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Time evolution of the lateral-velocity distribution for a strong-field-ionization process
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We study time development of a cusp in the lateral-velocity distribution for the process of strong-field ionization.
The lateral-velocity distribution is computed using an ab initio quantum mechanical procedure for the moments
of time inside and after the end of the laser pulse. We show that at the moment of time corresponding to the
midpoint of the laser pulse the lateral-velocity distribution is a smooth Gaussian curve, its parameters agreeing
very well with the predictions of the tunelling theories. At the moment of time corresponding to the end of
the pulse the lateral-velocity distribution narrows considerably, showing the initial stage of the cusp-formation
process due to the Coulomb focusing effect. Following evolution of the ionized wave packet yet further in time

we consider the cusp formation in detail.
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I. INTRODUCTION

The original work by Keldysh [1] and its subsequent devel-
opments [2—6], which are sometimes dubbed collectively as
tunelling or strong field approximation (SFA) theories, provide
a comprehensive foundation for the current understanding of
the photoionization process in the tunelling regime [7-9].
This regime is characterized by the small values of the
Keldysh parameter y = w+/2|go|/E (here w, E, and |gg|
are the frequency, field strength, and ionization potential
of the target system expressed in atomic units). A great
advantage the tunelling theories, which are typically analytical
approaches, possess over the numerical techniques is their
ability to provide a clear physical picture of the ionization
process. In this picture tunelling photoionization can be
described as a process in which an electron emerges into the
continuum, undergoing the under-the-barrier tunelling. This
event constitutes the first stage of the ionization process and is
described quantum mechanically. Tunelling theories provide
probabilistic distributions of the electron’s characteristics,
such as the electron’s velocity distributions, at the moment
of the electron’s exit form under the barrier. Remarkably, once
these initial distributions are known, one may successfully
reproduce the further stages of the ionization process using
simple classical or semiclassical tools. One may use, for
instance, these distributions as the initial density distributions
in the electron’s phase space for the subsequent simulations
based on the classical equations of motion [10,11].

Of particular interest is the so-called lateral velocity
distribution, which describes the distribution of the electron
velocities in the direction perpendicular to the polarization
plane of the driving pulse. If we neglect, as is done in many
variants of the tunelling theories, the influence of the atomic
core on the electron’s motion after the ionization event, the
lateral velocity distribution should retain its shape in the
course of the subsequent evolution. Detector recording this
distribution far away from the ionic core would then effectively
measure lateral velocity distribution at the moment of the
ionization event [11,12].
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If the influence of the ionic core on the electron’s motion
cannot be neglected, the lateral velocity distribution at the
moment of the ionization event and the one measured at the
detector need not coincide. The tunelling theories predict that
lateral velocity distribution at the moment when ionization
occurs is typically a Gaussian function of the lateral velocity,
with a prefactor which does not play a significant role as long
as we are interested in the shape of the distribution [8,10].
On the other hand, it is known [13] that for the systems
where ionized electrons and the ionic core interact through
the Coulomb force, the lateral electron momentum distribution
measured at the detector exhibits a cusp at the zero transverse
velocity for the case of the linearly polarized driving laser
pulse. The physical reason for the appearance of the cusp is the
Coulomb focusing effect, i.e., a considerable narrowing of the
electron velocity distribution in the directions perpendicular
to the laser-field polarization vector due to the presence of the
Coulomb field [14]. Mathematically, the origin of the cusp can
be traced to the low-energy singularity of the Coulomb wave
function [13]. It turns out that an analytic description of the
cusp is possible to some extent [15].

The velocity distribution measured at the detector is, in
fact, an asymptotic distribution measured at some time in the
future when the electron is far away from the ionic core.
To compute this distribution one can employ the standard
projection procedure [16]. To implement it in practice, the
time-dependent Schrodinger equation (TDSE) is propagated
in time, and its solution at the end of the laser pulse is projected
on the set of the appropriate scattering states of the fieldfree
atomic Hamiltonian, viz., the states satisfying the ingoing
boundary conditions. If the fieldfree atomic Hamiltonian
contains Coulomb interaction, the corresponding scattering
states (considered as functions of energy) typically possess
low-energy singularities, which naturally leads to a singular
behavior of electron velocity distributions, in particular the
lateral velocity distribution at zero transverse velocity.

One may adopt, however, a different perspective. The
velocity distribution at any given moment of time during or
after the end of the pulse is related to the Fourier transform of
the TDSE wave function, or, in other words, can be obtained
by projecting the TDSE wave function on the set of the plane
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waves (certain care should be exercised depending on the
gauge used to describe the atom-field interaction; more on
this below). The velocity distributions, obtained by means
of the projection on the scattering states of the fieldfree
Hamiltonian, are the asymptotic velocity distribution recorded
by the detector placed far enough so that electrons reach it
long after the end of the laser pulse. Projection of the solution
of the TDSE at a given finite moment of time on the set of
the plane waves gives us, on the other hand, instantaneous
velocity distributions for this particular moment of time.
These instantaneous distributions can be used as probability
distributions of the initial conditions for the classical electron
trajectories [10,11]. According to the tunelling theories, they
are smooth Gaussian functions of the velocity components.
The emergence of the cusp in the lateral velocity distribution
can then be viewed as a time-dependent phenomenon, the cusp
appearing as an ultimate result of the evolution of the smooth
Gaussian-like distributions in time.

In the present work we will study this process of the time
evolution of the lateral velocity distribution in detail. The paper
is organized as follows. In Sec. II we describe the numerical
techniques we use to perform the TDSE calculation and the
procedure we use to compute the lateral velocity distribution.
Our results and the conclusions we draw are presented in
Secs. IITand IV, respectively. Atomic units are used throughout
the paper.

II. THEORY
A. Solution of the TDSE

We solve TDSE for a hydrogen atom in the presence of a
laser pulse:

o (r)
ot

i = [Huom + Hin(D1W(r) . (1)
We use the length form for the operator Hin (1) describing
the interaction of the atom with the laser field:

Hu(t)=E@)-r, )

The laser pulse is linearly polarized along the z direction,
which we use as a quantization axis:

E, = Eyf(t)coswt. 3)

The base frequency of the pulse is w = 0.057 a.u. (wave-
length of 790 nm). The pulse envelope function is f(t) =
sin’(wt/Ty), where T; = 3T is the total pulse duration and
T =2n/w is an optical cycle (o.c.) of the field. We will
consider below laser pulses with peak field strengths of
Eo = 0.0534 a.u. (intensity of 10'* W/cm?) and Ey = 0.1 a.u.
(intensity of 3.5 x 10'* W/cm?). Electric field of the pulse (3)
for the peak field strength of Ey = 0.0534 a.u. is shown in
Fig. 1.

The initial state of the system is the ground state of the
hydrogen atom. To solve the TDSE we employed the procedure
described in Refs. [17-19]. The solution of the TDSE is
represented as a series in spherical harmonics:

lmux

W(r,) =Y fir,)Yi(0). )

=0
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FIG. 1. Electric field of the pulse in Eq. (3) for the intensity of
10" W/cm? as a function of time (in units of optical cycles).

The radial variable is treated by discretizing the TDSE on a
grid with the step size 8 = 0.1 a.u. in a box of the size Ryx-
The values of the parameters /i .x and Ry,x were chosen after
the necessary convergence and accuracy checks as /i,.x = 50,
Riax = 1300 a.u. for the peak field intensity of 10 W/cmz,
and I = 60, Rpax = 1500 a.u. for the peak field intensity
of 3.5 x 10" W/cm?. If we were studying evolution of the
system only on the interval of the laser pulse duration, these
values of R,,x would be excessively large. We will be solving
the TDSE, however, on the intervals of time far longer than
the pulse duration. Our aim is to follow evolution of the wave
packets for several optical cycles after the end of the laser
pulse, which necessitates the use of a larger box size.

A system of the coupled equations for the radial functions
fi(r,t) resulting after the substitution of the expansion (4) into
the TDSE was solved using the matrix iteration method [20].
The time-dependent solution of the TDSE W(r,¢) found in this
way determines the velocity distribution as a function of time
P(v,1) = |W(v,1)|%, where W(v,t) is a Fourier transform of
W(r,t).

B. Lateral velocity distribution

We shall be interested below in the transverse or lateral
velocity distributions, describing the probability of detecting
an electron with a given value of the velocity component v
perpendicular to the laser pulse polarization plane. Because of
the symmetry of the problem due to the linear polarization of
the driving pulse, any plane containing a polarization vector
can be chosen as a polarization plane. Choosing the (y,z)
plane as a polarization plane, we obtain for the lateral velocity
distribution

P(vl,t)=/|\i/(v,t)|2 dv, dv,. Q)

In the length gauge, which we employ to describe the
field-atom interaction, this formula is applicable even for
the moments of time inside the laser pulse duration. Had
we employed the velocity gauge, the Fourier transform of
the velocity gauge wave function WY (r,t) would give us the
canonical momentum distribution, which would be different
from the velocity distribution because of the well-known
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relation v = k + A(¢) (A(?) is the vector potential) between
canonical momentum and velocity in the velocity gauge.
We would have to use this relation to obtain the velocity
distribution from the canonical momentum distribution in the
velocity gauge. That would present an additional though not
insurmountable technical difficulty, this being the main reason
why we choose to use the length gauge in the calculation.

What we need, however, is not the velocity distribution
P (v ,t), but the distribution which could be directly compared
with the lateral velocity distribution considered in the tunelling
theories. To see how and why these two distributions may
differ, it is worthwhile to recapitulate briefly the procedure
used in the derivations of the velocity distributions in the
tunelling theories [8,9,21]. An approach often employed can
be conveniently formulated using the Dyson equation for the
propagator:

U(t,O):Uo(t,O)—i/ Ut,7)Hin(7)00(z,0) dz,  (6)
0

where U(z,0) is the exact propagator, describing evolution of
the atom in the presence of the laser field on the time interval
0,0, I-?im(t) is the operator of the atom-field interaction, and
Uo(,0) is the field-free propagator, describing evolution of
the atom when laser field is absent. The exact wave function
W(r) = U(t,0)W(0), where W(0) = ¢ is an initial ground
atomic state with energy €, is then represented as

U(r) = goe " — i / Ut,0) Hin()e @ ¢o dr. (7
0

The second term on the right-hand side of the Eq. (7) describes
ionized electrons, which eventually reach the detector. It
is this term which is used to derive velocity distribution
in the tunelling approaches, typically by obtaining saddle-
point estimates for the integral. The velocity distribution
defined in Eq. (5) describes the velocity distribution for all
electrons, both ionized and bound. It is, of course, a perfectly
acceptable distribution, since electrons remaining bound also
contribute to the total velocity distribution. This is not,
however, the distribution recorded by the detector placed far
from the ionic core, which can measure only the contribution
of the ionized electrons. To be able to make a direct comparison
with the distribution measured by the detector and given by
the tunelling theories, we have to subtract the bound electrons’
contribution. This can be achieved by projecting the bound
electrons’ contribution out of the TDSE wave function ¥ (r,1),
used to define the distribution (5). We introduce, therefore, a
distribution W (v ,t) defined similarly to (5):

W(vL.t) = / 192002 dv, dv, . ®)

where instead of the Fourier transform W(v,7) of thei TDSE
wave function W (r,t), we use the Fourier tfanszorm UQ(v,1)
of the projected wave function W9 (r,t) = (I — Q)W(r,t), and

Q=) Inl0){nlO| ©)
l,e, <0

is the projection operator on the bound states of the fieldfree
Hamiltonian H,en, With all possible » and angular momenta
[ (due to the conservation of the momentum projection m in
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the linearly polarized field we have to include only the m = 0
states).

Based on what we said above, we may conclude that
W(v,,t) is the closest counterpart of the velocity distribu-
tions provided by the tunelling theories and can be directly
compared with them. The distribution W(v_,t) can also be
related to the velocity distribution measured by a detector in
the asymptotic region (long after the end of the laser pulse
and far from the ionic core). A prescription [16], allowing
us to obtain ionization probabilities measured by the detector
at very large times, consists in projecting the TDSE wave
function W(r,t) after the end of the pulse on the set of the
scattering states with incoming boundary conditions:

YO =) ile Y ()Y () Ru(). (10)

In

For the linearly polarized laser pulse and the coordinate system
we employ, only the terms with p = 0 actually contribute
to the projection. This projection can be performed at any
moment of time after the end of the laser pulse, since the
overlap of the TDSE wave function W (r,?) and the function

i U2 . . . .
) (r)e~i'T! does not depend on time. Dubbing the projection
on the Coulomb scattering states (10) the Coulomb transform
W (v,t), we obtain the Coulomb projected lateral distribution:

We(v,) = / |Ue(v,0)]? dvy dv,. (1)

‘We must have, therefore,

tlim Wwi,t) = We(v)). (12)

For this equation to hold, both plane waves used in the
Fourier transform and the Coulomb scattering states used
in the Coulomb transform must be normalized in the same
way. We use the §(v — v’) normalization in both cases. There
is no need to perform projection procedure encapsulated in
Egs. (8) and (9) for the case of the Coulomb projection,
since Coulomb scattering states and bound states are already
orthogonal (barring small numerical inaccuracies).

The properties of the lateral distributions we mentioned
above can be summarized in terms of the distributions W (v, ,1)
and We(vy) as follows. Lateral distribution W(v,,t), as
follows from the tunelling theories, should be, for finite times,
a smooth Gaussian function centered at v, = 0; We(vy)
exhibits acusp at v; = 0. For these properties to be compatible
with Eq. (12) we must conclude that the cusp is an asymptotic
property, developing in time. The physical origin of the
appearance of the cusp is well understood; the cusp is a
manifestation of the Coulomb focusing effect [13]. What
shall interest us in the next section is how this asymptotic
transformation of the Gaussian distribution into the one with
a cusp occurs in the course of evolution.

III. RESULTS

Using the procedure we described above, we propagate the
TDSE on the time interval (0,73), where T, is a moment of
time larger than the pulse duration 7} (which, we note, is
3 optical cycles). Typically we use T, = 10 optical cycles.
The distribution W (v, ,t) is computed at various moments
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FIG. 2. Left panel: Total ionization probability as a function of time (in units of optical cycles) for the laser pulse described by Eq. (3) with
pulse intensity of 10'* W/cm?. Right panel: the same for the field intensity of 3.5 x 10'* W/cm?.

of time inside and after the end of the interval of the laser
pulse duration, using the prescription encapsulated in Egs. (8)
and (9). The wave functions of the bound states were computed
by solving the radial Schrodinger equation for the fieldfree
hydrogen atom numerically, using the same radial grid we
employed for the solution of the TDSE. We used all the bound
states with [ < 15 to perform the projection in Eq. (9).

As an illustration and an overall consistency check, we
present in Fig. 2 results for the total ionization probability as
a function of time, defined as an integral fj;o Ww,,t)dv,.
The figure shows expected behavior of the total ionization
probability with time, with rapid jumps occurring at the
moments of the highest field strength of the laser pulse in
Eq. (3), in agreement with the behavior of the instantaneous
ionization rate [22]. The probabilities cease to vary after the
end of the pulse at the moment t = 37. As we shall see, this
is true only for the total ionization probabilities; the lateral
distribution W (v_,t) keeps evolving in time long after the end
of the laser pulse.

Next, we check that with our definitions of the lateral distri-
butions W(v_,t) and W (v, ) we indeed have the asymptotic
condition Eq. (12) satisfied at large times. In Fig. 3 we present
results obtained when we use the TDSE solution at the moment
t = 10T (seven optical cycles after the end of the pulse).
The figure shows results obtained using the nonprojected
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distribution (5), results obtained using the full projection
operation described above (with all negative energy states with
[ < 15 projected out), results obtained if only the ground state
is projected out, and results of the Coulomb projection. The
Coulomb projection exhibits a cusp, which is very closely
mimicked by the calculation with all bound states with/ < 15
projected out. The distribution obtained with only the ground
state projected out, however, is only qualitatively correct. It
exhibits a cusp but deviates considerably from the results
of the Coulomb projection. Nonprojected calculation is both
qualitatively and quantitatively incorrect, giving much higher
values for the velocity distribution at small velocities. Physical
origin of this considerable deviation is clear. The nonprojected
calculation, and the calculation with only the ground state
projected out, take into account the contributions to the
velocity distribution due to the electrons trapped in the bound
states after the end of the pulse, which do not have a counterpart
in the Coulomb distribution. The contribution of the bound
electrons is by far dominating when total ionization probability
is small. Using in Eq. (5) the ground-state wave function of
the hydrogen atom, one can easily see that the lateral velocity
distribution of the electrons in the ground state has a functional
form Wy(v,) = A(vi + 1)73, with some constant A. If we fit
the nonprojected lateral velocity distribution using this func-
tional form considering parameter A as a fitting parameter, and
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FIG. 3. Lateral distributions computed at the moment ¢ = 10 o.c. (7 optical cycles after the end of the laser pulse) for the peak field strength
of 0.0534 a.u. Left panel: Nonprojected distribution (5) is shown as the (red) solid line. Fit based on the equation A(v? + 1)~3 is shown as
the (green) dash. Right panel: Full projection implemented in Eq. (9): (red) solid line. Only the initial ground state projected out: (blue) dots.

Coulomb projection: (green) long dash.
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FIG. 4. Evolution of the lateral distributions in time (in units of optical cycles) for the laser pulse (3) with pulse intensity of 10" W/cm?

(left panel) and 3.5 x 10" W/cm? (right panel).

excluding from the fit the interval |v, | < 0.1 a.u. of the lateral
velocities (where a small cusplike contribution is visible),
we obtain the results presented in the left panel of Fig. 3,
which show that nonprojected lateral velocity distribution is
determined almost solely by the ground-state electrons. As the
right panel of Fig. 3 shows, contribution of the excited states
to the lateral velocity distribution is also considerable. This
illustrates the importance of retaining as many of the bound
states in defining the projection operator (9) as possible.
Evolution of the velocity distributions on the intervals of
time far longer than the pulse duration is illustrated in Fig. 4,
which shows lateral distributions for the intensities of 10'4
W/cm? and 3.5 x 10 W/cm?. A gradual development of a
cusp after the end of the laser pulse is clearly visible in Fig. 4.
For the moments of time inside the interval of the laser pulse
duration ¢ € (0,3T) the cusp has not yet had enough time
to develop and the lateral distribution still looks more like a
Gaussian function of the transverse velocity. We will consider
below both intervals of the time evolution in more detail.

A. Evolution inside interval of the laser pulse duration

The point we made above about the smooth character of the
lateral distribution on the interval of the pulse duration can be
better illustrated if we consider a snapshot of the time evolution
presented in Fig. 4 for a particular moment of time inside this

0.1 F
S 008
o]
ﬁg 0.06
g 0.04
= /" t=1.50.c. — \
0.02 SFA
/ | | | \
-04 -0.2 0 0.2 0.4
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interval. It is often assumed in numerical simulations [10,11]
that electrons are ionized during the small interval around
the moment of time when the laser field attains the highest
intensity, with the Gaussian velocity distributions (in particular
the lateral velocity distribution) predicted by the tunneling
theories. The snapshot taken at the moment of time around
the midpoint of the pulse would, therefore, be of particular
interest. Such snapshots for the moment of time t = 1.5T
corresponding to the midpoint of the pulse (3) are shown in
Fig. 5 for the laser field intensities of 10'* W/cm? and 3.5 x
10 W/cm?.

It is instructive to compare these snapshots with the analyti-
cal expressions given by the tunneling theories. An expression
for the lateral velocity distribution following from the SFA ap-
proach assumes the following form for the hydrogen atom [8]:

2 arcsinhy }

Wspa(vy) = P exp {— L (13)

w

where y is the Keldysh parameter. This expression and its
variants (e.g., the limiting form which Eq. (13) assumes for
the small values of the Keldysh parameter) are often used in
the numerical simulations as a probability measure of different
initial conditions for the subsequent classical motion [10]. We
shall be using Eq. (13) only with the exponential accuracy, so
we shall treat preexponential factor P in Eq. (13) as a constant.
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FIG. 5. Lateral velocity distribution at the moment of time t = 1.5 [midpoint of the pulse (3)] for the pulse intensity of 10 W/cm? (left
panel) and 3.5 x 10'* W/cm? (right panel). (Red) solid line: calculation based on Egs. (8) and (9). (Green) dash: SFA approximation (13).
(Blue) dots: OBI formula (14). Velocity distributions given by the formulas (13) and (14) have been scaled so that at zero transverse velocities
these distributions had the same value as the calculated velocity distribution (8).
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This assumption can be justified on the grounds that for the
weak laser fields the effect of the predexponential factor in
Eq. (13) on the shape of the velocity distribution can be ne-
glected [10]. Figure 5 shows that exponential dependence (13)
very well reproduces the computed distribution (8) for the field
intensity of 10'* W/cm?. For the higher field intensity of 3.5 x
10'* W /cm? we see some deviation of the SFA prediction from
the computed distribution (8). This is an anticipated result. For
the field strength of 0.1 a.u. we are entering the domain of
the over-the-barrier ionization (OBI), where Keldysh theory
in its original form is not applicable [9]. The onset of the OBI
regime can be estimated from the equation Eqp; >~ 1 ; /2 (where
I, is the ionization potential of the target atom), which follows
from considering the Schrodinger equation for the hydrogen
atom in an electric field in the parabolic coordinates [23]. An
estimate Eqp >~ 1 ; /4 following from a simpler picture of the
one-dimensional tunelling in the radial coordinate direction
can also be found in the literature [24]. These formulas do not
account for the above-barrier reflection [24], so they should
be considered as order-of-magnitude estimates. For hydrogen
atom they place the OBI onset in the interval 0.0625-0.125 a.u.
of the values of the laser field strength. Since there is no abrupt
transition between the tunelling and the OBI regimes, we may
conclude that regardless of the particular formula we use for
the estimate of the OBI onset, for the laser field of the order
of 0.1 a.u. (3.5 x 10" W/cm? intensity) the OBI effects for
hydrogen may well manifest themselves.

For the field strength approaching or exceeding the OBI
limit, an analytic formula for the total velocity distribution is
available in the literature. For the case of the linearly polarized
driving pulse it can be written as follows [24]:

w*v?
WOBI(v)zconstxAi2 |:(2EO)—§ (H‘Ui‘f‘ 3E2\| L4
0

where Ai(x) is the Airy functionand v is the velocity
component in the direction of the laser polarization vector.
This formula reduces to the SFA Gaussian form for weak
laser fields, but unlike the velocity distribution given by the
SFA, it is expected to be valid for the laser field strength in
the OBI regime. Expression (14) gives the distribution for all

~ 02
=]
< 0.16
0.12
0.08
0.04

W) (10

v (a.u.)
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components of the velocity vector. Lateral velocity distribution
can be obtained from the Eq. (14) by integrating over all v,
(this can be done only numerically). The results are shown in
the right panel of Fig. 5. The lateral distribution obtained from
Eq. (14) is indeed closer to the computed distribution (8) than
the one given by the SFA formula (13).

B. Evolution after the end of the laser pulse

In Fig. 6 we present velocity distributions at the end of the
laser pulse (t = 3T') and at the subsequent moments of time.
One can see that the distribution W (v, ,#) calculated according
to Eqgs. (8) and (9) at the moment r = 37 still largely retains its
Gaussian character, but its width already deviates considerably
from the width given by the SFA formula (13). This deviation
can be attributed to the initial stages of the Coulomb focusing
process, which is already at work.

According to Eq. (12), the distribution W (v, ,#) should for
t — oo approximate closely the distribution W¢ (v, ) given by
Eq. (11), which was obtained by projecting a solution of the
TDSE after the end of the pulse (we perform this projection
at t =3T) on the set of the ingoing hydrogen scattering
states (10). One can see that this is indeed the case: The dis-
tribution W (v, ,t) evaluated at t = 12T for the pulse intensity
of 10" W/cm? and the distribution W (v, ,¢) evaluated at t =
10T for the pulse intensity of 3.5 x 10'* W /cm? are practically
indistinguishable from the corresponding Coulomb projected
distributions W¢ (v, ) with cusps at the origin. In Ref. [15] we
considered the mathematical origin of the cusp appearance by
studying properties of the projection Eq. (11) on the set of the
Coulomb scattering states. From that perspective the origin
of the cusp is transparent, and the Coulomb wave function
is a notoriously singular object (considering its properties as
a function of energy for small energies). Overlap of such a
singular function and a square-integrable solution of the TDSE
can easily produce a singular behavior at zero energy, and it
certainly does. The perspective we adopt in the present paper
is different. When we project the solution of the TDSE on the
set of the plane waves, as we do evaluating W (v ,¢) according
to Egs. (8) and (9), we compute essentially overlaps of the
wave function defined in Eq. (9), which is a square-integrable

1
08
=
3 06
> 04
=
0.2
0
0.4
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FIG. 6. Left panel: Pulse intensity of 10'* W/cm?. (Red) solid line: W (v, ,t) calculated according to Egs. (8) and (9) at t = 3T (moment
of the end of the pulse); (green) long dash: W (v, ,t) at t = 7T; (blue) short dash: W(v,,z) at + = 12T ; (magenta) dots: Coulomb projection
We(vp); (cyan) dash-dot: scaled SFA approximation (13). Right panel: Pulse intensity of 3.5 x 10'* W/cm?2. (Red) solid line: W(v_,t) at
t = 3T; (green) long dash: W(v,,t) at t = 7T; (blue) short dash: W(v,,t) at t = 10T; (magenta) dots: Coulomb projection W¢(v,); (cyan)

dash-dot: scaled SFA approximation (13).
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function describing the ionized wave packet, and plane waves
€'V, Asis well known, if the square-integrable function decays
fast enough with distance, the result of such a projection should
be an analytic function of the components of the velocity v.
The assumption of the fast decay is certainly true in our case,
since for any particular moment of time after the end of the
laser pulse the spread of the TDSE wave function (8) in the
coordinate space remains finite for finite 7. At first glance, it
is not quite clear how an analytic function can approximate
the Coulomb projected distribution W¢ (v, ), which has a cusp
(and hence a singular point) at the origin. This question can
be answered if we take into account the fact that the spread of
the TDSE wave packet, though remaining finite at any finite
moment of time ¢, increases in the course of the time evolution.
As a simple model, illustrating the main features of the cusp
appearance viewed from this perspective, we can consider the
Fourier transform g(v) of a square integrable function g(r):

g(r) = e*ﬂ(l)(rfut)z’ (15)

where the parameter w(¢) characterizes the spread of the wave
packet in the coordinate space, and lim,_, o, ;(t) = 0. Such a
wave function describes a wave packet moving with a group
velocity u and spreading with time. For the integral of the
squared Fourier transform g(v) integrated over the v,, v,
components of the velocity we will get

2

/ |8(v)|*dv,dv. = const x exp {— ' } , (16)

: 2u(r)

where all irrelevant factors, not depending on v,, have been
absorbed into a constant prefactor. For . — O the distribu-
tion (16) closely mimics behavior of a function with a cusp
at v, = 0. This simple model illustrates the main idea. If the
spread of the wave function in the coordinate space increases
with time, one can well expect its Fourier transform integrated
over the vy, v, to exhibit singular behavior at v, = 0in the limit
t — 0o. The model based on the expression (15) can also be
used to illustrate another aspect of the asymptotic relation (12).
As we have seen, the spread of the ionized wave packet in the
coordinate space accounts for producing the cusplike behavior
of the velocity distribution calculated according to Eq. (8).
To make the asymptotic equation (12) valid, on the other
hand, the distance at which the crest of the wave packet is
located (ut in the case of the simple model above) must grow
in time. Suppose that we compute both Fourier and Coulomb
transforms of the TDSE wave function defining W (v, ,#) and
We(vy) respectively, at some moment of time long after the
end of the laser pulse. This recipe of letting the system evolve
freely for sufficient time is often used in the photoionization
calculations [25], especially in the calculations performed
for the systems for which continuous spectrum states are
difficult to calculate. The main idea of the recipe is that if
the system is allowed to evolve freely for long enough time,
then only the asymptotic form of the continuous spectrum
wave function on which we project really matters for the
calculation of the projection integral. Calculating the Coulomb
and Fourier transform of the TDSE wave function we may use
then the asymptotic form of the Coulomb scattering wave
function. The latter is given by the well-known formula [23]:
W o e/ Y where the function y(r,v) depends on r
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logarithmically. The spatial derivatives of this factor then
decay as r~! for large r. Therefore, for large enough times,
when the bulk of the ionized wave packet is at large distances
from the core, this factor can be considered as essentially
constant, contributing only an unimportant constant phase
factor to the overlap integral.

IV. CONCLUSION

We studied the process of the cusp formation in the lateral
velocity distribution in time. We adopted the definition of the
lateral velocity distribution based on Eq. (8) and the projection
procedure (9). The projection procedure was needed to exclude
the contributions of the bound electrons (which is perfectly
physical, but did not interest us) and thereby to enable direct
comparison with the SFA predictions for the lateral velocity
distribution for the ionized wave packet.

Such a comparison shows that at the moment of time
corresponding to the midpoint of the laser pulse (3) (the highest
instantaneous laser intensity), which in SFA is interpreted as
a moment when ionization event occurs, the lateral velocity
distribution is a smooth Gaussian-like curve. The width
of this curve, furthermore, agrees very well with the SFA
prediction (13) for the peak laser field intensity of 10'4
W/cm?, and to a lesser degree, but still quite satisfactorily,
for the peak laser field intensity of 3.5 x 10'* W/cm?. In
the latter case, the agreement can be improved if one takes
into account that the field intensity of 3.5 x 10'* W /cm?
borders the onset of the over-the-barrier ionization regime
for hydrogen atom, where the Gaussian form of the lateral
velocity distribution is to be replaced with the one following
from the more general expression (14), which is expected to be
valid in the OBI regime. This results show that the assumption
often made [10,11] that initial conditions for the classical
simulations are distributed according to the SFA formula (13)
is indeed very well justified.

We tracked the evolution of the lateral velocity distribution
further in time, and saw that at the end of the pulse, while
still retaining manifestly Gaussian character, the distribution
narrows considerably, which can be attributed to the initial
stage of the cusp-formation process due to the Coulomb
focusing effect. Following evolution of the ionized wave
packet yet further in time, for the moments of time long after
the end of the laser pulse, we were able to consider the cusp
formation in detail. As we have seen, the snapshots of the
lateral-velocity distribution taken several optical cycles after
the end of the laser pulse are already virtually indistinguishable
from the lateral distribution Eq. (11), obtained by projecting
the solution of the TDSE on the set of the ingoing scattering
states for the hydrogen atom, in agreement with the asymptotic
equality (12). The simple model based on Egs. (15) and (16)
illustrates some mathematical aspects of this transformation
of the distribution, which is initially Gaussian, into the
distribution possessing a cusp.
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