

PROJECT MUSE ${ }^{\circ}$

Parallel Sound Correspondences in Uab Meto

Owen Edwards

Oceanic Linguistics, Volume 55, Number 1, June 2016, pp. 52-86 (Article)

Published by University of Hawai'i Press
DOI: 10.1353/ol.2016.0008
\Rightarrow For additional information about this article https://muse.jhu.edu/article/619285

Parallel Sound Correspondences in Uab Meto

Owen Edwards

AUSTRALIAN NATIONAL UNIVERSITY

Abstract

Two parallel sets of sound correspondences are attested in the historical phonology of the Uab Meto (also known as Dawan[ese], Timorese, Atoni) language/dialect cluster. A top-down approach to the data reveals one set of regular sound correspondences in reflexes of Proto-Malayo-Polynesian lexemes, while a bottom-up approach to the data reveals another set of regular correspondences in lexemes for which no Malayo-Polynesian origin has yet been found. I examine each set of sound correspondences in detail and propose a framework for addressing the apparently contradictory data.

1. INTRODUCTION. ${ }^{1}$ The application of the comparative method is not always straightforward. One frequent problem encountered in applying the comparative method is that of speech strata. When a language has borrowed heavily from a related language, it is often difficult to identify the regular sound correspondences and, as a result, which element(s) of the lexicon have been borrowed and which are native.

This problem was first noted for an Austronesian language by Dempwolff (1922), who identified two strata of vocabulary in Ngaju Dayak, each with different sound correspondences. Dyen (1956) showed that these two strata were not evenly distributed among different sections of the lexicon, as one stratum is mostly absent from basic vocabulary. On the basis of this distribution, he identified the stratum absent from basic vocabulary as being borrowings (mainly from Malay), while the stratum found throughout all the lexicon he identified as being inherited and reflecting the regular sound changes.

A similar, though more complex, problem was addressed by Blust (1992) for the Philippine language Tiruray. The amount of borrowing (up to 50 percent of the vocabulary) is much higher in Tiruray than in Ngaju Dayak and many borrowings are also found in basic vocabulary. Blust (1992) identified native words on the basis of unique sound changes (such as *k $>g / \mathrm{V} _\mathrm{V}$) that are not found in neighboring languages. Furthermore, the loans in Tiruray come from more than one source language. Other Austronesian lan-

[^0]guages in which the problem of speech strata has also been discussed include Rotuman (Biggs 1965) and Thao (Blust 2009:154-55).

In this paper, I investigate the historical phonology of Uab Meto, which presents a different permutation of the speech strata phenomenon: one clearly Malayo-Polynesian (MP) stratum and one stratum with no clear Malayo-Polynesian source.

First, I compare Proto-Malayo-Polynesian (PMP) with Uab Meto and identify the regular sound changes Uab Meto has undergone. Compared to aberrant Austronesian languages, such as the Santa Cruz languages of the Solomon Islands (Ross and Næss 2007), Uab Meto is relatively "well behaved." This comparison with MP also allows me to identify a handful of loans in Uab Meto from other MP sources.

Second, I apply the comparative method to the Uab Meto language/dialect cluster itself and reconstruct a pre-Uab Meto phoneme inventory. I show that there are significant discrepancies between the phonemes we need to posit for pre-Uab Meto and those we expect to find by straightforward inheritance from PMP.

These results force us to confront the methodological question of how to account for linguistic data that are not apparently inherited, and I discuss some possible ways of resolving this. It is likely that a large amount of the Uab Meto lexicon is from a nonAustronesian source and, thus, could provide indirect evidence for the pre-Austronesian linguistic culture in this region.
2. UAB METO LANGUAGE BACKGROUND. Uab Meto, also known as Meto, Dawan(ese), Timorese, or Atoni, is the name given to a cluster of closely related Austronesian languages and dialects spoken on the western part of the island of Timor, both in the East Timorese enclave of Oecusse, as well as in the Indonesian province of Nusa Tenggara Timur. ${ }^{2}$ The location of the Uab Meto cluster is shown in map 1 along with other languages of Timor. The identity and location of languages in Timor Leste in map 1 follows Williams-van Klinken and Williams (2015). Individuation of the cluster of speech varieties on Rote Island (southwest of the Timor mainland) follows the classification of Jonker (1908:ix).

Uab Meto speakers self-identify their language as (uab) meto?, (bahasa) Timor or (bahasa) Dawan. Speakers recognize many named varieties of Uab Meto and these varieties themselves have named dialects. A preliminary map of these varieties (doubtless subject to later revisions) is given as map 2. ${ }^{3}$

[^1]MAP 1. LANGUAGE GROUPS OF TIMOR

MAP 2. PRELIMINARY UAB METO VARIETIES (SELF-IDENTIFIED)

The nature and extent of variation among these Uab Meto varieties has not yet been systematically studied. Phonological, lexical, semantic, and grammatical diversity is not insignificant and speakers frequently report difficulty communicating with those from other varieties. As a result, Kupang Malay or Indonesian is often used between speakers of different Uab Meto varieties in order to achieve effective communication.

In this paper, I consistently cite data from three varieties of Uab Meto; Ro'is Amarasi, Kotos Amarasi, and Molo. Amarasi data are drawn from four months of fieldwork carried out in two periods in 2013 and 2014. The bulk of my data is from the Kotos dialect of Amarasi as spoken in the village (desa) Nekmese' by inhabitants of the historic hamlet
(kampung) Koro'oto. These Kotos Amarasi data consist of a dictionary of more than 1,600 headwords as well as over two and a half hours of recorded, translated, and glossed texts.

Ro'is data represent the speech of the inhabitants of the village (desa) Buraen of the hamlet (kampung) Suit. Most Ro'is data were collected during a three-day stay in Suit in 2013.

Molo data are drawn from an unpublished 673-page draft dictionary compiled by the Dutch missionary Pieter Middelkoop. This dictionary dates to sometime in the 1970s. Molo data are supplemented by a recorded wordlist collected during the 2012 "Preserving Knowledge through Recording and Writing Local Languages" workshop held in Kupang in 2012 (http://austronesian.linguistics.anu.edu.au/timor/workshop/).

I occasionally cite data from other Uab Meto varieties. Amfo'an data represent the Naitbelak dialect and were collected by the author during a three-day stay in the hamlet (kampung) Ta'en in the village (desa) Bioba Barutaen in 2013. Kusa-Manea data come from two texts collected by Charles Grimes in 2010. Baikeno data were mainly collected by Charles Grimes (between 2005 and 2015) and are supplemented by data collected during the 2012 Kupang workshop. Amanuban data are drawn both from notes in Middelkoop's dictionary and data collected during the 2012 Kupang workshop. All data from a Rote speech variety are from Jonker (1908), unless otherwise indicated.

All known Uab Meto varieties have the ten consonants $/ \mathrm{ptk} \mathrm{Pb}$ fs $\mathrm{m} \mathrm{m} /{ }^{4}$ and either of the liquids $/ \mathrm{r} /$ or $/ / / .5$ In addition to these eleven consonants, the voiced obstruents $/ \mathrm{d} / \mathrm{and} / \mathrm{g} /$ have a much more limited distribution, occurring mainly in certain morphophonemic environments (see 3.4.1). ${ }^{6}$ Known varieties of Uab Meto have the five vowels /ie a oul. ${ }^{7}$ Word stress falls on the penultimate vowel. Vowel-initial words begin with a predictable glottal stop; /asu/ 'dog' \rightarrow ['Pasu]. While all Uab Meto varieties appear to share the same phoneme inventory, the segments in each variety have different distributions and behaviors.

As this paper is an investigation of the internal and external relationships between the different varieties of Uab Meto, it focuses on what these varieties share. For this reason, most of the data I present do not include many differences. However, the level of diversity in the Uab Meto speech area should not be underestimated. To give a glimpse of the level of diversity that exists, eight functors ("grammatical morphemes") in five different varieties of Uab Meto are given in table 1.

Another example of diversity can be seen in the process of consonant insertion that operates at the boundary of vowel-initial enclitics in Uab Meto. Which consonant is inserted varies from one variety to another. Table 2 shows the differences observed in data from four different varieties of Uab Meto. There is even diversity among the Kotos dialect of Amarasi, with two different villages showing different behavior.

[^2]TABLE 1. DIFFERENT UAB METO FUNCTORS

ABLATIVE	Ro'is no?ko	Kotos na?ko, nopka	Molo na?ko	Baikeno noba, na?ko	Kusa-Manea na?koa
here	et ai	et ia	es ii	es ii	
ALLATIVE	en	on	neu	on	
DATIVE	nuu	neu	neu	neu	
RELATIVIZER	he?	re?	le?	le?	sa?
NEGATIVE	mae?	ka...fa	ka...fa	ka...fa	ka...fa
3SG	hin	in	in	in	in
IRREALIS	he	he	he	he	ha
1SG agreement	ku-	u-	u-	u-	
3PL.GEN suffix	-r	-k	-k	-k	

TABLE 2. UAB METO CONSONANT INSERTIONS

	$\{$ neno + es $\}$	\{ume +i$\}$
Kotos (Fo'asa' hamlet)		uimgi
Kotos (Koro'oto hamlet)	neengwes	uumdji
Amfo'an	nenoges	umeli
Baikeno	neembes	uumzi
	'day+one'	'house+this'

While individual isolated elements in different varieties of Uab Meto may look similar on the surface, how one strings things together in sentences can be quite different, and people from one region are often left guessing at what people from other regions mean.

Uab Meto also has a productive process of morphological final CV metathesis, with subtly different realization and functions in different varieties. Thus, the word for 'rock' is either fatu or faut. See Steinhauer (1996a) and (1996b) for a preliminary description of metathesis in Miamafo Uab Meto. Edwards (n.d.) describes the forms and functions of metathesis in Kotos Amarasi. In this paper, words are cited in the unmetathesized form.

Verbs usually occur with an obligatory person prefix and are cited with the third person prefix $n a$ - or n - according to their verb class (see appendix 2). Inalienably possessed nouns occur with an obligatory genitive suffix and are cited with a final hyphen.

3. TOP DOWN: PROTO-MALAYO-POLYNESIAN TO UAB METO. I

 begin my discussion of Uab Meto historical linguistics with the sound changes that have occurred from PMP. These sound changes are largely regular and Uab Meto is relatively well behaved in this respect. The principal sound changes between PMP and seven varieties of Uab Meto are given in table 3, where consonants are arranged by PMP manner of articulation. These sound changes are almost identical in each known variety, and as a result I consistently cite data from only three-Ro'is, Kotos, and Molo-as representative. Where data in these three varieties are identical, they are labeled Uab Meto (UM).The remainder of this section is divided into seven parts. I begin in 3.1 by discussing the reflexes of PMP plosives; this is followed in 3.2 with a discussion of the reflexes of the other reconstructed PMP consonants. In 3.3 I discuss the development of word-final consonants, 3.4 looks at the reflexes of PMP vowels and diphthongs, and 3.5 at consonant insertion. I conclude in 3.6 with the ways in which PMP words of more than two syllables

TABLE 3. PMP > UAB METO

have been reduced to disyllables in Uab Meto. A summary of these developments is given in 3.7. Reconstructions throughout this paper are taken from Blust and Trussel (ongoing), unless indicated otherwise. Reconstructions assigned to Proto-Central Malayo-Polynesian (PCMP) or Proto-Central-Eastern Malayo-Polynesian (PCEMP) are explicitly marked as belonging to these putative subgroups. I consistently transcribe the PMP vowel *e as *ә, due to the fact that the putative subgroups PCMP and PCEMP attest both *e and ${ }^{*}$ ว.
3.1 PLOSIVES. The regular reflexes of PMP plosives and nasal-plosive clusters in Uab Meto varieties are given in table 4. Word-final plosives are usually lost, though there are a small number of instances in which a word-final plosive appears to be retained as $/ \mathrm{Z} /$. The bottom row records the number of instances of each sound change currently attested in my data.

TABLE 4. REGULAR REFLEXES OF PMP PLOSIVES

* C	*p	*t	*k			*q	*b	*d	*g	*nt/*nd	*mp
env.	/_i,o else		/\#	i_V	else						
Ro'is	h Ø	t	h	k	\emptyset	\emptyset	f	n	h	r	p
Kotos	h Ø	t	h	k	\emptyset	\emptyset	f	n	h	k	p
Molo	h Ø	t	h	k	\emptyset	\emptyset	f	n	h	k	p
no.	48	33	7	3	5	20	27	13	1	4	1

An example of each of the sound changes that do not receive a more detailed discussion below is given in table 5 . Further examples can be found in appendix 1 , which lists all known PMP reconstructions with reflexes in Uab Meto.
3.1.1 *nt/*nd. The clusters *nt and *nd became r in Ro'is Amarasi and k in other varieties of Uab Meto. It is likely that this went through the pathway $*_{n t}>*_{\mathrm{nd}}>*{ }_{\mathrm{d}}>r \sim k$. See 4.2 for more details. Examples of $* \mathrm{nt} / *$ nd are given in table 6.

Some of the forms in table 6 require further explanation. First, the glottal stops on the word for 'lime' in Ro'is and Kotos are probably fossilized nominal markers. A nominalizing circumfix ?-..-? occurs in Amarasi both productively and as an unproductive fossil. A productive use can be seen in the form toko 'sit' \rightarrow Ptoko? 'seat, chair'. Second, PMP *bituqən 'star' is reflected with "unexpected" medial /nt/ in many MP languages. One example is Malay bintay. Many Uab Meto varieties agree with Kotos in displaying metathesis of the initial two consonants.
3.1.2 *k/*g. Word-final *k was usually lost. There is a single exception to this loss; *anak 'child' is reflected as a triplet: anah 'child', riPana?/li?ana? 'child', and ana? 'small' in all varieties of Uab Meto for which I have data (with the exception of Ro'is, which has ana? 'child/small' and riPana? 'child'). One possible explanation for the irregular retention of final $* \mathrm{k}$ in these forms could be that they are often used as vocatives.

Word-initial *k became h in most forms. Two examples are *kahiw > hau 'wood, tree' and *kutu > hutu 'louse'. Exceptions to this change are found in the accusative pronouns in which *k has been retained as k. PMP and Uab Meto pronouns are given in table 7. (The 1SG accusative form $k a u$ with initial k is likely due to paradigmatic pressure.)

TABLE 5. REFLEXES OF PMP PLOSIVES

*C	*p		*t	*k			*b	*d	*mp
env.	T_i,e	else.		/\#	i_V	else.			
PMP	*pitu	*pusəj	*talih	*kutu	*hikan	*sakay	*batu	*duha	*umpu
UM	hitu	usa-	tani	hutu	ika?	n-sae	fatu	nua	upu-
gloss	'seven'	'navel'	'rope'	'louse'	'fish'	'go up'	'stone'	'two'	'grandchild'

TABLE 6. *nt/*nd $>r, k$

	*punti	*muntay	*bituqən	*ma-dindiy $>$
*ma-dindin				

TABLE 7. PMP AND UAB METO FREE PRONOUNS

		1SG	2SG	3SG	1PL.EXCL	1PL.INCL	2PL	3PL
	PMP	*aku	*kahu	*ia	*kami	*kita	*kamiu	*sida
UM	NOM	au	ho	in †	hai	hit	hi	sin
UM	ACC	kau	ko	=e	kai	kit	ki	sin/=ein

\dagger The Ro'is 3sG pronoun is hin. The initial /h/could be due to paradigmatic pressure.

In the western Rote language Dela, some of the undergoer free pronouns have forms beginning with $/ \mathrm{yg} /$. Thus, we find Dela 2 SG actor $h o$ and 2 SG undergoer $\eta g o$, as well as 2PL actor hei and 2PL undergoer $\eta g i$ (Tamelan 2007:2). ${ }^{8}$ Dela $/ \mathrm{yg} /$ often corresponds to Uab Meto $/ \mathrm{k} /$. (See 6.2 for more details.) This provides evidence that the Uab Meto accusative pronouns could have arisen from earlier ** yk , perhaps through accretion of an earlier nasal. One possible source of this nasal is the PMP "genitive case marker" *ni-.

Intervocalically, PMP *k was lost if the first vowel was not *i. Examples include PMP *aku > Uab Meto $a u$ '1SG.NOM' and *sakay > n-sae 'ascend'. After *i, PMP *k was retained as k in three instances and as $?$ in one. These examples are given in table 8 .

There is only one Uab Meto word in my data that is a reflex of a PMP word containing *g. This is PMP *ma-gatol > Kotos mahata?, other Uab Meto mahata 'itchy'.
3.1.3 *q. The consonant *q was normally lost word-initially (ten instances), wordfinally (ten instances), and word-medially (ten instances). Examples are given in table 9.

There are three words in which *q appears to have been retained as ? word-finally: *daRaq > naa? 'blood', *ma-putiq > muti? 'white', and *anaduq > mnanu? 'long'. Word-final ${ }^{\mathrm{q}}>$? is discussed in more detail in 3.3.
3.1. $\mathbf{*} \mathbf{b}$. There are twenty-six instances of $* \mathrm{~b}>f$ in my data, and this is the regular outcome in all positions. Examples are given in table 10.

In addition to the regular change of $* \mathrm{~b}>f$, there are four possible instances in which a reconstructed $* \mathrm{~b}$ is apparently reflected as b. These four words are given in table 11.

The first of these is *belas 'machete', reconstructed by Blust and Trussel (ongoing) to PCMP, though their cognate set only includes languages from the Timor region. Unless

TABLE 8. ${ }^{*} \mathbf{k}>\mathbf{k} \sim \mathbf{~ ? ~ / ~ i ́ V ~}$				
PMP	*ikan	*ikuR	*tikəd	*siku
Ro'is	ika?	iku-	tika	si?u-
Kotos	ika?	iku-	tika	si?u-
Molo	ika?	iko-	tika	si?u-
gloss	'fish'	'tail'	'heel'	'elbow'

	TABLE 9.					
		* $\mathbf{~}>\varnothing$				
PMP	*quzan	*qatay	*taqun	*daqan	*Rumaq	*bahuq
Ro'is	uran	ate-	toon	mnaa?	umi	
Kotos	uran	ate-	toon	mnaa?	ume/umi	na-foo
Molo	ulan	ate-	toon	mnaa?	ume	na-foo
gloss	'rain'	'liver'	'year'	'old'	'house'	'smell (intr.)'

TABLE 10. *b $>f$

PMP	*batu	*babuy	*buaq	*bulan	*bəqbəq	*ma-buhək	*balik
UM	fatu	fafi	fua-	funan	fefa-	mafu	n-fani
gloss	'rock'	'pig'	'fruit'	'moon, month'	'mouth'	'drunk'	'go back'

[^3]TABLE 11. BORROWINGS ATTESTING *b >b

PMP	?*belas(PCMP)	?*balik	?*baba 'father'	?*baqi
Ro'is	fenes		baba-	be?i-
Kotos	benas	n-bani	baba-	be?i-
Molo	benas		baba-	be?i-
gloss	'machete'	'change, turn'	'parent's opposite-sex sibling'	'grandmother'

reflexes outside of this region are extant, it is unlikely that this reconstruction is valid at the putative PCMP node, though it might be possible to reconstruct it to a lower node. The correspondence whereby Ro'is has /f/ and the other Uab Meto varieties have /b/ is not attested elsewhere in the lexicon. This suggests that either Ro'is or the other varieties have borrowed this item.

Second, PMP *balik 'reverse, turn around' is attested regularly in all known UM varieties as n-fani 'go back, again'. However, in (at least) Kotos Amarasi, *balik has an additional plausible reflex in n-bani 'change, turn'.

Finally, we have the kin terms baba 'parent's opposite sex sibling', possibly from reconstructed *baba 'father', and beri- 'grandmother', possibly from *baqi. The etymologies linking PMP * baba to Uab Meto baba- and *baqi to beii are not strong. ${ }^{9}$ In addition to the irregular change of * $\mathrm{b}>b$, the etymology linking *baqi to $b e$ eri- would also require $* \mathrm{a}>\mathrm{e} / _\mathrm{i}$ and word-medial $* \mathrm{q}>$?

Given the problems associated with these two etymologies - and the fact they are in the same semantic sphere - it is likely that baba- and beri- have come from an intermediate source rather than being direct inheritances. Neighboring Tetun has both baban 'younger sister's husband; aunt' and bei 'grandmother', while the Rote languages have bei 'grandmother'.

Finally, there are two Uab Meto words in which * b is apparently reflected as p. These are puah 'betelnut' compared with PMP *buaq 'fruit' and pune? 'grain head' compared with PMP *buliR '(entire) stalk of bananas; ear of grain'. Two facts indicate that these words are loans. First, puah 'betelnut' stands alongside fua- 'fruit', a regular reflex of PMP *buaq. Second, the neighboring Rote languages also have "irregular" reflexes of these two words. Thus, we find Dela/Tii/Lole mbua 'betelnut' with unexpected initial $/ \mathrm{mb} /$ instead of expected $/ \mathrm{b} /{ }^{10}$ as well as Tii/Lole mbulek 'grain' and Dela mbule? 'grain head'.
3.2 OTHER PMP CONSONANTS. The regular reflexes of PMP consonants other than the plosives (discussed above) are given in table 12, while examples of each are given in table 13.
3.2.1 *y. There are four instances of PMP $*_{\mathrm{y}}>\mathrm{n}$ in Uab Meto, given in table 14. In addition to these four words, PMP * $\mathfrak{n a j a n}>$ Uab Meto kana- 'name, clan' shows an unexplained initial k.

[^4]TABLE 12. REGULAR REFLEXES OF PMP CONSONANTS

* C	*z	*j	*m			* ${ }^{\text {n }}$	* \dagger	*R	*1	*s		*h	*y	*C
env.				_V	1_\#					_V	1_\#			/_\#
Ro'is	r	n	m	n	n	n	n	$\emptyset \sim n$	n	s	s $\sim \square$	\emptyset	\emptyset	\emptyset
Kotos	r	n	m	n	n	n	n	$\emptyset \sim n$	n	S	$s \sim \emptyset$	\emptyset	\emptyset	\emptyset
Molo	1	n	m	n	n	n	n	$\emptyset \sim n$	n	S	s $\sim \square$	\emptyset	\emptyset	\emptyset
no.	3	4	24	15	7	,	4	9~4	21	22	3~2	16	2	44

TABLE 13. REFLEXES OF PMP CONSONANTS

*C	*z	*j	*m	*n	*n	*n
PMP	*zalan	*qaləjaw	*matay	*inum	*utaña	*nisi
Ro'is	ranan	neno	n-mate	inu		nisi-
Kotos	ranan	neno	n-mate	inu	na-tana	nisi-
Molo	lalan	neno	n-mate	inu	na-tana	nisi-
gloss	'road'	'day, sky'	'die'	'drink'	'ask'	'teeth'
*C	*d	*l	*s	*h	*y	
PMP	*diRus	*lima	*siwa	*hanin	*maya (PCEMP)	
Ro'is	na-niu	nima	seo	anin	maa-	
Kotos	na-niu	nima	seo	anin	maa-	
Molo	na-niu	nima	sio?	anin	maa-	
gloss	'bathe'	'five'	'nine'	'wind'	'tongue'	

TABLE 14. ${ }^{*} \mathbf{n}>\mathbf{n}$

PMP	*hanin	*dəクəR	*nisi	*ma-dindin
Ro'is	anin	n-nena	nisi	mainirin
Kotos	anin	n-nena	nisi	mainikin
Molo	anin	n-nena	nisi	mainikin
gloss	'give'	'blood'	'teeth'	'bone'

3.2.2 *R. There are seven instances of nonfinal $* \mathrm{R}>\emptyset$ in my data. Examples are given in table 15 .

There are also four instances of nonfinal $* \mathrm{R}>n$. Examples are given in table 16 . The reflexes of *laRiw (apart from Baikeno) display frozen final CV metathesis and irregular loss of initial *1 (perhaps through reinterpretation as a verbal prefix). When nominalized

TABLE 15. *R $>\varnothing$

PMP	*bəRay	*daRaq	*diRus	*duRi	*maRuqanay	*Rumaq
Ro'is	n-fee	naa?	na-niu	nui-	mone	umi
Kotos	n-fee	naa?	na-niu	nui-	mone	ume/umi
Molo	n-fee	naa?	na-niu	nui-	mone	ume
gloss	'give'	'blood'	'bathe'	'bone'	'male, husband' 'house'	

TABLE 16. *R>n

PMP	*Ratus	*Ribu	*ma-baRəqat	*laRiw
Ro'is	natun	nifun	maPfena?	n-aen
Kotos	natun	nifun	maPfena?	n-aen
Molo	natun	nifun	maPfena?	n-aen
Baikeno	natun	nifun	maPfena?	n-ane
gloss	'hundred'	'thousand'	'heavy'	'flee'

with the circumfix $a-\ldots-t$, the Kotos root has the form amnanet 'one who flees' with the expected root shape and initial consonant.

There are two instances in which *R apparently corresponds to/ Z / in my data: *baqeRu $>f e ? u$ 'new' and *ma-iRaq $>$ meie 'red'. This probably does not represent a change of *R $>$?, but instead loss of *R with later glottal stop insertion. The insertion of a glottal stop could be connected to the reduction of these words from three to two syllables.
3.3 WORD-FINAL CONSONANTS. Historical word-final consonants have been lost in most MP languages of eastern Island South East Asia. Nonetheless, there are still traces in many languages of the region, and most word-final consonants have to be reconstructed to account for all the data (Grimes 1991).

Uab Meto follows this pattern, and word-final consonants are lost, with the exception of $*_{\mathrm{n}}$ (usually retained as n) and *s (sometimes retained as s). The six instances of retention of final ${ }^{*} \mathrm{n}$ as n are given in table 17. There is also one instance each of final ${ }^{\mathrm{m}}$ and ${ }^{*} y$ being retained as n. These are *ma-qitəm > metan 'black' and *ma-diydiy $>$ Ro'is mainirin 'cold', other Uab Meto mainikin 'cold'.

In my current data, I have five clear instances of words that had a final $*_{s}$ in PMP.: in two, it is retained as s; in the other three, it is lost. These examples are given in table 18. ${ }^{11}$

Other word-final consonants were usually lost (44 instances). There are also seven instances in which a word-final consonant is apparently reflected as a glottal stop. These seven words end in *q, *n, *k, or *t (see table 19).

TABLE 17. *n > n/\#_

PMP	*zalan	*bulan	*quzan	*hanin	*taqun	*bituqən
Ro'is	ranan	funan	uran	anin	toon	fruun
Kotos	ranan	funan	uran	anin	toon	kfuu-n'
Molo	lalan	funan	ulan	anin	toon	fkuun
gloss	'road'	'moon, month' 'rain'	'wind'	'year'	'stars'	

$\dagger \quad$ Some speakers of Kotos Amarasi have reanalyzed the final n of the reflex of *bituqən 'star' in kfuun as a plural suffix. For such speakers $k f u u-n$ is 'stars' and $k f u \boldsymbol{i s}$ 'star'.

TABLE 18. *s > Ø~s / _\#

PMP	*diRus	*Ratus	*batios	*ma-nipis	*ma-panas
Uab Meto	na-niu	natun	fiti-	mainihas	manas
gloss	'bathe'	'hundred'	'calf (leg)'	'thin'	'sun'

TABLE 19. *VC\# > V?

PMP	*hikan	*daqan	*gatəl	*anak	*ma-putiq	*daRaq	*ma-beRəqat
Ro'is	ika?	mnaa?	mahata?	ana?	muti?	naa?	maPfena?
Kotos	ika?	mnaa?	mahata?	ana?	muti?	naa?	maPfena?
Molo	ika?	mnaa?		ana?	muti?	naa?	maPfena?
gloss	'fish' 'old, former'	'itchy'	'small'	'white'	'blood'	'heavy'	

[^5]While a change of word-final plosives to glottal stop is likely, in the case of the sonorants *n and *lit is unlikely that these consonants changed directly into a glottal stop. It is possible that apparent retentions of $* n / *$ las ? show evidence of language contact with another Austronesian language of the region.
3.4 PMP VOWELS AND DIPHTHONGS. The vowel correspondences between PMP and Uab Meto are given in table 20. Discussion of the conditioned reflexes as well as the diphthongs follows.

PMP * $\partial>e$ in penultimate syllables, thus *tylu $>$ tenu 'three'. In final syllables, ${ }^{*} \mathrm{a}>a$, thus *pusəj $>$ usa- 'navel'. There is one instance of final *a $>e$. This is in the word *ənəm $>* * n ə ə m>$ nee 'six', and probably represents assimilation to the immediately adjacent *ว. The other two examples of words containing two instances of * ∂ reflect the expected pattern of initial $*_{\partial}>e$ and final $*_{\partial}>a$. These words are *dəŋəR $>n$-nena 'hear' and *baqbaq > fefa- 'mouth'.

PMP *u was lowered before *R, which was subsequently lost. Examples include *qapuR > ao 'slaked lime', as well as *ikuR > iko- 'tail'. ${ }^{12}$

Before final ${ }^{*} \mathrm{q}$, PMP $*$ a became e in three instances (${ }^{*}$ ma-qataq $>n$-mate 'raw', *Rumaq > ume 'house', ${ }^{13}$ and $*$ ma-iRaq $>$ mere 'red'), and it remained a in two instances (*salaq > sana 'mistake', and *daRaq > naa? 'blood').

Sequences of *ai and *au, created through loss of earlier intermediate *q or *h, underwent the same changes as the diphthongs *ay and *aw. Thus, we find *ma-qitəm > **maitom $>$ metan 'black', *bahi $>* *$ bai $>$ fee 'wife', and *taqun $>* *$ taun $>$ toon 'year'. In these last two instances, the diphthong has become a double vowel to fulfill the requirement in Uab Meto that words should be at least two syllables long.

Sequences of *wa and *aw became o in Uab Meto. Examples include *babaw $>$ fafo'above', *sawa 'python' > Amarasi ?sao 'green viper', and *wani ‘bee' > oni ‘sugar, bee'. I have encountered only one exception to this pattern: this is the numeral *walu > fanu 'eight', in which initial *w has exceptionally become f.

TABLE 20. REGULAR VOWEL REFLEXES

*V	$*_{\text {i }}$	*)		*a		*u		*ay/*ai	*aw/*au	*wa	*uy	*iw
env.			-		/_q		/_R					
UM	i	e	a	a	e~a	u	o	e	o	o	1	e
no.	46	15	8	76	3~2	59	2	12	16	6	2	1

3.5 CONSONANT INSERTION. In some varieties of Uab Meto, a rule of wordfinal consonant insertion has operated on vowel-final words. This process differs among different varieties (see section 2 above).

In Naitbelak Amfo'an, $/ \mathrm{g} /$ is inserted after the back vowels $/ \mathrm{o} /$ and $/ \mathrm{u} /$. Phonetically, this $/ \mathrm{g} /$ is usually unreleased and slightly devoiced. Additionally, $/ \mathrm{l} /$ is inserted after $/ \mathrm{e} /$, and $/ \mathrm{d} /$ /after $/ \mathrm{i} /$. This $/ \mathrm{d} /$ / is also usually devoiced and often tends towards a fricative. Examples are given in table 21, in which Kotos Amarasi cognates are given for comparison.

[^6]In Baikeno, $/ \mathrm{b} /$ is inserted after the back rounded vowels $/ \mathrm{o} / \mathrm{and} / \mathrm{u} /, / \mathrm{/} /$ after $/ \mathrm{i} /$, and $/ \mathrm{l} /$ after /e/. Unlike Amfo'an, consonant insertion in Baikeno only takes place after words that end in a vowel sequence. Baikeno $/ 3 /$ corresponds to other Uab Meto $/ \mathrm{d} / 3$. Examples are given in table 22. (In Baikeno, $/ 3 /$ is almost universally a fricative [3] and, for some speakers, [z].)

These inserted consonants do not appear when a noun is followed by (nonenclitic) modifiers in the noun phrase. Two Baikeno examples are haub 'tree' + toef 'branch' \rightarrow hau toef 'tree branch', and oel 'water' + tasi 'ocean, sea' \rightarrow oe tasi 'sea water'.

Consonant insertion not too dissimilar from that observed in Baikeno has also been attested in some varieties of Molo. The full range and nature of word-final consonant insertion in Uab Meto is unknown, but the differences are quite salient to the speakers themselves when encountering other varieties.

TABLE 21. AMFO'AN (NAITBELAK) CONSONANT INSERTION

| PMP | *asu | *batu | *qapuR | *qaləjaw | *taqi | *punti | *bahi |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | *Rumaq

TABLE 22. BAIKENO CONSONANT INSERTION

PMP	*kahiw	*qihu	*qapuR	*bahi	*waSiyəR'	*hapuy	*taqi
Kotos	hau	iik iu	ao	fee	oe	ai	tei
Baikeno	haub	iik iub	aob	feel	oel	ai3	tei3
gloss	'tree, wood'	'shark, whale'	'slaked lime' 'wife'	'water'	'fire'	'feces'	

$\dagger \quad$ PMP *waSiyəR is reconstructed by Wolff (2010:1027) for 'water'. Charles Grimes (pers. comm., June 2015) notes that the reconstruction *wahiR proposed by Blust and Trussel (ongoing) cannot account for reflexes in eastern Island South East Asia that have a final /e/ (even when final $* \mathrm{R}$ is retained).
3.6 DISYLLABIZATION. There is a strong tendency for PMP reconstructions of more than two syllables to be reduced to two syllables in Uab Meto. ${ }^{14}$ This is achieved through deletion of one of the inherited vowels.

If the final vowel was * , this vowel was usually lost. Examples include *bitios $>$ fiti'calf' and *ma-buhək > **mabuk > mafu ‘drunk'. One exception to this rule of final *ว deletion appears to be *bituqən 'star', in which the final *ə assimilated to u and the initial *i was deleted, yielding Ro'is fruun, Kotos Kfuun, and Molo fkuun.

Other examples of an inherited PMP word with more than two syllables have *a in the first syllable, and it is this vowel that was lost. Examples include *baqəRu $>f e ? u$ 'new' and *anaduq > mnanup 'long, deep'. Other PMP trisyllables all involve the adjecti$\mathrm{val} /$ stative prefix *ma-, in which case the vowel of this (historic) prefix was deleted. Examples include *ma-putiq > muti? 'white' and *ma-panas 'hot' > manas 'sun'.

[^7]3.7 SUMMARY. The changes consonants have undergone from PMP to Uab Meto are summarized in table 23 . This table is organized by the outcome in Uab Meto.

Among these changes, there are two tendencies that deserve comment. First, plosives mostly undergo lenition: both $* \mathrm{p}$ and *k have become h in some environments and are lost in others, and similarly, *b has lenited to the fricative f. Second, there is a large merger of coronal consonants and noncoronal nasals as n.
4. BOTTOM UP: FROM UAB METO TO PRE-UAB METO. In this section, I apply the comparative method to Uab Meto. I assemble cognate sets, identify regular sound correspondences, and reconstruct a phoneme for each set. Note that I assign the phonemes I reconstruct to pre-Uab Meto rather than Proto-Uab Meto. I do this for two reasons. First, I do not have data from every Uab Meto variety, and second, I occasionally appeal to external witnesses from Rote (drawn from Jonker [1908]) in assigning a value to a reconstructed consonant. Pre-Uab Meto forms are indicated throughout with a double asterisk $\left(^{* *}\right)$. The consonants I reconstruct for pre-Uab Meto are given in table 24.

This reconstruction proceeds in two parts. First, in 4.1, I discuss the correspondence sets for which each phoneme is identical in the Uab Meto varieties for which I have data. Second, I discuss in 4.2 the correspondence sets that are nonidentical. As well as the preUab Meto reconstructions found in these sections, examples of additional reconstructions are given in appendix 2.
4.1 IDENTICAL CORRESPONDENCE SETS. There are ten correspondence sets in which the reflexes are identical in all known varieties of Uab Meto. These are the correspondence sets for ${ }^{* *} \mathrm{t},{ }^{* *} \mathrm{P},{ }^{* *} \mathrm{~b},{ }^{* *} \mathrm{mb},{ }^{* *} \mathrm{ng},{ }^{* *} \mathrm{f},{ }^{* *} \mathrm{~s},{ }^{* *} \mathrm{~h},{ }^{* *} \mathrm{~m}$, and ${ }^{* *} \mathrm{n}$.

TABLE 23. PMP > UAB METO

PMP		Ro'is	Kotos	Molo	no.
*p, *k, (*g)	$>$	h	h	h	13
*k	$>$	k	k	k	3
* t	$>$	t	t	t	30
* b	$>$	f	f	f	26
*m	$>$	m	m	m	20
*d, *n, *l, *R, *j, *n, (*ñ)		n	n	n	71
*nd	$>$	r	k	k	4
*z, (*nj)		r	r	1	4
*s	$>$	s	s	s	26
*p, *k, *q, *h, *R, (*y)		\emptyset	\emptyset	\emptyset	61

TABLE 24. PRE-UAB METO CONSONANTS

	Labial	Coronal $* * \mathrm{t}$	Velar $* * \mathrm{k}$	Glottal $* * ?$
Voiceless plosives	$* * \mathrm{~b}$			
Voiced obstruent	$* * \mathrm{mb}$	$* * \mathrm{nd}$	$* * \mathrm{yg}$	
Prenasalized plosives	$* * \mathrm{f}$	$* * \mathrm{~s}$		$* * \mathrm{~h}$
Fricatives	$* * \mathrm{~m}$	$* * \mathrm{n}$	$* * \mathrm{y}$	
Nasals		$* \mathrm{r}_{\mathrm{r}}$		
Liquid				

The reflexes are identical to the reconstructed values, with the exception of the prenasalized plosives, which are reflected as voiceless plosives. Examples attesting each of these correspondences are given separately for word-initial (in table 25) and wordmedial (in table 26) positions,

I reconstruct **mb for the $p: p: p$ set. Where instances of Uab Meto $/ \mathrm{p} /$ have cognates in the Rote languages, the western Rote languages have $/ \mathrm{mb} /$. Examples include Dela/Tii/Lole mbau 'stab, pound' compared with Uab Meto na-pau 'pound, stab', as well as Tii/Lole ambe 'saliva' compared with Uab Meto hape-. ${ }^{15}$ Additionally, the single (known) instance of $/ \mathrm{p} /$ in a word inherited from PMP is a reflex of *mp. This is PMP *umpu 'grandparent/child' $>* *$ umbu $>$ upu-. (The basis for reconstructing **ng for the $k: k: k$ set is discussed in 4.2 .2 below.)

The vowels of Uab Meto mostly show identical correspondence sets. The only deviation is the occasional raising of mid vowels, as seen, for instance, after high vowels in Amarasi (as in Kotos tuneltuni 'gewang palm'). Examples of each of the vowel correspondences are given in table 27.

TABLE 25. IDENTICAL UAB METO CONSONANT CORRESPONDENCES WORD-INITIALLY

	**t	**?	**b	**mb	**ng
pre-UM	**tuaf	**?mbanu?	**basi	**mbana	**ngae
Ro'is	tuaf	?panu?	basi	pana-	n-kae
Kotos	tuaf	Ppanu?	basi	pana-	n-kae
Molo	tuaf	Ppanu?	basin	pana-	n-kae
gloss	'person'	'coconut shell'	'mosquito'	'nose'	'cry'
	**f	**s	**h	**m	**n
pre-UM	** foro	**sanu	**huma	**mayga?	**nefo
Ro'is	foro	n -sanu	huma-	maka?	nefo
Kotos	foro	n-sanu	huma-	maka?	nefo
Molo	folo	n-sanu	huma-	maka?	nefo
gloss	'blind'	'descend'	'face'	'rice'	'lake'

TABLE 26. IDENTICAL UAB METO CONSONANT CORRESPONDENCES WORD-MEDIALLY

	**t	**?	**b	**mb	**ng
pre-UM	**meto?	**ropa	** yg giba?	**nombe	**?nayga
Ro'is	meto?	n-ropa		nope	?naka-
Kotos	meto?	n -ropa	kiba?	nope	?naka-
Molo	meto?	n -lopa	kiba?	nope	?naka-
gloss	'dry'	'kill'	'ant'	'cloud'	'head'
	**f	**s	**h	**m	**n
pre-UM	** nefo	**mbusu	**boho	**ruman	**hanu
Ro'is	nefo	pusu-	n-boho	rumun	hanu-
Kotos	nefo	pusu-	n -boho	ruman	hanu-
Molo	nefo	pusu-	n-boho	luman	hanu-
gloss	'lake'	'thigh'	'cough'	'empty'	'shoulder'

[^8]TABLE 27. IDENTICAL UAB METO VOWEL CORRESPONDENCES

	**i	**e	**a	**0	**u
pre-UM	**sii	**teme	**mbara?	**moro?	**nuru-
Ro'is	n -sii	teme	para?	moro?	nuru-
Kotos	n -sii	teme	para?	moro?	ruru-
Molo	n -sii	teme	pala?	molo?	lulu-
gloss	'sing'	'hawk'	'short'	'yellow'	'lips'

4.2 NONIDENTICAL CORRESPONDENCE SETS

4.2.1 **nd. The $r: k: k$ correspondence set has already been briefly discussed in 3.1.1. So far, I have collected at least twenty morphemes in which this correspondence set occurs. Examples of this set are given in table 28.

When this correspondence set occurs in PMP inheritances, it reflects *nt or *nd. Similarly, for words that have a cognate in the Rote languages, we frequently find /nd/. This is seen in Dela nduu? and Tii/Lole nduuk 'star', as well as Dela -endi 'bring'. Thus, I reconstruct ** nd for this set.

In Ro'is, ** nd has become r. This is a straightforward case of lenition, probably **nd $>* * \mathrm{~d}>r$. In the other varieties of Uab Meto, ${ }^{* *}$ nd has become k. This is a highly unusual sound change. Given that the reflex of $* *$ nd in Ro'is is r, and the fact that the change ${ }^{*} \mathrm{r}>$ k is attested cross-linguistically, ${ }^{16}$ it is likely that $* *$ nd became k through an intermediate $* * \mathrm{r}$ stage; ${ }^{* *} \mathrm{nd}>* * \mathrm{~d}>* * \mathrm{r} \ldots>k{ }^{17}$
4.2.2 **k. The next correspondence set I discuss is one in which Ro'is has k and all other (known) Uab Meto varieties have a glottal stop ?. So far, I have collected at least fourteen instances of this correspondence set. Examples are given in table 29. (Where this glottal stop occurs word-initially it has, in some sense, been lost, as phonemically vowelinitial words begin with a phonetic glottal stop in Uab Meto. Where a vowel-initial word corresponds to a k-initial word in Ro'is, I transcribe the initial phonetic glottal [?]; Ro'is ketu? 'bedbug' = other Uab Meto [?] etu?.)

TABLE 28. *nd >r $\boldsymbol{r}: \boldsymbol{k}$

pre-UM	$* *$ undi	$* *$ fnduun	$* *$ nduan	$* *$ endi	$* *$ nenda	$* *$ maskendi?
Ro'is	uri	fruun	ruan ${ }^{\dagger}$	n-eri	nera-	maskeri?
Kotos	uki	kfuun	kuan	n-eki	neka-	mas?eki?
Molo	uki	fkuun	kuan	n-eki	neka-	maPeki?
gloss	'banana'	'stars'	'village'	'bring'	'liver'	'slippery'

$\dagger \quad$ Blust and Trussel (ongoing) reconstruct Proto-Austronesian *kuan 'hamlet; kin-based residential unit' on the basis of Amis kuan and Uab Meto kuan. The similarity between these two forms is sheer coincidence, as confirmed by the Ro'is form ruan, which shows that the pre-Uab Meto form must have been **nduan.

[^9]TABLE 29. ${ }^{* * k}>k$: ? : ?

pre-UM	**maskendi?	**kambu?	**kenda	**kote	**ka-...-t	*ku-	**ketu?
Ro'is	maskeri?	na-kapu?	na-kera	n-kote	ka-...-t	ku-	ketu?
Kotos	mas?eki?	na-Papu?	na-Peka	n-2ote	[2]a-...-t	[?]u-	[?]etu?
Molo	maPeki?	na-Papu?	n-?eka	n-2ote	[?]a-...-t	[?]u-	[?]etu?
gloss	'slippery'	'pregnant'	'close'	'cut'	'NMLZ' ${ }^{\text {¢ }}$	'1SG'	'bedbug'

\dagger This circumfix is an agentive nominalizer; for example, Kotos Amarasi mepu 'work' \rightarrow a-тери- t 'worker'.

I have reconstructed ${ }^{* *} \mathrm{k}$ for this set. Before this reconstruction can be properly justified, I must discuss the set attesting ${ }^{* *} \mathrm{yg}$. Examples are given in table 30, which shows that all known Uab Meto varieties have k for this set.

These two sets present a potential dilemma for our reconstruction. On language-internal evidence alone, we could reasonably reconstruct **k for either set. One option would be to reconstruct **k for both sets and posit a split in the Uab Meto varieties other than Ro'is. However, an examination of the data reveals no regular conditioning environment. While the $k: ?: ?$ set in table 29 only occurs morpheme-initially or after a consonant, the $k: k: k$ set in table 30 also occurs in this environment. If we were to reconstruct *k for both sets, we would have to posit an unconditioned split.

An examination of external evidence helps to settle the question. For the $k: k: k$ set in table 30, we often find cognates in Rote languages with $/ \mathrm{gg} /$. Thus we find Tii/Lole $\eta g e u$ 'shave' compared with UM -keu 'shave', Dela ygae 'to weep' compared with UM -kae, as well as Dela/Tii/Lole langa 'head' compared with UM (?)naka- 'head'. ${ }^{18}$ On this basis, I reconstruct pre-Uab Meto ${ }^{*}$ ng for the $k: k: k$ illustrated in table 30.

The $k: ?: ?$ correspondence set, on the other hand, has cognates in Rote languages that attest either $/ \mathrm{k} /$ or \emptyset. Examples include Tii/Lole kena and Dela/Rikou ena 'close' compared with Ro'is -kera, other Uab Meto -?eka 'close', as well as Tii/Lole/Rikou abas 'cotton' compared with Ro'is kabas, other Uab Meto [?]abas 'cotton', though this latter word is probably a loan, at some level (cf. Malay kapas from Sanskrit kārpāsa).

There is also at least one morpheme in the $k: ?: ?$ correspondence set in table 29 that is inherited from PMP. This is the 1 SG verbal agreement prefix $k u$ - in Ro'is and $[\urcorner] u$ - in other Uab Meto varieties. This prefix is a reflex of either the PMP 1SG free pronoun *aku or the 1SG genitive marker *-ku. For these two reasons, I reconstruct pre-Uab Meto **k for the k : ?: ? correspondence set in table 29.

There is a final correspondence set involving $/ \mathrm{k} /$ that is in complementary distribution with the sets discussed above. This set is illustrated in table 31, which shows k in

pre-UM	**sygenge	**ygiba?	**ngeu	**ngae	**reygo	**?nayga	**bingi
Ro'is	na-skeke		n-keu	n-kae	reko	?naka-	
Kotos	na-skeke	kiba?	n-keu	n-kae	reko	?naka-	biki
Molo	na-skeke	kiba?	keu	n-kae	leko	?naka-	biki
gloss	'surprised'	'ant'	'shave,	'cry, weep'	'good'	'head'	'scar'

[^10]TABLE 31. ${ }^{* * k}>-k:-k:-2 /-\emptyset$

pre-UM	**masik	**esuk	**hanuk	**bonak	**kbubu?	*knaba(t)	**kmii
Ro'is	maisik	eusuk	haunuk	bonak	kbubu?	knaba	kmii
Kotos	masik	esuk	hanuk	bonak	kbubu?	knaba	kmii
Molo	masi?	esu?		bonak	Pbubu?	?nab-naba	mii
Amfo'an	masi?	esu?	hanug	bona?	Pbubu?	a-?nabat	miids
Baikeno			hanu		Pbubu?		mii3
gloss	'salt'	'mortar'	'pestle'	'fragrant pandanus’	'round'	'spider'	'urine'

both Ro'is and Kotos Amarasi, while other varieties have ? or \emptyset, as well as a single instance of k.

This set can be accounted for by positing a conditioned split of **k. Word initially before a vowel, ${ }^{* *} \mathrm{k}>$? in all varieties of Uab Meto except Ro'is, while word-initially before a consonant or word-finally, it went to ?, thence to \emptyset in some circumstances in varieties other than Ro'is and Kotos. This change is given in (1) below.

$$
\begin{array}{rlll}
* * \mathrm{k} & >? & / \#+\mathrm{V} & \text { (not in Ro'is) } \tag{1}\\
& >?(\emptyset) & / \#+\mathrm{C}, / _\# & \text { (not in Ro'is or Kotos) }
\end{array}
$$

4.2.3 ** \mathbf{y}. The next correspondence set I discuss involves the phonemes n and k. All six words in which ${ }^{*} *_{\mathrm{\eta}}$ is attested are given in table 32 . We find n in Ro'is and Amanuban, k in Molo and Baikeno, and either n or k in Kotos, though gaps in my data make it difficult to discern exactly how regular these patterns are.

For this correspondence set, I reconstruct the velar nasal ${ }^{* *} \mathfrak{\eta}$. I posit pre-Uab Meto ${ }^{* *} \mathrm{y}>n$ in Ro'is and Amanuban, and pre-Uab Meto ${ }^{* *} \mathrm{y}>k$ in Kotos, Molo, and Baikeno. The instances of n in Kotos attest either interdialect loans or a split of pre-Uab Meto ${ }^{*} *_{\mathrm{y}}$ in this variety. This set shows that, despite the initial similarity, the words for 'egg' in Uab Meto are probably not inheritances from PMP *qatəluR, as PMP *1 becomes n Uab Meto (21 instances), never k. The comparison of PMP *qatəluR with Uab Meto teno? tteko? would also require otherwise unattested word-final $* \mathrm{R}>$?
4.2.4 **r. The final correspondence set I discuss involves the liquids. In this set, we find the rhotic /r/ in Amarasi (both Ro'is and Kotos) in the southwest extreme of the Uab Meto range, as well as in Kusa-Manea in the eastern extreme of the Uab Meto speaking area. Other known Uab Meto varieties have the lateral ///. Examples are given in table 33.

It would be reasonable to reconstruct either ${ }^{* *}$ l or ${ }^{* *}$ r for this correspondence set, as both the changes $* \mathrm{r}>l$ and $* l>r$ are common cross-linguistically. I have chosen to reconstruct $* * r$ on the basis of external witnesses from the Rote languages, which have

TABLE 32. ${ }^{* * n}>\boldsymbol{n}: \boldsymbol{k}: \boldsymbol{k}$

pre-UM	**teŋo?	**2sono?	** j iu	**ninu	**maija?	** jano
Ro'is	teno?		niu	na-ninu		
Kotos	teko?, teno?	Psono?	kiu	na-kinu	na-maika?	na-kano
Amanuban	teno?				na-maina?	na-nano
Molo	teko?	Psoko?	kiu	na-kinu	na-maika?	na-kano
Baikeno	teko?			na-kinu		
gloss	'egg'	'spoon'	'tamarind'	'spit'	'stay'	'plait'

TABLE 33. $* * r>r: r: l: l: l: r$

pre-UM	**ranan	**uran	**?roo?	**roro	** ngoro	**moro?
Ro'is	ranan	uran	na-?roo	n-roro	koro	moro?
Kotos	ranan	uran	na-?roo	n-roro	koro	moro?
Amanuban	lanan	ulan	Ploo?	lolo	kolo	molo?
Molo	Ialan	ulan	na-2loo	lolo	kolo	molo?
Baikeno	Ialan	ulan	aplopo	n-lolo	kolo	molo?
Kusa-Manea	ranan	uran	aproo		koro	
gloss	'road'	'rain'	'far'	'kill'	'bird'	'yellow'

$/ \mathrm{d} /$ in cognate forms. Examples are given in table 34 below, which compares data from four of the Rote languages - Lole, Rikou, Dela, and Tii-with their Ro'is, Kotos, and Molo cognates.

The change $* \mathrm{~d}>r$ is extremely common cross-linguistically, while that of $* \mathrm{~d}>l$ is less common, usually passing through an intermediate ${ }^{* *}$ r stage. Thus, I posit pre-Uab Meto ${ }^{* *}$ r, with the change ${ }^{* *} \mathrm{r}>l$ occurring in varieties of Uab Meto, apart from those on the geographic periphery-Amarasi and Kusa-Manea.

Finally, Molo, Amfo'an, and Baikeno all attest assimilation of $* * \mathrm{n}$ to $/ \mathrm{l} /$ when preceded by another ///. Examples are given in table 35 .

TABLE 34. ROTE \boldsymbol{d} : UAB METO $r \boldsymbol{r}$

PMP	*zalan	*quzan	*zauq	*huanji				
Lole	dalak	uda	dook	fadik		dodo	denu	
Rikou	dala?	uda	doo?	fadi?			denu	
Dela	dala?	udan	doo?	odi?	nudu?		denu	
Tii	dalak	udan	dook	fadik		dodo	denu	dasi
Ro'is	ranan	uran	na-?roo	ori-	nuru-	n-roro		rasi
Kotos	ranan	uran	na-?roo	ori-	ruru-	n-roro	n-renu	rasi
Molo	lalan	ulan	na-?loo	oli-	lulu-	n-lolo	n-lelu	lasi
gloss	'path'	'rain'	'far'	'ySi'	'lips'	'kill'	'command' 'matter'	

TABLE 35. **n $\gg l / l V_{-}$

pre-UM	$* *$ ranan	$* *$ rene	$* *$ rone-	$* *$ lenu
Ro'is	ranan	rene	rone-	
Kotos	ranan	rene	rone-	n-renu
Amanuban	lanan	lene	lone-	n-lenu
Molo	lalan	lele	lole-	n-lelu
Amfo'an	lalan	lele	lole-	
Baikeno	lalan	lele	lole-	
gloss	'road'	'field'	'brains'	'command'

4.3 SUMMARY. The pre-Uab Meto consonant inventory I reconstruct is given again in table 36 . Among these consonants, the values of the prenasalized series are reconstructed primarily on the basis of external evidence.

The sound changes from pre-Uab Meto to each of the modern day varieties for which I have data are given in table 37. The relative order in which they occurred is indicated in the left-hand column. The change $* * \mathrm{k}>$? in varieties other than Ro'is must have

TABLE 36. PRE-UAB METO CONSONANTS

Voiceless plosives		** t	**k	**?
Voiced obstruent	**b			
Prenasalized plosives	**mb	**nd	**ng	
Fricatives	**f	**S		**h
Nasals	**m	**n	** y	
Liquid		** r		

TABLE 37. PRE-UAB METO > UAB METO

** \mathbf{C}		Ro'is	Kotos	Amanuban	Molo	Amfo'an	Baikeno	Kusa- Manea	
1. $* * \mathrm{k}$	$>$	k	?	?	?	?	?	$\begin{gathered} \text { /\#_V } \\ \text { /\#_C,? } \end{gathered}$	
	$>$	k	k	?/Ø	२/Ø	२/Ø	२/Ø		
2. **ng	$>$	k	k	k	k	k	k	k	
2. **nd	$>$	r	k	k	k	k	k	k	
2. ** y	$>$	n	k/n	n	k	k	k		
**r	$>$	r	r	1	1	1	1	r	
**mb	$>$	p	p	p	p	p	p		

occurred before ${ }^{* *} \mathrm{ng}>k,{ }^{* *} \mathrm{nd}>k$, and ${ }^{*} \mathrm{n} \mathrm{n}>k$, though these three changes can be unordered with respect to one another.
5. PROBLEMS AND PROSPECTS. In this paper, I have examined the historical phonology of the Uab Meto cluster of languages and dialects. ${ }^{19}$ My main proposal is that all the data I have presented must be accounted for if we want to understand the nuanced history of this language cluster. According to the data in section 3, the history of Uab Meto is one of straightforward and regular descent from PMP. According to the data in section 4, the history of Uab Meto has little to do with the MP language family but does present a regular phonological history.That these two histories do not align does not mean that we have inadequately analyzed the data, but rather that we have an interesting language history.

In this final section, I provide an initial synthesis of these two histories of Uab Meto and identify avenues that require further investigation. Table 38 shows the sound changes from PMP to pre-Uab Meto and the sound changes from pre-Uab Meto to the seven Uab Meto varieties for which I have data. (This table is a combination of tables 23 and 37.)

The data attest four Uab Meto correspondence sets that are entirely unaccounted for by the PMP history: ${ }^{* *} \mathrm{yg},{ }^{* *} \mathrm{~b},{ }^{* *} \mathrm{y}$, and ${ }^{* *}$?. They also show another two correspondence sets that have only one attestation in the MP history of the languages: ${ }^{* *} \mathrm{mb}$ and ${ }^{* *} \mathrm{k}_{\mathrm{UM}}$.

If we were to examine only the data relevant for the Malayo-Polynesian history of Uab Meto (the data yielded by a top-down perspective), we would expect a pre-Uab Meto consonant inventory like that given in table 39, in which four of the consonants we must in fact posit would be missing. In this table, parentheses show consonants that

[^11]TABLE 38. PMP > PRE-UAB METO $>$ UAB METO

PMP \quadenv. C $/ \#$	$>$			$\begin{aligned} & \because \\ & \stackrel{n}{\otimes} \end{aligned}$	$\begin{aligned} & \text { a } \\ & \stackrel{y}{0} \end{aligned}$		$\frac{\circ}{0}$	$\begin{aligned} & \text { 感 } \\ & \text { en } \end{aligned}$			$\begin{aligned} & \sum_{i}^{E} \\ & . \equiv \\ & \stackrel{y}{E} \\ & 43 \end{aligned}$
*p $/ \mathrm{L}^{\text {i, }}$,	$>$	$\begin{gathered} * * h \\ \varnothing \end{gathered}$	>	h	h	h	h	h	h		4 8
/V_V	>	\emptyset									5
* $\mathrm{k}_{\text {MP }} / \mathrm{i} / \overline{\mathrm{V}}$	>	${ }^{*} \mathrm{k}_{\text {MP }}$	>	k	k	k	k	k	k		3
/\#-	>	**h	>	h	h	h	h	,	h	h	8
*	>	**t	$>$	t	t	t	t	t	t	t	33
*q, *h, *R, *y	>	\emptyset									47
* b	>	**f	>	f	f	f	f	f	f	f	27
*d, *n, *ñ, * ${ }^{\text {, }}$, ${ }^{*}$, *j, *R	>	**n	$>$	n	n	n	n	n	n	n	69
*m	>	**m	>	m	m	m	m	m	m	m	24
*s	$>$	**s	>	s	s	s	s	s	s	s	21
, (${ }^{}{ }^{\text {nj}}$)	>	** r	>	r	r	1	1	1	1	r	4
*nd	>	**nd	>	r	k	k	k	k	k	k	4
(*mp)	$>$	**mb	$>$	p	p	p	p	P	p	p	1
(* k_{LM})	>	** k_{UM}	>	k	?	?	?	?	?		1
-		**)g	>	k	k	k	k	,	k	k	
-		**b	>	b	b	b	b	b	b	b	
-		** ${ }^{\text {n }}$	>	n	k/n	n	k	,	k		
-		**?	>	?	?	?	?	?	?	P	

TABLE 39. EXPECTED PRE-UAB METO CONSONANTS

Voiceless Plosives	Labial	Coronal **t	$\begin{aligned} & \text { Velar } \\ & * * k \end{aligned}$	Glottal (**?)
Voiced Obstruent				
Prenasalized Plosives		**nd		
Fricatives	**f	**S		**h
Nasals	**m	**n		
Liquid		(**)		

would be rare, and boxes show consonants that we must posit, but that are unaccounted for by the MP history.

This pre-Uab Meto consonant inventory would yield, in turn, a consonant inventory like that of table 40 for modern Uab Meto, in which two of the attested consonants are entirely unexplained by the MP history of the language.

TABLE 40. EXPECTED UAB METO CONSONANTS

	Labial	Coronal	Velar	Glottal
Voiceless Plosives				
		t	k	(r)

How do we account for the discrepancy between what we expect of Uab Meto from the top down, and what we find from the bottom up? Put another way: where do the $p \mathrm{~s}$ and $b s$ come from? This is a difficult question to answer. Two solutions are possible: (i) neologism, and (ii) contact.

The first possibility is that the apparent non-MP elements are the result of neolo-gism-words made up by speakers. Neologism has been suggested as a source for Hawaiian vocabulary of an unknown source (Blust 2011:273). However, in the current instance, neologism is highly unlikely, as we expect speakers to coin words that already fit into the system of the language; /fæb/ is a possible English word, while /xæb/ is probably not possible outside of Scotland and $/ \mathrm{mb}$ 㱜/ or $/ \mathrm{G} æ \mathrm{~b} /$ are definitely impossible.

A much more likely scenario is that the putative non-MP elements of Uab Meto are the result of contact with other MP languages or non-MP languages. Indeed, I argued in 3.1.4 that the Uab Meto words puah 'betel nut' and pune? 'ear of corn' must not be direct inheritances from PMP, as they reflect PMP *b as /p/, rather than expected /f/.

The most obvious kind of language contact that could introduce new phonemes into the system of a language is that of borrowing. There are indeed a number of identifiable loans in Uab Meto containing the "problematic" consonants. In Kotos Amarasi, for instance, we have examples such as pake 'use' < Malay pakai, and bruuk 'pants' < Dutch broek. Such instances constitute less than 7.5 percent (33/443) of all instances of $/ \mathrm{p} / \mathrm{and} / \mathrm{b} /$ in my current Amarasi dictionary. ${ }^{20}$

A small amount of the non-MP data is straightforwardly accounted for by superficial borrowing. However, this still leaves a large amount of data unaccounted for: what about the remaining 92.5 percent $(410 / 443)$ of $p s$ and $b s$? What about the entire grade of prenasalized plosives in pre-Uab Meto? The sheer size of the putative non-MP components of pre-Uab Meto, and the fact that it has restructured the phonological system of the language, points to a prolonged period of intense and intimate language contact between the incoming Austronesian languages and the pre-Austronesian languages of the region. ${ }^{21}$

This raises a thorny methodological issue for the historical linguist: is one permitted to posit language contact without an extant source language for the contact? If so, under what circumstances? ${ }^{22}$

Similar questions probably arise to a different extent in every language of the world. In English, for example, the phonemic contrast between the voiceless fricatives /f, $\theta, \mathrm{s} /$ and voiced fricatives $/ \mathrm{v}, \mathrm{\partial}, \mathrm{z}$, is not accounted for by simple inheritance from Proto-Germanic. In this case, some scholars have argued it is due to Celtic influence (Laker 2009).
$\overline{20 \text {. In my current dictionary of } 1,560 \text { unique Kotos Amarasi morphemes, there are } 254 \text { instances }}$ of $/ \mathrm{b} /$ and 189 instances of $/ \mathrm{p} /$. Of these, 17 instances of $/ \mathrm{p} /$ and 16 instances of $/ \mathrm{b} /$ are loans with an identified source.
21. The extant non-Austronesian languages of the region are the Timor-Alor-Pantar languages. In addition, there is the poorly documented and now extinct non-Austronesian Tambora language of Sumbawa (Donohue 2007).
22. Reid (1994) proposes that the Negrito languages of the Philippines arose through pidginization and subsequent creolization of an early Austronesian trade language. This proposal is based on cognate vocabulary found only in the Negrito languages, but not found in other Austronesian languages of the Philippines. While I do not find the pidginization hypothesis particularly compelling, I am highly sympathetic to the idea of language shift that Reid (1994:57) also proffers.

In order to even arrive at an initial solution to the source(s) of the putative non-MP components of Uab Meto, we need to examine more data from surrounding languages. ${ }^{23}$ It may end up being the case that we answer "we don't know the source," or equally unsatisfactorily "from an unknown source." However, it is not unlikely a thorough investigation of these languages would reveal solid answers to some of these questions.

We cannot account for the historical phonologies of Uab Meto without reference to a significant non-Austronesian element that is as regular as is the Austronesian material. If we are to learn anything from this exposition of Uab Meto historical phonology, it is that future historical work in the region, on both Austronesian and non-Austronesian languages, must avoid the unmotivated assumptions that all the data should point to a single consistent result, and that only data from languages thought to be related (in the comparative method sense) have a role to play in uncovering those results.

APPENDIX 1. PMP INHERITANCES IN UAB METO.

In this appendix, I present those Uab Meto words that can be shown to be inheritances from PMP. This appendix is divided into three parts. In part 1, I present those words that are clearly, regularly, and unproblematically inherited from PMP; in part 2, I present those words that have irregularities that can probably be explained; and in part 3, I present those words that represent only extremely tenuous connections with a PMP reconstruction. In most cases, the words in part 3 are probably loans from another Austronesian language, or chance similarities.

1. UNPROBLEMATIC INHERITANCES

PMP	gloss	Ro'is	Kotos	Molo	gloss
*aku	1SG	au	au	au	1SG
*ama	father	ama-	ama-	ama-	father
*anaduq	long	mnanu?	mnanu?	mnanu?	long, deep; length, depth
*asu	dog	asu	asu	asu	dog
*babaw	upon, over, above	fafo-	fafo-	fafo-	above
* babuy	pig	fafi	fafi	fafi	pig
* bahi	female,	fee	fee	fee	wife
	woman,	bifee	bifee	bifee	woman
	wife	[initial /b	same as	Meto fer	ne honorific]
*bahuq	odor, stench		na-foo	na-foo	stink
* balik	reverse, turn around	n -fani	n-fani	n -fani	return, again
* baqbaq	mouth	fefa-	fefa-	fefa-	mouth
* baqəRu	new, fresh	fe?u	fe?u	fe?u	new (things)
* batu	stone	fatu	fatu	fatu	stone
* boRay	give	n-fee	n-fee	n-fee	give
* botaw	man's sister	feto	feto	feto	male's sister
* binəhiq	seed set aside for next planting		fini	fini	seed for replanting
* bitios	calf of the leg		fiti-	fiti-	calf (of the leg)

23. The immediate neighbors of Uab Meto are the Rote languages, Helong, and Tetun (all Austronesian languages). In this paper, I have made some initial comparisons between Uab Meto and some of the Rote languages, and it is probable that the Rote languages subgroup with Uab Meto. Superficially, Helong does not appear to fit closely with any of the languages of Timor.

PMP	gloss	Ro'is	Kotos	Molo	gloss
* bituqən	star	fruun	kfuun	fkuun, kfuun	stars
*buaq	fruit	fua-	fua	fua-	fruit
* bubun	fontanel, crown of the head	fufu-	fufu-	fufu-	fontanel, crown of the head
* bukij	mountain; forested inland mountain areas	fui	fui	fui	wild
* bulan	moon, month	funan	funan	funan	moon, month
*bulu	body hair; fur; feather		funu-	funu-	hair (any), feather
*daləm	in, area within	nana-	nana-	nana-	inside
*daqan	old, ancient	mnaa?	mnaa?	mnaa?	old, former
*daRaq	blood	naa?	naa?	naa?	blood
*dəŋəR	hear, listen	n-nena	n-nena	n-nena	hear
*diRus	bathe	na-niu	na-niu	na-niu	bathe
*duha	two	nua	nua	nua	two
*duRi	thorn	nui-	nui-	nui-	bone
$\begin{aligned} & \text { *ənəm > } \\ & \text { **nəəm } \end{aligned}$	six	nee	nee	nee?	six
*)pat > **pəat	four	haa	haa	haa?	four
*2sa	one	es	es	es	one, $\mathrm{a}(\mathrm{n})$
* gatal	itch, feel itchy	mahata?	mahata?	n-mahata	itchy
*hayin	wind	anin	anin	anin	wind
*hapuy	fire	ai	ai	ai	fire
*hau(n)ji	same sex younger sibling	ori-	ori-	oli-	same sex younger sibling
*hawak	waist, back of the waist	ao-	ao-	ao-	body
*hikan	fish	ika?	ika?	ika?	fish
*ikuR	tail	iku-	iku-	iko-	tail
*inum	drink	n-inu	n-inu	n-inu	drink
*kahiw	wood, tree	hau	hau	hau	tree, wood
*kahu	you (SG)	ho	ho	ho	2SG.NOM
* kakay ${ }^{\dagger}$	foot/leg	hae-	hae-	hae-	leg, foot
*kali	dig up, excavate		n-hani	n-hani	dig
*kita	we (incl.)	hit	hit	hit	1PL.INCL.NOM
*kutu	head louse	hutu	hutu	hutu	head louse
*lakaw	go, walk	n-nao	n-nao	n-nao	go
*lətay	bridge		nete	neten	mountain, bridge
* lima	five	nima	nima	nima	five
		nima-	?nima-	nima-	hand, arm
*ma-buhək	drunk		mafu	mafu	drunk
*ma-diydiy	cold	mainirin	mainikin	mainikin	cold
*ma-iRaq	red	me?e	me?e	me?e	red
*malip (PCEMP)	laugh, smile	n-mani	n-mani	n-mani	laugh
*manuk	chicken	manu	manu	manu	chicken
*ma-panas	warm, hot	manas	manas	manas	sun
*ma-putiq	white	muti?	muti?	muti?	white
*ma-qitom	black, deep blue	metan	metan	metan	black
*ma- Ruqanay	male	mone	mone	mone	male, husband
*mata	eye, face	mata-	mata-	mata-	eye, (in) front of

PMP	gloss	Ro'is	Kotos	Molo	gloss
*ma-qataq	raw, unripe		n-mate	mate	green, unripe, uncooked
		naumate	mamate	mate	green (color)
*matay	die, dead	n-mate	n-mate	n-mate	die
*muntay	k.o. citrus tree and its fruit	?muri?	?muki?	muke	lime (citrus)
*maya (PCEMP)	tongue	maa-	maa-	maa-	tongue
*-na	that, there; then		naa	naa	there
* yisi	grin, show the teeth	nisi-	nisi-	nisi-	teeth
*pənuq	full, of container	na-henu	na-henu	na-henu	to fill, be full
*pitu	seven	hitu	hitu	hitu	seven
*punti	banana	uri	uki	uki	banana
*puqun	base of tree		upu-	uu-	base, source; tree classifier
*pusaj	navel, umbilicus		usa-	usa-	belly button, navel
*qabu	ash, [...] dust	afu	afu	afu	soil, ash, ground
*qalojaw	day	neno	neno	neno	day, sky
*qanitu	ghost, ancestral spirit		nitu	nitu	spirit (of dead person)
*qapuR	lime, calcium	ao	ao	ao	slaked lime
*qasawa	spouse		n-sao	n-sao	marry
*qatay	liver, seat of emotions	ate-	ate-	ate-	liver (as organ)
*qauR	k.o. large bamboo	oo	oo	oo	bamboo
*qutin	penis	uti-	uti-	uti-	penis
*quzan	rain	uran	uran	ulan	rain
*Ratus	hundred	natun	natun	natun	hundred
*Ribu	thousand	nifun	nifun	nifun	thousand
*Rumaq	house	umi	umi, ume	ume	house
*sakay	rise, climb up	n -sae	n-sae	n-sae	go up, ascend
*salaq	wrong, in error		sana	sana	wrong, mistake
*sawa	python	sao	Psao		k.o. green viper
*si-ida	they	\sin	sin	sin	3PL
*siku	elbow	siPu-	sipu-	sipu-	elbow
*siwa	nine	seo	seo	sio?	nine
*sula	horn	suna-	Psuna-	suna-	horn
*susu	female breast	susu-	susu-	susu-	breast
*takut	fear		na-mtau	na-mtau	afraid, scared
*talih	rope, cord, twine	tani	tani	tani	rope
*taqi	feces, excrement	$\begin{aligned} & \text { tai- } \\ & \text { tei } \end{aligned}$	tai- tei	$\begin{aligned} & \text { tai- } \\ & \text { tei- } \end{aligned}$	belly, stomach feces
*taqun	year, season	toon	toon	toon	year
*tasik	sea, salt water	tasi	tasi	tasi	sea, ocean
*tau	person, human being		too	too	populace
*tolu	three	tenu	tenu	tenu	three
*tikəd	heel		tika-	tika-	heel
*tila	vulva, vagina	tina-	tina-	tina-	vagina

PMP	gloss	Ro'is	Kotos	Molo	gloss
*tuhud	knee	tuu-	tuu-	tuu-	knee
*tu(g)tug	knock, pound		n-tutu	n-tutu	pound, smith
*tunu	roast food over a fire		n-tunu	n-tunu	burn, roast
*umpu	grandparent/ child	upu-	upu-	upu-	grandchild
*uRat	artery, vein	ua-	ua-	ua-	palm lines
*utaña	ask, inquire		na-tana	na-tana	ask, interrogate
*waSiyəR ${ }^{\ddagger}$	fresh water	oe	oe	oe	water
*wani	honeybee	oni	oni	oni	bee, sugar
*zalan	path	ranan	ranan	lalan	path, road, way

2. Inheritances with Problems

3. Highly Problematic Connections With PMP

$\begin{aligned} & \text { PMP } \\ & \text { ?*kəRa(ny) } \end{aligned}$	gloss hawksbill turtle	Ro'is kee [irr. *)	Kotos kee, kea]	Molo kee, ke?a	gloss tortoise, turtle
?*katun	cut, sever		n-ketu	n-ketu	cut, sever, break off
?*pandan	pandanus		[irr. *k ekam	ekam	wild pandanus
?*ka-ulaR	snake	[irr. $* k>k$, irr. $* a u>a u$, irr. $* R>/$ //]			
?*qahəlu	pestle	haunuk [irr. *	hanuk irr. final		pestle
?*qaRta	outsiders, alien people		ate [irr. *a		slave, servant

APPENDIX 2. UAB METO WORDLISTS

In this appendix, I present wordlists of five Uab Meto varieties: Ro'is Amarasi, Kotos Amarasi, Molo (extracted from Middelkoop 1972), Naitbelak Amfo'an, and Baikeno. Initial Kusa-Manea data provided by Charles Grimes are also included where available. KusaManea data are given in the right hand column preceded by 'KM'. Inheritances from PMP, as listed in parts 1 and 2 of appendix 1 , are italicized. Where a noninherited form is cognate in Ro'is Amarasi and at least two other varieties, or in all varieties except for Ro'is, a preliminary pre-Uab Meto reconstruction is given in the right-hand column.

Nouns that are inalienably possessed are followed by an obligatory genitive suffix in the citation form. Such suffixes are not usually indicated in the word lists, though a hyphen follows such nouns to indicate their status. The Uab Meto genitive suffixes used on body parts are given in table 41. (0 person forms are used when the possessor is unknown or irrelevant to the discourse.) Kin terms appear to take a different set of suffixes, though these are less well understood.

Verbs in Uab Meto fall into three verb classes: (i) those that take consonantal prefixes; (ii) those that take vocalic prefixes; and (iii) those that take consonantal prefixes for an intransitive meaning and vocalic prefixes for a transitive meaning. Verbs are given in the wordlist with either of the third person prefixes $n a$ - or n - to indicate their class. Other verbal prefixes are given in table 42. (The Ro'is consonantal 1SG prefix ?- is used before consonant initial stems, and k - is used before vowel initial stems.)

Words are given in the citation form. Readers should be aware that in the case of verbs and numerals, this is often the metathesized form. Word-final consonants in Amfo'an and Baikeno that are a result of consonant insertion (see 3.4.1) are separated from the stem by a pipe ' '|'.

TABLE 41. UAB METO GENITIVE SUFFIXES

	Ro'is		Other UM	
	SG	PL	SG	PL
1EXCL	$-k$	$-m$	$-k$	$-m$
1INCL		-r		-k
2	$-m$	$-m$	$-m$	-m
3	$-n$	-r	-n	-k
0	-f		-f	

TABLE 42. UAB METO VERBAL AGREEMENT PREFIXES

	Ro'is				Other UM			
	SG	PL	SG	PL	SG	PL	SG	PL
1EXCL	ku-	mi-	k-/?-	m-	m-	mi-	?-	m-
1 INCL		ta-		t-		ta-		t-
2	mu-	mi-	u-	m-	mu-	mi-	u-	m-
3	na-	na-	n-	n-	na-	na-	n-	n -

item	Ro'is	Kotos	Molo	Amfo'an	Baikeno	pre-UM
Body Parts						
head	?naka-	Pnaka-	?naka-	a-Pnaka-	?naka-	**?nayga
head hair	? n aak bupu		nafup	funu-	nafu?	
face	huma-	huma-	huma-	huma	huma-	**huma
eye	mata-	mata-	mata-	mata-	mata-	
se	pana-	pana-	pana-	pana-	pana-	**mbana
mouth	fefa-	fefa-	fefa-	fefa-	fefa-	
lips	nuru-	ruru-	lulu-	lulu-	lulu-	**nuru
tongue	maa-	maa-	mas-	maa-	maa-	
ooth	nisi-	nisi-	nisi-	nisi-	nisi-	
ear	ruki-	ruki-	luke-	luke-	luke	**runge
neck	neo-	neo-	neo-	neo-	neo-	** neo
arm/hand	nima-	Pnima-	?nuku-, nima-	nima-	Pnima-	
bow	sizu-	siiu-	sizu-, niPu-	sǐu-	siiu	
oulder	hanu-	hanu-		hanu-	hanu-	**hanu
fingernail	tnusu-	knusa-	Ptusa-	a-Ptusu-	?tusu-	
east	susu-	susu-	susu-	susu-	susu-	
belly	tai-	tai-	tai-	tai-	tai-	
foot/leg	hae-	hae-	hae-	hae-	hae-	
knee	tuu-	tuu-	tuи-	tuи-	tuu-	
thigh	pusu-	pusu-	pusu-	pusu-	pusu-	**mbusu
skin	pasu-	pasu-	pasu-	pasu-	pasu-	**mbasu
flesh	sisi	sisi	sisi	sisid ${ }_{3}$	sisi	
bone	nui-	nui-	nui-	nui-	nui-	
blood	naa?	naa?	naa?	naa-	naa?	
liver ${ }^{24}$	ate-	ate-	ate-	ate-	ate-	
	nera-	neka-	neka-		neka-	**nenda
heart	bua-	bua-	teka-	teka-	fua-	** tenda 25
	kansao-	ansao-				
saliva	hape	hape	hape	hape	hape	**hambe
urine	kmii	kmii	mii	miild3	miil3	**kmii
feces	tei	tei	tei	tei d_{3}	$t e i \mid 3$	

B - Human and Kin Terms

person	tuaf	tuaf	tuaf	tuaf	atoni	**tuaf
man	atoni?	atoni?	atoni	atoni\|ds	mone	**atoni
woman	bifee	bifee	bifee	bifee $l l$	bifeell	KM: fanai
wife	fee	fee	fee	feell	feell	
husband	mone	mone	mone	mone\|l	mone	
father	ama-?	ama-f	ama-f	ama-f	ama-?	KM: ama-
mother	ina-?	aina-f	aina-f	ina-f	ena-f, aina-fKM: ene-	
child	ana?	anah	anah	anah	anah	

[^12]

[^13]| item | Ro'is | Kotos | Molo | Amfo'an | Baikeno | pre-UM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| thorn | aika? | aika? | katila? | kalila? | kalila? | |
| bamboo | oo | oo | oo, petun | kaka? | petun | |
| rattan | ?kauboe | kpa?um | ue | agoel | kauboe\| ${ }^{\text {l }}$ | |
| sword-grass | huu musu? | huu musu? | huu musu? | huun | huun | **huun |
| pandanus | eram | ekam | ekam | | | **endam |
| fragrant p . | bonak | bonak | bonak | bona? | | **bonak |
| banana | uri | $u k i$ | $u k i$ | $u k i \mid d s$ | uki | |
| coconut | noah | noah | noah | noah | noah | **noah |
| coconut shell | Ppanu? | Ppanu? | Ppanu? | a-Ppanu? | ?buki? | **Pmbanu? |
| sugarcane | tefu | tefu | tefu | tefulg | tefu | |
| sweet potato | raku | raku | laku | lakulg | | **rangu |
| betel nut | puah | puah | puah | puah | puah | **mbuah |
| betel pepper | maunus | manus | manus | manus | | **manus |
| slaked lime | ao | ao | ao | aolg | | |
| betel quid | mamat | mamat | mamat | mamat | | **mamat |
| maize | pena? | pena? | pena? | pena? | | **mbena? |
| field rice | maka? | maka? | ane | ane\|l | ane | |
| hulled rice | mneas | mneas, mnees | mnees | a-mnees | mnees | **mneas |
| cooked rice | maka? | maka? | maka? | maak ane\|l | maka? | **mayga? |
| F-Natural | Orld | | | | | |
| night | fai | fai | fai | faild3 | fail3 | **fai, KM: fai |
| day, sky | neno | neno | neno | nenolg | neno | KM: neno |
| sun | manas | manas | manas | manas | manas | |
| moon | funan | funan | funan | funan | funan | |
| star(s) | frum | kfiun | fkuun,
 kfiun | a-kfium | fkuun | |
| cloud | nope | nope | nope | nopel1 | habu | **nombe |
| rain | uran | uran | ulan | ulan | ulan | |
| wind | anin | anin | anin | anin | anin | |
| sea | tasi | tasi | tasi | tasilds | tasi | |
| sand | snaen | snaen | snaen | a-snaen | snaen | **snaen |
| earth | afu | afu | afu | naidzan | naizaan | |
| salt | maisik | masik | masi? | masi? | | |
| sugar | oni | oni | oni | onid d_{5} | | |
| water | oe | oe | oe | oell | oe ${ }^{\text {l }}$ | |
| mountain | Pto?ef | PtoPef | ?nupaf | a-Pnupaf | ?nupaf | |
| forest | nasi | nasi | nasi | nasilds | nasi | **nasi |
| river | noe | noe | noe | noell | noell | ** noe |
| lake | nefo | nefo | nefo | nefolg | nefo | **nefo |
| fire | $a i$ | $a i$ | $a i$ | ailds | ail3 | |
| smoke | ai masu? | masu? | masu? | masu? | masu? | |
| ash | auf nao | afu | afu | afulg | afu | |
| stone | fatu | fatu | fatu | fatulg | fatu | KM: fatu |
| G-Human | rtifacts | | | | | |
| canoe | kofa? | kofa? | belo? | abelopg | belo?, bero? | |
| mortar | eusuk | esuk | esu? | esu? | | **esuk |
| pestle | haunuk | hanuk | | hanulg | hanu | **hanuk |
| knife | opi | besi | besi | besilds | besi | |
| machete | fenes | benas | benas | benas | benas | |
| rope | tani | tani | tani | tani\|ds | tani | |
| road, path | ranan | ranan | lalan | lalan | lalan | KM: ranan |

item	Ro'is	Kotos	Molo	Amfo'an	Baikeno	pre-UM
house	umi	umi, ume	ume	umell	ume	
field	rene	rene	lele	lele\|1	lele	** rene
roof thatch	tefik	tefis	tefin	tefin		**tefi
needle	aenet	anet	anet	anet		**anet
name bride price	kananoni?	kananoni?	kana-	kanaupef	kanaupaf	KM: kana-
H-Properties						
big	koru	koru	Pnaek	a-Pnaek	Pnaek	
small	ana?	ana?	ana?	abaut	ana?	
good	reko	reko	leko	lekolg	leko	**rengo
						KM: mria
dry	meto?	meto?	meto?	meto?	meto?	**meto?
far	na-Proo	na-Proo	?loo	na-kloolg, na-Ploolg, n-loolg n-paumaka?	na-klo?o, na-Plo?o	
near	haumaka?	paumaka?, haumaka?	haumaka?		n-paumaak	**paumanga?
new	feru	feru	feru	ferulg	feru	
old (things)	mnaa?	mnaa?	mnaa?	molof	mnaa?	
young	muinif	munif		munif	munif	
old (people)	mnasi?	mnasi?	mnasi?	mnasi?	mnasi?	**mnasi?
fat	n-pook	n-pook		n-pook	n-pook	**mbongo
hot	maputu?	maputu?	maputu?	malala?	maputu?	**mambutu?
cold	mainirin	mainikin	mainikin	oetene?	mainikin	
short	para?	para?	pala?	na-paal	tukap, kule	**mbara?
long	тпати?	тпапи?	тпати?	тпапи?	тпапи?	
straight	na-mnoon	na-mneo	maneof	meneolg	maneof	**maneo
blind	foor	a-foro-t	folo	n -fool	n -fool	**foro
deaf	koos	a-koso-t	tono?	n-tono?, n-koos	n-tono?	** ngoso
thirsty	neon	n-mea	meon	n-meen	n-meet	
hungry	na-mnaah	na-mnaah	na-mnaah	na-mnaah	na-mnaah	**mnaha
all	ok-oke?	oke?	ok-oke?	ok-oke?	ok-oke?	**onge?
many	mfaun, na-mfau	na-mfaun	na-mfau	na-mfau?	na-fau?	**mfau
round	kbubu?	kbubu?	Pbubu?	? 3 ubu?	Pbubu?	**kbubu?
full	na-heun	na-heun	na-heun	na-heun	na-heen	
empty	rumun	ruman	luman	luman	luman	**ruman
rotten	n-puun	n-puun	n-puun	n-puun	n-puun	**mbunu
white	muti?	mutip	mutip	mutip	muti?	
black	metan	metan	metan	metan	metan	
yellow	moro?	moro?	molo?	molo?	molo?	**moro?
red	mere	mere	mtasa?	a-mtasa?	mtasa?	
green	naumate	mamate	mate	matell	matel	
blue	biru	biru	bilu	matel		
I-Location						
here	es ai	et ia	es ii	es ii	es ii	near speaker
there	es naan	et naan		es naa?	es nane	near addressee
there	es nae	et nee	es naa	es nae	es nae	near neither
west	neon tee-s	neon tee-s	neno tee-s	neno tee-s		lit. 'day lean'
east	neon sae-t	neon sae-t	neno sae-n	neno sae-t	neon sae-t	lit. 'day rise'

item below	Ro'is nupu-n	Kotos nupu-n,	Molo	Amfo'an nopu-n,	Baikeno es nupu-n,	$\underset{* *}{\text { pre-UM }}$
		pina-n	pina-n, muni-n	moni-n	es obu?	
above	fafo-n	fafo-n, tuna-n,	fafo-n	fafo-n	es tuna-n	
behind	koti-n	koti-n	koti-n	koti-n	es koti-n	** ${ }^{\text {ngoti }}$
in front of	mata-n	mata-n	es mata-n	mata-n	es mata-n	
outside of	mone?	mone?	es mone?	es mone?	mbi mone?	**mone?
inside edge	nana-n nini?	nana-n nine?	es naan es nine?	es nana-n es nine?	mbi nana-n es nina?	**nine?
J-Numerals						
one	mese?	mese?	mese?	mese?	mese?	KM: mese?
two	пиа	пиа	пиа	nung, nuga	nuban, nua, nuba	KM: $n \boldsymbol{a}$
three	teun	teun	teun	teen	teen, teun	
four	haa	haa	haa?	haa?	haa?	
five	niim	niim	niim	niim	niim	
six	nee	nee	пее?	nee?	пее?	
seven	hiut	hiut	hiut	hiit	hiit	
eight	faan	faun	faon	faan	faan	
nine	seo	seo	sio?	seo?	seo?	
ten	bo? es	bo? es	bopes	bo? es	bopes	**boa?
twenty	boa? nua	bo? пиа	bo? пиa	bo? nua	bo? пиа	
hundred	nautn es	nautn es	nautn es	natun es	nautn es	
thousand	niufn es	niufnes	niufn es	nifun es	niufn es	
K-Verbs						
know	na-hiin	na-hiin	na- hiin	na-hiin	na-hiin	**hini
speak	na-Puaba?	n-peo, na-Puab	na-molok	na-mologg, na-guab	na-molok	KM: na-Paa? **uaba
sing	n-sii	n-sii	n-sii	n-sii	n -sii	**sii
weep	n-kae	n-kae	n-kae	n-kae	n-kae	** ng ge
laugh	n-main	n-main	n-maen	n-maan	n-maan	
laugh at s.o.	n-mainis	n-manis		n-manis	n-manis	
hear	n-neen	n-neen	n-neen	n-neen	n-neen	
see	n-kius,	n-kius,	kiso,			** ngiso
	$n-i l t$	n-iit	$n-i \frac{1}{}$	$n-i i t$	n-iit	
eat	na-ah	na-ah	na-ah	na-ah	na-ah	**aha
		n-euk	n-euk	n-eek		**engu
drink	n-iun	n-iun	n-iun	$n-i m$	n-iun	
bite	n -rau	n-sau, n-rau	n -sau	n -sau	n -sau	**sau
fall	n-mouf	n-mouf	n-mouf	n-mouf	n-mouf	**mofu
drop s.t.	na-mofup	na-mofu?		na-nofut	na-nofur ${ }^{27}$	
burn	n -out	n-out	n-out	n-otulg	na-Ptunu	**otu
pound	na-pau	na-pau	na-pau	na-paulg		**mbau
die	n-maet	n-maet	n-maet	n-maat	n-maat	
dry in sun	n-hoe	n-hoe	n-hoe	na-hoe?	na-hoe?	**hoe
bathe	na-niu	na-niu	na-niu	na-niu	na-niu	
bathe s.o.	na-niu	na-niu	na-niu	na-niulg	na-niu	
swim	na-bhae?	na-bhae?		na-loo?	na-loo?	

[^14]| item
 fly | Ro'is na-tpene | Kotos na-tpeen, na-kpeen | Molo na-pleel | Amfo'an na-pleel | Baikeno na-pleel | $\underset{* * \text { ptene }}{\text { pre-UM }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| kill | n-roor | n-roor, na-Pmaet | lolo | lolog | n -lolo? | **roro |
| give | n-fee | n-fee | n-fee | n-fee\|l | n-fee | KM: n-fee |
| cough | n-booh | n -booh | n-booh | n-booh | n-booh | **boho |
| spit | na-niun | nAkiun, na-roon | na-kiun | na-kiin | na-kinu | ** ${ }^{\text {ninu }}$ |
| vomit | n-roPa | n-roo? | n -loo? | n -loo? | n -loo? | ** ropa |
| itchy | mahata | mahata? | n-mahaat | na-haat | mahaat | |
| go | n-nao | n-пао | n-nao | n-nao | n-nao | KM: n-nao |
| walk | nao hae | n-nenuk | | na-naam | | |
| run | n-aen | n-aen | n-aen | n-aen | n-aen | |
| stand | n-haek | n-haek | n-haek | n-haak | n-haak | **hayge |
| sit | na-mteer | n-took | n-took | n-took | n-took | **tongo |
| lie down; sleep | n-tuup | n-tuup | n-tuup | n-tuup | n-tuup | **tumba |
| be sleepy | n-reru? | n-reru? | n -sesa? | n-pePulg | n-pePu | |
| dream | na-mnee | na-mnei | n -Punmae? | na-smaan | na-mnei | |
| rise | n -feen | **fena |
| raise | na-fena-? | na-fena-? | na-fena-? | na-fena-b | na-fene? | |
| wake s.o. up | | n-poo? | n-poo? | n-poo? | | **mboro |
| come ${ }^{28}$ | neem | neem | neem | neem | neem | KM: neam |
| pregnant | na-kapu? | na-Rapu? | na-Paup | maPaap | na-Paap | **kambu? |
| L-Miscellaneous | | | | | | |
| not ${ }^{29}$ | mae? | ka...fa | ka...fa | ka | ka...fa | KM: ka...fa |
| what? | saa? | saa? | saa? | saPan | sapan | **sapa |
| who? | sekau | sekau | sekau | sekolg, sekon | sikau | **sengau |
| where? | et mee | et mee | es mee | es mee | es mee | **mee |
| how many? | fauk | fauk | fauk | fauk | faukan | |
| how? | en mee | on mee | on mee | on mee | on mee | KM:on mee |
| why? | na-nsaa? | na-nsaa? | na-nsaa? | na-nsaa? | na-nsaa? | **nsaa? |
| when? | reka? | reka? | leka? | leka? | leka? | **renga? |

REFERENCES

Blust, Robert. 1992. On speech strata in Tiruray. In Papers in Austronesian Linguistics, no. 2, ed. by Malcolm Ross, 1-52. Canberra: Pacific Linguistics.
——. 2009. The Austronesian languages. Canberra: Pacific Linguistics. 2011. The marsupials strike back: A reply to Schapper (2011). Oceanic Linguistics 51:261-77.
Blust, Robert, and Stephen Trussel. Ongoing. Austronesian comparative dictionary. (Online open access site at: www.trussel2.com/ACD.) [Accessed May 2, 2015.]

[^15]Charpentier, Jean-Michel, and Alexandre François. 2015. Linguistic atlas of French Polynesia. Berlin: de Gruyter Mouton.
Dempwolff, Otto. 1922. Entstehung von Nasalen und Nasalverbindungen im Ngaju (Dajak). Zeitschrift für Eingeborenen Sprachen 13:161-205.
Donohue, Mark. 2007. The Papuan language of Tambora. Oceanic Linguistics 46:520-37.
Dyen, Isidore. 1956. The Ngaju-Dayak 'Old speech stratum'. Language. 32:83-87.
Edwards, Owen. n.d. Morphological metatheses. PhD thesis (ongoing), Australian National University.
Grimes, Charles. 1991. Final consonants in Masarete: Insights from a Central MalayoPolynesian language. In VICAL 2: Western Austronesian and contact languages: Papers from the Fifth International Conference on Austronesian Linguistics. ed. Ray Harlow, 169-213. Auckland: Linguistic Society of New Zealand.
Grimes, Charles, Heronimus Bani, and Agustinho Caet. 2012. Quantifying things in the grammars of Amarasi (eastern Indonesia) and Baikeno (Timor Leste). Paper presented at the 12th International Conference on Austronesian Linguistics, Bali, July 2-6.
Jonker, J. C. G. 1908. Rottineesch-Hollandsch Woordenboek. Leiden: E. J. Brill.
Laker, Stephen. 2009. An explanation for the early phonemicisation of a voice contrast in English fricatives. English Language and Linguistics 13(2):213-26.
Lebar, Frank, ed. 1972. Ethnic groups of insular Asia. vol.1: Indonesia, Andaman Islands and Madagascar. New Haven: Human Relations Area Files Press.
Middelkoop, Pieter. 1972. Nederlands-Timorees Woordenboek. MS.
Reid, Lawrence A. 1994. Possible non-Austronesian lexical elements in Philippine Negrito languages. Oceanic Linguistics 33:37-72.
Ross, Malcolm. 1988. Proto Oceanic and the Austronesian languages of western Melanesia. Canberra: Pacific Linguistics.
Ross, Malcolm, and Åshild Næss. 2007. An Oceanic origin for Äiwoo, the language of the Reef Islands. Oceanic Linguistics 46:456-98.
Steinhauer, Hein. 1996a. Morphemic metathesis in Dawanese (Timor). In Papers in Austronesian linguistics no. 3, ed. by Hein Steinhauer, 217-32. Canberra: Pacific Linguistics.
-_. 1996b. Synchronic metathesis and apocope in three Austronesian languages of the Timor area. In Pan-Asiatic linguistics: Proceedings of the Fourth International Symposium on Language and Linguistics, 8-10 January, vol. 2, ed. by Suwilai Premsrirat, 471-92. Bangkok: Institute of Language and Culture for Rural Development, Mahidol University.
Tamelan, Thersia. 2007. An overview of Dela-Oenale verb morphology: A language spoken in western Rote. Paper presented at the 5th International East Nusantara Conference on Language and Culture, Kupang, Indonesia, August 1-3.
Wolff, John U. 2010. Proto-Austronesian phonology with glossary. Ithaca, NY: Cornell Asia Program Publications
Williams-van Klinken, Catharina, and Rob Williams. 2015. Mapping the mother tongue in Timor-Leste: Who spoke what where in 2010? Dili: Dili Institute of Technology. http://www.tetundit.tl/TimorLang.html. [Accessed April 30, 2015.]

[^0]: 1. I would like to thank Charles Grimes, Mark Donohue, and an anonymous reviewer for comments on earlier versions of this paper that have led to substantive improvements in both argumentation and content. Charles Grimes also provided unpublished Kusa-Manea and Baikeno data. Thanks also goes to James Fox who provided me with his copy of Middelkoop's unpublished Molo dictionary. Any errors remain my own.
[^1]: 2. "Since Uab Meto varieties have no /d/, 'Dawan' as a language name is widely thought to be from another language's term for 'enemy', and is offensive to many Uab Meto speakers. In some areas they have become either immune or resigned to its use, and no longer object every time someone uses 'Dawan'. In other areas they object consistently" (Grimes, Caet, and Bani 2013:1). Regarding the name Timorese, speakers of other languages spoken on the island of Timor object to the monopoly of the term Timor for only one language. Regarding the name Atoni, the term /atoni?/ means 'man' in most varieties of Uab Meto and can be used for the ethnic group, but never for their language.
 3. The locations and names of varieties of Uab Meto on this map coincide almost exactly with the princedoms of precolonial West Timor. Note that the label Kotos on this map covers two selfidentified dialects of Amarasi (Kotos and Tais Nonof), as well as the variety of Uab Meto known as Amabi and/or Ketun. My data indicate that Tais Nonof and Ketun/Amabi are almost identical to Kotos Amarasi. Ro'is speakers self-identify their speech as a variety/dialect of Amarasi.
[^2]: 4. The voiceless coronal plosive $/ t /$ is dental [t] in all varieties of Uab Meto.
 5. Most varieties have $/ 1 /$. The two varieties known to have $/ \mathrm{r} /$ are Amarasi in the southwest and Kusa-Manea in the extreme east. In Kusa-Manea, the lateral /// also frequently occurs in unassimilated Tetun loanwords.
 6. All voiced obstruents (including $/ \mathrm{b} /$) are realized variously as plosives, fricatives, or approximants. In Baikeno, the postalveolar obstruent is almost universally a fricative [3] or [z], and is transcribed $/ 3 /$ in Baikeno data in this paper.
 7. The mid vowels /e/ and $/ \mathrm{o} /$ are usually raised to mid-high [e] and [o] before high vowels; in other contexts they are mid-low [$\varepsilon]$ and $[0]$. In some northern varieties of Uab Meto, this vowel height difference is becoming phonemic (see Steinhauer 1996b:478).
[^3]: 8. The 1st person forms do not consistently show initial h for 'actor' and initial ηg for 'undergoer' in Dela. The 1SG and 1PL.EXCL forms are universally $a u$ and hai, respectively. The 1PL.INCL actor pronoun is hita, while the undergoer form is either hita or ngita (Tamelan 2007:2).
[^4]: 9. Blust and Trussel (ongoing) include Uab Meto baba-f in their etymology of PMP *baba. They gloss it as 'MB, FZH' and appear to give Lebar (1972) as a source (though this may be slippage from the previous entry for Ende). I cannot find any reference to this term in Lebar (1972:103-5).
 10. The regular reflex of PMP *b in Rote languages is b. Tii/Lole also attest boa as a reflex of *buaq (Jonker 1906:52).
[^5]: 11. There are a further two potential retentions of word final *s that involve other irregularities and are likely not directly inherited. These are ?*halas > Uab Meto nasi 'forest' and PCMP ?*belas > Ro'is fenes, Kotos/Molo benas 'machete'.
[^6]: 12. The Amarasi reflex of *ikuR is $i k u$-, due to a later rule of mid vowel raising after high vowels.
 13. Amarasi has variants ume ~umi for 'house'. The forms with final $\mathrm{i} /$ are due to the raising of mid vowels mentioned in the preceding footnote.
[^7]: 14. I have currently collected three inheritances from PMP that have not been shortened to a disyllable in Uab Meto. All begin with the prefix *ma-. These three words are *ma-nipis > mainihas 'thin', *ma-dindin > mainirin (Ro'is), mainikin 'cold', and *ma-bəRəqat > ma?fena? 'heavy'.
[^8]: 15. Rikou, in eastern Rote, has /p/ for western Rote /mb/; thus Rikou has pau 'stab, pierce', and ape 'saliva'.
[^9]: 16. Examples of $* \mathrm{r}>k$ include Mekeo of the Central Papuan subgroup of Oceanic in Papua New Guinea (Ross 1988:206) and South Marquesan in French Polynesia (Charpentier and François 2015:93).
 17. The complete pathway could be $* * \mathrm{nd}>* * \mathrm{~d}>{ }^{* *} \mathrm{r}>{ }^{* *} \mathrm{\gamma}>* * \mathrm{~g}>k$. Whatever the exact history, the change ${ }^{* *}$ nd $>k$ in Uab Meto varieties other than Ro'is is a strong diagnostic for subgrouping these varieties separately from Ro'is.
[^10]: $\overline{\text { 18. Rikou (eastern Rote) }}$ appears to have $/ \mathrm{k} /$ in these cognates, for example, laka 'head'.

[^11]: 19. Another line of investigation not pursued in this paper is the evidence provided by Uab Meto morphology and syntax. Thus, morphological metathesis is attested in many languages of the region including Uab Meto, Helong, Kemak, Mambae, and Leti/Luang. Given that processes of morphological metathesis are vanishingly rare cross-linguistically, such a high concentration of metathesis in one area cannot be due to chance. However, the nature of its significance for comparative purposes is currently unclear.
[^12]: 24. Note: ate- = 'liver, the organ', nera-/neka- = 'liver as seat of emotions'.
 25. Ro'is has tera- and Kotos has teka- with the meaning 'lungs'.
[^13]: 26. The Amfo'an forms for 'grandfather/MoBr' and 'grandmother/FaSi' have been checked with multiple speakers and are not elicitation errors. They are genuinely opposite compared with other Uab Meto varieties shown.
[^14]: 27. The forms in Amfo'an and Baikeno are not errors or mishearings. Unlike the verb for 'fall', which begins with $/ \mathrm{m} /$, the verb 'drop s.t.' begins with $/ \mathrm{n} /$.
[^15]: 28. The verb 'to come' has irregular forms. In Kotos: 1SG: uum, 2SG: uum, 3SG: neem, 1PL.EXCL: teem, 1PL.INCL: iim, 2PL: iim, 3pL: neman. Ro'is is the same as Kotos except for 1sG kuum. In Baikeno: 1sG: oum, 2SG: oum, 3sG: neem, 1pL.EXCL: teem, 1PL.INCL: eem/aim, 2PL: eem/aim, 3PL: neman.
 29. The negative is often bipartite: $k a$ appears before negated verbs and $f a$ after negated verbs. Ro'is mae? appears after the negated verb. Amfo'an has entirely lost the second part of the negative.
