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ABSTRACT

The vigorous current systems in the Southern Ocean play a key role in regulating the
Earth’s oceans and climate, with the record of long-term environmental change mostly contained
in deep-sea sediments. However, the well-established occurrence of widespread regional
disconformities in the abyssal plains of the Southern Ocean attests to extensive erosion of deep-
sea sediments during the Quaternary. We show that a wide belt of rapid sedimentation rates (>
5.5 cm/kyr) along the Southeast Indian Ridge (SEIR) is a global anomaly and occurs in a region
of low surface productivity bounded by two major disconformity fields associated with the
Kerguelen Plateau to the east and the Macquarie Ridge to the west. Our high-resolution
numerical ocean circulation model shows that the disconformity fields occur in regions of
intense bottom current activity where current speeds reach 0.2 m/s and are favorable for
generating intense nepheloid layers. These layers are transported towards and along the SEIR to

regions where bottom current velocities drop to < 0.03 m/s and fine particles settle out of
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suspension consistent with focusing factors significantly greater than 1. We suggest that the
anomalous accumulation of sediment along an 8,000 km-long segment of the SEIR represents a
giant succession of contourite drifts that is a major extension of the much smaller contourite east
of Kerguelen and has occurred since 3—5 Ma based on the age of the oldest crust underlying the
deposit. These inferred contourite drifts provide exceptionally valuable drilling targets for high-
resolution climatic investigations of the Southern Ocean.

INTRODUCTION

The palimpsest nature of the abyssal seafloor is nowhere more apparent than in the
Southern Ocean where the mighty Antarctic Circumpolar Current (Fig. 1), comprising a series of
braided jets transports a massive volume of ocean water eastwards at an estimated 137 + 7 x 10°
m’s” (Meredith et al., 2011). Pioneering magnetostratigraphic analysis of deep-sea sediment
cores (Goodell and Watkins, 1968; Kennett and Watkins, 1976; Ledbetter and Ciesielski, 1986;
Osborn et al., 1983; Watkins and Kennett, 1972) provided an unprecedented view of the dynamic
nature of deep-sea currents in the Southern Ocean and their deleterious effect on the continuity
of the sedimentary record. This evidence was supported by direct observations of ocean-bottom
bedforms (Kennett and Watkins, 1976; Kolla et al., 1976) and manganese nodules (Watkins and
Kennett, 1977).

Understanding the transport of modern deep-sea sediment is critical for accurate models
of paleoclimate and the widespread use of the sedimentological record as a proxy for
productivity where the connection between the seafloor and sea-surface is controvertible. The
Southern Ocean, where diatoms contribute ~ 75% of primary production (Crosta et al., 2005) and
dominate biogenic sediments (Goodell et al., 1973), is a case in point. However, most of the key

studies on large-scale sediment reworking in the Southern Ocean were conducted when relatively
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little was known about the oceanography of this region, and even the bathymetry and tectonic
fabric, which underpin the distribution of deep-sea currents, were lacking detail. Here we
combine a high-resolution numerical model of bottom currents with sedimentological data to
constrain the redistribution of sediment across the abyssal plains and adjacent mid-ocean ridges
in the Southern Ocean.
METHODOLOGY

The distribution of Holocene disconformities is based on our compilation of data on
cored surface sediments sampled in the Southern Ocean that are missing material younger than
11.7 kyr. The dataset includes a total of 632 sites with paleomagnetic and/or micropaleotologic
ages from USNS Eltanin piston cores (Kennett and Watkins, 1976; Osborn et al., 1983; Watkins
and Kennett, 1972) and ARA Islas Orcadas cores (Ledbetter and Ciesielski, 1986) and 302 sites
where the surface sediment has been radiocarbon dated, is constrained by an age model or is
demonstrably undisturbed (Geibert et al., 2005). The latter includes the Chase and Burckle
compilation (2015) and additional sites from various cruises (see the Data Repository').

Long-term average sedimentation rates (Fig. 1A; Fig. DR1) were calculated using global
sediment thickness (Whittaker et al., 2013; Fig. DR2) and crustal age (Miiller et al., 2016; Fig.
DR3). For 63 sites we obtained age-model derived sedimentation rates and focusing factors (1)
given as the ratio of sediment accumulation rate to >*°Th-normalized sediment flux (vertical
sediment rain rate) (Dezileau et al., 2000; Francois et al., 2004; see the Data Repository and
Table DR1). Regions with sediment focusing have 1 > 1, and those with sediment winnowing
have 1 <1 (Dezileau et al., 2000; Francois et al., 2004).

We use the global ocean-sea ice model (GFDL-MOMOT1) to simulate global ocean

circulation at a resolution that results in realistic velocities throughout the water column, and is
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ideal for estimating interaction between time-dependent bottom currents and ocean bathymetry.
The model is based on the Geophysical Fluid Dynamics Laboratory (GFDL) CM2.6 fully
coupled climate model (Griffies et al., 2015). GFDL-MOMO1 nominally has a 1/10° horizontal
resolution, 50 vertical levels and resolves mesoscale variability over the majority of the global
ocean (see Fig. 1 of Griffies et al. (2015)). GFDL-MOMO1 is equilibrated for 24 years with
repeated CORE Normal Year Forcing (CORE-NYF) atmospheric forcing (Griffies et al., 2009).
SEDIMENTATION RATES AND FOCUSING FACTORS

Long-term average sedimentation rates in the global ocean have a median value of 0.5
cm/kyr (Fig. DR1). Rates of 610 c/kyr with maxima > 50 cm/kyr occur near continental
margins and are prominent along passive margins and the Bengal and Indus fans (Fig. DR1). A
high sedimentation rate in the equatorial Pacific (Fig. DR1) is associated with rapid deposition of
biogenic sediment underlying a zone of intense upwelling (Van Andel et al., 1975). A wide belt
of rapid sedimentation rates (> 5.5 cm/kyr) along the SEIR between 75°E and 150°E is a global
anomaly (Fig. 1A; Fig. DR1). This region is far removed from the influence of high surface
productivity (Soppa et al., 2014) and lithogenous input, experiences low to moderate vertical
sediment flux (Fig. DR4), and occurs over young oceanic crust (Fig. DR3) adjacent to an abyssal
plain where sedimentation rates would normally be close to the median global value. This belt is
much more extensive than the sediment accumulation in the northern North Atlantic (Fig. DR1),
which is linked to multiple contourite drifts (Rebesco et al., 2014). Overall, the short-term
Holocene sedimentation rates in the Southern Ocean are moderately higher than the long-term
rates (Fig. 1A; Fig. DRS) with a median difference of 1.7 cm/kyr (Fig. DRS), and show a linear
relationship with the focusing factors (Fig. 1C). This reflects a strong dependence of Southern

Ocean sedimentation rates on sediment redistribution. The focusing factors along the SEIR
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sedimentation rate anomaly are consistently > 1 with a mean of 3 + 2 (Fig. 2) and generally
higher than elsewhere in the Southern Ocean (Fig. DR6).
DISCONFORMITIES

Five major fields of Holocene disconformities are evident in the Southern Ocean (Fig.
1B) (Dezileau et al., 2000; Kennett and Watkins, 1976; Ledbetter and Ciesielski, 1986; Osborn et
al., 1983; Watkins and Kennett, 1972), with most occurring at latitudes higher than 50°S within
regions where the sedimentation rate is very low (< 1 cm/kyr; Fig. DR7) and the water depth is
3-5 km (Figs DR, DR9). The largest of these fields lies between 120°E and 165°E and is
associated with the SEIR and its triple junction with Macquarie and Pacific-Antarctic ridges (Fig.
1B). It occurs partly within the belt of anomalously high sedimentation rates (Fig. 1B; Fig. DR7)
and within a region of mixed lithologies (Fig. DR10) characterized by relatively low CaCO; and
high Si0, contents (Figs DR11, DR12). Smaller disconformity fields occur east of the Kerguelen
Plateau and in the Weddell Sea, Bellingshausen and Argentine basins (Fig. 1B) where the
sedimentation rates are likewise low with nearby small pockets of anomalously high
sedimentation rates (Fig. 1; Fig. DR7).
BOTTOM WATER CURRENTS

The disconformity fields all overlap with areas of intense eddy activity where the bottom
current speeds and standard deviations exceed 0.1 m/s (Figs 1B, 2), with a maximum ~ 0.2 m/s.
Bottom currents are steered by major bathymetric features (e.g., the Kerguelen Plateau, Fig. 2)
due to Earth’s rotation, while smaller scale features (e.g., seamounts) may impinge or enhance
current speeds (Rebesco et al., 2014). We focus on the SEIR because of a clear juxtaposition of

extreme differences in sedimentation rates and the occurrence of distinct fields of sustained
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erosion linked to bottom current activity (Dezileau et al., 2000; Kennett and Watkins, 1976;
Osborn et al., 1983).

Our numerical model (Fig. 2) shows that the SEIR is bounded by two major regions of
high bottom current velocities, whose occurrence coincides with areas of seafloor
disconformities and low sedimentation rates (~ 1 = 0.5 cm/kyr; Fig. 2) and whose movement is
confined by the Kerguelen Plateau to the west (Fig. 2A) and by the Macquarie Ridge north of the
Macquarie Triple Junction to the east (Fig. 2B; Figs DR13, DR14). The general flow direction
through the Fawn Trough and the Kerguelen-St. Paul Island Passage (Fig. 2A) is northerly and
easterly into the Australian-Antarctic Basin consistent with schematic circulation patters of
McCartney and Donahue (2007). The eastern sector of the SEIR experiences severe seafloor
erosion at the Warringa Fracture Zone end of the Australian-Antarctic Discordance and along the
flanks of all major fracture zones between the George V and Bellany fracture zones (Fig. 2B).
These regions are marked by high bottom current velocities (~ 0.05 to 0.1 m/s) augmented by
northerly flow due to the leakage of bottom currents from the southern to the northern side of the
ridge (Fig. 2B) partly explaining the occurrence of patches of diatom ooze just north of these
fracture zones (Fig. DR15).

The anomalously high rates of sediment accumulation along the SEIR are largely due to
lateral transport of sediment from the two areas of high and variable bottom current velocities
(Figs. 1B, 2; Fig DR16) favorable for generating intense nepheloid layers up to 2 km thick
(McCave, 1986), to regions where low bottom current speeds (< 0.03 m/s; Fig. 2) allow fine
particles to settle out of suspension (Rebesco et al., 2014; Stow et al., 2009). This is the case
along most of the ~ 8,000 km-long segment of the SEIR between the Central Kerguelen Plateau

and the Tasman Fracture Zone (Fig. 2), which underlies low summer surface productivity with
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the exception of three short segments (Figs DR17-20). Transport of sediment within this region
is further supported by focusing factors significantly greater than 1 (Fig. 2; Table DR1).

We suggest that the anomalous accumulation of sediment along the SEIR represents a
giant succession of contourite drifts that is a major extension of the much smaller contourite east
of Kerguelen proposed by Dezileau et al. (2000). Bottom current velocities in this region are
consistent with velocities of less than ~ 0.06 m/s expected for contourite drifts (Stow et al.,
2009). Likewise, sedimentation rates (Fig. 1A, C; Table DR1) are within the low range of <2 to
10 cm/ka expected for open ocean pelagic contourite drifts (Stow et al., 2002). The distribution
of regional disconformities at the base and within the drift (Fig. 1B) whose overall geometry is
outlined by anomalously high sedimentation rates (Fig. 1A) is consistent with our numerical
bottom current model (Fig. 1B). This suggests that two SEIR regions (east of the Kerguelen
Plateau and northwest of the Macquarie Triple Junction) have undergone long-term sustained
erosion by locally persistent currents resulting in a gradual and extensive build-up of sediment
along the entire SEIR between them. This is supported by focusing factors ranging from 1.5 to 9
similar to previously mapped values NE of Kerguelen (Dezileau et al., 2000). The oldest crust
subject to anomalous accumulation of sediment is ~ 3—5 Ma based on the oceanic crustal ages
from Miiller et al. (2016), and broadly consistent with the maximum age of 2.5 Ma proposed by
Kennett and Watkins (1976) and 4.4. Ma by Osborn et al. (1983) based on magnetostratigraphy.
CONCLUSIONS

Our combination of a high-resolution numerical ocean circulation model with geological
observations from the seafloor allows us to make a clear connection between two regions of
extremely vigorous bottom currents (east of the Kerguelen Plateau and northwest of the

Macquarie Triple Junction) and widespread disconformities. The intervening region along the
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SEIR reveals a major global sedimentation rate anomaly caused by excess sediment build-up in
the absence of a surface productivity maximum. This anomaly appears both in sedimentation
rates derived from a global sediment thickness grid as well as in focusing factors significantly
greater than 1. We suggest that an 8,000 km-length of the SEIR crest overlying oceanic crust
younger than 5 Myr is covered by a vast succession of hitherto unmapped contourite deposits.
Ocean drilling of the inferred contourite drifts would provide a high-resolution record of
Southern Ocean climate change.
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FIGURE CAPTIONS
FIGURE 1. Sedimentation rates versus bottom current speeds in the Southern Ocean.
Stereographic projection. A: Long-term average sedimentation rates overlain with Holocene age-

model derived sedimentation rates (Table DR1). Contours from Carter et al. (2009): Subtropical
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Front (STF — dashed red line), Subantarctic Front (SAF — solid black line), Southern Boundary
(SB — dashed black line) of the Antarctic Circumpolar Current (ACC). Solid red lines denote
plate boundaries. B: Standard deviation of modeled present-day bottom current speeds, which is
more representative than mean values because the Southern Ocean experiences large variations
in bottom current speed. Conformities (white symbols) and unconformities (green symbols) in
Holocene sediment are shown as squares when based on magnetostratigraphic data and as circles
in all other cases (see text and the Data Repository' for details). Major unconformity fields are
highlighted by green outlines. Key features labeled: KP — Kerguelen Plateau, AAD — Australian-
Antarctic Discordance, EFZ — Eltanin Fracture Zone; AB — Argentine Basin, WSB — Weddell
Sea Basin, BB - Bellingshausen Basin. Note that the maximum depth of the AB (6.2 km)
exceeds the depth in our model (5.5 km) resulting in the truncation of topography needed to
dissipate flow. WSB is outside of the influence of the ACC and its disconformity field is largely
the product of ice streams creating powerful erosive turbidity currents (Huang and Jokat, 2016)
not captured in our model. C: Focusing factors versus Holocene sedimentation rates for the

Southern Ocean (see Data Repository' and Table DR1).

FIGURE 2. Quiver plot of modeled present-day bottom currents overlying long-term
sedimentation rates and focusing factors (black circles) in the SEIR region bounded by
Macquarie Ridge to the east (A) and by the Kerguelen Plateau to the west (B). Note that currents
with very low velocities appear as white dots. AAD — Australian-Antarctic Discordance, FZ —

Fracture Zone. Equidistant cylindrical projection.
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DATASETS

Holocene sediment ages

Our unconformity-conformity dataset was supplemented by dated sediment cores from
the Southern Ocean not found in the Chase and Burckle (2015) dataset. The sediment
cores are: PS2090-1 and PS1654-2 (Bianchi and Gersonde, 2004a; Bianchi and Gersonde,
2004b; Bianchi and Gersonde, 2004c), MD07-3076 (Skinner et al,, 2010a, b), RC11-83
(Charles and Fairbanks, 1992a; Charles and Fairbanks, 1992b), MD84-551, MD84-527
and MD73-025 (Labracherie et al., 19893, b; Labracherie et al., 1989c), MD88-770
(Labeyrie et al., 19964a, b), MR0806-PC09, MD07-3128 and 202-1233 (Lamy et al,,
2015a, b, ¢, d), PS2038-2, PS1821-6 and PS1575-1 (Bonn et al,, 1998a, b, ¢, d),
0S00910_KC04, 0S00910_KC09, 0SO0910_KC10, 0SO0910_KC15, 0S00910_KC19,
0S00910_KC23 and DF81_PC07 (Kirshner et al,, 2012a, b), RC12-225 and MD84-529
(Howard and Prell, 1994a, b; Howard and Prell, 1994c), GOMEA-06, GOMEA-14, GOMEA-
15 and GOMEA-16 (Gozhik et al., 1991a, b), PS2082 and PS1506-1 (Mackensen et al.,
19944, b, ¢), PS75/083-1, PS75/079-2, PS75/076-2, PS75/074-3, PS75/059-2 and
PS75/056-1 (Lamy etal., 20144, b, c, d, e, f, g), TSP-2MC, TSP-3MC and TSP-2PC
(Murayama et al., 2000a, b), TTN057-13-PC4 (Shemesh et al,, 20023, b), RC13-229,
MD88-769 and MD80-304 (Rosenthal et al.,, 199543, b, c, d), KC073 (Allen et al., 200543, b),
DF79.012-GB, DF79.009-GB, Core302 and 119-740A (Domack et al.,, 1991a, b, c, d, e),
MDO03-2597, NBP01-01-KC17B and NBP01-01-JPC17B (Maddison et al., 2012a, b),
PS1380-3 (Grobe and Mackensen, 19923, b), PS1786-1, PS2606-6 and PS58/271-1
(Jacot Des Combes et al., 2008a, b).

We carefully reviewed all Eltanin sites from Watkins and Kennett (1972) that had been
re-analyzed by Osborn et al. (1983) and in rare instances of discrepancies in polarity
assignment we use the Osborn et al. (1983) ages as the polarity measurements were
made using a more sensitive magnetometer and with improved biostratigraphic control.
There is very good agreement between the Bruhnes-age assignment of the majority of
Eltanin core tops dated by magnetostratigraphy and by subsequent more highly-
resolved methods (Chase and Burckle, 2015). Rare exceptions include Eltanin cores E14-
5 and E20-10 which were very well-dated by Chase et al. (2003) and contradicted the
earlier results of Goodell and Watkins (1968); in these cases the Chase et al. (2003)
dates are used.



Focusing factors

Focusing factors were calculated using the simplified equation from Dezileau et al.
(2000):

F

Y =

F, vertical

where Fyertical is the sediment rain rate (g/cm?/ka) for an age-dated stratigraphic
section; F is the accumulation rate (g/cm?/ka); y is the focusing factor (Dezileau et al.,
2000; Francois et al.,, 1993; Francois et al., 2004; Suman and Bacon, 1989). The
accumulation rates were calculated from linear sedimentation segments from wells in
which the age model is derived from 4C dating, oxygen isotopes or a combination of
oxygen isotopes and biostratigraphy and/or 14C dating (see Table DR1 for list of cores)
and dry bulk density for a given sample. Dry bulk densities were calculated using known

CaCO3 content and the best-fit second-order polynomial relationship of Froelich et al.
(1991):

By, = (5.313 X 1075) X (CaC05)? + (9.346 x 10~4)x (CaC0;) + 0.3367

where Bp is dry bulk density (g/cm?3). In the absence of CaCO3 measurements for a small
number of cores (see Table DR1), a mean dry bulk density of 0.4 g cm-3 for siliceous
sediment (Geibert et al., 2005) was used. All values of Fyertical (i.e., >**Th-normalized
sediment flux) were obtained from references cited in Table DR1. As most of the cores
contain multiple measurements of CaCO3 and corresponding **Th-normalized sediment
flux over the interval of interest, our focusing factors are averages over those intervals.

Errors for focusing factors are very difficult to estimate and are rarely reported. For
example, values given in Dezileau et al. (2000) and Frank et al. (1999) are given without
errors although Frank et al. (1999) suggests that is meaningful if it is significantly
smaller (i.e., < 50%) or greater (i.e.,, > 50%) than 1. For core MD88-773, Yu (1994) gives
an error range of + 0.3 for focusing factors of 9.5 and 3.2. Despite uncertainties,
Francois et al. (2004) argue that focusing factors are good proxies for sediment focusing.



Table DR1. Location, water depth, sedimentation rates and focusing factors (average
over the interval of interest) for cores from the Southern Ocean. Sedimentation rates
and focusing factors are for the Holocene (defined as 0-13 ka by Delzileau et al. (2003)
and applied here for comparability reasons) except in the case of Yu (1994) data where
the values represent the period 0-18 ka. Values in bold are from cited references, all
other values were calculated using age models and 239Th-normalized mass fluxes from
cited references. *CaCO3 measurement not available. See supplementary text for detail.

Water

Depth  Sedimentation rate
Core Lat. Long. (m) (cm/kyr) Focusing factor  Reference
E11-3 -56.90 -115.24 4023 2 2.5 Bradtmiller et al. (2009)
E11-4* -57.83  -115.22 4774 1.4 1.3 Bradtmiller et al. (2009)
E11-7* -60.92 -114.78 5029 2 1.2 Bradtmiller et al. (2009)
E11-12%* -65.87 -115.08 4718 1 0.7 Bradtmiller et al. (2009)
E14-16 -58.99 -125.03 4499 10 5.8  Bradtmiller et al. (2009)
E14-17 -57.83  -124.95 3904 6.5 5.3  Bradtmiller et al. (2009)
E15-4 -59.02 -99.76 4910 5 5.8  Bradtmiller et al. (2009)
E15-5 -58.02 -99.98 4307 2.5 3.7 Bradtmiller et al. (2009)
E15-6 -59.97 -101.32 4517 2 1.8 Bradtmiller et al. (2009)
E15-12 -58.68 -108.80 4572 1 0.6  Bradtmiller et al. (2009)
E15-28 -56.02  -149.82 3328 2 1 Bradtmiller et al. (2009)
E17-7 -61.08 -134.35 4435 2 0.7 Bradtmiller et al. (2009)
E19-6* -61.93 -107.96 5064 1 0.6  Bradtmiller et al. (2009)
E19-7 -62.16  -109.09 5051 2.5 1 Bradtmiller et al. (2009)
E20-13 -55.00 -104.95 3895 1 1.6 Bradtmiller et al. (2009)
E21-20%* -60.25 -120.17 4701 3.3 1.6 Bradtmiller et al. (2009)
E23-14 -63.82  -108.85 4957 1 0.5 Bradtmiller et al. (2009)
E23-17%* -60.22 -114.63 5026 2 0.9 Bradtmiller et al. (2009)
E23-18 -58.98 -115.00 5272 2 0.9 Bradtmiller et al. (2009)
E25-16 -56.15 -156.22 3621 2.5 1.5 Bradtmiller et al. (2009)
E27-23 -59.62 155.24 3182 43.5 17.8  Bradtmiller et al. (2009)
E33-19 -59.86 -119.66 4389 2.5 1.2 Bradtmiller et al. (2009)
E36-36 -60.39 157.53 2816 3.8 1 Bradtmiller et al. (2009)
RC8-71 -58.05 155.73 3224 2.6 1.6 Bradtmiller et al. (2009)
VM16-115 -55.68 141.28 3147 2.4 0.8 Bradtmiller et al. (2009)
VM16-121 -50.67 164.38 3614 5.1 1.5 Bradtmiller et al. (2009)
VM17-88* -57.03 -74.48 4063 13 0.2  Bradtmiller et al. (2009)
VM17-90* -60.13 -74.93 4568 0.6 0.4  Bradtmiller et al. (2009)
VM18-73* -61.53 -73.28 4568 1.8 1.4  Bradtmiller et al. (2009)
VM18-93 -59.48 -64.78 3834 1.6 0.9 Bradtmiller et al. (2009)
MD 94-102  -43.50 79.80 3205 5.9 3.3 Dezileau et al. (2000)
MD 94-104 -46.50 88.10 3460 125 8.8 Dezileau et al. (2000)
MD 88-769  -46.10 90.10 3420 4.1 2.6 Dezileau et al. (2000)
MD 88-770  -46.00 96.50 3290 6.8 3.6 Dezileau et al. (2000)
MD 84-527  -43.50 51.20 3269 27 10 Dezileau et al. (2000); Francois et al. (1993)
MD 88-773  -52.55 109.50 2460 27.4 9.5 Yu(1994)
MD 84-552  -54.90 73.80 1780 22.1 5 Dezileau et al. (2000)

PS1772-8 -55.46 1.16 4137 1.3 0.6 Frank et al. (1999); Frank (2002b)




Water
Depth  Sedimentation rate

Core Lat. Long. (m) (cm/kyr) Focusing factor  Data Reference

PS1768-8 -52.59 4.48 3299 13.75 4.6 Frank et al. (1999); Mackensen (1996)
PS1756-5 -48.90 6.71 3828 7.5 0.7 Frank et al. (1999); Frank and Mackensen (2002a)
PS1754-1 -46.77 7.61 2519 1.7 1.2 Frank et al. (1999); Frank (2002a)

PS2082-1 -43.22 11.74 4610 2.6 2 Frank et al. (1999); Frank and Mackensen (2002b)
PS2498-1 -44.15 -14.23 3783 6.3 5.7 Frank et al. (1999); Mackensen et al. (2001a)
PS2499-5 -46.51 -15.33 3175 2.9 2.2 Frank et al. (1999); Mackensen et al. (2001b)
E49-29 -57.10 94.96 4237 2.4 0.7 Yu (1994) and references therein

E48-3 -41.02 100.01 3930 1.4 2.1 Yu(1994) and references therein

E50-8 -50.93 104.91 3227 9.4 1.5 Yu(1994) and references therein

E45-27 -43.31 105.55 3776 1.6 1.3 Yu(1994) and references therein

E45-29 -44.88 106.52 3863 2.6 3.3 Yu (1994) and references therein

E49-6 -51.01 109.99 3326 2.3 1.1  Yu(1994) and references therein

E49-8 -55.07 110.02 3693 5.9 1.3 Yu(1994) and references therein

E45-64 -52.48 114.09 3823 8.1 2.7  Yu(1994) and references therein

E45-63 -53.44 114.26 3915 8.2 2.6 Yu (1994) and references therein

E45-79 -45.06 114.37 4079 19 2.6 Yu (1994) and references therein

E45-74 -47.55 114.44 3744 1.4 1.5 Yu(1994) and references therein

E45-71 -48.03 114.49 3658 2.1 2.2 Yu(1994) and references therein

E49-8 -55.07 110.02 3693 5.9 1.3 Yu (1994) and references therein

E48-13 -28.31 93.30 3380 5.9 8.8  Yu (1994) and references therein

E48-11 -29.40 97.32 3462 1.7 1.0  Yu (1994) and references therein

E48-27 -38.33 79.54 3285 2.9 2.9  Yu(1994) and references therein

E48-22 -39.54 85.25 3378 3.7 3.2 Yu(1994) and references therein

E50-13 -60.00 105.00 4209 2.1 0.3 Yu (1994) and references therein

E50-17 -62.00 120.03 4081 5.1 1.0  Yu(1994) and references therein

CaCO0s and bSiO2 content of surface sediments

Our maps of CaCO3 and bSiO; percentages in surface sediments are based on combined
datasets from Chase and Burckle (2015), Archer (1996), Archer (1999) and Bohrmann
(1999).
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Figure DR1. Long-term average sedimentation rates in the world’s ocean calculated
using the global sediment thickness dataset of Whittaker et al. (2013) incorporating the
dataset of Divins (2004), which represent minimum sediment thickness estimates, and
the age grid of Miiller et al. (2016). Red lines indicate plate boundaries. See also Figs.
DR2 and DR3. Mollweide projection.
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Figure DR2. Minimum sediment thickness estimates based on the global sediment
thickness dataset of Whittaker et al. (2013) incorporating the dataset of Divins (2004).
Red lines indicate plate boundaries. Stereographic projection.
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Figure DR3. Age of ocean crust from Miiller et al. (2016). Black lines indicate plate
boundaries with subaerial portions of continents shown in light grey and submerged
continental crust in medium grey. Stereographic projection.
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Figure DR4. Th-normalized sediment flux (circles) from Chase and Burckle, (2015) over
long-term average sedimentation rates as in Figure DR1. Red lines indicate plate
boundaries. Stereographic projection.
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Figure DR5. Difference in sedimentation rate calculated using long-term average
sedimentation rate (see Fig. DR1 caption for detail) minus Holocene sedimentation rate
calculated using age-models for cores listed in Table DR1. The median difference is 1.7
cm/kyr, with a mean difference of 4 cm/kyr reflecting the influence of outliers due to
high Holocene sedimentation rates at some locations (see Fig. 1A).
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Figure DR6. Focusing factors (colored circles) overlying long-term sedimentation rates
in the Southern Ocean. Focusing factors along the Southeast Indian Ridge (SEIR) are
consistently and significantly greater than 1. In the Bellingshausen Basin (BB) the
majority of focusing factors range between 0.5 and 1.5 with only 3 values > 5. Data in
other parts of the Southern Ocean are relatively sparse. Black outlines indicate known
large contourite deposits from Rebesco et al. (2014) available at
http://www.marineregions.org/. Red lines denote plate boundaries. Stereographic
projection.
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Figure DR7. Long-term average sedimentation rates overlain by conformities (white
squares and white circles) and unconformities (black squares and black circles) in
surface sediment of Bruhnes age. Squares represent magnetostratigraphic data from
Watkins and Kennett (1972), Kennett and Watkins (1976), Osborn et al. (1983) and
Ledbetter and Ciesielski (1986). Circles represent Holocene sediment dated by 14C and
undisturbed surface sediment from the Chase et al. (2015) compilation as well as
additional data from various sources (see section on datasets in this Data Repository).
Black lines denote plate boundaries. Stereographic projection.
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Figure DR8. Bathymetry overlain by conformities (white squares and white circles) and
unconformities (black squares and black circles) in surface sediment of Bruhnes age. See
caption in Fig. DR7 for detail. Black lines with white outlines denote plate boundaries.
Bathymetry is from the ETOPO1 E 1 Arc-Minute Global Relief Model (Amante and
Eakins, 2009). Stereographic projection.
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Figure DR9. Frequency of Brunhes age unconformity occurrence versus depth for the

Southern Ocean. See caption for Figure DR7 for detail.
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Figure DR10. Seafloor lithologies from Dutkiewicz et al. (2015) overlain by
conformities (white squares and white circles) and unconformities (black squares and
black circles) in surface sediment of Bruhnes age (see Fig. DR7 caption for detail).
Stereographic projection.
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Figure DR11. Gridded map of CaCO3 concentrations in surface sediments using
combined data from Archer (1999), Bohrmann (1999) and Chase and Burckle (2015)
overlain by conformities (white squares and white circles) and unconformities (black
squares and black circles) in surface sediment of Bruhnes age (see Fig. DR7 caption for
detail). Red lines denote plate boundaries. Gridding was done using an anisotropic
spline with tension of 0.5. Stereographic projection.
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Figure DR12. Gridded map of bSiO2 concentrations in surface sediments using
combined data from Archer (1999), Bohrmann (1999) and Chase and Burckle (2015)
overlain by conformities (white squares and white circles) and unconformities (black
squares and black circles) in surface sediment of Bruhnes age (see Fig. DR7 caption for
detail). Red lines denote plate boundaries. Gridding was done using an anisotropic
spline with tension of 0.5. Stereographic projection.
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Figure DR13. Quiver plot overlying bathymetry contours for the western sector of the
Southeast Indian Ridge. CKP - Central Kerguelen Plateau, SKP - Southern Kerguelen
Plateau. Equidistant cylindrical projection.
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Figure DR14. Quiver plot overlying bathymetry contours for the eastern sector of the
Southeast Indian Ridge. Equidistant cylindrical projection.
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Figure DR15. Seafloor lithology from Dutkiewicz (2015) for the Southeast Indian Ridge
region of the Southern Ocean. Equidistant cylindrical projection.
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Figure DR16. Long-term average sedimentation rates in the Southern Ocean overlain
with Holocene age-model derived sedimentation rates. Excess deposition of recent
sediments along a mid-ocean ridge is expressed as bands of anomalously high

cm/kyr]

—

Sedimentation rate

sedimentation rates when computed by dividing the total sediment thickness by crustal

age, with rates decreasing away from the mid-ocean ridge crest as the age of the crust

increases. Black-white lines indicate plate boundaries. Red arrows indicate generalized

bottom current directions based on quiver plots in Figs DR13 and 14. Equidistant
cylindrical projection.
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Figure DR17. Austral summer average of diatom chlorophyll concentrations for the
period 2003-2013 (Soppa et al,, 2014) overlain by conformities (white squares and
white circles) and unconformities (black squares and black circles) in surface sediment
of Bruhnes age (see Fig. DR7 caption for detail). Red lines with white outlines denote
plate boundaries. Stereographic projection.
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Figure DR18. Austral summer average of nanophytoplankon primary production for
the period 1998-2007 (Uitz et al., 2010) overlain by conformities (white squares and
white circles) and unconformities (black squares and black circles) in surface sediment
of Bruhnes age (see Fig. DR7 caption for detail). Red lines with white outlines denote
plate boundaries. Stereographic projection.
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Figure DR19. Austral summer average of diatom chlorophyll concentrations for the
period 2003-2013 (Soppa et al,, 2014) overlain by conformities (white squares and
white circles) and unconformities (black squares and black circles) in surface sediment
of Bruhnes age (see Fig. DR7 caption for detail). Black-white lines denote plate
boundaries. Equidistant cylindrical projection.
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Figure DR20. Austral summer average of nanophytoplankon primary production for
the period 1998-2007 (Uitz et al., 2010) overlain by conformities (white squares and
white circles) and unconformities (black squares and black circles) in surface sediment
of Bruhnes age (see Fig. DR7 caption for detail). Red lines denote mid-ocean ridges. Gray
circles are artefacts in the productivity grid. Black-white lines indicate plate boundaries.
Equidistant cylindrical projection.
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