
· h th type of body form seen in S. commerson 

Munro (1943) has suggested t at e A"
1 

(I • · bl f more oceanic habitat and 
and Acanthoe.ybium may be the most su1ta e . qr a 

an
d that morphological similarities between 

for extensive pigrations 
!lca.nthocubiwn and :;. r;orruner•:;on may therefore be due to convergence .. 

1 d
. e between them, this seems 

In 

view of the degree of biochemica lvergenc 
· 1

1
· ttle reason to regard Crarrunatorcynus as 

The results also glve 
, likely. the scombrini and the Scomberomorini, or 
either ~ possible link between 

b tha n to Acarl.thocybiLun) 

1 r elated to :>com er'omor'UB 
being more distant Y as 

. . authors have suggested. 
as varlt~us 

' 
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Within the genus Scomberomorus the three g . _ . • ·~ ~ , rcruplngs commerson-
qu~nsland?-aus~ semf-fasciatus-(muUiradi t ) · . . : a us ~ and munro?- correspond to 

Munro's (1943) now dis.cied sub-genera r<..b · p I d b · '-'Y ?-wn~ n ocy ?-Wn and Sawarra . 
'. l 

respe~tively. 
I ~ 

Tribe Sardin{ 
CJ 

C:ybiosarda is clearly not recently d · d f S d · ' • 1 verg_e r<;:Jm ar a but appears 

, 1n contrast to Collette's (1978). closer to that genus tha_ n Gymnosarda. · 

suggestion .•. It is also notcongeneric with Gymnosarda~ as Fraser-Brunner· 

( 1950) suggests, nor does it 'belong within the Scomberomorin~ as Munro 

(1943} suggested. 

Despite the morphological affinities of Gymnosarda with the Sardini 
l.'tli

(Collette & Chao, 197'5), .the results of this study and examination of 

larval characteristics· (Okiyama & Ueyanagi ,, 1978) indicate tha~ Gymno

sarda. is a highly specialized form not closely related. to any other genus . 
. . . 

./"--' 
~ Allothunnus has been grouped with both the S~rdini and the 

Thunnini by vario~s· workers. } H.· is. some t,imes regarded as a transitional 

form between these two tribes (Sharp & Pirages, 1978) and would therefor~· 

have been an extre~ely interesting inclusion in the study particularly 

as a test of the line3r evolutionary sequence proposed by those workers. 

Because of t~e poor c~rdition of the only sample obtained, this was 

unfortunately not possible. 

Tr-Z:be ·Thunnini 

within the genus TfzW!r!lW
1 

the c3reat simil<H~ty"' betw_een species is 

the most 
5
ignificant result. Although the genus i~ relative!~ old 

(35 million years B.P. or more), all the Jpecies studied may be of 

relatively recent origin, having diverged ~~ttle from a common ancestor. 

Thcte species which have successfully colon~~ed the temperate areas 

1 s~ecio!\s 21, 22, 2 3 in par i1 cu lar) are Ot i 11 tied ~t r.opica 1 areas for 
' . ' ' ' 

spawning. 'This coulc! be further indication of a relat1vely recent or1g1n~ 

Alternatively, evoluti'bnary .iates at the mol~ular level may have slowed 

or obs'er~ed c;imi1ari ties t_;ff'.'. y re~lect a high degree of parallel evolution. 
~'' " t:'EY • 

The genus has been divided into several sub-genera on morphological 

groundsl''(Kishinouye, 19,23;' G~sil & Byers, 1944). Both Gibbs &~Collette 
· t 1 (1976), re-analyzing the same morpholog.ical 

(1967) and laler Le Gall e a~-) i' 

« <'!-

• ~ .. ,, ~."',' 
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characters using muliivaria~e techniques· have f d 

. · · • pre erre to rscognize 
,·.~two species'groups: ~·· at7,anticus tonggol (l9 ) d lb • <t 

1J • • , > . an a acar>es (18) on the 

o_ne hand, and alalu::f{a (21), maccoyii .(23) and the thynnus complex (2::n 

,'Atl(.,_.,n the' other, wit,h Jbesus (20) an intermed1'ate form. ~· ~. Both Sharp & Piraqes 

(1978) and the present author recognize no clear intrageneric subdivi'sion. 

~thJ-1 ~~a1,1 to place T. alalunga in a relatively isolated position. At 

hPh the ~ levels o~ similarity obse~ved, grouping particular species is 

·probably strongly influenced by the choice of loci. .. 
o _Sharp & P~ages (1978) 

.found the closest similarity between species 22 and 23 (91%), whereas 92% 

similarity between species 18-20 and 19-23 was r~corded here. Their 
'\' 

' ' ' ~ 
1nterest1ng content1on that the two T. thyry,nus subspecie , warranted full 

specific status could ~ot be investigated. Collection f additional 

material may enable genetic distances to be 

~~lationships to be examined with more pr~cision; i8 i~ more likely <if 

however that t~lectrophoretic technique has approacp~d the limit of· 

its resolution' at this high level of similarity par«.c1,1larly wh~n only 

the commonest alleles are used in the estimatior'i of similari~y coefficiE?nt:,.s. 

6.4.4 Zoogeography of the species 

8 · I 
Many of the ,scombrid species studied here are cosmopolitan rather 

tha~ Indo.:Australian in their distrib\}tion. This is consistent with their .. \ ., 
oceanic or nerito-oceanic habitat and high vagility. Such species, which 

include wah.oo, (A. solandn:)J frigate tuna· (A. tha::.ar>d)> skipjack 

(K. pelamis) and all the Thimnus species with ~he excep.tizf T._ tonggql 

(an exclusively continent'al shelf or neritic sp:cies) are accord1ngl~ 
> -

more interest to the population gene tic is t than the zoogeographer . 
. 1-' 

ah h d tend to be more localised in Neritic species, on the o~ er an , 

· · b t · h·. ch logically isl1 reflected in the d1:gree of endemism JIP.' their d1str1 u 1on, w 1 I. . '!I 

shown. The table below li-sts for eac~ genus! the number of cosmo-

' · (C) the number of species occurring only in the Inclo-politan spec1es , 

wnb of species endemic to Australia-Papua 
Pp.cific region (IP) and the n er , v .. I 

New Guinea (A). 

,, 

· . .. 

\ 
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Genus - Spec~es Distribution 

.e. 

studied 
cate9ory Comments 

c IP A 

Neritic\ genera 

) ~ . 

Scomber 
"-, 

'· 1 1 

RastreUiger 1 1 ~ 

·" 
Grammatorcynus 2 "'' 1 

" l :.~f .. ./It" 
'• ' 

Scomberomorus 5 1 4 

Sarda 2 1 'r-l 

Cybiosarda 1 l " 
Gymnosarda 1 1 r 

'. 

Euthynnus 1 1 

I. 

14 7 7 

Oceanic/nerito-oceanic genera 
~ I 

Acanthocubiwn l l 
.fa 

Auxis l 1 h 

Katsuwonus l l 
tlilt 

Thunnus 
* 

6 5. ( 1) * See 6.3.1 1 T. tonggol 

• 9 8 ( 1) 

""" ~ 

Although many of ·~the .neritic species ar~ capable of extensive 

longshore mig:(ations 
1 

the level of endemism does __ ~uggest that such species 
.- ~'i!iW '· l 

are more likely to encbunter barriers to distribution 1 'lea~ng in some 

cases to divergence and ultimately allopatric speciation. Changes in sea 

level and disposit.ion of land masses m\y periodically produce such 

barri~~s and any localization of spa4ing activity woul~ .... Jufrther promote 

this m~e of speciation. Pres~n t kno\vledge of both t;)i'e geological 

his tory ~f t,he Indo-,Aus tralianf region and spawning strat12gy of the great 

majority of scombrids is however inq.dequate to evaluate this suggestion. 

~ 
R 
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It is within. genera comprised of .. 
.. more than one nerltl~ species 

that an undersLanding of phylogeneti 1 ). · 
~~>.. . · c re a t)-onshlps can be expected to 

be most 1:!!'5eful in the interpretation f · o zoogeographlcal phenomena. 
biscussion therefore cen_tres th on ree genera - Sco~eromorus) Grammator-
cynus and S~da. 

The known distribution of Indo-Australian Scomberomorus species 

provides a distinctive pat tern .. w · th th' l · · e exception of thetidesprea·d· and 
abundant commerson) there is a J t 1 · com!f·.Le e c 1angeover ln Scorn eromorus species 

across eastern Indonesia and the Arafura Sea, from Indo-Ma ayan species 

(guttatus) lineolatus and to a lesser degn::e, koreanus and sinensis) to 

Australo-Papuan endemics (munroiJ semifasciatusJ multiradiatus and 

queenslandicus) (Collette & Russo, 1979). Given the many changes in the 

disposition of land· masses in this area, oppor~un~ties {or allopatric 

speciation have probably been greater here than el\~where in the Indo-
' 

Pacifid region. Electrophoretic data should in future enable elucidatio~ 

of evolutionary relationships between thes~ two suites of species, and 

may throw further light on the affinities of the highly divergent Tml~troi. 
' 

Munro's (1943) sub-generic classification places guttatuq arid lineolatus 

' aiong with semifasciatus · in the sub-genus Indocybium ~d kor.eanus and 

sinensis in sub-ge~era with no Australian representatives. This provides 

an interesting alternative scheme to test with electrophoretic data in . 
I 

future. 

It is interesting to note that Atlantic members of the genus 

similarly comprise one large 1videly. distributed species cavalla) closely 

relat~d morphologically to commer.son) and four smaller species showing 

limited or no overlap in their more restricted distributions (maculatus) 
, 

reg~lis) brasilietuJis and tr - C6llette & Rus~o, 1978). 

I of the two Grconmatorcynus species is 
Until the specific status 

· tl·ve geographical ranges subsequently 
formalizJd, and thelr resp. ec 1:1 

· • phy In view of the more 
defined, little can be sald of the~ zoogeogra · 

species (shark mackerel) and the generally 
inshore habit of the larger 

-,. ' 1 b · · t 1 (more 
smaller size recorded outside Australia for C. &car&na_ us 

· · · h d th~o shark mackerel) by various autho~ties, 
conslstent Wlt sea ~-

. ¥ 'f sp_. A (shark mackerel) proves to be an 
would not be surprising l .. 

it 

Austral-

ian endemic. h C~s t~known range of Furt ermor~1 c' 

I c; • bicarinatus 1 shoY(' 

\ 

::. 
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a conspicuous gap between the coasts of 
south-east Asia and the Red Sea, 

Red Sea forms may similarly prove to be a distinct species. It is per
haps noteworthy that the distribution of this species complex approxim-
ately parallels the distribution of.well. d eveloped coral reef systems 
within the .tropical Indo-Pacific. 

Sarda orientalis h as 0:,~· apparently discontinuous distribution 

across the Indo-Pacifl' c f ' • M 1 rom, a agasy to central ~erica, although this 

discontinuity is more likely an art1'fact f · · o 1ts lnconspicuous, largely 

sub-surface habit and propensity 4to occur 1'n small sparse schools rather 

than large aggregations. Observations during this study have extended 

its known range to include Indonesia (Ambon) and Australia's north

western coastline (l9°43'S, ll6°13'E). There is also a confirmed 

report from the ·'Gulf of Papua and an unconfirmed one from New Britain, 

(Papua New ·Guinea), further reducing d\stributional gaps. In Australian 

waters 'owever, it is definitely restricted to the 'western and northern 

coastJ. On the east coast, it is replac~d by its closely related cogener, 
.\ 

S. australis which is endemic there although J'dd vagrants have been 

taken in New Zealand (James & Habib, 1979). It seems feasible given the 

limited amount of divergence which has occurred between· th.e two ~pecies 
. ~..;: 

that australis may have been allopatrically derived relatively r.ycently 

from Ol"ientalis during one of the periods when theq pre.se.ay' Torres 

Strait was closed by a land bridge between Australia and Papua New Guinea. 

It would be interesting to examine, from the genetic viewpoint; relation

ships between oriental is and the eastern Pacific species S.~l iensis ·' 

and also between the two allopatric sub-species of chilie~s 2 ~rrently 
recognized - S. c. Uncolata (North America) and 1. c. dnl· 1-S (South 

~erica) (Collette & Chao, 1975). 

· have 1'ndicated that some degree of differ-
Prel.iminary compar1sons 

entration may have occurred across the Indonesian region within the only 

neritic Thunnw; species occurring in the region, T. tonggol. This would 

l l d by spatial restrictions on gene flow, in 
seem to support the ro e P aye 

Wit~ a species of tonggol's undoubted: 

a~so be promoted if 
the differentiation process. 

dispersal potentia~, such differentiation would 

spawning activity is not widespread but localized. The restricted 

. . . · ·
1 

and spawning adults across northern Australia-

( 

dlstrlbutlon of JUvenl es 
. ~( rsahal observ~tions) suggests that this ~ay be the case. 

Papua New Gu1nea pe ~ 

~ 
"" 

.,. ,_ 



In summary, phenetic and cladistic analyses·of Indo-Australian 

scombrids based on e(ectrophoretic data have, with few exceptions, 

provided strong support for the currently accepted taxonomy of the family 

Scombridae. These results, together with evidence from the fossil rec~rd, 

suggest th~t the various.groups within the family have evolved inde

pendently of one another for a long time, certainly in excess of 30 milli9n 

years. As a result, it is beyond the power of the electrophoretic 

t~chnique to elucidate relationships between scombrid taxa above the 

genu's level, irJ contrast to studies of m6re recent groups, such as the 

marsupials, eutherians, and birds. The data do indicate however, th_at 

interpretations of scombrid evolution which regard mopho-physiological 

specializations as sequential may need some ;eappraisal. Much inter

e~ting work remains to be done by extending this study to take in the 

f d . t This is particularly true i~.t,· he species compl,emen t o a Jacen areas. 

I 

~ 

zoogeographic; context. ~ 



,. 
CHAPTER 7 

CONCLUDING REMARKS 

The study of populations' of highly mobl'le oceanic species 

such as skipjack tuna is· not without ii0s---; nhE;rent .._ difficulties, 

logistical and biological. Given also the dearth 

) 

of knowledge in 

several critical areas for example th · • · ' e spec1es reproduct1on and 

the ecology of skip]' ack e 1 1' f h · ar Y 1 e 1story stages, plus the e)'(forced 

reliance on the el t h · · ec rop oret1c variation at just one locus, there is 

good reason to feel pleased with the results of the present study. 

The two independent data sets, the Papu· a New G"'u1· nea mark-recapture 

results an
1
d the allozymE!' data collected in the same area several 

' years lat~r have, as well as providing a large amount of data useful 

in a general sense prod d 1 t f' d' uce comp emen ary . 111 1ngs in two important 

areas. 

Both data sets have provided circumstantial evidence that 

.island-open ocean iriter~ctions play an important role in skipjack 

ecol.ogy, especially reproduction and early development. Near-island 

waters, with their enhanced and perhaps more importantly, relatively 

stable productivity, .may ~rov~le a reliable baseline from which it 

becomes feasible to exploit less certain but periodically ~roductive 

open ocean situations. Combined with the species' morpho-~ysiological 
P' 

adaptationi enabling individuals to minimize time spent in unproductive 

situations, the adoptior{ of resident-nomad strategies as outlined hercft 

may _torm th,e basis of the remarkabJy successful colonization of the 

vast and generally unproductive epip'el~gic zone by skipjack tuna. 

This remains a fascinating area for crittcal review and future study. 

· t tl c1' es' dispersal potential, tl'Pere is little 
' ..r~esp1 e 1e spe 

eviddnce that sicftlificant long distance movement (> 2000 km) of adults 

routinely occurs. In the ~Papua Nevi Guinea area at least, mixing 

., 
J 



' -, J 

. ' 

\' 

-(/ 
appears maximal when the probability f 0 genetic exchange betw~n 
I residents I and I nomads I is lowest.. WI . 1 

ll st this adds to the 

plausibility of the isolation-by-distance model which is felt to 

provide the best fit to the allozyme d 
ata, critical evaluation of 

the model is currently not possible l·n the absence of information 

on dispersal patterns of the planktonic eggs and larvae and} on the 

na~ure of selective or 

It remains however the 
stochast~c forces shaping ESJ frequencies. 

most useful workihg· hyp~thesis. 

Both topics require cons;iderable further study, not least 

~because of their far-reaching impiications for management. It could 

be argued, for example, :that seasonal fisheries "in temperate areas 

or other .,fi heries which explof/essentially nomadic· components of 

the re · rce may be capable of supporting intensive harvest, and 

hence not requiring regulation, whereas the harvest in island

associated tropical fisheries may warrant cax;eful monitoring. An 

isolation-by-distance model, as another example, might be used to 

justify limited consultation between nations in different parts of 

~ the Pacific, according to the_pre~ailing political climate. It is 
+~ "; 

therefore clear that these issues require clarification with some 

urgency. 

In the light of the results of the present study, which 

has beed extremely demanding of manpower and resources, what is 

(f the prognosis for similar studies on other scombrid fishes, or 

indeed, larger pelagic species in general? The screening of other 

~c1 ' l·n most cases, revealed suitable allozyme variation scombr:w .. ? . .J:,as, 

at 

~f 
more 'than• one locus which should reduce some of the ambiguity 

interpretation accompanying the skipjack work., Even with 

advantage of worki1,1g with an abundar:- commercially important species, 

the diff.icul ties of maintaining a r:j.gorous sampling programme 

be Unde restimated, and the crucial· intellectual,· 
should not however 

input may be framing precise 
questions appropriate to the situa~ion. 

~ 
· 1 pling clearly have Time-series and r llca - sam 

• . ' t 
shoul,d 'b~ttempte w.l:l e approp~la e. 

much to offer.and 

' S eems likely to remain the difficulty 
A fundamental problem 

h d t when dealing with 
of-excluding alternate explanations oft e a a 

The present study does h6wever 
Of natural populations. the genetics 

. f a complementary data set 
the concurrent collectlon o 

suggest that 



' 

I 
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(not ne-cessarily mark-recapture data) could greatly diminish but never 

entirely put paid to this objection and as with most ma~agement tools, 

it becomes a question of backing one's judgement, given all available 

knowledge. In any case, the manager an~ tl~e~yeti'~ticis t wi~ often 

be asking different questions of the same data without always 

realizing it. . The, electrophoretic approach to problems of 'stock 

discrimination' or 'population sub-division' can never be the universal 

pa0acea f as some of its e·arly prot~~o~ist~ h~v.e implied, nor should 

poorly derived 9,0nclusions from ill-conceived studies be allowed to 

completely discredit it. It see~s likely and apt that electro-

phoretic te<;:hniques will take their place as oneJdPool amongst otht;rs, 

to be used when the situation warran~s. Seen in this context, they 

have considerable potential . 

•• 
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