Trigonal prismatic metal complexes: a not so rare coordination geometry? \dagger

Leighton J. Alcock, ${ }^{\text {a }}$ Germán Cavigliasso, ${ }^{\mathrm{b}}$ Anthony C. Willis, ${ }^{\mathrm{b}}$ Robert Stranger ${ }^{\mathrm{b}}$ and Stephen F. Ralph*a

Received 26th March 2016, Accepted 9th April 2016
DOI: 10.1039/c6dt01176d
www.rsc.org/dalton

[^0]the same ligand. ${ }^{7-9}$ Another notable aspect of the solid state structures of the Cd (II) and $\mathrm{Hg}(\mathrm{II})$ complexes was that the configuration of the nitrogen atoms in the two trigonal caps were different, i.e. $R_{3} S_{3}$. In contrast, for all octahedral complexes of Me_{5} tricosane the nitrogen atoms have the same configuration, S_{6} or R_{6}, depending on whether the molecule is the Λ or Δ enantiomer. ${ }^{6}$ This is also true for all known solid state structures of metal complexes of related small cavity cage hexaamine ligands such as sarcophagine (sar or $3,6,10,13,16,19-$ hexaazabicyclo[6.6.6]icosane), and its derivatives. ${ }^{10}$

The above observations suggest Me_{5} tricosane can adopt different conformations, including one that affords metal complexes with trigonal prismatic geometry under certain conditions. The related hexaamine ligand Me_{8} tricosane (1,5,5,9,13,13,20,20-octamethyl-3,7,11,15,18,22-hexaazabicyclo[7.7.7]tricosane) also appears to exhibit a degree of flexibility, as both six- and five-coordinate structures in which the ligand is bound to $\mathrm{Cu}(\mathrm{II})$ have been reported. ${ }^{10}$ We therefore decided to explore the generality of trigonal prismatic geometries amongst complexes of these expanded cavity hexaamine ligands, by preparing the $\mathrm{Zn}(\mathrm{II}), \mathrm{Cd}$ (II) and $\mathrm{Hg}(\mathrm{II})$ complexes of Me_{8} tricosane, and determining their solid state structures.

Solutions containing $\left[\mathrm{Zn}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$, or the corresponding $\mathrm{Cd}(\mathrm{II})$ or $\mathrm{Hg}(\mathrm{II})$ complexes, were obtained by mixing equimolar quantities of the free ligand and the metal nitrate salt in methanol under ambient conditions. Formation of the metal complexes was confirmed by electrospray ionization mass spectrometry, which we have shown previously provides simple, easy to interpret spectra of these systems. ${ }^{11}$ Upon standing the nitrate salts of the complexes precipitated. Recrystallization from methanol/ethanol (Zn and Cd) or methanol/ $\mathrm{H}_{2} \mathrm{O}(\mathrm{Hg})$ afforded crystals suitable for X-ray diffraction. Details of the crystallographic data collection and refinement processes may be found in the ESI. \dagger Fig. 1 shows the solid state structures of the molecules viewed orthogonal to and directly along the C_{3} axis of the molecules, while Table 1 provides selected bond lengths and the trigonal twist angles for each of the three metal cage complexes, as well as related com-

(a)

(c)

Fig. 1 Solid state structures viewed orthogonal to, and along the C_{3} axis of: (a) $\left[\mathrm{Zn}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$; (b) $\left[\mathrm{Cd}\left(\mathrm{Me}_{8} \text { tricosane) }\right]^{2+}\right.$ and (c) $[\mathrm{Hg}$ (Mestricosane) $]^{2+}$. Coordinates taken from the Cambridge Crystallographic Database and displayed using Mercury 3.1. No hydrogen atoms shown. Grey spheres = carbon atoms; blue spheres = nitrogen atoms; orange sphere = zinc atom; green sphere = cadmium atom; red sphere $=$ mercury atom.

Table 1 Metal-nitrogen bond distances and average trigonal twist angles (ϕ) for Zn, Cd and $\mathrm{Hg}(॥)$ complexes

Structure	M-N range (\AA)	$\phi(\circ)$	Ref.
$\left[\mathrm{Zn}\left(\mathrm{Me}_{8}\right.\right.$ tricosane $\left.)\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$2.192(1)-2.260(1)$	45.9	
$\left[\mathrm{Zn}\left(\mathrm{Me}_{5}\right.\right.$ tricosane $\left.)\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	$2.196(2)-2.196(2)$	60.7	7
$\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{2}\right.$-sar) $]\left(\mathrm{NO}_{3}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	$2.181(3)-2.215(4)$	28.6	6 and 12
$\left[\mathrm{Zn}(\mathrm{en})_{3}\right]\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)$	$2.09-2.29$		13
$\left[\mathrm{Cd}\left(\mathrm{Me}_{8}\right.\right.$ tricosane $\left.)\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$2.398(2)-2.408(2)$	0	
$\left[\mathrm{Cd}\left(\mathrm{Me}_{5}\right.\right.$ tricosane $\left.)\right]\left(\mathrm{PF}_{6}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$2.386(7)-2.400(7)$	0	6
$\left.\left[\mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{2}-\mathrm{sar}^{2}\right)\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	$2.27(1)-2.34(1)$	27.4	6 and 12
$\left[\mathrm{Cd}\left(\mathrm{en}_{3}\right]\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)\right.$	$2.43(3)-2.46(3)$	a	14
$\left[\mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{F}_{2}$	$2.336(2)-2.406(2)$	51.3	15
$\left[\mathrm{Hg}\left(\mathrm{Me}_{8}\right.\right.$ tricosane $\left.)\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$2.433(2)-2.440(2)$	0	
$\left[\mathrm{Hg}\left(\mathrm{Me}_{5}\right.\right.$ tricosane $\left.)\right]\left(\mathrm{PF}_{6}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$2.39(2)-2.43(1)$	0	6
$\left[\mathrm{Hg}\left(\mathrm{NH}_{3}\right)_{2}\right.$-sar) $\left.)\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	$2.32(2)-2.41(2)$	25.8	6 and 12
$a \operatorname{Twist~angle~not~available.~}$			

plexes of other hexaamine ligands.

The structure of the $\left[\mathrm{Zn}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$ cation is very similar to that reported previously for $\left[\mathrm{Zn}\left(\mathrm{Me}_{5} \text { tricosane }\right)\right]^{2+} .{ }^{6}$ In both cases the metal ion has a distorted octahedral geometry, with the configurations of all six nitrogen atoms identical to each other for a given enantiomeric configuration of chelate
rings. Furthermore both zinc complexes have skewed boat conformations for the three rings forming the "straps" connecting the two trigonal "caps" of the molecule. For $\left[\mathrm{Zn}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$ the degree of distortion from a regular octahedral geometry is greater, with its trigonal twist angle of 45.9° being further from the theoretical value for a perfect octahedron $\left(60^{\circ}\right)$ than that for $\left[\mathrm{Zn}\left(\mathrm{Me}_{5} \text { tricosane }\right)\right]^{2+}\left(60.7^{\circ}\right)$. In addition, for $\left[\mathrm{Zn}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$ two $\mathrm{N}-\mathrm{Zn}-\mathrm{N}$ angles are $167.65(5)^{\circ}$, while the third is $171.64(7)^{\circ}$. In contrast, for $\left[\mathrm{Zn}\left(\mathrm{Me}_{5} \text { tricosane }\right)\right]^{2+}$ the same three $\mathrm{N}-\mathrm{Zn}-\mathrm{N}$ bond angles (179.3(2), 178.8(2) and $\left.176.90(10)^{\circ}\right)$ are all very close to the value of 180° for a regular octahedron. The $\mathrm{Zn}-\mathrm{N}$ bond distances in $\left[\mathrm{Zn}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$ are similar to those of other $\mathrm{Zn}(\mathrm{II})$ hexaamine complexes (Table 1).

Scrutiny of Fig. 1 shows that the $\left[\mathrm{Cd}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$ and $\left[\mathrm{Hg}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$ cations have higher symmetry than the Zn (II) analogue, owing to the former complexes having exact trigonal prismatic geometries (twist angle $=0^{\circ}$). The cadmium and mercury molecules show M-N bond distances comparable to those of other hexaamine complexes of these metal ions (Table 1). In contrast to the Zn complex, the configuration of the three nitrogen atoms in one cap is different to that of the remaining three, and the six-membered rings in the straps exhibit chair conformations. In order to accommodate trigonal prismatic geometries for the cadmium and mercury complexes, three of the $\mathrm{N}-\mathrm{M}-\mathrm{N}$ angles are heavily distorted away from 180°. For the cadmium complex the relevant bond angles are $136.34(6), 134.71(6)$ and $136.90(6)^{\circ}$, while for the mercury structure they are $136.50(8), 134.76(8)$ and $137.04(8)^{\circ}$.

The geometries of the $\mathrm{Cd}(\mathrm{II})$ and $\mathrm{Hg}(\mathrm{II})$ complexes of $\mathrm{Me}_{8^{-}}$ tricosane are in stark contrast to the distorted octahedral geometries reported for the corresponding complexes of $\left(\mathrm{NH}_{3}\right)_{2}-$ sar, or for $\left[\mathrm{Zn}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$. However, they are identical to those reported previously for $\left[\mathrm{Cd}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$ and $\left[\mathrm{Hg}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$. This suggests that the trigonal prismatic geometry may be a standard structural motif for complexes of expanded hexaamine cage ligands, when coordinated to metal ions without significant electronic demands, and optimum M-N bond distances greater than a threshold value. Scrutiny of the $\mathrm{M}-\mathrm{N}$ bond distances in Table 1 provides insight as to what this threshold M-N bond distance might be. Since neither $\left[\mathrm{Zn}\left(\mathrm{Me}_{5} \text { tricosane }\right)\right]^{2+}$ or $\left[\mathrm{Zn}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$ have trigonal prismatic geometries, the threshold must be greater than $\sim 2.26 \AA$. In contrast, all the $\mathrm{M}-\mathrm{N}$ bond distances for the $\mathrm{Cd}(\mathrm{II})$ and $\mathrm{Hg}(\mathrm{II})$ complexes of these ligands are within the range 2.39-2.44 A. This therefore suggests the threshold M-N bond distance for a trigonal prismatic complex is probably $\geq 2.30 \AA$.

In order to better understand the factors that determine the geometry of the metal coordination sphere in these systems, we have performed a range of DFT calculations (see ESI \dagger for details of computational methods). Initially the effect of varying the trigonal twist angle on the total energy of the Zn (II), $\mathrm{Cd}($ II $)$ and $\mathrm{Hg}($ II $)$ complexes of Me_{8} tricosane was explored. The results of these calculations are presented in Fig. 2. In order to facilitate comparison of the data obtained for the different complexes, the lowest energy calculated for

Fig. 2 Effect of trigonal twist angle on the potential energy surfaces of metal complexes of Mestricosane: (a) complexes with an S_{6} set of nitrogen atom configurations; and (b) complexes with an $R_{3} S_{3}$ set of nitrogen atom configurations. Orange $=\left[\mathrm{Zn}\left(\mathrm{Me}{ }_{8} \operatorname{tricosane}\right)\right]^{2+}$; green $=[C d$ $\left(\right.$ Me $_{8}$ tricosane $\left.)\right]^{2+}$ and red $=\left[\mathrm{Hg}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$.
each complex was set to $0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. For each metal complex, two initial ligand geometries were used. The first was that observed in the X-ray structure of $\left[\mathrm{Zn}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$, and had overall D_{3} symmetry, with all six nitrogen atoms exhibiting an identical, S configuration (i.e. S_{6}). The second initial geometry was that present in the solid-state structure of the mercury complex. In these cases all nitrogen atoms in a single cap had the same configuration, however the opposite cap had a catoptric set of nitrogen configurations $\left(R_{3} S_{3}\right)$, resulting in overall $C_{3 \mathrm{~h}}$ symmetry.

In each potential energy surface there is at least one discontinuity corresponding to a change in conformation of the rings in one of the caps of the ligand. These changes in ring conformation alter the chirality of the caps, from λ to δ (Fig. 3) or vice versa, ${ }^{16}$ and result in three different overall (pseudo) symmetries. For example, in Fig. 2a, the potential energy surface for $\left[\mathrm{Zn}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$ molecules with a S_{6} set of nitrogen atom configurations exhibits δ chirality in both caps at very low twist angles. When the twist angle is increased to 11° a discontinuity is observed. This is a result of the conformation of the three rings in one of the caps changing, resulting in the cap's chirality changing to λ, and an overall change in symmetry of the molecule to C_{3}. When the twist angle is increased further to 33°, the chirality at the second cap changes owing to identical conformational changes to the rings in that cap, which result in the molecule now having overall D_{3} symmetry. For $\left[\mathrm{Zn}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$ molecules with a $R_{3} S_{3}$ set of nitrogen atom configurations (Fig. 2b), the potential energy surface only shows one discontinuity. This is because at low twist angles the energetically most preferred structure already has caps with opposing chirality. Once the twist angle is increased to 10° a change in conformation occurs to the rings in one of the caps resulting in δ chirality for both. There is no change to the C_{3} symmetry of the molecule as a result of the change in ring conformations. The potential energy surfaces for the two different geometries of the cadmium and mercury complexes of Me_{8} tricosane show the same number of discontinuities as

Fig. 3 Illustration of chirality in the caps of cage complexes (exaggerated for clarity).
the corresponding forms of $\left[\mathrm{Zn}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$, again reflecting the possibility of molecules with either the same or different chirality in the two caps.

The potential energy surfaces correctly predict that the most stable geometry for $\left[\mathrm{Cd}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$ and $\left[\mathrm{Hg}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$ is trigonal prismatic, with an $R_{3} S_{3}$ set of nitrogen atom configurations, and a twist angle of exactly 0°, as observed in their crystal structures. When the initial geometry imposed on these complexes had an S_{6} set of nitrogen atom configurations, the calculations again showed energy minima at twist angles very close $\left(<5^{\circ}\right)$ to that for a trigonal prismatic geometry. This confirms that this geometry is strongly preferred for the $\mathrm{Cd}(\mathrm{II})$ and Hg (II) complexes of Me_{8} tricosane.

Surprisingly, the calculations predicted that a structure with an $R_{3} S_{3}$ set of nitrogen atom configurations would be energetically more stable for $\left[\mathrm{Zn}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$, than a structure with D_{3} symmetry and S_{6} set of nitrogen atoms, as observed in the solid state structure. In this context it is noteworthy that the difference between the energy minima for the $R_{3} S_{3}$ and S_{6} forms of the zinc complex was less than $8 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Re-optimising these structures with different functionals (PBE and TPSS) reduced the energy difference to less than $4 \mathrm{~kJ} \mathrm{~mol}^{-1}$. This low energy barrier may be overcome by packing forces in the solid state.

The relationship between the metal-nitrogen bond distances of metal complexes of Me_{8} tricosane, and their trigonal twist angles, was investigated by an additional set of DFT calculations, the results of which are presented in Fig. 4. These calculations determined the lowest energy structures of theoretical metal complexes of Me_{8} tricosane with a wide range of metal ions (see ESI \dagger for list), including those with and without crystal field stabilisation (CFSE). Fig. 4 shows that most metal complexes with CFSE have calculated structures with trigonal twist angles consistent with a geometry that is close to octahedral, or a distorted octahedron. Two metal complexes, featuring $\mathrm{V}(\mathrm{III})$ and $\mathrm{V}(\mathrm{iv})$, did however exhibit twist angles $<7^{\circ}$, suggesting that experimentally they might be found to instead have trigonal prismatic geometries. The reasons for this are presently unclear, as the expected $\mathrm{M}-\mathrm{N}$ bond distances in these complexes are not dissimilar to those of any of the other metal complexes with CFSE.

In contrast to the above, the vast majority of metal complexes without CFSE were predicted to have structures with twist angles $<5^{\circ}$, suggesting that experimentally they will have trigonal prismatic structures. The only exceptions to this were the complexes with $\mathrm{Zn}(\mathrm{II})$ and $\mathrm{Mg}(\mathrm{II})$, which instead had calculated structures with twist angles of $\sim 25^{\circ}$. The reasons for this are not known, however this result is consistent with the experimental observation of $\left[\mathrm{Zn}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$ adopting a distorted octahedral geometry. Fig. 4 also suggests that the trigonal prismatic geometry will be universally adopted by all metal complexes which have $\mathrm{M}-\mathrm{N}$ distances $>2.35 \AA$. This prediction is consistent with the experimental solid state structures for $\left[\mathrm{Cd}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$ and $\left[\mathrm{Hg}\left(\mathrm{Me}_{8} \text { tricosane }\right)\right]^{2+}$. We are currently exploring the general validity of the above prediction, by synthesising and characterising the solid state structures of additional complexes of Me_{8} tricosane with metal ions expected to form $\mathrm{M}-\mathrm{N}$ bond distances longer than the threshold value.

Fig. 4 Effect of metal-nitrogen bond distance on trigonal twist angle of metal complexes of Mestricosane: light blue $=$ metal complexes without crystal field stabilisation energy (d^{0}, high-spin d^{5} and d^{10}); dark blue = metal complexes with crystal field stabilisation energy (all other configurations).

In order to explore the generality of the trigonal prismatic geometry for complexes of hexaamine cage ligands with large metal ions without any CFSE, we also performed DFT calculations on the Zn (II), $\mathrm{Cd}($ (II $)$ and Hg (II) complexes of Me_{5} tricosane. The potential energy surfaces obtained by examining the effects of varying the trigonal twist angle on the total energy of these systems are presented in Fig. S1. \dagger The energy minima for the surface of the $\mathrm{Zn}($ II $)$ complex was found for the ligand with an S_{6} set of nitrogen atom configurations, and occurred at a twist angle very close to 60°. Both observations are consistent with the experimental solid state structure of this complex. Similarly the energy minima for the $\mathrm{Cd}(\mathrm{II})$ and $\mathrm{Hg}($ (II) complexes of Me_{5} tricosane occurred when the twist angle was 0°, and the ligand had an $R_{3} S_{3}$ set of nitrogen atom configurations. Interestingly the potential energy surfaces for all three metal complexes with an S_{6} set of nitrogen atom configurations had a different shape than the Me_{8} tricosane analogues. In the case of complexes of Me_{5} tricosane, the total energy increases at twist angles less than $\sim 40^{\circ}$. In contrast, the total energy for the metal complexes of Me_{8} tricosane decreased at twist angles $<10^{\circ}$ (Fig. 2a), resulting in values close to $0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The relationship between the preferred metalnitrogen bond distance and trigonal twist angle was also investigated for metal complexes of Me_{5} tricosane (Fig. S2 \dagger). This suggested that the trigonal prismatic geometry would be adopted by metal complexes with $\mathrm{M}-\mathrm{N}$ distances $>2.36 \AA$.

Overall, the results presented here show that when steric factors favouring formation of octahedral complexes are diminished, owing to lengthening of $\mathrm{M}-\mathrm{N}$ bonds, there are greater opportunities for observing trigonal prismatic complexes with d^{10} metal ions. It must be remembered, however, that at long $\mathrm{M}-\mathrm{N}$ distances the trigonal prismatic geometry does not become more stable than the octahedron, in the absence of any other factors. Therefore the observation of exact trigonal prismatic geometries for the Cd (II) and Hg (II) complexes of both Me_{5} tricosane and Me_{8} tricosane suggests there are other significant influences present. The most likely is a high degree of pre-organisation of the structure of these ligands in favour of forming metal complexes with a trigonal prismatic geometry. Such pre-organisation was noted to be a feature of the structure of $\left[\mathrm{Me}_{5}\right.$ tricosane $\left.\mathrm{H}_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ in the solid state. ${ }^{6}$

Notes and references

1 C. E. Housecroft and A. G. Sharpe, Inorganic Chemistry, Pearson Education Ltd., Harlow, England, 4th edn, 2012.
2 K. Seppelt, Acc. Chem. Res., 2003, 36, 147.
3 R. Eisenberg and J. A. Ibers, Inorg. Chem., 1966, 5, 411.
4 R. van Gorkum, F. Buda, H. Kooijman, A. L. Spek, E. Bouwman and J. Reedijk, Eur. J. Inorg. Chem., 2005, 2255.

5 T. B. Karpishin, T. D. P. Stack and K. N. Raymond, J. Am. Chem. Soc., 1993, 115, 182.

7 K. J. Haller, A. D. Rae, A. M. T. Bygott, D. C. R. Hockless, S. F. Ralph, R. J. Geue and A. M. Sargeson, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1999, 55, 380.
8 R. J. Geue, A. Hohn, S. F. Ralph, A. M. Sargeson and A. C. Willis, J. Chem. Soc., Chem. Commun., 1994, 1513.

9 P. V. Bernhardt, R. Bramley, R. J. Geue, S. F. Ralph and A. M. Sargeson, Dalton Trans., 2007, 1244.

10 C.-J. Qin, L. James, J. D. Chartres, L. J. Alcock, K. J. Davis, A. C. Willis, A. M. Sargeson, P. V. Bernhardt and S. F. Ralph, Inorg. Chem., 2011, 50, 9131.

11 S. F. Ralph, M. M. Sheil, L. A. Hick, R. J. Geue and A. M. Sargeson, J. Chem. Soc., Dalton Trans., 1996, 4417.

12 P. Comba, A. M. Sargeson, L. M. Engelhardt, J. M. Harrowfield, A. H. White, E. Horn and M. R. Snow, Inorg. Chem., 1985, 24, 2325.
13 N. V. Podberezskaya and S. V. Borisov, J. Struct. Chem., 1972, 12, 1034.
14 N. V. Podberezskaya, V. V. Bakakin and S. V. Borisov, J. Struct. Chem., 1970, 10, 734.

15 F. Kraus, Monatsh. Chem., 2012, 143, 1097.
16 L. R. Gahan and J. M. Harrowfield, Polyhedron, 2015, 94, 1-51.

[^0]: ${ }^{a}$ School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia. E-mail: sralph@uow.edu.au
 ${ }^{b}$ Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia
 \dagger Electronic supplementary information (ESI) available. CCDC 1456584-1456586 for $\left[\mathrm{Zn}\left(\mathrm{Me}_{8}\right.\right.$ tricosane $\left.)\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Cd}\left(\mathrm{Me}_{8}\right.\right.$ tricosane $\left.)\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $[\mathrm{Hg}$ (Me ${ }_{8}$ tricosane) $]\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6dt01176d

