THESES, SISILIBRARY
R.G. MENZIES BUILDING NO. 2

Telephone: +61261254631
Australian National University
Facsimile: +61 261254063
Canbena ACT 0200 Australia
Email: library.theses@anu.edu.au

USE OF THESES

This copy is supplied for purposes of private study and research only. Passages from the thesis may not be copied or closely paraphrased without the written consent of the author.

AUSTRALIAN NATIONAL UNIVERSITY

The persons whose signatures appear below have consulted this thesis by HEAIEY \qquad and are aware that it is available for study only and that no quotations, or substantive information not otherwise available, may be published therefrom without the consent of the author and of
\qquad
L. NAME

Until 21.12.69 this thesis scian be consulted by persons other than staff and students of the fiAustraliann National University only with the written consent of the author?

THE OK Language family In nev guinea

 Alan Healey
PRECIS:

A group of at least ten languages located around the junction of the borders of Irian Barat, the Territory of Irew Guinea, and Papua. is examined, and it is demonstrated that they constitute a single linguistic family. This volume is mainly descriptive, and the conclusions and methodological and theoretical implication are discussed within each chapter rather than at the end of the

Chapter I describes the methods employed in collecting the linguistic data on which this study is based. The problems peculiar to linguistic surveys are discussed, as well as those that arise when the linguist and informant have no language in common. Pair testing has been found to be a very helpful device for studying the phonemic contrasts of a language, and a taperecorder has proved a versatile tool in field work (provided ne doesn't become its slave). An extensive bibliography on field method has been added.

Chapter II describes and compares the languages of the Ok Family. The names, dialects, location, and population of each language is presented within the framework of a tentativ classification into two suodfamilies ... Mountain-0k and Lowland_Ok. An alternative classification into three sub-families is possible, and is actually preferred later (Chapter III, Conclusion) The Ok languages have relatively simple phonemic systems based on a Mountain-Ok languages have lexical pitch. Closed syllables, especially at the end of words, predominate in most languages. Nouns have almost no inflection, but verbs are suffixed for subject person/number, tense and aspect, and some verbs are prefixed for object person/number. Pronouns distinguish 'I', 'you m.', 'you f.' ', 'he', 'she', 'we', 'you pl.', and 'they',
whereas subject suffixes on verbs distinguish 'I', 'you', 'he', 'she', 'we', and 'you pl./they'. A few indications are given
 word lists, scarings, and percentages are presented, and they support the language classification adopted and at the same time they indicate two cases of probable borrowing. Other language families neighbouring the Ok Family are examined and their contrast with it demonstrated.

Chapter III identifies sound correspondences within Mountain-Ok and within Lowland-Ok, and lists of tentative proto-forms are given to illustrate these correspondences. The considerable amcunt of regularity observed indicates that the comparativé method is just as applicable to these New Guinea languages as to Indo-European or Austronesian languages. Some preliminary Proto-Ok cognate sets are offered, and some doublets that may point to Archaic Ok are discussed.

Chapter IV illustrates Mountain-Ok phonologies by that of Teléfól. A method of scanning tape-recorded data is used to measure the length or phonetic segments, and by this technique vowel length is shown to be neutralized in medial syllables. Vowel distribution and neutralization are examined in detail. Lexical pitch is analyzed in terms of two step tonemes, UP and DOWN. Juncture and sandhi are also discussed.

THE OK IAINGUAGE FAMIJJY

IN

NEW GUINEA

Thesis Submitted for the Degree of Doctor of Philosophy in the
 Australian National University

adaiv heatey

This work is based on original research except in the following points:
(a) Chapter I includes a bibliographical review of informant techniques and careful acknowledgement is made of the source of all methods that were not used in my own field work.
(b) Chapters II and III include both published and unpublished information on many languages from other authors, and these sources are fully acknowledged in section 1 of Chapter II. The information on Angkialmin (Faiwol), Bimin (BM), Mianmin, and Ninggirum was gained solely from my own field work.
(c) The information on Teléfól is the result of field work and analysis carried out jointly with my wife, Phyllis If. Healey. In the field, I elicited the data from informants while my wife abstracted this data into extensive lexical and syntactic filing systems. The lexical file was the starting point for checking my analyses with informants in the field and has been the source for most of the Teléfól data in this work. The analyses of the data in this work are mine, but in presenting them I have been constantly indebted to my wife for her constructive criticism.
(d) My wife was responsible for the clerical labour involved in Tables $1,2,6$, and 7 of Chapter II.

$$
\begin{aligned}
& \text { Alan Mealy } \\
& 18^{\text {th }} \text { September, } 1964
\end{aligned}
$$

ACKNOWLHDGEVETMS

I will always be indebted to those who have taught me linguistics. Dr. K.I. Pike trained me in the rigours of phonemic and tonemic analysis, and also introduced me to the Teléfól language. Dr. R.S. Pittman introduce α me to comparative Iinguistics, and Dr. Isidore Dyen, by his writings and correspondence has encouraged me to pursue the subject further. Dr. A. Capell and Fr. P. Drabbé, by their writings, have given me a grasp of how sone New Guinea languages are structured. Dr. Mi. Van dex Borght has patiently tried to teach me Dutch, and has ever been ready to advise on the choice of words in the tables of Chapters II and III. Dr. S.A. Wurm, my supervisor, has broadened my understanding os general linguistics and New Guinea languages, and has been an encouragement in the times of analyticel despair.

In New Guinea field work was possible only through the wholehearted co-operation of many linguistic informants. I especially wish to thank Máákkis; (Tiínokál) and Miyoméngaal (flinokál) who so patiently taught me Teléfól. I am indebted to Administration Officers, missionaries, and colleagues of the Summer Institute of Linguistics who supplied word lists and maps, but who cannot be named individually because they are so many. The hospitality of Assistant District Officer H.E. Clark and Rev. K. Bricknell made the study of the languages around Kiunga and Oksapmin both possible and enjoyable.

Drs. S.A. Wurm and D.C. Laycock have carefully read earlier drafis of this thesis, and have been generous with their advice and time. In wife has been my constant critic and inspiration, and unsparingly read proofs and cut stencils. The Linguistic Circle of Canberra was hind
enough to publish Chapters I and IV in time to be bound in the thesis. These have been repaginated, with the original pagination in square brackets. Pinally, I am grateful to the Australian Wational University for the Scholarship, field grants and facilities that have made the writing of this thesis possible.

Alan Healey
Canberra
18th September, 1964

TABLIE OF CONTENTS

IIMTRODUCTION i
Notes iii
Chapter I - hainduing unsophisticated uinguistic Inforinints 4
O. Introductory Note 8

1. General Approach 8
2. Linguistic Surveys 11
3. Investigating Phonology 13
4. Pair llesting 15
5. Eliciting Grammar Monolingually 18
6. Determining Meaning 22
7. Using Tape Recorders 24
Notes 29
Bibliography (to Chapter I) 33
CHAPTER II - A SURVEY OF THE OK FAMILY OF LANGUAGES 38
O. Introduction 38
8. The Janguages of the Ok Family 39
9. Comparison of Ok Languages 45
2.1 Consonants 45
2.2 Vowels 55
2.3 Tonemes 58
2.4 CV Patterms 62
2.5 Nouns, Adjectives, Numerals and Fronouns 63
2.6 Verbs 66
2.7 Syntax 75
2.8 Lexicostatistics 77
10. Relationsbips outside the Ok Family 107
iNotes 118
CHAPTER III - RICOIISTRUCTING PROTO-OK. 126
O. Introduction 126
11. Proto-Mountain-Ok 127
12. Proto-Lowland-Ok 168
13. Proto-Ok 181.
14. Archa:Lc Ok 188
15. Conclusion 189
Notes 190
CHAPTER IV - IMLEPOL PHONOLOGY 191
O. Introduction 193
16. Syllable and Word Patterns 194
17. Measurement of Lerigth 198
18. Consonants 205
19. Problems in Consonant Analysis 207
20. Vowels 210
21. Vowel Neutralization 214
22. Tonernes 219
23. Juncture 228
24. Sandhi 238
25. Alternative Tonal Arialysis 245
26. Orthogeaphy 247
Notes 250
BIBLIOGRAPHY 253

IINTRODUCTION

At the hub of the island of New Guinea a population of some 50,000 people scattered over a remote area of about ll, 000 square miles speak between them at least 10 languages belonging to a single linguistic family. This group of languages has here been called the Ok Family, following a remark by Dr. Capell concerming the widespread use of the work ok for 'water' or 'river', as may readily be seen in maps of the area. ${ }^{I}$

The first materials published concerning the languages of this family were the word lists collected by Leo Austen for Southern Kati, Northern Kati, Yonggom, Ninggirum, and Faiwol from 1922 onwards. ${ }^{2}$ However, because of the inaccessibility of the area, little more became known of these languages during the next 25 years. It was not until 1949 that the idea of a family of languages was first put forward by Dr. Capell. ${ }^{3}$ Since that time, intensive patrolling by officers of the Dutch, Indonesian, and Australian adrainistrations has now made almost all of this area accessible to those interested in linguistic research. Although the information available for the north-western area is rather scrappy, the time seems ripe to undertake a survey of the languages of the Ok Pamily.

The primary aim of this thesis is to give a brief account of the Ok languages individually and comparatively, and to show that the methods of comparative linguistics first established in IndoEuropean studies can be profitably applied in studying the
interrelationship of the Ok languages and in reconstructing some of the probable linguistic features of the parent languages (Proto-Liountain-Ok, Proto-Lowland-Ok, and Prato-Ok).

A secondary aim is to illustrate in detail the phonological structure of a typical Ok language. The Teléfól language has been chosen for this purpose for three reasons. (a) It is the language in which the author did the bulk of his field work. (b) It belongs to the Mountain-Ok Sub-Family, whereas the only published description is that by Drabbé of the two Kati languages in the Lowleild-Ok SubFamily. ${ }^{4}$ (c) Iti is typical oir the more numerous Division A languages within the Mountain-Ok Sub-Fannily. In describing Teléfól the emphasis is upon its phonological structure, since Drabbé dealt mainly with the morphology of Kati rather than its phonology.

The plan of the thesis is self-evident. It commences with a statement of the author's techniques for collecting linguistic data in the field, and these are compared with methods that other fieldworkers have used. Next the Ok languages are surveyed, and the internal and external evidence for their coherence as a family is presented. A preliminary attempt is then made to reconstruct the proto-phonemes and some of the proto-morphemes of the parent languages. Finally, the linguistic features of the Mountain-Ok are exemplified by a detailed account of Teléfól phonology. The author's wile, Phyllis M. Healey, hopes to present as her thesis a study of Teléfól syntax.

Hotes follow each chapter.

1. Capell 1954: 52. See the maps in the pocket at the back of this volume. These are based upon the following maps:
(a) Australian Geographical Series, First Edition, 1 : 1,000,000 _Fly River 1962, Hollandia 1961, Lae 1960, Torres Strait 1958.
(b) New Guinea Eorder (Special) Reconnaissance Niap, Second Edition, $1: 1,000,000$-- sheets 3 to 7, 1964.
(c) Fopographical map of the Star Mountains area and a part of Nandobo and Huyru Districts, 1 : 2,300,000, in Peynders 1962: 71.
(d) Various maps in Brongersma and Venema 1962, Behrmann 1924, Austen 1923 (b), Carmbell 1938, and Champion 1932.
(e) Patrol maps and the author's aerial observations.

The language boundaries are based upon the sources mentioned in notes I-22a, 78 of Chapter II of this thesis. Salzner 1960 and Loukotka 1957 were consulted but rarely followed.
2. Austen 1922, 1.923 (a), 1925, 1926.
3. Capell 1949: 374. However, Austen had previously noticed that Yonggom and Ninggirum are related languages. Austen 1923 (b): 347.
4. Drabbé 1954: 146-229.

CHAPTER I

LINGUISTIC CIRCLE OF, CANBERRA PUBLICATIONS

EDITORS: S.A. WURM, J.E. HARRIS, N.G. MALMQVIST (THE AUSTRALIAN NATIONAL UNIVERSITY)

```
    SERIES A - OCCASIONAL PAPERS
```

NO. 2

HANDLING UNSOPHISTICATED LINGUISTIC

INFORMANTS

by

ALAN HEALEY

CANBERRA, 1964
Linguistics, Department of Anthropology and Sociology, The Australian National University
0. Introductory Note 1

1. General Approach 1
2. Linguistic Surveys 4
3. Investigating Phonology e
4. Pair Testing 8
5. Eliciting Grammar Monolingually 11
6. Determining Meaning 15
7. Using Tape Recorders 17

Notes 22

Bibllography 20

The publications of the Linguistic Circle of Canberra are issued in three serles:

> SERIES A - OCCASIONAL PAPERS
> SERIES B - MONOGRAPHS
> SERIES C - BOOKS.

All correspondence concerning the Linguistic Circle of Canberra and its publications, including orders and subscriptions, should be addrossed to:

THE SECRETARY,

LINGUISTIC CIRCLE OF CANBERRA,
SCHOOL OF ORIENTAL STUDIES,
the australian national university,
BOX 4, G.P.O.,
CANBERRA, A.C.T. AUSTRALIA.
The copyright in the material of this publication is vested in the author or co-authors.

The Circle $1 s$ indebted to The Australian National University for help in the production of this series.

This publication was made possible by a grant from the Hunter Douglas Fund.

HANDLING UNSOPHISTICATED LINGUISTIC INFORMANTS ${ }^{1}$

O. INTRODUCTORY NOTE

This paper describes the author's methods of handing unsophisticated informants while investigating the Teleéfool language spoken by about 4000 people in the vicinity of Telefomin. Territory of New Guinea. ${ }^{2}$ The dilscussion includes several aspects of field methodology that have received scant attention in the literature to date: linguistic surveys, pair testing for phonology, monolingual informants, and the uses of tape recorders.

1. GENERAL APPROACH ${ }^{3}$

To foster and maintain good relations with one's (potential) informants is an essential part of field work. One needs to be alert for any indications of offence or embarrassment. It is only courteous to respect their dignity, self-respect, feelings, opinions, beliefs, and customs. Despite the social stratification resulting from nativeEuropean interaction, I belleve that it is both right and far-sighted to treat one's jnformants as equals in every way possible. I personally feel that I should sit on a log in the shade to work with an informant if that is the way he is most comfortable, rather than insist on using a table and chair in my house. A clip-board for notepaper is an asset when working without a table.

An early and vigorous attempt to learn and speak the vernacular is the best demonstration of the sincerity of one's interest in the vernacular. At Telefomin I started by learning to use the rather involved system of greetings and farewells, with the result that people who usually slowed no interest in Europeans became quite friendly and Interested in my efforts. In fact, if one's study of the vernacular is to extend more than a few weeks, then conversational fluency in the vernacular is invaluable to grammatical investigations and worthy of top priority for the first few months of field work. A tape recorder can render considerable ald in gaining conversational fluency.

Field workers who commence their studies in a monolingual situation, in which there is no intermediate language used in their contacts with the community or informants, are at a considerable advantage in achieving the goal of conversational fluency. ${ }^{4}$ It has been my bitter experience that knowledge of and leaning upon a trade. language in the early stages of field work sets habits that are not easily broken, and the goal of conversational fluency may be indefinitely postponed: ${ }^{5}$ To overcome this problem some linguists have suggested that before a field worker commences his studies in a given language he should be
other fleld workers who come to the area in the future. ${ }^{7}$
Sessions are best arranged to sult the informant's dally routine, and the fleld worker should be punctual. Lack of promptness glves the impression that the fleld worker doesn't really value the informant's help, but considers himself superior to the informant and thinks nothing of keeping him waiting while he trivializes. The length of sessions varies with the informant, but one hour seems to be the maximum advisable. Breaks of at least 15 minutes are necessary between sessions. Often one half-hour session is all that can be expected froin casual and "bush" informants.

Usually the best situation is just one informant at a time, of the same sex as the field worker, and over 15 (preferably 20) years of age. In some areas it is socially acceptable for a single woman fleld worker to employ a male informant, and in other areas it is not acceptable. When two informants are used simultaneously, any friction between them is likely to detract from the lingulstic value of the session. To avoid friction it is important to use informants from the same village or clan to ensure their dialectal uniformity, and it is advisable to interrogate them with meticulous alternation. In some social situations it may prove necessary to have two informants - an intelligent young man acting as spokesman and an old man of some status and experience acting as censor and consultant. ${ }^{8}$ Employing the one person for both household service and regular informant work may not be very satisfactory. He is often needed for both tasks at the same time. He tends to get tired, and a sleepy informant is completely unreliable. The linguist finds it very difficult to maintain two kinds of inter-personal relationship to the same person simultaneously - a distant disciplinarian and a friendly co-worker.

It is necessary to explain to each new informant, especially casual ones, what one is doing and why. If a tape recorder is used it is essential to demonstrate it first with one's own volce or that of a local person famillar with it. Someone who has not seen or heard a recorder before is likely to be scared of $1 t$, supposing that it will steal his soul or that $1 t$ contains the volce of his ancestors. Sometimes linguists have even found it necessary to explain the process of writing and the purpose of their note-taking.

For all of his varled enquirles, the fleld worker needs patient and intelligent informants. Most informants prove to be good at just one or two types of investigation, such as lexicon, or verbal paradigms, or tonal contrasts; few informants are competent for all of the facets of a linguist's researches. The best work is accomplished when the fleld worker and informant have compatible temperaments.

2. Linguistic surveys ${ }^{9}$

The making of rapid inguistic surveys offers soine special problems. Often the infornant has liad littie or no contact with Europeans, let alone ingguists. It is necessary to go out of one's way to galn rapport with the informant right at the start of the session. As time is usually 1 mited, it is good to come to the session with the informacion to be sought fully prepared. Word lists and grammatical naterial are best presented to the informant in semantic groupings rather than in alphabetical order. ${ }^{10}$ Where enquiry is IImited to one informant session, a list of about 1001 tems seems to be an opilonal amount to ask the average "bush" informant vefore he shows signs of tiring.

Although recognized standard word llsts such as Swadesh's are valuable for several purposes, various considerations may force the adoption of a modified list for surveying a given area. ${ }^{11}$ In some areas the 11 kely infornants are mostly monolingual, and the only 1 tems that can be obtained with fair certainty of their meanings being correct are objects, qualities, and actions that may be clearly demonstrated. For example, "skin", "rlesh", and "bone" are not easily distinguished in a monolingual situation unless a cut of meat happens to be avallable. Often the likely informants have a poor understanding of the trade language that is being used for enquiry, and it is wise to accompany one's enquiries by monolingual-type demonstrations, espectally for 1 tems that are ambiguous in the trade language. For example, in the Sepik dialect of Neo-Melanesian smok may include "smoke of a fire", "cloud", and "tobacco". When clarification of such ambigulties is not easily accomplished by demonstration, such 1 tems are best omitted from the list.
If the survey is limited to the languages of a single family, then the granmatical enquiry can be oriented towards the known granmatical characteristics of that family. For example, the Teleeffodl language has obligatorily possessed forms for many kinship words, some of which are suppletive: fik 'his elder brother', tifng 'your elder brother ${ }^{\text {i }}$, bádb 'my elder brother', but no word for 'elder brother'. Teleeforl also has two sets of pronoun roots, the emphatic and the ordinary, and it has two or more unpredictable stem allomorphs for about half of the verbs. A survey of the languages of the ok Family, of which Teleefool is a member, attempted to enquire into these features whenever there was sufficient time. In some language fanilies a particular word class may have obligatory affixes which are difficult to control semantically through a poorly understood trade language, and 1 t may prove necessary to omit 1 tems or this ciass from the vocabulary list. For instance, in the ok Fanily verbs were omitted from the short questionnalre for this reason.

It is good to finalize any necessary modificat:ons of one's survey questionnalre before embarking seriously on the survey, and this pre-
supposes some prior knowledge of one or more languages of the family. If one has no prior knowledge of any of the languages then modifications related to monolingual elicitation and to elicitation through a poorly understood trade language are the only ones that can be made. If two questionnaires are used, a short one of 60 to 1001 tems for monolingual elicitation in a single $30-$ minute session and a longer one of 200 or more 1 tems requiring a bilingual informant and perhaps two sessions to complete 1 t, then it is advisable fur the short questionnaire to constitute the first part of the longer one. In this way the short questionnaire will be completed for every informant, thus elving a uniform set of data for comparison.

When taking data from an informant outside of his own language area it is advisable to hold the session in private. Once, a Kwelmin informant that I was interrogating was very distressed by the Telefomin onlookers who constantly laughed at his strange pronunciation. When using an interpreter whose language is similar to that of the informant it is essential to get the informant to understand that he is to talk his own language and that he is not merely to say what the interpreter says. Despite taking such precautions, in some cases I have detected an increase of up to 20% in the number of words cognate with the interpreter's language due to the suggestive effect the interpreter has on the informant. ${ }^{12}$ The same considerations apply when the linguist uses some familiar language of the same family as the medium of elicitation. If the only medium of elfcitation is a very similar language of the family, then more rellable resuits can be obtained by using monolingual elicitation rather than using that language. Similarly, if one has several informants to interview in a particularly short period of time and one wishes to work with several informants simultaneousiy, then it is advisable to avold having in the same session informants whose languages are markedly similar in vocabulary, lest they influence each other in their cholce of words.

With each set of survey data it is essential to elicit enough general information to put those data in their right setting among the rest of the survey material. To 1 dentify the geographical location of each dialect it has been my habit to enquire not only the name of the informant's village, but also that of the main watercourse and dominant mountain of the locality. Around Telefomin it has been customary to move villages and change their names every ten years or so, and consequently some more permanent geographical feature is needed to identify the informant's locality on maps. However, this method must be applied with care in the Ok Family area, since streams have the same name as the mountain at their head, and often two streams on opposite sides of a watershed have the same name. ${ }^{13}$ Clan names are usually easier to elicit than elusive dialect and language names. In the Telefomin area there are often dialect differences between clans, and usually there is relative uniformity of dialect within a clan.

However, the same clan name may occur in two different language areas. Each informant has always been asked to evaluate the degree of similarity of the speech of his and surrounding groups. An accumulation of many such judgements from various informants gives a falrly reliable picture of dialect and language boundarles.

rnvestigating phonology ${ }^{14}$

With all informants it has been found best to limit the number of repetitions of an utterance to three or four. Most informants quickly tire of multiple repetitions and get bored with the session; some infornants are inclined to lose interest in informant work altogether because of field worker: finparent dullness of hearing. Furthermore, continued repetitions of an utterance rapidly decrease in linguistic value because of the appearance of tired allophones and intonation patterns, and because in such artificial circumstances the informant's acoustic image of the utterance becomes disassociated from his semantic image of it with a consequent uncontrolled drift in pronunclation that may involve changes of phonemes. It is no longer a meaningful utterance, but a string of nonsense syllables. This phenomenon is one reason why linguists working with informants need to make some positive identification of the meaning of each utterance, rather than rely solely upon sameness or difference of meaning.

When phonological details and contrasts tax the linguist's abillties (which happens more often than most of us care to admit) further repetitions of the crucial utterances can be obtained over a period of time, at several informant sessions. It is wise to put the material being studied into different contexts so that the linguist won't be so blased by his memory of a previous session, and so that the infomant won't take these repeated enquiries as an insult to his consistency or correctness in speaking his own language. A tape recorder is able to provide endless repetitions without tiring the informant. Often when working with difficuit phonerics, one reaches a point in the session when one's brain tires and refuses to register previously-identifled 1 tems consistently, or refuses to hear the contrast at all. At this point, or preferably before it is reached, it is expedient to quit The matter may be returned to later at another informant session.

When eliciting material for a problematic contrast it is best to establish the contrast with sub-minimal pairs of utterances, and especially so in the case of prosodic contrasts. ${ }^{15}$ Minimal pairs are excellent for demonstrating the contrast once it has been convincingly established without them. If ininimal pairs that the field worker can barely distinguish are used at the beginning of the investigation, then $1 t$ is essential to be meticulous in speclfying or requesting the meaning of every utterance. If the field worker himself uses the
utterance in the vernacular to tell the informant what to say, then it is easy for the informant to misunderstand the fleld worker's poor pronunclation and to give the opposite utterance from the one the fleld worker intended. This confusion can ber avoided by using synonyms of the minimally contrasting utterances when giving vernacular instructions to the informant, or by using non-linguistic stimull such as actions or objects, or sketches of actions or objects, in a way pre-arranged with the informant. If the informant is bilingual, instructions for uttering minimal pairs can be given in the second language to avoid confusion. When minimal pairs are difficult for the fleld worker to hear the informant will often give two or more utterances in close succession - either two the same in an attempt to help the fleld worker hear it correctly, or two contrasting utterances to help the fleld worker hear the difference between them. Until the field worker has "tuned in" to the particular contrast he is just as likely to assume that two contrasting utterances were the same or vice versa, unless he takes care always to ask the informant to identify the meaning of each utterance.

A lot of confusion can be avolded in phonemic analysis if a complete phonemicization is made for the speech of just one informant, espectally for phonem1c systems with several hard-to-hear sounds or systems involving complex inter-related decisions. The speech of other informants, with their variant allophones and allophonic distribution, may then be compared with this and a fuller plcture of the phonology of the language be gained. The implication of this for informant work is that all phonological data needs to be clearly labelled with the name and dialect of the informant
In the case of tonal phenomena some linguists have suggested teaching one's informant to hum or whistle the tonal pattern of each utterance to ald one in hearing these patterns. ${ }^{18}$ However, I have found this of limited value. When the field worker finds tone difficult to hear in utte cances he resorts to this method because tone is rather easier to hear with humming or whistiling. However, the same difficulties in hearing the tonal patterns of utterances which are holding up the field worker's phonemic analysis also prevent him from determining the nature and consistency of the correspondence between these hard-to-hear utterance patterns and the easler-to-hear humming or whistling patterns. Without an understanding of this correspondence, the huming or whistling patterns are of little value for analysis. Their main usefulness is to conflrm patterns which the fleld worker has already tentatively identified in utterances, to clarl fy his occasional hearing problems, and to identify tonal sandhi and intonation.

For conversational fluency one has to learn to recognize and reproduce all of the phonemic distinctions of the language including those which one finds difficult to hear. Tape recordings, spectro-
grams, tone analysers, humming and whistilng, or any other technique only give temporary help in recognizing or demonstrating particular contrasts and features. Ultinately, one has to teach one's self to hear and make such distinctions unalded. Linguistics provides no aric carpar routes one can walk over a difficult terrain.

4. pair testing ${ }^{17}$

Palr testing was flrst formalized by Harris for evaluating an informant's reaction to repetitions of two utterances (A and B) under controlled conditions. If A and B have demonstrably different meanlags and are suspected to differ by phonetic features which the linguist has difficulty in hearing, then palr testing indicates whether A and B are homophonous or phonologically contrastive. Harris method is to present utterances A and B an equal number of times each to the informant, but in randon order, asking the informant to identify each 1 tem presented to him. For instance, a German linguist wishing to study English [0] [̌] c] present the pair of utterances thread and shred to his informant. If the informant's identifications match nearly 100% with the linguist's knowledge of the 1 dentity of the 1 tems as presented, then A and B are deduced to contrast phonologically, whereas if the informant's identifications match approximately 50% with the linguist's knowledge of the items presented, then A and B are deduced to be homophonous.

The 1 tens which are presented to the informant for his reaction may be derived in one of several ways.
(a) The utterances may be spoken by a second informant who speaks the same dialect. To ensure that the only communication between the two informants consists of these utterances, it is necessary to rrange the informants so they can't see each other - seated back-o-back on chalrs, for instance. So that the linguist may know the解
 kind of non-verbal stimulus to him. I have had good success with physical representations of the two utterances being conpared (both objects and sketches have been used) once the informants have been made famillar with them. To avold confusion in tabulating the results of a test I prefer to arrange the representations on the oor, so that the lingulst may stand in front of the first informant and see both of the representations of A on his own left and both those of B on his right, as shown in figure 1. Alternatively, the lingulst may have n assistant standing in front of the second informant to tabulate is reactions. The linguist points to each representation in front a first in re in in slow randon succession, and at each dointing the informant says the appropriate utterance. The second
informant points to the appropriate representation to identify each utterance he hears, and the linguist tabulates this response along with his original stimulus to the first informant. often I run two such tests on a pair of utterances, the roles of the two incormants being interchanged in the second test as a check on dialect uniformity. At the beginning the two informants should be taught how to "play" the "gane" by using a pair of utterances which re known to contrast

PLAN Of ARRANGEMENT FOR PAXR TESTING

Figure 1.
(b) If a tape recorder is avallable a rather simpler form of the pair test may be used. The utterances may be pre-recorded by the same informant as is used for hearing-reaction at the end of the test. The inguist may use either verbal or non-verbal stimuli when he is recording provided that only the utterances themselves are actually recorded. Then, with the list of the order in which stimuli were first presented hidden from the informant, the tape is replayed and the informant's reaction is tabulated beside this list and the degree of matching calculated. The informant may react by pointing to physical representations of the utterances or by mentioning agreed symonyms. Provided there are sufficient utterances on the tape not to be memorized, the re-play for hearing can be done immediately after the recording is made. If the linguist has
reason to suspect that the informant was confused at the time the recording was made and that a few of the stimull were incorrectl interpreted the the results of the first and second hearings compared and the degree of matching calculated from them instead. ${ }^{18}$
Determining the phonological status of palrs of utterances with ontrastive meanings and with problematic phonetics is the chief usefuiness of palr testing in the phonological facet of fleld work. Palr tests, in the two forms described above, cannot be used for synonymous palrs of utterances, as their meanings or physical meaning substitutes are unable to identify them distinctively. ${ }^{19}$

It is very important that equal numbers of utterances A and B be ncluded when preparing the material for hearing-reaction. If A and B should actually be homophonous, and if the informant should be inclined to glve $80 \% \mathrm{~A}$ and $20 \% \mathrm{~B}$, say, among his responses (and there is o basis for assuming he will give $50-50$), the degree of matching otwen his responses and the original stimuli is only likely to pproximate 50% If equal numbers of \dot{A} and B were originally included in the test design.

It is also important that utterances A and B be presented to the formant for tis reaction in random order. On more than one occasion hen I have presented material in alternating order the informant chought that an alternating sequence was an essential feature of the test. Later during the session the informant tended to respond to ald omophonous examples by alternating responses. This does no harm, bu f one doesn't know the actual phonological status of the two utter ces under test, then one can't be sure whether an alternating reor an indication hat the informant doesn't understand what he is supposed to be doing in the test.

If the informantis reaction to a pair test is that of indeciston, is is this to be decision as "?", but not to count titese instances when calculating the degree of matching. However, I assume that a high number of indecisions is as much an indication of homophony as is 50% matching, so ong as it is clear from previous tests or practice runs that the formant understands the "game". A high rate of indeclsion may costonally be evidence of dialect difference between speaker and this can be checked by reversing their roles.

If the informant's reaction to a pair test matches the speaker's dentications about 75% how is this to be interpreted? First, on ould use statstics to estlmate that the likelihood of such a large eviation as this from 50% occurring by chance is about 0.01 for a 20-1 tem test (my usual size) and about 0.002 for a $40-1$ tem test. As this likelihood is signiflcantly small some other explanation is
needed, such as a mixture or homophony and contrast. That is, perhaps one of the utterances involved in the pair test has pronunciation Y and the other has pronunciation Z freely varying with pronunciation Y. If the linguist examines his tabulation of the test results and finds that one of the stimuli has about 100% matching with the reactions and the other stimulus has about $50, \%$ matching, then this not only confirms that one of the utterances has free variant pronunciations, but it also indicates which utterance has the free varlation should the lingulst find this difficult to detect by ear. In Teleefodl this kind of result occurred when the pair test was applied to problematic sandhi. Testing ateém 'frog sp .' and ateém 'hole in tree' (from at 'tree' and teém 'hole') gave about 70% matching.

Pair testing is only an aid in phonological investigations; it does not do away with the linguist's need for phonetic acuity. The pair test can show that two utterances contrast, but it cannot indicate the nature of the phonetic difference between them. If the field worker can't hear any difference, then listening to other contrasting pairs of utterances may sharpen his hearing in time. Alternatively, a more experlenced linguist may be able to listen to his material and surgest the phonetic nature of the difference. If the fleld worker can hear several phonetic differences between two contrasting utterances, then a pair test cannot indicate which difference is the characteristic or phonemic one. This is determined by careful phonetic observation of which difference is subject to the least free variation and by consideration of symmetry in the process of phonemic analysis. At Telefomin, an early pair test showed a contrast between [bil] 'wild banana sp.' and [bY•l] 'valley', but $1 t$ wasn't till much later that $1 t$ could be seen that these words contrasted in vowel length and tone pattern, but that vowel quality was not significant, being conditioned by length (and by the author's Australian English vowel blas). The final phonemicizations were /bil/ and /bill/ respectively.

5. ELICITING GRAmmar monolingually ${ }^{20}$

Faced with a monolingual informant, the linguist is cast very much upon his own resourcefulness and his powers of observation. At the beginning he can use pointing and miming extensively, and in fac these devices can be used for years as a method of checking data obtained in other ways. Some linguists make considerable use of pictures, especially series of related pictures that tell some kind o story or that may be described by some kind of grammatical paradigm. 21 I have found plctures falrly satisfactory the few times I have used them with sophisticated informants. However, informants that have had ilttie or no contact with education often fail to recognize the type of line drawings I present to them. In particular, sketches of
natural species tend not to be recognized unless they are exact in much more detail than most of us see, and unfess they are 11 fe size.

The most vital element of linguistic fleld work is constant observation, and in a monolingual situation this is doubly true. If each new kind or utterance heard is noted down, further enquiry can be made later concerning its meaning and more examples of 1 ts structure can be elicited. Only by being constantiy alert to hear what people actually say to each other can the field worker have an early way of checking the accuracy of what people say to him. Some fleld workers have had the experience of a whole community trying to make languagelearning easier for them by talking to them in a trade-pldgin or otherwise simplified version or their language. 22 The sooner such a deception 1 s discovered and corrected the better. It has been suggested that one should dellberately check for this situation in the early days of field work by having a young informant repeat some of his utterances to an old man and watch for the old man's expressions of approval or disapproval or for any changes he might suggest. An old is is ine the if a young man addresses him in the trade-pidgin. ${ }^{23}$

The elicitation of gramnatically relevant data by monolingual means is not easy. In fact, at tines it seems to be more efficient to observe than to ellcit. That is, it is relatively easy to be always alert for new gramnatical features and examples of features that are not fully understood. Starting from such data, the linguist is able to enquire the meaning of utterances containing such features and obtain more exanples of their occurrence. on the other hand, monolingual elfciting for the vernacular equivalent of a particular granmatical feature of English can be much more difficult.

Ii one finds a particular grannatical feature difficult to control while eliciting any kind of paradign, then one is well advised to use sone vernacular free word as a method of control. For instance, Telesfodl amsin sin rloo the day before yesterday' was used in piciting to make sure that verbs wire given in the near past tense lat in of the our past tenses, elther vernacular or trade-1anguage words can be used as controls in b1lingual ellcitation.

Another technique for investigating the meaning and usage of a nction morpheme is that of contrastive elicitation. One asks the infornant to compare the meanings of two utterances (either previously observed, or manufactured by the inguist on the spot), one of which contains the function norphene under investigation and the other aif fers only by the lack of that morpheme or by its substitution by an ther similar morpheme of silghtiy different meaning. Contrastive elicitation can also be used with features of syntactic order

Exploratory ellciting involves setting as clear a cultural contex as possible and then saying to the informant some utterance based on
inadequately understood grammar. ${ }^{24}$ Many informants will correlate the context and the linguist's attempt to say something, deduce what he was wanting to say, and tell him how one says such a thing. Utterances elluited in this way need to be compared with several other such utterances elicited in this or other ways to detect any distortions arising from the ingguist's "errors" in the stimulus utterance. Also the meaning or such utterances needs to be ellcited separately. Whenever exploratory eliciting is used it is best to note down the fact that a particular attempted utterance was considered to be incorrect by the informant, partly as a record of the possible bias of the "correct" utterance given by the informant, and partly as a source of negative clues to grammatical structure.

Situational elicitation involves describing a physical or social sltuation in some detail and then asking the informant what a particular participant or observer would be likely to say in such a situation. ${ }^{25}$ of course, the lingulst's description needs to be true to the culture. often, utterances obtained in this way will not have the meaning the linguist was attempting to elicit, so need to be checked both then and later, for their meaning. When using situational elicitation with a bilingual informant I have often found it helpful to precede the description of the situation by a trade-language statement of the utterance I am trying to elicit. The description of the situation, because it is the longer and later element in the elicitation process, tends to remain the maln stimulus to the informant. The trade-language statement prefaced to 1 t merely helps to narrow down the informant's cholce between the hundreds of different utterances possible in most situations.

Pronouns are best obtained by careful observation. If the language contains several series of pronouns, once the commonest series is known in full this may be used as a basis for eliciting another full series whenever a pronoun of some new series is observed. In this way some 17 series of Teleefod pronouns were eventually ellcited, even though only a few of the individual pronouns in the later serles were ever observed in text. When eliciting pronouns through the trade language, the fleld worker can assume that the average informant will not actually translate all the pronouns, but will interchange second and first person. The second person can usually be identifled with certainty if both the linguist and the informant address their remarks to another person. The person of possessive pronouns can usually be identified with certainty by asking who is the owner of some real thing that belongs to the informant, something that belongs to the linguist, and so on through all the possible persons and numbers. ${ }^{26}$

Questioms are the single most useful 1 tems in gaining conversational fluency and in eliciting grammatical material from monolingual informants, as well as constituting a major section or the grammar of a language. ${ }^{27}$ often, the features that signal interrogation differ from
one question to the next so that one's knowledge of the syncax of taiements does not always pernit one to form the correspondin questions by analogy. In a monolingual situation several questions nay be obtained quite early in fleld work by careful observation. Monolingual elicitation is also possible. The presentation of hidden objects or persons and the performing of hidden actions may stimulate the informant to ask "What is itp" "Who is Lt?" "What are you doing?". Miming a losing-and-searching situation often results in the nformant giving "Where is 1 tp ", and setting out on some unusual route will prompt people tio ask "Where are you going?". "Why" and "when" questions require rather more ingenuity for monolingual elicitation. Once a few questions have been learned other questions may b obtained either by exploratory ellciting or situational eliciting. When one asks a bllingual informant to glve the translation in the rernacular of a particular trade-language question, the informan ften answers the question instead of translating 1 t. This situation may be avoided by formulating the enquiry so that the informant imagines he is asking the linguist or a third person the question, rather than himself being asked the question.

To ensure that one's data inclide several examples of each gramnatical feature, systematic elicitation of grammatical material is necessary. One way of doing this is to take a text and go through it word by word, and for each new morpheme or construction discovered in t , to elicit several (5 to 20 say) more utterances containing the rticular feature. It is good if the informant can see the systematic nature of the elicitation, for his intelligent co-operation can cut the time and frustration involved in early monolingual ellcitation to a fraction. When a new feature is discovered it is good to follow it up immediately, while the senantic or grammatical context appropriate to $1 t$ is still fresh in the informant's mind. Doing so also ips fix the discovery in the field worker's mind for further refer ence. This means that informant sessions may at times appear rather disorganized by digressions, but in this way the field worker tends to get a more balanced collection of data than if he rigidly follows through his prepared elicitation progranme. If the informant can see the field worker's alertiess he :rlll do his best work.

Paradignatic elicitation is commonly used for the systematic investigation of grammatical features. In this method the lingulst attempts to elicit a series of utterances which are identical except for one point in their structure where a class of morphenes are interchanged. 28 If plcture serles or situational ellciting are used the aradions can be expected to be falrly rellable, but if exploratory ellciting or bilingual eliciting are used there is a considerable likellhood that a few false forms may be given by the informant. The fleld worker needs to be alert for any hesitancy or facial expression as a clue to false forms. If one asks whether a particular form is
used in the vernacular, some informants will say "Yes" just to please the fleld worker, even though the purported form be a false one. Even good informants will be somewhat influenced by hearing the utterance from the mouth of the field worker and from time to time will suggest that such an utterance may be used. Some linguists feel that one can never be sure how much the informant has been influenced by the forms used in the process of exploratory or bilingual eliciting, and wish to avoid these methods of ellciting. 29 However, such types of paradigmatic eliciting do speed up the understanding of the rarer features of the grammar which are just as much a part of the language's system as are those which occur more frequently. Most of the biased responses can be detected as inconsistencles if the field worker elicits the same material on several different occasions and in several different settings. These false forms can be eliminated, and perhaps be replaced, as the result of further checking. For instance, enquiry into heir meaning or usage is often met by a denial of their real existence on the part of the informant.

The main emphasis here has been upon methods of investigating grammar with monolingual informants because these methods are applicable far beyond the bounds of monolingual situations. Many a linguist working with a bilingual informant finds, at some point in his grammatical enquiries, that either he or the informant has an inadequate grasp of the trade-language for such detailed investigations. At this point monolingual methods have to be resorted to.

6. DETERMINING MEANING

Perhaps the commonest weakness in bilingual translation ellcitation of the "How do you say" type is that, because of the informantis or fleld worker's inadequate knowledge of the trade language, the informant's vernacular utterance is not an accurate translation of the English utterance that the field worker had in mind when he began eliciting. The best remedy is always to ask the informant to translate his vernacular utterance back into the trade-language. This tradelanguage form is written down as the "meaning" of the vernacular rather than the original English utterance the fleld worker started with. As the field worker gains a better understanding of his informant's idiolect of the trade-language he is in a better position to translate such "meanings" into English. Thus back-translation is use not merely as a checking device, but as the primary technique for determining meaning. 30

Several observations or occurrences of a grammatical feature are o more value than a single observation or occurrence. Usually a single occurrence of an 1 tem provides only very ambiguous information about the meaning or grammatical behaviour of that 1 tem. To ascertain the meaning of a stem often requires 10 or 20 occurrences of $1 t$ and a good
deal of informant explanation of the cultural contexts of its usage. To ascertain the meaning of a function morpheme of ten requires 50 or 100 occurrences of it and considerable investigation into which grammatical features co-occur with 1 t. ${ }^{31}$ one should expect that some of the function morphemes of a vernacular will have no translation equivalent in English, and that some will have several disparate translation equivalents. When working with a bilinguai informant one needs to be patient when he is unable to explain the meaning or usage of a function moroheme, recognizing that in these circumstances the need is for a large number of examples of the morpheme in a wide range of occurrences, and that it is the linguistis analysis of these that will provide a basis for guessing at the meaning and making further enquiry.

When noting questions that have been observed it is important to note also their replies if possible. Once the paradignatic variations of a question are understood by the linguist he is then in a position to use this type of question often in conversation and to note down the responses. Also, he may ask his informant to give him several typical replies to each question. The meanings of the replies to a question provide the clearest picture of the meaning of the question which stimulated them.

It is good to note down each new word that is heard, even when there is no indication of 1 ts meaning. It is far easier to elicit examples and the meaning of a word that has been observed than to
 when enquiring about the area of meaning of a word or checking on 1 ts collocations, it has been found of only limited usefulness to ask whether or not that word can be used in a given situation, since every now and then the informant will say "Yes" when he should have sald "No" - either to please the linguist or to hasten the end of a session that involves too much hard thinking for him. It seems preferable to ask the informant in what siluations the particular word can be used and to request illustrations.

When investigating the meanings of a set of near synonyms I have ound the following procedure useful. Taking each word in turn, enquiry is made as to the situations in which it is used. Next, a composite list is made of all the situations mentioned for all the words in the set. Then, for each situation in turn, the informant is asked which words of the set can be used in that particular situation. If more than one word can be used in the same situation, then enquiry is made as to whether their meanings are the same or different in that situation.

When testing for collocations it is good to get several typical tterances on several occasions to zisure a good spread of meaning variants and usage. For each verb it is necessary to enquire as to

1 ts typical subjects, typical objects (1f transitive), its typical beneficiaries or indirect objects, and any other clause-level category that is closely related to the verb stem. For example, for Teleefool it was necessary to enquire for each verb whether it took all persons as subject, or only plural persons, or only the third person feminine singular (sometimes with an impersonal meaning). When each new grammatical feature is discovered, it is economical to examine first just a sample of the appropriate word class (50 verbs, say) to see how this feature applies to them. If it is seen to be systematic and predictable in some way, then no further research is needed. But if there is evidence to the contrary, then all the words of that class in the lexicon will need to be examined for this feature, as well as each new word discovered. For instance, only a couple of months before the conclusion of field work at Telefomin a sample of verbs were being exanined for their tonal patterns in all paradigmatic forms. It was noticed that the punctiliar benefactive forms seemed to have unpredictable tonal patterns, and some 400 verbs were examined and the existince of tonal classes among the verbs was confirmed.

7. USING TAPE RECORDERS ${ }^{32}$

The ileld worker needs to be thoroughly familiar with the operation of his tape recorder, to be able to make minor repalrs and lubricate 1 t on the fleld, to carry a small supply of fuses and commoniy needed spare parts, and to carry an adequate supply of batteries if the recorder is battery operated. He needs to know what volume control settings to use under various conditions in case the level indicator should go out of action. He should have or devise some way of telling when the batteries are flat and need replacing, and when the tape is slowing down appreciably. He needs to practise threading the tape past the heads so that it always records without fall. The level indicator only shows that the voice is passing from the microphone to the recording head; the volce may not be reaching the tape if it has been incorrectly threaded onto the machine. The only sure way is to listen to the playback, or to record a few seconds and then play that back, whenever one changes tapes or sides of tapes on the machine. It is good to have some idea of the directional properties of the microphone - how much softer does the same nolse sound on the tape when it is made beside or behind the microphone (at the same distance) rather than in front of 1 t? Early in field work one needs to listen critically to the first few recordings to assess the conmon types and levels of noise - pigs, dogs, roosters, children, walking in the house, shuffling papers, coughing, rain on a metal roof, blowflles, clcadas, night insects - so as to decide what place, time, and circumstances are the most practicable ones for recording.

Magnetic tape is relatively cheap compared with the price of a recorder. It is vital that the fleld worker have an adequate supply
of tape, and that towards the end of his stay in the fleld when he has better grasp of the language and the problems to be solved, he be generous in its use. There are many situations where tape recording is vital - the informant is avallable for only a short time, or he is the last speaker of an otherwise extinct language, or for one reason or another he will not repeat any utterance - so vital that it is advisable to have a tape recorder running without stop right through the informant session 33 This provides much more information than one's written record usually contains. Also, this is much more economical of time than the method of just recording the more important 1 tems of data. For instance, in survey work I have found that to altermate between writing and recording wordilsts takes about 50% inore time than does simultaneous writirg and recording. The linguist should take several empty tape reels to the fleld, and use a new one each time he wishes to lutermipt his work on one tape to use another tape. Eventually, this saves a lot of time that would otherwise be spent in rewinding the tape and finding the right place again.

Tape recording can assist the linguist in his language learning and attaining his goal of conversational fluency. He may record phonetic drills and use thein to improve his pronunciation, especially for stress, length, tone, rhythm, and intonation. In the absence of conversational opportunities, listening to texts over and over again on tape helps limprove one's recognltion of intonation pattems, function morphemes, and common word combinations. Drills of both words and complete sentences may be used for mimicry once one has a fair grasp of the phonetics involved and the attaining of normal speaking speed is the main problem. Occasionally one should record one's own volce alongside that of one's informant, using the same utterance. Listening to such recordings is a kind of shock therapy, spurring one on to more frequent and careful mimicry. ${ }^{34}$

Whenever phonological contrasts (especially prosody) present a hearing difficulty liberal use can be made of a tape recorder to take down all the data that seem to be crucial to the phonemic analysis. Such tapes can be used for multiple playback (without tiring as does informant), can be stored for checking later when the fleld worker's earing has sharpened by practice, or can be submitted to a more experlenced linguist for his evaluation.

Some situations require the recording of short portions of speech close intervals, as in preparing language-learning drills or palr ests. This roulres rood control of the stop-start mechanism of the tape recorder. It also requires a considerable degree of cooperation ron the informant so that he will say exactly what is needed when it is needed. A method I found useful at Telefomin was to indicate to the informant in the trade-language the utterance that I wanted and then walt untll he sald 1 . When he sald the vernacular I wanted, I would switch on the recorder, say something in English to 1 dentify or
translate the 1tem, pause, then signal the informant who would say the vernacular utterance into the microphone. If the informant doesn't say the desired utterance, I re-elicit till he does. It is essential to have the informant actually say the desired utterance before beginning the recording, otherwise he is likely to hesitate at the crucial moment in the recording or say something else that is not wanted. In either case one may feel this has spollt the recording and take time to erase $1 t$, and in the process perhaps offend the informant.

It is a popular pastime to record many hours of text material on magnetic tape, and to bring it back from the fleld for transcription and analysis at home. 35 Unless the linguist knows the language well this is a waste of time and tape. To transcribe tape without an informant requires the ability to recognize immediately the elisions and contractions that occur in speech at normal speed, and the abllity to weigh up the various lexical and syntactic possibilities so as to reconstruct the occasional word obscured by nolse on the tape. Many or us don't know the language we are studying that well, and need to bring home more than a text on tape. It is essential to transcribe the tape onto paper whlle still in the fleld. ${ }^{36}$ It is best to do this as soon as possible after recording, using as informant someone who was present when the recording was made, if possible the person whose voice was recorded. I have found it most satisfactory not to transcribe directiy from the tape, but to use the tape as an informant prompting device, and to transcribe from the informant after he has heard the tape and repeated 1 t, a few seconds at a time (in pause groups where possible). 37 Some informants are good at this tiring work, but others are quite unsatisfactory because they give the meaning of what they hear from the tape in different words rather than an exact repetition. Even a good informant will sometimes say something different from what the lingulst feels he can hear on the tape. It is best not to argue with the informant, but to transcribe both versions. Usually the difference is that between slow and fast forms. For instance, my Teleefool informant always insisted on the slow form kanubeé '1 1' where I often heard nubeé on the tape.

Towards the end of my fleld work I found that every hour of continuous speech on tape took me about 70 hours (3 hours per day was about all the informant and author could tolerate) to transcribe phonemically, to ascertain the meaning of all unfamiliar morphemes and grammatical features, and to obtain a fairly accurate free translation. Recordings that are too soft, or have too much noise, or are of speakers who are excessively fast, take about twice as long to transcribe and usually aren't worth that much field time.

Once storles have been recorded, the fleld worker's tape recorder is likely to become a source of communt ty entertainment. He will often be pressed to replay varlous of his tapes by way of payment for story telling. Whenever I record text I have found it satisfactory to
play back just the last few minutes of the text. This is still some kind of reward for the person glving the text, without being boring or time-consuming, and at the same time serves as a check that the recording is technically satisfactory.

Because of community interest in one's recordings and because playing back is likely to be a public affair at any time (unless one uses headphones), it is wise to check the meaning of what has been recorded as soon as possible, either with the person who gave the text or with a trusted informant. If any of the content is offensive in any way, or involves taboo topics, then this tape must be clearly marked that it is not for public replaying. I prefer to erase such material completely so as to avold any danger of embarrassment or marring of my relationship with the informant or his community. one way to avold recording such material is to make recordings under circumstances that could be regarded as public in some way. If both sexes are within earshot at the time, taboo toplics are not likely to be recorded, and if several people are within earshot insults are not likely to be used without the linguist knowing. Although taboo topics are of interest to anthropologists and may even be of inguistic interest too, the difficulty of finding adequate privacy for replaying and transcribing it on the field is considerable, as is the danger of accidentally having the replay volume too loud, and it seems wise to obtain such texts without a tape recorder. I know of a field worker who replayed a tape for entertainment, without realizing that it contained material highly insulting to one of the audience. In a flash, the man was brandishing a bush-knife and chasing the informant and his relatives.

Sometimes it is difficult to get text materlal. Informants who seem uninterested in telling stories may be encouraged to give an account of some very recent event in which they participated. Some fleld workers encourage reluctant informants to tell a story in the trade-1anguage and then ask them to say the same thing in the vernacular. ${ }^{38}$ However, it has beon my experience that the vernacular version, being a repetition, is usually much shorter and less interesting than the trade-language version. of course, even short texts are better than no texts. Accounts of crafts, customs, warfare, and blographles are other types of toplcs for text collection. Personally I have avolded folklore and similar traditional accounts because they are likely to contain archaic language forms rather than the language spoken today. It also happens that much of the folklore at Telefomin is the property of the initiated men, and it has not been recorded to avold accidentally breaking taboos by playing back within earshot of women or children. Another device for getting text material is to reDlay a story or account previously recorded, and then ask the informant to tell the same story again in his own words. This may be done several times over for the one story, elther with different informants
or with the one informant over a period of months, thereby providing a set of similar texts all describing the same physical or soclal situation. These are a potential source of paradigmatic material and for material involving grammatical transformations. ${ }^{39}$ Another way to get text material when few informants get the 1 dea, is to get a group of people together when they are relaxed and in a talkative mood (after the evening meal, say). If one person can be induced to tell even a short story, thie other members of the group are soon eager to have their turn to record a story and hear the replay. Another way is for the linguist to attempt to tell sone short story, and sometimes storles will come tumbling out in response. Some linguists first elicit a considerable amount of vocabulary in a given semantic domain, and then immediately request text material. This vocabulary stimulates reluctant informants to give stories or ethnographic accounts, and also prepares the lingulst for transcribing the text. ${ }^{40}$

Conversations recorded on tape are prize material for the grammarlan, but natural conversations are difficult to record. Those staged in front of a microphone are stiff, but may become more natural as the participants become more interested in their topic (key: suggest a "hot" topic), especially if the field worker can forget his tape recorder (or the direction of the microphone or the level indicator) and take a genuine but non-vocal interest in the conversation. Another way uf obtaining records of natural conversation is to leave the recorder all set up in a suitable semi-public place, and as soon as one hears a conversation in progress switch $1 t$ on without the participants knowing. Alternatively, two or three people could be ushered into a room where the recorder is usually used, with the recorder previously switched on in case a conversation should begin. It may be advantageous to cover the microphone with cloth to make it less obvious and to cover the top of the recorder so the moving reels can't be seen. I record only conversations of a non-personal nature, conversations held in some kind of public situation. It is good to play back the tape immediately to the participants for their approval, or 11 that is not possible, to a trusted informant, to make sure that no one will be offended by the keeping or studying of the recording. ${ }^{41}$ Linguists have differing views as to the value of a single informant recording imaginary conversations. ${ }^{42}$ Conversations between two people are the best; the more people participating the more likely it is that several people will talk at once, aild this is almost impossible to transcribe from the tape.

In conclusion, one can but relterate what others have sald: "Proper fleld procedure is absolutely essentlal to any adequate analysis or description of a language, but frequently it is the most neglected aspect of the linguist's training. ... He should have some understandlng of the various approaches to collecting data, of the most successful ways of handling informants, and of the methods by which the field procedure may mosi advantageously supplement the analytical processes. " ${ }^{43}$

NOTES

1. Pre-1iterate peoples that have had littie or no contact with Western education or ways of 11 fe are here called "unsophisticated", rather than the less ambiguous but more coloured "primitive".
2. This study was supported by a scholarship from The Australian National University. For the sake of literary style much of the presentation is in the third person or inpersonal. These Teleefodi expertences are occasionally supplemented by the author's expertences with unsophistlcated informants elsewhere in New Guinea and the Phillopines gained under the ausplces of the Sunmer Institute of Linguistics, and by the experiences of other lingulsts and anthropoloLingulstics, and by the exper such.
g1sts, cleariy indicated as sumer
3. The best general guide to informant techniques is Nida 1949: 175 191. Discussions of the general approach to informants are also found In: Sloomfleld 1942, Capell 1940: 67-72, Collinder 1963, Cowan et al. 1958, Cunnings 1916, Elson and Picketr 1962: 147-151, Gleason 1.961: 287-290, Henry 1940, Hilger 1954, Keesing 1957: 23-34, Mead 1939, Nida 1947. 1950, Paul 1953, Royal Anthropological Institute 1951: 29-46, 208-218, Ward 1937, Wolfe 1959: 18-24.
4. See also Pike 1947: 231, Cowan et al. 1958. "Fleld worker" and nlingulst" are here used interchangeably for "lingulstic fleld worker"
5. Occasionally the field worker and informant may rely on an intermedrate language other than a trade language, such as another vernacular or the language of the fleld worker.
6. This suggestion cane from several colleagues of the Summer Institute of Lingulstics.
7. This suggestion cones from Royal Anthropological Institute 1951: $44-45$ and from M. A. Jaspan in private communication. See also Keesine 1957: 34.
8. This experience was mentioned by S.A. wurm in private communication.
9. See also Swadesh 1954.
10. Collinder 1983 also warns against alphabetical word lists. One 10. Coll be deceived by the pubilcation of word lists in alphabetical nust for easy reference. For example, Swadesh 1954 gives his 200 words alphabetically but mentions the need to elicit the words in semantic groupings.
11. Pop 1955 shows the varlety of linguistic questionnalres that
linguists, and especially dialect geographers, have used down through the years. See for instance his p. 19 (Balbi 1828), D. 49 (Grierson 1894), and pp.98, 133 (Cohen 1928, 1951). questionnaires not mentioned by Pop include: Bee and Pence 1982, Capell 1945, 1952, Dixon and Kroeber 1919: 49, Drabbe 1959: 161-184 (and other works), G1bbs 1863, Hymes 1960: 4-12 (discusses word llst design), Kirschbaum und Furer-Haimendor 1934, K1rschbaum 1935, Ray 1907: 391, 483 (and other works), Rowe 1954, Short culde 1933, Strong 1917 (and other years), Swadesh 1950, 1954, 1955, Tri-Institutional Pacific Program 1952.
12. Professor Collinder of Uppsala tells me he has had similar experiences.
13. This practice has also been noted by Brongersma and Venema 1962: 114, 143.
14. See also Gleason 1981: 286-311, Nida 1950: 86-87, 133-139.
15. Pike 1947: 105 also discourages relying on minimal pairs when analysing pitch, but for a different reason - their relative infrequency in the lexis.
16. Gleason 1961: 301, P1ke 1948: 44
17. Harris 1951: 32-41. See also Chonsky 1955, 1981: fn. 15, 1962: 96-99, Halle 1954: 200, Hockett 1955: 146.
18. To make a detalled study of the free variant ranges of two contrasting phonemes it would be possible to replay such a tape twenty times, say, and to identify allophones in utterances heard nost consistently as typlcal ones, and those in utterances heard least consistently as allophones at the fringe of the range of free variation. This suggestion is equivalent to the form of the pair test given by Halle 1954: 200.
19. However, another form of the test mentioned by Chomsky 1962: 96 does not depend on the positive identification of each utterance spoken and heard. Utterances are produced two at a time, and each time both the speaker and hearer are requested to indicate independently whether the palred utterances are "same" or "different". If tape recording is used the speaker and the hearer are the same person, and the two sets of judgnents are made at different times. These are compared, and again, about 100% matching is interpreted as phonemic contrast and about 50 gatching as homophony. An equal number of actual sames and differents need to be produced. This form of the test could concelvably (despite elicitation difficulties) be applied to synonyms, and 100% matching would correspond to allomorphic (free) alcernation, and provided that both speaker and hearer are demonstrably evaluating sounds rather than meaning, 50% matching would correspond to complete allomorphic identity. However, if the informant evaluates
meaning rather than sound, it is to be expected that he will always respond "same" and the test is incapable of distinguishing allomorphic alternation and identity.
20. See also Cowan et al. 1958, Cummings 1916: 32, Elson and Pickett 1962: 150, Henry 1940: 641, Loving 1961, McLeod 1961, N1da 1949: 175-178, Pike 1947: 231, Royal Geographical Soc1ety, 1944: 357-359.
21. Collinder 1963, Harris and Voegelin 1953, Hayes 1954, Voegelin and Robinett 1954.
22. Personal communications fron W.M. Rule and C.I. Frantz
23. Suggested by S.A. Wurm in private communication.
24. See also Cowan et al. 1958, Harris and Voegelin 1953: 75, Henry 1940: 641, LOVIng 1981.
25. There is an extensive discussion of "situational testing" in Wurn 1959.
26. Nida 1949: 177 suggests joint miming with an informant to ellcit 26. Nouns (see al so pD. 180-1); Capell 1940: 68 suggests using a pronouns (previously docunented ne an informant bilingual in that vernacular (I have had
27. The value of questions has been emphasized by Cummings 1916: 31, Henry 1940: 640, Mead 1939, Ward 1937: 29-30. The monolingual elicitation of questions is discussed by Curamings 1916: 32, Elson and Pickett 1962: 151, Loving 1961, McLeod 1961, N1da 1949: 176-177.
28. Material for systematic elicitation of grammatical features is found in Cumings 1916, Capell 1945, 1952, Elson and Pickett 1962,
 1950: 56-77: wurin 1959.
29. Bloomfleld, for example, as mentioned in Harris and Voegelin 1953: 61-62. Many writers regard paradignatic elicitation, especially using blilingual methods, as a necessary evil, and urge that great care be taken to check the results: Harris and Voegelin 1953: 62, 68, McLeod 1961, Nida 1949: 186, Wurm 1959. Voegelin and Voegelin 1957: $3-4$ claim that as a result of cross-checking, bilingual elicitation eventually ylelds rellable results.
30. Henry 1940: 837 lays similar stress on back-translation. Phililps 1960: 189 mentions that it is easier for a person to translate from his second language into his first language rather than vice versa. If accuracy of translation also follows this pattern, then the only circuinstances which would justify using back-translation as the
primary source of meaning seem to be (a) if the field worker is less competent in the trade language than the informant (it is difficult for the field worker to make an impartial assessment of this), (b) or If the field worker and informant speak considerably different idiolects/dialects of the trade language and the informant has much more trouble than the fleld worker in translating between the two.
31. The semantic analysis of function morphemes is well lllustrated by Garvin 1958.
32. See also Carroll 1953: 60-61, Gleason 1961: 309-311, Harris and Voegelln 1953: 70, Hayes 1954, Lounsbury 1953, Rowe 1953: 914-917, Swadesh 1954, Voegelin and Robinett 1954, Voegelin 1950.
33. Continuous recording is also recommended by Lounsbury 1953: 410.
34. Further ideas on the use of tape recorders for language learning may be gleaned from Oinas 1960.
35. Boas 1917 and Bloomfield 1942: 4, 14 have discussed the difflculty of training informants to dictate texts slowly, the inevitable symtactic distortion in dictated texts, and the near impossibility of obtalning natural conversational texts. The advent of good, cheap, portable tape recorders has greatly reduced these problems.
36. Transcription of tapes whilst still in the fleld has also been emphasized by: Collinder 1983, Harrls and Voegelin 1953: 70, Voegelin 1950, Yoegelin and Robinett 1954.
37. Lounsbury 1953: 410 also mentions the tape recorder's informantprompting function.
38. This suggestion comes from Henry 1940: 639.
39. The value of multiple accounts of the same incident for paradigmatic material is suggested by Pittman 1957.
40. This suggestion comes from Voegelin and Robinett 1954: 99.
41. Like Barnes 1963, I do not approve of completely secret recordings.
42. R.S. Pittman mentions (private communication) having good results with this method, whereas Harris and Voegelin 1953: 63 are quite pessimistic.
43. Nida 1949: 175.

BIBLIOGRAPHY

Barnes, J.A., 1963, Some Eth1cal Problems in Modern Fleldwork, British Journal of Sociology 14: 118-134.

3ee, Darlene and Pence, Alan, 1962, Toward Standardization of a Survey Word List for Papua and New Guinea, Oceania Linguistic Monographs 6: 84-75.

3loomileld, Leonard, 1942, Outine Guide for the Practical Study of Foreign Languages, Baltimore, Linguistic Society of Ainerica.

3oas, Franz, 1917, Introductory, International Journal of American Linguistics 1: 1-8; reprinted In: Franz 3oas, Race, Language, and Culture, New York, iKacmlllan, 1940, pp. 199-210.
rongersma, L. D. and Venema, G.F., 1962, To the Mountains of the Stars, London, Hodder and Stoughton.

Capell, A., 1940, Language Situdy for New Guinea Students, Oceania 11: 40-74.
1945, Methods and Materials for Recording Australlan Languages, Oceania 16: 144-176
1952, Methods and Materials for Recording Papuan and New Guinea Languages, Port Moresby, Territory of Papua and New Guinea, Departnent of Education Orficial Research Publication No. 2.

Carroll, John B., 1953, The Study of Language, Cambridge, Harvard University Press.

Chomsky, Noan, 1955, Semantic Considerations of Grammar, Georgetown University Institute of Language and Linguistics Monographs 8: 141153 (quoted by Chomsky 1962: 96)
1961, Some Methodological Remarks on Generative Oraminar, Sord 17: 219-239.
1962, Syntactic Structures, Janua Linguarum No. 4, s'-Gravenhage, Mouton. (Second Printing.)

Collinder, Bjorn, 1963, How a Linguist Studies Aboriginal Peoples, typescript (Public Lecture at The Australlan National University).

Cowan, George M. et al., approx. 1958, The Monolingual Approach in Lingulstic Study, typescript.

Cumnings, Thomas F., 1918, How to Learn a Language, New York, published privately on the press of Frank H. Evory \& Co., Albany, N. Y.; also published in London.

Dixon, Roland B. and Kroeber, A.L., 1919, Linguistic Familles of

Callfornia, University of California Publications in American Archaeology and Ethnology 16: 47-118.

Drabbe, P., 1959, Kaeti en Wambon: Twee Awju-dialecten, s'-Gravenhage, Koninklijk Instituut voor Taal-, Land- en Voikenkunde, Nijhoff.

Elson, Benjamin and Pickett, Velma, 1962, An Introduction to Morphology and Syntax, Sanca Ana, Callfornia, Summer Institute of Linguistics.

Garvin, Paul L., 1958, A Descriptive Technique for the Treatment of Meaning, Language 34: 1-32.

Gibbs, George, 1863, Instructions for Research Relative to the Ethnology and Philology of America, Smithsonian Miscellaneous Collection vol.7, art.11, Washington, D.C., Smithsonian Institution Publication 160 (quoted by Hymes 1960)

Gleason, H. A., Jr., 1961, An Introduction to Descriptive Linguistics, Revised Edition, New York, Holt, Rinehart and Winston.
Halle, M., 1954, The Strategy of Phonemlcs, Word 10: 197-209
Harris, Zellig S., 1951, Methods in Structural Linguistics, Chicago, University of Chicago Press.

Harris, Zellig S. and Voegelin, Carl F., 1953, Eliciting in Linguistics, Southwestern Journal of Anthropology 9: 59-75.
Hayes, Alfred S., 1954, Fleld Procedures While Working with Dlegueño, International Journal of American Linguistics 20: 185-194.
Henry, Jules, 1940, A Method for Learning to Talk Primitive Languages, American Anthropologist 42: 635-641.

Hilger, M. Inez, 1954, An Ethnographic Field Method, in: Robert Francis Spencer, Ed., Method and Perspective in Anthropology, M1nneapolis, University of Minnesota Press, pp. 25-42.

Hockett, C. F., 1955, A Manual of Phonology, Indiana University Publications in Anthropology and Linguistics Memodr 11.

Hymes, D.H., 1980, Lexicostatistics So Far, Current Anthropology 1: 3-44. (See also 1: 338-345.)

Keesing, Felix M., 1957, Field Guide to Oceania, Field Guide Series Number One, Washington, D.C., National Academy of Sciences National Research Council, Publication 701.

Kirschbaum, P. Franz J., und Fîrer-Haimendorf, Chrlstoph von, 1934, Anleitung zu ethnographischen und linguistischen Forschungen mit besonderer Berücksichtigung der Verhäl tnisse auf Neuguinea und den
umliegenden Inseln, Wien, Anthropos-Institut. (pp. 42-83 are by P. Jos. Schebesta.)

K1rschbaun, P. Franz J., 1935, Block für sprachliche Aufnahmen in NeuGuinea, Wien, Anthropos-Institut.
Lounsbury, Floyd G., 1953, Field Methods and Techniques in Linguistics, 1n: A.L. Kroeber, Ed., Anthropology Today, Chicago, University of Chicago Press, pp. 401-416.
Loving, Aretta, 1981, on Learning Monolingually, in: 1981 Workshop Papers of the Sumner Institute of Lingulstics, New Guinea Branch, Ukarumpa, Territory of New Guinea, pp.1-4 (mimeo).
McLeod, Ruth A., 1961, Monolingual Approach, in: David D. Thomas, Ed., 1961 Work Papers of the Sumuer Institute of Linguistics, University of North Dakota, Vol.5, pp.33-35 (mImeo).
Mead, Margaret, 1939, Native Languages as Fleld Work Tools, American Anthropologist 41: 189-206. (See also Lowle's reply 42: 81-89.)

N1da, Eugene A., 1947, Fleld Techniques in Descriptive Linguistics, International Journal of American Linguistics 13: 138-146. 1949, Morphology, and ed., Ann Arbor, University of Michigan Press. 1950, Learning a Foreign Language, New York, Comittee on Missionary Personnel of the Foreign Missions Conference of North America.
Oinas, Fellx J., Ed., 1960, Language Teaching Today, Research Center in Anthropology. Folklore, and Linguistics Publication 14. (See also Publications 18 and 28.)
Paul, Benjamin D., 1953, Interview Techniques and Field Relationships, In: A.L. Kroeber, Ed., Anthropology Today, Chicago, University of Chicago Press, pp. 430-451.
Phillips, Herbert P., 1960, Problems of Translation and Meaning in Fleld Work, Human Organization 18: 184-192.
Pike, Kenneth L., 1947, Phonemics, Ann Arbor, University of Michigan Press.
1948, Tone Languages, Ann Arbor, University of Michigan Press.
Pittman, R.S., 1957. A Method for Ellciting Paradigmatic Data From Text, in: Work Papers Volume of the Summer Institute of Lingulstics, University of North Dakota, August, 1957 (mimeo).
Pop, Sever, 1955, Bibliographie des Questionnaires Linguistiques, Louvain, Commission d'Enquête Linguistique, Publication 6.
Ray, Sidney H., 1907, Reports of the Cambridge Anthropological Ex-
pedition to Torres Straits, Vol.3, Linguistics, Cambridge, Cambridge University Press.

Royal Anthropological Institute, 1951, Notes and queries on Anthropology, 6th ed., London, Routledge and Kegan Paul.

Royal Geographical Soclety of London, 1944, HInts to Traveliers, Scientific and General, Vol.2, 11th ed., London, Royal Geographical Society.

Rowe, John Howland, 1953, Technical Aids in Anthropology: A Historical Survey, in: A.L. Kroeber, Ed., Anthropology Today, Chicago, University of Chicago, pp. 895-940

1954, Cuestionario para la comparacion y clasificación de las lenguas indrgenas de Suramerica, Traduccion por Martha Hildebrandt, Repưblica de Venezuela, Ministerio de Justicla, Cuestionarios lingü'sticos 3, San Juan de Los Morros, Tip. "C.T.P." s.d. (Extrait du Boletin Indigenista Venezolano II 1954). (Quoted in: Bibliographie Linguistique de l'Année 1955: 298.)
Short Guide to the Recording of African Languages, 1933, International Institute of African Languages and Cultures, Oxford University Press. (Supplement to Africa 8(2).)

Strong, W.M., 1917-18, Vocabularies, in: The Parliament of the Commonweal th of Australla, Papua: Annual Report for the Year 1917-18.
Swadesh, Jrris, 1950, Salish Internal Relationships, International Journal of American Linguistics 16: 157-167.
1954, On the Penutian Vocabulary Survey, International Journal of American Linguistics 20: 123-133.
1955, Toward Greater Accuracy in Lexico-statistic Dating, International Journal of American Linguistics 21: 121-137.

Tri-Institutional Pacific Program, approx. 1952, Department of Anthropology, Yale University (illino).
Voegelin, C. F., 1950, Magnetic Recording of American Indian Languages and the Relationship of This to Other Kinds of Memory, Proceedings of the American Philosophical Society 94: 295-300.
Voegelin, C. F. and Robinett, Florence M., 1954, Obtaining a Linguistic Sample, Intermational Joumal of American Linguistics 20: 89-100.
Voegelin, Charles F. and Voegelin, Florence M., 1957, Hopi Domains, Indiana University Publications in Anthropology and Linguistics Memolr 14.

Ward, Ida C., 1937, Practical Suggestions for the Learning of an African Language in the Fleld, International Insticute of African
[30] 37

Languages and Cultures, Memorandum 14, Oxford University Press. (Supplement to Africa 10(2).)

Wolfe, Alvin W., 1959, Fleld Guide to West and Central Afrlca, Fleld Guide Serles Number Two washington, D.C., National Academy o Sclences - National Research Council, Publication 702.

Wurm, S.A, 1959, A Manual for Elloiting and Recording New Guinea Linguistic laterials, typescript, to be published.

A SURVEY Of THE OK wAIIty of laitguages

Alan Healey

O. Tritronuction
2. The frompen of the or flanily
2. Onmaximm of nithmages
3. Tatationships outside the ok pomily
\therefore Gmolution
0. mamotericis

We laneages of the or Family are spoken in adjacent parts of Irian Brat, the Trust Territory of Hew Guinea, and the Territory of Papua, as way be seen from the attached map. These languages may be divided jnto two sub-families on purely linguistic grounds, but this division siso corrolates well with toposraphical features. The Mowntain-On Sub-Family includes at least six languages, and perhaps ter. The be are spoken by a total ci some 30,000 people, most of whom live at a- aitude of from 2,000 to 6,000 feet in the valleys of the Star mountins and the mountains to the east. The Lowland-Ow SubFanily inclures at least three lenguages, and perhaps five. These are apoken by a total of almost 20,000 people, most of whom live in the swampy and low hilly couritry between the Kao River and the Tedi (Alice) and Fly Rivers.

Wach Suo-Farily nay be further broken down into Divisions as
ows: follows:

Fiountain-Ok Sub--Family (MO)
Ilivision A (MOA): Teléfól, Tifal, Kauwol, Faiwol, Setaman,
Bimin, Trans-Strickland
Division B (MOB): Mianmin, Wagarabai
Division C (MOC): Ngalum, Sibil
Iowlend-Ok Sub-F'amily ($\mathrm{I} O$)
Division A (IOA): Southern Kati, Northern Kati, Yonggom, Iwoer Division B (IOB): IInggirum, Upper Tedi

The position of Ngalum and Sibil within the Ok Family is uncertain because of inadequate information concerning them. They may well constitute a third Sub-Family of Ok rather than a Division of Mountain-0k. If such were the case a different classification of the languages would be appropriate:
nstem-ak
Miviona (= mon above)
Whath (=ion ebore)
memers (=100 above)
rardana-s
Buston h (= Toh above)
Drabion ty (: Tow ebove)
Te Hust of hese two classifications has been tentatively adopted Gmathon this rumvey.

Le ruitomas is a list of the language name abbreviations used in the wores

स Timin, monmon ona

TH wet. (Tmat)
IW Wato (Tmmet)
at melombe (Taimol)
fe nimolman (aiwol)
Fe Guman (Teimol)
FI Inculan (wamol)
is Seteman (Tramolir)
Fr Dolfiakmin (Faimol)
Cl Sto Qoliath fyemies
Wh orhem Keti by Enett and
hrow from informant hyem
W) Hisoel (eesch) (Southern Bati)

ET Satoniza (Southern Kati)
WI Winatie (Worthem Kati)
Wi Taumol
In) Thmand-ole sub- Pamily
Joh Tomand-or Division A

5CE Jowland-or Division A
D) Gammin

30 Eowtain-Oir Sub-Family
HOA Fountain-Of Division A
EOE Mountain-Ok Division B
WOC Howtun-ore Iivision C
NK Rativa (Minggirum)
MT Mingsixum (ininggirum)
WS Sibil (ngalum)
$O B$ Oksapmin from informant Bitel
flo Proto-Lowland-Oic
Pilio Proto-Mountain..Ok
1PO Proto-OK
TA Atbalmin (Tifal)
MF Mifalmin (Tifal)
TI Teléććc
TY Wopkeimin (Tifal)
Un Upper tedi
WG Magarabai
If Yonggom
2. The Thactuces on mive on Pailtiy

Each of the lenguages listed in the tentative classification vesented above is nov disoussed from the non-Ijnguistic point of viem: flemate language nemes, seogrephon-Ingulstic point of
population estimates are given, fragmentation into dialec'ts is mentioned where information is available, and the quantity and quality of data available are discussed.

1.1 MOUNTAIN-OK, DIVISION A

TEIEFÓL is the name given to the language spoken by the Teléfólmiín group of people living around Telefomin in the Australiar Territory of New Guinea, as well as in the Elip (Ilib) and upper IViar (Míná) valleys to the north. A second dialect of Teléfól is spoken by the Feramin (Fálamiín) on the headwaters or the Sepik to the south. The 1960-61 census showed 2797 counted plus 500 estimated Teléfólmiín and 835 Fálamiín. The author has a word list of 100 items plus l hour's tape recorded narrative in the Fálamiín dialect. However, his main work during the past five years has been in the Teléfólmiín dialect. This has involved the completion of the phonological and morphological analyses. The author's wife has been chiefly responsible for the syntactic analysis and the compilation of Australian Baptionary. In 1957 Rev. GoJ. McArthur of the analysis of Teléfól and pary society made a tentative phonemic stories and doctrinal materials. 200 pages (duplicated) of Bible

TIFAL is the name of the language spoken by the Tifalmin people in the valley of the Ilam River west of Telefomin, and Steinkraus has given this language name to all of the groups of people speaking dialects of this language. These include the various groups called Atbalmin by their neighbours to the east -- the Unankalinmin, Busilmin, Amtanmin, Arimin, and many other clans living in the valleys of the Din (or Bruchen) and ourm clans living in the the Atemkismin clan living in tho Iugum (or Casuarina) Rivers and all of these streans being tribue Dagiam (Dagayum?) River valley, Sepik River in the Australian Terries on the southern ${ }_{\perp}$ side of the language is also spoken by the 7opkeim of New Guinea. The Tifal living at the headwaters of the Ok that the author has experienced in gedi in Papua. The difficulty Wopkeimin that is not biosed (Faiwol) suggests that mon towards the language of interpretation living around Bultembip) may these people (and especially those Tifal is also spoken by the Urapmin gual in Tifal and in Faiwol. or the Sepik close to Telefomin man clan living on the western banks second language. The best of theny of whom speak Teléfól as a Topkeimin being a distinct dialect ord lists still give evidence of difference being the lion initial $/ \mathrm{g} /$ and medial $/$ i $/$ ence of phonological features (e.g. and Tifalmin-Urapmin seem to diphthong) similar to Faiwol. Atbalmin main difference between them beino other dialect groups, with the population is concerned, the being in vocabulary. So far as 150 and 500, the Tifalmin-Jrapmineimin have been estimated as between census), and the Atbalmin have been he been counted as 829 (1960-61 , and the Atbalmin have been estimated at under 2000 by
officers of the Australian administration. ${ }^{2}$ Tifal has been studied for more than two the Tifalmin dialect of Summer Institute of Linguistics, who has kind by Steinkraus of the two unpublished papers on the phonology pindy made available his words. Six pages of Bible stories heve plus a list of some 600 reliable material for the wopkin have been published. The most by Steinkraus. Many short word in is a list of 100 words collected Atbalmin, including lists by Steinkraus and been collected for Tierney, the longest containing 160 items.

KAUMOL is the name tentatively given to the language of the people inhabiting the upper Kauwol valley on both sides of the Indonesian-Papuen border. This includes the people on the Fatik River, the Benkwin people, the Bumdit people, and probably the Ablemkilmin. The latter group may exhibit bilingualism, with Tifal as a second language. In Papua, this population has been estimated as around 270 , so the population as far west as the Ok Denom may list of 60 words.

BAIMOL seems to be about the bast name ror the language spoken on the headvaters of the Fly River (Wok Feneng or Wok Bilak) and the Palmer is applied (wap). Actually, within the language area this upper Fly, but in the lowland country to the south this name of the applied to all mountain dwellers, including south this name is the west of the Faiwol pronunciation "Faiwoimin" "uage area. In some localities the pronunciation Fegolmini; is heard and at Telefomin the include: Imdalmin (Imdelmin) in the the clans speaking Faiwol and Ninglinmin in the Fly valley, An Ariv River valley, Atemkiakmin the Bol River valley and the headwaters of thekia, Bngkiakmin) in Yagamiakmin on the southern slopes of of the lionggop (Oggop) River, the Gipman, Jokfiaknin, and Figalin(min) as muk and Kaban ranges, and River. From a consideration of informants one goes down the Palmer the various clans the author is prepareds' reports on the size of population of the Faiwol language proup to suggest that the There seem to be several dialect group may be as large as 3000 . speaking a western dialect (they variations, with the Imdalmin second language), the Atemkiakmin would also seem to speak Tifal as a Wokfiakmin speaking a southern dialect. For Imdalmin there and the Gipman speaking a Steinkraus, for Wokfiakmin a list of 60 a short list of 50 words by Officer ${ }^{F}$. Esdaile, for the list of 60 words by Assistant District words by both Steinkraus and the min (Atemkiakmin?) lists of 100 author, and for Angkiakmin 600 author, for Gipman 170 words by the author. 600 words plus grammatical notes by the

SETARAN (Seltamanmin) is a small group on the headwaters of the Falmer River that appears to speak a language distinct from both Faiwol and Bimin. However, the only information available is a list
of 60 words by Assistant District Officer F. Esdaile, and more research is necessary to confirm the status of Setaman as a separate language.

BIWIN is the name tentatively applied to the language of the people living in the valley of the Wonggop River (Oggop) that flows into the Strickland just above the Devil's Race. They include the following clans: Bimin, Kuskusmin, Kwelmin, Onkarinmin, Kasanmin, and perhaps Korra. As very little patrolling has been done in this valley it is only possible to guess at a population of 1000 speaking this language. There is a 75 -word list of Kuskusmin from Patrol Officer J. Hicks, and 50 words by Rev. K. Bricknell, and the author has taken 550 words and a little grammar from an informant of the Bimin clan. Although this Bimin informant is a third generation descendant of a group of Oksapmin migrants into the Bimin area, his speech seems to show no greater similarity to Oksapmin than does Kuskusmin. 4

TRANS-STRICKIAND represents a group of four clans on the eastern bank of the Strickland that are known as Faiwol and are presumed to speak a language of the Ok Family. 5

1.2 MOUNTAIN-OK SUB-FAirily, DIVISION B

IMTHTMIN are estimeted at 1500 by Australian Administration officers, the people and language being known by the same name. They live in the northern part of the Fak (Hak) River valley, the Aki River valley and neighbouring tributaries at the headwaters of the August River, on the tributaries of the Upper May River, and perhaps on the Right May River. The author has 600 words and grammatical notes on the Mianmin language. There seem to be some slight dialectal variations between the many small clans.

WAGARABAI is a tentative name for the language spoken by the people living on the Wagarabai River, a tributary of the August River. Their speech is very similar to Mianmin, but different enough from it to warrant treating it as a separate language for the present. The 7 villages so far mapped in this area may well represent a population of 500. The people of the Right May River may speak Wagarabai rather than Mianmin. The people of the West Range further to the north are still completely unknown linguistically. The only Wagarabai data available consist of 60 words taken at Suganga by Patrol Officer N.J. Cavanagh and 1.80 words and sentences taken by J. Bass of the Summer Institute of Linguistics. The informant for the latter list was a l0-year old boy found by an Administration patrol at Imnai on the August River. According to the Administration interpreter at Green River, this informant originally came from the August headwaters, but according to mission lads with whom he now lives, he originally came from Birimei on the upper Idam River. If this latter should be true, then this is evidence for Wagarabai being spoken along the West Range.

1.3 GOUTTAIN-OK SUB-FAMILY, DIVISION C

WGALUW is spoken by the Ngalum people in and around the valley of the Nangul River (Ok Nangul) in Irian Barat, the valley also being called Kiwirok. 7 The population speaking this language extends from the Australian-Indonesian border to the valley of the Oix Bi to the west, and from the upper Sobger River in the north to the valleys of the Ok Bon and the Ok Sibil in the south. ${ }^{8}$ The Kupel people living in the Ok Bi valley (or the upper Sobger valley or the Samur valley?) stem to speak a dialect of Ngalum, and the people living south of the central range show dialect differences from the Ngalum people. ${ }^{9}$ As no comparable linguistic samples are available from these three groups (Ngalum, Kupel, Sibil), it is not possible to say whether these "dialects" are consistent with the standards applied throughout the rest of this listing. A recent estimate puts the Ngalum group at 15,000, and the comments made by Reynders suggest a polulation of at least 3,000 speaking the Sibil dialect south of the central range. Dr. Anceaux has some information on Ngalum, but the main work on this language has been done by members of the Unevangelized Fields lifission.

SIBII, though apparently a dialect of IIgalum, is entered separately because it is the only dialect of Ngalum in which any linguistic information has been published. This dialect is spoken in the valleys of the Ok Sibil and Ok Tsop, and perhaps the Ok Bon. As mentioned cbove, the population is probably at least 3,000。 Considerable study of this dialect has been made by U.F.M. missionaries and by Dr. Anceaux. The only data available to the author at the time of writing are a total of 80 miscellaneous words from three different sources, and a few general features mentioned to the author by Dr. Anceaux. 11 The only evidence that Ngalum and Sibil belong to Mourtain-Ok rather than to Lowland-Ok is lexical -the 80 words from Sibil mentioned above, and a list of 60 words from Ngalum which the author once saw long enough (before it was accidentally burned) to count 85% cognates with Tifal.

1.4 LOWLAIND-OK SUB-FANILY, DIVISION A

SOUTHERM KatI (Southern Wuju) is spoken on the lower Moejoe River in Irian Barat by perhaps 4,000 people. ${ }^{12}$ The language spoken by the Kowan people on the Fly River at its westernmost point may well be a dialect of Southern Kati, but no sample of their speech is available to the author. ${ }^{13}$ The most detailed study of Southern Kati was that made of the Wetomka dialect by Fr. P. Drabbé. His published material included 450 words; a brief statement of the. phonology, and a fairly extensive grammar that is most detailed for verb morphology and least detailed for syntax. 14 A list of 450 words (but a different selection from Drabbé's) from another dialect was published by Geurtjens under the name "Digoeleesch". 15 He the Bian that this dialect was spoken on the Digoel River north of the Bian River. However, this area now seems to be uninhabited and
the present location of the speakers of this dialect is unknown to the author（unless they should prove to be the Kowan people）． Another specimen of Southern Kati is the list of llo words collected by Austen from the village of Anu． 16

NORTHERLI KATI（Northern Puju）is spoken on the upper Moejoe River in Irian Barat by perhaps 8,000 people。 Fr．Drabbé has published a detailed study of the Ninatie dialect of Morthern Kati －－ 450 words，brief phonology，and extensive grammar． 17 Austen collec揗 a list of 110 words at the village of Kandam near the ok Birim．Dr．Schoorl has published a glossary of 160 anthropological terms from the village of Kawangtet．${ }^{19}$ Schoorl suggests that a separate dialect of Northern Kati is spoken in Kanggewot，and another in the village of Toemoetoe．This latter dialect is known as Are by the Ninggirum to the east，according to the present author＇s informants．A list of 190 words and sentences collected by R．Brown and R．Brett of the Summer Institute of Linguistics also seems to be from a dialect of Northern Kati．

YONGGOM（Yongom）is spoken along the Fly and Tedi（Alice）Rivers， mainly in Papua．Two villages of Yonggom speakers also live on the shores of Lake Nurray．The 1958 census figures have been analyzed to show 2，000 Yonggom speakers in Papua．It is assumed that there are very few in Irian Barat，and any that are there would have been counted above as speakers of Southern Kati，a closely related language．Yonggom word lists available include 100 words by the author from Oya No．2， 90 words by Assistant District Officer J．\because ． Kent from Watakdum，and 110 words by Austen from both Warapka and Ort Ambip．

The above three languages are quite similar to each other and there seems to be a fair degree of mutual intelligibility between ITorthern Kati and Yonggom。 It is possible that careful field research will uncover one or two more languages of this sub－group in Irian Barat．For example，Iwoer．

IWOER is the name tentatively given to the language of the people living in the valley of the Iwoer River（Ok Iwoer）in Irian Barat and eastwards almost to the Ok Denom。 There is no clear evidence of the northern，southern or western boundaries of this group，but one concludes from a study of Dutch maps and writings that the population is rather light in this area．It seems unwise to suggest more than 1,000 speakers．${ }^{20}$ The status of this language within the Ok Family is quite unknown．However，seeing it is not a dialect of IFgalum，but is partly intelligible to Kati speakers；it may well belong to the Lowland－Ok Sub－Family and be similar to either Kati or Ninggirum． 21 The author has no sample of this language，and to his knowledge no one has studied it．

1.5 LOWLAND-OK SUB-FAMILY, DIVISION B

NINGGIRUM (Ninggeroem, Ninggirem, Ningirim) is the name which the Xati people gave to the Obgwo people liv'ing between the Ok Birim and Ok Tedi rivers, and the latter now accept it as their own name. 22 The IVinggirum lenguage is spoken by the large group of that name, by the Kasiwa or Kativa group to their north, and by many smaller clans living in the same general area. The dialectal differences between the Ninggirum and Kasiwa are mainly ones of pronunciation. The Jutch 1956 censu: countcł I, 078 Ninggirum, and the Australian officers had counted about 2,246 Ninggirum and Kasiwa in Papua by 1962 and estimated 200 to 500 more. Thus there are at least 3,500 speaking this language. For the Ninggirum dialect the author has 550 words and a little grammar, there are 80 words by Brown and Brett, and 90 words by Kent. For the Kasiwa dialect there are 90 words by Kent and 60 words by the author.

UPPER TREDI is a temporary designation for the language or languages spoker north of the Ninggirum language area. The author's guess is of a small population of 500 because of the rugged limestone country. Kent collected 90 words from the Katapka clan on the middle Ok Ma, Steinkraus obtained 60 words from the Denkayak people on the Tedi headwaters, and Austen has 30 words published from the head of the Tedi. 22 a

2. COMPARISON OF OK LANGUAGES

In comparing the languages of the Ok Family, the reliability of the statements about each language is in proportion to the quantity of data available and the opportunity for checking phonemic conclusions. The phonemic analyses of Tifal and Teléfól are quite reliable, and those of Mianmin, Southern Kati (both Digoel and Hetomka) and Northern Kati are almost as reliable. 23 However, the phonemic descriptions of Angkiakmin (Faiwol), Bimin and Ninggirum are still rather tentative, and those of the other languages and dialects are little more than informed guesses, guided by comparison with better known languages, but based upon inadequate data.

The or languages have relatively small phoneme inventories; no language seems to have more than 14 consonants and 7 vowels. Every language includes in its inventory $/ \mathrm{a} / \mathrm{p} / \mathrm{e} / \mathrm{g} / \mathrm{i} / \mathrm{a} / \mathrm{k} / \mathrm{g} / \mathrm{m} / \mathrm{g} / \mathrm{n} / \mathrm{g}$
 Milountain-0k languages have $/ \mathrm{s} /$ and $/ \mathrm{f} /($ or $/ \mathrm{p} /$), but none of the Lowland-ok languages have $/ \mathrm{f} /$, though a few nay have $/ \mathrm{s} / .24$

2.1 Consonants

In Tables I and 2 the principal allophones of the consonants of Ok languages are presented in such a way as to show at the same time

TABLE 1 . CONGONANT ALLOPHONES OF THE MOUNTAIN-OK LANGUAGES

TABLE 1 (cont.)

	$\mathrm{Dive}_{\mathrm{C}}$			Division A				$\begin{aligned} & \mathrm{BH} \\ & \mathrm{BI} \end{aligned}$	TL	Division B	
Phoneme and Position	TS	TA	$T \mathrm{~T}$	TYT	KW	FI FG FF PA FW	FS			iN	WG
m-	m	m	m	m	m	m	m	m	m	m	m
- $\mathrm{in}-$	m	m	m	m	m	m	m	m	m	m	m
-m.	m	m	m	m	m	m	m	m	m	m	(m)
		${ }^{n}$	n			n			\cdots	n	n
-n-		n	n			n	n	n	n	n	n
-n	n	n	n	n	n	n	n	n	n	n	(n)
ŋ-	0		-			0		-	-	0	
--3		0	0			\bigcirc		0	$9 / 0$	0	5
-0	0	-	0	0	\dagger	0	\dagger	0	\bigcirc ¢	0	
w-	w	w	w	w	w / b	w	w	w	w	w	w
-W-	w	w	w	w	w	w / v	v	w	-	w	w
$\mathrm{y}-$	y	y	y	y	y	y		y	y	y	y
-y-	y	y	y	y	y	y	y	y	y	_	
1-		f	f / Pp	f	\mathfrak{Y}	$\underline{1} / \mathrm{p}$	f	\pm	\%	f	f
-f-		I	f	i		f/p		-	F	f	
h-			-			-		-	-	h	h
-h-			-			-		-	-	h	
-h			-			-		-	-	-	
S-	s	s	s	$s / s{ }^{\text {ch }}$	s	s	s	s	s	s	.s
-s-	s	s	s			s		s	s	s	s
-s		s	s	s	s	s	s	s	-	s	(s)

PABIE 2. COMSONAMTAL ALLOPIONES OE THE LOMLAND-OF LAIVGUAGES

Phoneme	Division A					Division B		
$\text { Position } K D$		EM	YM	KA	KIV	NTI	NK	UT
b...	p / mb	mb / b	b	b	-	b / p	b	b
-b-	p / b	p	b / p	b / p	-	b	\ddagger	b / b
-b	; b / p	p	p	p	-	p	p	p
$p-$	-	-			p / b	-		
-p-	-	-			p	-		
-p	-	-			p	-		
t--	t	t	t / t	${ }^{\text {t }}$	t	t^{h} / t^{h}	$t / t^{\text {h }}$	t
...t-	t	t	t	t/d	t	t/	t^{h}	t
-t	t	t	t	$\hat{t / t}$	t	t	${ }_{\text {t }}$	t
à-	d	nd/a	${ }_{0}^{\text {d }}$	d	-	d/d	d	
-d-	$\stackrel{r}{r}$	x	$\stackrel{\circ}{r} / 1$	$\stackrel{r}{r} / \mathrm{r}$	--	$\stackrel{r}{r}$		$\stackrel{r}{r} / \hat{\sim}$
(-d)	d/r	-			--			
r-	-	-			(d)	-		
-r-	-	-			r	-		
-r	-	-			-	-		
1-	-	-	(1)		-		$1 / 1$	
--1-	-	-			-	-	$\dot{\dot{r}} / 1$	1
-1	-	-			-	_		1
g-	-	-		9%	-	¢/vg	g	
$\begin{aligned} & k- \\ & -k- \end{aligned}$	$k / 8$ k / g				g		$\mathrm{k} / \mathrm{k}^{\text {h }}$	k
$-k-$ $-k$	$\begin{aligned} & k / g \\ & k \end{aligned}$	5	$k / \check{5}$	k / k	g^{g}	ธ์	k/ F	$5 / \mathrm{x}$
-2		$\mathrm{k} /$ है	k	k / k	$\mathrm{k} / \mathrm{k}^{\mathrm{h}}$.	k	k	$\mathrm{k} / \mathrm{k}^{\mathrm{h}}$
$\mathrm{k}^{\text {mi }}$	-	--			-	-		
$g^{\text {w }}$	-	-			-	-		

TABLE 2 (cont.)

the positional distribution of the consonant phonemes. 5 The phonetic symbols employed are those Iound in Pike's Phonernics. ${ }^{25}$ For Sibil (IVS) and Kati (KD, KM, KMA) the symbols bear almost a onc-to-one correspondence to the orthographies of the published sources, and the seme is true for a few items in Yonggom (YM), Kativa (NK) and Upper Tedi (UT). In particular, ng has usually been regarded as $/ \mathrm{y} /$, and the j of Dutch authors has been written as /y/. A stroke (/) indicates both free and conditioned variants.

The velar nasal $/ \mathfrak{y} /$ is quite frequent in word-final position in all languages, but occurs only rarely in intervocalic position, and in fact no occurrence of it in intervocalic position is on record for Northern Kati (idi) nor for several of the languages for which only limited data are available. Vord-initial $/ 0 /$ has been observed only for fianmin (ip) and Anclkiakmin (FA), and possibly for Digoel (ID) and Sibil (is). 26 In several languages such as Teléfól (TI), $/ 0 /$, like $/ \mathrm{k} /$ and $/ \mathrm{g} /$, tends to be almost uvalar when contiguous with central and back vowels.

The parenthesas shown around all word-final allophones of Wagarabai (WG) indicate that these consonants occur as stem-final clements in connected speech, but that, due to the presence of suffixes or clitics, they should probably be regarded as intervocalic allophoncs. When stems are uttered in isolation the final consonant of the stem is alnost always lost. The same phenomenon occurs to a lesser extent in connected specch. 26 a

The Winggirum (NT) consonants $/ \mathrm{n} / \mathrm{g}, \mathrm{t} /$ and $/ \mathrm{d} /$ are retroillexed contiguous to $/ 0 /$, $/ 0 /$ and $/ a /$.

In Iigoel (KD) Iive occurrences of word-final [h] have been rocorded by ceurtjons. It may well be that this is a free variant devoicing of word-final vowel, in which case this [h] would not be shown in a phonemic transcription. However, quite a few Digoel. words with word-final vowel correspond to words in the Metomka dialect (KM) with an extra word-final consonant, and the only two Digoel words with final [h] whose cognates have been identified in Fetomka correspond to Wetomka final $/ \mathrm{k} /$, namely, $\mathrm{KD} /$ burnoh $/$, Ki/bumok/ 'spittle'; KD/Kibih/, Kilkibik/ 'now'. Because of this, $/ \mathrm{h} / \mathrm{is}$ tentatively assigned phonemic status in Digoel.

Inost words which have initial vowel in the Ninatie dialect (KN) cormence with $[\mathrm{h}]$ in the dialect of Northern Kati recorded by Brett and Brown (KA). This is also tentatively assigned phonemic status.

The occurrence of $/ \mathrm{h} /$ in intervocalic position in Ninggirum is rather uncertain, since most of the apparent occurrences prove to be word-initial upon closer investigation. Some probable occurrences are: /muhii/ 'nipple', /weo ahaanben/ 'dumb', and perhaps/koohaí/

In iianmin and Tinggirum a considerable number of vowel sequences occur. Although it would be possible to interpret sequences such as [ai] and [au] as, /ay/ and/aw/ when they occur ass syllable nuclei, the present tentative analysis regards them as /ai/ and /au/ to parallel other non-wsuspect vowel sequences such as $/ \mathrm{ae} / \mathrm{s} / \mathrm{ao} / \mathrm{g} / \mathrm{ea} / \mathrm{s}$ /oe/ and /eo/. This precludes the occurrence of / $\mathrm{y} /$ and /w/ in wordfinal position. Vocoid sequences cormencing with $[u]$ and [i] are discussed below in section 2.4 .

Tinggirum /w/ tends to be fricative [b] or [v] preceding/i/ and /e/。 A similar type of complementation seems to occur in Kativa (NK) and Upper Tedi (UT).

The phonemic status of [s] and [ts] in Yonggom, Ninggirum, Kativa, and Upper Tedi is uncertain. There are a few occurrences of these sounds, and there is some evidence that they may be conditioned variants of /t/ in these languages.

Sibil is the only language in which two bilabial stop phonemes $/ b /$ and $/ \mathrm{p} /$ occur. The only evidence of this contrast available to the author is:

/pamin/	'a type of bow'	/baab/	'my elder brother'
/pik/	'his elder brother'	/bilminon/	'plaited wristband'
/upi/	'earthworm'	/bobip/	'Jew's harp'
/awot mapom/	'snake sp.'	/Ebon/	'a type of bow'

In the languages in which they occur, there is a clear contrast vetween $/ \mathrm{t} /$ and $/ \mathrm{d} /$ and between $/ \mathrm{k} /$ and $/ \mathrm{g} / .27$ For example:

Tis: /aitiib/ 'animal sp.'
/doolba/ 'he writes'
DA: /auub/ 'ririend'
/dam/ 'flesh'
/kaduun/ 'widow'
/waadirn/ 'rat sp. .
/gaal/ 'scar'
/gatim/ 'weak'
Bri /raib/ 'road'
/riim/ 'flesh'
/titiib/ 'casuarina tree'
/toolba/ 'he stands' ${ }^{28}$

/tuub/	'breastbone'
/taif/	'smell'
/katuun/	'knee'
/naatim/	'my father'
/kaal/	'skin'
/kasim/	'earthworm'
/taib/	'upper arm'
/tiib/	'above'

	/kureb/	'bird of paradise'	/kuteb/	'ash'
	/karim/	'body hair'	/katin/	'knee'
	/goor/	'forked'	/koor/	'frog'
	/gimgim/	'mosquito'	/kimkim/	'root'
TL:	/dùl/	${ }^{\text {'scar }}{ }^{29}$	/tùl/	'fireplace'
	/aítíb/	'rat sp.'	/títíb/	'casuarina tree'
	/foódeék/	'praying mantis'30	/boótá/	'she'
漣;	/ràm/	'body'	/tàm/	'cheek'
	/rǐm/	'flesh'	/tǐr/	'dog'
	/ìràm/	'rat sp.'	/ítám/	'dance '
	/kùràn/	'meat'	/kùtàp/	'ash'
	/gát/	'dry wood'	/kàt/	'thin'
	/gìr/	'cold'	/kin/	'eye'
KD;	/dabadem/	'to weed'	/tabandem/	'bleeding'
	/dinama/	'dig'	/tinim/	'bow'
	/kudub/	'long'	/tana kutub/	'boy'
	/ade ${ }^{\text {/ }}$	'cry'	/aten/	'grat'
KII:	/daya/	'wall'	/tama/	'termite'
	/dine-/	'descend'	/tide-/	'sit'
	/adob/	'two'	/aton/	'sun'
	/idib/	'widow'	/mitik/	'ni.ght'
Kit	/rua/	'(finger)nail ${ }^{31}$	/tuk/	'short'
	/eren/	'Ieech'	/eten/	'mosquito'
	/kiri/	'new'	/am kiti/	'night'
Min:	/don/	'leg'	$/ \mathrm{tcm} /$	'cockroach'
	/dey/	'32 (counting unit)'	/tem/	'hole'
	/adon/	'sun'	/otom/	'coconut'
	/on kidim/	'crown pigeon'	/kitim ben kadidin/	'deaf:3la

The status of word-final / $/ \mathrm{L} /$ in Digoel is in doubt, despite the occurrence of word pairs that appear to show e contrast with $/ t /$, e.s. /rod/ 'moon', /bot/ 'stone'; /tamad/ 'stone adze', yamat/ 'temple (head)'. Drabbé states for the retomka dialect that / / /
occurs at the end of a word only as an allomorphic variant of wordfinal/t/ when the following word commences with a vowel. 32 Geurtjens' list contains just one clue to such an alternation between $/ t /$ and /d/ in Digoel: the word 'skin' 1 s transcribed in various entries in the list as both /kat/ and /kad/.

The complex consonant $/ \mathrm{k}^{\mathrm{W}} /$ occurs only in some of the Mountain-Ok languages. The same phonetic sequence [kw] occurs rarely in Tifal, but there Steinkraus has interpreted it as a consonant cluster /kw/. Mianmin may contain a complex consonant $/ \mathrm{g}^{\mathrm{w}} /$, but more data is needed to substantiate this suggestion. Ninggirum seems to have word-initial (and syllable-initial) consonant clusters, with the first item of such a cluster being almost any consonant (/y/ has not been observed there yet), and the second item being /w/ or $/ \mathrm{y} /$. The contrasts between /ty/ and /ky/ and between/dy/ and/gy/ appear to be neutralized, resulting in a single pair of palatal stops with slight [y] off-glide. However, this needs checking. Many words seem to commence with a consonant cluster whose second element is $/ d /(=[\check{y}]$ in this context). Nevertheless, it is possible that such words may prove to have a very short vowel phoneme between these two consonants, as happens in Teléfól. 33

Of the three phonemes $/ \mathrm{d} / \mathrm{g} / \mathrm{r} /$, and $/ \mathrm{I} /$, some languages have just one ($/ \mathrm{d} /$ or $/ \mathrm{r} /$), and other languages have both $/ \mathrm{d} /$ and $/ 1 /$. In these latter languages intervocalic and word--final $[\check{r}]$ has been allotted to / d/ unless there is positive evidence of it being an allophone of $/ 1 /$. In quite a few of these languages the phonemic status of $[\stackrel{r}{r}]$ remains in doubt despite this arbitrary assignment to $/ d /$, and the best examples of apparent contrast between $/ d /$ and $/ 1 /$ (including $[\stackrel{r}{r}]$ versus [I]) are listed below for each language. These may be a starting point for future phonological enquiry in the field.

ITS:	/daloki/	'large ${ }^{\text {a }}$	/lempen/	'flattened plug of tobacco 134
TF:	/aang/ /dan/ /diil/ /dil/	'edge ${ }^{\text {' }}$	/latid	'garden'
		'sap'	/lab/	'fruit'
		'25'	/liib/	'road'
		'parrot sp.'	/lik/	'snake sp.: 28
TW:	/dabal/ /ti.do $j /$ /tedikun/	'forehead'	/lib/	'road'
		'ear'	/filay/	'tongue'
		'knee'	/ilim/	'blood'
kH :	/daa』/ /tadik/	'back'	/laib/	'road'
		'knee'	/falay/	'tongue'

FI: /dabal/ 'forehead'

/leib/	'road'
/lek/	'smoke'
/falàj/	'tongue'

FG: /dum/ 'dream'
/dal/ 'scar'
/dan/ 'itchy'
/kadun/ 'widower'
/budua/ '(finger)nail'
/kedeel/
FP: / dep/
${ }^{\prime}$ wife'
/lumloob/ 'heart'
/lalaay/ 'white'
/lain/ 'a boil'
/kaluun/ 'ear'
/sulub/ 'navel'
/kalim/ 'body hair'
/lek/ 'smoke'
/luwaankal/ 'eight'
/kaalim/ 'feather'
/aleb/ 'two'
FA: /dabaal/ 'face'
/dumnoob/ 'heart'
/daa!/ 'back'
/dub/ 'seed'
/budu:/
/madankun/
'(finger)nail'
/kadeel/ 'wife'
FW: /delay/ 'white'
TL: /fòódeék/ 'praying
mantisij0
WG: /dudinalim/
/didono/ 'knee'
/dudupa/ 'cold'
/kadano-te/ 'ear'
/nadido-te/ 'liver'
UT:
$\begin{array}{ll}\text { /dyum/ } & \text { 'banana' } \\ \text { /midu/ } & \text { 'nose' } \\ \text { /oon-idi/ } & \text { 'egg' } \\ \text { /idokbon/ } & \text { 'white' }\end{array}$
/lakan/ 'forked'
/luwaan/ 'elbow'
/lain/ 'a boil'
/luy/ 'green'
/sulub/ 'navel'
/falaŋ/ 'tongue'
/kalim/ 'hairi
/laib/ 'road'
/tòolií́m/ 'directly'

/lepu-te/	'road'
/lipalo-te/	'ground'
/lapo-te/	'finger'
/kalodo-te/	'wind'
/yipikalie-te/	'moon'

/lon/	'foot'
/niŋilob/	'tooth'
/okglilin/	'sand'
/kilob/	'eye'

/kedahol/ 'ear'	/malabmi/ 'forest'	
/-kad/ 'skin'	$/$ tuul/	'fat', 'grease'

The dialects of Kativa (Kasiwa) and Upper Tedi recorded by Kent have no word-initial $/ 1 /$, but only $/ \alpha /$. It is assumed that Sibil [r] and [I] are allophones in all environments, since Brongersma and Venema mention Iree variation between them. The only example they
give is [yamburgi]/[yambulgi] 'small'. 35 In Gipman final give is [yamburgi]/[yambulgi] 'small'' 35 In Gipman final $/ 1 /$ tends to be [ř] following front vowels and [1] following central and back vowels. In Bimin final [\dot{r}] and [l] are in free variation; and this seems to be true for Wagarabai also.

2.2 VOGELS

Ifost Ok languages have just the five vowels $/ \mathrm{a} / \mathrm{h} / \mathrm{e} / \mathrm{g} / \mathrm{i} / \mathrm{h} / \mathrm{l} / \mathrm{g}$ and $/ \mathrm{u} /$. The approximate phonetic value of these vowel phonernes in most languages is (in Pike's symbols) as follows: /a/ ranges between $[\varepsilon]$ and $[\hat{e}]$, and sometimes includes $[a]$ and $[a]$. /e/ ranges between $[\epsilon]$ and $[e]$. /i/ ranges between [i] and $[l]$, and sometimes tends towards central $[i]$. / / ranges between [0] and $[0]$. /u/ ranges between $[u]$ and $[U]$, and sometimes tends towards central [$H \cdot$]. Yianrin has a sixth vowel/a/o It is essentially a nasalized vowel, though with sone speakers one has the impression that laryngealization is an important component. The situation is slightly confused by the presence of non-phonemic (predictable) laryngealization on $/ \mathrm{a} /$ and /a/ when they have a rising toneme $/ \%$ Some examples of the contrast between /a/ and /a/ are as follows: /àr/ 'excreta'
/sà/ 'vine'
/mat/ 'gall bladder'
/wǎn/ 'sweet potato'

/àr/	'skin'
/à/	'water'
/mà/	'stand up'
/hăm/	'corpse'

Wagarabai seems to have a similar sixth nasalized vowel phoneme too.
The analysis of Ninggirum vowels is complicated by the occurrence of severel vowel glides. Also, in addition to the five common vowels, Minggirum seems to have two further vowels, $/ \mathrm{a} /$ and $/ 0 /$ (phonetically [28] and [D]). Further checking is needed to show that /ee/ and /oo/ The best contrestian glides /ae/and/ao/ or of geminates thet is avaleble is:
/kudeb/ 'ashes'
/kawee/ 'widow'
/duen ben/ 'tomorrow' /a woo/ 'tree sp.' /nayoo-/' 'finger'
/awidarb/ 'married woman' /badaab/ 'ground' /tawarac kwien/ 'die'
/a bien/ 'tree sp.'
/way/ 'moon'
/tayココn/ 'armpit'
/kuwaa/ 'belly'
/ini wan/ 'ginger' /waa/ 'alive, ghost' /dayaab/ 'paddle'

In addition to this, Ninggirum appears to have contrastive nasalization or its vowels. However, the author suspects that there inay also be non-phonemic nasalization associated with nasals and perhaps with $/ \mathrm{h} /$. The contrastive status of nasalization needs further checking. The best evidence to hand is presented below:
$/ \mathrm{ka} /$ 'person'
/a/ itree'
/keehoo/ 'ear'
/a hool 'Icaf'
/haai/ 'cry' /hae/ 'hold', 'make' /koohai/'shin'
/an kwen/ 'flloor'
/hwen/ 'swollen'
/kwim/ 'louse' /nwị̣! 'grandmother'
In both Mianmin and Mingsirum the evidence scems to be ageinst interpreting a nasalized vowel as vowel plus nasal consonant, but further checking of this is needed.

In ingkiakmin $[\theta]$ is an allophone of /e/ that precedes $/ 0 / 0$
In all Ok languages for which adequate information is available long and short vowels contrast, perhaps with the exception of Fijanmin (and Wagarabai?). In most of the languages these long vowels have boen interproted as geminates (VV), but in a few such as Tifal they heve been interpreted as single vowels (V :) ${ }^{36}$ for the sake of ease of comparison all phone:ically long vowels have been written here as Eiminates (V). Fowever, this is not intended to prejudice against any future analysis of any of these languages as containing single long vowel phonemes ($\mathrm{V}:$). The best available evidence for contrastive vowel leneth for each language is listed below.

Iis:	$\begin{aligned} & \text { /tabal/ } \\ & \text { /im/ } \end{aligned}$	'right hand' 'husbend'	$\begin{aligned} & \text { /kobaal/ } \\ & \text { /niị/ } \end{aligned}$	'aeroplane' 'younger brother' 37
TA:	/tim/	'louse'	/tiin/	'eve'
	/kum/	'uluven'	/tuum/	'stone'
	/wan/	'arrow'	/waen/	'sweet potato'
Trs:	/mít/	'Pourteen'	/miít/	'multiple stem growth'
	/wón/	'arrow'	/waén/	'swoet potato'
	/kum/	'eleven'	/kuùm/	'tree sp. ${ }^{\text {d }} 38$
10.	/man/	'child'	/yaan/	'foot'
	/kim/	'louse'	/kiin/	'eye'
	/rua/	'bone'	/tuum/	'stone'
	ycman/	'taro'	/mayaan/	'dog'

FG:	/£○○/	'throat'	/foom/	'corpse'
	$/ \mathrm{man} /$	'child'	/yaan/	'foot'
	/dal/	'scar'	/kaal/	'skin'
	/kim/	'louse'	/kiin/	'eye'
	/kun/	'bone'	/turu/	'stone'
	/buduy/	'(finger)nail'	/kaluun/	'ear'
PF\%	/win/	'egg'	/kiin/	'eye ${ }^{\prime}$
	/kun/	'strong'	/suum/	'banana:
	$/$ man/	'child'	/yaan/	'leg'
	/iman/	'taro'	/imaan/	'urine'
PA:	/diam/	'body'	/daam/	'fence'
	/wun/	'arrow'	/muun/	'paddle'
	/kim/	'Iouse'	/kiin/	'eye'
	/win/	'egg'	/fiim/	'blunt'
	/rul/	'frog'	/kuul/	'core of boil'
FW\%	/kim/	'louse'	/kiin/	'eye'
	/am/	'house'	/maan/	'dog'
FS:	/kim/	'louse'	/kiin/	'eye'
	/am/	'house'	/maan/	'dog'
Bni	/bim/	'earthquake'	/riim/	'flesh'
	/men/	'breath'	/meen/	'net-bag'
	/yob/	'garden'	/yoom/	'ripe'
	/fur/	'pointed'	/muur/	'back'
	/em/	'house'	/naam/	'cuirass'
	/kunum/	'man'	/karuun/	'widow'
TL:		'kidney'	/dàèl/	'bemboo sp.'
	/kum/	'eleven'	/kùùm/	'tree sp.'
	/ib/	'dust'	/iìb/	'centre'
	/ùnìn/	'eat'	/ừnìn/	'roar'
	/ookénàl/	'his aunts'	/óókénà̀/	'his grandfather 139
KD:	/ab/	'tree	/taab/	'thin', 'bad'
	/man/	'basket'	/kaam/	'dry'

	/yemen/	'loam'	/yeemen/	'taro'
	/bedon/	'small'	/beedab/	'club'
KMI:	/wot/	'drum'	/woot/	'moon'
	/it/'	'body'	/iib/	'enough '
	/tama/	'termite'	/taamat/	'stone adze'
	/ben/	'hand'	/meen/	'net-bag'
	/mun/	'child'	/uun/	'sugar cane'
	/amban/	'elder sibling ${ }^{\text {' }}$	/ambaan/	'wife'
Yiv:	/yom/	'body'	/yoom/	'old man'
	/rono/	${ }^{\text {'bone }}$	/konoo/	'boat'
	/kok/	'hard'	/kook/	'bitter'
	/kat/	'skin'	/taas/	'scar'
KT:	/pa/	'marsupial'	/taa/	'stone adze'
	/wetme-/	'see'	/yeetme-/	'say'
	/mim/	'one'	/niin/	'snake'
	/wot/	'star'	/woot/	'moon'
	/pun/	'outside '	/kuun/	'heavy'
INM:	/wa/	'deep'	/waa/	'alive'
	/ka/	'person'	/kaa/	'skin'
	/dam/	'Ience'	/daam/	'blood'
	/wi/	'broad'	/wii/	'dark'
	/dum/	'dream', 'banana'	/guum/	'placenta'
NK:	/ka/	'man'	/kaa/	'skin'
UT:	/muk/	'breast'	/huub/	'wind '

Information on length has not been recorded in the word lists for TVY, $\mathrm{FI}, \mathrm{BK}, \mathrm{WG}$, and KA 。

2.3 Tonemes

All of the wountain-Ok languages which have been adequately examined have been found to have lexical pitch. This pitch is contrastive on each syllable of a word, with the occasional exception of the first syllable.

Tifal has two register tonemes, high /'/ and low / '/ Each syllable carries one toneme except that an initial short syllable is
toneless. All possible toneme combinations seem to occur in polysyllabic words. E.g.

/tỉb/	'tree sp.'	/tíb/'	'brown'
/diìb/	'vegetable sp.'	/diíb/	'cheek of́ pig'
/kamàn/	'snake sp.'	/tamán/	'thunder'
/boòtoòk/	'animal sp.'	/kaábaàk/	'steel axe'
/taàwáll/	'sweet potato sp.'	/boónkoón/	'whiskers'38

There js regressive internal tonal sandhi between a verb stem and an all-low suffix, and progressive external tonal sandhi between an alllow word and the following word(s). E.g.
/faláal-/ 'swim' + /-òkòmà/ 'he willi $>/$ falàmòkòma/ 'he will swim' /fik/ 'his elder brother' + /tambál/ 'good' $>/$ fìk tambàl/ 'his good elder brother:40

Teléfól has two step tonemes, up /'/ and down / '/; and on contracted syllables the much rarer sequences up-down $/ \wedge /$ and down-up $/{ }^{2} /$ occur. All possible sequences of two, three and four tonemes occur on polysyllabic words. The long nucleus of an initial syllable carries two tonemes whereas an initial short nucleus carries only one toneme. This is a remarkable parallel with Tifal where initial long and short nuclei carry one and zero tonemes respectively. E.g.
/kìl/ 'frog'
/dò̀l/
/aóol/
/dìnìn/
/aúcìn/ 'taken'
/bààìn/ 'wide'
/aàálìn/ 'placed'
/dóolìn/ 'born'
/dáálìn/ 'planted'

/kíl/	'hand'
/dóól/	'tree sp.'
/dóól/	'forked'
/dílím/	'mistletoe sp.'
/dílím/	'rat's teeth marks'
/oòlsák/	'anger'
/dàálín/	'Put it!'
/dólí/	'I gave birth'
/dáálín/	'Plant it!'39

There is internal tonal sandhi (both progressive and regressive) between a verb or noun stem and its suffix, and progressive external tonel sandhi in certain syntactic constructions. 41 gressive external

A preliminary analysis of Mianmin monosyllables reveals just three contrastive pitch patterms which have been tentatively assigned tonemic status: high / / y low falling/ / , and low rising / / . All three tonemes are frequent and there are many examples of their contrast. Vowels with high tone tend to be slightly shorter than those with the other two tonemes. However, pitch rather than length
is the morc consistent differentiating feature between contrastive sets of words. E.g.

/rár/	'shallow'	/ràr/	'bamboo sp.'	/gǎr/	'tired'
/ráj)	'garden'	/bàj/	'yam'	/ra้y/	'back', 'current'
/ón/	'arrow'	/àm/	'house'	/ăn/	'hair'
/mén/	'small'	/nèp/	'young sister'	/mén/	'net-bag'
/bír/	'wild banana'	/gir/	'cold'	/bǐr/	'va.lley'
/mók/	'stone adze'	/kok/	'bitter'	/sork/	'rain'
/ún/	'egg'	/tùm/	'snoke'	/fưn/	'blunt'

A careful examination of polysyllabic words may eventually lead to an analysis of wianmin in terms of two tonemes (rather than three) plus phonemic (rather than allophonic) vowel length.

It may be asked why such emphasis is placed upon monosyllables in the identification of pitch contrasts (as in the Mianmin examples above and in those of several other languages below). Provided a language has an adequate number of monosyllabic words, the identification of pitch contrests among these is a fairly sure indication of the pitch being phonemic at the lexical level. If pitch contrasts are only identified on polysyllabic words and the number of such contrasts is small, then there is a considerable likelihood that the pitch phenomena are a non-phonemic concomitant of phonemic stress. Howerer, even when the contrastive nature of pitch is identified with monosyllables, it is essential to examine longer words thoroughly to determine the number, nature and distribution of the tonemes.

In private conmunications Dr. Anceaux mentioned that Sibil words have phonemic pitch and C.F. Horne mentioned that either tone or stress is phonemic in the Ngalum dialect spoken at Kiwirok. Unfortunately the author has no examples to document these statements.

Several other langiages and dialects of Mountain-Ok have been studicd sufficiently to cite examples showing pitch contrasts, but no analysis of their tonemic systems has yet been undertaken. In the following examples approximate phonetic pitch is marked as high $\left({ }^{\prime}\right)$, low level or low falling (') phonetic pitch is marked as high

TA:	/kîl/ /yôn/	'tooth ' 'Iizard arrow'	$\begin{aligned} & \text { /mílı/ } \\ & \text { /yóm/ } \end{aligned}$	'bean' 'taro knife'
KN:	/wàán/	'sweet potato'	/yàan/	'foot'
FG:	/mán/ /tưứn/	'child' 'stone'	/àm/ /sưùm/	'house' 'banana'

FF: /yom/ 'flying fox'
$\mathrm{FA}: /$ tuúum/ 'stone'
/ěn/ 'house'
/ín/ 'nasal mucus'
/dàáj/ 'back'
BM: /síír/ 'vine bridge'
/sád/ 'story'
/fím/ 'blunt'
/kiín/ 'eye'
/nòón/ 'breast'
/kóór/ 'firog'
/gíík/ 'red'
/méén/ 'net-bagi'
/dúú:/ 'perspiration'
/yǒm/ 'bamboo knife'
/súùm/ 'banana'
/mân/ 'child'
/kíìn/ 'eye'
/dáàj/ 'current'
/sìir/ 'needle'
/àm/ 'house', 'day'
/bim/ 'earthquake'
/kíìn/ 'shoulder'
/yòòm/ 'ripe'
/oòr/ 'intestines'
/tíì/ 'above' /bìit/ 'valley'
/yèém/ my mother'/wèèp/ 'voice'
/sưurk/ 'tobacco:
rnuuk/ 'possum'

61

Although all the Mountain-Ok languages appear to have contrastive lexical pitch, the situation in the Lowland-Ok languages is not at all as clear-cut. The author has been unable to find any convincing evidence of contrastive pitch in Ninggirum. However, sufficient variation in the pitch and stress patterns of polysyllabic words has been observed to suggest the possibility of some kind of phonemic accent on words. E.g.
/'kaeri-/ 'hair'
/taa'mi/ 'to mate'

Kati has non-phonemic accent, the exact nature of which Drabbé has not specified. The primary faccent occurs on the final syllable of monomorphemic words, and on the final syllable of the first root of a compound. All cases of non-final primary accent whose compound grave accent symbol. 42 at first glance are indicated by Drabbé with a musical intonaticn he does not mentions that though Kati has a lexical level. 43 However, the present the tones to be relevant at the language very closely related to both Kati ${ }^{\prime}$'s data from Yonggom, a this language does have contrastive lexical languages, indicate that /yòn/ 'leg'
/on/ 'bird', 'fish'
/bòt/ 'stone'

		/yóm/	'flesh'
		/óm/	'sago'
		/wót/	'drum ${ }^{\text {d }}$
/kook/	'bitter'	/óóy/	'tongue'

2.4 CV PATMERTS

It was Kent who first observed the high frequency of closed syllables in the Oir languages. 44 This is cuite well illustrated in the sample lists of words in the section on lexicostatistics below, and has been discussed in detail for Teléfól. 45 For most, if not all, of the Olr longuages a word may fairly adequately be described as a combination of syllables of any one of the following patterms:
 patterns appear to occur: CCV, CCVC, CCVV, CCVVC. The Mountain-Ok languages of Division A seern to have the highest frequency of closed syllables, and Wagarabai may prove to have the highest frequency of open syllables. Bor all languages, a single consonant is the most usual in the intervocalic position, consonant clusters CC (also CCC for linggirum) are also fairly frequent, and hiatus (i.e. lack of consonant between the vowels of two successive syllables) is relatively rare. The particular consonant clusters which occur in intervocalic position are a selection of all the theoretically possible combinations of word-final and word-initial consonants for the particular language. 46 The consonant combinations which do not occur are characteristic of the particular language and are correlated with the types of internal consonantal sandhi operating in that language. So far, feléfól remains the only language for which full information is available on clusters and morphophonemics of consonants. Some evidence concerning the other languages emerges in an incidental fasion when the morphemes of the parent languages

Details of word-initial (and syllable-initial) consonent clusters in Ningeirum are given in section 2.l. Steinkraus has analyzed tifol as having word-initial consonant clusters also, but examples are so rame that one wonders whether Tifal has "missing" vowels in these apparent clusters as does Teléfól. 48

In many languages the only VV ciusters that occur as the nucleus of a single syllable are sequences of like vowels (geminates). However, quite a few lenguages also have one or two sequences of unlike vowels, usually/ai/ or /ei/ and /au/ or /ou/. These cannot be interpreted as /ay/ and/aw/ since they occur as nuclei of closed Syllables. E. ©. FA/kail/ 'teeth', BM/auk/ 'thumb'. Ninggirum and $\begin{aligned} & \text { dianmin (and probably the other languages in their Divisions) }\end{aligned}$ appear to have many more vowel sequences. More ficld study is case of Mingentify each of these sequences contrastively. In the of syllabicity of careful attention will need to be paid to contrasts leave room for a rocoids, since the syllable pattems set up above CiV and CyV, for instast between patterms $C u V$ and $C w V$ and between

In the case of Ninggirum it may be asked why a word-initial set of consonant clusters of the type Cw and $C y$ have been postulated
when there is a clear basis for postulating VV as a syllable nucleus and assumedly words of the type CwV and CyV could be interpreted instead as CuV and CiV. Such a vocalic interpretation would then leave Ninggirum without initial consonant, clusters, and in much better agreement with the rest of the Ok languages. However neat and uniform such en analysis might be, there seem to be a few Ninggirum words that preclude it, words that require a pattern CCVV(C). E.g. /twooni/ 'jump', /hyutk/ 'perspiration', /bwiib/ 'thick', /bwem kwei/ 'gather (stones)', /kwae/'open', 'show', /tabarte kwien/ 'die', /dyaa/ 'side of body', /a gyeem/ 'tree sp.', /awon twaa/ 'possum', /mwoe/ (/mwee/?) 'buy', /hwii/ 'courit', /kyoob/ 'eye', /tyon tyaa/ 'eel', /on nyaa/ 'bird sp.', /monbwii/ 'to cut'.

2.5 NOUNS, ADJECIIVES, MUNERALS ARD PRONOUNS

Kati and Teléfól both have a weak system of two genders. 49 No information is to hand on the other languages. Gender of a noun i.s manifested in the agreement of an accompanying pronoun within the same noun phrase, the agreement of the subject-person suffix or object-person prefix of the verb of the clause to which the noun is subject or object, and the agreement of a pronoun in a later clause for which this noun is the andecedent. For humans the gender parallels the sex. Some non-human nouns have a fixed gender, but others may be either gender. In Teléfól the guiding principle in feminine. This principle is thgs are masculine and large things size and sometimes in terms of times applied in terms of absolute relative to the norm ficims of the size of a particular specimen would imply a stone or rock and species. Thus, /tứm úyoó/ (stone she) imply a pebble. The usage of variabl iyoo/ (stone he/they) would examined in detail yet, but it may well gender in Kati has not been For example, when feminine, Northern river or well, and when masculine it refers t refers to water in a to sap. When feminine, /niokanpo/ refers to to water in a vessel or masculine it refers to human teeth. refers to animal teeth, and when

Plurality is often not formally marked if the context is clear. Flurality of humans may be indicated by a following plural pronoun, (child they subject person. Jo.g. KIV/tana yi pet/ 'the children' those he/they), FA/manker), TL /tànúm bilís 'children' (choó/ 'the men' (man kinship terms is expressed by adding' (child they). Plurality of $/-a /$, TLL $/-a I /$, and perhaps $T F$ adding a suffix or postclitic: KM, KN Kil/oni/, TRL/bàábeén/ 'elder sish /-al/, BM/-er/. E.g. KMi/taman/, IL /bàábénàl/ 'elder sisters'. 'elder sister'; KM /taman-a/, KN /oni-a/,'. complete reduplication of the noun (inality may also be indicated by this is not very frequently used in (or sometimes adjective). However Teléfól. E.g. KM Mi Mily used in Kati and is quite rarely used in IIL /tànúm biseél-bîseél/katuk/ 'man', /katuk-katuk/ 'people',

At some historical stage of these languages a process involving reduplication of monosyllables scems to have obtained, as many Ok lancuages have what might be called "duplex" stems (including adjective and verb stems as well as noun stems). In some of the languages few of these duplex stems have retained their original shape due to reduction of the medial consonant cluster. Often the monosyllable which may be recognized within these duplex stems does not occur as a free form in the present-day language with any plausibly related meaning. Some exanples from the various languages are: TIL /bàlbàl/', /bàbbàl/ 'caterpillar', /timtím/ 'root'; TF /timtim/, /tantim/ 'root', /rnuúmuul/ 'bee'; BN /nigniy/ 'thorn',
 FA/wok ni,pniŋ/ 'sand', /kimkim/ 'root'; KN /yepyep/ 'slippery', /kinkin/ 'soul'; KM/kinkin/ 'soul's /obob/ 'voice'; NN/ippery',
'grass sp.', /moknok/ 'sour'.

All of the Ok languages seem to have compounds among their inventories of nouns. The vast majority or those examined are made up of two noun roots, presumably in a possessive construction when the compound was originally formed., A typical example in the Mountain-Ok languages is: TI / dưútúkùl/, TF / dútùkìl/, TA /gutukul/, BM/ kaktukuu/ 'bala'. In each case the first syllable probably ment 'head' in the parent language, and the second and third syllables meant 'fat' or 'white growth'. 50

Teléfól has four derivational suffixes for common nouns (/-im/, /-aal/, /-een/, /-ook/ and their tonal allomorphs) and a considerable number of personal name endings. All of these occur with noun stems to form nouns. Many of these suffixes and endings (an "endingti may consist of one or more suffixes) tend to mark the noun they form as either masculine or feminine. Cognates of the four conmon noun suffixes have been recognized in most liountain-Ok langriages, and several other suffixes as well, but considerably more field worik will be needed before it will be possible to say how active these suffixes are in the now morphology of each language. Derivational noun been able re not mentioned by Drabbe for Kati, and the author has not been able to identify any positively for Ninggimm.

In all of the Ok languages for which there is information, adjectives seem to be a smaller word class than in English. Many languages. A few are translated as verbs or verbal phrases in ok reduplicated for plural and jorthern Kati adjectives are for number ox gender. Two but otherwise adjectives do not change Teléfól mentioned above ($/$ of the four derivational suffixes of For Southern Kati Drabbé lists and /-een/) occur with some adjectives. suffixes which change ne lists $/-\mathrm{mo} /$, $/-\mathrm{yib} /$, and $/-\mathrm{kondi} / \mathrm{as}$ lists /-mo/, /-eep/ nouns to adjectives. For Northern Kati he /-kin/ as adjective-forming suffixes, most of /-tee/, /-kutip/ and some with verbs (infinitive form), and some which occur with nouns, with verbs (infinitive form), and some with adjectives. In

Ninggirum /-boo/ and /-b:\%/ occur with many adjectives.
All of the Ok languages except Minamin and Wagarabai appear to use the round-the-body method of counting: When counting, a person points successively to various parts of the body, and the numerals mostly consist of some recognizable form of the body-part names. One circuit of the body is a counting unit. Large numbers are specified as so many units (circuits) plus such-and-such a number (body-part).

The languages of Mountain-Ok Division A have a counting unit of 27, termed TT, /dèép/, TF /deen/ FA /dey/ and BNi/fuu dey/. Counting commences with the little finger, usually of the left hand, progresses up the arm, around the various parts of the head, and down the other arm to the other little finger (except that Bimin seems to finish with the thumb). 51. The nose is the highest point reached on the body and it represents 14; all other body-parts occur twice in the series l-27. To avoid ambiguity a morpheme (such as TI /milií/, TF /màliì/, FA/malii/', BM /meri/ 'other side', and INS /tabal/ 'right hand side') is often postposed to numerals between 14 and 27 to indicate that the particular body-part is on the other side of the body from the

In ITinggirum (of Lowland-Ok Division B) a similar method of counting is used, but there the counting unit/den/is 32, the repeated highest point is the side of the nose for 16 and 17 , and the avoid ambiguity.

Boutherm Kati and Northerm Kati (Lowland-Ok Division A) use half finger and reaches the crown of the head for 12. Above 12 a senary Southern Kati and/wat/ in Northern Kunit of 6 being /ayet/ in

In many lan in the many languages there is a distinction between the words used numeral adjectives). Firstily, humbers) and the numerals (English entirely different words from the corresponding numbers. following examples the number (counting correspong numbers. In the the numeral.
FALWOL: 1 /batkatkat/, /makas/; 2 /katkatkamaam/, /aleb/;
/waninwanin/s /asuno/; $4 /$ /dil/, /alaleb/. ${ }^{2}$ /alkatkamaam/, /aleb/; 3 , waninwanin/s, /asuno/; $4 /$ ail/, /alaleb/.
l/katket/, /makubmaak/; 2 /katketaben/, /areeb/; 3/yamamas/,
/aremsaar/; 4 /auktaben/, /aremiareb/; 5 /auk/, /teŋebi/.
Miv: I/Ketiket/, /mwim/; $2 /$ ketketimnon/, /hadob/; $3 /$ dabtem/,
/kedowaamim/; $4 /$ ajadimnot $/$, /kwandimben/.

Secondly, the numorals above five usually consist of the corresponding number plus a post-posed morpheme that is in many lamsuages the syntactic marker of locative expressions (such as TL , TF, PA /kal/, BMi /Ker/ 'at' and NN /ben/). For example, TL /ban/ 'seven' (forearm) is used in counting and/bàn kàl/or /bànkàl/ 'seven' (forearn at) is used in expressions such as 'the seven men'.

Mianmin (of Mountain-Ok Division B) does not use the around-thebody method of conting. Its numerals only go up to four or five, and these seem to have no cognates in the number systems of the languages of the other Divigions of the Ok Family. The same appears to be true of dagarebai counting. These are "Australian" numerals. 53 a

All of the OK languages for which information is available have separate pronouns for 'I', 'you masc.', 'you fem.', 'he/it', 'she/it', 'we's 'you pl.', and 'they'. 54 Finggirum alone has an additional distinction, that between 'we inclusive' and 'we exclusive'. The knom pronoun roots for each language are listed in Table 3.

In the Lowland-Ok languages the pronoun roots are free forms. On the other hand, in some of the Mountain-Ok languages the pronoun roots are bound forms, and in all of the Mountain-Ok languages examinad there are several suffixes which occur with pronoun roots. The suffixes observed occurring with pronouns so far are as follows. WL: /-oó/, / -tá/, /-mí/, /-soó/ or /-sìnoć/s/ /-kàl/, /-kál/, /-siỉk/, /-leé/g/-táb/, /-sìnoón/, /-kúb/, /-ká/, /-bà/, /-kà/ or /-siàk/,
 FA: $/$-yo/, /-ta/, $/$-mi/, $/$-soo/, $/$-kal/, $/-$ sijik/, and $/$-a/. Bik: $/$-tee/, /-mi/, and /-karemte/.
Tilit $/-0 /, /-t a /, /-m i /$, and $/-t e m /$.
The majority of suffixes with pronouns appear to be syntactic markers of one kind or another, but no attempt is made to describe their

Several of the Mountain-Or: languages have a second set of pronoun roots containing a medial $/ \mathrm{l} /$ or $/ \mathrm{r} /$, and these roots only take a few of the suifixes that occur with pronoun roots. In Teléfól these roots with medial $/ 1 /$ are more emphatic than the main set of roots. observed so far. of the pronoun roots with medial /l/ that have been

2.6 VERBS

[^0]TABLE 3. PRONOUN ROOTS

TI	TF	FA	BM	MN	Ki	KN	NNI	Meaning
$\begin{aligned} & \text { ni-) } \\ & \text { na-) } \end{aligned}$	na-	na-	ne	ne-	ne	ne	ne	'I'
$\begin{aligned} & \text { nu-) } \\ & \text { no- } \end{aligned}$	nu-	nu-	nuu	ni-	nub	nup	$\begin{aligned} & \mathrm{ni} \\ & \mathrm{nib}) \end{aligned}$	'we'
kub-	kub-	kub-	$\begin{aligned} & \text { ku } \\ & \text { koo- } \end{aligned}$	op-	kub	tup	kub	'you f.'
1rab-	kab-	kab-	$\begin{aligned} & \text { kab-) } \\ & \text { koo-) } \end{aligned}$	kep-	eb	tep	$\begin{aligned} & \text { keb) } \\ & \text { kyeb } \end{aligned}$	'you m.'
it-	ib-	ib-	$\begin{aligned} & \text { yuu) } \\ & \text { yoo-) } \end{aligned}$	ip-	$\begin{aligned} & \text { kib) } \\ & \text { yib) } \end{aligned}$	tip	dib	'you pl.'
u--, 0-	u-	u-.	u	O.-	yu	ya	du	'she '
i-	a-	a-	e	e-	ye	ye	de	'he'
i-	i-	i-	i	i-	yi	yi	di	'they'

Bmphatic Pronoun Roots

nala-	nila-	nala-	nere-	'I'
; nulu-		nulu-	niri-	'we '
kulub-	kultub-		orop-	'you f.'
kalab-	kaltab-		kerep-	'you m.'
ilib-			irip-	'you pl.'
ulu-	ulu.-		oro-	'she'
ila-	ala-		ere-	'he'
ili-	ila-		iri-	'they'

* Note: /ni/ 'we exclusive'; /nib/ 'we inclusive'.
are few, the author's field notes indicate that it may not be quite so simple in linggirum (Division B). In all the languages examined in the Nountain-Ok Sub-Fanily the identification of verb stems is considerably hampered by the existence of two or more stems for many verbs. There, almost all verbs seem to have a stem marked for punctiliar aspect and one marked for continuative aspect. Some pairs of stems differ by their medial vowels and some differ by the presence of a special suffix in either the continuative or the punctiliar stem. In addition, almost all stems terminate with one of a small set of aspect suffix allomorphs, and for some pairs of stems this is the only difference between the continuative and punctiliar forms. A very few pairs of stems are completely different in their form (i.e. are suppletive). Some examples of punctiliar and continuative verb stems from five Nountain-Ok languages are listed below.

Punctiliar Stems

TL:

$$
\begin{aligned}
& \text { /bímíl-/ } \\
& \text { /ífò } 1 \text {-/ } \\
& \text { /binííl-/ } \\
& \text { /bókòl-/ } \\
& \text { /iúkùnól-/ } \\
& \text { /dínèl-/ } \\
& \text { /toòn-/ } \\
& \text { /dèál.../ } \\
& \text { / ̀̀naúúa-/ } \\
& \text { /tài-/, /tì-/ } \\
& \text { /un-/, /nòò-/ }
\end{aligned}
$$

TF: /bokol-/
/un-/
/tel-/
/taan-/
/utam-/
PA: /bakaod-/
/utam-/
/dekad-/
inod-/
Bin: /bokor-/
/oko-/

Continuative Stems
/bíkíni-/
/ífúm-/
/bìkínám-/
/bákàm-/, /bákán-/
/fưkún-/
/aínánkál-/, /aínán-/
/tòònàn-/, /tòònàn-/
/dàákàra-/,/dàákàn-/
/wèèm-/, /wàn-/
/télèm--/, /tálán-/
/únèm-/, /únán-/
/bakaam-/
/unem-/, /unan-/
/telem-/
/taanyeam-/
/utanyaam-/
/bakaam-/, /bakan--/
/utamaam-/
/dakadain-/
/sean-/
/bakam-/
/ukaa-/

Meaning
'pierce'
'serve food'
'sew'
'say ${ }^{7}$
'think'
'fight'
'sit'
'put'
'prepare'
'come'
'go' 56
'say'
'go'
'come'
'die'
'see it'
'say '
'see it'
'ask'
'buy'
'say'
'bathe'
/un-/
/toror-/
w:
/om-/
/kan-/
/win-/
/te.-/
/unem-/
/taram-/
/pa-/
/hanam-/
/unem-/
/terem-/
'go'
'wipe off'
'say'
'die'
'go'
'come'

As well as containing a verbal root and one or two suffixes marking punctiliar or continuative aspect, some verb stems in Mountain-Ok languages also contain a prefix to indicate the person and number of the object. This latter feature also occurs in a few Kati veros, but nothing can be said about its occurrence in Ninggirum at this stage. In each of these languages there is at least one set of five object prefixes which distinsuish 'me', 'you sg.', 'him/it', 'her/it', 'us/you pl./them', and in many languages there are several similar sets of such prefixes. A few Teléfól verbs have a set of seven prefixes, the extra two being for 'them masc. non-human' and 'them fem. nor-human'. In several of the languages some verbs have only two prefixes --- those distinguishing 'it masc.' and 'it fem.'. In Table 4 is a list of the object prefixes observed so far. 57

The verb stem, which includes any object prefix, and for the Mountain-ok languages some form of aspect marker, is normally suffixed to indicate the person and number of the subject in all ok 'you sg.', 'he/it' language investigated she/it', 'we', and 'you pla/they'. Each shown in Table 5, and these least three sets of these suffixes as as the subject person and number function to indicate tense as well tenses, set B tends to have a past Set A is used in a wide range or significance in most languages, set tense or continuative aspect or desiderative significance, and set has imperative, intentional medialii or dependent verince, and set I is used with "sentenceverbs indicate whether ($/$-iilk/ 'I', /-eek/ 'he') subject of the next verb is the same as that of the dependert verb. Inferent from (/-aak/ 'I', /-ook/ 'he') indicated for sil persons by a suffefol dependent verbs this is $/-b /$, / $\mathrm{k} /$ 'different subject') suffix ($/ \mathrm{m}$ / 'same subject' and $/-\mathrm{s} /$, number suffix. ${ }^{5} 8$ Southern Kati preceding the subject person and its dependent verbs; there is almost no make no such distinctions in dependent verbs in other languages. no evidence available on

Several ok laneucees
by suffixation: languciges derive verb stemis from nouns and adjectives other languages a $/$-an/, $\mathrm{TF} / \mathrm{n} / \mathrm{FA} / \mathrm{an} /$. In several of the derived adjective (ornate of the same suffix seems to produce a /-nan/, BM/-nam/, /-an/. inconjugablo verb?): KN/-an/, KM/-an/ \sim

TABIE 4. OBJECT PREFIXES

	'me'	'you פg.	' 'we/ they'	'him'	'heri	Iypical Verb	Meaning
TI:	ni-	ka-	i-	a-	u-	-tam-	'see'
	na-	ka-	ya-	a-	wa-	-n\#\# tokon-	'be angry with'
	na-	ka-	i-	du-	ku-	-fakal-	'harm'
	nam-	kam-	j.in-	dub-	kub-	-al-	'bury '
	namd-	kamd-	imd-	d-	$\mathrm{k}^{\mathrm{W}}-$	-eek\# koom-	'burn'
				d-	k-	-ubka.\# eem-	'give him'
	namd-	komid-	imd- Plural:	$\begin{aligned} & \text { d-. } \\ & \text { dul- } \end{aligned}$	$\begin{aligned} & k- \\ & \text { kul- } \end{aligned}$	-ukam-	'take'
TT:	. ni-			2-	u-	--tam-	'see'
YA:	na-	ka-	i-	a-	wa-	-tamaam-	'see ${ }^{\text {i }}$
	nameb-	kameb--	irmeb-	ad.e-	wade-	-fau.d-	'hold'
	namn-	karnn-	imn-	dub-	kub-	-am-	'hide'
B3:	nee-	ka-				-tem-	
	nam-	kean-	yam-	dab-	$\begin{aligned} & \text { um- } \\ & \text { wom- } \end{aligned}$	-ku kem-	'hide'
1號:	na-	ka-	ya-	a-	wa-	-tenem-	'see'
	nem-	kem-	om--	dop-	do-	--wa-	'hide'
	nee--	se-	yee-	aa-	wee-	-ne-	'hit'
KN:	: nee-	tee-	yee--	aa-	wee-	-ne-	'hit'

TABLE 5. SUBJECT SUFFIXES

TABLE 5 (cont.)

	TF	FA	Bri	Miv	MM	K	N.	NN	Meaning
C	-an	-oon		-i	-0	-an	-a	-a		-a	'I'
	-uk	-uuk	-uk	-uk	-uk	-ok	-uk	-uk		-uk	'she ${ }^{\text {a }}$
	-ak	-0ok		-ak	-ok	-ek	-ok	-ok		-ok	'he'
	-al	-aal		-al	-a	-ar	-e	-e		-e	'you sg.'
	-um	-uum		-um	-um	$\left.\begin{array}{l} -o m \\ -u m \end{array}\right)$	-em	-em		-em	${ }^{\text {P we }}$ '
	-in	-iin	-in	-in	-in	-in	$\begin{aligned} & -\mathrm{ami}) \\ & -\mathrm{im} \end{aligned}$	$\begin{aligned} & \text {-ime) } \\ & \text {-im } \end{aligned}$		$\left.\begin{array}{l} -i m i) \\ -i m \end{array}\right)$	'you/they'
D	-ili						-a	-ii	$\begin{aligned} & \text {-iik) } \\ & \text {-aak) } \end{aligned}$	-ik	${ }^{\prime} I^{\prime}$.
	-ulu						-u	-uu	-uuk		'she ${ }^{\text {P }}$
	-ala		-ala				-0	-ee	$\begin{aligned} & \text {-eek) } \\ & \text {-ook } \end{aligned}$		'he'
	-alab						-eb	-eep	-eep	-eb	'you sg.'
	-ulub						-ub	-uup	-uup	-ub	${ }^{\text {'we }}$
	-ilib						-ib	-iip	-iip	-i	'you/they'

In both Southern Kati and Morthern Kati the subject markers are a second order set of suffixes; they may be preceded or followed by one of several tense and aspect suffixes. The first order suffixes seen in Drabbé's material are: KM /-an/ future, /-emee/ habitual; Fil /-an/ future, 'must', /-emee/ habitual, /-aay/, /-aan/ future negative, prohibition. The third order suffixes are: KM/-en/, /-in/ periect, /-yen/, /-yin/ pluperfect, /-ket/ dependent verb, optative; KIT/-en/ perfect, /-et/, /-a/ dependent verb。 KN also has a prefix /ma-/ with the meaning 'try'. In Southern Kati verbs without a tense suffix are present tense with set A subject suffixes and mid past with set B subject suffixes. In Northern Kati verbs without a tense suffix are ambiguously past or present tense with both set A and set B subject suffixes. The author's material on Ninggirum verb forms is insufficient to show the tense markers clearly, but it appears that suffixes /--ten/ and/-tye/ may follow the subject markers and prefixes/ma-/ and /ka-/ precede the stem. The meanings of these have not yet been established, nor is it yet possible to say whether or not there are any tense or aspect suffixes that precede the subject markers.

In all Mountain-Ok lenguages examined the subject markers are second or third order suffixes. For the languages in which they are third order suffixes, there is just one second order suffix in the position preceding them: $\mathrm{TL} /$-al/, BM/-ar/negative. For all fiountain-Ok languages the first order suffixes indicate tense and aspect. The suffixes identified so far include the following: Tij: /-b/ present (continuative), near past (punctiliar), /-antem/ future, /-s/ far past, /-nam/ ability, /-mans/ yesterday past, /-nub/ habitual, and the phonologically free forms/\# bom/ habitual, /\#nakb/ recent habitual, /\#bontem/ tomorrow future, and lack of tense suffix signifies a neutral tense which usually tunctions as an immediate past in the punctiliar aspect and as a fliture or customary in the continuative aspect.
TF /-s/ past, the punctiliar without a tense suffix functions as a near past and as a completive, and the continuative without a tense suffix functions as a future, and especially so when the auxiliary verb stem /ko-/ is also used.
FA: /-ookab/ future, /-b/ present (continuative), /-s/ past, /-uub/ past habitual, and punctiliar wi.thout tense suffix signifies a

Bili /-ok/ future, /-b/ present (continuative), /-s/ past, /-kaabb/ habitual, /-om/ desiderative, and punctiliar without a tense suffix is completive.
MiN: /-ap/, /-amap/, /-omap/ future, / $/ \mathrm{p} /$ present (continuative), near past (punctiliar), /-s/, /-pin/ past, and the punctiliar without a tense suffix signifies past time,

All of these five lenguages also have a few verbal suffixes which occur as the sole surfix (i.e. with no accompanying subject suffix). For example, $T L$, TF, FA, BM, 1 N / in/ is customary or infinitive, and when followed by a negative particle this form signifies nege.tive customary or prokibition.

There is some evidence that the Mountain-Ok languages have a wider range of dependent verb forms than Drabbé describes for Southern Kati and Northern Kati. For example, in Teléfól the subject suffix is third order, preceding it is a marker of "same subject" or "different subject" in second order as listed above, and preceding this may come any one of a set of first order suffixes indicating the temporal or logical relationship between the action of this and the following verbs. E.g. /--bi/ 'while repeatedly', /-bom/ 'while', /-sit/ 'soon arter commencing', /-som/ 'while', 'both ... and'.

All OK languages for which data are available have a similar way of forming what might be called benefactive verbs, and this is applicable to almost all verb stems. 59 The general order of morphemes in benefactive verbs is: (a) verb stem, including object prefix, if any, (b) benefactive marker, in some languages, (c) marker of beneficiary person and number, (d) aspect marker, in Fountain-0k languages, (e) tense, negation, aspect, and subject mariers of the same variety and in the same order as occur suffixed to non-benefactive verbs. For sorne languages, such as Teléfól, this sequence may be thought of as two (grammatical) words, (a) and (b) constituting a participle, and (c), (d) and (e) constituting a benefactive auxiliary verb, with (c) and (d) as its stem. Drabbé calls (a) the primary stem and (a) + (60 the secondary stem in Kati (whers (b) and (d), seem not to occur). 60 For example, TT bokoò\#\# néèlàntémá/ 'he will tell me' consists of (a) /bòkoò/ 'say' punctiliar, (b) /-b/ beneractive punctiliar, (c)/\#néiliar, (e)/-àntémá/ 'he will!。 (d)

In both position and meaning, the beneficiary markers closely parallel object prefixes. In Southern Kati, Northerm Kati, and fianmin, these show the same five distinctions of person and number as the object prefixes, in Bimin and Tifal the same seems to be true, but in Teléfól only three distinctions are maintained: 'me' and 'you sg.' versus all other persons. The beneficiary markers observed so far are listed below:

Ninggirum and Angkiakmin also seem to have benefactive forms but detailed information is not available.

The beneficiary in the ok verbal forms described above occasionally corresponds to an English subject (TJ」/dàál tèbeéb\# éèlú/ 'he is tired', literally 'tiredness has overcome him'), sometimes it corresponds to an English object (TL / Oòlaàb\# éèlứ 'she called him'), it corresponds to an English indirect object introduced by to for a few verbs (IL /dóób\#\# éelú/ 'she gave it to him'); but in the majority of verbs it corresponds to an English indirect object introduced by for (TI /fùù\# éèlú/ 'she cooked it for him'). 61

2.7 SYNTAX

The statements of syntactic features presented below are based
 concerning Kill and FA syntax is consistent with these statements.

In nown phrases in the Ok languages most adjectives follow the noun they qualify. Mumerals usually follow adjectives, and any associated pronoun (usually third person) comes last or all. A possessor, consisting of a pronoun, noun, or noun phrase, precedes the noun possessed. E.g. TL /nímínoòn kètìb áloòb úyoó/ imy two little pigs' (my pig little two she/it).

Coordination of nouns or noun phreses is usually marked by the occurrence of a postclitic or particle following each coordinated itcn. E.g. kM /om a, kuk a, atom a/ 'sago palms, areca palms, and coconut palms': Such coordinating morphemes include: $\mathrm{KN} / \mathrm{a} /$,
 mia/ $\sim / y a /$. These all mean 'and', and in some circumstances, 'or'.

The most noteworthy type of verb phrase in the Ok lenguages consists of on adjunct plus one of a small sub-class of verbs. Some adjuncts are clearly nouns or adjectives, while others occur only in this type of construction. Several of the verbs also occur without an odjunct, but some are limited to occurring in this construction. The adjunct-verb combination is in fact an idiom whose meaning cannot be predicted from any meanings that the adjunct and verb may have in other contexts. W. .g. TL /İsál/ 'above', /dákàmìn/ 'take', /îsćl dákèmìn/ 'climb tree to hunt possums'.

Beveral kinds of clause may be identificd in the Ok languages, some of which are listed below:
Complemientary:
Fotion:
Intransitive:

$$
\begin{aligned}
& \pm \text { Subject }+ \text { Complement } \pm \text { Copula } \\
& \pm \text { Subject } \pm \text { Destination }+ \text { Notion } \\
& \pm \text { Subject } \pm \text { Location }+ \text { Intransitive Action }
\end{aligned}
$$

Transitive: \pm Subject \pm Location \pm Object + Trans. Action
Transitive
Eenefactive: ${ }^{62} \pm$ Subj. \pm Loc. \pm Beneficiary \pm Obj. + T.B.Action
The subject, object, beneficiary, and destination usually consist of a pronoun, noun, or noun phrase. The complement may be either a noun, noun phrase, or adjective. The location unit usually contains one of. a set of positional morphemes postposed to a noun in what may be considered a possessive construction. These "postpositions" are actually nouns, although, of course, they are translated by English prepositions. ${ }^{63}$ In addition, a location unit usually terminates with a characteristic locative marker that might be said to mean 'at'. B.g. TL/méen-tèèm kàl/ 'in the bag' (bag in at). The locative markers observed so far are: KN, KM/yaa/, TL/kal/, BM/ker/, TF /kawo/. Almost always the verb (copula, action, or notion) is marked for subject person and number, and in Transitive Benefactive Action the verb is marked for the beneficiary person also. Each language has three or four verbs with the general meaning 'be' or 'become' which occur as copula. The time unit is not shown in the formulae above as its position of occurrence is very flexible. Its most preferred positions are preceding the subject and preceding the final verb, but it seems that it may occur anywhere except in clause-final position.

All Ois languages seem to have several different connectives to lint clauses together. Sequences of clauses also often occur without a connective, the first clause being clearly marked as dependent upon (subordinate to) the second one by the "medial" form of its verb. Zentences may be terminated by negative, interrogative, and affirmative (declarative, indicative) particles, as well as several others. In Kati both a negative verbal suffix and a negative sentence-terminal particle may occur in the same sentence; in Teléfól either one or the other occurs depenaing on the tense of the verb. Some of the sentence--terminals observed so far are listed below.

2.8 LEXICOSTATISTICS

In Table 6 a sample of fifty words is given.for each of 24 dialects and languages of the Ok Family and for 4 other languages which show some lexical similarity to the Ok Family. In Table 7 a further seventy words are listed for a representative selection of these languages. Each word listed is the commonest one in use for that particular meaning, where this could be ascertained; in other cases the first word proffered by the informant is listed. All the Ok material, both from published and unpublished sources, has been tentatively phonemicized in accordance with the phonemic descriptions presented in sections 2.1 to 2.4 (see especially Tables 1 and 2).

Preceding each word in Tables 6 and 7 is a number representing the particular set of tentatively identified cognates to which that word belongs. For any particular meaning (that is, for the words in any one column), those words which have the same number are deemed to be cognates. 64 zero represents lack of information at any point. By recording all of one's cognate decisions in this way before lexicostatistical counting is undertaken, one avoids the danger of making inconsistent decisions that is inherent in the method which remakes such decisions as each pair of languages is compared and counted. Also, once so recorded, the decisions are amenable to counting by a computer.

In making the decision as to whether a particular pair of words are cognate or not the author applied a standard which he felt to be comensurate with the reliability of the data under examination. Since only one-third of the word lists have been checked in the field in any way, it is neither possible nor reasonable to insist upon the rigorous identification of regular sound correspondences for each rhoneme in a pair of words before they are reckoned as cognotes. For the same reasons, along with the consequently tentative nature of the sound correspondences that have been isolated, it has not been possible to identify loan words with any certainty.

Two words of the same meaning in two languages are here regarded as cognates if their phonemes are matched and accounted for pair by pair in the following way:
(a) Most (80% for instance) of their phoneme pairs involve sound correspondences already established (by at least three examples) for the two languages or their dialects.
(b) The remaining phoneme pairs are plausible
is, such correspondences are eitausible correspondences. That languages or are well altematively, the remaining in comparative linguistics. Or established correspondences phonerne pairs may be identified as hearing on the part of the assuming a plausible error of

TABIE 6. WORD LISTS AND COGRATE DECISIONS

Engiish Iutch	head hooîd	hair hoofdhaar	$\begin{aligned} & \text { ear } \\ & \text { oor. } \end{aligned}$	eye oog
TMS	0	0	1 siloo	0
TA	1 dabom	I dabom kon	1 tloŋkal	1 tin
TT	1 dàboòm	1 dàboòm koòn	1 tílaá⿹勹à	1 tiìn
TW	1 dabom	1 dabom kon	1 tidon	1 kin
KW	2 guu	2 guu kalim	1 kedoŋ kaal	1 kiin
FI	1 debom	1 dukon	1 tudan kal	1 kin
FG	1 gaboom	1 gaboom koon	2 kaluun	1 kiin
FP	1 gabom	1 gabom kon	2 kidun kaal	1 kiin
PA	1 guboom	1 guboom koon	2 kaluun	1 kiin
FTy	1 gibom kun	1 gibom kon	2 kalun	$1 \text { ki. }$
TS	1 ubom kun	1 ubom kon	2 karun kar	1 kin
B4	3 kaak	1 kaak on	2 karuun	
3K	3 kakun	1 kakon	2 karun	
TL	1 dùboóm	1 dùboóm kòón	2 tùluún káà	$1 \text { tììn }$
m9	1 gapara	1 gapam an	2 koron	1 kin
WG	1 kuwomo	1 kawomano	2 kadanote	
KD	4 kotdook	3 ambokimo	3 keembee	
Wi	4 kotodok	3 ambo kimi		2 konyoob
Yi	4 kododok			2 konyob
Ki	4 kotorok		4 kenoot	3 indob
KIT	4 kotorok	ambo tubu才	4 kerekot	3 tinob
WN	5 awoo kades	5 ampo topuŋ	4 kenekot	3 tinop
NK	5 awu kalaa		4 ke hoou	3 kioob
UT	5 aboo	7 awn hoo	4 keeko $^{\text {u }}$	3 kiob
OB	3 kaak	7 abo hol	4 keda hol	3 kilob
DK	6 kembion	8 kaakbat	5 naad	1 kiin
DH：	7 Jgin	9 mógy－ron	4 keretop	3 kerop
GL 0	0 ）	9 jgi－ron	6 turutop	3 kerop
		5 －oto	7 omola	1 atsio

Tnglish irutch	nose neus	mouth mond	tongue tong	tooth tand
Wis	0	1 bon	0	0
TA	1 maturn kun	1 bontem	1 falan	1 sit
T ${ }^{\text {P }}$	1 mútúm（kùn）	1 boón teém	1 fílán	2 kiíl
TM	1 mutura	1 bontem	1 filan	2 kail
K	1 mutu	1 boonteem	1 fala	2 kail
TI	1 zutum	1 bontem	1 falan	2 kail
PG	1 mit	1 boonteen	1 falay	2 kail
TE	1 mituun	1 bontem	1 flan	2 kail（kun）
EA	1 mutuum	1 boon teem	1 falay	2 kail
FVI	1 mitum kun	1 bon tem	1 falay	2 kail
FS	0	1 bontem	1 faron	2 kair
BII	1 mutuam	1 boonteern	2 f00才	
3K	1 mutum	1 bontem	2 foŋ	3 niŋ
TL	1 mútuúm kún	1 booón tèém	2 foót	1 sít kún
IT	3 munut	2 anay	2 hat	1 sit（on）
VG	4 kapiote	3 iyadote	2 hanote	
KD	5 kidiv kondo	4 moŋateem	2 ○ヵ	0
H	5 kidi，kondo	4 mojrot tem．	200	
ni	5 kidio kono		2000	3 niyi kondo
$\mathrm{K} /$	5 kini gkono	4 monkotem	2004	7 nijambo
Kr	5 kinio kono		2 hot	7 nijambo
煦	6 gaukoo	4 mopkot tem 5 minatem	2 On	7 nitkampo
nK	6 gaok	mijatem	2 hot	3 nigi koo
UT	1 midu	6 meaa tem	2 hoon	3 nivii
OB	7 adur	6 miyakad	2 hot	3 nigilob
DK	8 tongut	7 ader	2 paxit	4 gaa
DH：	2 ambotop	4 mangot	3 oggat	5 imban
GI，	9 иe	4 mangot	4 ànop	6 inim
		0	5 siaalun	1 tsi

English Iritch	back-oî--neck nek	breast borst, (uier)	$\begin{aligned} & \text { back } \\ & \text { rug } \end{aligned}$	foot voet
-15	0	0	0	0
ta	1 ditek	1 muk	1 ol kun	1 yaen
TT	1 ditank (kun)	1 muúx	1 ool kun	1 yaan
TW	1 getek	1 muk	1 olkun	1 yan
W\%	1 sotak	1 muuk	2 daat	1 yaan
FI	1 gitak	1 muk	2 dan kun	1 yan
FG	1 getak	I muuk	2 daay kun	1 yaa
PF	1 gitak kun	1 muk	2 daay kun	1 yaan
Fi	1. getak	1 muuk	2 daay	1 yaan
FWI	1 getak kuin	1 muk	2 dav kun	ya
FS	2 oru kun	1 muk	3 mur kun	2 knoriur
BI	1 ratok (kun)	2 noon	3 muur	1 yaan
EK	3 g er	2 not	4 kinkun	
TI	1 dìtrax kim	1 mưúk	2 dֹánduúp	1 yàan
N	4 mulkon	1 moi	2 ras on	
WG	1 katete	3 kipote	tompia	3 sikir on
KD	1 keetee kondo	1 mu		3 sikidote
Mid	1 ketek-kondo		abitom	4 kondo-tabundu
M	1 ketik kono		6 ajkiton	4 kondo
KA	1 ketekono	muk 0		1 yon(dat)
W	1 ketelk kono		ajkaikuton	1 yon
M	der korio		ankutom	1 yon
WK	gomgobkim	muk 7	menkab	1 don
UT	oub kin I	muk 7	minkaab	1 lon
OB	woyidu I	muk 7	mimkubi	1 lon
DK	menbi 2	noon 8	koom	5 toon
DH	ngemben 4	ail 9	mbutum	4 kondok
GL 0	amat-riit 4	ora 10	mimit	4 kondor
		mua 0		

TABLE 6 (cont.)

TABLE 6 (cont.)

TABIE 6 (cont.)

TABLE 6 (cont.)

Miglish taro	banana	tree	leaf	donestic pig	
Dutch	keladi,	banaan	boom	bled	varken

TABLE 6 (cont.)

TABLE 6 (cont.)

TABLE 6 (cont.)

Onglish	mountain berg	TABLE 6 stione steen	(cont.)	
			path	small
Jutch			pad, weg	klein
175	0	1 tum	0	1 yambul
PA	I andu	1 tuum	1 iib	2 katib
TE	1 andu	I turum	1 liìb	2 katib
\%	1 angu	1 tum	1 lib	2 katib
!	1 amgu	1 tuum	I laib	2 katib
R	1 amdu	1 tum	1 leib	2 katib
FG	1 amgu	I turm	1 laib	2 katib
FP	1 amgu	1 tuurn	1 laib	2 katib
Pa	1 amgu	1 turm	1 leib	3 neenon
%	1 angu	1 tum	1 laib	4 nen nay
ES	1 amu	I tum	1 reib	5 nerner
B	1 amgu tikin	1 tuum	1 raib	6 ger
IW	0	1 tum	1 raib	6 gerger
TIT	I àmdù	1 tưum	1 ìleéb	2 kàtíb(noók)
in	2 amgorim	1 tom	1 reip	7 men
IG	3 pedote	1 tomote	1 lepute	8 kuamote
K)	0	2 bot	2 kim	9 bedon
Wh	4 am kombon	2 bot	2 kim	10 banyi@kaab
YI.	5 koot bon	2 bot	3 kiwan	0
T	5 kot bon	2 bot	3 kiwan	11 boyti
H5	6 anoo	2 pot	3 kiwan	11 po⿹ti
H19	7 amkwon haab	2 bo	4 wem	12 badikba
IIT	7 amkol haab	2 boo	4 waim	
UT	1 amju	1 tuum	5 waibmo	13 badobtet
OB	8 yai	3 kwii	6 mandap	
DK	9 mburündutn	4 iwan		14 gadapok
D?	2 amgon	5 irop	0	9 mberon
GI	0	6 waalio	7 atyaa	9 mberon 0

RABIE 7. WORD LISTS AMID COGNATETE DECISIONTS

TABLE 7 (cont.)

TABLE 7 (cont.)

TABLE 7 (cont.

TABLE 7 (cont.)

TABLE 7 (cont.)

TABİ 7 (cont。)

English Dutch	$\frac{I}{i k}$	$\begin{aligned} & \text { thou (m) } \\ & \text { jij, gij } \end{aligned}$	we wij
His	0	0	0
TP	1 na-	$1 \mathrm{kab}-$	1 nu
Fi	1 na-	1 kab-	1 nu
Br	1 ne	1 kab-, koo-	1 nux
T	1 ni-, na-	1 kab-	1 nu-, no-
W	1 ne-	1 kep	2 ni-
WG	1 nete	1 kapote	$\begin{aligned} & 3 \text { sokepo (dual) } \\ & \text { atankepo (plural) } \end{aligned}$
(I)	1 ne	2 ko	4 nub
0	1 ne	1 eb	4 nub
k	1 ne	1 tep	4 nup
m!	1 ne	1 keb, kyeb	2 ni (inclo), nib (exczo)
OB	2 nog	2 go	```5 dit (dual inclusive) did (plural inclusive) nuut (dual exclusive) nuud (plural exclusive)```
DK	3 nठp	3 פgठp	6 noŋguip
工)	3 nup	3 פgup	6 naŋgup
GIL	0	0	0

Uote. The Dutch entries given in rables 6 and 7 are not always the preferred translation equivalents of the inglish entries, but are rather the entries found in the word lists by Drabbé and Geurtjens. lodem Dutch spelling is used here. Drabbé sometimes has y for wodem ij, and has asse for modern as 'ash(es)'。 Geurtjens has tinal sch for modern S and in some verbs has a doubled vowel where nodern spelling has a single one.

For the present lexicostatistical purposes, several kinds of probable cognates were counted as non-cognates on the grounds that their proto-forms appear to belong to an older stage of the parent language than the Proto-Ok represented in the majority of the cognate decisions. In this category are word pairs that correspond in all respects except that one word of the pair involves "loss" of an intervocalic $/ 1 / \mathrm{g} / \mathrm{x} / \mathrm{g} / \mathrm{t} / \mathrm{g}$ or $/ \mathrm{y} /$. E.g.
Fi / ialay/, TL /foóy/ 'tongue'
TI /tukkuly US /tuulj 'fat'
WN /minatem/s NK /meaatem/ 'mouth '
iy /mayaan/, FA /maan/ idogi65
In comparisons involving $O B, D K$, DW or $G I$ judgements of cognateship were based upon similarity and plausible sound correspondences, and the standard was generally more lax than that applied within the Ok Family.

One problem arose while identifying cognates which the author has not seen adequately discussed in the literature on lexicostatistics, namely, what decision should be made when one or both of the items being compared is a compound and only one component morpheme can be shown to be cognate. 66 Should the two items be regarded as cognate or not? One may adopt a stringent policy and ignore the existence of morpheme boundaries within words and require that to be sounted as cognates two worcis should show good correspondences for every or almost every phoneme. Of course regular "loss" of an initial or rinal phoneme or syllable may be one kind of correspondence, but not the irregular loss of whole morphemes. For example, by this policy, FA/daay/ 'back' and FF/daat kun/ 'back' would be treated as noncognate, as would FA. /aslaik/ 'smoke' and INV /awob adek/ 'smoke' (/as/ and /awob/ both mean 'fire', and/laik/ and/adek/ are cognate morphemes meaning 'smoke'). 67

However, it seems reasonable to relax this policy somewhat in certain cases. In this present work, whenever the author felt he could identify one part of a compound as semantically central and the other part as senantically peripheral, only the morpheme constituting the semantic focus (with respect to the accepted area of meaning of this item on the standard test list) was used in identifying cognates. In the examples above/kun/ 'bone, pert of body containing bones', /as/ 'fiire', and/awob/ 'fire' may all be viewed as semantically peripheral, and with the elimination of these, both pairs of items can then be regarded as cognates under this less stringent policy.

In assessing sementic centrality, any morpheme which is usual but optional in its occurrence within an item of a given meaning is regarded as semantically peripheral; the morpheme whose meaning comes
closest to the particular meaning on the standard test list is regarded as semantically central. 68 One aid in comparing meanings from this point of view is the concept of the degree of breadth or gonerality of meaning of a morpheme as measured by the number of compounds in which it occurs. ${ }^{-9}$ For example, in IT /dùboóm koón/ 'hair', /koon/ 'hair, leaf' is regarded as semantically central and /dùboom/head' as peripheral, on the grounds that the former has a meaning much closer to the 'hair' of the standard test list than does the latter. Aģain, in TL /kátuùn (kún)/, because of its optional nature, /kưn/ 'bone, body part containing bone' is treated as semantically peripheral, and /kátuùn/ 'knee' as central.

In the absence of adequate descriptive information (both gramatical end semantic) for a given language, the criteria of optional occurrence and serentic closeness to the meaning of the standard test list may be applied by comparing the words for a gi.ven meaning in all the languages. By such interlingual comparison it is orten possible to tentatively identify morphemes within a compound, their mening, and whether their occurrence is fired or optional. For example, no specific information is available concerning the moriohology of Setaman nor about the composition of FS/mur kun/ 'back'. Ihowver, a comperison of the words for 'back' and other body parts in the other languages make it appear likely that/kun/ is a morpheme in TS body parts with the meaning of ibody part containing bones'. The occurrence of Bimur/ 'back' points to the identification of ES /mur/ as a morpheme meaning 'back', and indicates the interlingual optional occurrence of /kun/ in the "words' for 'back'. The conclusion to be drawn from these arg is that in the setamar "word" for tbock" drawn from these arguments semantically central rompher back /mur/ is probably the FI (as dawoj)/ 'fire', wheme A similar argument may be applied to 'mountan'. /go-kim/ 'louse', and BM /amgu tikia/

Such interlingual comparisons can only give insights into the sementic composition of words at some earlier period in the history of the languages compared, and the results so obtained have only mediocre reliability when applied to compounds in the present-day compound, informessing semantic centrality of the components of a preferred to interlingual information laneuage should always be

Often it is
compound because possible to 亡dentify a semantic focus in a equally pertinent or the meaning oi each component morpheme seems test list, or (b) one close to the meaning specified in the standard satisfactory meaning component morpheme is unique and no compouding is suspected it established for it, or (c) though morphemes with any certainty. is not possible to identify component used the whole compound in identify all such situations the author has above three kinds of situation ifying cognates. 70 Examples of the
lool/ 'excreta' end /kun/ 'bone, bony part of body' both seem equally distant from the meaning 'back'. 71 (b) KN/waimsan/, TI /umsan/, and similar words for 'tail' appear to contain a morpheme /san/ (compare FG/weim/, EA , FW /wem/) but it has not been possible to locate any other occurrences of such a morpheme nor even to guess at its meaning. Apparently unique components also occur in KJ /kaŋtom/ 'knee', TNN /ambib/ 'house', ana NN /amkwon haab/ 'mountain'. (c) FA/dumnoob/, KM/aimyob/, $\mathrm{KN} /$ dimtob/versus $\mathrm{KD} / \mathrm{bibiob} /$, KNV/minyop/ appear likely cognates if only something were known of their morphemic content, They may well have all come from a protoform such as */aim-job/ 'heart' (lit. 'body-ball'), but, as no evidence is available to identify two morphemes in each of the present-day words; these two sets cannot be considered cognate. It is obvicus that cognate decisjons in situations (b) and (c) depend considerably on how well each individual language is krown to the investigator, a state or affairs that pertains to all phases of

One compound occurred in the lists which should perhaps have been handled as an example of situation (a) above. It is Bri / $\mathrm{k}_{\text {ine }}$ minirib/ 'night', which was arbitrarily treated as cognate with IT / mililiilb/ and non-cognate with $1 \mathbb{N} / \mathrm{k}^{\mathrm{W}}$ iina-min/, although it seems likely that both of its component morphemes equally mean 'right'.

Tables 6 and 7 provide evidence for the degree of persistence within the Ok Family of the individual items on the standard test been given to use of both tables in the same way consideration has $\mathrm{MT}, \mathrm{WG}, \mathrm{KD}$, KN, KN, and ND . For and dialects: $\mathrm{MS}, \mathrm{TF}, \mathrm{FA}, \mathrm{BM}, \mathrm{TL}$, was made of how many different for each item of the test list a count cleven languages (as indicated by hate sets were represented in these occurred for these languages in the many different numerals The stable or most persistent in the particular column o: the table). different cognate sets in ll items, those showing only one or two unstable or least persistent languages, are Jisted below, as are the cognate sets in the 11 languages. lexicostatistical study, 90 were Of the 120 items useai in this list, 6 were taken Zrom his supp taken from Swadesh's loo-item test were added because of their culturentary list, and the remaining 24 occurrence on most of the word lists importance or because of their Wach of these groups of items may be used in compiling Tables 6 and 7 . persistence of the individual may be classified according to the

STABTIT
I or 2 different cognate sets

15 itens
Swadesh I, thou, wowan, 100 bird, louse, tree, bark, skin, bone, egro, tongue, see, sun, water, stone

UNSTABLE

7 to 10 different cognate sets
many, $\frac{20 \text { items }}{\mathrm{bi} \mathrm{I}_{5,} \text { long, }}$ small, meat (flesh), hear, sw:im, fly, walk, say, staj:g ground (earth), ash(es), red, black, ni.ght, full, new, gooci, dry

1 item
Swadesh
suppl.

Other

Thus the 30 iters which are not taken from the Swadesh loo-item test list are, as a whole, slightly more stable than the 90 Swadesh items. The 30 have an average of 3.9 different cognate sets per t-tem and the 90 items from Swadesh's 100 have an average of 4.7 different cognate sets each.) Thus the total list of 120 items used here is slightiy more retentive than Swadesh's l00. Another very marked leature of the persistence scores in the Ok Family is that pronouns average number much more stable than verbs and adjectives. 72 ? The gramatical class different cognate sets per item for each from Swadesh's 100 is as

3 pronouns have 2.3 cognate sets each;
52 nouns have 4.0 cognate sets each; 19 verbs have 5.3 cognate sets each; 16 adjectives have 6.6 cofnate sets each.

To determine the percentage of probable cognates that two languages share in a given list of wrobable cognates that two taking each corresponding pair of words, one compares the two lists,
numer of occurrences of each of three kinds of situation. Either (a) the two words are cognate (have the same preposed number), or (b) the two words are non-cognate (have different preposed numbers), or (c) a comparison is not possible because of lack of information (either or both of the nurnbers is zero). The proportion of cognates (often expressed as a percentage) which the two word lists have in common is

$$
\frac{a}{a+b} \text { or } \frac{a}{n-c}
$$

Where $n=a+b+c$ is the size of the lists employed. The counting and calculating involving Tables 5 and 7 is quite considerabie, so this was programed for an IBM 1620 computer. 73 Finc results for the 50 meanings (columns) of Table 6 are presented in Table 8. The result for any two languages is found at the intersection of the columi and row containing the symbols for those table gives the The intersection in the upper right half of the intersection in the lower portion to the nearest percent, and the comprisons used to arrive at holf of the table gives the number of comparisons. The results for this percentage, namely $a+b=n-c$ 7 for the 15 languages common to whole 120 meanings in Tables 5 and Table 9. To get a clearer pictureth tables are presented in comparison of these 15 languages of the position of NS, a special in which ins was fully represerted was made using 36 selected meanings the results appear in Table 10 . has been assumeding the results of this lexicostatistical study it closely related are the higher the cognate percentage the more the following conclusions have been drawn: (a) The existence of five Divisions within the Ok Family is confirmed, and these Divisions have the same composition is in the Introduction. (b) The grouping of these five Divisions into Sub-Families is rather uncertain until more information is available from Ngalum dialcets. The averafed results for the five Divisions galum

Percentages of Probable Cognates

TABLE 9. LEXICOSTATISTICAL CORPARISONS FOR 120 ITEMS

Percentages of Probable Cognates

IS	42	42	33	42	28	26	22	19	31	39	6		11	
36	$\underline{\text { P }}$	69	53	81	50	39	26	25	8	31	6			
36	36	FA	61	78	50	39	2	19	8	8	6			
36	36	36	B ${ }^{\text {d }}$	58	44	35	19	17	25	22	14			
36	36	36	36	TL	56	43	26	25	28	31	6	8	8	
35	36	36	36	36	W	65	26	25	25	25	6	8	11	
23	23	23	23	23	2.3	WG	24	26	26	30	4	4		
27	27	27	27	27	27	21	$\underline{\mathrm{KD}}$	63	59	48	0	15	15	
36	36	36	36	36	36	23	27	$\underline{\mathrm{KRI}}$	61	39	0	19	14	22
35	36	36	36	36	36	23	27	36	KNV	50	0	14	14	11
6	36	36	36	36	36	23	27	36	36	- ${ }^{\text {NTN }}$	3	11	11	
36	36	36	36	36	36	23	27	36	36	36	$\underline{O B}$	0	0	
\%	36	36	36	36	36	23	27	36	36	36	36	DK	67	
36	36	36	36	36	36	23	27	36	36	36	36	36	D	
9	9	9	9	9	9	3	9	9	9	9	9	9		

Numbers of words Compared

Iists for more languages may well show the suggested groupings of these five Divisions to be spurious，with these five taking on the status of Sub－Families and the higher percentages between geographically contiguous Sub－riamilies being due to continued inter－ action after the original breakup of the parent language．
（c）㨁解 of the \mathbb{M} and WG figures are similar to each other，but in Table 9 the comparisons of with wOA languages are an average of 11% larger than the comparisons of WG with MOA languages．（IWF with Wit is I5\％larger than WG with TL．）Likewise an average difference of 11% is seen in Table lo，but only an average difference of 4% is seen in Table 8．These differences probably point to a measure of interaction between liN and MOA or between MN and TI（durirg the last millenium？）．Similarly，UT shows comparisons with MOA the．t are 11% higher on the average than those of NiI and MK，and interaction between 现 and DOA may be inferred．
（a）Incomplete word lists are likely to produce unreliable results， as may be seen by comparing the NS comparisons with other languages in Tables 8 and 9．Tahle 10 was prepared specifically to eliminate this relative uncertainty in the NS figures．Although $B K$ and $R I$ to so have somewhat incoinplete lists in Table 8 ，there is no doubt as to which Division they belong to． 75
（ ϵ ）The minimum figures in Table 9 within the Ok Family average about 22% ．If one accepts the general principles of glottochronology and Swadesh＇s figure of 86% retention per inillenium for his loo－item list，then this minimum would represent a time depth of about five millenia．As the listis used in this present study heve been shown to be more retentive than Swadesh＇s 100，it is to be expected that five millenia may well be an maderestimate of the antiquity of the parent language，Proto－－Ok．
（f）From a consideration of the geographical centres of the Divisions and Sub－Femilies presented in the first classification in headwaters ofion，it appears likely that Proto－Ok had its home on the valley at the head of the south－flowing rivers，such as the Arip River （c）Three difeerent un Oik Tedj． 76
typical or averacent cognate percentages have been suggested as the status：Swadesh suggested slo point between dialect and language laycock have implied 60% ，usin，Dyen has suggested 70% ，and Wurm and For the Swadesh loo－fom，using the Swadesh 200－item test list． 77 77% and 70% respectively．A careful se would correspond tio 86% ， ？ables 8 and 9 indicates that the former tend to exceedigures in by amounts up to an average of 9% ．Tormer tend to exceed the latter estinated that 86% ， 77% and 70% in From a－calibration curre it is Table 9 would correspond approximately to $90 \%, 83 \%$ and 70% and in respectively in Table 8．approximately to $90 \%, 83 \%$ and 78% standaras as is showm in Table 8 has been evaluated by these three

90\%	83\%	78\%
Sibil NS	Sibil NS	Sibil NS
Tifel TA-TE-TH	Tifal TA -TF-TW	Tifal TA-TP-TW
Kauwol KM	Kauwol KW	Kauwol RW
Imdalmin FI		
Gibman PC		
Feiwolmin PF	Faiwol PG-FF-FA-FW	Faiwo
Central Faiwol FA-Fw		- -
Setamm PS	Setamen FS	
Bimin BH	Bimin BM-BK	Bimin BM-BK
Kuskusmin BK		
Teléfól TI	Teléfól TL	Teléfól TL
Wianrion ma	Mianmin $\mathbb{N W}$	Wianmin lw
Wagarabai wG	Wagarabai WG	Wagarabai WG
Digoel KD	Digoel KD	
Metoma Kati Mi	Hetomka Kati KM	Southern Kati Kin min
Yonegom Yis	Yonggom YM	
Minatie Kati KA-KN	Winetie Kati KA-KJ	Worthern Kati YM-KA-KNi
Ninggirum inmonk		
Upper Tedi UTY	Upper Y edi UT	Ninggirum NIT-NK

In botin the 83% and 78% columns FI has been omitted, since it is equally related to both rifal and Faiwol.

3. REIATIONGIIPS OUTSIJE THE OK FANILY

In the nain body of New Guinea between the 138th and 144th meridians there is iremendous linguistic diverita math be several hundred lan them are better known it spoken there, and even when many more of will yield fewer than 50 is unlikely that linguistic classification attempts to assess our families of languages. The inset map linguistic families. 78 present knowledge of this region in terms of lansuages neighbouring the many as possible of the families of their own intemal coherence Family will now be examined both for the Ok Family.

3.1 THE NEIGROURS OF THE OK FAVILY 79

The UPPER SEPIK PAMIIY or stock of about 6,000 speakers has been tentatively classiried by Laycock, and includes at least Djarok (Abaiu), Iwam, and Wogamusin, and perhaps Ki (Amto), Chenapian, and the language spoken at the mouth of the Yellow River. 80

The LEFT FAY FAMLY of perhaps 2,000 speakers has been surveyed by F. Conrad of the Summer Institute of Iinguistics, and includes Apaka-Abi-Aboa, Asowi, Iaro, Mimo-Wasuai, Nakwi--inumupra-Aukot, and

In the sparsely populated area south of the Sepik between the Wy River and the April River at least 6 languages have been reported: Meniap-Ariap (Breenugu), Nakiai, Pai, Suarmin, SisiminHowa (Kewa), and Gohom. Nothing is known of their family relation-
shins at this stage.

The ORSAFHTM language has about 4,000 speakers and is divided into several dialects.82 No closely related languages have been discoverod, and Oksapmin must be regarded as having the same classificatory status as a family.

The DUNA language has about 14,000 speairers. It is not closely relatod to any other language and should be regarded as having the same status as a family. 83

Fhe ENGA-HOL-POEF-WIRU FAMILY of about 253,000 speakers has been carefully delineated by Wurm and consists of the following Groups: Enga, Kyaka, Ipili, Lemben, Huli, Huliduna, Mendi, Kewapi,

Best of the Strickiand River between the Muller Range and the Bosavi liountains at least 6 languages have been reported: Daba, Biami, Orogo, Supei, Gebusi, and Su. (Du). A short word list from Supi indicates that it for one does not belong to any of the other

The MIN-PART PHMLY of 9,000 speakers is a tentative grouping by the present author, and includes Akium-Awin (Aekyom), Akium-Pare, and

The MARIND-KUNI FAMIY of 16,000 speakers was first identified by turray and Ray. 86 There appear to be two sub-families: (a) Boazi) and dials and Yaqai (Sohur) ${ }^{\circ} 7$ (b) Kuni dialects (including

The AMYU-DUNUT FAMILY of about 20,000 speakers has been esteblisheà by Irabíé. There appear to be two sub-families: iwyu, including Syiagha-Yénimu-O ser, to be two suramiles: (a)

Yotority (b) Manut, including Kaeti. (ivub), Wambon, and Wanggom. 88
The GHTRAL GOUTH COAST FARILI of perhaps 42,000 speakers has been established by Drabbé. This family includes Kamoro, Sempan,
frmat, Ieferipi, and Tjitjak. 89

In the mountain valleys both north and south of the central watershed between $139^{\circ} 25^{\circ}$ and $140^{\circ} 05$ longitude a family of languages but the only published specimen is that from fit. Goliath. 90

The DAM WAGII of perinaps 100,000 speakers has been carefully diclinented by IV. Bromley, and includes Western Dani, Grand Yalley Thri, Bestern Dani, Southern Dani, Ndugwa, and Wano. 91

Hothing is know about the people and languages on the lower Sobger iiver, or on the eastern tributaries of the A River.

3.2 PHONOLOGY

Tho consonantal systems found in the language families neighbour ing the or Family are relatively simple in that they have only ll to 16 consonant phonemes, and all with very ordinary phonetics. For instance, most languages have the symmetrical set $/ \mathrm{p} / \mathrm{g} / \mathrm{t} / \mathrm{g} / \mathrm{kr} / \mathrm{g} / \mathrm{b} / \mathrm{h}$
 $/ 1 / \mathrm{or} / \mathrm{h} /$, and no voiced that occur are listed: Djaxok has $/ \mathrm{J} /$,
 roicod prenaselized stops Dra has $/ \mathrm{b}$ to three voiceless and three Biga-Tuli-Pole-wjru Love $/ \mathrm{r} /$ and $/ \mathrm{I} / \mathrm{b} / \mathrm{in} / \mathrm{t} /$, and $/ \mathrm{g} / \mathrm{g}$ both Duna and Awin-Pre has $/ \mathrm{h} /$; Rarind has $/ \mathrm{v} / \mathrm{m} / \mathrm{m} / \mathrm{m}$ and m / h, and lack $/ \mathrm{n} / \mathrm{g}$ $/ \bar{s} /$ or $/ \mathrm{x} /$, and rony Apryu-Dumut 1 ancuase and $/ \mathrm{h} / ;$ Awru has $/ \mathrm{f} /$ and Const laclis roiced stops $/ n /$ languages lack $/ n /$; Central South having tive semi-rowels, $/ \mathrm{c} /$, and $/ \mathrm{s} /$, and makes up for this by $/ \mathrm{S}^{\mathrm{W}} /$, and many Dani languages had $/ \mathrm{h} / \mathrm{or} / \mathrm{I} /$; Dani has $/ \mathrm{kW} /$ and , $\mathrm{b} / \mathrm{d} /$, and $/ \mathrm{s} /$ and lacik $/ \mathrm{d} /$ 。 All of these iamilies seem to have at least 5 vowels. The Iollowing notes indicate where the vowel inventory exceeds the
 $/ 1 / \% /$ and a set of nasalized vowels; Sepik has /o/; Duna has /a/, and $/ \mathrm{ce} / \mathrm{s}$ and Pole and nasalized vowels; Sau has $/ \theta /$, Wendi has $/ \mathrm{I} /$ adition to the oral vowels: have a set of nasalized vowels in

 Wwels, but a careful study of Drabbé's also have sets of nasalized shows that these nosalized of Drabbe's gramars and vocabularies omal vowel followad by ned vowels may be interpreted phonemically as South Coast hes a system nasal phoneme, e.g. [a] $]=/ \mathrm{ar} / .92$ Central

Phonemic vowel length occurs in Oksapmin and Enga, and perhaps in Marind, Aghu (Awyu), and Central South Coast.

Iwam (Upper Sepik) appears to have lexical pitch, Oksapmin has some unexplained pitch features, Duna has two tonemes, the Enga-Huli-Pole-Wiru languages all have lexical pitch (Enga has two tonemes). Avin and Pare seem to have contrastive stress, although Akium-Pare monosyllables possibly show contrastive pitch, farind has non-phonemic stress, Dumut has non-phonemic stress, but Awyu has phonemic stress Dani has non-phonemic stress.

Fost language families in this area have both closed and open syllables. However, Duna, Bnga and several other languages of its family (but not Mendi) appear to have only open syllables, and in Awin-Pare, Awyu (but not Dumut), and Kamoro and Sempan of the Central South Coast Fomily open syllables predominate. Only in Wogamusin (Upper Sepik), Hendi, and Dumut do closed syllables predominate. Word-initial consonant clusters occur in Upper Sepik ($/ \mathrm{kl} / \mathrm{T} / \mathrm{pl} /$), Awin-Pare ($/ \mathrm{kr} / \mathrm{g} / \mathrm{pr} / \mathrm{g} / \mathrm{tr} / \mathrm{g} / \mathrm{gr} / \mathrm{g} / \mathrm{dr} / \mathrm{g} / \mathrm{sr} /$, $/ \mathrm{sm} /$), and Central South Const ($/ \mathrm{bw} / \mathrm{g} / \mathrm{mw} /$). As far as diphthongs ore concerned (that is, vowel clusters which apparently constitute a single syllable), occur in the Awin-Fare, have been noted in Oksopmin, and many diphthongs anind-Kuni, Awyu-Dumut, Central South Coast

3.3 INOUNS

Nouns seem not to be marked for plurality in the majority of cases. In Upper Sepik they are never marked, and in Marind-Kuni and Awyu-Dunut some human nouns only are marked for plurality by vowel change and suffixation respectively.

The Upper Sepik lenguages have from 6 to 12 noun classes and a cross-cutting 2-gender system. Warind-Kuni has a 2-gender system that involves concord by vowel-shift. All of the other families seem to heve no system of noun classes or gender.

Compounds formec. from two noun stems have been observed in Upper Sepik, Oksapmin, iidarind-Kuni, Awyu-Dumut, and Central South Coast. In all of these families the semantic relationship between the two nouns is similar to that in a possessive conship bo noun as "possessor". Perhaps the sementic relationship.

3.4 NUMERALS

Upper Sepik numerals are based on quinary and decimol systems, with the numerals for 5 and 10 not containing the morpheme for 'hand'. The numerals $1,2,3$, and sometimes 4 show agreement with
noun class and the numeral 1 also shows agreement with gender. Numbers for counting are the same as the numerals. Oksapmin employs a round--the-body counting system with the nose as the highest point and equivalent to 14, and a total counting unit of 25 (27?). The numbers/numerals from 15 to 25 have a prefix/tan-/ to avoid ambiguity. Numerals consist of the corresponding number suffixed by $/-w i / \sim /-h i /$ is $/-d i / . \quad$ Duna uses a round-the-body counting system with a counting unit of 14. Several languages of the Enga-Huli-PoleWiru Family use round-the-body counting with a counting unit of 15 (Huli, Pole), 47 (Kewa, Wiru, Ialibu). Huli and Pole, like Duna above, only use one side of the body. Kewa and Ialibu heve the bridge of the noso as the highest point and equivalent to 24 , while Wiru has the ridge of the nosc (?) as the highest point equivalent to 24.93 Awin uses on adapted round-the-body systen with a counting unit of 33. The soler plexis is the "highest" point (point of symmetry), equivalent to 12 . When the total of 23 has been reached on this round-the-body system a further 10 is added by the use of all the toes. On the other hand, Pare has a quinary (pentad, 5-base) system thet uses all the fingers and toes. Marind-Wuni counting seens to show some features of the so-celled "Australian" system of counting, e.g. $3=2+1$. However, in larind this is integrated within a quinary syster in which the numerals for 5 and 10 contain the morpheme for 'hand' and the numerals for 15 and 20 contain the morpheme for 'foot'。94 The Awyu languages make use of various types of quinary system. In Syìagha--Yénimu-Oser the numerals for 3 and 4 (and for 8 and 9,13 and 14, 18 and 19, etc.) are of the "Australian" type $(3=2+1,4=2+2)$; in Pisà the numerals for 3 and 4 are finger names; in Aghu the numeral for 3 is Australian and that for 4 is a finger name. On the other hand, in Dumut a round-the-body equivalent to 12, and the highest point is the crown which is 13 to 23 have/ei ne/ or total counting unit is 23. Numerals from Wambon the highest point is.ga ne/ 'of the other side' preposed. In the total counting unit is the nose which is equivalent to 14 , and 15 to 27 have/ayam e/ ithe other is called/kagap/o Numerals from 27 may be surfixed by/-kup/fat' side preposed. Tumerals from 4 to system scems to be quinary-cum-Austro Central South Coast counting Goliath system is a round-the-body one like Marind. The Mit. highest point and equivalent to 14. The that has the crown as the ilumbers from 15 to 27 have /ton-/ prefixe total counting unit is 27. The Dani counting system is quinary, with the Oksapmin above!). being of the "Australian" type in only some numerals for 3 and 4

3.5 PRONOUNTS

The semantic configurations of the pronouns in various languages are presented below. Where a language has several sets of pronouns, that set heving the fullest configuration is presented. The following abbreviations have been used:

Oksapmin

$1 s$	lid	lip
$2 s$	$2 d$	$2 p$
$3 m s$		
$3 f s$	$3 d$	$3 p$

Duna

$1 s$	$1 d$	$1 / 2 / 3 p$ visible
$2 / 3 s$	$2 / 3 \mathrm{~d}$	$1 / 2 / 3 p$ invisible

Finga, Huli

$1 s$	$1 d$	$1 p$
$2 s$	$2 d$	$2 p$
$3 s$	$3 d$	$3 p$

Awyr-Drumut (all languages)

$1 s$	$1 p$
$2 s$	$2 p$
$3 s$	$3 p$

Kamoro (Sempan, Asnat similar)

$1 s$	$1 d$	$1 p$
$2 s$	$2 / 3 m d$	
	$2 / 3 f d$	$2 p$
	$3 s / p$	

For all of the languages represented above except Boazi, pronoun roots may take suffixes having syntactic significance.

3.6 VERBS

In most of the families the verbs contain affixes to indicate the nature of the subject. The semantic configurations of such subject norkers are presented below for all the languages possible.
Upper Sepik: suffized for subject number, occasionally gender, but
never for person; Oksapmin: suffixed for number only (portmanteau with tense); Duna: no subject affixes;
Enga Suffixes
Huli Suffixes

$1 s$	$1 d$	$1 p$	$1 s$	$1 d$	$1 p$
$2 s$	$2 / 3 a$	$2 / 3 p$	$2 s$	$2 d$	$2 p$
$3 s$				$3 s / \alpha / p$	

Werind Prefixes
Yaqai Prefixes
Boazi Prefixes

Awyu-Dunut (all languages) Suffixes

$1 s$	$1 p$
$2 / 3 s$	$2 / 3 p$

Central South Coast Suffixes

$1 s$	$1 d$	$1 p$
$2 s$	$2 d$	$2 p$
$3 s$	$3 d$	$3 p$

In two of the families verbs are affixed to indicate the nature of the object or indirect object: Marind-Kuni by both prefixes and suffixes in the same language and Central South Coast by suffixes.

Negation or verbs is indicated by prefix or preposed particle in Upper Sepik; by postposed particle in Oksapmin; by prefix in Huli and negative auxiliary verb in Finga; by prefix and suffix together in Duna; by suffix, prefix or preposed particle in farind-Kuni; by surfix in Domut and Aghu, and by preposed particle in other Awyu lenguages; and by suffix in Central South Coast.

Tense and espect are indicated by preposed particles in Upper Sepik, by suffixes in Oksapmin, Duna, Enge-Fuli-Pole-Hiru, and by both prefixes and suffixes in Marind-Kuni, Awyu-Dumut, and Central South Coast.

Dependent verbs are affired to indicate whether the subject of the following verb is same or different in Wogamusin, Enga-Huli-PoleWiru, and in Drumut, but not in Duna, Awyu, Merind-Kuni or Central South Cosst.

Verb forms analogous to the Mountain-Ok benefactive verb forms occur in Enga-Huli-Pole-Wiru, but not in Upper Sepik or Oksapmin. Partly similar forms occur in Marind-Kuni and Central South Coast.

3.7 SYTTMX

The possessor precedes the possessed (noun) in all the families except Central South Coast, where the possessor follows common nouns. Some kinship nouns take possessive prefixes that show formal similarities to, but usually fewer semantic distinctions than, the pronouns in: Marind-Kuni, Awyu-Dumut except lambon, Kamoro, and Dani. This phenomenon occurs throughout the languages of Mountain-0rs Fivision $\mathrm{A}_{\text {, }}$ but apparently not in the other Divisions of the Ok

Humerals follow the noun in Upper Sepik, Oksapmin, Huli, AwyuIrmut and Central South Coast, and may do either in Marind-Kuni.

Nouns are co-ordinated by an intonation with pause in Upper Sepik and by a suffix on each co-ordinated item in Oksapmin, Huli, Marind-Kuni and Avyyu-Dumut.

The preferred order of syntactic elements within a clause seems to be Subject--Object--Action in all of the language families.

3.8 LEXICOSTARISSICS

The Upper Sepik grouping may well prove to be a stock rather than a family, since shared cognates have been estimated at 15% to 30%. The Left May Family has a lexicostatistical mesh involving from 20% to 70% shared cognates; and ir samo is treated as a sub-family the remaining languages form a chain with linkages above 50% shared cognates. Oksapmin dialects all share over 85% cognates. The languages of the Enga-Huli-Pole-Wiru Family share 28% to 50% cognates. ${ }^{\circ}$ The Awin-Fare Family exhibits relationships of 36% and above The relationship between the Warind and Kuni Sub-Families is indicated by 20% shared cognates, while the relationships within each Sub-Fomily are in the vicinity of 50% shared cognates. The percentege of cognates shared by the Awyu and Dumut Sub-Families ranges between 20% and 30%, whereas the figures within each SubFamily range between 50% and 70%. The languages of the Central South Coast Family share from 45% to 70% cognates.

A certain amount of lexical similarity is observed between several of the language families, and in some cases quite a considerable amount of borrowing seems to have occurred between individual languages across a family boundary. For instance, though Upper Sepik and Leit liay have virtually no lexical similarity as families, yet Apaka shows lo\% possible cognates with Iwam. Duna shows about 15% cognates with the Enga-Huli-Pole-Wiru Family in general, but 25% with Huli in particular. These two families are tentatively regarded as both belonging to the East New Guinea Highlands Stock。 97 In Table 9 Oksapmin shows 17% possible cognates with Bimin, an average of 7% with the other languages of the ifountain-Ok Sub-Family, and an average of only 3% with languages of the Iowland-ok Sub-.Family. These figures show exactly the characteristics to be expected if it is posited that Oksapmin is genetically unrelated to the Ok Family and that within the past millenium or so it has borrowed heavily from Bimin. 98 Awin shows about 10\% possible cognates with the Ok Family and with the AwyuDumut Family, but more detailed investigation is necessary before regular sound correspondences con be established. In Table 9 the two Dumut languages show on average of 6% cognates with the Ok Family with the highest, figures in the Lowland-Ok Sub-Family: A comparison of Drabbe's Awyu word lists with those for the Ok languages in Tables 6 and 7 indicates an average of lo\% probable cognates with the highest figures in the Mountein-Ok Sub-Fomily. It is the author's impression that a close study of the Awyu materials
would demonstrate regular sound correspondences between the Awyu (or Awru-Irmut) proto-formis and of proto-forms. It may eventually prove possible to demonstrate that the Ok, Awin-Pare, and Awyu-Dumut Families belong to a single linguistic stock or phylum, or perhaps that there was extensive borrowing between the three parent languages of these families. The possibility of significant lexical similarities between Awyu-Dumut and Central South Coast also warrants investigation. A rough count gives 7% possible cognates. The scanty material from IVt. (foliath shows an average of 10% possible cognates with the OK Family in Table 9. However, after a superficial check of other materials of this family against Sibil, Bromley states in a private communication that they appear unrelated. wore material Irom several languages of the family represented in the Mit. Goliath word list would be necessary to clarify the situation.

4. CONCIUSTION

Certain of the features of the languages examined in this chapter are of little use in determining family groupings of languages, because they occur so frequently throughout large areas of New Guinea. For instance: small size of the phoneme inventory, the occurrence of nown-noun compounds, the use of a round-the-body system of counting, the occurrence of syntactically significant suffixes on pronouns, suffixation of verbs for tense, the possessor preceding a possessed noun, possessive prefixes on kinship nouns, and the preferred secuence subject--Object--Action in clause structures.

Other features are of litile taxonomic value because they are so variant from language to language even within families. Bor instance: the type of syllable preferred, the technique of negating verbs, and the way of marking tense.

On the other hand, those features which have only a moderate degree of variation from language to language provide the most useful criteria for classifying languages. In the present study, the following features occur throughout the languages of the Ok Family with only minor variations, and do not occur in neighbouring families with any consistent pattern:
(a) a two-gender system (rany ok languages still need checking for this, but it seems likely that they have it because of the gender distinctions in the pronoun system);
(b) pronouns and subject suffixes with the sumatic configurations:

15	$1 p$	Is	Ip
$\begin{aligned} & 2 \mathrm{~ms} \\ & 2 \mathrm{fs} \end{aligned}$	2 p	2s	
$\begin{aligned} & 3 \mathrm{~ms} \\ & 3 \mathrm{fs} \end{aligned}$	$3 p$	$\begin{aligned} & 3 \mathrm{~ms} \\ & 3 \mathrm{fs} \end{aligned}$	2/3p

(c) object prefixes with some transitive verbs;
(d) the occurrence of benefactive verb forms;
(a) lexicostatistical relationships between languages within the family consistently above 20% shared cognates, based upon
regular sound correspondences.
Several other features are common to all the Ok lenguages, but insufficient information is available to show the contrast with ncighbouring fomilies, such as the tendency not to mark common nouns for plurolity, the occurrence of "duplex" stems, and the marking of noun co-ordination by suffixes or postclitics on each co-ordinated item。

Different features may prove to be the most useful for establishing the coherence of other families. For instance, the Awyu-Dumut Fomily is characterized by: (a) the semantic configuration of the pronouns, and (b) of the subject suffixes, (c) other details of the conjugation not discuissed in this section, and (d) Iexicostatistical relationships exceeding 20% shared cognates with prospects of establishing regular sound correspondences. The distinction between the Avyu and Dumut Sub-Families is best correlated with the phonemic status of stress the occurrence of $/ \mathrm{x} /$ or $/ \overline{5} /$, and the type of

Some features, though too variant to use as evidence for the identification of families, may nevertheless be sufficiently stable to identify sub-families or divisions within a family. Thus, the occurrence of lexical pitch and specific phonemes such as $/ \mathrm{f} /$, the goneral type or finer detail of the particular counting system in use, and tho occurrence of separate punctiliar and continuative verb stems serve to distinguish the Lowland-Ok and Mountein-Ok Sub-

The cumulative evidence sumarized above demonstrates the real existence of a fomily grouping of languages here called Ok. As well as showing the gencral coherence and internal sub-divisions of the Ok Family, this evidence also shows the contrast between the ok Fanily and its neighbours. For a better understanding of the ok Fomily as wholc, more ficld study of mionion and Hinggirun and more information on the Ngalum "dialects" aro needed.

NOPES

1. CIan is here used in the popular sense in which it has often been applied to such descent-cum-residence groups in this area. Mrs. R. Craig of the Department of Anthropology, University of Sydney, prefers to call these groups parishes.
2. This Atbalmin estimate of 1963 is less than the earlier estimate Of 5,000 in the 1960 Village Directory.
3. MoCartiny 1953; Brongersma and Venema 1962: 130, 133.
4. An account of the ancestry of this informant was communicated by Rev. K. Bricknell of the Australian Baptist Ifissionary Society. 5. Private commurication Prom Assistant District Officer D. Fitzer, based on hearsay reports.
5. Private commarication from R. Loving of the Summer Institute of Inguisties.
6. Private communication from A.F. Lockhart of the Unevangelized Fields Mission; Brongersma and Venema 1962: 156~7.
7. Private communication Erom F.C. Home of the Unevangelized Fielas Hission; Brongersma and Venema 1962: 157.
8. Brongersma and Venema 1962: 148.
9. Anonymous 1964; Eeynders 1962.
10. Brongersma and Tenema 1962: 305-7; Kooijman 1952; Galis 1960: $136 ;$ also personal commanication from J Pouwer.
11. The author's popllation estimates for Southem Kati are based on Schoorl 1957: 12.
12. Datrol Officer R. INenderson mentions in private communication that the Kowan live in the villages of Kuem and ilabaduan, and that they maintain they are misrants from the north-west.
13. Drabbé 1954: 146-229.
14. Geurtjens 1932: 397-433.
15. Austen 1923 (a): 162.
16. Irabbé 1954: 146-229.
17. Austen 1923 (a): 161.
18. Schoorl 1957: 284-9.
19. Prongersma and Venema 1962: 130, 133; Reynders 1962: 48, 51-54;
see also map in Bchoorl 1957: 299.
20. Brongersme and Venema 1962: 117, 128.
21. Schoorl 1957: 11.

22a. Austen 1925: 75, list number 2.
23. The author takes full responsibility for his way of presenting Steinkraus' phonomic analysis of Tiral, and for his re-analysis of Djabié's phonological statements on Southern Kati and Northern Kati。 24. The absence of /s/from some Lowland~0ix languages (and also from many Austraijen Aboriginal languages) disproves the suggestion that sibilants are a universal feature of phoneme inventories, made by Eurt and Aginsky 1948: 170.
25. Pike 1947: 3-11.
26. The authon is uncertain about the pronunciation of initial orthographic ng. Geurtjens gives ngéam 'vrist protector' and ngorom 'mobbish', 'dirt' for Digoel, and Kooijmen gives ngobip 'Jew's harp' for Sibil.

26a. The usuaj now clitic is /-te/ or perhaps/-Vte/ as may be seen
in Tables 5 and 7 .
27. Contrasts between / $t /$ and /r/ are given for Bimin, Mianmin, and Torthern Kati, since these parallel the / $t /-$ - /d/ contrast of the
other languages so closely. 28. Steinkraus mentions intervocalic /d/ but gives no examples, in
Steinkraus 1962: 13. 29. Lexical pitch has been analyzed for Tifal and Teléfól, and partly analyzed for ilianmin. On words of these three languages tonemes are indicated whenever they are known. Pitch is not indicated for other languages because the data are not sufficiently reliable in this regard.
30. Thisathe only observed occurrence of indigenous monomorphemic
intervocalic /d/ in Teléfól.
31. This is the only occurrence of initial/r/in Drabbés list of over 400 mords.

3la. Addende to WN: /gidon/ 'fish spear' /hidon/ 'fourteen' /gaut/ 'caterpillar' /kaun/ 'heavy, hard'
32. Irabbé 1954: I51-2.
33. Nealey 1954 (b), sections 2.2 and 6.2.
34. /lempen/ may be a borrowing from walay /lempen/ 'wafer'.
35. Brongersma and Venema 1962: 94.
36. Steinkraus 1962: 11, 12.
37. Doubt is cast on the length contrast in IIS by /bokam/, /bokaam/ 'men's house'. However, in a private commaication C.F. Horne vouches for the contrastive nature of vowel length in Igalum in the
Kivirok area.
38. For more Tifal examples see Stieinkraus 1963: 2-4.
39. For more Teléfól examples see Healey l964 (b).
40. A moredotailed exposition of Tifal tonal sandhi is given in Steinkraus 1963: 5-6. 1964 (b), sections 9.3 to 9.5 .
42. Drabbé 1954: 153. The term "accent" is used for Drabbé's toon.
43. Warm 1954: 702.
44. Kent 1954: 16.
45. Healey 1964. (b), section 1.
46. Such a selection may be illustrated by Teléfól, in Healey
47. The consonant cluster /ng/ constitutes an orthographic problem in any language in which the digraph r ig is used to represent $/ \mathrm{n} /$. To maintain phonemic contrast in the orthography it is necessary to represent /ng/ by n-g, ngg, or some similar device. For example, Hinggirum /rini kwo/ tooth', /kenge/'tree sp.', /tina mipgi/ 'grandchilà' may be orthographically: ningi spoo', /tina mipgi/
'tree sp.', tine minggi 'grandchild'.
48. Healey I964 (3), section 6.2.
49. Drabbé 1954: 155-6; Phyilis Mi. Fealey 1964 (b), suction 2.16. 50. Drabbé eives several examples of Fati compounds. Drabbé
51. The earliest account of hountain-Ok Division A counting was given in Kirschbaum 1938.
52. Information on sibil counting from Galis 1960: 136. See also Brongersma and Venema 1962: 35-6.
53. Drabbé 1954: 201-3.

53a. Galis 1960: 131. See also *asu in thesis chapter III, 209 notes. 54. In Teléfól the forms for 'he/it' and 'they' are homophonous in the main set of pronoun roots, but are distinct in the emphatic set of roots.
55. Details of the neaning and syntactic significance of the Teléfól pronoun suffixes are given in Phyllis M. Healey 1964 (b), section
2.16.
56. An elaborate classification of Telófól verbs on the basis of sten differences is to appear in Alan Wealey, Teléfól Eorphology.
57. Kati information from Drabbé 1954: 197-3.
58. This analysis of Teléfol dependent endings may be illustrated by /-nala/ $=/$ /in/ 'same subject' $+/$-ala/ ihe'。 An alternative analysis is presented in section 6.4 of Healey 1964 (b), which involves vowel harmony between the two suffixes: /-nala/ =/-nal/ 'same subject' $+/-a /$ 'he'.
59. The benefactive fom of a transitive verb inay have two syntactic "objectisi (namely, the object and the beneficiary which Drabbe calls the relation), and may be regarded as bi-transitive. However the benefactive form of an intransitive verb may only have one syntactic "object" and cannot properly be called bi-transitive. Nor can it be called transitive lest it be confused with the non-benefactive form of a transitive vorb. For these reasons "benefactive" has been acopted as the sole nane for these verbal forms in this paper.
60. Drabbé 1954: 167.
61. Kati examples of this range of meanings of the benefactive are
given in Drabbé 1954: $167-8$.
62. In Teléfól at least, there are benefactive equivalents of all the kinds of clause listed, but the Tronsitive Benefactive is the most frequent kind.
63. The analysis of Kati postpositions as possessed nouns seems preferable to Drabbe's view of them as adjectives, since this agrees with their nominal status when they occur as destination of a verb
of motion.
54. Throughout section $2.8^{\text {ic cognate }}$ " is used in the sense of "lexicostatistical same" or "probable cognate".

64玉. The indigeno: 1 stone implements used throughout the Olx-speaking area are adzes, though often called axes.
65. For a discussion and more examples of these types of probable cognates see Alan Healey, Reconstructing Proto-0k, Section 4 (mimeo 1964).
65. The only published discussions seen are: Morris Swadesh's wules in Bergsland and Vogt 1962: 145; Gudschinsky 1956: 182; Taylor and Rouse 1955: 106-7 (implications rather than discussion).
67. Some compounds in Pables 6 and 7 are written as two words, just es they are in the source meterial. Probably this sometimes represents phonological juncture, and sometimes merely the bimorphemic nature of the compound.
68. These criteria are put forward as an attempt to extend to compouds the long-accepted polioy of neglecting inflectional (and derivetional?) affixes and processes when deciding cognateship of words. See Gudschinsky 1956: 182 and Swadesh in Bergsland and Vogt 1962: 145.
69. Nida 1961: 319 suggests as a more basic measure the number of vords for which this morpheme may substitute senantically.
70. In these circurnstances the author disagrees with Swadesh's (Ioc. cit.) policy of using either part of the cormound indifferently for zikiking cognate decisions.
71. Gudschinsky's (loc. cit. analysis of the Ixcatec and Mazatec mords for 'guts' as non-cognate fit into this category well.
72. A similar finding for Jto-Aztecan languages is reported by David H. Kelley in: Fymes 1960: 10.
73. Por a given meaning in Table 6 all of the 28 numbers in that particular column were punched serially on a single IBM card, two digits being allotted to each number. A separate card was punched for each of the 50 meanings (columns) in Table 6. For Table 7 zeros were inserted for the 13 languages not listed, and 28 numbers were still punched on each card. The IBM programme was written by F. Pindale of the Department of Theoretical Physics at the Australian National University, where it is kept on file as Programme 453. The last card of the programme contains just two numbers in sequence -the number of longuages being compared and the number of meanings (cards) being uscen in the comparison.

7\%. The author joins commentators Fllegard, Fodor, Hymes, Milewski, Milke, and Tlaylor in disagreeing with Bergsland and Vogt's claim (op. cit. pol26) that "in principle, the lexicostatistic method is and dialectsi". for determining the sub-grouping of cognate languages
75. A. discussion of biasing due to incomplete word lists is found in Thomas and Healey 1962: 29. Clearly, such biasing may occur with the Swadesh 100-item test list which constitutes $3 / 4$ of the list used in the present study, since its itens still show considerable heterogeneity of persistence.
76. Dyen 1956.
77. Swadesh 1954: 326; Dyen 1963: latter deliberately emphasize intelligibility laycock 1961: 133. The cognates. However, their examples imply thy rather than shared direct information on int in the absence of shared cognates could belligibility, a standard of about 6% of 50% information transfer.
78. The grouping of languages into "families" follows the various groupings, usually or undefined status, mentioned in Capell 1962, supplemented by mapping information from the sources he quotes. The fresent ant the south-westem quarter of the region are based on the section 3.1 folloring al assessment of the published data listed in longuages were grouped into the absence of grammatical information, vocabulary showed more into the same family if their basic information has been received by shared cognates. In addition, Doc. Laycock, R. Loving and J by personal commuication from Iinguisties, R. Comrad of the Cass of the Summer Institute of Coristian and Missionary the S.I.Log and H.M. Bromley of the Also K. Dernis of the U.F.M. 1962, Galis 1955-6, Kooijman in this section are taken from Capell
30. Capell 1962: 45-7, and Laycock in personal communication.
31. Personel communication from R. Conrad.
languages is based on the author's analysis The grouping into statistical data.
82. Information on Oksaprin used in this section comes from the author's field notes and from personal communications from Rev. K Brichnell of the Australian Beptist Pissionary Society.
83. Gapell 1962: Ill, 117 , and personal
the Summer Institute of Jinguistics. communication from R. Brown of 1964 (b). $\quad 19$ (a): 16,
84. Capell 1962: lo5-128; Furm 1961, 1964 (a), 1964 (b); Rule 1954;
and the author's field notes.
85. Ford list supplied by courtesy of Patrol Officer R.\%. Henderson.
86. Murray and Ray 1918.
87. Boelaars 1950: 1-18, 55-67. Some information also taken from Drabbé 1954: 69-145, 1955; Geurtjens 1932.
38. Hany of Drabbés "dialects" are here regarded as separate lenguages so as to keep a uniform standard of nomenclature throughout. The sources for this fomily include Drabbe 1950, 1957, 1959; Tevermann 1940; Boelcars 1950: 68-75; and personal comunication from Dr. D.C. Gajdusek conceming Mitak.
89. Drabbé 1953: personal communication from Dr. D.C. Gejdusek concerning Hereripi and Tjitjak.
90. de Kock 1912: 169-170 has a short word list which has been published on four different occasions. His is the fullest version and appears to be the most accurate. Salzner 1960: map 48, calls this language Spe, but gives no indication of the source of this name. A more recent expedition to this area apparently obtained no extensive linguistic informetion. Sneep 1961-2; Saulnier 1963. In a personal commication H_{N}. Bromley states that the languages spoken in the Valley-of-the-70, T-Valley and the Erok Valley are all related.
91. Bromley 1961, and in personal communication.
92. Allomorphic altermation between word-final [V$]$ and word-medial [Vn] supports this analysis. Drabbé 1950: 113, 1957: 21.
93. Franklin 1962: 189; Rule 1954: 28.
94. See Galis 1960 for information on Marind numerals and on the classification of counting systems.
95. A description of Teléfól possessive prefixes is given in Alon Healey 1962: 20.
96. Wurm 1961: 22.
97. Wurin 1961: 23, 1964 (a), 1964 (b).
98. The lexicostatistical characteristics of borrowing are discussed in Thomes and Healey 1962: 27-9; Dyen 1963 (a).
99. Although Drabbe at first thought that the Dumut group was "probably a sister language of ... Kati", he eventually decided that it "is very closely related with its western neighbour [Awyu] and only superficially with its eastern one [Kati]". He bases his decision on (a) the greater positive similarity of vocabulary and verbal conjugatior between Dumut and Awyu then between Dumut and Kati, and (b) the negative similarity of Dumut and Awry in not having the gender, verbal object prefixes, aspect associated with tense, and senary numeral system of Kati, despite (c) the greater similarity between the phonologies of Irumut and Kati than between those of Dumut and Aryu. Drabbe 1954: 211: 1959: 5. The quotations are the present author's translations from Dutch
1.0. It seems likely that a world-wide sampling would indicate that various language features have different "persistence scores". An ideal test list of features to be used in classifying languages at the fanily level would avoid the highly stable and extremely unstable features, but employ rather those of medium persistence. Any serious attempt to use typology or morphostatistics to help classify languages must take into account the relative probability of occurrence or non-occurrence of each of the positive and negative features considered.

RECONSTRUCTING PROTO-OK

Alan Healey

0. Introduction
1. Proto-Mounta:in-Ok
2. Proto-Lowland-Ok
3. Proto-Ok
4. Archaic Or
5. Conclusion

O. InTRODUCTION

It is the purpose of this paper to show that the methods of comparative linguistics may be used to discover regular sound correspondences between the languages of the Ok Family of New Guinea. This leads to a tentative reconstruction of most of the phones and a few of the morphemes of the parent languages. Most attention is given to reconstructing Proto-Mountain-Ok, since this sub-family is better documented. To clarify the status of Sibils it is excluded from these Pino reconstructions, and compared with PMO later. A less extensive study of the Proto-Lowland-Ok is limited by lack of data from Ninggirum. Then some of the more interesting facets of ProtoOk are arrived at by a comparison of PMO, Sibil, and PLO.

The language data quoted in this paper come from a variety of sources as mentioned in "A Survey of the Ok Family of Languages", section l, and have all been phonemicized according to the phonemic descriptions presented in the "Survey", sections 2.1-2.4, especially Tables 1 and 2. This present paper was written after the "Survey" was completed, and occasional discrepancies of phonemic transcription and cognate decision occur between the two papers, but these do not materially affect any of the conclusions of either paper.

Whenever there is ambiguity in the proto-form of a particular morpheme, this is indicated by two (or occasionally three) protoforms listed together. These represent all possible combinations of the verious proto-phones by which they differ, e.g. 218 *fuk, *FUK 'neck' represents uncertainty to the extent of 8 possible reconstructions: *fuk, *fuk, *fUk, *Fuk, FFUk, $_{\text {F }}$, hyphen initiating or terminating a proto-form indicates that the morpheme was probably bound in the parent languages. A hyphen is placed after most reconstructed verbal stems, and the data is reconstructed verbs is usually presented in the supporting initiating or terminating ally presented in the same form. Two dots as to the nature of that portion form indicate complete uncertainty morpheme. A hyphen within a proto (if it be a portion) of the original division.

Reconstructing verbs has proved quite difficult beccuse of (a) the sporadic way in which the stem-suffix boundary is marked in much of the source material, (b) the multiplicity of stem allomorphs, especially in the Fountain-Ok languages, and (c) the lack of informetion on aspect suffixes and their ellomorphs in the frountainok langueges.? itany more verbs may be reconstructed when such gramatical information is available for all of the source material.

Throughout this paper contrastive vowel length is assumed to exist in all of the parent languages because of its near-universality in the doughter languages. No attempt is made to reconstruct length risorously since vovel length has not been adequately indicated or checked in several of the languages. Instead, length has been reconstructed wherever it appears in the more reliable data. (It is essumed that errors of phonetic transcription are more likely to involve writing lungth short than vice versa.)

A sound correspondence is regarded es established for a given position within the word if there are at least 3 reasonobly good examples of it. 3 All reconstructed forms are prefixed by an asterisk. English and Dutch meanings are given for each reconstruction. I'he Dutch forms are not always the preferred translation equivelent of the English; but rather those found in Geurtjens' and Drebbé's word lists.

1. PROTOMOUTIALINOK

The established sound correspondences for the Wiountain-Ok languages (excluding sibil) are listed in Table 1 in the phonemic transcription of the individual languages and the best available examples are listed by their Table 3 reference numbers. In this table ${ }^{*} \mathrm{~b}-\ldots,-{ }^{*} \mathrm{~b}--$, and $-{ }^{*} \mathrm{~b}$ represent *b $_{\mathrm{b}}$ in word-initial, intervocalic, and word-rinal positions respectively. For the vowels, I, F, and M represent occurrence in an initial syllable, final syllable, and monosyllable respectively. Table 2 lists most of the examples that involve sound correspondences that are not yet established (by three good examples).

A list of 406 morphemes tentatively reconstructed for prio is given in Table 3. Forphemes numbered from 1 to 211 are considered as reasonably good reconstructions, since they are based upon cognates in 4 or 5 languages, or in 3 languages including $\mathbb{P N}$ and $B M$. Reconstructions numbered from 212 to $405 a$ are not as relis:ble, since they are based on cognates in (a) any 3 languages; (b) any of the
 any pair of lenguages at all if they illustrate a rare sound correspondence; or (d) any single language if there is a cognate in a non-contiguous language of the Lowland-ok Sub-Family.

The notes accompanying the first 211 reconstructions are placed at the foot of the page and bear the same number as the reconstructions to which they apply. They include: (a) additional cognates introduced by "Also"; (b) an anticipated forrn in parentheses introduced by "Expected" for an unusual sound correspondence; (c) the full compound or phrase (introduced by "Fromit from which the listed hyphenated form has been taken -- verb stems excepted; (d) any moning deviating from that given for the reconstruction, introduced by "Mote" and indicated in the list by (${ }^{+}$).

Wo attempt has been made to reconstruct tone for lack of information, but many tonal parallels between $M T, T I$, and $T F$ are obvious in Teble 3. Nor has any attempt been made to account for Sianmin $/ \mathrm{q} /$ 。

The PMO symbois with asterisks in Table 1 represent proto-phones, and these require phonemic enalysis before proto-phonemes may be postulated. From a consideration of the present-day lenguages of the Mountain-Ok Sub-manily, the following proto-phones seem worthy of

There is a clear contrast between ${ }^{*} d$ and ${ }^{*} g$, and these both appear to contrast with *1:

*laa	113	*daal	318
* 100	311	*aO1	168
\%leib	206	*aeen	210
		* ${ }^{\text {dinải }}$	in 358

*gaal 175
*gUl 69, *gool 130
*geen 73
*gimgim 340

The phone *c is very neerly in complementary distribution with each of $*_{t} H_{k}$, and H_{K}. All examples of $*_{c}$ are followed by ${ }_{i}$, $*_{i i}$, or *I except items 5, 131, and 178. On the other hand *is and *K are never followed by these three vowel phones and ${ }^{\prime} t$ is followed by these vowel phones in only four items: 55, 125, 337, and 354. All three or *t, *ry and \mathcal{F}_{K} appear to contrast with each other:
*tool 165
*tuum 164
*tawail 156,*tIlis 125 *haleel 92
*teiか, Ftaiy 323 *kein 107
*Kook 373
*Kul 236
*Kaliim 344

However, because or the paucity of examples and because their reflexes contrast in only one language ($\mathbb{N N}$), the relationship between ${ }^{*} k$ and $\# \mathbb{K}$ is worthy of further investigation. Perhaps iN hes two strata, onc of which may be related to the heavy borrowing from IT posited in the "Survey", section 2,8.

A comparison or final ${ }^{*}$ and ${ }^{*} \mathrm{~K}$ shows them to be in contrast：
＋an 46
Tmulk 16
＊sook 114
＊laek 292

先
＊suuk 348
＊KooK 373
＂naik 271

Again，these contrast in only one daughter language（NiN），and a hypothesis of two strata in N should be investigated．

The data containing initial $*_{f}$ and ${ }_{F} P$ are insufficient for a satisiactory conclusion to be reached．However，it may be noted that ＂uu seems to follow＊F rather than＊f，and this has a parallel in present－day fianmin，where $/ \mathrm{f} / \mathrm{is}$ followed by $/ \mathrm{a} / \mathrm{g} / \mathrm{o} / \mathrm{g} / \mathrm{u} / \mathrm{g} / \mathrm{i} /$ ，and $/ \mathrm{h} /$ is followed by $/ \mathrm{e} / \mathrm{g} / \mathrm{a} / \mathrm{g} / \mathrm{o} / \mathrm{o}$

The present data for ${ }^{*} u$ and 紬 are not comparable for any given syllable position．The present data for final $*$ ，$*$ E，and $* a$ are insufficient for a firm conclusion to be reached，but give the impression of contrast．

The vowcl phones＊a and ＊he 2 appear to contrast in word－initial position，which is the only place in which $*-{ }_{c}$ ocurs：
＊asU 209
＊afaan 40
＊abiil 153
＊abin 23
＊aKeet，＊ajkeet 19．＊HykE－ 104
＊－4tul 171
＊最taan 154
＊台biib 101
＊abiin 100

However，＊ 品 may eventually prove to be a tonally conditioned variant of $* / a y^{\prime}$ 。

Vowel phones ${ }^{2}$ I and $*_{A}$ are also limited to occurring in the initial syllable，and probably reflect a type of vowel neutralization

The apparent contrasts discussed above suggest a PMO phonemic system much more complex thon any of the daughter languages，and such a system is suspect because of this discrepancy．Rather more information is required for a thorough phonemic analysis of Proto－ Wountain－Ok．For instance，when comparable data are available from $W G$ ，when vowel neutralization is understood in each liountain－Ok language，and when PMo tone has been reconstructed for ill proto－ morphemes in feble 3，Prio phonemes may be delineated with more certainty．

TABLE 1. ESTABLISHED SOUMD CORRESPONDENCES OF MOUNTAIN-OK LANGUAGES

Prio	IWN	TL	TE	FA	BII	İlu	ustrat	tions			
* b -	p	b	b	b	b	99	35,	45.	133,	157,	180, 188
-*b-	p	b	b	b	b	1,	23.	61,	100,	101,	153, 176
-*b	p	b	b	b	b	18,	54.	112,	155,	190,	198, 206
* t --	t	t	t	t	t	28,	44,	59,	164,	184.	186, 190
-*t-	t	t	t	t	t	7,	15,	99,	102,	150,	154, 171
-*t	t	t	t	t	t	20,	41.	47.	I19,	122,	160, 183
* -	r	d	J	d.	r	3,	126,	168,	197,	210,	212, 225
* 1 -	r	iI	1	1	r	57,	70,	113.	206,	292,	311, 326
-*1-	r	1	1	d/I	r	17.	55,	83,	92,	178,	186, 208
-*1	r	1	1	1	r	27,	38,	50,	69,	92,	133, 153
*g-	g	a	d	g	g	1,	24.	42,	69.	71,	130, 175
* k -	\varnothing	k	k	k	k	4,	21.	48,	51,	92,	107, 249
--***	\varnothing	k	k	k	k	56,	179,	180			
$-^{*} k$	\varnothing	k	k	\underline{x}	k	16,	114,	138,	158,	243,	252, 370
*K.-	h	k	k	k	k	31,	74.	102,	204,	220,	230, 233
${ }_{\text {- }}^{\text {- }} \mathrm{F}$	${ }^{k}$	k	k	k	k	46,	79,	84,	89,	115,	189, 197
${ }^{*} k^{W}-$	k^{W}	K^{WV}	k	$\mathrm{k}^{\text {w }}$	k^{W}	119,	147,	224.	256,	359,	405a
* c -	k	t	t	$\underline{ }$	k	5,	6 s	38,	105,	129,	146, 178
* m	m	In	m	m	m	16,	17,	20,	33,	50,	145, 198
..*m-	m	m	m	m	m	21.	30,	31,	62,	79,	121, 142
-**	m	m	m	m	m	49,	57.	97,	103,	118,	123, 129
* ${ }^{\prime}$	n	n	n	n	n	12,	25,	90,	91,	138,	201, 271
-* n -	n	n	n	n	n	32,	77,	78,	94.	108,	148, 185
-*n	n	n	n	n	n	49	6,	99	17,	30,	40, 44
一*	5	b	0	$\stackrel{n}{3}$	j	26,	28,	37,	42	45,	60, 66
*w-	w	w	w	w	w	60,	96,	120,	135,	289,	300, 310
$-^{*}{ }_{\text {W- }}$	wi	b	w	wi	w	124.	141,	156			
* ${ }^{\text {y }}$	y	y	y	y	y	34,	103.	113,	122,	183.	281, 335
*	h	I	f	f	I	11,	41.	68,	89,	11.	170, 177
-*9-	f	f	w	b / w	w	40,	66,	87,	243,	249,	299
*F-	P	f	f	f	I	64;	106,	17	9,	32	
	k	k	\underline{k}	k	$0 / 0 \mathrm{~g}$	13,	44,	80,	104, 1	144, 1	181, 398

TABIE 1. (cont.)

TABLE 2. MOUNTAEM-OK SOUND CORPESPONDENCES NOT YET ESTABLISHED

Prio	Illustrations			
-*K-	151,	231,	, 383	
-*).	334			
$\cdots{ }^{*}{ }^{\text {W }}$	14			
$\cdots{ }^{\text {W }}$ -	26,	193		
${ }^{*} \mathrm{C}$ -	47,	67		
I *ii	377			
I * ${ }^{\text {u }}$	21.	450	232,	265, 282
if *u	48,	236		
P *ut	5,	115		
F *	21,	20:4,	209,	230, 332
W	59.	294		
I * TJU	106,	339		
$\square \mathrm{FUU}$	151.	339		
T *	18,	42.	296	
I \%e	50,	342		
\# \quad d	17.	31,	126,	272, 329
粨	85,	133,		
* ${ }^{\text {¢ }}$	3			
\times	28,	39		
* ${ }^{\text {i }}$	332			
* ${ }^{\text {i }}$	33,	99		
* 4	134. 3	327,	356	
- 4 ui	172			
\% 0	79			
	5, 7	74. 3	333	
\% 00	151			

Semivowels that fuse with vowel:
*y- 30, 80, 121, 122, 281
$*_{w-} \quad 32,36,37,53,76$, 78, 99, 115, 116, 140, 306
-**W- $\begin{aligned} & 46, \\ & 386\end{aligned}$ 84, 122, 143, 281, 386

Consonant clusters other than *ŋk: 10, 41, 47, 65, 128, 129, 159, 192, 230, 248, 257, 328, 329, 330, 380

Diphthongs other than *ei:
24, 36, 37, 59, 70, 81, 130, 131, 132, 136, 147, 238, 239, 260, 262, 271, 279, 280, 292, 321, 347, 357, 402

No．	Pro	Troclish Dutch	W	＇TL	$T \mathrm{~F}$	FA	BM
1	＊gaboom ＊goboom	head hoord	gapam	dùboóm	dàboòm	guboom	－－
2	＊guu	head hoofd	go－－	dừú	du－	gu．	－－
3	＊dabedr	rorehead voorioofd	riper	dàbaál ${ }^{+}$	dàba⿱亠乂	dabaal ${ }^{+}$	yaba．ar
4.	＊roon	heiri，leaf hear，blad	àn	koón	koon	$x^{W} \text { oon }$ koon	koon
5	＊colum	$\begin{aligned} & \text { car } \\ & \text { oor } \end{aligned}$	kroron	tùzún	－	kalum	karuun
6	$\cdots \mathrm{cin}$	$\begin{aligned} & \text { eye } \\ & \text { oog } \end{aligned}$	kin	tiìn	tiìn	kiin	kiin
7	＊Huturan wntutum	$\begin{aligned} & \text { nose } \\ & \text { neis } \end{aligned}$	－－	mútứn	mútúm	miturum	maturm
8	＊iin	naъal mucus snot	－－	iín	in－	iin	iin

I Also WG／Rawom／．
 ＇head－louse＇，me／du－tiknil／＇bald＇，FA／gu－tukul／＇bald＇，these latter being compounds of＇head＇and＇fat＇．Note TL＇core＇（of boil）and＇ridge＇（of house）．

3 MA／Gbaal／＇brain＇may be a by－form，or it may be a compound involving＂gua thead＇．Expected Bri（dabaar）．Note TH＇skull＇， mitace＇．

5 Slso WG／kadan／，／kon／。

7 Alec probebly wh／ruvtu／．
8 Prora／in－ook／＇nasal mucus＇．

\%o.	P\%	Theninh	ITN	TT	Tr	Fif	[mi
25	$\begin{aligned} & \text { nowaz } \\ & \text { nopkol } \end{aligned}$	ghouldor, ten sohoudur, tien	nokgr ${ }^{+}$	náluà	nákán	nikaal	--
26	${ }^{*}{ }^{\text {mij.j.j }}$	shoulder schouder	$x^{\text {W }}$ i ${ }^{\text {d }}$	$k^{W / 15}$	tity-	nin-	lriit
27	\%or	$\begin{aligned} & \text { ororeta } \\ & \text { poop, arek, } \\ & \text { stinont } \end{aligned}$	ar	ool	001	mool	oor
28	tiog	$\operatorname{small}_{\text {mour }}\left(n_{0}\right)$	tàn	tà	tan	tat	teen
29	Fobu	testicice testilel	spo	cbu-	--	--	abo-
30	yreman	$\begin{aligned} & \text { arine } \\ & \text { pis } \end{aligned}$	iman	ìmeán	inam	imsan	yeman
31	Wemeen	goma kolras	kemen	karneén	kaneen	kameen	kameen
32	mant	5ress apron Vr. schambedek	$\begin{aligned} & \text { unan } \\ & \text { king } \end{aligned}$	únám	unam	--	wanear
33	$\begin{aligned} & \text { namily } \\ & x_{m \in n} \end{aligned}$	net het nethoed	--	mánúl	maniil	menilil	maniir

25 Note int mocons 'shoulder' only.

A. Aiin-won/ 'collar bone'.

27 Also w/al 'belly'. Note FA, BMiso mean 'intestines'.
29 Trom /abu-loób/, BH/abo-roob/ 'testicles'. The second element in these compounds probably also occurs in *ibolob 'ball' (22l) wh FA / dumoob/ 'hoart', and seems to be cognate with or a by-form of *lab, *loob 'sced' (326).

33 Peblembic he /mur/ inati may well prove to be cognato upon fiela chocring of its phonemic transcription.

1\％．	Plio	inglish Intich	限	fit	$T \mathrm{~F}$	Pa	Bnt 137
34	yam $x y d y n$	less foot beon，voot	－－	yatn	yaan	yaan	yoan
35		sule，pelm voctzool， liendpaim	pán	bén	ban	ben	－－
36	＊	$\begin{aligned} & \text { thegh } \\ & \text { dij } \end{aligned}$	－－	ช．n－	iiか－	¢ŋー	ai̊）
37	＊wit	$\begin{gathered} \text { caly } \\ \text { louit } \end{gathered}$	Wait	un	iiŋ－	was	$\cdots 0$
38	Heel．	back of imee lnie van nohter	mer	mè¢	meel－	meel	meer
39	\％${ }_{\text {\％}}$	foreem，seven oncorrm，eeven	pàn－	ben	－－	－－	ben－
40	＊aram	Ieft－hend Linkerhend	aran	àfaán	awaen	abaan	awan
41	\％ F ct－hm	forearm onderrman	net－on	fèét-kin	feet-ku	feet-	－－
42	＊ gWO_{5}	joint，bnob gelid，knobbel	－çup	－－̇ưự）	－duus	－gaut	guuj ${ }^{+}$
34	Also Kh／trem／．						
36	＇thigh＇．Sce 3 ？for likely by－forms．						
37	＇caifi．See 36 for likely by－forms．						
38	Trom di／mécl－luín／，TP／meel－man／＇back of knee＇．						
39							
住	Presumaby＊feet weans＇forenrm＇since＊han＇bony＇is a regular comonert of body－part compounds．Compare TIT，FA／feet－kal／ ＇seven＇。 fote int＇outer elbow＇。						
42	 TIJ／abín－dứt）／＇navel＇．Note Bin＇wrist＇．Sce 43 for probable by－forms．						

 'lnucile, finger'; Tr /yàan-duún/, TR/yaan-duun/, TA/yaan-guuy/ 'too'. See 42 for probable by-forms.

44 Pron mu /tátán-téem/, me/takan-teem/s FA/tikan-teem/,
IC Also WG/on/, $\mathrm{FW} / \mathrm{kraz} /$.
49 Note PA 'vein'.

no．	PMO	Inclish mutch	Na	J J	$T \mathrm{~F}$	PA	139 BNH
54	＊－teeb	hanger，thirst honger，dorst	－tep	－teeb	－teeb	－teeb	－teeb
55	$\begin{aligned} & * \text { tII } \ldots \\ & * \text { WIiin } \end{aligned}$	chew ${ }^{6}$ kawnen	tri－	tíli̇．－	til．ii－	tali－	－－
56	＊alral－ ＊akaal－	recline，sleep liggen，slapen	$\begin{aligned} & \text { ą } \\ & \text { ara- } \end{aligned}$	え̀mà̀ュー àmàa－	akaan－－	akal－	akar－
57	$\begin{aligned} & * 10 m \\ & * 18 \end{aligned}$	dream droom，dromen	rậm	filán	1 am	lum	－rem
58	\％ HOO	stand（up） opistaan	mà	mòo－	－－	－－	moo－
59	＊toin－	sit zitter	town－ 七our－	tôon－	tiin．．．	tain－	tain－
60	$x_{\text {weef }}$	voice stem	wěn	weét	ween	weed	weeŋ
61	Kaben	$\begin{aligned} & \text { Iaugin } \\ & \operatorname{lach}(e n) \end{aligned}$	apen	àbén	aban	aban	abeeŋ
62	＊iree	cry，ween schreion，wenen	me－	ámè－－	ama－	ama－－	arne－
63	Usian	vormit beaken	usen	ùsaán	uscan	usaan	usan
54	\％ivu－ sui－	vomit broken	Îu－	fùn－	エ゙ii－	İuun．	fu－
65	＊ci－bIIn ${ }^{\text {a }}$	beloh，burp boeren	kiparan	tìbìnàj	bilnat	－－	binee：

54 Compounded with yembn－itaro，food＇（121）to mean＇hunger＇and
with ook－＇rater＇（158）to mean＇thirst＇．
57 Irom PIt／kiin－rem／＇dream＇．
61 This is a verbel adjunct．EH／／／by assimilation with following
verb／simin／？
63 The expression for＇vomit＇consists of the adjunct＊Usaan plus
65 By－form in／bakalaaj／Irom Archaic ok．

No.	Po	English	M	TI	TE	TA	BM
73	wanso	$\begin{aligned} & \text { woman } \\ & \text { vyour } \end{aligned}$	unat	tunát	unay	wanay	wane \dagger
79	\%imOK	male, husband mamelijk, echtgenoot	imak	imák	inak	kimak	imok
0	Yatuis	fomaje veoumelijk	alit	úkít	--	ikis	yangus
3	Tsoi.	young women jorese verotut	sou	soó	sii	saii	seib
82	2ratim	w inther miju vaden	\cdots	$\begin{aligned} & \text { áatím } \\ & \text { áatióm } \end{aligned}$	atam-	-aatim	aatim
83	$\cdots 2080$	his Tather Ginu veder	arep	à̀léb	aalab	aadab	aareb
E/	\%moor	nis mother ginn moeder	awok	O○́s-	awook	-	auk
35	mbin	$\begin{aligned} & \text { bind } \\ & \text { lnind } \end{aligned}$	mén	mán man	man	man	--
$5: 6$	minin	child bind	mîn ${ }^{+}$	nîín	-	miin	min

78 Aiso Wo/mman/'/ Wanem/', Wy/mand.
79 The initial $/$ of of is unexplained, but it may be related to the prerix /h-/ 'Jour' in PA kinship terms.
80 Expected Batys).
61 Also vi/woru/. ${ }^{7}$ A similar final /n/ appears in win in 238. The firme /b/ of Bl has parallels in 13 and 238.
32 The vovel or the second syllable is difficult to reconstruct. Prom TF /atemeen/, FA/n-aatim/ 'my father'。
34 Errom TL /oóreećn/ 'his mother'. See 258 for a possible by-form.
85 ITso $\mathrm{Nu} / \mathrm{men} /$. See 36 for possible gender pair. (Drabbé
1954: 756).
06 Hote 'sori' See 85 for possible gender pair.

Ef Mote rl. male ancestor'.
89 Ppected (hik).
94 The The and Bu forms mean only 'shadow'. There eppears to be a b-fore simik represented by (simik/ 'shadow' and Tri/simik/

143

To.	Emo	Englis.sh Dutch	NMIN	TIL	TF	F'A	BMI
98	*siil	suspension Dridge inongbrug	-	si̇íl	-siíl	siil	siir
99	* \% tu	well, Afence wand, orneining	itu	̀̀tú	utii uti	wati	watii
100	whin	P1000 vloor	pİn	àiín	abiin	abiin	abin
101	Wbiib	village dorp	pìp	ábiìb	abib	abiib	$a b i i b$
108	* FUt ib *TVGOb	ash as	kutap	kútáb	kutab	kutub	kuteeb
103	* y Oom	$\begin{aligned} & \text { mife } \\ & \text { mes } \end{aligned}$	yam	yoóm	yoóm	yom	yom
104		stemm cook stomen	ga-	áká-	aka-	aka-	a.tge-
205	*oikin $\% \mathrm{cEin}$	bake in ashes bakien in as	--	tikín -	tikin-	-kikin	-kikin
105	Fua-	cook ikolen	さu-	fùù-	fư- fu-	fuu-	fu-
197	*rein-	coored, burn ghar eijn, branden	ein-	keòn-	kiin	kain-	kain-
208	aniio	$\begin{aligned} & \text { fisish } \\ & \text { vis } \end{aligned}$	anio	ánilo ${ }^{+}$	aniin	anii¢	--

98 Prom Tre/sook-síll/ 'vine bridge', /ook-siíl/ 'stairs'.
103 Actually a bamboo mife used for topping taros.
104 Actuinly cooked in a ground-oven of hot stones.
105 Trom Wu /tikín fưmin/, PA /as kikin/ 'stean cook', TP/tikin furuiz/ 'bake on ground in the open', Bilais kikin/ 'embers'.
107 Only TH, TA, PA noen 'burn' as well as 'cooked'.
108 note mi irish, tadpole'.

No.	FWO	English Intch	in	TL	TP	FA	BM
109	\%oom	$\begin{aligned} & \text { sego } \\ & \text { sago } \end{aligned}$	--	oòm	com	woom	om
110	stauis *suuk	tobacco tabak	--	sưuls	suuk	sauk	suult
111	*aa-	plat, weave viechten, weven	$\begin{aligned} & \text { ha- } \\ & \text { hà- } \end{aligned}$	fì̀à	faa-	faa-	fo.a-
112	Mimib	plaited gevlochten	mip	mi̇ì	miib	--	mib
113	\#1ae-	to piait, braid vleciten	ro-	ilà-	--	laa-	raa-
114	${ }^{*}$ sools	rope, vine touv, klimplant	sà	sòok	sook	sook	sook
175	*wanuuF	$\begin{aligned} & \text { bow } \\ & \text { booss } \end{aligned}$	anok	únuúx	unuk	wanuuks	wonuk
116	*wan	$\begin{aligned} & \text { arrow } \\ & \text { pijl } \end{aligned}$	án	ưn	wan	won un	Oon ${ }^{+}$
117	*bina- *biniu-	shoot schieten	pina	bínú-	bina-	bina-	--

109 Also $\mathrm{XN} / \mathrm{com} /$.
$110 \mathrm{MA} / \mathrm{ar} /$ is mexpected, but may be related to MN/samuk/ and NS /sabuik/ These may be indirect loens Irom Spanish/Portuguese tabaco or Falay tambako resulting from the introduction of the tobacco plant into New Guinea about 300 years ago. See Fiesenield 1951. The reflexes of *suuk, *suuk are no less regular then for many other reconstructed forms, and provide no conclusive evidence on the inherited or borrowed status of these words.

113 Whis form mans 'to plait or braid' rope whereas Ill means 'to plait or voave' an ampet, basket, or net bag.

115 Eresumably wonule is a derived form from twan 'arrow' and a now derivational suffix ${ }^{\prime}$-uuk which is found in a few TL words and which may be a by-form of TH /-ook/ nown derivational suffix.
1.15 ilote En 'arrow for shooting hmans'.

To．	Prio	English Tutch	1／N	ITL	TT	FPA	B ${ }^{\text {d }}$
118	${ }^{\prime \prime} \mathrm{y} \mathrm{Om}$	$\begin{aligned} & \text { ripe } \\ & \text { rijp } \end{aligned}$	yám－	yám	yam－	yum	yoom
1.19		sugarcane suikeract	$\mathrm{k}^{\text {Weìe }}$ ¢	k Weét	kiit	$1 \mathrm{l}^{\mathrm{W}}$ ait	－－
120	＊way	sweet potato zoote bataat	wàn ${ }^{+}$	wàan	weán	waen	wan ${ }^{+}$
121	\％yemen	$\begin{aligned} & \text { taro } \\ & \text { keladi, tales } \end{aligned}$	imen	ímán	ima yema	iman	yemen
122	tyamoot	broadruit buoodboon	iwat	yóót	yewot yawat	－－	yoot
123	＊suma	benana bonam	sòm	suium	suum	suum	sum
124	＊${ }_{\text {aneem }}$	teboo taboe	awem	àbeém	aweem	aweem	aeem
125	＊Tİis	ratton species rotinsoort	tirit	tílít	tilis	tadis	－－
25	＊adaen ＊daben	ration species rotansoort	reke ${ }^{\text {d }}$	dàkán	dekan	diken	－－
127	＊ ss	tree，wood，tire boom，hout，maur	2．s	àt	as	as	ais

120 what me verbal forms．
119 Asomg／hot／，no／hecet／。
120 Aso M／wan＇。 Noto TI＇yem，sweot potato＇，BMI＇yam＇．
12．hiso we／imen／，／rimen／，KN／yamen／．
122 Also Wo／yuwet／
i23 Also WG／aom／s milsuuri／。
i2A ingeoted Bh（aween）．TL has a by－fom／ameón／．
127 ALso Mo／as／，／ais／，iv／as／．

\％o．	Hio	Mnglish Dutoh	ITh	T	Tr	FA	Bri
150	发tiom	lizerd，iguma hegedis，leguaan	tim	átiìm	àtiì̀m	atiim	aatiim
151	＊tookUJIn	centipede duizendpoot	takum	átòkuùm ${ }^{+}$		tokum	takuum
152	$\begin{aligned} & \text { rooll } \\ & =\text { Kool } \end{aligned}$	frog kitrors	－－	kòol	kool	kul	koor
153	\％cbill	sky hemel	apir	àílı	biìl－	abiil	abiir
154	\＃dtain	$\begin{aligned} & \operatorname{sun} \\ & \text { zon } \end{aligned}$	－－	áta	Étán	atean	atan
155	＊ayoob Frayoob	$\begin{aligned} & \text { moon } \\ & \text { macen } \end{aligned}$	－－－	káyoòb	àyoòb	keyoob	kayoob
156	Ytowas	ground，earth grond，aarde	rapar	－－	teweal	tewar ${ }^{+}$	tewasr
157	＊bim	eerthqueke cerdbeving	－－	bìm	bim	bim	bim
158	＊00k	weter wojer		oolr	ok wòk	wok	ook
159	＊ mgu	mountrin，hill berg，heuvel	amgo-	àmà	amdu	amgu	amgu－
151 153 154 155 156 158 159	Wote TL＇scorpion＇．Initial／a／in TL is unerpected． From TI／ábílu－tikiín／s，TF／àbilil－tikièn／，BM／abiir－－kib／＇sky＇。 Also WG／san／，／tan／（positively indicating $* \dot{a}$ ），MN／ataan／。 Also TM／kayoob／． Expected（int（tawar）．Yote FA＇soil＇． Also $\mathrm{ac} / \mathrm{aiyo} /$ ，EV／ook／。 Also Wy／arggu／．From Rilamgo－rim／，Bin／amgu－tikin／＇mountain＇． Perhaps＊amgu＇mountain＇weis once a compound of＊am＇country， place，house＇and Fguu＇head＇．Apart from the oscurrence of the consonant cluster ${ }_{\text {Hef }}$ in this form there is no present－day evidence of such a morpheme boundary．However，there is the MN semantic analogy／Eim gapam／＇mountain＇．						

T1\％	Pio	Bnglish Inutch	Res	TL	TF	FA	BM
169	＊ilUUm ＊ 41 uum	heavy zwear	－－	ìluún	ùluùm	iduum	iruum
170		$\begin{aligned} & \text { Iight (weight) } \\ & \text { licht (niet } \\ & \text { zwaar) } \end{aligned}$	hǎ	さ゚óó	£๐ó才	－f00も	foon
171	＊atul	sherp scherp	tor ${ }^{+}$	átúl	atul－	atul	atur
172	＊Fixim	blunt stomp，bot	fǔm	fưúm	fiím	fiim	fim
173	${ }^{2}$ minin Naimin	hot warm	mimin	mìmín	namin	－－	namin
174	＊giil	cold kout	gir	dìi土	¿iil	－giil	－－－
175	＂̈gael	tired moe	gàr	dàál	daal	－－	gaar
176	＊abaal Mabal	sweet zoeq	－－	àbaál	àbeèl	abaal	abear
177	＂reen－	search for， wait I_{or} zoeken，wachten	hen－－	fèèn－	feen－	feen－	İeen－
178	＊celel－	nalke maken	kerer－	tèlél－	talal－	kedeel－	kerer－
179	＊furton－	tinirk denven	fun－	fưkún．．．	Euku．．．	tukun－	futun－
180	Yoabea－	speak，say sprelren，zeggen	pa－	bákà－	bakaa－	balkaa－	baka－
170	From TA／itaal－roof／＇light＇。						
171	Tote in＇sour＇；TIu，Tr mean＇pain＇as well as＇sharp＇．From Tr／atul－im／＇sharp＇。						
174	Prom PA	kanl－iim gril／＇shis	hiver＇．				

170.	Pio	Mnglish Dutch	2iv	TTL	TT	T'A	Bir
131	Finki-	wear (clothes) iieren dragen	--	mílía	miki.-	miki-	miøgi-
182		see zien	-tem-	-tánı.	-tam-	-tam-	-tem-
183	*yukut *rartut	steal stelen	--	yùkuút	youkut	yakot	yairat
184	*teen	hole, in gat, in	tèm	teém	teém	teem	teem
285	*une-	go gean	une-	únè-	une-	une-	une-
186	*teler	conte horen	tere-	télè-	tele-	tada-	tere-
187	*rulu- *iviku.	show tonen	---	kincu-	Luku-	kuku--	kuku-
188	*oInim *inin	nothing niets	pirim	bíním	--	benim	banim
189	\%eilik	211	arik	alik ${ }^{+}$	alik	--	arik
132 183	This virb takes an obligatory set of object person prerixes. This form soens to be a verbal adjunct.						
184	Also M]/-teem/ 'in'.						
135	Also \$G/yiw-uneapi/ 'walks', /xadud-unepade/ 'runs'.						
186	Tho vomels in $T i$ suggest the punctiliar stem, whereas *tele- is the coatinuative stem.						
108	Problematic Tr /ainiim/ hes the second syllable uncxpectedly long and hes an uncxpected initial /d/which, howevor, peraliels on unexpected /da/for tba, the negative particle (391).						
189	Note TI 'Whole'. Thore is another form in several languages, way /crukun/, TII/alúcun/, EA/adikum/, which moy be reconstructed os *alukun 'all'. This is presumably derived from *alik by a derivational suffix *..Um which is found in a few TL words end which my be a by-form of tit /-in/ noun derivetional suffix.						

No．	P60	Tinglish Dutch	NiN	RI	$T \mathrm{~F}$	FA	Brif
190	\％tab	daytine，noon daslicht，midag	tarp	tàáb	taáb	taab	taab
191	＊ 2 ［rin	day，weather dag，weer	àm	àn	àm	am	am
192	Minlil	night nacht	mirir－	mìlì	－－－	－－	minir－
193	＊c ${ }_{\text {＂inin }}$	dam，aifternoon donker，namiddag	Finin	$\mathrm{k}^{\text {Wien－}}$	tiin－	kiin．．	k^{W} iin
194	Hant Kraned	$\begin{aligned} & \text { now } \\ & \text { nu } \end{aligned}$	－－－	kàmaá	\sàmà－－	kam－	kame
195	＊sin－	yesterday gisteren	sin－	－sin－	sin－	－sin－－	siin－
196	ㅊatim grutim	moming ochtend	－－	gutím	lartim	latim	kutim－
197	＊dam	be＇aw beneden	－－ratr	dàák	daák	dak	raak－－

191．Also TG／am－oyokenopade／＇right＇。
 ／milil－eèb／＇night＇，Blik＇ine minir－ib／＇night＇。FA／am mida／ ＇might＇will probably prove to be cognate when an accurate phonemic transcription of it is obtained．The intervocalic／n／ of 33 is unexpected and $\mathrm{thl}_{\mathrm{n}}$ is a guess．

193 This seens to be a verbal form．The word for＇afternoon＇would be in the neutral（umarked）tense，punctiliar aspect，third person singular，ecg．TI／$x^{W i n}$ in－a／。
194 From MF／taminol，FA／kan－no／＇now＇。 Jote TI＇now，new＇．
195 Eron／ain－ta／，TI／àn－sìn－tá／，TE／sin－ya／tyesterday＇，FA ／an－sin－ota／＇tomorrow＇，BM／siin－ete／＇yesterday＇．This reconstruction is probably a by－form of＊siin ${ }^{\prime}$ old＇（MN／sin／， TI siing／）。
196 From Bif／Lutia－inirib／imomingi。
197 From hu／a－rak／a BM／aakiba／＇below＇．It is intoresting that TH also has／kù－leále／，the allomorphic altemation of／d－／and ／－I－／sugesting submembership of these two sounds within the one phonemo at en earlier stage of RL．

ITO。	Prio	English Dutoh	IiN	TL	TT	FA	BPI
198	, meeb	nea: , short nebij, kort	měp	meéb	meéb	meeb-	meeb-
199	${ }_{*}$ sil	needle naald	sír	síl	síl	sil	siir
200	*room Froom	$\begin{aligned} & \text { wide } \\ & \text { wija } \end{aligned}$	--	koòm ${ }^{+}$	-koom	$\frac{k^{W} \text { oom }}{- \text { room }}$	-kom
201	*neam	cuirass (borst)harnas	--	nààm	naàm	naam	naam
20	*cimit	cucumber lsomirommer	kimit	tímít	timit	kimit	kimit
203	\#ueebac.	tapioca, manioc tapioca	--	tèèbàbuù	tebaayi	teebaay	tabaari
204	grumur "KUmak	$\begin{aligned} & \text { ginger (plant) } \\ & \text { sember } \end{aligned}$	kumulx	kúmák	kumak	kumals	--
205	misi	netive becn inheems boon	mix	mîíl	niíl	miil	---
206	Heib	patin, way pad, weg	reìp	ileeb	Iiib	laib	raib

190 Brom Pif /necb-so/ 'neari, /meb-tanua/ 'short', Bin/meeb-so/ 'near'. TJ /méb-soó/ 'near, shallow', Tw /meeb-lan/ ishort' in sacition to free/ineeb/。
199 Vowel length in Bid in unexpected.
200 From Tp/as koom/, PA/as-koom/, Bri /at-kom/, /as-kom/ 'shield' (a single adzed board of wood (*as) about 2 ft. by 4 fto). Note
202. The reflexes are completely regular and thus provide no evidence of this being a loon vord. Riesenfeld 1951 suggests that the cucumber is one of several vegetables introduced to ijew fuinea within the lost four conturies.
203 On the other hand this forn is most difficult to reconstruct, both with respect to the vowel of the first syllable, and with respect to the nature of the third syllable. It is very likely 6 loen word fron Portuguese tipioca. This is also regarded by 206 Also 7G/Iopute/, /uipo/, KV/laib/o

To．	3 O	Dngim moth	Int	TT	TT	FA	Bit
207	＂makio makio	$\begin{aligned} & \text { one } \\ & \text { een } \end{aligned}$	－－	maakub	maakub	maakub	nakub
208	＊aleeb ＊${ }^{\text {fileeb }}$	two twee	－－－	àlećb	àleèb	$a l e b$	areeb
209	＊asU	two 亡wee	asu	asu－	asu－	asu－－	－－
210	\＃deed	twonty－seven zevenentwintig	－－－	déé	deet	den	－rev
211	＊soo	and，with en，met	－sa	sòó	soo	soo	soo

207 Perhaps also WG／nankopo／．This may be formed from＊maa＇other＇ （ 403 ）and＊kub＇only＇（TL，TP， FA ，BU／ $\mathrm{kub} /$ ）。

208 This is probably a by－form of＊aloob，＊⿴囗玉
209 Fron IT／asunoo／，TE／asumanoo／，Fre（for IFA）／asuno／＇three＇． These forms almost certainly represent an＂Australian＂type of countige system in use before the introduction of the round－the－ body method of counting．The The form is the clearest： ／asu－manoo／lit．＇two－another－also＇．The TI and PF forms would seen to involve loss of the midale vowel and reduction of the consequent mon to $/ \mathrm{n} /$ ．

210 From Dif／iuu dey／＇27＇。 FA also has／denden／＇many＇。 Twenty－ seven is a counting unit on the round－．the－body system．
211 From hy／are－sa／＇married man＇（lit．＇wife－with＇）．

ITO.	Prio	Bnglish Dutch	Evidence
227	\%birm	buttocks achterste	1NT /pimpiand; TL /bîím dáà/; TR /biim kun/, /biím daay/
228	*eit	penis penis	M / /eit/; Tu /eét/
229	noors	vagina vagina	Te] /na/: TI /noók/
230	*ratimith	$\begin{aligned} & \text { ineel } \\ & \text { hiel } \end{aligned}$	调 / kapmukz/; TL /kábmuùk/ 'ankle, heel'; FA/kakmuk/
231	mokur	ande onkel	1ail $/$ mokok/; TY / yaan makuk/ 'ankle, heel'
232	coukub *buKub *bujvab	wris', pols	TI /sàkaál búkìib/: TTF /bokob/; PA /kibin bukub/ 'elbow'
233	*aturn Tatitun	$\begin{aligned} & \text { nee } \\ & \text { nnie } \end{aligned}$	TT /Kétuùn/; PA /katuun/; BIT /katin/
234	$\begin{aligned} & \text { "siKizil } \\ & \text { "sipkill } \end{aligned}$	hand, arm hand, acm	TM /sikir-on/ 'foot'; TL /sikizíl/; TF /sikiil/; WG/sikil/
235	*sekacl *safram	nond, am hand, cirm	$\begin{aligned} & \text { MN /salrar/ 'Icg'; TT /sikeál/; } \\ & \text { FiA /sikaal/ } \end{aligned}$
236	*KuI	hend hond	INT / Koir-on/; TI /kúI/; WG/ko/s, /korinte/
237		right hand rechtorhand, rechts	
238	\%tui。	uppor arm, nine bovenarm, negen	WN /ton-or/; TL /tu/; FA/tai-kun/; Bir /taip/i (cf. 13 and 81 final. consonants)
239	$\begin{aligned} & \because \operatorname{Hai} \\ & \cdots t a i o \end{aligned}$	hand, arm hoind, arm	TL /téén miliís/ 'arm'; FA/teo/ 'hond'; BM/tain/ 'hand; F K / ten/
240	"rein *Vaim *cuirn	blood bloed	FA /kaim/a Bri/raim/; Mel $/$ cain/
241	*iluem	blood bloed	Wis /irem/; TF /ileem/; WG/ideim/s /idem/

汀○。	Pro	Inglish Intch	Evidence
242	*aan *gaam	$\begin{aligned} & \text { sap } \\ & \text { sep } \end{aligned}$	TI / daám/
243	*ifak	perspiration zweet	FuTilira/; TI /ifák/; FA/ibak/
244	$\begin{aligned} & \text { Mnook } \\ & \text { moot } \end{aligned}$	spittle speeksel	TL /móok/: Tr / mooolk/
245	*sibilit	sneere niezen	TT/síbílib/; Tr /siblin/: FA/sibidio/
246	*noon- Foor.	cough hoesten	$\mathrm{FA} / \mathrm{k}^{\mathrm{w}}$ Oon-/; BM/ /roon-/
247	$\begin{aligned} & \text { \#item } \\ & \text { \#itap } \end{aligned}$	hiccup miken	TL /itám/; PA/itab/
248	 \#tuntras	yewn crapen	
249	Fraplen	live, alive Ieven(\dot{e})	M /afen-piepe/; WL /narín-soó/; TP lawon-soo/ (expected (kaway))
250	*resuu- \#Pasuu:-	swolion gezaollen	TP / fosuu-/; PA/rasu--/; Bu/fosu-/
251	*abay * Cb but	a. spre wonde	vowel of. 255)
252	$*_{i s c l}$ *asak	pus, blood cttex, bloed	MTisa/ 'pus'; TL /isák/ 'blood'; PA /asolk/ 'pus'; /isck/ iblood'; BII /kiin asck/ "cataract"
253	*amsmat	$\begin{aligned} & \text { secly skin, } \\ & \text { tines } \\ & \text { moskado } \end{aligned}$	TL /amsááy/; FA/amsaay/; Bhin/amsab/
254	\%iwiit	leme lreevei	$\begin{aligned} & \text { TL /íbiìt/; TY /iwiit/; RA /iibiit/ } \\ & \text { ' sorei } \end{aligned}$
255	Hmen \%ron	Femole vrouwelijr	TF /abaribkan/ 'clder sister': FA /baabkun/ 'elder sister'; PT /alaun/ imother'
256		bnchelor jongeling, jonlmen	TF/keet/; FA / z^{W} et/

	Pho	English Druich	Evidence
257	*RobKees Henters	bachelor jongeling, jonkman	TL /kàbloét/; Fa /kables/
258	*usoom *isoom	old man oude man	TL /ùsoóm/: TP /ísoóm/ 'benevolent man'
259	\%arook	grandmother grootmoeder	VIV/afok/: Fit /awok/. (By--form of 84?)
260	"noom	motheris brother noeders broer	TIS / mòom/
261	*ten	$\begin{aligned} & \text { child } \\ & \text { kind } \end{aligned}$	IM /-ten/; TL /tan/; PA/tan/ 'son'
262	*ava	chila, ancestor cind, voorvader	TIT /obl_ál/ 'ancestors'; Bil /aur/ 'child, foetus'
263	\%baab	```my elder brother mijn oudere buper```	TIL /bàáb/: TP /ábááb/ (first vowel cf. 151); FA/baabnak/
264	\%een	elder sister oudere zuster	MV /en/; TI /-eén/ Ceminine suffix; Tri/yeen/; Bri/en/
265	*mulub	grandchild kleinkind	iniflmororet/, /moropser/; TL/mùlúb/ 'descend nts'; ira/mulubkas/
256	Hbat *bers	sibling -in-Iaw schoonsibling	TL /bààt/, /bà̀s-ím/
267	$\begin{array}{cl} \text { Himplem } \\ \text { Nimel } \end{array}$	family gezin	TL /úlímàl/: TP /alimal/; BR /yerimer/
268	"raymak FGyark	Priend vriend	TIL / mayak/ 'associate'; TT /kayal/
269	monecl *areel	parallel-cousin parallel-cousin	TI /Lábeèl/, /rábèlím/
270	*ar	his cross-cousin zijn cross-cousin	TL /àlák/: TA/k-alak/ 'your crosscousin'
271	naik	ay cross-cousin mijn cross-cousin	ind /nok/ 'friend'; TI /néék/; n TA/naik/

i1c.	Prio	Inglish Tritch	Evidence
272	*bedkeel -béntreel	ghost reest, schim	
273	*sambal *sakbal	ghost geest, schim	IT / sakbal/: FA /sakbal/
274	$\begin{aligned} & \text { Fru- } \\ & \text { Firu- } \end{aligned}$	narry muwen	TI /kú-/ 'take it, marry her'; FA/ku-/; BM/Ku-/
275	*sulu.- *KUlü-	mancy huven	IT /kulu-/ 'take them, marry them ${ }^{7}$; TF /kulu-/
276	$\begin{aligned} & \text { "usoof } \\ & \text { \#Tsoo } \end{aligned}$	medicine man toverchokter	TL /ùsoón/; TF /usoon/; [a/usooj/
277	*ramook HKanoor	heedman dompshoof d	TI /kàmoók/; TTM /kamook/; Biri /kamok/
278	$\begin{aligned} & \text { wen } \\ & \text { Hoan } \\ & \text { \%on } \end{aligned}$	ceremony feest	TL /bàn/
279	*boi-	play arum trommelen	inf /bou-/: TL /bòo-/
280	*ail-am	tree house huis op stelten	$\begin{aligned} & \text { TL /éél-án/; TT /eel-am/; TA /ail-am/; } \\ & \text { BN /ari-am/? } \end{aligned}$
281	*yowool	ceremonial nouse ritushuis	TL /yóol ̀̀ $\mathrm{m}_{\mathrm{i}} /$; TR /yówól ám/s EA /yool am/
232	*gu-am	Merstrual house vrouwenhuis	IN/gon-am/; TI / dun -am/
233	\%miit	doorway douropening	init /amit/; TT /ámìt-eén/; TT /ámí́t-oóm/
284	$\begin{aligned} & 4 \text { toom } \\ & \text { *soom } \end{aligned}$	docirway dovropening	TF /ámír-toóm/; FA/ab-soom/; BL /abi-soom/
205	$\begin{aligned} & \text { *tulum } \\ & * \text { tivilmm } \end{aligned}$	stairs, stops trap	iN /turum/ 'vine bridge'; int /tulúm/; Tis / tudum/
286	*ikuls *KoK	wall wand	TI /kúk/ 'wall of men's house'; Bin/kok/
287	\%oan	place plaats	ITiv /pan/'ground'; TL /baan/ iproper place'; ${ }^{\prime} G / \mathrm{panu} /$

Do．	PMO	nnglish Tatch	Evidence
238	$\cdots \mathrm{mool}$	ombers glociend hout	TL／àt mòól／；Tre／às moól／；FA／waiv mol／＇charcocil＇
299	＊weit	fire vurur	TA／win／；EA／wain mol／＇charcoal＇； BII／wain／；KY／waing／
290	＊abul． ＊Hbul－	light fire veur anieggen	TL／abui－／＇burn off in the open＇； TF／abul－／；Eilabur－／
291	\％ib	cloud woli	
292	$\begin{aligned} & \text { yade } \\ & \text { Iaek } \end{aligned}$	sroble rook	Th／as－lak／；FA／as－laik／；Bir／raik／
293	＊rib	$\operatorname{ash}(\text { vinite })$	WT／Kip／；TL／a－tib／；TP／as－tib／
294	\％tive	mole rock	
295		$\begin{aligned} & \text { oshes } \\ & \text { ass } \end{aligned}$	TL／eeks／g Th／yeck／，／eek／
296	＊ous	$\begin{aligned} & \text { ashos } \\ & \text { as } \end{aligned}$	Telur－tem／：TI／uuk／
297	Mololoen	$\begin{aligned} & \text { bush wife, } \\ & \text { mochete } \\ & \text { repress } \end{aligned}$	 Pe／ralaleq／
298	$\cdots \mathrm{Cal}$	```cock ovCl open でire oradon over open vuur```	in／ar－in fu－／；TI／áćl fùu－／； TTA／anl fuu－／；FA／aol fun－／
299	Mafoob ＊Rafoob	$\begin{aligned} & \text { crab } \\ & \operatorname{lrab} \end{aligned}$	TI／káfoób／；TP／Kàwoòb／：FA／Kabook／
300	＊vii－	twist（rope） twijnen	TE／wii－／；PA／wii－／；BII／wii－／； cf： 379
301	\％nlio	twist（rope） twi jnen	
302	＂円． ＊vii－	cuty fell （om）hakien	IVI／as wi－／

To.	Pio	Bnglish Dutch	Evidence
303	*oiyaal	block paln wwarte palm	TL /bíyaàl/; Bh /biyaar/ 'black palm club ${ }^{1}$
304	$\begin{aligned} & \text { \%ulin } \\ & \text { \#VIin } \end{aligned}$	c.].ub mots; knuppel	TL /viín/; TF /vion/; Bre/urion/
305	$\begin{aligned} & \text { *tinin } \\ & \text { *cinim } \end{aligned}$	bow boog	TI /tínín/ (a Fegolmin bow)
306	\%rel	bovistring bnogpees	㳡/an-uwar/: TL /ún-ál/; TF /un-al/; PA/wal/, /wan-uwal/
307	Wilitil	$\begin{aligned} & \text { (opossum }) \text { arrow } \\ & (\text { opossum }) \text { pijl } \end{aligned}$	¢T /bíliill; TA /brir/; Bilbiriir/
308	*rmant Frnant	$\begin{aligned} & (\text { pig }) \text { arrow } \\ & (\text { Tarien }) \text { pi.j1 } \end{aligned}$	TI /konoct/; TA /Eanaat/; BIT / Emaat/
309	\%geer	$\begin{aligned} & \text { (hird) arrow } \\ & \text { (vogel) pijl } \end{aligned}$	TI / deèm/: Bri /geem/
310	\#wassi	war, cnemy oorlogs vijand	TT /wáásí/; Tr /waásì/; TA /waasi/
311	$\cdots 100$	zarden, farm landbouw, tuinbouw	TIN /rab/; TL /ílás-aiìb/; TT /lay-abib/; EA /yoo/ 'garden', /fom-loŋ/'burial platform'; Bn/yoち/
312	\%aman	fence ompening	III /dàam/; FA/dam/
323	*aKi- *dioni-	$\begin{aligned} & \text { clear bush } \\ & \text { rooien } \end{aligned}$	
314	\% 0	weede onlruid	TIL /ál ; Tre/al/; FA /al/
315	toloob	$\begin{aligned} & \text { meat (food) } \\ & \text { vlees (spijs) } \end{aligned}$	TT /toloób/; PA /tadoob/
315	$\begin{aligned} & \text { Foculy } \\ & \text { malin } \end{aligned}$	ratten species rotansoort	TL /facolín/; TT/faclin/; TA /faalin/
317	*ilii	bomboo species bembocsoort	
318	*deal	banboo specios bamboesoort	Nix /rar/: TL /dàal/; PA /deal/

ITo.	W\%	Mnglish netch	Evidence
319	*gimil	bamboc species oamboesoort	Minl /gomei/ (expected (gimi)); TL /dìmíl: rip/dimii/; FA /gemil/
320	ookeet rookees	gourd waten bottle kalabaskaraf	TJ /òokeèt/
321	\% mouk	stone adze stenen bijl	Mi /mok/; TIT/móok/; IPA / mauk/
322	\#ribia	stone adze stenen bijl	
323	$\begin{aligned} & \text { \%duk } \\ & \text { \#gUK } \end{aligned}$	spole sterel	Tİ / aứk/
324	"oicin	trink (of tree) boomstam	TI/tiìm/; TP / tiim/; FA/kiim/
325	$\begin{aligned} & \mathrm{monbom} \\ & \times \mathrm{mbom} \end{aligned}$	tail steart	TL /màkám/ 'origin': PA/majam/; Brin /monom/: /ais moyom/ tree trunk
326	$\begin{aligned} & \because 1 a b \\ & * 100 b \end{aligned}$	seed zaed	'fruit, seed'; see also 29 notes, 221.
327	*dum *gitm	fruit viucht	TII /durn/; FA /gim/; BM/rem/
328	*Siosoon	roofing grass aleng-silang	TA / sanson/
329	*tekteek "telkteck	grass species grassoort	TL /tèkreèk/; TF /takteek/: RA/takdiek/
330	\%ool-duum	Gaill (of bird) steart (v. vogel) TT /ool duum/; WA/woluum/; Bn/wuruum/
331	tmiyam malyaen	dog hond	TF /miyaan/; FG/mayan/; Bra/miyan/; KVI/mayaan/
332 *	\%sumul	walleby lanergersoe	
$333 *$	Froloon Moloor	bind of paredise paradijsvogol	TL /holoòm/; TR /raloom/; BM/Eraroom/
354 \%	*sanaa	bush rowl sp. boskipsoort	

50.	10	Thgish fotuch	Evidence
335	\#yoon	flyting fox vilegerde hond	TT, yootin/; Wh/yoom/
336	*siminir	bat vlecrmis	TI /sìmìnsímìn/; Tr /simin/
337	\#timin	bat viecmuis	TL /tímin-céb/; FA/timin-ok/; BN/timin-eŋ/; /itmin-an/ 'cave'
338	*sincor *sinook	$\begin{aligned} & \text { rat } \\ & \text { rat } \end{aligned}$	$\begin{aligned} & \text { EN /sunuk/ ?; TI /sínoòk/; TE /sinook/; } \\ & \text { FA /sinok/ } \end{aligned}$
339	*riutrinu $^{\text {a }}$	mosquito makiet	niw /murnu/; TL /nùúmuì/; TT /muúmuù/ 'bee'
340	*gimgial	nosquito musliet	TI /dimain/ 'gnat'; Bri/singim/
341	*sulutb	cockroeach hakkorlak	TN /surup/i TI /saluúb/ 'black hopping insect'
342	\%obyel	$\begin{aligned} & \operatorname{cont} \\ & \text { mier } \end{aligned}$	Ih /teper/ (expected (reper)); TL /dèbeèl/s/dùbeel/; Ti /dabyal/
343	vartoub Fratures monturk	crocodile lrozodil	TI /mè̀tuùb/; TT / matuuls/; Pa /nactule/; FG/moatub/; Wi/matub/
34.4	*Rilim	moon, month nem, mand	TL /ràliím/; Wh /harim/; WG /yipi-wali-ete/
345	ralenn wakon	Ground, oerth crond, earde	TI /bikàn/: TT /bokon/ 'territory'; TA/bnimu/ 'territory': FA/bekan/
346	$\begin{aligned} & \text { \%oon } \\ & \text { woon } \end{aligned}$	$\begin{aligned} \operatorname{ran} \\ \text { roscn } \end{aligned}$	TTE/woon/
347	$\begin{aligned} & \text { waib } \\ & \text { weib } \end{aligned}$	$\begin{aligned} & \text { rain } \\ & \text { resen } \end{aligned}$	TL /weéb/s PA/waib/; Wilw /waib/
348	¢sumk	$\begin{aligned} & \text { rain } \\ & \text { regen } \end{aligned}$	
349	*ciman coinean	thunder donder	$\begin{aligned} & \text { TF /timan/, /taman/; FA /kimaan/; } \\ & \text { Biri/kinan/ } \end{aligned}$
350	"tumum counum	thender donder	TT / túmuún/

no.	Tio	$\begin{aligned} & \text { Znglish } \\ & \text { Datch } \end{aligned}$	Evidence
351	*gulum *galul	wind wind	IWT/soror/; TI/dùnúl; FA/gaduul/; WIG /kalod-ote/
352	Finim	wind wind	TE /ininl; TA /inim/ 'breeze'; Bilin/inim/; Ky/inim/
353	\%ocil	ridge bergrug	WN /peir/: TI /bè̀l/; WG/ped-ote/g /peid-o/ 'mountain'
354	 細互	mountain, on top of berg, boven	TI: /tikión/ 'on top of', /àmà tikièn/ 'mountain'; BM/amgu tikin/ 'mountain'
355	$\begin{aligned} & * \text { tibin } \\ & \text { *cibin } \end{aligned}$	valley, ineadwaters $\operatorname{sic} /$ tìbin/ vallei, bovenloop	
356		$\begin{aligned} & \text { Iake } \\ & \text { moer } \end{aligned}$	TIT /oors muk/; TF / -mik/ (in lake nomes); FA /ok mik/
357	$\begin{aligned} & { }^{*} \text { seib } \\ & { }^{2 s e c b} \end{aligned}$	forest bos	
358	*dindin	sand zend	M / ririn/; TT /ook-diniin/; BEA/ok-rinin/; WG/didinai/
359		bis groo's	lriinyab/ 'fat' (adjo)
360	*amit "cimias	$\begin{aligned} & \text { long } \\ & \text { long } \end{aligned}$	TT / tímiít-ím/; RA /rimis-im/
367.	*eio	tinck aile	FA /anbin/?
362	matek matdk	$\begin{aligned} & \text { fat }\left(n_{0}\right) \\ & \mathrm{vet}(\mathrm{si} .) \end{aligned}$	NIM/matak/; TP/màtàr/; WG/mitek-ote/, /biteik-o/
363	Somi	$\begin{aligned} & \text { tame } \\ & \text { tanir } \end{aligned}$	imi /ami/s TI /ami/; FA /ami/
364	\% Ciool	$\begin{aligned} & \text { straight } \\ & \text { recht } \end{aligned}$	TL /tònl: TP / tool kub/; Bin /riyoor laub/
355	*caKal "depmax	crooked krom	in /rakar/; TL / dárál/; Tr /dakal/
356	*beit *bcis	sort, weak gacht, zwak	PuT/peit/; Tr /beèt/

110:	Pro	English Dutch	Byidence
367	* ci ¢il	strong sterls	TL /titill/ BM/kitir/ 'strong, hard'
368	Hzoor ROOK	dry droog	TP/kook-na/, /kook-nin/; cf. 373
369	*maner maFak	bed slech $亠$	TIL /mààk/; TF /mafak/; FA/mafak/
370	*bisoor	$\begin{aligned} & \text { empty } \\ & \text { Ieeg } \end{aligned}$	inv /pisa/: Tu /bisoòb/ 'needlessly, empty; FA /bisole/
371	*Fiycab	$\begin{aligned} & \text { alow }(1 y) \\ & \text { langzaam } \end{aligned}$	
372	$\begin{aligned} & \text { *okool } \\ & \text { "HKool } \end{aligned}$	$\begin{aligned} & \operatorname{siow}(1 y) \\ & \operatorname{longzaann} \end{aligned}$	TL /akoól/; TT /akool-kub/; FA /akool/
373	$\cdots \mathrm{Yroor}$	bitter bitter	M / $\mathrm{koj} /$; TI $/$ kook/ 'hot tasting'; TE / kook/; ci. 368
374	nnamaal	white wit	TL /nàmaál/; TF /nàmaàl/; PA/namaal/
375	为itir *mitiK	biacis zwart	FA/mitik/
376	*citels *aitar	$y \in I I o w$ geel	TIL /titak/ 'pale brown'; TF /titak/; FA /kitak/
377	* CiLig	wash wessen	
378	*as	$\begin{aligned} & \text { song } \\ & \text { zang, lied } \end{aligned}$	Min/asmen/; TL /at/; PA /as-eb/
379	*wii	dance donzen	TL /wì--/ 'bird of paradise dancing's FA/itol wi-/; Bin/wii-/
380	\#ns-gee	$\begin{aligned} & (2 \text { men }) \text { carry } \\ & \text { on pole } \\ & (2 \text { mamen }) \text { drag } \\ & \text { met paal } \end{aligned}$	$\begin{aligned} & \text { TL /àdeè .../i, Ti lasdee/; } \\ & \text { PA /asgee ...l/ } \end{aligned}$
381	*aU- FU	wake (him) up wakler maken	TI /dú-fú-/; TF /du-fu-/; FA/da-fa-/

iro.	P\%o	Bnglish Dutch	Evidence
352	$\begin{aligned} & \text { Hak } \\ & \text { wilak } \end{aligned}$	$\begin{aligned} & \text { love } \\ & \text { lierhejoben } \end{aligned}$	TIT /ílàk dù-/s TT /lak da-/; FA/ilak du-/
383	 "baKeel..	break broken	MV /hakar-/: TL /bakél-/; TT /bakeel-/; FA / fakel-/
384	$\because d c a n$ Fark-	$\begin{aligned} & \text { ask } \\ & \text { vragen } \end{aligned}$	TL /dáká-/; PA / daka-/; PM /raka-/
385	*ii-bairac	tell lies liegen	$\begin{aligned} & \text { TL /ìi-bákà--/: TF /ii-baka-/; } \\ & \text { FA /ii-bakaa--/; cr: } 180 \end{aligned}$
386	\%amoon	$\begin{aligned} & \text { fleme } \\ & \text { vian } \end{aligned}$	TT /àdoon/; TF /as-dawoy/: FA / don/
337	\%.Isu-	open (door) (deur) openen	in /pese-/ ?; TF /basu-/; FA/bisuu-/; B12/busu-/
383	*Saen..	buy kopen	TI: /sàan-/; TP / saan-/; FA /saan-/
389	*weo. meen...	buy kopen	
390	*rinan- *iraan-	$\begin{aligned} & \text { fear } \\ & \text { bang zi.jn } \end{aligned}$	$\begin{aligned} & \text { MT /ínèn-/; Tr /finan-/; FA/íyean-/ ? } \\ & \text { Bin /finaan-/ } \end{aligned}$
391	\#ba	$\begin{aligned} & \text { not } \\ & \text { niet } \end{aligned}$	TL /bá/; Pa/ba/; Bni /ba/
392	* CiI	$\begin{aligned} & \text { enough } \\ & \text { smocg } \end{aligned}$	
393	\#daen-	licht licht, helder	TTu/dàan-/s Tri/daan-/; Biri/raan-/
394	$\begin{aligned} & \%_{\text {sub }} \\ & \%_{\text {sob }} \end{aligned}$	tomorraw norgen	TL /àm-sáb/; Tr /sabi/ ?; BM /sob-kutimite/; WG / sup-ote/
395	*isal	above boven	
396	*cib	above boven	TiL /tib/ 'top of a tree'; TF/tib/: EH/tiib/; / Obiir kib/ 'sky'
397	*scmarn	Per, distant ver, veraf	TL /sànán-ím/: TF /sòmaòn/

ITO	Tio	mglish Dutch	Evidence
393	*sInkeam	far, distant ver; veraf	FMi /sikeim/ ?; TL /sàkaém/; IPA /sikaam/; BM / si paam/
399	Filim	cloth, clothing stor, kleding	Wh/youm/ ?; TL /ílím/; Biri/irim/
400	*beem	oarthworm eardworm	Wh/pem/; TIT beém/; Tr / beém/
401	"ciin	count tellen	
402	$\begin{aligned} & \text { *ein } \\ & \%_{\text {eim }} \end{aligned}$	pendanus pandenves	TTS/eèm/; PA /aim
403	tras.	```another, the other nog een, de andere```	TTL / màak/; Tw /ma/
40%	$\cdots t=b$	perhans misschien	TI/tà /
405	\%	locetive marker pastsaanduiding	TI / kal/; TE /kal/; PA/kel/; Biil /ker/
4050	$\begin{aligned} & \mathrm{y}_{\mathrm{E}}^{2} \mathrm{sen} \end{aligned}$	bush fovi species bostirsuort	

 ETO W Wh MT NH Illustrations
$\begin{array}{llllllll}* b- & b & b & b & p & b & 430,439,443,482,483,490,507 \\ \cdots & b & b & b & p\end{array}$
$\begin{array}{ccccc}*_{b} & b & \min & b & p\end{array} \quad$ 425,432,514
$\cdots \quad b \quad b \quad b \quad j \quad b \quad 411,439,440,480,489,492,526$
$\begin{array}{lccccccc}-\mathrm{mb} & \mathrm{mb} & \mathrm{mb} & \mathrm{mb} & \mathrm{mp} & \mathrm{w} & 407,460,472,481,489,527 \\ \%- & \mathrm{t} & \mathrm{t} & \mathrm{t} / \mathrm{d} & \mathrm{t} / \mathrm{r} & \mathrm{t} & 437\end{array}$
$\begin{array}{ccccccccccc}* t- & t & t & t / d & t / r & t & 437,441,442,445,457,474,478 \\ -t- & t & t & d & t & d & 421,453,457,509,516,528,543 \\ \cdots & t / d & t & t & t & t & 415,437,444,448,449,470,485\end{array}$
$\begin{array}{cccccccc}-k & t / a & t & t & t & \varnothing & 409,431,454,491,513,529,534\end{array}$
*ik- $\quad k \quad k \quad k \quad i \quad k \quad k \quad 412,448,495,515,522,551$

$\begin{array}{llllll}\cdots & 0 & 0 & 0 & 5 & 422,429,455,467\end{array}$

Tr- $w \quad w \quad W \quad \% \quad \$ \quad 410,450,457,503,516$

y- y $\quad \mathrm{y}$ y w w 470 , 518, 520, 539

52, 558

* $\mathrm{C}-\quad 42 \%$. 549
- *- 493. 55;
- * 5 - 55
- Ma- 559
-*ㅊ- 512
- * 533
*3y- 440,471
-*y- 465
*Y_ 505, 508

CAT：3．REOTO－LOTLATD－OK RECONSTRUGTED FORPHEPES

	PLO	Bnglish Dntch	Evidence
406	$\begin{aligned} & \text { \%kyom } \\ & \text { *yom } \end{aligned}$	fleshi b body vlees，lichaam	$\mathrm{KD}, \mathrm{KNI}_{\mathrm{MNI}}^{\mathrm{S}} \mathrm{KN} / \mathrm{yom} /$ ； $\mathrm{NN} / \mathrm{gyom} /$ ，／dyom／． KM and KI mean＇flesh＇only．
407	\％ambo	head hoofd	$\mathrm{KD}, \mathrm{KN}, \mathrm{YM}$／ambo－／；KNI／ampo－／；WHI／awo－／； in compounds for＇hair＇and＇bald＇．
408	＂Enami	hair，foathers hear，veren	$K D, K N, Y M, K N / k i m i / ; ~ I N N / k a a m i / 。 Y M, ~ K N J$ and WI mean＇body hair＇rather than ＇hair of head＇．
409	＂hoor	$\begin{aligned} & \text { leaf } \\ & \text { blad } \end{aligned}$	KD／ab－o／；KM／ $\mathrm{KD} / \mathrm{KNT} / \mathrm{Kt} / \mathrm{F}$ NN／hoo／ ＇leaf，hair（of head）＇．Also as second morpheme in＊reite－hoot＇ear＇（410）．
410	＊reite ＊ HENe	oar	KIM／kende／；YM／ken－oot／；INT／kene－ikot／； KA／kede－kot／；MN／kee－hoo／；UT／keda－ hol／．
411	yob	fruit，ball vrucht，bol	$\mathrm{KD} /-\mathrm{yob} /$ ；Kil $/$ yob／，／－yob／；Yal／－yob／， ／－tyob／，／－dob／；KiT／yob／，／－yob／；NNT ／dob／＇seed＇，／－dob／，／－tob／o The bound forms occur in compounds for＇eye＇， ＇heart＇，＇belly＇，and＇testicles＇．See 440 for a possible by－form．
412	$\begin{aligned} & \text { *cin } \\ & \text { *cin-yob } \\ & \text { *ciIIob } \end{aligned}$	eyc oog	KD，KM／konyob／？；YM／indob／；KN／tinop／ ＇eye＇，／in ok／＇tears＇；NT／kiob／； UT／kilob／．
413	＂kyyum ＊yun	plecenta nageboorte	KM， $\mathrm{KN} /$／yumtom／；NN／guam／．
414	\％nitu	$\begin{aligned} & \text { nose } \\ & \text { neus } \end{aligned}$	KD／mot－ok／＇nasal mucus＇；Kli／mutu tem／ ＇nostril＇；Kif／muut－oot／＇nasal mucus＇s WN／midu－－tem／＇nostril＇，／minu－koo／ ＇nose＇；UT／midu／＇nose＇．
4．	mojkot	inouth mond	WD／monlsatem／；KM／monkot／；YM／monkot－ kono／；Kiv／mojkot／；WH／manat－koo／＇chin＇
16	$\begin{aligned} & \text { Heya } \\ & *_{\mathrm{inji}, \dagger a} \end{aligned}$	mouth mond	KMi／meya kat／＇lip＇；INK／meaa－tem／；uT ／niye－kad／；inin／mioa－tem／。
417	＊bon－krami	beard baara	
418	\％oon	tongue tong	／hoy／，／hoon／。

30．	－PTO	Bnglish Intch	Evidence
419	＊niyi $*_{n i}$ nixi	tooth tand	Wi／niyi kondo／；YM／nipk－abo／？；jin ／nigk－ampo／？；пп／niŋi koo／。
420	＊atro	$\begin{aligned} & \text { molar } \\ & \text { kies } \end{aligned}$	Fif／apkim kondo／；hat／abluti／；NN ／niŋi ano／。
421	\％retek	nope，neck nok，hals	KD／kete kondo／；KM／ketek－kondo／； id／ketek kono／。
422	$\%_{\text {muk }}$	$\begin{aligned} & \text { breast } \\ & \text { borst (uier) } \end{aligned}$	
423	＊manaa	$\begin{aligned} & \mathrm{rib} \\ & \mathrm{rib} \end{aligned}$	Kil／mana kondo／；KN／mana kono／；NTN ／nenaa ko／．
424	＊dim－yob	heart hart	Eil／aimyob／a NN／dimtobmyukmyuk／．
425	＊kava	belly buik	KD／kaba－yok／＇navel＇；Mi／kamba yob／； YM／kaba－yom／？；ITV／kapa／；INN／kuwa／。
426	\％ini	liver lever	Ki／anyi／a Thi／o－ni／；KN／ini／；KA ／yanya／；INT／woo－ni／。
427	${ }_{\text {craut }}$	$\begin{aligned} & \text { gall } \\ & \text { gal } \end{aligned}$	
428	＊raambin ＊eamin	nevel navel	Nif／kimbin／＇umbilical cord＇；Yis ／kimbin－ko／；／tana kibin／＇placenta＇； $\mathrm{KH} /$ Kipin／； MJ
429	＊mar	shoulder schoucer	$\mathrm{KD} / \mathrm{ma}$ kondo／；KA／ben－mak／；HN ／tani－mak／。
430	＊bin	buttocks achterste，biillen	KD／ern－bin／；KM／em－bim／；NW ／o－bin－dyom／．
431	\％ OT	excreta poep，drek，stront	KM／amb－ot／＇brain＇；YM／ot／s Kit ／ot／：inv／o／，／wo／．
432	＊lab ${ }^{\text {a }}$	testicles testikel	In／kupu yop／：MV／gabu．／。
433	\＃yamun	urine pis	MD／yumu／；FNO，YN，WN／yumun／；NN MiN／damun／．
434	＊kemen	lime kalk	KD／kemen kondo／＇grourd as line container＇；$M M, Y M, K N /$ kemen／．

	－PIO	English Dutch	ividence
435	5 ＊wonam	grass apron vr．Schaanbed	KD／bonom／＇grass apron＇，／wonom／ ekking＇rushes＇；Niv／wonam／．
436	＊yon	f゙ooty，leg voet，been	YM，KTA／yon／：NTN／don／；UT／lon／．
437	＊tat	sole，paln voetzool， hondpolm	Kin／kondo tat／＇sole＇；Yif tibki－dat／； NiN／don－tet／＇sole＇
430	\％tom	$\begin{aligned} & \text { joint } \\ & \text { gelid } \end{aligned}$	KD／－tom／；KII／－tom／；YM／－dom／；KN ／－ton／，／－rom／；wis／－tom／．Occur in compounds for＇elbow＇，＇knee＇
439	\＃bujkub	$\begin{aligned} & \text { joint } \\ & \text { selid } \end{aligned}$	KY／pugkuwot／＇elbow＇；YM／bunkumat／ ＇elbow＇；NNT／don－buæub／＇knee＇；UT ／bupub／＇knee＇．
440	＊inyob	crowng muscle kruin，spier	KI）$/ \mathrm{kob} /$ ，／－kob／；KMi／－kob／g／－yob／； KNN／－kop／，／－yop／；NN／－kob／。Bound forms occur in compounds for＇biceps＇， ＇calf＇，＇thigh＇．See 411 for a possible by－form．
441	＊tani	arm，hand sm，hand	KTV／tini／；WNT／tani／。
442	＊tenki	om，hend am，hand	Y：i／tipki／；UT／teæi－ŋuŋ／＇hand＇。
443	＊ben	anm	KD／ben／；Kill／ben／＇hand，arm＇；KN ／pen－rom／＇elbow＇
44%	het	seven zeven	KTN／et／；NNT／het／；／tanj het／＇forearm＇．
445	Ftajkon	ampit oksel	NIN／tayoon／。
446%	$\begin{aligned} & \text { yik } \\ & y_{\text {yik }} \end{aligned}$	thorn doorn	KNA／yuk／；KN／yik／；NNT／a dik／。
447%	\％oto	thum，big toe duim，grote teen	
448%	\％eet	little finger pink	KD／ben et／；KM／eet／；Mri／eet／； 101 ／teet／．
4.49	kotkot Fetcot	little finger pink	VN／ketet／；MN／ketket／

Mo．	PLO	English Dutch	Evidence
450		bone been，hnook，gebe	KD, KI／kondo／； YM ， $\mathrm{EN} / \mathrm{kono} /$ ； NN eente／kwoo／；UT／kodo／。
451	＊Ko萛	leg，foot been，poot，voet	KD，Ry／kondo／：WN／koo－haít＇shin＇， ／aoo－mee／＇back of knee＇．
452	＊Tam	blood bloed	NK／lam／。
453	＇meTmeT Fnelmer	tendon，vein peos，ader	Ya／mekmet／；KN／mekmek／；Wiv／meemee／。
454	\％rat	skin，bark huid，vel，schors	UT／kad／。
455	＊． mmok	spittle，spit specksel，spuwen	RD／bumoh／；Mat／kamok／，／bumok／；YR ／kamok／；mitpumok／．
456	Frne－	vet，drink eten，drinien	Milenye－／；Mi／anei／；Wh／ane－／；WN ／ena／s／in－／．
457	＂tamorio－	bite bijten	KD／tomondon／s Ki／tomonde－／；ins ／tomone－．／：Wi／tamoils／tamontai／＇chew＇．
458	＊． y yur	irean dromen	$\begin{aligned} & \text { Wid /kimbiyum/s yn /kiium/; WIT /anyum/s } \\ & \text { WH/dum/s } \end{aligned}$
459	＊wom	voice sum	
450	＊ambon	laugh lachen	$\begin{aligned} & \text { Wi /adambon mee-/; Ym /ambon/: } \\ & \text { Mi /ambon kanee-/: } \end{aligned}$
46.	Famen	cry，weep schreien，wenen	YM／amed／；Kr／amen kamee－／．
452	$\begin{aligned} & \text { Genom } \\ & \text { Mariom } \end{aligned}$	cough noesten	Kn／konom kadan－／；／konom kiit／＇phlegn＇； Yi／konom／；Wy／konom／＇phlegm＇；Wy ／ranom／
463	＊atan ＊atan	bolch，burp boeren	Mi／atan taade－／；Win／atam taare－／．
464	\＃yin ；Yin Kryin	$\begin{aligned} & \text { a boil } \\ & \text { steenpuist } \end{aligned}$	W／yin／＇ulcer＇；RM／yi气 inta－／； kiT／yin kee－／．
465	＊royu	young womin jonge vrount	MD／kayu／；Kin／koyu／．

No．	ELO	Znglish Tutch	Evidence
466	$\begin{aligned} & * k a \\ & * \leqslant a \end{aligned}$	person，people mens（en）	KM／ka kidi／＇corpse＇（dead person）； RNY／ka／＇man＇；／ka por／＇corpse＇；ITh ／ka／＇man＇；UT／kaa／＇man＇。
467	＊ratuk ＂iatub	nen iran	TD／katuk／＇person＇，／tana kutub／＇boy＇； Kin／katulk／；YMi／kaduk／，／kadub／；KN ／katuk／；KA／Fatub／；Mif／kadub／。
68	Fron	woran vrouw	KD／kon－kewet／＇girl＇；Ki／kon／；WI ／kwon／；UT／koon／。
469	＊wonov	$\begin{aligned} & \text { yoman } \\ & \text { vrouw } \end{aligned}$	／wunu！／；KA／wodon／．
470	＊ramewet	bachelor jongeling，jonkman	KD／kewet／；Kif／kewet／；KN／Kewet／， ／kakewet／。
472	myoom	old man oude man	KD／rambadi／；Wh／ayoombadi．／；Th／yoom／； ／wonon－kiyoom／＇old woman＇；Kiv／yoom／； KA／kiyom／
472	＊ambe	Iather vader	WD，KM，YM／ambe／；Kİ／ampe／．
473	＂enay	wother mooder	KD／ena／；Kin／enan／；YM／ena／；KN／nay／； FIII／ned／。
476	＊tena	child，descendent tind，afstammelin	WD，KI，Mi，MI／tana／；MI／tena／； U＇T／tina／。
475	mun．	child	Wi／mun／；／munir－an／＇daughter＇；FIT ／mung man／＇daughter＇．
476	＊nioxi	$\begin{aligned} & \text { child } \\ & \text { kind } \end{aligned}$	KH_{9} GT／minki／＇son＇；Niv／tina miŋgi／ ＇crandchild＇。
477	＊－an	feminine vrouwelijk	KM，KIN／－an／：WN／on－an／？＇elder sister＇．
478	＊tamen	younger sibling： jongere sibling	MIT，YI，MIT，MI／taman／。
479	nijut	younger brother jongere broer	Mi／nigki／；MiN／nivi／。
450	＂raoliob ＊rondob	grand．child kleinkind	W／mondob／；inv／monop／．
481	＊mbii	hussbend echtgenoot	KD／ambi／；Mis YM／ambii／；KN／ampii／； In／awi／。

No．	PLO	Inglish Irutch	Evidence
482	$\begin{aligned} & \text { "bat } \\ & \text { *ber } \end{aligned}$	sibling－in－law schoonsibling	（ KM／bat／；KN／pat／．
483	＊${ }_{\text {Fon }}$	ceremony feest	Rii／－pon／as final element in names of specific ceremonies．
484	敞的。	friend vriend	KN／eke／，／neke／；Wiv／ne／，／ne－it／．
485	＊wot	drun trom	W／wod／s $\mathrm{KM}, \mathrm{YM}, \mathrm{MT}, \mathrm{NT} /$ wot／
485	＊arn	house huis	KM／am ada／＇stairs＇；KN／am naat／ ＇wall＇；Wh／ $\mathrm{am} / \mathrm{g} / \mathrm{am} /$ ；UT／aam／
487	Fruer	Eence omheining	
488	$\begin{aligned} & \text { wuat } \\ & \text { \% wurut } \end{aligned}$	rence ormeining	ma／wuat／；min／uut／．
489	＊ambio	house huis	$\mathrm{KD} /$／ambib／＇house，village，yard＇； Kit，Yi／ambib／；WI／ampip／。
490	＊－bon	place pleats	KD／am－bon／＇house＇，／yombom－bon／ ＇garden＇；Kni／amkom－bon／＇mountain＇， ／akodo bon／＇forest＇；YM／kot－bon／ ＇mountain＇；KT／yoty－pon／＇garden＇，／－pon／， ／－pun／in place names；miv／dumin－bon／ ＇below＇，／okmaen－bon／＇island＇；／－bon／
491	＊mor	fire vuur	
$492 *$	\cdots \％	$\begin{aligned} & \text { smoke } \\ & \text { rook } \end{aligned}$	Ki／amo iib／s ind／wib／
493%	Headeảat	bush knife kupmes	KM／kaday／；YM／Kadab／？ $\mathrm{KN} /$／vararath／； ivit／kananay／．
49	nowta－	boke，roast bakiken，poffen	
$435 *$	con	$\begin{aligned} & \text { fish } \\ & \text { vis } \end{aligned}$	$\mathrm{KD}, \mathrm{KHH}, \mathrm{YM} /$ on／； $\mathrm{KNT} /$ ton／： $\mathrm{MNT} /$ tyon／， ／kyon／．
496%	om	$\begin{aligned} & \text { sago } \\ & \text { sago } \end{aligned}$	

	－PIO	nelish Mutch	Evidence
497	Ftabut	tobacco tabak	ED／abu／；Kin／abuk／；Yit／aub／，／yaub／？？ Ki／tau／，／took／；in／tawuk／．See also 110．This present set of words shows few regular correspondences，and trus betrays a proboble borrowing．＊tabuk is not a reconstruction in the normal sense but rather a guess at the form of the source of the borrowing．
498	＊hame－	$\begin{aligned} & \text { plait } \\ & \text { vlechten } \end{aligned}$	KD／emen／；Win／emee－／；ini／hemende／； ／haami／＇weave＇．
499	nop	rope，ratian touw，roten	$\mathrm{Km}, \mathrm{Ym}, \mathrm{MT}, \mathrm{HM} / \mathrm{noj} /$ 。
500	Wix．	cut，fell （om）hekken	mine－／，／wiee－／；hin／wine－／； me／wi／。
501	manat	$\begin{aligned} & \text { lance, spoar } \\ & \text { lens } \end{aligned}$	
$5 \% 2$	＊tinim	bow boog	
503	\％ m \％	$\begin{aligned} & \text { arrow } \\ & \text { pi.jI } \end{aligned}$	
504	\％yoo	gardens farm landbouw，tuinbou	KD／yom－bombon／；yin／yom－bon／；KIT us：／yoŋ－pon／；meldon／。
505	＊Yarnu	$\begin{aligned} & \text { ripe } \\ & \text { rijp } \end{aligned}$	KD／yumu／；Whis yamu／；Mn，KN／yumu／； NIN／namu／。
505	＊van	yam broodwortel	（IT）／wan／＇sweet potato＇： $\mathrm{KM}, \mathrm{YM}, \mathrm{KI}$ ／wan／。
507	\％otey bonten	sweet potato zoete bataat	Mi／botej／，／botan／，／bonden／；WIt ／ponres／；FIT／bodey／；UT／bonet．$/$ ．These forms are rather irregular and may signity a：loan word．Sone botanists believe that this plant was introduced to New Guinee from South Anerica about 300 years ago．
508	＊Yamen	tero keladi，tales	$\mathrm{KD}, \mathrm{Ki}, \mathrm{YM}, \mathrm{KI} /$ yemen／；WIT／namen／； NK／lamen／．
$509 *$	＊atom	coconut kokos，klapper	$\mathrm{KD}, \mathrm{Mf} / \mathrm{atom} /$ ； $\mathrm{YM} / \mathrm{odom} /$ ；KN／otom／； NTY／otom／．

Fo．	－PIJ）	 Dutch	Evidence 177
510	＊yum	banana banaan	／dyuum／；UT／dyum／．
311	Fanob	taboo taboe	YM，MN／／amob／；KN／amop／．
512	＊oket	bamboo bamboe	YM，Niv／oket／；Kin／owet／
513	$\cdots a r$	tree，wood boom，hout	$\mathrm{KD} / \mathrm{ab} / \mathrm{?}$ ；KHi，MM，KN／at／；NUT／a／； UT $/ a^{2} /$ 。
514	Kabi	root wortel	KD／a－kibi／；KM／a kimbi／；YM／kibikab／； KN／kipikap／；NN／a kuwi／．
515	＊eet	Ilower bloem	KM／et／；KN／tet／；WN／a ket／
516	$*_{w i n i j}$	$\begin{aligned} & \text { egg } \\ & \text { ei } \end{aligned}$	Ki／windi／；MM／wini／；KT／wini／； no／on i／。
517	＊hutim	crom pigeon kroonduif	KM，KN／kutim／；YM／kodim／；INT／on－ kidim／；NTK／on kinim／。
518	＂kewet	hombill neushoornvogel	
519	＊on	bird vogel	KD， $\mathrm{KMI}, \mathrm{YM}, \mathrm{KNT}, \mathrm{WNI} / \mathrm{on} / \mathrm{l}$
520	＊ya：\％om	Plying fox vliegende hond	Kin／yowom／；YM／on yowom／；KIN／yowom／ ＇bat＇；NN／on－dawom／．
521 ＊	Freen	string bag （draag）net	
522 \％	＊cim	heed Iouse luis	KD，KI／im／；YM，Kiv／tim／；MN，NK，UT ／kwim／。
$523 *$	＊min	star，firefly ster，vuurvileg	KM／minoo／；ym／mindon／＇stars＇，／minot／ ＇firefly＇；Wi／minkon／＇firefly＇； WN／inin／
22\％${ }^{*}$	＊inub ＂nule	snake slong	$\mathrm{KD} /$ anub／；KMi／anuk／，／anyuk／；MiNoNK ／inub／。
525	$\begin{aligned} & \text { rot } \\ & \text { rot } \end{aligned}$	frog kikvors	INT／kot／．

	PIO	English Butch	Evidence
526	bedeb beneb	crocodile lrokodil	KD／ayu－beneb／；KM／ayi bedeb／；YII ／beneb／：KN／penep／；NN／adim－badeb／．
527	\＃embom	tortoise，turtle schildpad	e KNV／ambom／；KNT／ampom／；WNT／awom／．
528	＊aton	$\begin{aligned} & \text { sun } \\ & \text { zon } \end{aligned}$	
529	＊woot	moon mean	
530	＊ Ca	$\begin{aligned} & \text { rain } \\ & \text { regen } \end{aligned}$	$\mathrm{KD}, \mathrm{KM}, \mathrm{YM}, \mathrm{Kl} / \mathrm{am} /$ 。 See 552 。
531	＊bin	esrthquake sardbeving	Wh，Wil $/ \mathrm{bim} /$ 。
532	huub	wind vind	Riviinb／；Min／nub／？；Kiv／am uup／，／up／； WIT，UT／huub／。
533	\％ot	vater，river water，rivier	$\mathrm{KD}, \mathrm{KM}, \mathrm{YT}, \mathrm{KNT}, \mathrm{HN} / \mathrm{ok} /$ 。
53.	\＃bor	stone steen	KD ， $\mathrm{KM}, \mathrm{YM} / \mathrm{bot} /$ ； $\mathrm{KN} / \mathrm{pot} / \mathrm{s}$ NNT／boo／； UT／but／。
535	＊tum turum	stone steen	Kiv／tum／＇stone nose ornament＇； UT／tuum／。
536	＊or－yiin	$\begin{aligned} & \text { sand } \\ & \text { zand } \end{aligned}$	KA／okyin／；KN／ok yiiv／；WN／okdiin／。
537	Frono	boet prouw	KMi， $\mathrm{KN}, \mathrm{NN} /$／rono／；Yif $/$ konoo／．
538	\＃raur	heavy zwers	KD／kun／；Kit kuwn／；init kaun／＇heavy＇， ＇strong＇．
539	＊ ＊ 01705 。	$\begin{aligned} & \text { light (weight) } \\ & \text { licht (niet zwaai } \end{aligned}$	r）
540 ＊	＊ manin	$\begin{aligned} & \text { hot } \\ & \text { memn } \end{aligned}$	
541	trok ＂kok	$\begin{aligned} & \text { dry } \\ & \text { aroos } \end{aligned}$	

	ELO	English Tuteh	Evidence
542	＊kook ＊kook	bitter bitter	KNI／kok／；YM，KTY／kook／；NTV／kok／。
543	＊mitik ＊mitik	black zwart	KM／mitiboob／？；／mitik／＇night，dark＇； KN／mitilni－kono／。
544	\％．．teme ＊．．keme	$\begin{aligned} & \text { see } \\ & \text { zien } \end{aligned}$	KiI／teme－／；KA／akme／；KN／wetme－／； MM／aakme／。
545	＂bakdi．	－break breken	KM／baakdibe－－／；KI／paakripe－／；Win ／bormi／．
545	＊tem	$\begin{aligned} & \text { hole, in } \\ & \text { gat, in } \end{aligned}$	KD／nopka－tem／＇mouth＇；KM／mutu tem／ ＇nostril＇；KA／monko－tem／＇mouth＇；KII $/ \mathrm{tem} /{ }^{\text {in }}$＇；IVIS／tern／＇hole in sround＇
597	\％one wene	go，welk gean，lopen	KD／wenem／＇welk＇，／wonon／＇go＇；KM，KNT ／wene－－／＇leave＇；KA／wene／＇walk＇， ／wodon－－／＇go＇；inN／une／＇go＇s／onem／ ＇walk＇。（＇Go＇and＇walk＇separate？）
548	mene	cone fomen	
549	＊do。	nothing ni！es	KD／dowen／＇no＇；Kin／doen／s YM／do／， ／dowam／＇no＇； $\mathrm{Kg} / \mathrm{noo} /$ ；MTM／duam／．
550	＊bain	$\begin{aligned} & \text { not } \\ & \text { niet } \end{aligned}$	KM／bain／；Miv／ben／．
551	＊ciib	$\begin{aligned} & \text { anough } \\ & \text { genoeg } \end{aligned}$	KM／iib／；KN／tiip／。
552	\％	doy，woather dag，meer	$\mathrm{KD}, \mathrm{KM}, \mathrm{YM}, \mathrm{KH}, \mathrm{NIT} / \mathrm{am}$／in compounds for． ＇thunder，lightning，night，cloud， sky＇。 See 530．
553	＊taman	Irr，distant ver，veraf	MN／taman／；MT／acal－tenan／．
554	＊idim	cuirass （borst）hornas	
555	Fount	cocurber wribomor	Mi／kumit／，／kinat／；／humit／．The reflexes are mositl
556	$\times \mathrm{m}$	pmanenus pandonus	Yin/ain/s /on/; NiN /im/.

Mo．	PLO	Bnglish Iratch	Evidence
557	$\begin{aligned} & \begin{array}{l} \text { mimo } \\ x_{\text {moim }} \end{array} \end{aligned}$	$\begin{aligned} & \text { one } \\ & \text { een } \end{aligned}$	$\mathrm{KD}, \mathrm{KMi}, \mathrm{YM}, \mathrm{KiN} / \mathrm{mimo} /$ ； $\mathrm{NN}, \mathrm{MK} / \mathrm{moim} /$ 。
558	＊haDoob	two twee	KD，KM／adob／；YM，KIT／ayoob／；TNT／hadob／。
559	Gmandin ＂mandin	$\begin{aligned} & \text { four } \\ & \text { vier } \end{aligned}$	KD，KNI／kandin／；YM，KNT／kaniv／；wiv ／kwandin／；UT／kwandiŋ／。
560	＊maa	```another, the other nog een, de andere```	
561	＊ateb	perhaps misschien	Ki／ateb／：Ki／atep／。

3． $\operatorname{sanO} 0 \mathrm{O}$

To attempt is made here to reconstruct Proto－Ok，but the direction thet ouch ar attempt might take is indicated．A list of possible cognato sets for Proto－br ie given in Teble 6，in which Proto－ omtanmok（PG），ProtowTowlend－ok（PLO）and Sibil（NS）are matched． secasioneliy on extant language fomm is given in one of the columms instoad of a reconstruction，and the language named in the reference onlume．
（a）Mherens max moras teminate in a consonant in both Pro and PLO and ma presumaly be reconstructed with a final consonant in PO， eoveral pords teminete in a vowel in PIO and in a consonent in PRO （the Latter being the shorter fomm）and should probably be reconstmoted with a tinsl vomel in PO：items 571，573，579，5349 $59 \%, 517,620,622,643,645$ ，and 653．
（1）Finel $\%$ in PIO corresponds to finnl $*$ in PMO in items 587， $598,599,636,560$ ，and 668．
 563，565，671，and 692．All of these occurrences are followed by／i／ in TS，and further investigetion of this may throw light on the question of whether＊o may prove to be an allophone of $\% / \mathrm{t} /$ or $\% / k /$ in BO 。
 nd this lends meight to the sugcestion that k and $\%$ are allophones in PBo anc also in PJo．
（0）Wo initial 为 corresponds to Isck of＊k in mo in itens 694， 695，med 606．

 in items 626，631，mid 667；but mis final／l／comesponds to piro and W0 inal＊n in itoms 565 and 609。

Th adition to the data in peble $\overline{0}$ ，most of the pronouns，subject whixes ond object prefixes presented in the＂surverii（Tables 3,4, an 5；len thomeclres to the reconstruction of Pro and wo foms， ad ultmatel：Pn forms．

TABLG 5．POSGTBLE COGMATE SETS FOR PROTO－OK

ITO．	P朗	PTO	NiS	Whglish	Refe	rences
562	＊dam	Sryom	－－	boay	212	405
563	＊ciloon	江的気	siloj	ear，eleven	214.	InT
564	$\begin{aligned} & \because 1 a b \\ & \text { Aoob } \end{aligned}$	Yob	\cdots	seed，ball	326	411
555	\％sin	\％cin	sil	eye	6	412
566	$\begin{aligned} & \text { Iom } \\ & \text { Yurn } \end{aligned}$	＊igyumir kyum	－－	eyelid，placenta	215	413
367	Froven \％uttuna	＊mitu	－－	nose	7	414
566	Mapkat		－－	mouth	216	415
569	\％oon	\％bon－．	bon	jaw，mouth	9	417
579	1000	$\times \mathrm{x}$	－－	tongue	11	41.8
27	$x_{\text {nie }}$	$\begin{gathered} \mathrm{m}_{\text {nivi }} \\ \text { miphi } \end{gathered}$	．－－－	tooth	12	419
572	＊anico．	\％ata。	－－	molar	13	420
573	$\begin{aligned} & \text { \%etip } \\ & \\ & \text { tait } \end{aligned}$	＊terjis	－－	hand，arm	239	442
574	\％	\％ben	－－	hand，arm	39	443
975	Noct	Fret	－－	Forearm	41	444
970	am	kurn	kum	side of neck	219	NW
877	Ginmm	＊taplion	－－	armpit	44	4.45
578	$\begin{aligned} & \text { ancr } \\ & \text { are } \end{aligned}$	$\begin{aligned} & \text { *yik } \\ & \text { yyir } \end{aligned}$	－－	spike	323	446
979	ampoos	＊ayko	－－	thumb，bigy toe	46	447
580	$\begin{aligned} & \text { mitalr } \\ & \text { witer } \end{aligned}$	Netek	－－－	nape，neck	15	421
581	$x_{\text {max }}$	${ }_{\text {＇rimuk }}$	－－	breast	16	422
562	craien	Manaa	－－－	rib	17	423

Io.	Pro	PI.O	WS	Higlish		Rere	rences
583	dimnoob	*dim-yob	--	heart		FA	424
50%	*in	*ini	--	Iiver		223	425
505	* mak	$*_{\text {mak }}$	mak	shoulder		226	429
536	*itim	"bim	--	buttocks		227	430
97	nl	\% O	--	excreta		27	431
508	*yemean	\%yammen	--	urine		30	433
399	Fameon	\%remen	--	lime, gourd ${ }^{9}$		31	434
59:	manta	*wonam	wurom	grass apron		32	435
591	$\begin{aligned} & { }^{n} \operatorname{sen} \\ & \end{aligned}$	*,yon	--	foot, leg		34	436
38	aumb wate adion	\#ruplab	bengup	mast, elbow,	Whee	232	439
303	C.tere	"ratket xatcet	--	Little finger,	troe	47	449
596	4 stans	nomo	--	bone		48	450
555	then \% waun	*kaun	--	strong		48	538
896	*daam seat	\%ran	\cdots	blood		242	452
547	*tui.	\cdots	ti	biceps, nine		238	----
598	trelmeel	为mermeT Trekmek	--	tendon, vein		50	453
59	kael	$\#_{r a T}$	--	skin, barkr		51	454
600		*. mok	--	spittle		244	455
601	Nvan-	*ane-	namnam	eat, drink		53	456
602	$\begin{aligned} & =10 n \\ & 41 m \end{aligned}$	\%.arum	--	dream		57	458
03	*wee;	\% wed	--	voice		60	459
60\%	2ioln	*ambon	--	laugh		61	460

Ho．	EMO	ETO	IS	English	Refe	ences
605		＊ar：$\underbrace{\text { a }}$	－－－－	cry，weep	62	461
606	$\begin{aligned} & \text { Kitam } \\ & \text { 三tat } \end{aligned}$	*atem $\because a \tan$	－－	hiccup	247	453
607	Uuin	＊rin Hin ＊icyin	－－－	a boil	70	464
503	－	ma Traa	İaka	men，person	－－－	466
569	$\begin{aligned} & \mathrm{K}_{\mathrm{kan}} \\ & \mathrm{kham}^{2} \end{aligned}$	\％on	kul	「emale	255	468
610	$x_{\text {war }}{ }^{\text {b }}$	＊wonot	Yenas	woman	78	469
511	＂inos	－－	im	husband	79	－
62	$\mathrm{K}_{\mathrm{K}}^{\mathrm{Wi}} \mathrm{eet}$ rrabees	＊ha－－kewet	－－	bachelor	$\begin{aligned} & 256 \\ & 257 \end{aligned}$	470
613	$\begin{aligned} & \text { "nsoom } \\ & \text { isoom } \end{aligned}$	\％ryom	－－	old man	258	4.71
614	Hmoon	mon	mom	mother＇s brother	260	KTi
615	\％ten	＊tena	tena． tenna	child	251	474
616	men	紹。	－－－	child	85	475
617	minin	minici	\cdots	child	86	476
018	\％uI	\cdots	ol－－ki	child，ancestor	252	－．－－－
619	\％azb	bac．b	baeb	my elder brotion	263	ITT
620	＊ar	hini	pik	his elder brother	89	M
621	＊een	\cdots－an	－－－	elder sister	254	477
622	niio	＊igci	niis	younger brother	90	4.79
623	neey	niglam	neeot－mul	younger sister	91	Fis
624	malub	moniob ＂nondob	－－	granächild	265	480
625	＊baat ＊eas	$\begin{aligned} & \text { Yot } \\ & \text { "bar } \end{aligned}$	bas baas	sibling－in－law	256	482
626	trabeel Kabel	－－	kabeel	parallel cousin	269	－－

10.	Jm;	T10	WS	Tnglish	Refe	rences
59	\% Bum	Frum	ton	banana	123	510
650	*onket *ookers	* oret	--	water container	320	512
65.	$*_{a s}$	${ }_{\sim}^{*} \times$	--	tree, wood	127	513
652	$\begin{aligned} & w_{0 a i t} \\ & w_{0} \end{aligned}$	\cdots	--	Plower	131	515
63	"win	Wemi	--	egs	135	516
554	haveel Wereel	newet	--	hombill	141	518
65	cram	\%om	--	bira	143	519
66	5ou:	yewoia	--	flying fox	335	520
6	"neon	xreen	nen	string bag	145	521
650	cim	*cin	--	head Iouse	145	522
659	$\begin{aligned} & \text { Finab } \\ & x_{1 n} \end{aligned}$	*invo canule	---	enalre	149	524
0	$\begin{gathered} \text { Frool } \\ \\ \hline \text { Frool } \end{gathered}$		kol	froe	152	525
661	abom	Fambom	--	tortoise, turtie	I'A	527
662	Ftram	*aton	--	sun	154.	528
663	Hakan *bekon	ambukin	bairon	ground	345	k
664	\cdots	*am	--	rain	346	530
65.	\%bim	\#bia	--	sarthquake	157	531
366	*ooir	\% OH	ok	waters river	158	533
667	*)icic	--	-bil	valley	161	
668	\% 007		--	stone, ground oven 10	163	534
569	*tuan	**turn *tun	tum	stone	164	535
670	*aindin	*or-jiin	.---	sand	358	536

\％o．	Pmo	2 LO	HES	Whalish	Refe	erences
672	$\begin{aligned} & \text { romint } \\ & \text { Koimins } \end{aligned}$	－－	simit	long	360	－
67	$\times \mathrm{O}$	＊howot \％own	－－	light（weight）	170	539
67.3	$\begin{aligned} & \text { Mivian } \\ & \text { mamin }^{\text {man }} \end{aligned}$	＊mamin	．－－－	not	173	540
674	$\begin{aligned} & \text { Kook } \\ & \text { Kook } \end{aligned}$	＊rok ＂nor	－	dry	368	541
675	Wook	为roob ＊rook	－－	bitter	373	542
576	$\begin{gathered} w_{i j}+i k \\ x_{i}+t i r \end{gathered}$	$\begin{aligned} & x_{m i t i k} \\ & x_{m i t i K} \end{aligned}$	－－－	black	375	543
677	＊－t，em．	＊。．teme ＊。．．	－－	see	182	544
678	${ }^{*}$ bekel－ 	\％aekdi．	．－．	break	383	5.45
679	＊teem	\％em	－－－	hole，in	18.4	546
680	\％uer	＊one ＊：rone	onim－onim	\＆\％，walk	185	547
561	ds	＊ióo	doo	not	T 7	549
692	＊aii	＊ciib	－－	enough	392	551
063	era	＊arin	－－－	day，weather	191	552
Ces	＊semear	＊teman	－－－	far，distent	397	553
685	＊İı．．．	＊idim	－－	cloth，cuirass	399	554
60	${ }_{6} \mathrm{Gmit}$	Fmanit	－－－	cucumber	202	555
687	$\begin{aligned} & 6 i z \\ & x=i n \end{aligned}$	\％in	－－	pondonus	402	556
608	回oos	Araijoob	－－	two	TI	553
68	mbisod	＊ana	\cdots	other	403	560
690	$\begin{aligned} & \operatorname{tab} \\ & \operatorname{cotab} \end{aligned}$	atcb	－－	perhaps	404	561
		－－	－－son －sikin	ond，with mountain	321	－－－

\%。	E.O	me	H	inglish	Tefe	ences
693	xhoon	200	---	hair	4	409
024	*oin	$\begin{aligned} & \text { Mambin } \\ & \text { *amin } \end{aligned}$	--	navel	23	428
695	\%obum	Trabu	---	tosticies	29	432
696	*soio.	choyut	---	youns woman	81	465

to Mothte or
We material that was culled in arriving at Pho and PIo reconstructions inoluded some tantalizingly sinilar pairs of words that dirterca by the prescnce or absence of an interrocalic $/ 1 /$,
 sfstomatic, and sometimes the two forms occurred in the seme lonusge. It is stugested that it my be posabiele to anoly the metions of internal reconstruction to this material to arrive at a single fort at an earien stase of the parmt langiage than Proto-Ok, ant the ight panaps be temed frchaic de. ${ }^{11}$ jace infiring is Whom in any of the living lengueges, it is likely thet loss of the intorroe lio consoment heo ocurred, and the longey fom better mposens Arche o. Mo examples are listed below without further wamet.

W/veli/: Wh/wa/ iraini

Th hala/ 'I'; WThow/ I', and other pronouns in Wo languages
 WO 8 walb; Wo 42 *ambe 'father'
 Whedin/, ki/bain/ 'not' (Kintervocalic/a/ corresponds to

PHO 345 *atran, bakion 'ground'; PHO 287 *baan, PTO $490 *$-bon 'place'

We /makal-/'ster'; PLO *woom 'moon'

It /ivib/, mis/sikip/; PMO $392 *_{\text {cii, }}$ PLO 551 *ciib 'enough'

 mhered; Mo 73 Fgeed iscratch oneselfi

Wh/miosb/; ne/ncoob/ igogi
mo 416 trira; meya $I_{\text {mouthe }}$
Mo 156 \%tawal 'ground'; Pho 165 *tool 'mad'

In a personal communcation F.C. Horne mentioned that Mgalun at Awiroir has long vowels which are orten the result of the loss of intervocelic $/ 1 /$ This suggests that a close examination of Vgelum and Gibil may throw more light on this Archaic ok phenomenon.

5. Complugran

Vory few studies have been made of sound correspondences in New mine languages. 12 The present study helps to rectify this inch for one group of languages in the centre of the island. In sections 1 and 2, the existence is domonstrated of sound correspondences that are us regular as might be expected from data of only nediocre qulity. Some indication is given of how these correspondences may eventually be grouped into proto-phonemes.

To provide riore cognate sets and rore accurate correspondences, it is desireble that Magarabai, Winggirum, and Upper Tedi be studied further and extensive phonomicized word lists obtained. When this is done, and when data are available from at least two Ngalum "dialects", Protomb be possible to identily regular sound correspondences for Protomik, ama to reconstrict some of its morphemes.

In the "Surveji the status of Sibil within the Ok Bamily was left rather mocrtain. It was suggested that it may prove to be either a thind division of the dountainouk Sub-maly, or a third separate suib-ranily The cognates listed in section 3 of this present paper Susecst that sibil has more similarity with Pountain-ok than with Iowlend-ok in that it also shows loss of the word-final vowel. Howover, four of the likely PO sound correspondences exhibit Sibil reflexs that are different from both PLiO and PIO, and thiss points to the classification of sibil as a third suiv-fanily as the better choice $/ t-/: 6 \% 9$ the four correspordences (FWO:PLO:NS: example) are: $*_{S-}$. $*_{y-}$:

1. The Or Trmily coneists of at least ten lancuages which have been groupod into two sub-femilies. See Alan fealey, A Survey of the or Femily of Lemguages, 1964 (mimeo): pp. 38-45. Note especially the abreviations for language names on p.39.
2. Eerg 1950 sugests the occurrence of morpheme allomorphs is a disturbing factor in the identification of cognates and sound correspondences.
3. Bright 1956 adopted this same standard.
4. A. Meeley 1964 (b), section 5 .
5. For the sake of brevity a proto-form is sometimes said to occur in living languages by which it is intenced to imply that the roflexes of the proto-form occur in the living languages.
6. The aspect mariers $/-1 /$ and $/-\mathrm{m} /$ are omitted from verb stems and theire reconsbructions, but all other stem-final consonants are retrined.
7. \#G forms have sometimes been quoted with umarked endings such as
$10 / \% / 0$ ene/ and $/$ ite/. 3. Where a consonant cluster containing a morpheme boundary has been
reduced to a single consonont by sand reduced to a single consonont by sandhi, the hyphen is placed either berore or after that single consonant, whichever best illustrates the
norpheme under discussion.
8. Gurds are used as lime containers in the lowlend aroes and as penis covers in the mourtain areas.

I0. A ground oven consists of food heaped over heated stones and then coverea.
11. Ghefe 1959.
12. The only such studies the author has soen are: Capell 1943, Wan 1951, Trabbé 1953: 87-88, Bromley 1961, Young 1962, and
Laycock 1962: $202-5$.

CHAPTER IV

TELEFOL PHONOLOGY

LINGUISTIC CIRCLE OF CANBERRA

 PUBLICATIONS

 PUBLICATIONS
 EDITORS: S.A. WURM, J.B. HARRIS, N.G. MALMQVIST
 (the australian national university)

 SERIESB-MONOGRAPHS

 SERIESB-MONOGRAPHS}

NO. 3

TELEFOL PHONOLOGY
by

Alan healey

CANBERRA, 1964

Linguistics, Department of Anthropology and Sociology,
The Australian National University

TELEFOL PHONOLOGY

0. Introduction
1. Syllable and word patterns
2. Measurement of length
3. Consonants
4. Problems in consonant analysis
5. Vowels
6. Vowel neutralization
7. Tonemes
8. Juncture.
9. Sandhi
10. Alternative tonal analysis
11. Orthography.

0. INTRODUCTION

At first glance the phoneme inventory and phonological structure of Teléfól appear to be relatively simple. ${ }^{1}$ However the phonemic analysis of this language has proved surprisingly difficult, and cannot yet be said to be complete even after almost five years of continuous study. Two phenomena lie behind this resistance to analytical procedures.

Firstly, as in many languages with just two prosodemes at the lexical level, the two tonemes of Teléfól have a wide range of allophones. ${ }^{2}$ Because of this, they were not easy to identify, especially when viewed through the traditional framework of pitch registers or pitch contours. It was only when the idea of pitch steps was conceived and applied that the tonemic system was seen with clarity and consistency. (See section 10.)

Secondly, several kinds of distributional asymmetry or neutralization tended to reduce the author's confidence in the accuracy of his phonetic data and the analysis based upon it, thus paralyzing analytical progress. It was only as each type of neutralization was recognized and deliberately investigated that optimism and progress returned. Neutralization of length is discussed in sections 2. and 2.3, of /b/ and/w/ in 4.3, of short vowels in 6., of tonemes in 7.7, and of juncture in 8.4.

The Teléfól language is spoken by some 4000 people living in the vicinity of Telefomin, Territory of New Guinea. ${ }^{3}$ The people living in the If ítáman, Ilibtaman, and Nínátáman

$$
143
$$

valleys all call themselves Teléfólmír and speak several very similar dialects. This paper employs the dialect of the Káyalikmín parish (or clan) who live in the Ifítáman valley within two miles of the Telefomin administrative centre. In addition to the Teléfólmiín, the people who call themselves Fálamiín and who inhabit the headwaters of the Sepik River (Ok Tíkín) also speak a dialect of the Teléfól language.

The data presented in this paper were obtained during 27 months' residence at Telefomin under the auspices of the months residence at Telefomin under the auspices of the University, from 1959 to 1963. The two principal informants were Miyoméngaal (Ílinokál) and Máákkis (Tiinokál), both young men of the Káyalikmiin parish in their early twenties who have had considerable contact with Neo-Melanesian Pidgin English). The author is indebted to K. L. Pike for assistance in the analysis of tone, and to S.A. Wurm for detailed criticism of an earlier draft of this paper

1. SYllable and word patterns

There are eight types of syllable in Teléfól which may be represented by the general formula: (C)V(V)(C). A word consists of from one to six or more of these syllables in sequence.

1. 1 SIGNIFICANT CONSONANTAL POSITIONS

The discussion of consonants is best handled in terms of their position with respect to the syllable. The syllableINITIAL position includes the word-initial position and the second member of word-medial consonant clusters. The SYLLABLE-FINAL position ircludes the word-final position and the first member of word-medial consonant clusters. The INTERVOCALIC position cannot be satisfactorily aligned with either the syllable-initial or syllable-final position, and as it has certain characteristics peculiar to itself, it has been set up as a separate significant position.
1.2 LONG AND SHORT SYLLABLE-NUCLEI

The vocalic nucleus of a syllable may consist either of one vowel phoneme or of two identical vowel phonemes. Such geminate vowels have been regarded as constituting the nucleus of a single syllable, firstly because they consist, phonetically, of a single vocoid of approximately $1 \frac{1}{2}$ moras length as compared with a nucleus of a single vowel in an
analogous context, this long vocoid showing no marked features of rearticulation. Secondly, there are no comparable sequences of two diverse vowels bounded on either side by consonants. Apart from a few loan words, the only sequences of diverse vowels observed thus far involve at least three vowel phonemes, two of which are the same, and there is a morpheme boundary at the vowel change point. Some contrasting examples of long and short syllable nuclei are presented below.

/dàl/	'kidney'; 'purlin'	/dàal/	'bamboo sp.'
/fàl/	'tree sp.'	/fààl/	'door', 'barricade'
/nàm/	'yam sp. (red)'	/nààm/	'cane cuirass'
/ sàj/	'salt cone'	/sààn/	'grass sp. (skirtmaking)'
/bùn/	'splinter (in flesh)'	/bưùg/	${ }^{\prime}$ fungus sp. (edible)'
/dùm/	'fruit'	/dừm/	'faded', 'brown'
/kùm/	'side of neck', 'eleven'	/kùùm/	'tree sp.'; 'castor oil tree'
/bill/	'wages (food)'	/binl/	'arrow shaft'
/dil/	'dusky lory (parrot)	/diil/	'cold (weather)'
/ib/	'dry sand', 'dust'	/iib/	'centre'
/tim/	'head-louse'	/tiim/	'trunk (tree)', 'antinode (bamboo)'
/ yál/	$\begin{aligned} & \text { 'marita sp. (red } \\ & \text { screwpine)' } \end{aligned}$	/máál/	'garoka sp. (nutty screwpine)'
/kúl/	'hand'	/fưul/	'cured (food)'
/tít/	'bridge supports'	/íít/	'above'
/abal/	'veranda'; 'tree fern sp.	/àbaál/	'tasty', 'sweet'
/alál/	'garden rubbish heap'	/àlaál/	'possum tail'
/ sàkám/	'knife (small)'	/sàkaám/	'distant'
/kàlák/	'your cross-cousin'	/kàlaák/	'below here'
/ilám/	'(house) top-plate'	/ilaám/	'rat sp.'
/unág/	'woman'	/ùyaáy/	'blame (undeserved)'
/àbín/	'umbilical cord'	/àbiín/	'floor', 'bed'
/tikín/	'roast'	/tikiín/	'hilltop'

/tilín/	'hollow (log)'	/.tiliín/	'pre-chewed baby food'
/ikín/	'tree sp. (for axe handles)'	/ikiím/	'tree sp.'
/ulín/	'club'	/kùiín/	'taro sp.'
/kàlún/	'possum sp.'	/kaluúg/	'old leaf'
/ilùb/	'vegetable canes'	/iluùb/	'tree sp.'
pilim/	'slopes (mountain)'	/iluùn/	'(water bottle) stopper', 'lid'
/kứlúm/	$\begin{aligned} & \text { 'a vine (wild } \\ & \text { yam?)' } \end{aligned}$	/múluúm/	'nose'
/núkùm/	'my friend'	/dúkuùm/	'frog sp.'
/dùlúl/	'wind'	/tùluúl/	'grasshopper sp.'
/nàtnàt/	'Nouhuys' wrenwarbler'	/màbmaàt/, /mùbmaàt/	'termite'
/kánkà̀/	'small things'	/ángkàl/	'wedge', 'lever'
/ùnin/	'to eat'	/ừnin/	'to roar', 'to buzz'
/úbiill/	'possum sp.'	/ưulilib/	'bird sp.'
/anaák/	'baby ${ }^{\prime}$	/úùnoók/	'cassowary sp.'
/àloób/	'spherical'	/adalodb/	'his uncle'
/àlák/	'his cousin'	/àaláb/	'his father'
/álím/	'tree sp.'	/wáalím/	'rat sp.'
/kàtoòb/	'down here'	/kààloòb/	'your father's elder brother'
/tìsoòl/	'grasshopper sp.'	/tilitook/	'rat sp.'
/finaàm/	'vegetable sp.'	/fìikaal/	'lips'
/sàmaàl/	'type of shell'	/sàannaàl/	'snipe sp.'
/nákaàl/	'shoulder'	/dáámaàl/	'marita sp.'
/åalábàl/	'his uncles'	/aálábaèl/	'his paternal grandfather'
/oókénàl/	'his aunts'	/oókénaàl/	'his maternal grandfather'
/ilili/	'blue-cheeked alpine lorikeet'	/màkàyī̀/	'type of bow'
/dákáyák/	'truant child'	/ímíyaáb/	'frog sp.'
/úlímàl/	'family'	/kútínaèl/	possum sp.'
/ilamin/	'to plait rope'	/iìbàmìn/	to be insufficient

/sìnàmìn/ 'to spend night' /dìǹ̀ming/ 'to become stuck,
caught'
/dákàmìn/ 'to pitck (beans)' /dáakàmìn/ 'to plant'
/dùmánú/ 'fruited' /dừmánú/ 'faded'

3 FREQUENCY OF CV PATTERNS

In section 1. it was suggested that a word consists of from one to six syllables of the general pattern (C)V(V)(C). However, there is one limitation: the nuclei of medial syllables do not exhibit length contrasts and have all been interpreted as single vowels (V). Thus the general word pattern is

$$
(C) V(V)(C)[(C) V(C)]^{n}(C) V(V)(C) .
$$

Monomorphemic indigenous words have a further limitation in that there is always at least one consonant separating two successive syllable nuclei. Their word pattern is then

$$
(C) V(V)(C)[c v(C)]^{n} C V(V)(C) .
$$

This formula can be further characterized by statistics of 376 monosyllabic, 622 disyllabic, and 258 trisyllabic monomorphemic nouns, adjectives, and verbal adjuncts. $C C$ is not very frequent between consecutive syllables, occurring in about 15% of disyllabic words, about 16% of trisyllabic words between first and second syllable, about 11% of trisyllabic words between second and third syllables. These figures are much less than the $50-70 \%$ figure that would be expected if words could be historically pictured as random aggregates of monosyllables. In fact, in compound formation observable in the language today a principle of consonant cluster reduction operates so that about one quarter of the potential $C C$ sequences are reduced to C.

Word-initial vowel (rather than consonant) occurs in 15\% of monosyllabic words, 38% of disyllabic words, and 29% of trisyllabic words. Word-final vowel (rather than consonant) occurs in 4% of monosyllabic, 8% of disyllabic, and 6% of trisyllabic nouns, adjectives and verbal adjuncts. However polymorphemic verbs have a very high percentage (80% say) of final vowels since many verbal suffixes have a final vowel.

Monosyllables behave like word-final syllables as far as the occurrence of WW nuclei is concerned: monosyllables have 67%, final syllables of disyllabic words have 53%, and final syllables of trisyllabic words have 61% of VV nuclei. In

[6] lgs

contrast, the initial syllables of disyllabic words have 17% and the initial syllables of trisyllabic words have 19% of VV nuclei

2. MEASUREMENT OF LENGTI

It was the author's experience that vowel length was particularly difficult to identify in medial syllables. Because of this the author relied heavily on the judgment of his trained informant as to whether a given medial vowel was long or short. The fact that the informant's judgment often fluctuated for medial vowels but was invariant for the vowel.s of initial and final syllables raised the question as to whether there is a contrast of vowel length in medial syllables. The most consistently contrastive examples (judged by informant reaction) were recorded on magnetic tape so that detailed measurenents of length could be made.

2. 1 METHODS OF MEASURING LENGTH

As a sound spectrograph was not readily available, two techniques were developed for measuring phonetic segments instead of the rather laborious method of tape-cutting. Both techniques involve the use of a MLR38 Tempo Regulator that has been modified by the manufacturer (Telefonbau und Normalzeit) to give optimal performance at extremes of expansion and compression

The first technique involves expanding the recorded utierances to exactly double their length by using the MLR38 and recording this expansion on tape running at $3 \frac{3}{4}$ inches and recording this expansion on tape running at $3 \frac{3}{4}$ inches per second. This tape is audited on an orcinary recorder by threading the tape in a way that by-passes the driving
capstan and, with the recorder switched to "playback", by capstan and, with the recorder switched to "playback", by
moving the tape manually with a hand on each spool. (See moving the tape manually with a hand on each spool. (See
figure 1.) The tape is moved back and forth rapidly over a figure l.) The tape is moved back and iorth rapidly over a very short distance ($1 / 8$ inch, say), and the phonetic segment
at that point on the tape is identified by the characteristic scanning noises produced. It is important to keep the manual oscillation uniformiy fast, as a change in the average speed at which the tape passes the play-back head will give a marked change in the timbre of the scanning noises. W:th practice it becomes possible to distinguish various vowel qualities, nasals, fricatives, stops, and voicelessness by the timbre of their scanning noises. Once this ability has been developed, it is then possible to locate and mark at a suitable place on the tape the transition

FIGURE 1. MANUAL SCANNING USING A TAPE RECORDER

FIGURE 2. MECHANICAL SCANNING USING MLR38 TEMPO REGULATOR
between successive phonetic segments of an utterance. When all such transitions within a given utterance have been marked, the length of each phonetic segment may be directly measured on the marked tape by using a scale with divisions of 0.075 inch, equivalent to $1 / 100$ second each.

If a MLR38 is not available, it is possible to use an un expanded tape recorded at $7 \frac{1}{2}$ inches per second and to scan and measure it in the way described above. and measure it in the way described above. However, considerable difficulty is experienced in producing sufficiently fast manual oscillation to give adequate differentiation to the scanning noises of the various types of phonetic segments. An unexpanded tape recorded at $3 \frac{3}{4}$ inches per second is better from this point of view, but suffers from the disadvantage of a scale of 0.0375 inches per centisecond the accuracy with which phonetic transition points can be located by manual scanning (± 4 centiseconds) is inadequate for the present purpose.

The second technique eliminates the variability involved n manual scanning. The utterances to be studied are copied onto tape at 15 inches per second. This tape is threaded onto a combination of tape recorder plus MLR38 as used for expanding or compressing, with the following deviations from normal procedure:
(a) The tape is threaded round the non-normal side of the revolving head of the MLR38. This is done to reduce th length of tape in contact with the revolving head from 0.6 to 0.1 inches (that is, the head scans less than $1 / 100$ second rather than $4 / 100$ second)
(b) As a consequence of (a), the tape is not given the twist (or lack of twist, depending on the type of recorder that it usually has when it is threaded round the normal side of the revolving head
(c) Also as a consequence of (a), it has been foun necessary to raise the shield of the revolving head with a small amount of packing to avoid the upper edge of the slits in the shield wrinkling the tape.
(d) The tape is threaded between the driving capstan and friction wheel in the normal way, but the friction wheel is NOT switched into contact with the capstan. In this way, the tape is free to be advanced manually.
(e) The MLR38 is set to the maximum compression (185) and at this setting it scans a stationary tape at about and nches per second, which is sufficiently close to the speed at which the tape was recorded.

The emptying spool is held by hand so that when the recorder is switched on only the slack tape is taken up rather than a high-speed forward motion developing. (See figure 2.) The rotating head scans that portion of the stationary tape in contact with it, and the scanning noise produced is characteristic of the particular phonetic segment at that point on the tape. By allowing the tape to unwind very slowly it is possible to locate the transition between successive phonetic segments by the change in timbre of the scanning noise. For each transition a mark is made with a ballpoint pen on the shiny surface of the tape where it emerges from the shield of the rotating head. When all the transitions within an utterance have been marked, segmental lengths may be measured in centiseconds using a scale with divisions of 0.15 inches. Once the tape has been prepared, the process of locating, marking, and measuring phonetic transition points takes an average of only one or two minutes per segment.
2.2 Contrastive vowel length

Pairs of words with lengin contrasts in their initial or final syllable were measured, and the results indicate that long vowels (VV) are usually about 50% longer than the corresponding short vowels (V).

In a monosyllable or second syllable of a disyllabic word, when followed by voiced consonants $/ \mathrm{m} /, / \mathrm{n} /, / \mathrm{y} /$, or $/ \mathrm{l} /$, a sinele vowel is about l mora long and a geminate vowel about $1 \frac{1}{2}$ moras long. When followed by voiceless stops $/ \mathrm{b} / \mathrm{h} / \mathrm{k} /$ or / $\mathrm{t} /$, or when there is no final consonant, a single vowel is about 2 moras long and a geminate vowel about 3 moras. The length of these syllables is almost unaffected by the length of their vowel nuclei as a result of compensatory adjustments to consonant length. Final voiced consonants following a single vowel are about 2 moras long and following a geminate vowel about $1 \frac{1}{2}$ moras long, both VC and VVC totalling 3 moras. Thus we may talk of short and long vowels or syllable nuclei, but it is misleading to talk of short and long syllables.

In the final syllable of longer words a geminate vowel is about the same length as in monosyllables ($1 \frac{1}{2}$ or 3 moras). However a single vowel is somewhat shorter than in monosyllables, being about $\frac{1}{2}$ mora long when followed by a voiced consonant and about $1 \frac{1}{2}$ moras long when followed by a voiceless consonant or no consonant.

In initial syllables of polysyllabic words, when preceded by voiced consonants $/ \mathrm{b} /, / \mathrm{d} /, / \mathrm{m} /, / \mathrm{n} /, / \mathrm{w} /$ or $/ \mathrm{y} /$ or when
there is no initial consonant, a single vowel is about $\frac{1}{2}$ mora long, and when preceded by a voiceless consonant $/ f /^{\frac{1}{2}}$, $/ \mathrm{k} / \mathrm{h} / \mathrm{s} /$ or $/ \mathrm{t} / \mathrm{a}$ single vowel is about $\frac{1}{4}$ mora long. A geminate vowel in the initial syllable of polysyllabic words is about $1 \frac{1}{2}$ moras long. Initial voiced consonants are about 1 mora long and fricatives $/ f /$ and $/ \mathrm{s} /$ about $1 \frac{1}{2}$ moras long.

All of these statements concerning the relative length of various phonetic segments describe the approximate norms. They fail to show the considerable amount of variation in the relative length of individual segments, especially in initial and final positions. The mora is here defined as the average length of a single vowel when it occurs preceded and followed by voiced consonants in a monosyllable, in the second syllable of a disyllabic word, or in a medial syllable of a longer word. The length of the mora varies with the speed of utterance, but it is assumed that the mora and speed remain effectively constant throughout the span of a single word. In the slow speech of the illustrations below the length of the mora ranges between 8 and 13 centiseconds.

The following examples illustrate contrastive vowel length in initial and final syllables. Three or four separate utterances of each word were measured, and the lengths of phonetic segments are given in centiseconds. These repetitions of each word illustrate well the variability in length mentioned above.

All except the last four words were measured by the first technique; the last four words and all those in 2.3 were measured by the second technique. Both techniques are adequately sensitive to demonstrate contrast of vowel length. However, the measurement of intervocalic [r$] \stackrel{=}{=} / 1 /$ was only practicable by the second technique, since this segment is often below the threshold of the first technique (and is consistently represented by 0 in the measurements below).

/d	a	$1 /$	'kidney'	/d	àa	1/	'bamboo sp.'
13	15	18		14	22	13	
13	13	14		12	24	13	
11	11	25		12	31	7	
/b	u	n/	'splinter'	/b	unu	n/	'fungus sp. ${ }^{\text {P }}$
13	11	34		13	19	19	
14	9	26		9	20	25	
12	10	21		5	19	18	

/d		m	\&	n	u/	/d	ùu	m	a	n	u/	'faded'
4	8	13	11	6	19	14	9	10	11	5	17	
13	6	12	9	6	18	10	8	8	10	6	17	
10	4	11	13	5	17	8	9	8	12	5	17	

2. 3 neutralization of length

In medial syllables there is no contrast of vowel length.
All medial vowels have been interpreted as single vowels. These medial single vowels are about one mora long. Some pairs of words that had been believed to contrast in medial vowel length are given below. Intervocalic consonants have been measured as follows: /l/ $\frac{1}{4}$ mora; /b/ and /k/ $\frac{1}{2}$ mora; $/ \mathrm{m} /, / \mathrm{n} /, / \mathrm{t} /$, /y/ $\frac{1}{2}$ mora after single vowel of first syllable, and 1 mora elsewhere.

"Short"	"Long"
/b a k a 1 a/ 'he followed:	/d ák a J. a/ 'he asked'
114411215	115214514
124214119	
64211218	$\begin{array}{r}584 \\ \hline\end{array}$
3458216	
/ 1 l í k á l á/ 'he painted' /i l ir bá l á/ 'he examined'	
$\begin{array}{llllllll}7 & 2 & 8 & 7 & 10 & 2 & 17\end{array}$	7488414219
	9210611317
921048316	7210412117
/ili k min/ 'to paint' /i liricmin/ 'to examine'	
$\begin{array}{llllllll}8 & 3 & 9 & 15 & 4 & 5 & 21\end{array}$	7312156619
736167520	
4210147517	5212163416
/d ù l ú 1 á/ 'he took them' /t ù b ú 1 á/ 'it adhered'	
165212220	26412417
75121221	
24110123	28310021
6226111614	6988988414 them'
332711516	1081075713
44159617	
74278517	

[12] 20:5
/f íkílil l/ 'beansp.' /b rlílii $\eta /$ 'birdsp.'

13	6	4	6	1	10	16	12	5	2	8	3	15
7	4	5	6	2	11	13	7	6	1	9	2	14
10												
9	2	4	6	2	13	10	3	3	2	8	2	15
12												

3. CONSONANTS

In this analysis 13 Teléfól consonants are described: $/ \mathrm{b} /, / \mathrm{d} / \mathrm{l} / \mathrm{f} /, / \mathrm{k} /, / \mathrm{k}^{\mathrm{w}} /, / \mathrm{l} / \mathrm{l} / \mathrm{m} / \mathrm{l} / \mathrm{n} / \mathrm{l} / \mathrm{h} /, / \mathrm{s} /, / \mathrm{t} /, / \mathrm{w} /$ and $/ \mathrm{y} /$. In addition, the consonants $/ \mathrm{h} /$ and $/ \mathrm{l} /$ occur only in a few particles such as the exclamatory imperative enclitic /ihí?/ or /éhé?/, and /g/ and/p/ occur only in a few loan words.
3. 1 THE DISTRIBUTION AND TYPICAL ALLOPHONES OF CONSONANTS are shown in the following tabulation:

Phoneme $\quad / \mathrm{b} / / \mathrm{d} / / \mathrm{f} / / \mathrm{k} / / \mathrm{k}^{\mathrm{w}} / / \mathrm{l} / / \mathrm{m} / / \mathrm{n} / / \mathrm{y} / / \mathrm{s} / / \mathrm{t} / / \mathrm{w} / / \mathrm{y} /$
Syllable-
initial
allophone
Inter-

allophone
Syllable-
final
$p^{h}-k^{h}-1 m \quad n \quad \eta-t_{n}^{h}--$
allophone

The diacritic under [d], $[n],[s]$, and $\left[t^{h}\right]$ indicates that they are dentals. Bilabial [b] and velar [g] are voiced fricatives and bilabial $[\mathrm{p}]$ is a voiceless fricative. Alveolar [Y$]$ is flapped.

The following word-medial consonant clusters have been observed, those in parentheses being observed only in polymorphemic words, and hyphen indicating sequences which would not be expected because of sandhi rules.
-
b a b/b a
\qquad

bb	bd	-	bk	bm	bn	bs	bt
kb	(kd)		kk	km	kn	ks	-
lb	ld	lf	lk	lm	ln	ls	lt
mb	md			-	mn	ms	mt
(nb)	nd		nk	(nm)	-	ns	nt
(ηb)	ηd	(ηf)	ηk	ηm		$n s$	-
tb	-		tk	tm	tn	-	-

3. 2 SOME fURThER ALLOPhones

Voiceless stops tend to be only lightly aspirated, and are unaspirated when followed by consonants. /1/ tends to be retroflexed [l] in word-final position following $/ a /$, and fricative $[\not]$ preceding $/ t /$. Velar consonants tend towards a uvular articulation when contiguous with central and back vowels. Nasals tend to have a slight homorganic voiced stop at their onset when they follow long vowels, e.g. /sưum/ [su $u^{\ddagger b}$] 'banana'. /k/ is labialized following /uy/, but has less $[w]$ off-glide than $/ \mathrm{k}^{\mathrm{w}} /$. Word-initial $/ \mathrm{b} /$ and $/ \mathrm{d} /$ sometimes vary to slightly ingressive [b] and [d]. Wordinitial /f/ sometimes varies to the affricate [$\hat{p p}$]. The cluster /ld/ sounds more like [ǐ] than [ld]. /kd/ is the single phonetic segment [g]. /bb/ is [pb]. /kk/ is $[k \cdot \mathrm{~h}]$. $/ \mathrm{gd} /$ is [ng].
3. 3 FREQUENCY OF CONSONANTS

An examination of the same word sample as described in 1. 3 reveals the following list-frequencies of individual
consonants, expressed as percentages:

Consonant $/ \mathrm{b} / / \mathrm{d} / / \mathrm{f} / / \mathrm{k} / / \mathrm{k}^{\mathrm{w}} / / \mathrm{l} / / \mathrm{m} / / \mathrm{n} / / \mathrm{y} / / \mathrm{s} / / \mathrm{t} / / \mathrm{w} / / \mathrm{y} /$ Total Word-
$\begin{array}{lllllllllllllll}\text { initial } & 11 & 17 & 9 & 13 & 1 & - & 11 & 6 & - & 9 & 17 & 2 & 4 & 100\end{array}$
Inter-
$\begin{array}{lllllllllllllll}\text { vocalic } & 9 & 0.3 & 5 & 17 & - & 29 & 10 & 9 & 3 & 4 & 8 & - & 0 & 100\end{array}$
Word-

Sumewhat different figures may be expected for verbs in the intervocalic and word-final positions because of the specific suffixes involved. Thus, intervocalic $/ \mathrm{b} /, / \mathrm{l} /$, $/ \mathrm{m} /, / \mathrm{n} /$ and $/ \mathrm{t} /$ and final $/ \mathrm{b} /, / \mathrm{m} /$ and $/ \mathrm{n} /$ probably would be rather more frequent in verbs than the figures in the above tabulation indicate for nouns, adjectives, and verbal adjuncts.

4. problems in consonant analysis

4. 1 NEAR-COMPLEMENTATION OF /d/ AND /l/

If the very few occurrences of intervocalic [d] could be ignored (and /fobdeék/ 'praying mantis' is the only monomorphemic example observed), then it would be possible to analyze [ry] [l] and [d] as complementary allophones of a single phoneme. It appears that this was in fact the historical situation. (A condition favouring the historical development of initial [d] and intervocalic/final [y] ~ [l] into separate phonemes is the lack of opportunity for allomorphic alternation between initial and intervocalic sounds due to the absence of active prefixation in Teléfól.)

However, in the present analysis two phonemes /l/ ([ř] ~ [1]) and /d/ were set up even though they contrast only in the intervocalic position. This takes account of the few cases of intervocalic [d] and of the additions to their number being made by loan words: /dídímàn/ 'agronomist', /mòddeèn/ 'mountain', /éédeèn/ 'heathen', /falaedee/T 'Friday', /saladee/ ${ }^{T}$ 'Saturday'. (Superscript (${ }^{\mathrm{T}}$) indicates items for which no tonal information is available.)

4.2 MEDIaL [g]

On the basis of morphological analysis, the few occurrences of medial $[\mathrm{g}$] have been interpreted as allophones of $/ \mathrm{d} /$ as follows: intervocalic $[\mathrm{g}]=/ \mathrm{kd} /$ and $[\mathrm{gg}]=/ \mathrm{gd} /$. The only examples of $/ \mathrm{kd} /$ are at a morpheme boundary (e.g.
 of / $\mathrm{gd} /$ are monomorphemic (e.g. /níndíl/ 'few'). When [g] occurs at a morpheme boundary the separate morphemes exhibit
$[k]$ and [d] or $[\eta]$ and [d] in other contexts. Loans have brought in almost no examples of medial [g], but a few of word-initial [g]: [got] /gòdt/ 'God', /gíìtà/, /kíita 'guitar'. For the present, this may be analyzed as an extrasystematic phoneme /g/. Should initial /g/become well established through many loan words, the medial occurrence of $[g$] could be re-interpreted as $/ \mathrm{g} /$ rather than $/ \mathrm{d} /$, that is, $[g]=/ \mathrm{g} /$ or $/ \mathrm{kg} /$, $[\mathrm{gg}]=/ \mathrm{gg} /$. This would increase morphophonemic complexity somewhat, but in conformity with an existing pattern: after velars $/ \mathrm{t} />/ \mathrm{k} /$ and $/ \mathrm{d} />/ \mathrm{g} /$.

In 1957 Rev. G.J. McArthur of the Australian Baptist Missionary Society made a tentative phonemic analysis of Teléfól in which the intervocalic contrast of [g] and [k. h] was regarded as a contrast of $/ \mathrm{g} /$ and $/ \mathrm{k} /$. Medial $[\mathrm{g}]$ was analyzed as $/ \mathrm{g} /$ and initial and final $\left[\mathrm{k}^{\mathrm{h}}\right]$ as $/ \mathrm{k} /$. However this analysis results in very extensive morphemic alterna tion at the morphophonemic level, since word-final $\left[\mathrm{k}^{\mathrm{h}}\right]$ regularly becomes intervocalic [g] upon suffixation. The present analysis keeps this morphemic alternation at the allophonic level by regarding intervocalic [g] as an allophone of $/ \mathrm{k} /$; and the contrast with intervocalic $[\mathrm{k} . \mathrm{h}]$ is mone of $/ \mathrm{k} /$; and the contrast with intervocalic $\left[\mathrm{k} \cdot \mathrm{h}^{\mathrm{h}}\right]$ is of intervocalic $[\mathrm{k} . \mathrm{h}]$ is also supported by a morphemic ana lysis of some of its occurrences, from / suiuk/ 'tobacco' and /koón/ 'leaf', 'wrapper'.

Should syllable-initial / $\mathrm{g} /$ become well established through loan words, there would seem to be no advantage in attempting to link intervocalic [g] with it as an allophone.

3 Neutralization of /b/ and /w/
In intervocalic position /b/ and /w/ do not contrast. Following / $\mathrm{i} /$, /e/, and /a/ only $[\mathrm{b}$] occurs, and following $/ 0 /$ and $/ u /$ lenis $[\theta]$ and $[w]$ occur in free variation. All intervocalic occurrences of both $[b]$ and $[w]$ are here regarded as allophones of $/ \mathrm{b} /$. Firstly, this results in a simple distribution of consonants, with/w/ only in initial position, and $/ \mathrm{b} /$ in initial, final, and only in initial positions, irrespective of the preceding vowel. Secondly, this avoids morphophonemic variants when a noun stem with final /ob/ or /ub/ is suffixed (e.g. /sòdb/, /sóóbím/
'possum') or when a verb stem ending in /o/ or /u/ is suffixed for the near past or present continuous tenses (e.g. /bokod/ 'say', /bókdba/ 'he said').

If intervocalic [b] after /i/, /e/ and /a/ is regarded as $/ b /$, and freely varying $[b] /[w]$ after /o/ and /u/ are both interpreted as $/ w /$ as was done by McArthur (and this practice is followed by many literates in their writing , then a tice consonant distribution results which is unparalleled by other consonants: /w/ in initial position and intervocalic position after $/ u /$ or $/ o /$, and $/ b /$ in initial and final positions and intervocalic position after /i/, /e/ or /a/. Also allomorphic alternation between /b/ and /w/ is introduced, e.g. /sò bb/, */sóówím/ 'possum'; /bakks/ 'follow', /balkába/ 'he followed', /bókoo/ 'say', */bolkowá/ 'he said'.

A third analysis, with most of the advantages of the one adopted here, would regard all occurrences of intervocalic $[b]$ as $/ \mathrm{b} /$ and all occurrences of $[w]$ as $/ \mathrm{w} /$. Thus $/ \mathrm{b} /$ would occur in all intervocalic positions, but /w/would only occur in free variation with $/ \mathrm{b} /$ following $/ \mathrm{o} /$ and $/ \mathrm{u} /$.

Following / u / the situation is somewhat more complicated. Although /k/ and /b/ contrast in this environment as elsewhere (e.g. /ubál/ 'bird sp.', /ukal/ 'she herself'), the whonetic difference is often quite difficult to hear since the $/ \mathrm{k}$ / tends to be a lip-rounded fricative [g] in this conthe $/ \mathrm{k}$ / tends to be a lip-rounded fricative q in this con-
text. In addition, some words containing the sequence/uba/ in the speech of my second informant contain/uka/ in the speech of my first informant, e.g. /sùbayodk/, /sùkàyodk/ 'long ago', and this leads to confusion unless only one informant is used.
4.4 INTERVOCALIC /y/ AND /w/

The occurrence of $/ \mathrm{y} /$ and $/ \mathrm{w} /$ in intervocalic positions is uncertain. As mentioned above in 4.3, intervocalic /w/ does not follow $/ \mathrm{a} / \mathrm{l} / \mathrm{e} /$ or $/ \mathrm{i} /$ and it has been assumed on grounds of simplicity that it does not follow /o/ or /u/ either. On the other hand, /b/ clearly does occur following $/ a /, / e /$ and $/ i /$ and it has been assumed that it also follows $/ \mathrm{o} /$ and $/ \mathrm{u} /$. When one comes to interpret a sequence such as $[u \neq a], * / u w a /$ has been ruled out and/uba/ has been suggested as the acceptable interpretation. But a third possibilitj, */uua/ or */ua/, needs to be considered also. However, there are no non-suspect sequences of unlike vowels in Teléfol except at morpheme boundaries. Thus, in the absence of a morpheme boundary, there is no satisfactory analogy for an interpretation such as */uua/ or */ua/.

Turning now to /y/, it may be noted that there are clea intervocalic occurrences such as /uyaán/ 'undeserved blame' /kayaàm/ 'dog'. When it comes to the interpretation of sequences such as [i.a], in the absence of a morpheme boundary /iya/ is the only reasonable interpretation because of the lack of non-suspect monomorphemic unlike vowel sequences as a basis for positing */iia/ or */ia/.
4.5 LOANS WITH / P /

A few loan words from Neo-Melanesian contain initial and intervocalic lightly aspirated /p/ and this is often an idiolectal variant with /b/: /fapua/ 'Papua(n)', /kàapa/, /kàaba/ 'corrugated or sheet iron', /pîkim/, /bikim/ 'a pick'. Intervocalic /p/ seems to be in contrast with intervocalic /bb/ [pb], as in /báabbad/ 'insect bite'. Several more occurrences of /p/ without variation to $/ \mathrm{b} /$ would be needed to regard $/ \mathrm{p} /$ as established in Teléfól.
4. 6 LOANS WITH final /s/

Teléfól indigenous words do not have final/s/. However many Teléfól speakers are familiar with neighbouring cognate languages that do have final /s/. Also, Teléfól words with final / t / have allomorphs with /s/ instead when followed by a vowel in derived forms, e.g. /uleet/, /uleesim/ 'possum sp.'. Consequently, loan words with final/s/ have been readily accepted into T'eléfól and before long it will probably be possible to say that final /s/ has been estabished in contrast with final $t /$ though some free varia ion occurs at present. /kaleds/ 'mirror' /wad /wat pastor', /díliis/, /díliit/ beef dripine', /bólia/ policeman', /kálábuùs/,/kálábuut/ 'raol' póbí, /íaès/, /ílaet/ 'rice', /káabiis/ 'spinach', /másiis/ 'matches', /fíis/ 'tinned fish', /todt/, /tóds/ 'torch, lashlight', /kúùs/, /kùs/ 'cough, cold', /búus/ 'forest' yèesus/ 'Jesus'.
4. 7 COMPLEMENTATION OF/ $/ \mathrm{k}^{\mathrm{W}} /$ and $/ \mathrm{y} /$

Although [kw] and $[\eta]$ are in complementary distribution (see 3.1), they have been analyzed as two separate phonemes $/ \mathrm{k}^{\mathrm{w}} /$ and $/ \mathrm{y} /$ rather than as allophones of a single phoneme because (a) these two items do not occur in allomorphic alternation, and (b) there is no precedent in neighbouring cognate languages for treating $[\mathrm{kw}]$ and $[\eta]$ as allophones.
5. Vohels

In this analysis 5 Teléfól vowels are described: /a/,
$/ \mathrm{e} /, / \mathrm{i} /, / \mathrm{/} /$ and $/ \mathrm{u} /$. Long vowels have been tentatively analyzed as geminates VV.
5. 1 the distribution of the vowels

In monosyllables: all vowels occur geminate and $/ \mathrm{a} / \mathrm{c} / \mathrm{i}$ / and /u/ occur singly; all of these single and geminate vowels occur followed by any of the syllable-final consonants and lack of consonant; these vowels also occur preceded nants and lack of consonant; the sylable-initial consonants and lack of conby any of the syllable-initial consonants and dack ot occur: sonant, except that the following sequences do not occur:
$/ \mathrm{k}^{\mathrm{w}} \mathrm{OO} /, / \mathrm{k}^{\mathrm{w}} \mathrm{u} /, / \mathrm{k}^{\mathrm{w} u u} /$, $/ \mathrm{woo} /$, $/ \mathrm{wu} /$, /wuu/. This limitation $/ \mathrm{k}^{\mathrm{w}} \mathrm{oo} /, / \mathrm{k}^{\mathrm{w}} \mathrm{u} /, / \mathrm{k}^{\mathrm{w}} \mathrm{uu} /$, / woo $/$, $\mathrm{wu} /$, /wuu/. This limitation also holds in syllables of longer words. In monosyllabic
nouns the sequences $/ \mathrm{ki} / \mathrm{kwa}, / \mathrm{wa} /, / \mathrm{yi} /$ and / yii/ have nouns the sequences $/ \mathrm{ki} /, / \mathrm{kwa} /$, / wa/, / $\mathrm{yi} /$ and / yii/ have
not been observed either, but they do occur very rarely in longer words.

In poly-syllabic words there are some limitations in the interrelationship of the vowels of the various syllables, and these will receive detailed discussion below in section 6.

Although VV nuclei are always geminate vowels in indignous words, unlike sequences or diphthongs seem to be ap-enous wor in Sotimes it is difficult to pearing in some loan words. Sometimes it is difficult to decide whether a particular vowel sequence is a single nucleus or whether it is disyllabic. The following list of loan words containing a diphthong in the source language demonstrates that some retain the
others replace it by a long vowel.

Teléfól	SOURCE	MEANING
/wáalìt/	NM wailis	radio
/béalat/	AE páylət	Pilate
/ílàsìyà/	AE iyláyjə	Elijah
/aasaya/	AE ayzáyə	Isaiah
/édeèn/	NM haiden	heathen
/fáb/	NM paip	pipe (smoking)
/fàèl/	NM fail	file
/nàe/	NM naip	knife
/ílaès/	NM rais	rice
/ilaèn/	NM lain	group, clan
/falaedee/ ${ }^{T}$	NM fraide	Friday

Teléfól	SOURCE	MEANING
/mótú bá̀k/ /baebeel/T	AE mawtəbayk	motor bike
/ásìk/, /úsìk/	NM baibel	Bible
/ásukkul/, /úsúkul/	NM haus sik	hospital
/áskuùk/	NM haus skul	school
/tàábálàseéb/	NM haus kuk	kitchen
/sítoòn/	PM tau bada	European
/móddeèn/	NM sindaun	sit
/aút́làlìyà/	NM maunten	mountain
/bólbodl kèèmin/	NM australia	Australia
/boé/	NM boil	to boil

[^1]The ready acceptance of /ae/ in loan words is probably due to the high frequency of occurrence of bimorphemic /aa\#ee/ in Teléfól benefactive verbs.
5.2 TYPICAL VOWEL ALLOPHONES

In monosyllables and the final syllables of polysyllabic words the vowels have the following typical phonetic values:

$$
\begin{array}{llllllll}
/ \mathrm{a} / & / \mathrm{aa} / & / \mathrm{ee} / & / \mathrm{i} / & / \mathrm{ii} / & / 00 / & / \mathrm{u} / & / \mathrm{uu} / \\
{\left[\Lambda^{T} / \mathrm{a}\right]} & {[\mathrm{a} .]} & {[\varepsilon .]} & {[I / \mathrm{i}]} & {[\mathrm{i} .]} & {[0 .]} & {\left[v / \mathrm{u}^{+1}\right]} & {\left[\mathrm{u}^{-1} .\right]}
\end{array}
$$

Some speakers make a slight distinction in the vocoid quality of single and geminate vowels fairly consistently, whereas other speakers make no such distinction. When contiguous with / $\mathrm{s} /$ or / $\mathrm{y} /$ the vowels / $\mathrm{u} /$ and / uu/ tend to be centralized almost as far as $[甘][甘]$ and [$k \cdot]$ respectively.

The values of the phonetic symbols used for the vowels are as follows:

	UNROUNDED	ROUNDED
	FRONT - - - - CENTRAL	CENTRAL - - - - - BACK
HIGH	i	$3 u^{4}$
	I	せ U
MID	ә	
	ε 仡	
LOW	Λ^{\top}	0
	a	

5.3 Frequency of vowels

An examination of the same body of data as in section 1.3 reveals the following list-frequencies for vowels, as percentages:

	Mono-syllables	Disyllabic Hords		Trisyllabic Hords			Average
		$\begin{gathered} 1 s t \\ \text { syll. } \end{gathered}$	$\begin{gathered} \text { and } \\ \text { syll. } \end{gathered}$	$\begin{array}{r} 1 s t \\ \text { syll. } \\ \hline \end{array}$	$\begin{array}{r} \text { snd } \\ \text { syll. } \end{array}$	$\begin{gathered} 3 r d \\ \text { syll. } \end{gathered}$	
/a/	13	23	21	30	36	16	22
/ $\mathrm{aa} /$	10	7	15	5	-	9	9
/ee/	17	2	7	3	-	9	7
1e/	-	3	-	1	7	-	1
/i/	10	26	14	25	26	17	19
/ii/	11	6	8	3	-	10	7
100/	18	6	15	3	-	24	12
/0/	-	5	-	3	12	-	3
/u/	9	16	12	22	19	7	13
/uw	12	6	8	5	-	8	7
Total	100	100	100	100	100	100	100

In the polysyllabic words, for each vowel quality there is a clear trend for geminate vowels to predominate in the final syllable and single vowels to predominate in the initial syllable. This confirms the $C V$ pattern trend mentioned in 1.3.

6. Vohel neutralization

In non-final syllables of polysyllabic words, and espec ially in initial syllables, there appears to be a certain amount of neutralization of the contrasts between single vowels.
6. 1 WORDS WITH INITIAL VOWEL

The initial syllable of words with initial vowel, though short, is easy to hear and there is good evidence for contrast. The phonetic quality of these initial vowels is $|a|=[\Lambda], / i /=[I], / u \mid=[v]$

| /álím/ 'tree sp.' | /ílím/ 'tinea; /ulím/ 'father-and- |
| :--- | :--- | :--- | :--- |
| cloth' | |

6. 2 WORDS WITh INITIAL CONSONANT

However, in words with an initial consonant the linguist's difficulties begin. In addition to the general shortness of the vowels of initial syllables, they are extremely short or even missing altogether when followed by intervocalic /l/, and especially when the word-initial consonant is $/ \mathrm{b} / \mathrm{c} / \mathrm{d} /$,
/f/, /k/ or /t/. The first syllable vowel is almost as short, though never missing, when followed by an intervocalic $/ \mathrm{k} /$. (These auditory impressions of shortness have not yet been checked by measurement.) Also, the vowel of the first syllable is partially devoiced following initial /k/ and /t/. Furthermore, many short initial syllables contain a puzzling central vocoid [ə] that does not occur in final syllables.

Under these circumstances the author found vowels rather difficult to identify, so made a special investigation of 312 disyllabic monomorphemic words with the general pattern $\operatorname{CVCV}(V)(C)$ to determine whether or not the three-way contrast of single vowels is maintained following an initial consonant. The results indicate that following an initial consonant there is a partial neutralization of vowel distinctions, and that only two-way vowel contrasts occur.
(a) Following initial $/ \mathrm{k} /$ single $/ \mathrm{i} /$ does not occur. Howcver, /a/ and /u/ both occur (26 and 21 occurrences respectively) and are in clear contrast. In this context /a/ has free variant allophones $\left[\Lambda^{\top}\right],[\Lambda]$ and $[ə]$, and $/ u /$ is [U].

/káleèl/ 'possum nest in lime-	/kuleèl/ 'landslide'
stone sink-hole'	

(b) Following initial $/ \mathrm{b} /, / \mathrm{d} /$, $/ \mathrm{f} / \mathrm{s} / \mathrm{m} /, / \mathrm{n} /, / \mathrm{s} /$ and $/ \mathrm{t} / \mathrm{and}$ preceding intervocalic $/ \mathrm{n} / \mathrm{s} / \mathrm{s} / \mathrm{s} / \mathrm{t} /$ and $/ \mathrm{y} / 55$ occurrences of /i/ have been observed, as well as 11 occurrences of /i/ freely varying with /a/ (and with / u / too, in two cases), and just one occurrence of invariant/a/. This latter may be regarded as the sole instance of vowel contrast in this context. In this context/i/is $[x]$ and /a/ is $[\partial] /[\Lambda]$.
/mánul/ 'long net hat' /bìnuy/ 'parasitic growth on tree'
(c) Following initial $/ \mathrm{b} / \mathrm{h} / \mathrm{d} / \mathrm{l} / \mathrm{f} / \mathrm{h} / \mathrm{m} /, / \mathrm{n} / \mathrm{l} / \mathrm{s} / \mathrm{l} / \mathrm{t} /$ and $/ \mathrm{y} /$ and preceding intervocalic $/ \mathrm{b} /, / \mathrm{f} /, / \mathrm{k} /, / \mathrm{l} /, / \mathrm{m} /$ and $/ \mathrm{y} / 177$ words have been observed in which the single vowel of the first syllable is identical to the vowel(s) of
the second syllable. Such a homophonous vowel, whether it be /a/, /i/, or /u/, has [∂] as a free variant allophone, and even $[\Lambda]$ has occasionally been recorded as a free variant. In addition 14 words have been observed in which there is free variation between a homophonous vowel and $/ \mathrm{u} /$, and 7 words in which invariant /u/ occurs. These latter may be regarded as the only instances of vowel contrast in this context. In homophonous contexts /i/ is [I]/[a], /a/ is $[\Lambda] /[ə], / \mathrm{u} /$ is $[U] /[ə]$; non-homophonous $/ \mathrm{u} /$ is [U].

/dalán/ 'tree sp.'	/dularn/	'frog sp.'
/yákabl/ 'adze'	/yukadm/	'banana sp.'
/sàkarm/ 'distant'	/sûkaín/	'frog sp.'
/sènaáy/ 'fern or grass sp.'	/tûnaá/	'dancing chest straps'
/belleel/ 'biting fly'	/duleél/	'small dancing shells'
/nèleen/ 'bird sp.'	/duleèb/	'lizard sp.'
/tímít/ 'cucumber'	/dưmít/	'small reeds with yellow flower'

An examination of 51 monomorphemic disyllabic nouns, adjectives and verbal adjuncts of the general type $\operatorname{CVCCV}(V)(C)$ shows approximately the same features of frequency, free variation and contrast described above for words with a single intervocalic consonant. A few contrastive examples catalogued as above are:

(a) /kabkeét/	'bachelor'	/hubmi//	'frog sp.'
(b) /natnàt/	'bird sp.'	/nítnaàt/	'ventilators'
(c) /bàjkáb/	'swelling'	/túnkál//	'yawn'

However, two cases of contrast do not fit in with the ob servations for category (c) of the words with a single intervocalic consonant where /i/ does not precede a syllable containing /a/:
/singsaáy/, /sàjsaáy/ 'leafless' /sùndaàm/ 'ash on skin' /filnaky/ 'bird's head feathers' /balbal/ 'type of in-

An examination of polymorphemic disyllabic words of all word classes of the general type $\operatorname{CVCV}(V)(C)$ reveals the ing situation
(a) Following initial $/ \mathrm{k} /$, /u/ and $/ \mathrm{a} /$ occur in clear contrast. The only occurrence of $/ i /$ is the phrase modifier
[24] 217
/kìmín/.

/kábod/	'you (masc.)'	/kuboo/	'you (fem.)'
/kalíb íyoo/	'these'	/kulíb íyood	'those'
/kàlaalk/	'down here'	/kulaák/	'down there'
/Làtodb/	'down here'	/kutodb/	'down there'
/kàmeèt/	'up here'	/kùmeet/	'up there'
/kafumin/	'to lift you'	/kufumin/	'to lift her'
/kámòmìn/	'to look after you'	/kumomin/	'to look after her ${ }^{\prime}$

(b) (c) Single vowels following initial consonants other than $/ k /$ seem not to be limited in their occurrence, although the evidence for a three-way contrast is rather fragmentary.

/níta/	'I'	/nutá/	'we'
/nisoo/	'with me'	/nusoo/	'with us'
/wínènu/	'has a yolk'		
		/duménu/	'fruited'
ns'		/ dưkàmìn/	'take her'
/tíbanu/	'brown'	/ fubanu/	'tassled'
/filanu/	thas humus'	/dulánu/	'scarred'

It is noteworthy that monomorphemic words with a single intervocalic consonant exhibit the highest degree of vowel neutralization, monomorphemic words with intervocalic consonant clusters exhibit slightly less vowel neutralization, and bimorphemic words with a single intervocalic consonant the least degree of neutralization. It seems likely that a historical explanation of this gradation is possible.

6. 3 VOWEL ALLOPHONES

In initial syllables there is no contrast between $/ u /$ and /o/ or between /i/ and /e/. (However /uu/, /oo/, /ii/, and lee/ all occur and contrast in initial syllables.) Since single /e/ and /o/ do not occur in monosyllables and final syllables, it would be possible to interpret any occurrence of $[\varepsilon]$ or $[0]$ in initial syllables as allophones of $/ i /$ or $/ \mathrm{u} /$. However, in the present analysis, the occurrences of $[\varepsilon]$ and [0] have been interpreted as occurrences of $/ \mathrm{e} /$ and
/0/. Though the details of the non-contrastive distribution of /e! and /i/ and of /o/ and /u/ require further field checking, it seems that /e/ and /o/ occur in initial syllables following an initial consonant when the following syl.lable contains /ee/ and /oo/ respectively, and that/i/ and /u/ occur in all other contexts. Neither single /i/ nor /e/ are observed following initial / $/ \mathrm{k} /$.

In this analysis [ə] in initial syllables has been allotted to /a/ if the initial consonant is $/ k /$. For other initial consonants [ə] in the initial syllable has been allotted to $/ \mathrm{a} / \mathrm{preceding}$ intervocalic $/ \mathrm{n} / \mathrm{s} / \mathrm{s} /, / \mathrm{t} /$ and $/ \mathrm{y} /$; and preceding intervocalic $/ \mathrm{b} /, / \mathrm{f} /, / \mathrm{k}, 1, / 1 /, / \mathrm{m} /$ and $/ \mathrm{y}!$, [ə] in the initial syllable has been allotted to which ever of the five vowel phonemes occurs in the second syllable. Alternatively, it would be possible to set up a sixth vowel phoneme $* / a /$. However, such a phoneme would never occur as an invariant but always in free variation with some other vowel phoneme, and would never participate in more than a three-way vowel contrast
"Missing" vowels have invariably been interpreted as being identical to the vowel of the next syllable. First syllable vowels that are not homophonous with the second syllable may be very short before /l/ but never completely disappear. The toneme belonging to a devoiced or missing vowel may be inferred from the phonetic pitch of the follow ing syllable. That is, the particular allophone of the toneme of the following syllable is partly determined by the toneme of the hard-to-hear syllable. In fact, this conditioning provides direct evidence of the reality of the "missing" vowel preceding intervocalic /1/. For instance,
it is observed that problematic [$p{\underset{Y}{r}}^{\top} p^{h}$] 'flea' has a pitch pattern similar to both monosyllabic /fàb/ [pA $\left.{ }^{\top} p^{h}\right]$ 'grass sp.' and disyllabic /naka/ [n^g Λ^{T}] 'outsider', and that problematic [bॅ̌ul] 'borer' has a pitch pattern similar to both monosyllabic /bul/ [bul] 'point' and disyllabic /bubúl/ [tubul] 'heart'. However, problematic [dirn ${ }_{n}{ }_{n}$] 'tree sp.' has no monosyllabic analogue, but it does have a disyllabic analogue in /dàkán! [dng $\Lambda^{\top} n$] 'thin cane sp.'. Monosyllabic nouns, adjectives, and verbal adjuncts exhibit two common contrastive pitch patterns and disyllabic ones three. Vords with initial contoid sequences [by], [dry, [pry, [kry or [try] exhibit the same three common pitch patterns as disyl-
labic words, and these contoid sequences have been analyzed as syllables containing a "missing" homophonous vowel carryins a toneme, rather than as a consonant cluster.
K.L. Pike has suggested to the author that the neutralization of vowel contrasts in initial syllables is a direct historical consequence of the general word dynanics with its ultra-short initial vowels.

6.4 VOWEL HAR1ONY

As a consequence of the analysis adopted in 6.3, five morphemes within verbs exhibit vowel harmony with the vowel of the following syllable - usually a subject-person suffix. ${ }^{4}$ They are:
the verb sten /tal/ ~/tul/ ~/tol/ ~/tíl/ 'come'
the continuative aspect suffix variants /-nkel/ ~/-nkul/ ~ /-n\#ksl/,
the homopersonal dependent suffix /-nàl/ ~/-nùl/ ~/-nill,
the heteropersonal dependent marker /\#sall/ ~/\#sùl! ~/\#sil/,
the heteropersonal dependent marker //\#ral / ~ / / kul $/ .^{5}$
It is the chief merit of the alternative analysis involving */a!' that these five morphemes would have no vowel harmony allomorphs.

7. tonemes

The analysis adopted in this paper involves two tonemes, an UP toneme marked with an acute accent, and a Dows toneme marked with a grave accent. The behaviour of these phonemes is best illustrated by first considering words that contain only single vowels, that is, words containing no geninate vowels.
7. 1 distribution of tonemes

Each short syllable-nucleus carries or contains one toneme, except for a few contracted syllables which carry two tonemes. "Iithin each syllable there seems to be no correlation or co-occurrence limitation between the tonene and the consonants and vowels. Between the tonemes of syllables within a word there are no limitations of co-occurrence. However, if one restricts the enquiry to single morphemes some trends may be noticed. For instance, of monomorphemic
disyllabic nouns, adjectives and verbal adjuncts, 480 are DOWN-UP, 43% are UP-UP, only 8% are DOWN-DOWN, and just 1% are UP-DOWN. Of monomorphemic verb stems 77% are UP-UP, 16% are DOWN-UP, only 6% are DOWN-DOWN, and none are UP-Down Nevertheless, taking words as a whole, two monosyllabic, four disyllabic and eight trisyllabic contrastive tonal pat four have been observed. Not all of the expected sixteen fatterns have been observed. Not all of the expected sixteen fourling patterns have been observed, partly because such long simple nouns are rare, and compounds involve tonal sandhi which reduces the number of patterns possible for them, and partly because polysyllabic verbal suffixes do not include all of the tonal possibilities. The best contrast ive examples of all the one, two, and three syllable tonal patterns are listed below.

/bil/	'wild banana sp.'	/dál/	'shallow water'
/bil/	'payment feast'	/dall/	'kidney'
/dub/	'wild cane sp.'	/dám/	'white clay'
/dưb/	'tree sp.'	/dàm/	'body'
/kui/	'hand'	/un/	'arrow'
/kul/	'frog sp.'	/un/	'thigh'
/buk/	'tree sp.'	/tít/	'bridge support'
/buk/	'pig's foraging'	/tit/	'splinters (on dry wood)'
/tín/	'native bee'	/bán/	'palm'
/tim/	'head louse'	/bàn/	'ceremony'
/dinin/	'to build'	/balbàl/	'friendly'
/dilím/	'mistletoe sp.'	/banbern/	'shame'
/duilin/	'taken'	/kankàn,	'small things'
/dílím/	'rat's teeth marks'	/bímbín/	'frog sp.'
/kafùn/	'walking stick'	/ili/	'snake sp.'
/akum/	'gourd water-bottle'	/ulín/	'club (weapon)'
/nukum/	'my friend'	/ulin/	'planted'
/akum'	'wild banana sp. ${ }^{\text {c }}$	/ulín/	'Plant it!'
/nàkàl/	'I myself'	/ilan/	'dark-stained water'
/makál/	'hindquarters'	/ilam/	'house top-plate'
/makal/	'wild cane sp.'	/ílám/	'dream'
/tikinin/	'to persist'	/kànưmìn/	'to do'
/fikilíl/	'tree sp.'	/imilím/	tinea'

／dìmíníl／＇parrot sp．＇	／nàmáyím／＇white cockatoo＇
／ìlulìn／＇vessel containing	／imákìm／＇husband＇
	water＇

7． 2 PHONETIC DETAILS OF TONEMES
The actual shapes of the pitch contours of words seem to be unaffected by the particular consonants and vowels they be unaffected by the pare context in contain．However，they are affected by the tonal corles I，II， which the word occurs，as may be seen in and III，as well as by the specific sequence of tonemes contained in the word itself．In the context formulae／．／ represents a final intoneme with or without a pause．The sandhi－free tonal contexts are represented as monosyllabic words，and their pitches are shown with dotted contours． The five guide lines represent high，upper－mid，mid，lower－ The five guide lines reprectively，reading from top to bottom． The phonetic accuracy of these pitch contours cannot be The phonetic accuracy of the solely on the author＇s impres－ vouched for．They are based solely between them have been sions．However，
thoroughly checked．

7.3 STRESS

The author has not been able to detect any consistent and marked differences in loudness between the syllables of a word．On various occasions＂stress＂has been noted，but later checking has shown that such observations were in fact falling pitches，high pitches，or phonetically long vowels， falling pitches，features associated with Australian English ＂stressed＂syllables．

7． 4 TONEMES OF LONG SYLLABLE－NUCLEI
Although words containing geminate vowels may be analyzed n terms of the same two UP and DOWN tonemes as words con－ taining only single vowels，there are some differences of toneme distribution．

Words whose first syllable－nucleus is short but whose inal syllable－nucleus is long，exhibit pitch contours iden－ tical in number and phonetic detail to those for words con－ taining only short syllable－nuclei．It has been concluded from this that these words have the same possibilities for

苍	T0	号	W0	－	$1]$	10	迺	11	
O	（1）	－		－0			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$		
CO	！ 10	－	（1）	－0			苞		$T 1$
芯	［111	－		－		1	它	$1!$	1
苍		－0	¢ $\square^{\circ}{ }^{\circ}$	"0			－	1	－ 0
苞	\％	－	（1）	－			－	\％	
会	\％ 6	－0	\％	－		，	－	$1!$	
N	\％ 6.0	－	（600	C0		${ }^{\circ}$	－	$1!$	18
N		－${ }^{0}$		－			$\begin{array}{r}- \\ -8 \\ 0 \\ 0 \\ - \\ \hline\end{array}$		

TABLE II．PITCH CONTOURS OF WORDS WITH THREE SHORT SYLLABLE－NUCLEI

TABLE III．PITCH CONTOURS OF WORDS WITH FOUR SHORT SYLLABLE－NUCLEI

7.5 WORDS WITH FIRST SYLLABLE-NUCLEUS LONG

Words whose first syllable-nucleus is long (including monosyllables) exhibit twice as many contrastive pitch contours as words with all syllable-nuclei short.? It has been concluded from this that an initial long syllable-nucleus always carries two tonemes, one on each vowel of the geminate. All four toneme sequences / $/ /$, $/ \cdots /$ / and / $/$ occur on geminates in initial syllables, and there seem to be no limitations in their distribution with respect either to the consonants and vowels of that syllable or to the tonemes of the other syllables.

/dòl/	'pandanus sp.'	/ dok/ $^{\prime}$	'water'
/doठl/	'tree sp.'	/ ${ }^{\text {d }}$ / $/$	'thumb'
/dódi/	'insect sp.'	/dodt/	'fern sp.'
/dóol/	'forked'	/móok/'	'type of stone adze'
/módm/	'my uncle'	/deèn/	'happy'
/mòon/	'wasp sp.'	/deén/	'27'
/mónj	'tree sp.'	/kwéè ${ }^{\prime}$	'grasshopper'
/ yoóm/	'flying fox sp.'	/téén,	'arm'
/ fèèt/	'arrow carving'	/ dèem!	'bird arrow'
/teéti'	'container'	/deém/	'tree sp.'
/teét/'	' flower'	/séèg/	'quickly'
/ éeb/	'Oksapmin salt'	/ deém;	'f'rog sp.'
/dèal/	'pig arrow'	/fưul/	'tree sp.'
/dàál/	'tired'	/fưut/	'plant shoots'
/sáal/	'pandanus sp.'	/fuut/	'quickly'
/méál/	'pandanus sp.'	/fưưl/	'cured food'
/uùl/	'storage space'	/tiom/	'trunk, antinode'
/ yùul/	'antiphonal shouting'	/tióm/	'wild taro sp.'
/ Uưn/'	'bird'	/tîm/	'instead'
/ yưul!	'banana sp.'	/tíí/	'bamboo sp.'
/badalin/	'wide'	/k'adnadl/	'pancreas'
/Oठlsakk/	'anger'	/mưumeén/	'my aunt'
/dasilin/	'placed'	/diímalal/	'bird sp.'
/dálín/	'Put it!'	/basabeen/'	'my elder sister'
/dsolin/	'born'	/náakaàl/	'lizard sp.'

/dodili/	e birth'	/néèbeén/	'bird sp.'
/dáalin/	'planted'	/dámad//	'pandanus sp
/dálín/	'Plant it!'	/íínuún/	'grass sp.'
/nừkùyừ/	'haze'	/dónnulù/	'she gave birth.
/tàànàmá/	'he can sharpen'	/dóonùmú/	'she can give bi
/dừtukul/	'bald'	/áatúmàl/	'my uncles'
/dừménư/	'faded'	/máanílít/	'dog tooth orn
/dàálatà/	put...'	/dáalata/	'he planted...'
/wèskiman	'frog sp.	/keémàná/	'he showed himsel
1	... ${ }^{\prime}$	/dáanálà/	'he planted..

7.6 PITCH CONTOURS OF WORDS WITH FIRST SYLLABLE-NUCLEUS LONO

The contours shown in Table IV are those which occur in the context /. --- ./. It may be noted that each of these contours is very similar to the corresponding contour for word that has the same sequence of tonemes but all on shor syllable-nuclei. For example, of tonemes but all on shor CVVCVCVC is similar to the contour [[-] for CV̇CV́CV̇CV̛C is similar to the contour [_ _ -] for

7. 7 Status of LONG VOWELS

Long vowels in Teléfól, though contrastive with short ones, cannot be interpreted as geminates (VV) in the classical sense, since there are no non-suspect sequences of unlike short vowels to provide a basis for such an interpretation. The traditional approach would be to treat these lu: vowels either as singie phonemes /a:/, /e:/, /i:/ /o:/ /u:/ or as the short vowel phonemes plus a length phoneme

However, initial long syllable-nuclei always contain or carry two tonemes, and such toneme pairs have phonetio characteristics similar to toneme sequences on two succes sive short syllable-nuclei This situation suggests an analysis of the long vowels in initial syllables as sequence of two identical short vowel phonemes, ach sequence toneme. Such a ong syllable-nucleus cluster could be regarded either as nuclei owels, the analysis the lack of diverse sequences of short the better alternative a long syllable-nucleus seems to be

Uner alternative.
Unfortunately, the analysis of a long vowel as a geminate
vowel or long syllable-nucleus runs into difficulties in final syllables, where long vowels normally carry only one final syllables, where long the 4 -way toneme contrast on toneme. One could say that the 4 -way contrast in final long vowels is neutralized However, whatever one says about this asymmetry syllables. However, whatever one says is no longer any tonal in the distribution of tonemes, there in final syllables as basis for interpreting long vowels in final syllables as geminates.

This leaves us with three types of analysis, each of which has unsatisfactory features.
(a) All long vowels are regarded as geminates (VV). In initial syllables each vowel of the geminate carries a toneme, but in final syllables only one vowel of the toneme, but carries a toneme. This interpretation involves toneme neutralization.
(b) All long vowels are single phonemes (V:). In initial syllables long vowel phonemes always carry two tonemes, elsewhere long vowel phonemes carry one toneme as do short vowel phonemes. This interpretation invoives the occur of two tonemes on a single vowel.
(c) Long vowels in initial syllables are regarded as geminates (VV) and in final syllables as single phonemes (V:). Each vowel phoneme carries one toneme. This interpretation is reminiscent of Firth's polysystemic approach and is the simplest description of toneme distribution. and is the simplest long vowel phonemes that occur only in final syllables.

Analysis (a) has been adopted in this paper.
8. JUNCTURE

Certain tonal and consonantal allophones are characteriscof word-initial or word-final position. These word boundary or junctural allophones were first tentatively identified for monomorphemic utterances bounded by pause and final intonemes. Then further investigation showed boundaphenomena so identified only occurred at morpheme boundaphenome and in turn such morpheme boundaries were considered ries, and in turn a juncture phoneme. 9 In most cases, such as occurrences of a "phonological words" are also grically and ever, occasionally the phonologically determined word boundaries do not coincide.

A juncture that lies within a grammatical word (that is, A juncture that lies within a grammatical

onot smatonn-atavttas tulaini hidm saqom ao sanownod holid rat atava
boundary) is termed an INTERNAL JUNCTURE. Internal juncture marked by \# and external juncture marked by space or punc tuation are phonologically identical, representing one and the same juncture phoneme. The two ways of marking juncture are adopted as a convenient device for distinguishing certain grammatical properties based on tactics rather than phonology.
8.1 TONAL EVIDENCE

All of the pitch contours presented so far pertain to single words. Most of them occur on monomorphemic words. The contours for which no monomorphemic examples have yet been observed occur on polymorphemic words whose status as single words is not in doubt. For example, words containing noun derivational suffixes /-im/, /-een/, /-aal/, /-ook/, kinship and personal name plural suffix/-al/, noun and adjective verbalizing suffix /-an/, and verbal neutral tense endings $/-a /, /-1 a /, /-m a /, /-u /, /-1 u /, /-m u /$, etc., and combinations thereof, are undoubtedly single words.

During the analysis of tonal data several pitch contours were discovered additional to those presented so far. These contours (shown in Table V) never occur on monomorphemic words, and in fact they are identical with some of the many pitch contours that occur on sequences of two words. However, these occurrences are worthy of careful attention, since they involve morpheme sequences which all along had been assumed to be single words. All of these contours have as their chief feature an unexpected step in pitch between two successive syllables, for example high to low or low to high. A morpheme boundary always occurs between the two syllables involved in the pitch step. An investigation of these occurrences has, in some cases, resulted in a decision that two words are involved, and in other cases has led to the postulating of an internal juncture. Thus, an unexpected high-low step is interpreted as the sequence UP-JUNCTURE-DOWN, and an unexpected low-high step as the sequence DOWN-JUNCTURE-UP. Junctures have not been (cannot be?) contrastively detected between like tonemes by tonal evidence. Some common occurrences of internal juncture marked by tone are listed below.
(a) The imperative utterance terminal /a/ ~/ya/ was regarded for a long time as a suffix because it immediately follows the verb without pause. However, it was discovered hat when /a/ follows a verb with final Up toneme, it has allotones that would be expected for a separate word rather han a suffix. Further grammatical enquiry indicated that
[34] 231
da/ occurs after several different types of verb in an im/a/ occurs after several complete utterances in a quotative perative sense, and after E.g. /sì kwà./ Good morning.', imperative sense. E.g. Morning"!'. This grammatical /sii k a ya./ freedom of occurrence seems surder than as a suffix. E.g. /a/ as a separate word rather than as '. These two-word /ku yà./ rather than /ku\#ya./ pitch contours of the imperatives are dich follows is word contours whenever the word that the longer word with either a short monosyllable with /'/ or a longer word with ' '/ as the last two tonemes.

Variant with internal juncture /\#/	Approximate meaning and distribution	Free variant	Suffixial variants and distribution
/\#bala/ /\#sàla/ /\#kalá /\#sìit/ /\#obm/ /\#bobom/ //is so $\delta m /$ /\#bobomá/ /\#nàmá/ /\#bàláb/ /": sàláb/ /ifboóntèma/ /\#nákbeè/ /\#nák\#baláb/ / $/ 4 \mathrm{~h} \delta \mathrm{l} /$	heteropersonal heteropersonal heteropersonal 'soon', punctiliar. 'soon', punctiliar 'later', punctiliar 'later', punctiliar habitual, closed abilitative, closed present, closed far past, closed 'tomorrow' future recent habitual recent habitual continuative for certain verb stems, preceding / / /	/baláa/ /sèla/ -- /siit/ -- /bóom/ /sóom/ /bóómá/ /nàma/ /bèláb/ /sàláb/ /bóontèma/ /nákbee/ /nár\#baláb/	

table vi. VERB ENDINGS WIth internal juncture.
(b) Verbs containing the endings listed in Table VI show pitch contours characteristic of two words rather /\#nakbee/ single words. 4 Recent habitual verbs ending in /\#nakbed, and /\#nák/lbalab/ have contours not observed in single words, whenever these endings follow a verb stem whose last two

tonemes are /"'. (There are no short monosyllabic verb stems with / \%.) For all the other endings contours that are specific to two-word sequences are observed whenever these endings follow a short monosyllabic verb stem carrying /'/ or a longer stem whose last two tonemes are /"\%. All of these endings have been tentatively regarded as part of the same grammatical word with the verb stem rather than a separate word. E.g. /ku\#nama/ rather than /kú nama/ 'he can take it'. The reasons for this grammatical decision are our next concern.

It is true that for many of these endings there is a corresponding and identical form (except that juncture is written by space instead of \#) which occurs as a separate free verb. In Table VI /sòóm/,/sàlá, and /sàláb/ are forms of the verb 'to spend the night' and all of the others are forms of the verb 'to be'. However, although this suggests that these verbal endings should be treated as separate words, there are two types of evidence pointing in the opposite direction.

Firstly, for many of these endings there are corresponding forms differing only in tone and the absence of juncture which occur as undoubted verbal suffixes. In the case of /\#balab/ and /\#salab/ there is the additional fact that other persons ('I', 'he', 'she') for these same tenses are clearly suffixial in form. One consequence of the toneme distribution discussed in 7.7 should be pointed out in passing. Whereas a long vowel of a monosyllabic suffix carries only one toneme, the same morpheme carries two tonemes both when it is a free word and when it is a grammatically bound phonological word. For instance, the suffix /-sodm/ carries only /'/, but both /sóóm/ and /\#sóom/ carry / \%/. (See Table VI.) This is one of the important aspects of the tonal properties of internal juncture.

Secondly, a final /m/ of verb stems (mainly continuative stems) is lost before endings commencing with /\#b/. E.g. /fukun/ 'think', /fukun\#boóma/ 'he always thinks'; but /ífúm/ 'serve food', /ifü\#bóoma/ 'he always serves food'. This reduction is not a general type of sandhi but is unique to verbal endings (including suffixes). Furthermore, in many cases the resulting m-less variant of the verb stem is unique to these forms of the verb. E.g. */ifu/ 'serve food' does not occur as a free word in any other context. There is no precedent for its occurrence in isolation or in periphrastic verbs.

Note that forms with final /-a/ in Table VI have this to mark the subject as 'he', and tonally identical forms with
final /-í/ 'I', /-ab/ 'you', /-u/ 'she', /-ub/ 'we', and $/-i$ b/ 'you/they' instead also occur. Forms terminating in /-aláb/ 'you' have analogous forms terminating in /-ulúb/ 'we' and /..ilíb/ 'you/they' also.
(c) The morphemes /sò $\delta /$ 'and ', 'with', and /mín/ 'and', 'or' were originally thought of as being suffixed to the preceding word. But after considering the pitch contours involved and the wide range of word classes which they follow, it was decided that they are both phonologically and grammatically free. Thus, /tanuúm sò $\delta /$ rather than /tànum\#s or /tanumsoó/ 'with a man'. It should be pointed out that the first of these does have a suffixial allomorph occurring with pronoun stems (e.g. /nìsod/ 'with me') and in several derived words (mostly adjectives): /afalikénsoó/ 'fairly large'; /kumúnsoó/ 'pregnant'; /kàfánsoó/'living'; /mébsoó/ 'near'; /màaksod/ 'more'.
(d) Several morphemes that frequently occur as the final element in place names exhibit pitch contours characteristic of free words rather than suffixes. Because of the large and open class of place name "stems" preceding them, it has been tentatively decided to treat these final elements as separate grammatical words rather than to invoke an internal juncture: /tibín/ 'headwaters'; /biíl/ 'mid valley'; /kòot/ 'slopes'; /yakán/ 'crossing', 'ford'; /tikiín/ 'mountain', 'hill'.
(e) The location indicator /kàl/ ~/kal/ 'at' is phonologically a separate word. It has a measure of grammatical versatility also, and is considered a grammatically free word. It should be mentioned that with two of the numerals /-kèl/ behaves as a suffix: /bukưbkal// 'six';/tưkàl/ 'nine'. With another numeral and four demonstratives (D2) there is suffixation involving a unique reduction of anticipated / kk/ to $/ \mathrm{k} /$:

/ obk/	/ookal/	'five'
/keék/	/keékal/	'across here'
/ $\mathrm{k}^{\text {W }}$ eék/	/ $\mathrm{k}^{\text {W }}$ éekál/	'across there ${ }^{\prime}$
/kàlaak/	/kàlákál/	'down here'
/kulaak/	/kidlakal/	'down there'

(f) About 20% of verbs are obligatorily marked for the object person. For some verbs the object person morphemes are prefixes and for other verbs the object person morphemes are separated from the following verb stem by an internal juncture, especially for punctiliar forms of such verbs.

The markers are /nám\#/ 'me', /kám\#/ 'you', /dub\#/ 'him', /kubl// 'her', and /im\#// 'us', 'you', 'them'. Whenever these precede verb stems whose first toneme is / / pitch contours are observed that are normally characteristic of two words rather than a single word. Some examples are: /nam\#kàálu/ 'she left me', /kub\#lyükuùb\#éelá/ 'he tried it out for him', /dub\#suùn dáalíb/ 'they insulted him in song'. The reason for not regarding these object person morphemes as free words is that most of the verb roots which they precede do not occur alone as verb stems. Thus, an analysis of /nám\#kàálú/ as /nám káálú/ she left me' would be breaking all precedent since neither /nám/ nor /káálú/ occur elsewhere as free words.

8.2 CONSONANTAL EVIDENCE

Most consonants do not provide clear allophonic evidence for the boundaries of phonological words. The three phonemes $/ \mathrm{b} / \mathrm{L} / \mathrm{k} /$ and $/ \mathrm{l} /$ which have positionally determined allophones in the list in section 3.1 tend to have their syl-lable-final allophones replaced by their intervocalic allophones when followed without pause by a word with initial vowel, and replaced by their pre-consonantal allophones when followed without pause by a word with initial consonant. The nett result is that the allophones of word-final consonants provide no consistent clues for identifying the word boundary.

On the other hand the syllable-initial allophones of $/ \mathrm{b} /$ and $/ k /$ are maintained in word-initial position irrespective of whether pause, vowel, or consonant precede them. These then provide clues for identifying junctures when the preceding word ends in a vowel.
(a) The untranslatable phrase modifiers / ki/ and /kimín/ glways have initial [K^{h}] and hence have been regarded not as suffixes, but as forms preceded by juncture. Originally it was thought that these two forms only occurred following -tá series and -ó series pronouns, but careful examination has revealed that they follow a wide range of word classes. It has finally been decided to regard these two forms as free words rather than as forms involving internal juncture.
(b) Benefactive continuative verbs marked for second person beneficiary have $\left[\mathrm{k}^{h}\right.$] in the middle of what had at first been assumed to be a single word. Interpreting this as the evidence of a preceding juncture phoneme results in the morphology of the benefactive verbs having much closer parallels with that of non-benefactive verbs. The part of
the verb preceding the juncture is the continuative stem, and the part following the juncture consists of object prefix (constituting a benefactive "stem") plus normal tense and subject-person suffixes. However neither of these two parts of the benefactive continuative verb form occur elsewhere in the syntax of Teléfól, so they are regarded as being separated by an internal juncture rather than being two grammatically free words. For example, /bakad/fkeèmin/ rather than /bákaà kèemin/ 'to tell you'.

8.3 PHONETIC LENGTH AS EVIDENCE

The following tentative generalizations may be suggested on the basis of sections 2.2 and 6.2. In words commencing with the pattern $\operatorname{CVCV}(C) .$. the first vowel is phonetically one half or less of the length of the secund vowel. On the other hand, in a pattern fragment ...CVCV(C)... that is medial or final in a word, the first vowel is never shorter than the second. Thus the ratio of the phonetic length of the two successive single vowels in the pattern fragment $\operatorname{CVCV}(C)$ is a clue as to whether this fragment is preceded by juncture or not. In Table VI the internal juncture of the forms/\#bàlá/, /\#sàlá/, /\#kàlá/, /\#nàmá/, /\#bàláb/, and /\#saláb/ cannot be detected following a verb stem ending in a DOWN toneme on the basis of tonal evidence, but the presence of the internal juncture can be demonstrated by the relative shortness of the first vowel in each of these forms. For example, phonetic length is the only clue to the juncture contrast in the following pair of utterances: /fừsàláb/ 'you did not cook it', /fừ̂ßsàláb/ 'you cooked it'.
8.4 NEUTRALIzATION OF JUNCTURE

From the above discussion it may be seen that the circumstances under which juncture may be identified are quite limited - at pause, between the second and third tonemes of the sequences / "'/ and /"'/, preceding the tonemes CVCV (C) or preceding /b/ or $/ \mathrm{k} /$. It seems reasonable to assume that juncture occurs in other contexts also, and the question arises of how to detect it there.

The following procedure has been adopted in the analysis of Teléfól. If an utterance contains a string of morphemes $A B$ which may be divided into two shorter strings A and B, and if A occurs in other utterance environments followed by a clear juncture, and if B occurs in other utterance environments preceded by a clear juncture, then the sequence $A B$ in the original utterance is regarded as containing a juncture between A and B, unless there is definite phonological
evidence of compounding. Thus a suspected juncture that has no phonological evidence to support it within a particular utterance may be identified by testing the morphemes on either side of it in other environments where pause or junctural allophones could appear.

This procedure is based on the assumption that the occurrence of juncture at its boundary is a stacle property of a morpheme and the potential for this occurrence of juncture is in fact an integral part of the morpheme just as much as the consonants, vowels and tones are. 10 This potential is normally actualized as a juncture if the contiguous morpheme also has a potential at the same boundary. The potential is not actualized if the contiguous morpheme does not also have a potential at the same boundary, i.e. is an ffix or clitic. 5

The postulating of juncture within an utterance which of itself contains no phonetic evidence of its presence is not consistent with the usually accepted principles of phonemic analysis. This involves the juncture phoneme in having a zero allophone in many contexts. Or put in another way, the contrast between the presence and absence of juncture is neutralized in contexts other than those listed in the first paragraph of 8.4. The writing of juncture in such contexts constitutes a morphemic transcription rather than a phonemic one.

All of the discussion in 8.4 concerns the identification of juncture by phonological evidence, and applies equally to both internal and external juncture. The distinction between internal and external juncture is not based on phonology but on grammatical considerations. The distinction between the two in the transcription is purely a concession to simplicity of grammatical and morphophonemic description.

8.5 CONTRACTIONS

Some further pitch contours (see Table V) appear on words containing contracted syllables, and some of these contours are similar to ones for sequences containing juncture. When two syllables contract into one, the two tonemes of the original syllables are usually both retained on the single syllable that results. On contracted syllables UP-DOWN is written (\wedge) and Down-UP is written (v). For example, /núkùm/, /nam/ 'my friend'; /ánibeén/, /abeén/ 'my mother'; utámàmin/, /tamamin/ 'see', 'know'. Another possibility is he contraction of a long initial syllable to a short one: /tée tám/, /tîtém/ 'up past'; /tee íít/, /tîiít/ 'up past'; /teé dàsk/, /tîdàák/ 'down past'; /té tòdb/, /tîtodob/'down
past'. Another type of contraction involves vowel elision:

Most motion verbs ending in /inemin/ have tone patterns that can only be explained by fusion of a form ending in /ii/ or /ee/ and having /"/ as its final two tonemes with the verb/unèmin/ to go'. For example: /am ée únèmin/ > /am\#íñemin/ to go home'; /daákee únèmin/ >/Càakínèmin/ 'to depart'; /tée unèmin/ >/tínèmin/ to go past'; /bílii unèmìn/ >/bílǐnèmin/ 'to run away'; /bokoòb\#ée únèmin/ > /bokodb\#ínèmin/ 'to tell him and go'.

In a few words some of these same patterns occur but the nature of the contraction is not clear: /anaak/ 'baby'; /ataál/ 'grandfather'; /ninteém/ 'not be'.

8. 6 CLITICS AND COMPOUNDS

Some morphemes have the grammatical versatility of words and yet are phonologically bound to the preceding morpheme. For instance, the predicate modifier /-tab/ 'perhaps' might be considered a clitic.
8. 7 Conflicting evidence

It seems that the tonal and consonantal evidence occasionally indicate different decisions with regard to juncture. For instance, the utterance terminal /kod/ usually has initial [g] characteristic of a suffix, but a low pitch characteristic of a free word. (This latter may possibly be attributable to the presence of a final intoneme.) On the other hand, /ki/ (phrase modifier) always has initial [k^{h}] characteristic of a free word, but tends to have a falling pitch characteristic of a suffix.
9. SANDHI

The changes of phonemes that take place when morphemes occur in sequence within the same phonological word constitute INTERNAL SANDHI and those changes that occur when morphemes occur in sequence separated by a juncture constitute external sandil.
9.1 CONSONANTAL SANDHI

Both internal and external sandhi include the following frequently occurring changes (most examples are of internal saridhi):
$/ \mathrm{mm} />/ \mathrm{m} / \quad / \mathrm{at}$ ám/ 'see it' + /-mànsá/ 'he yesterday' > /utamànsá/ 'yesterday he saw it'

$/ \mathrm{nn} />/ \mathrm{n} /$	/fukưn/ 'think' + /-nùba/ 'he does' > /fukúnùba/ 'he thinks'
$/ \mathrm{t} / \mathrm{/} />/ \mathrm{t} /$	/siit/ 'soon' + /-ta/ connective > /siitta/ 'soon'
$/ \mathrm{nt} />/ \mathrm{nk} /$	$\begin{aligned} & \text { /yág/ 'go along' + /-tà/ connective > /yánka/ } \\ & \text { 'go along' } \end{aligned}$
/kt/ > /kk/	/yák/ 'go across' + /-tà/ connective >/yákka/ 'go across'
/td/ $>/ \mathrm{d} /$	/àt/ 'tree' + /dùm/ 'fruit' > /aduùm/ 'fruit
$\mid t s />/ s /$	/àt/ 'tree' + /sàn/ 'seed' > /assàn/ 'seed'
C/w/ $>\mathrm{C}$	/imuulk/ 'heavy' + /wèén/ 'word' > /ìmuúk éèn/ 'deep voice'
$C / y />C$	/dééb/ 'get' + /yán/ 'along' >/dééb án/ 'put it along'

Other changes seem to be limited to internal sandhi, and are tendencies rather than fixed "ruies". The author's two informants differed in the frequency of usage of most of these types of sandhi.
/bf/ > /f/; /lf/ > /f/; /lb/ > /bb/; final /t/> intervocalic $/ \mathrm{s} / ; / \mathrm{mb} />/ \mathrm{b} /$ in verbs only.

9.2 VOCALIC SANDHI

(a) Vowel harmony occurs as one type of internal sandhi, but is limited to the instances listed in 6.4
(b) When a sequence of two morphemes would be expected to result in a sequence of two vowels, quite often there is an accretion of $/ \mathrm{y} /$ at the transition point. This phenomenon occurs both internally and externally, but seems to be the property of certain specific morphemes rather than a general "rule".

$$
\begin{aligned}
& \text { /-àl/ ~/-yàl/ plural suffix: } \\
& \text { /sàmá/ 'in-law', /sàmáyál/ 'in-laws' } \\
& \text { /\#èèmin/ ~/\#yèèìn/ (after /u/) benefactive: } \\
& \text { /fưu/ 'cook', /fưułfyèmìn/ 'cook for him' } \\
& \text { /a/ ~/yà/ imperative utterance terminal: } \\
& \text { /bókod/ 'talk', /bokod yà/ 'Say it!' }
\end{aligned}
$$

(ákà/ ~ /yákà/ (some speakers only) interrogative utterance terminal:
/fưúláb ákà/ 'Did you cook it?' /fưulíá yákà/ 'Did he cook it?'
/ Oó/ ~/ydó/ quotative marker:
/fùúlíb dó akélá/ 'he said they cooked it',
/fưưlú yòo akélá/ 'he said she cooked it'
/am/ ~/yàm/ 'house', 'country':
/uldtù/ 'church', /úlotù yàm/ 'church building'
(c) On the other hand, when a sequence of two morphemes would be expected to result in a sequence of two vowels, quite often one of the vowels is elided. This phenomenon occurs both internally and externally. No phonological basis has yet been discovered for predicting which of the wo powe wit be elided. This appears to be a property of the individual morphemes:
/uyoo/ 'her', 'it' tends to drop its initial vowel when the preceding word (usually a verb) has a final vowel: /talá/ 'he came', /télá yód/ 'his coming'. The other pronouns /íyod/, /ưtá/, /ítá/, etc. also sometimes drop their initial vowel.
/nímí/ 'my' and the other pronouns of the -mí series tend to drop their final vowel when the following wurd (usually the possessed noun) has an initial vowel: /abiib/ 'village', /ním ábiib/ 'my village'.
The suffix/-ileé/ 'and' has the allomorph/-lee/ following vowels: /fừlibileé/ 'they cooked it and', /fưurlüleé/'she cooked it and'.
The exclamation/wàakuü/ 'No!' and the interrogative utterance terminal /aka/ change their final vowels to single $/ 0 /$ (with the same toneme) when followed by the quotative marker / $\delta \delta /$ as a clitic: /wàkkoó akélál 'he didn't want to' (he said, "No!"), /télá ákodod akélá/ the asked whether she came' ("Did she come?" he asked). Furthermore, the exclamation/ù/ is completely elided before /ò/: / ১ó akélá/ he agreed' (he said, "Yes").

Many other uncatalogued occurrences of elision have been observed.

It should be mentioned that, although vowel elision is more frequent than the accretion of $/ \mathrm{y} /$, the occurrence of
vowel sequences without either type of sandhi is far more frequent than either of these.
(d) Another form of vocalic sandhi is the allomorphic alternation of long and short vowels that occurs as a direct consequence of the neutralization of vowel length in medial syllables as described in 2.3. When a suffix is added to a stem whose isolation form has a long vowei in its final syllable, this syllable then becomes medial, and, in terms of the analysis adopted in 2.3 , the vowel is a single one in this medial position. E.g. /átaàn/, /ataním/ 'sun'; /bokod/ 'say', /bokòla/ 'he said'.

9. 3 internal tonal sandhi

(a) Several noun suffixes show tonal dissimilation, the first toneme of the suffix being opposite to the last toneme of the stem. This is true of the derivational suffix /-eèn/ ~/-een/, and of the personal name suffixes/-èním/~ /-ením/, /-ènaal/ ~ /-énaal/, /-ènook/ ~/-enoók/, /-iníb/~ /-íníb/, /-inaal/ ~/-ínadl/, and /-inook/ ~/-ínoók/. For example, /tollodb/, /tólobbeén/ 'possum sp.'; /imoo/, /umóeen/ 'insect sp.'.
(b) Two derivational noun suffixes show a mixture of tonal assimilation and dissimilation, /-ím/ ~/-im/ and/-ook/ ~ $/$-ook/. The distributional trend of $/-\mathrm{im} / \sim /-i m /$ is as follows: if the last two tonemes of the noun stem are both UP then /-im/ occurs; in all other situations/-im/ occurs. In the case of $/$-odk/ ~/-ook/, if the second last toneme of the noun stem is Down there is assimilation of the toneme of the suffix to be the same as the final toneme of the stem. If the second last toneme of the noun stem is UP or if the stem has only one toneme, then there is dissimilation of the toneme of the suffix to be the opposite of the final toneme of the stem.
(c) Other noun suffixes are relatively tonally invariant: derivational suffix /-aàl/, plural suffix /-al//, personal name suffixes /-eén/,/-sìmeén/, /-ook/, /-nodk/, /-sìmnodk/, and /-seéb/. "Relatively" allows for a small number of non systematic tonal variants.
(d) One verbal suffix exhibits tonal dissimilation as described in (a) above: /-inteém/ ~/-ínteém/ negative reply. Three other endings appear to show the same kind of dissimilation, but actually involve regressive assimilation, and are described under (g) below.
(e) Several open verbal endings in Table VI exhibit tonal assimilation, the toneme of their first syllable being the
same as the last toneme of the stem: /-nàmà/ ~/-námà/ 'he can', /-sallab/ ~/-sálabb/ 'you did', /-bàlàb/ ~/-bálab/'you are doing', and/-nàla/ ~/-nála/ 'he ..' (homopersonal). ${ }^{4}$ In addition to these, the continuative benefactive endings (which are separate phonological words as is shown in 8.2(b)) all show a similar type of assimilation. For example, /fùu\#yèemin/ 'to cook for him', /kü\#yéemin/ 'to get it for him'. Verbal connective suffix /-tá/ ~/-tá/ also shows assimilation.
(f) The majority of verbal suffixes are tonally invariant with respect to any influence the tonemes of the preceding stem or suffix might have on them. Among these are all of the monosyllabic subject-person suffixes, the negative suffix /-al/, the customary suffix /-in/, the open yesterday past suffix /-màns/, the future suffix //-àntèm/ ~/-antém/ ~ /-ontem/, the unfulfilled obligation suffix /-anakin/ ~ /-ónákin/, one variant of the abilitative suffix /-oom/, and the connective suffix/-ileé/ ~/-leé/. All of the endings set off by juncture listed in Table VI are also tonally invariant.
(g) One trend that is apparent with several suffixes is that a monosyllabic suffix carrying an UP toneme, when added to a stem whose two final tonemes are both Down, gives rise to regressive assimilation in that the final toneme of the stem changes to an UP toneme. For instance: /fufadl/, /fufálím/ 'bird sp.'. This is a regular characteristic of subject-person suffixes when they are carrying an UP toneme in a closed verb form, and they follow the stem or any suffix other than /-al/ negative. For example: /bod/ 'slash', /bòólá/ 'he slashed it'; */bob̀làntèm/ 'will slash', /boblàntémá/ 'he will slash' (compare /boblàntèmàlá/ 'he will not slash').

In closed verbs the tense suffixes /-màns/ ~/-máns/ 'yesterday', /-nùb/ ~/-núb/ 'always', and /-bill/ ~/-bíl/ 'often' appear to exhibit tonal dissimilation with the final syllable of the stem to which they are attached. E.g. /bod/ 'slash', /bodmánsá/ 'he slashed yesterday'; /ku/ 'get it', /kúmansá/ 'he got it yesterday'. However, a consideration of the forms containing the sandhi-free negative suffix /-al/ (e.g. /bobmànsàlá/ he did not slash yesterday' /kúmansaláa/ 'he did not get it yesterday') indicates that these three tense suffixes may be regarded as having a basic allomorph with DOWN toneme and an allomorph with UP toneme by regressive assimilation with the UP toneme of the following subject-person suffix. As indicated in the preceding paragraph this regressive assimilation only takes place when
the two syllables preceding the subject-person suffix (that is, the last syllable of the stem and the tense suffix) both have basic Down tonemes. Thus:
*/kúmàns/ + /-á/ > /kúmànsa/ 'he got it yesterday'
*/bodmàns/ + / á/ > /bdòmánsá/ 'he slashed yesterday'
(h) A few stems ending with two UP tonemes change their final toneme to DOWN when a suffix with UP is added to them. For example, /afálík/, /àfálikeén/ 'big'; /kútáb/ 'ashes', kútàboók/ 'talcum powder'

9.4 EXTERNAL TONAL SANDH

In continuous speech the tonemes that are carried by a word in isolation are often changed under the influence of the preceding word. The modified toneme sequence carried by a word in continuous speech (that is, its sandhi form) is quite independent of its tonal form when uttered in isolation, and is determined solely by the last two tonemes of the preceding word
(a) Words of one toneme (short monosyllables) have sandhi forms that are phonologically bound to the preceding word as compounds. These words have two sandhi forms in addition to their isolation form. After a word of a single UP toneme or a word ending in DOWN-UP the sandhi form is UP; after all other types of words the sandhi form is Down. For instance, the fruits (/dùm/) of various types of trees illustrate this rule:
/yál/, /yáldứm/; /àmiít/, /àmídúm/; /fàl/, /fàldùm/; /yàa/, /yààuùm/; /ákúm/, /ákúmdùm/; /bíyaàl/, /bíyàlaùm/.

Other monosyllables showing this sandhi are /sàn/ 'seed', /at/ 'tree' and /am/ 'region'
(b) Words of two or more tonemes (monosyllables with long nuclei and polysyllabics) have sandhi forms that are separate phonological words. This conclusion is based on the consonantal and length evidence; the tonal evidence is inconclusive. These words also have two sandhi forms which are assimilative in nature, in addition to their isolation form. When the final toneme of the preceding word is DOWN the sandhi form consists of Down on all syllables; when the final toneme of the preceding word is UP the sandhi form consists of the first toneme UP and all subsequent tonemes Down. This may be illustrated by the barks (/kadl/) of various trees:
/yál/, /yál káal/; /àmiít/, /àmiít káal/; /fàl/, /fàl kàal/; /yàà/, /yàa kàal/; /akum/, /akứm káal/; /bíyaal/, /bíyaàl kàal/.
It may be further illustrated by various nouns followed by the adjective /katíb/ 'small' (isolation form):
/mừn/ 'old garden', /mưun kàtib/ 'small old garden'; $/ k^{W}$ éè η / grasshopper', /kéén kàtib/ 'small grasshopper'; /tànúm/ 'man' /tànưm kátib/ 'small man'; /ímán/ 'taro', /ímán kátib/ 'small taro'.

It is important to note that the presence or absence of xternal tonal sandhi is sometimes contrastive and contrastive transcription is essential. In the following examples the non-sandhi form is given first:
/nímí sàn/ 'my story-telling' /nímísàn/ '(tell) about me' (/nímí/ 'my')
/nímí àkeèt/ 'my thoughts' /kóól teém/ 'hole for a ground-oven'
/at diím/ 'up a tree' (/àt/ 'tree')

$$
\begin{array}{ll}
\text { /nímí akeèt/ '(think) about me' } \\
\text { /kóól téèm/ 'in a ground-oven' } \\
& \text { (/kóol/ 'ground-oven') } \\
\text { /at dìim/ 'on a tree (log)' }
\end{array}
$$

Several morphemes (including quotative markers / $\langle\delta /$ and /kalaá/ and the connective/kaleé/ 'so', 'and') seem to have both non-sandhi and sandhi forms which involve no change of mang but which are related to speed of utterance or to the occurrence of pause.
(c) Two short monosyllabic function morphemes, /kal/ ~ /kal/ 'at' and /kib/ ~/kub/ 'only', are and remain free phonological words and assimilate their toneme to that of the last syllable of the preceding word.
9.5 SCOPE OF OCCURRENCE OF EXTERNAL SANDHI

Our knowledge of the Teléfól language is not yet sufficient for us to be able to predict the occurrence of external sandhi with any degree of confidence. All that can be done is to indicate a few trends and suggest some lines of further enquiry.
(a) Within a given class, do certain words undergo sandhi changes while otners have no sandhi forms? Is such a distinction based on phonological factors or upon morphological sub-classes? So far as tone is concerned, it is pertinent to note that of the one-toneme words investigated,
all those with DOWN in isolation have sandhi forms, and al. 1 those with UP in isolation have no sandhi forms
(b) Most of the words involved in sandhi changes have an isolation form as well as one or more sandhi forms, and this isolation form quite often occurs in connected speech. What are the syntactic and/or phonological conditions under which sandhi regularly occurs? The contrastive examples listed in 9.4(b) underline the importance of answering this question. It does appear that sandhi mostly occurs within syntactic phrases rather than between such phrases, for instance. Is sandhi ever optional, or ever related to speed of utterance?

10. alternative tonal analysis

In sections 7 and 8 no attempt was made to state the allophonic composition of the two tonemes, UP and DOWN, nor that of final intoneme, since any such statements would be too lengthy and involved to give a simple picture of these tonemes. Instead, the pitch realizations of toneme sequences up to four were presented in Tables I-V. By following these tables it is possible to construct by analogy the pitch contours to be expected for words of five or more tonemes.
10.1 NATURE OF UP AND DOWN ANALYSIS

A careful examination of Tables I-V reveals several of the features of the two tonemes postulated for Teléfól:
(a) In all but utterance-final syllables, the essential nature of the UP and DOWN tonemes is neither pitch registers nor pitch contours (the two polar types postulated by Pike), but is rather a pitch step up or down to the next syllable. 11 In an utterance-final syllable up is realized as a level or rising pitch and Down as a falling pitch. The fact that the phonetic evidence for a given toneme is to be found in the phonetic nature of the following toneme is not as strange as it might seem at first. It is commonly acknow ledged in acoustic phonetics that voiceless stops, for instance, are recognized by the transition phenomena in contiguous vowels 12
(b) The first, sometimes the second, and the last tonemes of a word are considerably affected in their phonetic details by the tonal. nature of the preceding and following words, and especially by a preceding or following final intoneme. One consequence of this is that the UP and DOWN tonemes have almost the same allophones, but with different distributions. These two tonemes do not actually overlap
(in the classical sense) because in each context they have allophones which are contrastive. Every pitch contour can be uniquely equated to a sequence of these tonemes.
(c) Elaborating further on (b), the phonetic pitch of the first (and sometimes the second) toneme of a word is affected by the final toneme of the preceding word. This is not sandhi but allophonic conditioning by the preceding toneme. This conditioning of allotones across an external juncture is similar to but less extensive than the conditioning that pertains between tonemes within a word. Whereas this feature is true of the contours presented in Tables I and II, those presented in Table V show no such conditioning across an internal juncture. This apparent inconsistency needs more investigation. For our present purposes it is assumed that the conditioning seen in Tables I and II is the norm and that the lack of conditioning seen in Table V is a rarer variant phenomenon (in either the informant or the investigator) that appeared under the circumstances of focussing attention on internal junctures.

10.2 alternative pitch register analysis

It is possible to analyse the pitch data included in Tables I-IV in terms of two register tonemes, HIGH $/ \%$ and Low $\%$ Under this analysis each word, in its basic form, has the same number of tonemes as it would under the UP and Down analysis, but the first vowel is toneless, and after the last syllable there is an extra floating toneme. For a given word, each UP is changed to a HIGH and each Down is changed to a LOW, and gach now toneme is moved one place to the right. Thus CVCVCVC under the pitch step analysis be:comes CVCV́CVC' under the pitch rogister analysis. The floating toneme at the end of the word attaches itself to the toneless first vowel of the next word. This corresponds to the across-juncture conditioning described in $\mathbf{1 0 . 1 (c)}$. It is the chief characteristic of the final intoneme that it causes the floating toneme to attach itself to the final syllable of the word to which it belongs morphologically, rather than to the first vowel of the following word, thus accounting for the pitch glides so common on utterance-final syllables. When preceded by a final intoneme, the toneless first vowel of a word has no available floating toneme to provide its pitch. In this situation, the pitch of the first vowel is determined by the first toneme immediately following the toneless vowel. It is mid pitch when followed by a LOW toneme and upper mid pitch when followed by a HIGH toneme. The toneless nature of the first vowel may be
historically related to the extreme shortness and quality neutralization observed in the first vowel. (See 2.2 and 6.2.)

One way to test the descriptive efficiency of this pitch register analysis is to re-formulate the external sandhi rules of 9.4 in terms of HIGH and LOW. The result is virtually identical to that in 9.4 apart from the substitution of HIGH for UP and LOW for DOWN. Thus it seems that in their effect on the description of sandhi the pitch step and pitch register analyses are fully equivalent. Also, apart from being located one position to the right, the distribution of HIGH and LOW is similar to that of UP and DOWN. In fact, there seems to be no difference between the two anayses on the grounds of simplicity. On the subjective rounds that the author considers step tonemes carried by each syllable of a morpheme or word more elegant register tonemes which leave the basic form of a word with one toneless syllable and one floating toneme, the former analysis has been preferred in the present paper. Of course, both analyses are rather unusual, because the pitch phenomena they describe are somewhat atypical.

11. orthography

It is the author's belief that the matter of orthography is a legitimate part of linguistics, despite the educational, social, and political factors involved in it. Furthermore, though phonological analyses that bear little similarity to orthographies (such as the "prosodic" and "generative" types) are quite legitimate avenues of investigation, no linguist ought to consider his study of the phonology of an undocumented language complete until he has dealt with the matter of a practicable orthography for lay use.
11.1 CURRENT ORThography

As mentioned in 4.2 Rev. G.J. McArthur of the Australian Baptist Missionary Socicty made a tentative phonemic ana lysis of Teléfól and established an orthography wic anabeen used by the Mission to this day orthography which has this orthography consists of about 200 pages ($6 \frac{1}{2}$ in. by 8 in.), duplicated in about 100 copies, consisting mainly of Bible stories and doctrinal material.

The chief features of this orthography are:
(a) It does not indicate vowel length or tone. (In a private communication Rev. McArthur mentions that he recognized the existence of tone and/or length contrasts in
the language but did not complete their analysis before leaving the Telefomin area.)
(b) Some of the specific instances of juncture discussed in section 8 are transcribed as separate words, but the majority are written as suffixes. A few are transcribed both ways.
(c) The transcription of voiceless, centralized, or missing rowels of initial syllables is the same in almost every instance to that employed in the present phonemic analysis.
(d) The digraphs $k w$ and $n g$ are used for $/ \mathrm{k}^{\omega /} /$ and $/ \mathrm{g} /$.
(e) As described in 4.2, g is written for intervocalic $/ \mathrm{k} / \mathrm{and} / \mathrm{kd} /$ and for $/ \mathrm{d} /$ following $/ \mathrm{g} /$, and k is written for /kk/.
(f) As described in 4.3, intervocalic w is written following / 0 / and $/ u /$, where the present analysis posits $/ \mathrm{b} /$.

11.2 RECOMMENDATIONS

It is recommended that the phoneme symbols used throughout this paper be used in the orthography for Teléfól with the following modifications:
(a) Down toneme be left unmarked except in contracted syllables, where (${ }^{\wedge}$) and (${ }^{\wedge}$) should tentatively be retained.
(b) Digraphs kw and ng should be used for $/ \mathrm{k}^{\mathrm{W}} /$ and $/ \mathrm{g} /$.
(c) Apostrophe should be tentatively used for internal juncture /\#/.
(d) In final syllables /e/ and /o/ do not occur, but only /ee/ and / $00 /$. As there is no length contrast involved, and as these long vowels carry only one toneme ir the final syllable, final-syllable/ee/ and /oo/ should be written e and 0 in the orthography. A summary of the occurrence of vowels in orthographic terms may be of value:

monosyllables	a	\mathbf{i}	\mathbf{u}	-	-	aa	ii	uu	ee	oo
initial syllables	a	\mathbf{i}	\mathbf{u}	\mathbf{e}	\mathbf{o}	aa	ii	uu	ee	oo
medial syllables	a	\mathbf{i}	\mathbf{u}	e	0	-	-	-	-	-
final syllables	a	\mathbf{i}	\mathbf{u}	e	o	aa	ii	uu	-	-

(e) External consonantal and vocalic sandhi should not be written since (i) it tends not to occur in speech as slow as that used by Teléfólmiín learning to read, and (ii) there seem to be enough regularities in its occurrence to expect that further study will reveal a good measure of predictability.
(f) External tonal sandhi, being contrastive, should be written. However, rather than using the phonemic transcription of 9.4 (compounding for monosyllables and tone change for longer words), it is recommended that words be written in their isolation tonal form and that a hyphen be written between words wherever unpredictable external tonal sandhi operates. Certain function words (e.g. /nd̀/ ~/nód/) seem only to have sandhi forms and these probably need no hyphen.

11.3 EVIDENCE FROM LOAN WORDS

One of the goals in setting up an orthography is that, in its choice of phoneme symbols, the orthography should conform as much as possible to the usage of the national or trade language. One way of checking on this is to examine loan words to see the way in which vernacular speakers equate the phonologies of the national language and the vernacular. The only instance in which such a check seems necessary for Teléfól is in the matter of tone as compared with English unwritten accent.

English and Neo-Melanesian monosyllables of the pattern CVC are usually accepted into Teléfól in the otherwise rare form CV́V̀. For example, English tin, Neo-Melanesian tin, Teléfól /tíin/ tíin. This tonal sequence corresponds to a pitch pattern that is falling, and is very similar to an Australian English citation intonation.

Of longer English words with accent on the first syllable that have entered Teléfól (usually via Neo-Melanesian), about two-thirds have one or two UP tonemes on the first syllable, and DOWN tonemes on succeeding syllables. For instance, Eng. master, Tel. /máàstà/ máasta; Eng. pawpaw. Tel. /fóofod/ fóófo; Eng. cabbage, Tel. /káabiils/ kaábiis Despite the fact that the actual tonal equivalents assigned to English accent in loan words are rather varied, by choos ing to mark UP and not mark DOWN in the orthography we have the diacritic mark on the same syllable as the English accent in the majority of these words.

NOTES

1. The phonemes of Teléfól are: $/ \mathrm{b} /, / \mathrm{d} /, / \mathrm{f} / \mathrm{l} / \mathrm{k} / \mathrm{l} / \mathrm{k} / \mathrm{k} /$, /i/l, /m/, /n/, /n/, / $\mathrm{s} /, / \mathrm{t} /, / \mathrm{w} /, / \mathrm{y} /, / \mathrm{a} /, / \mathrm{e} /, / \mathrm{i} /, / \mathrm{l} /$, $/ u /$, UP toneme $/ \%$, Down toneme $/ \%$, final intoneme $/ . /$, and juncture.
2. For another language with two wide-range tonemes see: Eva Sivertsen, Pitch Problems in Kiowa, International Journal of American Linguistics, 22.117-130 (1956).
3. Two previous papers have given the language name as Teleéfoól. This reflects an earlier stage of the phonemic analysis which recognized more long vowels than does the present analysis. The two papers are: Alan Healey, Linguistic Aspects of Telefomin Kinship Terminology, Anthropological Linguistics, Vol. 4, No. 7, pp. 14-28 (Oct. 1962); Phyllis Healey, Teleefool Quotative Clauses, in: Papers in New Guinea Linguistics No. 1, Linguistic Circle of Canberra Publications, Series A, Occasional Papers No. 3, Canberra, 1964.
4. A brief sketch of verb morphology is appropriate here. (a) Each verb has at least two stems, one marked for punctiliar aspect and another for continuative aspect. These stems may differ in various ways, but usually it is possible to identify within them a verb root and an aspect suffix. Some verb stems also contain an obligatory object prefix. (b) Dependent versus independent and open versus closed are two separate but similar dichotomies tentatively applied to verb forms. These dichotomies correlate with syntactic features of multi-clause sentences and are not unlike the concept of subordinate clause versus main clause. All dependent verbs are open; all independent verbs have closed forms and some independent verbs also have open forms which differ from the corresponding closed forms by the tonemes on the last two syllables. (c) A dependent verb consists of a verb stem plus various suffixes of either of two types homopersonal and heteropersonal - which predict that the subject of the next clause is either the same as or different from that of this verb. (d) Some independent verbs consist of a verb stem plus a single suffix, such as those denoting customary action, negative reply and unfulfilled obligation. However most independent verbs consist of a verb stem plus three orders of suffix, the first order indicating "tense", the optional second order indicating negative, and the third order indicating subject-person.
5. Usually, in citing meaningful forms, juncture phonemes which commence or terminate the form are not marked, and juncture phonemes within the citation are represented by a space (see examples in 9.4). However, any juncture phoneme which does not correspond also to the boundary of a "grammatical word" is represented by \#. Suffixes are cited with an initial hyphen to indicate the lack of juncture phoneme at that point.
6. The phonetic nature of final intonerue /./ may be defined in terns of its effect on the pitch of the final syllable of an utterance as shown in Tables I and II. No other intoneme has yet been identified with certainty.
7. Monosyllables share the characteristics of both initial and final syllables of longer words. Their initial and final consonants have the same possibilities (see 3.1) and similar frequencies (see 3.3) as for longer words. They have the same vowel possibilities (see 5.1) and similar vowel and gemination frequencies (see 5.3 and 1.3) as for final syllables. They have the same tonal possibilities (see 7.5) as initial syllables.
8. Morris Swadesh, The Phonemic Interpretation of Long Consonants, Language 13.1-10 (1937); Kenneth L. Pike, Phonemics, Ann Arbor, University of Michigan Press, 1947 , p. 138; Charles F. Hockett, Short and Long Sy?lable Nuclei, International Journal of American Linguistics 19.160-171 (1953).
9. The term juncture as used here refers to what is often called "open juncture", and lack of juncture corresponds to what is often called "close juncture".
10. This juncture stability is perhaps limited to morphemes of the major classes. For function words and affixes it may be better to say that the occurrence of juncture at their boundaries is a characteristic of the individual grammatically determined allomorph (e.g. Table VI).
11. Kenneth L. Pike, Tone Languages, Ann Arbor, University of Michigan Press, 1948, pp. 5-13.
12. For instance see: Charles F. Hockett, A Manual of Phonology, Indiana University Publications in Anthropology and Linguistics, Memoir ll of International Journal of American Linguistics, 1955, p. 207.

LINGUISTIC CIRCLE OF CANBERRA PUBLICATIONS:

SERIES A - OCCASIONAL PAPERS

NO. 1 S. A. Wurm, Some Remarks on the Role of Language in the Assimilation of Australian Aborigines; 1963; 12 pp .

Price 2/- (\$0.25)

NO. 2 Alan Healey, Handling Unsophisticated Linguistic Informants; 1964; $111+30 \mathrm{pp}$.

Price 5/6 (\$0.65)

NO. 3 Alan Pence, Ellis Deibler, Jr., Phyllis M. Healey, Bruce A. Hooley, Papers in New Guinea Linguistics No.1; 1964; iv + 42 pp.

Price 7/6 (\$0.85)

SEIES B - MONOGRAPHS

NO. 1 S.A. Wurm and J.B. Harris, POLICE MOTU, An introduction to the Trade Language of Papua (New Guinea) for Anthropologists and other Price 15/- (\$1.85) fieldworkers; 1963; iv + 81 pp .

No. 2 S. A. Wurm, Phonological Diversification in Australian New Guinea Highlands Languages; 1964; 111 + 87 pp.; 1 map.

The Publications are sent post free to permanent subscribers, or on orders to the value of $10 /-(\$ 2.00)$ or over.

BI.BLIOGRAPHY

See also pages 33-37 for the separate bibliography for Chapter I.
Anonymous, April 1964. Kiwi -... Craggy Gospel Outpost, Light and Eifes pp. 4-7.

Austen, Heo, 1920. Yocabularies (Fuiu), Papua: Annual Revort fon the Gear 1920-21, the Perlianent of the Commonwealth of Australia, r. 132.
…- 1983(a), Vocabularies, Papua: Annual Report for the Year 192122, The Parliament of the Commwealth of Australia. ppo $159 \ldots 163$.
-.- 1923 (o). The Tedi River District of Papua, Geographisal Ioumal: 52: 335-349.
--- 1925. The Trade Lancuage of the Tedi Ro, HoDo, Eapua: Annual Feprt for the ear $1922-23$, The Parlianent of the Commonvalth
--- 1925. Comparative Vocabularies of the IF W. District of Papua, Ponue: Annul Eeport for the Year 1924-25, The Parliament of the Comonveelth of Australia, p. 75 .

Ehmem, ielter, 2924. Das westiche Kaiser-Wilhelms-Iand in NeuGuines, Trgenzurgsheet I zur Zeitschrift der Gesellschaft fith Endunde zu Berlin.

Ferg, $0.0 .$, 1950. A Question of Frinciple in Inaonesian Comparative Gneuistics, in: Bingkisan Tudi, een Bundel Opstellen aan Dr. prilippus Samuel van Tonvel door Vrienden en Teerlingen Aangeboden O zijn Tachtigste Verjeardeg I Augustus 1950, Leiden, Sijthoff, 22。27-31.

Eergsland, inut, and Finns Vost, 1962. On the Validity of Gottochronolosy, Current Anthropology, 3: 115-153.
walars, downo, 1950, The inguistic Position of South-Western New Gunce, Weiden, Bojo Brill.
right, M11ion, 1956. Clottochronologic Counts of hokaltecan Fterial, Fruage, 32: 42.8.

Fromer, A. from, 1961. The Phonology of Tower Grand Valley Dani: A tomparative Structural Stuay of Skewed Phonemic Patterns, Vorhondelingen var het Konink?jk Instituut voor Taal-, Land- en

Brongerma, F.oD. and Gof. Venema, 1962. Ho the Wountains of the Stans, Fondon, Hodder and Stoughton. (Translated from the Dutch: Het fitte Iart van Sieuw-Guinea, Amsterdam, Scholtens \& (iltray, 1960, by itan (. . Readett.)

Piart, \ddot{i}, and Aginsky, thel G_{0}, 1943. The Tmportance of Tanguage Tniversils, word, 4: 168-172.
ampbell, Stuart, 1938. The Country between the Feadwaters of the Tly and Bepik Rivors in New Guinea, Geographical Journol, 92: 252-255.

Gapolj, A., 1943. The Linguistic Fosition of Eouth-Eastern Papua, Sthoy, Astrolssian Redical Publishiner Co. Ltd.
--- 1949. Jistribution of Janguages in the Centrol Highlends, Hew Giner, (ometo), ccemia, XIX: 349-377.
-- 1954. i Tinguistic Survey of the South-Hesterm Pacific, South Eecific Commosion, Techical Paper He. 70, Foumea, Fev Caledonia.
---- 1962, A Lincuistic Survey of the South-ilesterm Pacific (Iev and Qevisea Ration), South Pacific Comission, Technical Paper To. Isnguage, 35: 477-495.

Compion, Iver Fo, 1932. Across New Guinea from the Fly to the Sepik, Londor, Constable $\dot{\&}$ Co. Itá.

Draboé, F., 1950. Twee Dialecten vari de Awju-Taal, Fijaragen tot de Grl-u, Send- gh Volkensunde, 106: 93-147.
-.- 1953. Sprackunst ven de Kamoro-teal, Koninklijk Instituut voor Pal.-, Lhat-, on Volsenkinde, 's-mravenhage, Mijhoff.
--- 1554. Tolen on Dielecten ven Zuid-West feuw-Guinea, MacroLibiotrect intiropos, II, Posieux/Pribourg, Zwitserland.
---- 1955. Tmadionst ven het Marind, Studia Instituti Anthropos, Il.
--- 1957. :psamkust ven het Aghu-jialect van de Awju-Taal, Konirkijjk Thrstituut voor Tanl..., Tand.- on Volkenkunde, 's-rraventage, jijhofe.
-- Igeg. Fatio an Mamon: Twee hwju-Djalocten, Koninklijk Instituat voor tral-, tanc- on Volkenkunde, 's-Grovenhege, Mijhoft.

Wyers isidnar, 1953 (0). Foxicostetistically beternined Borrowing and hoon, bomme, 39: 60...66.
 Austronesian Mmequges, hew Haven, Yale University.

Pranilin, Garl and Joice, 1962. The Kewo Counting Bysteris, Joumal of the Dolgasion Socicty, 71 (2): 103-191.

Galis, Ko. $1955-6$. Talen en Dialecten van Hederlands Ifeum-fuinea, Figscinvt inieuw-cuinee", 16: 100-117, 134-145, 161-177.
-- Jyo. Telsystomon in Fedomands-Hiouw-Guinea, Heuw-Gunea Sucien, 4: 13I-150。

Geurtjens, F. 1932. Terinaineesch-Wederlendsch Woorderboek, Vehradelingen van het honinkijk Eetaviasch Genootschap van Luster En Hotorschappen, al 71, st. 5.

Gaschiniby, Gach O., 1956. The AEC's Of Lexicostatistics (Olottochrorology), Word, 12: 175-210.

Featy, Lan, 1962. Einguistic Abpects of Telefomin Kinship Tomanolocy, fathropological Ifingustics, $4(7): 14-28$.
--- 1964 (a) 。 Fonding msopisticated Jinguistic Informents, Sinuistic Qircle of Qmberra publications. Series A - Occasional Enpers 10.2 conberra.
-- I964 (b). Rolefol Phonology, Inguistic Oircle of Cmberra Fubications, Beries B - Monogrephs ho. 3, Canberra.

Healey, Prilis or 1964 (a). Golcéoól Ouotative Clauses, Papers in Now Ginco Tinguistics Fo. I, Inguistic Circle of Conberra Peblications, Series 1 - Cocesional Papers roo 3 , Gaberra. --.. 1964 (b). Wléfól Moun Fhrases, to be published in: Tinguistic Sircle of Smbarre Publications, Series B - Monogrophs
Fockett, Grave F., 1953. Short and Long Fyllable fuclei, Interstionsl doumal of hmericn Linguiatios, 19: 165-171.
--- 1955. A manul of Phonology, Indian Dmiversity publiactions in Anthropolosy and Linguistics, Remoir li of the Intarnational Tourmal of mevionn Iinguistics.
 Fent, Jomes 7.9 1954. Patrol to Star mountans, Findondueg Range, and Upore Bly Hiver freas, Daru Eatrol Report, \#o. $3-54 / 55$.
 Atents: paws 16-17 ... Linguistic areas; Appondix B - Comparative

irschonan, tro, 2933. then Zehlensysteme in "entralgetrirge von Rou-guince, Anthopos, 33: 278-9.

Wok, tio au, lyle Nenise Ethologische un inthropologischo Gecevens ontront een Twergstam in het Eergland van Zuid Hiouw Gwnee, Gidschrift van het koninklijk Modorlands Aardrijhskendis

Rooijmang \because og 1959. Population Research Project amone the biarindmin and Toi-w Poples in Wetherlands south liew fuinee, Sjasomict rioum-cuinear, 3: 9-34.
--. 1s52. Eaterial Aspects of the Star Fountains Giture, Yova hanes: Anthropology, Fos. $2 \cdot 3, \mathrm{pp}$. $15-4.4$.

Taycock W. O., 1962. Whe Tdu Lenguage Rarily (Sepik District, Hew Ganea): Disatrotion Presonteafor tho Degree of Doctor of

Younta, Yestmír, 1957. Classification des Imgues Papoues, Iingua posnoniensis, 6: 19-93.

Gorthy, Joko, 1963. Interin Report on Ster Pountain Patrol, Sorritory of Erpue and Eew Guinea Aministration Eress Statement,
 the Fly ad atockland Pivers, Popua, Inn, 18: 40-45.

Gvorman, fens, 1940. Die Sohur, Zeitschrift ftr Ethnologie, 7č: 169-196.
ida, mone 1951. Some Problems of Sementic Btructure and Grachation Quivalence, in: A Willion Cameron Townend en el Viésiarquinto anversario del Instituto Tingústico de Verano, exico, Woro, pro313-325.

-- 1948. fore Thergaces, Am Arbor, Thiversity of Michigan Press. emeders, Jojo, 296a. Shifting oultivation in the star fountains Arca, Love Guinca: Anthropology, 2-3: 45-73.
 of Irianesite, Journal of the Royal Anthrorological Insti.tute,

1: 69-102.
File for, 1954, Huli Jambuace: Tentative Statement of the Gramar, 'fari, Papua, Inevangelized Pields ifission, (duplicated).

Salener, fichard, 1960. Sprachenatlas des Indopazifischen Raumes, 2 iolso, "iesbaden, Otto Harrassowitz.
aminer, Tony, Is63. Headhunters of Pepua. (Translated by argaret ohenfield from the french edition of 1961.) Irondon, nul imaly.

Sciooml, Towe ca. 1957. Whtur en Kulturveranderingen in het wajoe-cebied, foomoeve, den Elaag.

Giverisen, Dra, 1956. Pitch Froblens in Miowa, Intermational Toural of 4ericon Lincuictics, 22: 117-130.
neep, Jo, 1951-a. De manswedenlandse Brpeditie in Tederlands-
 $9(4) 6-9,3(5): 6-9,9(5): 6-9,10$ (1): $2-7$. Liew Guinea,
 .-.- 1963. Wion one, tpesoript.

-... Lye onspecifres ma roblens of Ameminden Comparative Finatutics, Fond, $10: 305-332$.

149itiog (9): 21-33.

 imtrixopos, $43: 697-702$.

-- 1961. The Tinguistic Situation in the Highlands Districts of Thua and low Ginea, Australian ferritories, I (2): 14-23.
 Gomends mouges, finguistic Girele of Oanberra publications,

- 1964 (b). Auswnian Hew Guinea Highands Languages and the Tistrimbion of their Aypologion Features, Amerion Thuogagist, 66 , to be purished.
 inject in tow Guinea, beenia, XXXI (2):128-143.
Yowns Poserary, Igea. the phonemes of Konite, Kamono, Benaberia and
 Sumer Tnetitoto of Tincuistios new Cuiree Branch, Occania Leguistic ronograh 10. E, pp. 90-110.

\qquad

[^0]: Although the identification of verb stems in the Lowland-0k languages of Division A seems straightforward in that stem allomorphs

[^1]: AE Australian English, NM Neo-Melanesian, PM Police Motu

