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Abstract 

Potassium titanyl phosphate (KTP) crystals in both x-cut and z-cut were irradiated with 185 

MeV Au ions. The morphology of the resulting ion tracks was investigated using small angle 

x-ray scattering (SAXS), transmission electron microscopy (TEM) and atomic force 

microscopy (AFM). SAXS measurements indicate the presence of cylindrical ion tracks with 

abrupt boundaries and a density contrast of 1±0.5% compared to the surrounding matrix, 

consistent with amorphous tracks. The track radius depends on the crystalline orientation, 

with 6.0±0.1 nm measured for ion tracks along the x-axis and 6.3±0.1 nm for those along the 

z-axis. TEM images in both cross-section and plan-view show amorphous ion tracks with 

radii comparable to those determined from SAXS analysis. The protruding hillocks covering 

the sample surface detected by AFM are consistent with a lower density of the amorphous 

material within the ion tracks compared to the surrounding matrix. Simulations using an 



inelastic thermal-spike model indicate that differences in the thermal conductivity along the 

z- and x-axis can partially explain the different track radii along these directions. 

Introduction 

High-energy heavy ions passing through a material can generate narrow trails of damage 

along their paths, so-called ion tracks. Ion track formation results from inelastic interactions 

of the projectile ions with the target electrons [1,2] and has been observed in many crystalline 

and amorphous materials such as semiconductors [3-6], insulators [7-10] and various metals 

[11,12].  

Potassium titanyl phosphate (KTiOPO4 or KTP) has a variety of applications spanning from 

nonlinear optics to electro-optics due to its large non-linear optical coefficients and high 

optical damage threshold [13,14]. The characterisation of the ion track morphology is 

essential for photonic applications [15] and integrated optical devices with waveguide 

fabrication by swift heavy ion irradiation (SHII) of KTP [16]. Some studies are available 

concerning the waveguide properties and ion radiation damage of KTP using Rutherford 

backscattering spectroscopy/channeling (RBS/C) [17-20], however, a detailed investigation 

of the ion track morphology in SHII KTP is still lacking.  

Small angle x-ray scattering (SAXS) is sensitive to nano-scale density changes and it has 

been demonstrated to be a powerful technique for the measurement of ion track damage [21-

24]. It is non-destructive, does not require elaborate sample preparation and measures the 

entire ion track. Changes in track radii can be determined with very high precision and quick 

acquisition times enable in-situ studies, for example to identify the track annealing kinetics 

[25]. 



In this paper, the morphology of ion tracks in SHII KTP is investigated using SAXS, 

transmission electron microscopy (TEM) and atomic force microscopy (AFM). Results are 

compared with calculations using an inelastic thermal-spike model. 

 

Experimental 

Single crystalline wafers of both z-cut and x-cut KTP were irradiated with 185 MeV Au ions 

with fluences of 1×1010 and 1×1011 ions/cm2 at the ANU Heavy Ion Accelerator Facility. Z-

cut and x-cut KTP refer to the surface normal parallel to the z-axis and x-axis, respectively. 

Irradiation was performed at normal incidence and room temperature (RT). For the 

irradiation energy used, the nuclear energy loss is negligible and the electronic energy loss at 

the surface amounts to approximately 22 keV/nm. All KTP samples had a thickness of 1 mm 

before irradiation. After irradiation, samples were mechanically polished from the backside to 

a thicknesses of ~ 30 µm to reduce parasitic scattering from the substrate during the SAXS 

experiments. The final thickness exceeds the ion range of ~15 µm, and as such the entire 

tracks are contained in the samples.  

Transmission SAXS measurements were carried out at the SAXS/WAXS beamline at the 

Australian Synchrotron [26] using an x-ray energy of 11 keV and a sample-to-detector 

distance of 1588 mm. For precision alignment of the samples in the x-ray beam, a 3-axis 

Bruker goniometer was utilized. Measurements were performed at 0o, 5o and 10o tilt of the 

ion tracks with respect to the x-ray beam. Scattering from a sample without ion tracks was 

measured for background removal. For calibration of the scattering intensities to absolute 

values, a glassy carbon standard was measured [27]. A Pilatus 1M detector was used for data 

collection with exposure times between 5 and 10 s. Figure 1 shows scattering images of ion 

tracks in x-cut KTP irradiated with a fluence of 1×1011 ions/cm2. The isotropic image in (a) 



results from the parallel orientation of the ion tracks to the x-ray beam and is consistent with 

a circular cross section of the tracks [10]. The scattering images of the tracks tilted by 5o (b) 

and 10o (c) resemble slightly curved streaks. These patterns result from the extremely high 

aspect ratio of the ion tracks that are approximately 15 µm long, yet only a few nanometres 

wide. The intense straight diffraction lines in the SAXS patterns originate from the single 

crystalline substrate. The scattering signal from ion tracks can be detected in all irradiated 

samples. 

Both plan-view and cross-section transmission electron microscopy (TEM) was performed on 

the samples using a JEOL 2100F microscope operating at 200 kV. Standard sample 

preparation using polishing and ion milling was employed. Under the given measurement 

conditions, we have not observed any changes of the ion tracks during imaging. 

The surface morphology of the irradiated KTP samples was measured using atomic force 

microscopy (AFM). These measurements were performed under ambient conditions on a 

Bruker Multimode VIII microscope, operating in tapping mode at a cantilever frequency of 

250±10 kHz. 

 

Results and discussion 

1. Small angle x-ray scattering 

For SAXS data analysis, the scattering intensities from the curved streaks of oscillating 

intensities (see Fig. 1(b), (c)) were extracted. The background produced by scattering from 

the crystalline matrix was removed by subtracting scattering intensities from narrow radial 

sectors that exclude the high intensity streaks resulting from the tracks. This was found to be 

essentially the same as scattering from the un-irradiated sample, yet better enables the 

subtraction of fluctuations in the background resulting from air scatter.  



Figure 2(a) shows the scattering patterns from ion tracks in KTP irradiated with 185 MeV 

Au+ ions to a fluence of 1×1010 ions/cm2 in both x-cut and z-cut and 1×1011 ions/cm2 in x-cut. 

Patterns are shown after background removal and the corresponding model fits (solid lines) 

are also presented. The strong oscillations in the SAXS intensities of the KTP samples 

indicate mono-disperse track radii with rather abrupt density transitions between track and 

matrix material. SAXS measures a large number of tracks (approximately 107) and the 

irradiation generates (almost) identical, parallel, well-separated tracks. The measurements 

thus correspond to the individual track structure, averaging out fluctuations on an atomic 

scale. The best model to adequately reproduce the experimental data consists of a cylindrical 

ion track with constant electron density [21]. The corresponding form factor can be expressed 

as 

𝑓(𝑞) = 2𝜋𝐿𝑅∆𝜌
𝐽!(𝑅𝑞)
𝑞  

where L is the track length, R the track radius, ∆ρ the density contrast between track and 

matrix, and q the scattering vector. J1 denotes the first order Bessel function. The change in 

electron density between the track and matrix is described by a step function. The fits yield a 

track radius of 6.0±0.1 nm for the x-cut KTP sample and 6.3±0.1 nm for the z-cut KTP 

sample. The uncertainties listed are the fitting errors from the non-linear least squares fits. A 

narrow Gaussian distribution of the radius was used to account for deviations of the track 

shape from a perfect cylinder such as the variation of the track radius over the track length 

resulting from changes in the stopping power and deviations from perfectly sharp track 

boundaries [22]. The width of this distribution for both samples is 0.9±0.1 nm. We note that 

this is not the statistical uncertainty in the track radius. Fig. 2(b) presents the SAXS patterns 

of both z- and x-cut in order to visualize the difference between the two. The offset of the 

SAXS patterns in q of both orientations is clearly apparent in the figure and results in the 

different fitted track radii. Possible errors related to differences in the experimental setup for 



both samples (for example the sample position) are much smaller than the observed 

difference in the spectra. While other systematic errors cannot be fully excluded, the samples 

were measured under identical conditions and as such those can be ruled out to be responsible 

for the difference as well.  

The density change between track and matrix material can be estimated to 1±0.5%. Track 

overlap effects can be neglected at the fluences under investigation. This is confirmed 

estimating the area of modified material d as: 𝑑 = 1− exp (−𝜋𝑅!𝑣) [28], where R is the 

track radius and ʋ the ion fluence. For low ion fluences, the area where ion tracks overlap can 

then be estimated as 𝜋𝑅!𝑣 − 𝑑. For a track radius of 6.0 nm the extent of overlap of the 

modified area is 2.7 % for a fluence of 1×1010 ions/cm2, and 5.6% for a fluence of 1×1011 

ions/cm2. Both of these fluences are low enough to neglect track overlap.  

As indicated above, the track radius in x-cut and z-cut KTP samples differs by ~5%. This 

difference in the track radius along two orientations is of the same order of magnitude as that 

in SHI irradiated quartz samples [29, 30]. As shown in section 4, the different thermal 

conductivity along different crystal orientations is one factor leading to this difference, which 

is corroborated by calculations using a thermal-spike model. Additionally, different atomic 

arrangements along different orientations could also influence ion track formation. 

 

2. Transmission electron microscopy 

Fig. 3 shows cross-section TEM images of ion tracks in z-cut KTP irradiated to a fluence of 

1×1011 ions/cm2 in (a) and (c) with different magnifications, as well as plan-view TEM 

images of ion tracks in z-cut KTP with a fluence of 1×1010 ions/cm2 in (d) and (f). The cross-

sectional TEM images indicate continuous ion tracks with a different contrast to that of the 

surrounding crystalline matrix. The diffraction pattern in Fig. 3 (b) taken with the electron 



beam parallel to the zone axis of the substrate shows the crystalline structure of the substrate 

as well as rings confirming the presence of amorphous material, presumably in the ion track. 

In the plan-view TEM images, the approximately circular tracks consist of an amorphous 

core region with a rather sharp transition to the crystalline matrix (Fig. 3(d) and (f)). The 

orientation of the track in this case is parallel to the zone axis, as determined by diffraction 

(Fig. 3 (e)). Figures 3(d) and 3(f) confirm the ion track overlap effect is negligible under this 

ion fluence. The track diameter was obtained from the ion tracks shown in Fig. 3(d) and is 

approximately 13±2 nm. The uncertainty was estimated based on the somewhat indistinct 

choice of the track boundaries in the images. Within these uncertainties, the observed track 

diameter is consistent with the SAXS results. SAXS provides a more reliable value of the 

track radius, because it measures a larger number of tracks that are well aligned in a bulk 

sample in comparison with TEM, which is limited to the observation of a small number of 

tracks localized in a thin sample surface area. Although SAXS is not able to determine if the 

sign of the density difference of a scattering object is positive or negative, it is plausible to 

assume that the mass density of amorphous tracks is less than the surrounding crystalline 

matrix [31]. Consequently, we suggest, that the density of the amorphous tracks is 1±0.5% 

lower than the density of the crystalline matrix. This is also confirmed by the following AFM 

results. 

 

3. Atomic force microscopy analysis 

Fig. 4 presents the surface morphology of z-cut KTP irradiated with fluences of 1×1010 (a) 

and 1×1011 ions/cm2 (b), as well as that of an unirradiated KTP sample for comparison (c). 

The virgin KTP has a flat surface with a roughness of 0.2 nm over an area of (1×1 µm2). The 

irradiated KTP surface exhibits conical-shaped hillocks with circular bases (Fig. 4(a) and (b)), 

which correspond to the ion tracks. The hillocks result as a consequence of out of plane 



expansion of the amorphous material in the track due to a decreased density of the amorphous 

material with respect to the crystalline phase [32, 33]. As apparent from the figure, the 

number of hillocks increases with increasing fluence. The number of hillocks per unit area of 

the low fluence sample amounts to approximately 1.5×1010 hillocks/cm2, in agreement with 

the nominal fluence ~1×1010 ions/cm2 (within uncertainties). It indicates each ion produces a 

track and the effect of overlap is negligible. Similar observations were obtained from AFM 

measurements of the x-cut samples. 

4. Thermal-spike model 

To estimate the local temperature around the ion trajectory of a heavy ion, we utilize an 

inelastic thermal-spike (i-TS) model. In this model, the energy lost by the ions traversing the 

solid is deposited into the electronic system and subsequently transferred to the atomic 

system by electron-phonon interactions. The process can be modelled using two coupled 

heat-diffusion equations [34-36]: 

𝐶! 𝑇
𝜕𝑇!
𝜕𝑡 = ∇ 𝐾! 𝑇 ∇𝑇! + 𝐴 𝑟, 𝑡 − 𝑔 𝑇! − 𝑇! , 

𝜌!𝐶! 𝑇
𝜕𝑇!
𝜕𝑡 = ∇ 𝐾! 𝑇 ∇𝑇! + 𝑔 𝑇! − 𝑇! , 

where Te, Ta, Ce(T), Ca(T), Ke(T), and Ka(T) are the temperatures, the specific heats, and the 

thermal conductivities of the electronic and atomic subsystems, respectively. g is the coupling 

parameter governing the strength of the electron-phonon interaction, ρa is the mass density of 

KTP and A(r,t) the energy given to the electrons by the ion at a time 𝑡 and a distance 𝑟 from 

the centre of the ion path. This takes the form: 𝐴 𝑟, 𝑡 = 𝐴!𝐷 𝑟 exp − 𝑡 − 𝜏 !/2𝜏! , where 

𝜏 is the mean flight time of the delta electrons, which is assumed to be of the order of 10-15 s. 

A0 is a normalization constant for the total deposited energy such that it is equivalent to Se. 

D(r) is the initial spatial energy distribution of the electrons and calculated using the 



formalism by Waligorski et al. [38] for Au ions with an energy of 185 MeV. The resulting 

energy distribution is shown in Fig. 5 (a) where it is apparent that more than 90% of the 

energy is deposited within 1 nm radial distance from the ion trajectory. 

Due to the dielectric nature of KTP, we adopt the approach proposed in [39], where the 

electronic system behaves linearly at temperatures below the band gap, where only a fraction 

of the electrons are ionized, and as a free electron gas for temperatures above the band gap. 

The relation between electronic specific heat Ce and temperature Te used in this work is thus: 

𝐶! 𝑇 =

𝜋!𝑘!𝑛!
2

𝑇!
𝑇!

                           𝑇! ≤
3
𝜋!
𝑇! 

     
3𝑘!𝑛!
2                                        𝑇! >

3
𝜋! 𝑇!

 

Here Tg is the temperature corresponding to the bandgap energy, Eg=kBTg=4.9eV for KTP. kB 

and na are the Boltzmann constants and atomic density, respectively. The electron-phonon 

coupling constant g is related to the mean free path 𝜆 through the formula 𝜆! = 𝐾!/𝑔, where 

𝜆 is considered as an adjustable parameter. For the insulator material KTP with band gap of 

4.9 eV, 𝜆 is assumed to be 4 nm [40, 41]. 

For the lattice system, the specific heat was assumed to be constant. The atomic thermal 

conductivity of KTP varies along different crystallographic directions with Kx=2.0×10-2, 

Ky=3.0×10-2 and Kz=3.3×10-2 Wcm-1K-1 (the subscript denoting the crystallographic 

direction). For the calculations of tracks parallel to the z-axis (x-axis), the average of Kx and 

Ky (Ky and Kz) was used [42].  

By using the radial energy distribution as the energy input in the heat-diffusion equation for 

the electronic system shown in Fig 5 (a) we calculated the temperature profile of the lattice at 

different times.   



The electrons near the ion trajectory are excited to very high temperatures on an extremely 

short time scale. A fraction of their energy is then transferred to the atoms by electron-

phonon interactions, which causes the local temperature to increase above the melting point 

of the material. The lattice temperature decreases with increasing distance from the ion path, 

and the ion track dimension is related to the largest distance where the temperature exceeds 

the melting point of Tm=1423K. Due to the lack of information available for the latent heat of 

melting for this material, we estimated this value by averaging the latent heat for the 

elemental composition resulting in 518.85 J/cm3, which probably underestimates the real 

value.  The calculations yield a radius of ~ 5.8 nm and 5.9 nm for tracks along the x-direction 

(x-cut) z-direction (z-cut), respectively. Fig. 5(b) presents the simulated evolution of the 

lattice temperature versus time at various distances between 2 and 6 nm from the ion path in 

both x-cut and z-cut KTP irradiated with 185 MeV Au+ions. The difference in the patterns of 

x-cut and z-cut results from the different thermal conductivities of the different crystal 

orientations. As apparent from Fig. 5 (b), the effect becomes important at the later stages of 

the thermal spike, during the cooling phase. The inset in Fig. 5 (b) shows a magnification of 

this area, which highlights these differences. The calculated difference in the track radii is 

approximately 2%, indicating that the thermal conductivity makes a significant contribution 

to the observed 5% difference in the ion track radii along both orientations. Anisotropies in 

other physical properties of KTP such as mechanical and piezoelectric properties [43, 44] are 

also likely to contribute to this effect. 

It is important to note that this effect should be present in most crystalline materials, as they 

often possess different values for the thermal conductivity in different crystallographic 

directions. This could possibly explain similar differences observed in quartz [29, 30] and 

apatite [45]. To resolve the small magnitude of such differences, however, requires accurate 

measurements of the track radii such as those attainable by SAXS. 



 

Conclusion 

The morphology and radius of ion tracks generated by 185 MeV Au ions in KTP has been 

investigated by means of synchrotron SAXS, TEM and AFM. SAXS results indicate ion 

track radii depend on the crystalline orientation. The radius obtained from SAXS is consistent 

with that from TEM results, yet the higher precision of SAXS enables us to resolve a 5% 

difference between radii in z- and x-cut samples. High-resolution TEM and AFM provide 

clear evidence that the tracks in KTP are amorphous with approximately circular cross-

section, and of lower density than the surrounding crystalline matrix. Calculations using an 

inelastic thermal-spike model are in good agreement with the experimental results and 

indicate that differences in the thermal conductivity along the z- and x-axes contribute 

significantly to the difference in track radii observed along these directions. 
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Figure captions: 

 

Fig. 1: SAXS images of x-cut KTP irradiated with 185 MeV Au ions to a fluence of 1×1011 

ions/cm2 with the tracks (a) collinear with the x-ray beam, showing an isotropic scattering 

pattern, (b) tilted by 5o and (c) tilted by 10o with respect to the x-ray beam.  

 

Fig. 2: (a) SAXS intensities as a function of scattering vector q for tracks in both x-cut and z-

cut KTP irradiated with ion fluences of 1×1010 and 1×1011 ions/cm2. The solid lines are the 

corresponding fits to the theoretical model. The patterns are offset for clarity. (b) SAXS 

patterns of both x-cut and z-cut KTP samples irradiated under identical conditions. 

 

Fig. 3. Cross-section TEM images (a) and (c), and corresponding electron diffraction image 

(b) of ion tracks in z-cut KTP irradiated with 185 MeV Au ions at fluence of 1×1011 ions/cm2; 

plan-view TEM images of ion tracks in z-cut KTP irradiated with 1×1010 ions/cm2 in (d) and 

(f) and corresponding electron diffraction image (e). 

 

Fig. 4. AFM surface plots of 185 MeV Au+-irradiated KTP with fluences of 1×1010 (a) and 

1×1011 ions/cm2 (b), and that of unirradiated KTP for comparison (c). 

 

Fig. 5. (a) Radial distribution of energy deposited around the ion path of KTP irradiated with 

185 MeV Au ions. (b) Simulated evolution of the lattice temperature versus time at various 

distances (2, 5, 5.5, 5.8, and 6 nm) from the ion path in both x-cut (solid lines) and z-cut 

(dotted lines) KTP irradiated by 185 MeV Au+-ions. Tm=1423K corresponds to the melting 



temperature of KTP. The inset shows a magnification of the later stages of the lattice 

temperature to highlight the differences for the two crystal cuts. 
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