Technological Provisioning and Assemblage Variability in the Eastern Victoria River Region, Northern Australia: A Darwinian Approach

Christopher James Clarkson

Vol. 2 (Figures)

A thesis submitted for the Degree of Doctor of Philosophy of the Australian National University

February 2004
List of Figures (Vol. 2)

Figure 1.1: Map showing the location of the study region in relation to major physiographic features and the edge of the semi-arid zone..1
Figure 1.2: Common implement types discussed in the text (backed artifact reproduced from Hiscock and Attenbrow (In Press) with permission).................................2
Figure 1.3: Distribution map of common retouched implement forms in Australia (modified from Hiscock 1994b)..3
Figure 2.1: An example of stochastic frequencies (or Markovian structures) in Great Basin point types, showing classic 'battleship' curves (from O'Brien and Lyman 2000)..4
Figure 2.2: Hypothetical diagrams of historical signatures for individual traits and populations under differing degrees of selective pressure (after O'Brien and Holland 1990:190). A: Signatures for drift and selection, B: changes in trait frequency as a neutral variant comes under selection..5
Figure 2.3: Different types of selection and their consequences for the shape and central tendency of populations. A: Directional selection, B: stabilising selection, and C: disruptive selection...6
Figure 2.4: Change to individual trait frequency and variation when under selection.....7
Figure 2.5: The effects of various forms of social transmission on normal distributions. A: Guided variation, B: direct bias, and C: frequency-dependant and conformist-biased transmission..8

Figure 3.1: MacArthur and Pianka's (1966) diet breath model. Search time and handling (pursuit and processing) time are considered two mutually exclusive activities. As handling time increases, search time must also decrease. More time spent handling prey will also reduce overall return rate, hence resources further to the right of the x-axis tend to be lower ranked. The optimal diet set is represented by all resources to the left of the intersection of these two curves...9

Figure 3.2: Charnov's marginal value theorem used to solve for the optimal amount of foraging time allocated to a set of patches. Travel time between patches is shown as the distance along the x-axis to the left of the y-axis. The rate of energy capture from each patch (U/t) is shown by the series of curves (A, B and C). The line drawn from t₁ to R represents the overall mean energy capture rate for all patches. The optimal time allocation to each patch is found by constructing the highest line tangent to the capture rate curve for each patch that is parallel to (has the same slope) as the mean capture rate
for all patches (R). Each tangent is depicted by a dashed line. The patch represented by Curve C intersects with the tangent at the origin and should not be utilized.

Figure 3.3: Two models of the trade-off between resource transportation and procurement and processing costs based on Orians and Pearson’s (1979) ‘Central Place Foraging’ model. Model A uses a linear utility/time function, while model B uses an exponential function. Both models predict that resources should be transported without processing only if travel time is less than the field processing threshold (FPT). Solid lines indicate the optimal amount of time spent processing the resource given different travel times (a and b) to and from the central place. Figure modified from Metcalfe and Barlow (1992) and Winterhalder (2003).

Figure 3.4: The Horn (1968) geometric model of optimal dispersion. Optimal settlement locations (triangles) are predicted for stable/evenly dispersed environments (solid circles), and for mobile/clumped environments (open circles). The mean round-trip travel cost from settlement to resource locations, weighted by the probability of locating the resource, is given by d. Travel costs are minimized in stable/evenly dispersed environments when settlements are dispersed, and in mobile/clumped environments by centrally located aggregate settlements as represented by lower values for d in each case.

Figure 3.5: Graphic depiction of the time-budgeting model proposed by Torrence (1983). Scheduling the procurement, manufacture and maintenance of technologies by breaking them into smaller time ‘parcels’ and relegating these to periods of ‘down-time’, allows technology to be delivered at critical moments without interfering with important time-limited subsistence activities.

Figure 3.6: Three strategies by which utility gain rate can be increased. A: Increasing initial rate of gain, B: increasing the slope of the asymptote, and C: reducing maintenance time.

Figure 3.7: Plot of the different gain rates associated with two technologies with identical rates of gain but different maintenance times; a: short maintenance time, b: long maintenance time. There is a dramatic difference in the gain curves when the results for two tools are plotted over multiple use and repair cycles. The use and maintenance schedule for the tool with the longer maintenance period results in a much lower rate of return. Investing more time in the manufacture of tools with shorter maintenance time is therefore likely to result in higher long-term pay-offs.
Figure 3.8: Theoretical models of the gain curves produced when the cumulative return rate and required period of maintenance after each use are ascribed one of three states: increasing, decreasing or constant. The initial time invested in technology is held constant for all cases. A: Increasing maintenance time, constant return rate, B: constant maintenance time, decreasing return rate, C: increasing maintenance time, decreasing return rate, D: decreasing return rate, decreasing maintenance, E: increasing return rate, increasing maintenance time, F: constant return rate, constant maintenance time; G: increasing return rate, decreasing maintenance time, H: constant return rate, decreasing maintenance time...16

Figure 3.9: Illustration of the relationship between stochastic variation and risk sensitivity. A: hypothetical return rate from foraging over time, B: sigmoid curve representing gain rate on foraging. As productivity falls below the critical minimum threshold shown the dashed line in ‘A’, foragers slip from risk-averse into increasingly risk-prone behaviour, or in this case more risk-prone technological innovation. After Fitzhugh (2000)..17

Figure 3.10: Flow chart linking: A: resource availability to, B: the organisation of subsistence and then to, C: the various strategies for the optimal organisation and design of technologies. This diagram attempts to avoid conflating important dimensions of environmental, behavioural and technological variability and treats each factor as a potentially continuous variable...18

Figure 4.1: The hierarchy of intentionally defined classes used in the analysis. Definitions of individual classes are provided in the glossary...19

Figure 4.2: Graphic illustration of the principles used to assign objects to two classes used in this analysis. Listed along the top line are a range of attributes that are recorded for retouched flakes. Points and tulas possess a number of attributes each, and these are weighted in terms of overall importance. For example, all points have a distally retouched point, and all tulas have a dorsally trimmed pronounced bulb of percussion, but specimens belonging to both classes also have a range of attributes in common. These classes are therefore polythetic in that artefacts must possess at least one of a number of the necessary and sufficient classifying properties, but no artefact will possess them all. They are also ordered and inclusive in the sense that both points and tulas are sub-divisions of the higher-order class ‘Retouched Flakes’, and can therefore belong to both classes simultaneously...20
Figure 4.3: Types and features of fracture initiation and termination (after Andrefsky 1995; Cotterell and Kamminga 1987). A: Fracture variables, B: Formation of a hertzian cone, C: Fracture initiations, and C: Fracture terminations..21

Figure 4.4: Fracture features found on the ventral and dorsal faces of a conchoidal flake (reproduction is by courtesy of the Trustees of the British Museum).................................22

Figure 4.5: The effects of increasing or decreasing platform angle and platform thickness..23

Figure 4.6: An ‘event tree’ describing the sequence of manufacturing actions and the frequencies attached to each conceptual stage of the process. Reproduced from Bleed (2001)..24

Figure 4.7: The Index of Invasiveness. A: Measurement procedures, B: examples of index results at different stages of reduction, and C: experimental verification involving measurement of the index against the amount of weight lost from experimental flakes (from Clarkson 2002a and Hiscock and Clarkson In Press)...25

Figure 4.8: The Geometric Index of Unifacial Reduction (GIUR). A: Measurement procedures, and B: experimental verification involving measurement of the index against the amount of weight lost from experimental flakes (from Kuhn 1990 and Hiscock and Clarkson In Press)..26

Figure 4.9: Measurement procedures for describing flake shape. A: Angle of the lateral margins, and B: curvature of the retouched edge...27

Figure 4.10: Two ways of depicting variation and central tendency. A: Histogram showing range, mode and frequency in each division, and B: box-and-whisker plot showing median, inter-quartile range, adjacent values, outliers and extremes...........28

Figure 4.11: Two ways of depicting variation. A: Scatter plot showing the relationship between two variables (x and y), plotted as individual points. This graph also shows the correlation coefficient, the line of best fit and the regression equation. B: Error bar graph showing the mean and two standard errors on their side, representing the 95% confidence interval. If the bars of one class overlap those of a neighboring class, the difference between means is not significant at the p = .05 level. Error bar graphs can also be used to depict mean and standard deviation or mean and standard error..29
Figure 5.1: Location of Wardaman Country, the survey region and sites discussed within the text...30
Figure 5.2: Permanent waterhole and waterfall on the Flora River..................31
Figure 5.3: Large permanent waterhole along the Victoria River....................31
Figure 5.4: Waterhole in rocky country east of Hayward Creek......................32
Figure 5.5: The ‘Hayward Hole’..32
Figure 5.6: Location of the major physiographic units in Wardaman Country......33
Figure 5.7: Location of CSIRO land systems in Wardaman Country, and in the survey region..34
Figure 5.8: Dense fringing vegetation within a deep gorge of the Pinkerton land system..35
Figure 5.9: Large laterite capped mesa of the Mullaman land system from the south of Wardaman Country...35
Figure 5.10: Northwest trending sandstone outliers of the Antrim Plateau Volcanics that predominantly underlies the Frayne, Napier and Willeroo land systems........36
Figure 5.11: Dry basalt plains of the Napier land system...................................36
Figure 5.12: Low open country of the Dinnabung system along Hayward Creek, with the cliffs of the escarpment country of the Pinkerton land system in the background...37
Figure 5.13: Rolling basalt hills of the Frayne land system...............................37
Figure 5.14: Frequency of high, medium and low ranking prey in each land system...38
Figure 5.15: Location of the Antrim Plateau Volcanics and encapsulated sandstone ridges that are frequently associated with quartzite outcrops and gibbers...........39
Figure 5.16: Map showing the location of different chert sources in Wardaman Country..40
Figure 5.17: Sea level changes in the Austral region over the last 140 thousand years (from Chappell 1983). The grey band marks the transition between marine and non-marine conditions for Lake Carpentaria..41
Figure 5.18: The effects of changing sea level on the north Australian coastline and on the location of major vegetation zones. A: Vegetation zones at c.20,000BP, B:
vegetation at c.17-14,000BP, C: vegetation zones at c.8,000BP, and D: vegetation zones at c.3,000BP...

Figure 5.19: Radiocarbon ages (solid line) for each of the excavated sites in the region based on the lowermost date, as well as the estimated basal age (hashed line) of the site determined using linear regression...

Figure 5.20: Graph showing the timing of major wet and dry phases during the Holocene, (reproduced from Schulmeister and Lees [1995])...

Figure 6.1: Location of rockshelters, survey transects and quadrats in relation to land systems, major waterholes and sources of flakable stone...

Figure 6.2: View along the north-south running fenceline that formed the base for the 64km survey transect...

Figure 6.3: Nimji at the time of Mulvaney's 1966 excavation. Garndarrin, a rock wallaby Dreaming, can also be seen on the back wall of the shelter (Courtesy of John Mulvaney)...

Figure 6.4: View of floor from the brow of the shelter, with sandy plains and sandstone outlier in the background (Courtesy of Colin Macdonald)...

Figure 6.5: Plan of Nimji rockshelter showing the location of the 1963 and 1966 excavation trenches, the location of the squares analysed by Cundy (1990), and the location of major rockart panels...

Figure 6.6: North-south and east-west cross-sections of the Nimji sandstone residual, passing through the excavated trenches...

Figure 6.7: The 1966 AB trench at the completion of the excavation. (Courtesy of John Mulvaney)...

Figure 6.8: Section drawings of the 1963 trench, redrawn from Mulvaney’s originals...

Figure 6.9: Section drawings for the 1966 trench, redrawn from Mulvaney’s originals...

Figure 6.10: Stone artefact numbers from adjacent squares...

Figure 6.11: Age-depth curve for all dates from the 1966 ‘AB’ trench...

Figure 6.12: The Garnawala outcrop with open savanna woodland and sand sheet in the foreground...
Figure 6.13: View of Garnawala 2 rockshelter from the south, showing the rock ledge and the magnificent rockart pannels along the back wall .. 54

Figure 6.14: View from the rock ledge down into the 1990 excavation pit. The analysed squares are the deepest ones furthest from the camera ... 55

Figure 6.15: Site plan of Garnawala 2 rockshelter, showing the location of the analysed squares, P27-Q28 .. 56

Figure 6.16: Section drawing fo the 1990 excavation. (From Clarkson and David 1995) .. 57

Figure 6.17: Depth-age graph for conventional dates only from Garnawala 2, Squares P27-Q28 .. 58

Figure 6.18: View of Jugoli-ya rockshelter. The opening to the shelter is beneath the two pandanus trees at the base of the rock (shown by the white arrow) .. 59

Figure 6.19: View of the shelter floor before excavation. Rockart is visible on the back wall and the excavation squares have been strung out .. 59

Figure 6.20: Jugoli-ya rockshelter. A: Site plan showing excavated squares, and B: cross section through the site and through the excavated squares .. 60

Figure 6.21: Stratigraphic section of Jugoli-ya rockshelter, Squares 8F to 9E 61

Figure 6.22: View into the completed excavation at Jugoli-ya. Note the dark band formed by Layer V and the massive rubble at the base of the excavation 62

Figure 6.23: Depth-age curve for Jugoli-ya. Only conventional radiocarbon dates are plotted ... 63

Figure 6.24: View of Gordol-ya with the excavation in progress in the background 64

6.25: Site plan of Gordol-ya rockshelter. A: Site plan showing excavated squares, and B: cross-section through the excavated squares ... 65

Figure 6.26: Section drawings for Gordol-ya, Squares J27 to N25 66

Figure 6.27: Depth-age curve for M squares at Gordol-ya rockshelter 67

Figure 7.1: Changes in mean core morphology over the reduction sequence 68

Figure 7.2: Changes in core size associated with changes in reduction strategy 69
Figure 7.3: Event tree summarising the changes in core form that result from several modes of reduction, and their frequencies..70

Figure 7.4: Histogram of the lengths of flakes found at quarries and inferred to be 'core-struck' flakes..71

Figure 7.5: Changes in mean flake morphology as reduction continues. Reduction stage is measured using four platform types: cortical, single conchooidal, multiple conchooidal and bipolar. Changes in morphology include: A: mean % cortex, B: mean weight, C: mean platform area, and D: frequency of overhang removal as platform angle increases..72

Figure 7.6: A: Lancet flake, and B: frequency of lancet flakes produced at each stage of reduction...73

Figure 7.7: Cores found at quarries associated with lancet flakes. Note the large amounts of cortex on both cores, the cortical platform on one (A) and the single conchooidal scar on the platform of the other (B)..74

Figure 7.8: Conjoined quartzite cores and lancet flakes from A: a quarry near Wynbarr waterhole (Site 17), B and C: a quarry near Garnawala 2 (Site 64). Illustration C shows the actual conjoined core, while A and B show hypothetical reconstructions of the original nODULES and the series of flake removals taken as a slice through the centre of the platform..75

Figure 7.9: Graphs showing the mean and standard deviations for changes in various aspects of scraper morphology as reduction intensity increases. A: Mean retouched edge angle, B: % step terminated retouch, C: % margin retouched, D: mean curvature of the retouched edge, and E: % with notches..76

Figure 7.10: Graphic depiction of changes to the frequency and evenness with which retouch is distributed across eight segments as retouch increases..77

Figure 7.11: A reduction model for scrapers from Wardaman Country. A-E: Increasing reduction...78

Figure 7.12: Graphs showing the selection of a restricted range of flake shapes for scraper manufacture. A: Marginal angle and elongation, and B: marginal angle and cross-section..79

Figure 7.13: Changes in the morphology of points over the reduction sequence. A and B: Changes in weight, and C: Changes in the perimeter of retouch.................................80
Figure 7.14: Changes in point cross-section measured in two ways. A: Lateral cross-section (width/thickness), and B: longitudinal cross-section (length/thickness)..........81

Figure 7.15: Changes in the proximal morphology of points. A: Mean base curvature, and B: % proximal thinning...82

Figure 7.16: Changes to the location and ordering of retouch over the sequence of point reduction. A: Order of retouch as determined from scar superimposition, and B: the evenness of retouch across 16 segments (changes in point shape and size are also represented)..83

Figure 7.17: Two measures of variation in flake shape, showing the relationship between lightly retouched scrapers and unretouched flakes. A: Marginal angle plotted against elongation, and B: marginal angle plotted against width:thickness........84

Figure 7.18: Reduction model for points, showing the flexibility in the system. Knappers tend to take larger points into a bifacial stage, whereas smaller points usually remain unifacial...85

Figure 7.19: Examples of non-point retouch on leiliras and blades.........................86

Figure 7.20: The nature of burinate reduction. A: Frequency of burinate retouch on different artefact classes, B: frequency of different initiation surfaces, and C: the frequency of rotation...87

Figure 7.21: Changes in mean burin morphology as the number of platforms and scars increases. A: Number of orientations, B: changes in mean platform angle, and C: changes in the frequency of step and hinge terminations.........................88

Figure 7.22: Changes to the mean length of burin scars as reduction continues.........89

Figure 7.23: A reduction model for burins. Two common sequences are illustrated. A: The sequence leading to dihedral burins, and B: a sequence of rotations leading to multiple orientations and the removal of substantial numbers of spalls. Unifacial points are shown as the blank for burinate retouch, but lancets, flakes, scrapers and tulas are also commonly selected for this kind of reduction...90

Figure 7.24: Changes in the morphology of tulas over the sequence of reduction. Elongation is the measure of reduction intensity, with 1 representing least reduction and 0.33 the most. A: Reduction in mean length, B: changes to the mean curvature of the edge, and C: reductions in the mean perimeter of retouch...91

Figure 7.25: Changes in mean edge curvature for tulas as reduction continues........92
Figure 7.26: Variation in tula shape in comparison with unretouched flakes. A: Marginal angle plotted against elongation, and B: marginal angle plotted against width:thickness.

Figure 7.27: A reduction sequence for tulas. The A sequence represents continued reduction of the distal end. The B sequence results from turning the tula around and flaking the platform.

Figure 7.28: Relationship between burrens and scrapers. A: Perimeter of retouch, B: edge curvature (against perimeter of retouch), C: edge angle, and D: index of invasiveness.

Figure 7.29: Variation in the shape of burrens and scrapers. A: Marginal angle plotted against elongation, and B: marginal angle plotted against width:thickness.

Figure 7.30: Overlay of variation in retouched implement shape by class. A: Marginal angle plotted against elongation, and B: marginal angle plotted against width:thickness.

Figure 8.1: Clustering of sites around permanent waterholes. A: The number of sites found at differing distances to water, and B: site area plotted against distance from water.

Figure 8.2: The effects of distance to a permanent waterhole on assemblage size and density. A: Assemblage size, and B: assemblage density.

Figure 8.3: Measures of assemblage complexity plotted against distance from permanent water. A: Assemblage diversity, and B: assemblage richness.

Figure 8.4: Raw material usage relative to permanent waterholes. A: Number of raw material types, and B: richness of raw material types.

Figure 8.5: Relationship between distance to permanent water and the maximum distance over which raw materials are transported.

Figure 8.6: Measures of artefact reduction in relation to distance from permanent water. A: Mean index of invasiveness, and B: mean number of core rotations.

Figure 8.7: Clustering of sites around sources of flakeable stone. A: Numbers of sites, and B: assemblage size.

Figure 8.8: A: Relationship between stone artefact density and distance to a stone source, B: scatter plot of assemblage richness against distance to a stone source.
Figure 8.9: Relationship between raw material richness (A) and maximum raw material transport (B) plotted against distance from a stone source..106

Figure 8.10: A: Relationship between distance to a stone source and the index of invasiveness, B: mean number of core rotations, and C: the weight of stone artefacts transported away from a stone source...107

Figure 8.11: Relationship between site characteristics and distance to a rockshelter. A: Number of sties, and B: assemblage richness..108

Figure 8.12: Effects of distance to plateau edge on site location (A), area (B) and density (C)..109

Figure 8.13: Site abundance and size plotted against minimum distance to either of the four site location variables examined so far (i.e. distance to waterholes, stone, shelter, and elevated terrain)..110

Figure 8.14: Assemblage characteristics plotted against minimum distance to either water, stone, shelter, or elevated terrain. A: Assemblage size, B: artefact density, and C: assemblage richness...111

Figure 8.15: Effects of minimum distance to water, stone, shelter and elevated terrain on: A: raw material richness, and B: raw material transport distance..................112

Figure 8.16: Reduction intensity plotted against minimum distance to water, stone, shelter and elevated terrain. A: Index of invaseness, and B: number of core rotations...113

Figure 8.17: Site type and area by land system..114

Figure 8.18: Artefact density by land system. A: Densities including quarries and rockshelters, and B: scatters only...115

Figure 8.19: A: Assemblage diversity by land system, and B: box plot of the index of invasiveness for each land system...116

Figure 8.20: Reduction intensity for cores in each land system.........................117

Figure 8.21: Directions and minimum distances travelled from each land system to stone sources as determined from open sites and quarries.............................118

Figure 9.1: Method of interdigitation for each pit and each square for Gordol-ya and Jugoli-ya..119
Figure 9.2: Method of interdigitation for each pit and each square for Nimji and Garnawala 2

Figure 9.3: Changes in stone artefact discard and occupational intensity over the last 15,000 years. A: Raw stone artefact numbers per spit for each site, and B: complete artefacts, bone weights from Gordol-ya, charcoal and burnt earth overlayed over total artefacts deposited over time.

Figure 9.4: Three measures of artefact reduction plotted against peaks in artefact discard. A: Numbers of core rotations, B: maximum retouch, and C: percent late stage flake platforms.

Figure 9.5: Changes in core morphology over time. Changes in morphology are closely tuned to fluctuations in the mean number of core rotations.

Figure 9.6: Changes in flake morphology over time.

Figure 9.7: Temporal modes in the discard of various types of pointed flakes.

Figure 9.8: Frequency of reduction sequences through time, as well as changing technological diversity for the region over time.

Figure 9.9: Frequency of artefact reuse as a possible indicator of the use of situational gear. A: Frequency of retouched broken edges, and B: reuse of flakes with old weathered surfaces.

Figure 9.10: Changes in raw material richness over time. A: Nimji, B: Garnawala 2, and C: Gordol-ya.

Figure 9.11: Changes in the proportions of local vs exotic raw materials. A: Nimji, and B: Garnawala 2.

Figure 9.12: Changes in the size and abundance of cores transported over varying distances to Nimji. A: Number of cores, and B: mean weight of cores.

Figure 9.13: Evidence of heritable continuity in stone artefact manufacturing technologies over the last 14,000 years.

Figure 9.14: Changes in variation and central tendency in four measures of retouched implement shape.

Figure 9.15: Changes in mean and standard error for several measures of retouched implement size.
Figure 9.16: Changes in variation and central tendency for two measures of flake retouching: A: the invasiveness of retouch scars, and B: the number of bifacially retouched segments

Glossary
Figure 1.1: Map showing the location of the study region in relation to major physiographic features and the edge of the semi-arid zone.
Figure 1.2: Common implement types discussed in the text (backed artefact reproduced from Hiscock and Attenbrow (In Press) with permission).
Figure 1.3: Distribution map of common retouched implement forms in Australia (modified from Hiscock 1994b).
Figure 2.1: An example of stochastic frequencies (or Markovian structures) in Great Basin point types, showing classic 'battleship' curves (from O'Brien and Lyman 2000).
Figure 2.2: Hypothetical diagrams of historical signatures for individual traits and populations under differing degrees of selective pressure (after O'Brien and Holland 1990:190). A: Signatures for drift and selection, B: changes in trait frequency as a neutral variant comes under selection.
Figure 2.3: Different types of selection and their consequences for the shape and central tendency of populations. A: Directional selection, B: stabilising selection, and C: disruptive selection.
Figure 2.4: Change to individual trait frequency and variation when under selection.
Figure 2.5: The effects of various forms of social transmission on normal distributions. A: Guided variation, B: direct bias, and C: frequency-dependant and conformist-biased transmission.
Figure 3.1: MacArthur and Pianka’s (1966) diet breath model. Search time and handling (pursuit and processing) time are considered two mutually exclusive activities. As handling time increases, search time must also decrease. More time spent handling prey will also reduce overall return rate, hence resources further to the right of the x-axis tend to be lower ranked. The optimal diet set is represented by all resources to the left of the intersection of these two curves.
Figure 3.2: Cahnov’s marginal value theorem used to solve for the optimal amount of foraging time allocated to a set of patches. Travel time between patches is shown as the distance along the x-axis to the left of the y-axis. The rate of energy capture from each patch (U/t) is shown by the series of curves (A, B and C). The line drawn from t to \bar{R} represents the overall mean energy capture rate for all patches. The optimal time allocation to each patch is found by constructing the highest line tangent to the capture rate curve for each patch that is parallel to (has the same slope) as the mean capture rate for all patches (\bar{R}). Each tangent is depicted by a dashed line. The patch represented by Curve C intersects with the tangent at the origin and should not be utilized.
Figure 3.3: Two models of the trade-off between resource transportation and procurement and processing costs based on Orians and Pearson's (1979) Central Place Foraging model. Model A uses a linear utility/time function, while model B uses an exponential function. Both models predict that resources should be transported without processing only if travel time is less than the field processing threshold (FPT). Solid lines indicate the optimal amount of time spent processing the resource given different travel times (a and b) to and from the central place. Figure modified from Metcalfe and Barlow (1992) and Winterhalder (2003).
Figure 3.4: The Horn (1968) geometric model of optimal dispersion. Optimal settlement locations (triangles) are predicted for stable/evenly dispersed environments (solid circles), and for mobile/clumped environments (open circles). The mean round-trip travel cost from settlement to resource locations, weighted by the probability of locating the resource, is given by d. Travel costs are minimized in stable/evenly dispersed environments when settlements are dispersed, and in mobile/clumped environments by centrally located aggregate settlements as represented by lower values for d in each case.
Figure 3.5: Graphic depiction of the time-budgeting model proposed by Torrence (1983). Scheduling the procurement, manufacture and maintenance of technologies by breaking them into smaller time 'parcels' and relegating these to periods of 'down-time', allows technology to be delivered at critical moments without interfering with important time-limited subsistence activities.
Figure 3.6: Three strategies by which utility gain rate can be increased. A: Increasing initial rate of gain, B: increasing the slope of the asymptote, and C: reducing maintenance time.
Figure 3.7: Plot of the different gain rates associated with two technologies with identical rates of gain but different maintenance times; a: short maintenance time, b: long maintenance time. There is a dramatic difference in the gain curves when the results for two tools are plotted over multiple use and repair cycles. The use and maintenance schedule for the tool with the longer maintenance period results in a much lower rate of return. Investing more time in the manufacture of tools with shorter maintenance time is therefore likely to result in higher long-term pay-offs.
Figure 3.8: Theoretical models of the gain curves produced when the cumulative return rate and required period of maintenance after each use are ascribed one of three states: increasing, decreasing or constant. The initial time invested in technology is held constant for all cases. A: Increasing maintenance time, constant return rate, B: constant maintenance time, decreasing return rate, C: increasing maintenance time, decreasing return rate, D: decreasing return rate, decreasing maintenance, E: increasing return rate, increasing maintenance time, F: constant return rate, constant maintenance time; G: increasing return rate, decreasing maintenance time, H: constant return rate, decreasing maintenance time.
Figure 3.9: Illustration of the relationship between stochastic variation and risk sensitivity. A: Hypothetical return rate from foraging over time, B: sigmoid curve representing gain rate on foraging. As productivity falls below the critical minimum threshold shown the dashed line in ‘A’, foragers slip from risk-averse into increasingly risk-prone behaviour, or in this case more risk-prone technological innovation. After Fitzhugh (2000).
Figure 3.10: Flow chart linking A: resource availability to B: the organisation of subsistence and then to C: the various strategies for the optimal organisation and design of technologies. This diagram attempts to avoid conflating important dimensions of environmental, behavioural and technological variability and treats each factor as a potentially continuous variable.
Figure 4.1: The hierarchy of intensionally defined classes used in the analysis. Definitions of individual classes are provided in the glossary.
Figure 4.2: Graphic illustration of the principles used to assign objects to two classes used in this analysis. Listed along the top line are a range of attributes that are recorded for retouched flakes. Points and tulas possess a number of attributes each, and these are weighted in terms of overall importance. For example, all points have a distally retouched point, and all tulas have a dorsally trimmed pronounced bulb of percussion, but specimens belonging to both classes also have a range of attributes in common. These classes are therefore polythetic in that artefacts must possess at least one of a number of the necessary and sufficient classifying properties, but no artefact will possess them all. They are also ordered and inclusive in the sense that both points and tulas are sub-divisions of the higher-order class ‘Retouched Flakes’, and can therefore belong to both classes simultaneously.
Figure 4.3: Types and features of fracture initiation and termination (after Andreffsky 1995; Cotterell and Kamminga 1987). A: Fracture variables, B: formation of a hertzian cone, C: fracture initiations, and C: fracture terminations.
Figure 4.4: Fracture features often found on the ventral and dorsal faces of a conchoidal flake (reproduction is by courtesy of the Trustees of the British Museum).
Figure 4.5: The effects of increasing or decreasing platform angle and platform thickness.
Figure 4.6: An ‘event tree’ describing the sequence of manufacturing actions and the frequencies attached to each conceptual stage of the process. Reproduced from Bleed (2001).
Figure 4.7: The index of invasiveness. A: Measurement procedures, B: examples of index results at different stages of reduction, and C: experimental verification involving measurement of the index against the amount of weight lost from experimental flakes (from Clarkson 2002a and Hiscock and Clarkson In Press).
Figure 4.8: The Geometric Index of Unifacial Reduction (GIUR). A: Measurement procedures, and B: experimental verification involving measurement of the index against the amount of weight lost from experimental flakes (from Kuhn 1990 and Hiscock and Clarkson In Press).
Figure 4.9: Measurement procedures for describing flake shape. A: Angle of the lateral margins, and B: curvature of the retouched edge.
Figure 4.10: Two ways of depicting variation and central tendency. A: Histogram showing range, mode and frequency in each division, and B: box-and-whisker plot showing median, inter-quartile range, adjacent values, outliers and extremes.
Figure 4.11: Two ways of graphically depicting variation. A: Scatter plot showing the relationship between two variables (x and y), plotted as individual points. This graph also shows the correlation coefficient, the line of best fit and the regression equation. B: Error bar graph showing the mean and two standard errors on their side, representing the 95% confidence interval. If the bars of one class overlap those of a neighbouring class, the difference between means is not significant at the p = .05 level. Error bars can also be used to show mean and standard deviation, or mean and standard error.
Figure 5.1: Location of Wardaman Country, the survey region and sites discussed within the text.
Figure 5.2: Permanent waterhole and waterfall on the Flora River.

Figure 5.3: Large permanent waterhole along the Victoria River.
Figure 5.4: Waterhole in rocky country east of Hayward Creek.

Figure 5.5: The ‘Hayward Hole’.
Figure 5.6: Location of the major physiographic units in Wardaman Country.
Figure 5.7: Location of CSIRO land systems in Wardaman Country, and in the survey region.
Figure 5.8: Dense fringing vegetation within a deep gorge of the Pinkerton land system.

Figure 5.9: Large laterite capped mesa of the Mullaman land system from the south of Wardaman Country.
Figure 5.10: Northwest trending sandstone outliers of the Antrim Plateau Volcanics that predominantly underlies the Frayne, Napier and Willeroo land systems.

Figure 5.11: Dry basalt plains of the Napier land system.
Figure 5.12: Low open country of the Dinnabung system along Hayward Creek, with the cliffs of the escarpment country of the Pinkerton land system in the background.

Figure 5.13: Rolling basalt hills of the Frayne land system.
Figure 5.14: Frequency of high, medium and low ranking prey in each land system.
Figure 5.15: Location of the Antrim Plateau Volcanics and encapsulated sandstone ridges that are frequently associated with quartzite outcrops and gibbers.
Figure 5.16: Map showing the location of different chert sources in Wardaman Country.
Figure 5.17: Sea level changes in the Austral region over the last 140 thousand years (from Chappell 1983). The grey band marks the transition between marine and non-marine conditions for Lake Carpentaria.
Figure 5.18: The effects of changing sea level on the north Australian coastline and on the location of major vegetation zones. A: Vegetation zones at c.20,000BP, B: vegetation at c.17-14,000BP, C: vegetation zones at c.8,000BP, and D: vegetation zones at c.3,000BP.
Figure 5.19: Radiocarbon ages (solid line) for each of the excavated sites in the region based on the lowermost date, as well as the estimated basal age (hashed line) of the site determined using linear regression.
Figure 5.20: Graph showing the timing of major wet and dry phases during the Holocene, (reproduced from Schulmeister and Lees [1995]).
Figure 6.1: Location of rockshelters, survey transects and quadrats in relation to land systems, major waterholes and sources of flakable stone.
Figure 6.2: View along the north-south running fenceline that formed the base for the 64km survey transect.
Figure 6.3: Nimji at the time of Mulvaney's 1966 excavation. Garndarrin, a rock wallaby Dreaming, can also be seen painted on the back wall of the shelter (Courtesy of John Mulvaney).

Figure 6.4: View of floor from the brow of the shelter, with sandy plains and sandstone outlier in the background (Courtesy of Colin Macdonald).
Figure 6.5: Plan of Nimji rockshelter showing the location of the 1963 and 1966 excavation trenches, the location of the squares analysed by Cundy (1990), and the location of major rockart panels.

Figure 6.6: North-south and east-west cross-sections of the Nimji sandstone residual, passing through the excavated trenches.
Figure 6.7: The 1966 AB trench at the completion of the excavation. (Courtesy of John Mulvaney).
Nimji (Ingaladdi) Rockshelter, West Section of 1963 "W" Trench

Key
- Rock
- Gradational Change
- Sharp Break
- Stratigraphic Layer

Not Excavated

Below Surface

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

0 1 2 3 4 5 6 7 8

Drip Line

Sandstone Bedrock

Figure 6.8: Section drawings of the 1963 trench, redrawn from Mulvaney's originals.
Figure 6.9: Section drawings for the 1966 trench, redrawn from Mulvaney's originals.
Figure 6.10: Stone artefact numbers from adjacent squares.
Figure 6.11: Age-depth curve for all dates from the 1966 AB trench.
Figure 6.12: The Garnawala outcrop with open savanna woodland and sand sheet in the foreground.

Figure 6.13: View of Garnawala 2 rockshelter from the south, showing the rock ledge and the magnificent rock art pannels along the back wall.
Figure 6.14: View from the rock ledge down into the 1990 excavation pit. The analysed squares are the deepest ones furthest from the camera.
Figure 6.15: Site plan of Garnawala 2 rockshelter, showing the location of the analysed squares, P27-Q28.
Figure 6.16: Section drawing for the 1990 excavation. (From Clarkson and David 1995).
Figure 6.17: Depth-age graph for conventional dates only from Garnawala 2, Squares P27-Q28.
Figure 6.18: View of Jugoli-ya rockshelter. The opening to the shelter is beneath the two pandanus trees at the base of the rock (shown by the white arrow).

Figure 6.19: View of the shelter floor before excavation. Rock art is visible on the back wall and the excavation squares have been strung out.
Figure 6.20: Jugoli-ya rockshelter. A: Site plan showing excavated squares, and B: cross section through the site and through the excavated squares.
Figure 6.22: View into the completed excavation at Jugoli-ya. Note the dark band formed by Layer V and the massive rubble at the base of the excavation.
Figure 6.23: Depth-age curve for Jugoli-ya. Only conventional radiocarbon dates are plotted.
Figure 6.24: View of Gordol-ya with the excavation in progress in the background.
6.25: Site plan of Gordol-ya rockshelter. A: Site plan showing excavated squares, and B: cross-section through the excavated squares.
Figure 6.26: Section drawings for Gordol-ya, Squares J27 to N25.
Figure 6.27: Depth-age curve for M squares at Gordol-ya rockshelter.
Figure 7.1: Changes in core morphology over the reduction sequence.
Figure 7.2: Changes in core size associated with changes in reduction strategy.
Figure 7.3: Event tree summarising the changes in core form that result from several modes of reduction, and their frequencies.
Figure 7.4: Histogram of the lengths of flakes found at quarries and inferred to be 'core-struck' flakes.
Figure 7.5: Changes in flake morphology as reduction continues. Reduction stage is measured using four platform types: cortical, single conchoideal, multiple conchoideal and bipolar. Changes in morphology include: A: mean % cortex, B: mean weight, C: mean platform area, and D: frequency of overhang removal as platform angle increases.
Figure 7.6: A: Lancet flake, and B: frequency of lancet flakes produced at each stage of reduction.
Figure 7.7: Cores found at quarries associated with lancet flakes. Note the large amounts of cortex on both cores, the cortical platform on one (A) and the single conchoidal scar on the platform of the other (B).
Figure 7.8: Conjoined quartzite cores and lancet flakes from A: a quarry near Wynbarr waterhole (Site 17), B and C: a quarry near Garnawala 2 (Site 64). Illustration C shows the actual conjoined core, while A and B show hypothetical reconstructions of the original nodules and the series of flake removals taken as a slice through the centre of the platform.
Figure 7.9: Graphs showing the mean and standard deviations for changes in various aspects of scraper morphology as reduction intensity increases. A: Retouched edge angle, B: % step terminated retouch, C: % margin retouched, D: mean curvature of the retouched edge, and E: % with notches.
Figure 7.10: Graphic depiction of changes to the frequency and evenness with which retouch is distributed across eight segments as retouch increases.
Figure 7.11: A reduction model for scrapers from Wardaman Country. A-C: Increasing reduction.
Figure 7.12: Graphs showing the selection of a restricted range of flake shapes for scraper manufacture. A: Marginal angle and elongation, and B: marginal angle and cross-section.
Figure 7.13: Changes in the morphology of points over the reduction sequence. A and B: Changes in weight, and C: Changes in the perimeter of retouch.
Figure 7.14: Changes in point cross-section measured in two ways. A: Lateral cross-section (width/thickness), and B: longitudinal cross-section (length/thickness).
Figure 7.15: Changes in the proximal morphology of points. A: Mean base curvature, and B: % proximal thinning.
Figure 7.16: Changes to the location and ordering of retouch over the sequence of point reduction. A: Order of retouch as determined from scar superimposition, and B: the evenness of retouch across 16 segments (changes in point shape and size are also represented).
Figure 7.17: Two measures of variation in flake shape, showing the relationship between lightly retouched scrapers and unretouched flakes. A: Marginal angle plotted against elongation, and B: marginal angle plotted against width:thickness.
Figure 7.18: Reduction model for points, showing the flexibility in the system. Knappers tend to take larger points into a bifacial stage, whereas smaller points usually remain unifacial.
Figure 7.19: Examples of non-point retouch on leiliras and blades.
Figure 7.20: The nature of burinate reduction. A: Frequency of burinate retouch on different artefact classes, B: frequency of different initiation surfaces, and C: the frequency of rotation.
Figure 7.21: Changes in mean burin morphology as the number of platforms and scars increases. A: Number of orientations, B: changes in mean platform angle, and C: changes in the frequency of step and hinge terminations.
Figure 7.22: Changes to the mean length of burin scars as reduction continues.
Figure 7.23: A reduction model for burins. Two common sequences are illustrated. A: The sequence leading to dihedral burins, and B: a sequence of rotations leading to multiple orientations and the removal of substantial numbers of spalls. Unifacial points are shown as the blank for burinate retouch, but lancets, flakes, scrapers and tulas are also commonly selected for this kind of reduction.
Figure 7.24: Changes in the morphology of tulas over the sequence of reduction. Elongation is the measure of reduction intensity, with 1 representing least reduction and 0.33 the most. A: Reduction in mean length, B: changes to the mean curvature of the edge, and C: reductions in the mean perimeter of retouch.
Figure 7.25: Changes in mean edge curvature for tulas as reduction continues.
Figure 7.26: Variation in tula shape in comparison with unretouched flakes. A: Marginal angle plotted against elongation, and B: marginal angle plotted against width:thickness.
Figure 7.27: A reduction sequence for tulas. The A sequence represents continued reduction of the distal end. The B sequence results from turning the tula around and flaking the platform.
Figure 7.28: Relationship between burrens and scrapers. A: Perimeter of retouch, B: edge curvature (against perimeter of retouch), C: edge angle, and D: index of invasiveness.
Figure 7.29: Variation in the shape of burrens and scrapers. A: Marginal angle plotted against elongation, and B: marginal angle plotted against width:thickness.
Figure 7.30: Overlay of variation in retouched implement shape by class. A: Marginal angle plotted against elongation, and B: marginal angle plotted against width:thickness.
Figure 8.1: Clustering of sites around permanent waterholes. A: The number of sites found at differing distances to water, and B: site area plotted against distance from water.
Figure 8.2: The effects of distance to a permanent waterhole on assemblage size and density. A: Assemblage size, and B: assemblage density.
Figure 8.3: Measures of assemblage complexity plotted against distance from permanent water. A: Assemblage diversity, and B: assemblage richness.
Figure 8.4: Raw material usage relative to permanent waterholes. A: Number of raw material types, and B: richness of raw material types.
Figure 8.5: Relationship between distance to permanent water and the maximum distance over which raw materials are transported.
Figure 8.6: Measures of artefact reduction in relation to distance from permanent water. A: Mean index of invasiveness, and B: mean number of core rotations.
Figure 8.7: Clustering of sites around sources of flakeable stone. A: Numbers of sites, and B: assemblage size.
Figure 8.8: A: Relationship between stone artefact density and distance to a stone source, B: scatter plot of assemblage richness against distance to a stone source.
Figure 8.9: Relationship between raw material richness (A) and maximum raw material transport (B) plotted against distance from a stone source.
Figure 8.10: A: Relationship between distance to a stone source and the index of invasiveness, B: mean number of core rotations, and C: the weight of stone artefacts transported away from a stone source.
Figure 8.11: Relationship between site characteristics and distance to a rockshelter. A: Number of sites, and B: assemblage richness.
Figure 8.12: Effects of distance to plateau edge on site location (A), area (B) and density (C).
Figure 8.13: Site abundance and size plotted against minimum distance to either of the four site location variables examined so far (i.e. distance to waterholes, stone, shelter, and elevated terrain).
Figure 8.14: Assemblage characteristics plotted against minimum distance to either water, stone, shelter, or elevated terrain. A: Assemblage size, B: artefact density, and C: assemblage richness.
Figure 8.15: Effects of minimum distance to water, stone, shelter and elevated terrain on: A: raw material richness, and B: raw material transport distance.
Figure 8.16: Reduction intensity plotted against minimum distance to water, stone, shelter and elevated terrain. A: Index of invaseness, and B: number of core rotations.
Figure 8.17: Site type and area by land system.
Figure 8.18: Artefact density by land system. A: Densities including quarries and rockshelters, and B: scatters only.
Figure 8.19: A: Assemblage diversity by land system, and B: box plot of the index of invasiveness for each land system.
Figure 8.20: Reduction intensity for cores in each land system.
Figure 8.21: Directions and minimum distances travelled from each land system to stone sources as determined from open sites and quarries.
Figure 9.1: Method of intercalibration for each pit and each square for Cordoba-Ja and Jugolin

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 % 0</td>
</tr>
<tr>
<td>2 % 0</td>
</tr>
<tr>
<td>3 % 0</td>
</tr>
<tr>
<td>4 320</td>
<td>4 % 0</td>
</tr>
<tr>
<td>5 640</td>
<td>5 % 0</td>
</tr>
<tr>
<td>6 960</td>
<td>6 % 0</td>
</tr>
<tr>
<td>7 1280</td>
<td>7 340</td>
<td>7 Cal 375</td>
<td>7 x 3000</td>
<td>7 % 0</td>
<td>7 % 0</td>
<td>7 % 0</td>
<td>7 % 0</td>
</tr>
<tr>
<td>8 1600</td>
<td>8 872</td>
<td>8 750</td>
<td>8 x 3950</td>
<td>8 % 0</td>
<td>8 % 0</td>
<td>8 % 0</td>
<td>8 % 0</td>
</tr>
<tr>
<td>9 1775</td>
<td>9 Cal 1404</td>
<td>9 1125</td>
<td>9 4900</td>
<td>9 % 0</td>
<td>9 Cal 270</td>
<td>9 1040</td>
<td>9 333</td>
</tr>
<tr>
<td>10 1950</td>
<td>10 1936</td>
<td>10 1500</td>
<td>10 5850</td>
<td>10 % 0</td>
<td>10 408</td>
<td>10 1500</td>
<td>10 500</td>
</tr>
<tr>
<td>11 2125</td>
<td>11 Cal 2468</td>
<td>11 1875</td>
<td>11 Cal 6900</td>
<td>11 % 0</td>
<td>11 548</td>
<td>11 1500</td>
<td>11 667</td>
</tr>
<tr>
<td>12 2300</td>
<td>12 x 3000</td>
<td>12 2250</td>
<td>12 7400</td>
<td>12 % 0</td>
<td>12 684</td>
<td>12 300</td>
<td>12 833</td>
</tr>
<tr>
<td>13 2475</td>
<td>13 6000</td>
<td>13 2625</td>
<td>13 Cal 8000</td>
<td>13 % 0</td>
<td>13 822</td>
<td>13 450</td>
<td>13 1000</td>
</tr>
<tr>
<td>14 2650</td>
<td>14 9000</td>
<td>14 x 3000</td>
<td>14 Cal 9114</td>
<td>14 % 0</td>
<td>14 960</td>
<td>14 600</td>
<td>14 1167</td>
</tr>
<tr>
<td>15 x 3000</td>
<td>15 Cal 12000</td>
<td>15 4633</td>
<td>15 10228</td>
<td>15 % 0</td>
<td>15 1068</td>
<td>15 750</td>
<td>15 1334</td>
</tr>
<tr>
<td>16 Cal 4422</td>
<td>16 16000</td>
<td>16 8666</td>
<td>16 11341</td>
<td>16 % 0</td>
<td>16 1238</td>
<td>16 900</td>
<td>16 1500</td>
</tr>
<tr>
<td>17 5916</td>
<td>17 8499</td>
<td>17 Cal 12455</td>
<td>17 % 0</td>
<td>17 1374</td>
<td>17 1050</td>
<td>17 1200</td>
<td>17 1750</td>
</tr>
<tr>
<td>18 Cal 7410</td>
<td>18 10332</td>
<td>18 13659</td>
<td>18 % 0</td>
<td>18 1512</td>
<td>18 1200</td>
<td>18 1600</td>
<td>18 2000</td>
</tr>
<tr>
<td>19 9195</td>
<td>19 12165</td>
<td>x = First bifacial point, c.3,000BP</td>
<td>19 % 0</td>
<td>19 1762</td>
<td>19 1350</td>
<td>19 2400</td>
<td>19 2250</td>
</tr>
<tr>
<td>20 10980</td>
<td>20 13988</td>
<td>20 Cal 2012</td>
<td>20 % 0</td>
<td>20 2700</td>
<td>20 1520</td>
<td>20 2700</td>
<td>20 2500</td>
</tr>
<tr>
<td>21 12795</td>
<td>21 2262</td>
<td>21 Cal 3000</td>
<td>21 % 0</td>
<td>21 2700</td>
<td>21 2250</td>
<td>21 2700</td>
<td>21 2700</td>
</tr>
<tr>
<td>22 14500</td>
<td>22 2625</td>
<td>22 Cal 4250</td>
<td>22 % 0</td>
<td>22 4475</td>
<td>22 x 3000</td>
<td>22 Cal 4250</td>
<td>22 4475</td>
</tr>
<tr>
<td>23 $ 16000</td>
<td>23 x 3000</td>
<td>24 3350</td>
<td>24 x 3000</td>
<td>24 4700</td>
<td>24 2625</td>
<td>24 4750</td>
<td>24 3636</td>
</tr>
<tr>
<td>26 3700</td>
<td>26 3700</td>
<td>26 3700</td>
<td>26 5150</td>
<td>26 4272</td>
<td>26 3700</td>
<td>26 5150</td>
<td>26 4272</td>
</tr>
<tr>
<td>27 4050</td>
<td>27 4050</td>
<td>27 4050</td>
<td>27 5375</td>
<td>27 4590</td>
<td>27 4050</td>
<td>27 5375</td>
<td>27 4590</td>
</tr>
<tr>
<td>28 4400</td>
<td>28 4400</td>
<td>28 4400</td>
<td>28 5600</td>
<td>28 4908</td>
<td>28 4400</td>
<td>28 5600</td>
<td>28 4908</td>
</tr>
<tr>
<td>29 4750</td>
<td>29 4750</td>
<td>29 4750</td>
<td>29 5825</td>
<td>29 5226</td>
<td>29 4750</td>
<td>29 5825</td>
<td>29 5226</td>
</tr>
<tr>
<td>30 5100</td>
<td>30 5100</td>
<td>30 5100</td>
<td>30 6050</td>
<td>30 5544</td>
<td>30 5100</td>
<td>30 6050</td>
<td>30 5544</td>
</tr>
<tr>
<td>31 5450</td>
<td>31 5450</td>
<td>31 5450</td>
<td>31 6275</td>
<td>31 5662</td>
<td>31 5450</td>
<td>31 6275</td>
<td>31 5662</td>
</tr>
<tr>
<td>32 5800</td>
<td>32 5800</td>
<td>32 5800</td>
<td>32 6500</td>
<td>32 6180</td>
<td>32 5800</td>
<td>32 6500</td>
<td>32 6180</td>
</tr>
<tr>
<td>33 6150</td>
<td>33 6150</td>
<td>33 6150</td>
<td>33 $ 6500</td>
<td>33 6500</td>
<td>33 6150</td>
<td>33 $ 6500</td>
<td>33 6500</td>
</tr>
<tr>
<td>34 $ 6500</td>
</tr>
</tbody>
</table>

- % = Glass flakes and beads, 0BP
- *= Upper peak in artefact deposition, c.1,500BP
- Cal = Calibrated radiocarbon date
- x = First bifacial point, c.3,000BP
- # = Lower peak in artefact deposition, c.7,294BP
- $ = Inferred basal age
Figure 9.2: Method of interdigitation for each pit and each square for Nuni and Gamawa 2.

<table>
<thead>
<tr>
<th>P27</th>
<th>TM</th>
<th>Cal BP</th>
<th>P28</th>
<th>TM</th>
<th>Cal BP</th>
<th>P27</th>
<th>TM</th>
<th>Cal BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>214</td>
<td>188</td>
<td>1</td>
<td>178</td>
<td></td>
<td>1</td>
<td>%</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>428</td>
<td>2375</td>
<td>2</td>
<td>2375</td>
<td>167</td>
<td>2</td>
<td>%</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>642</td>
<td>3563</td>
<td>3</td>
<td>3563</td>
<td>333</td>
<td>3</td>
<td>%</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>856</td>
<td>4750</td>
<td>4</td>
<td>4750</td>
<td>500</td>
<td>4</td>
<td>%</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1070</td>
<td>5938</td>
<td>5</td>
<td>5938</td>
<td>667</td>
<td>5</td>
<td>%</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1284</td>
<td>61125</td>
<td>6</td>
<td>61125</td>
<td>833</td>
<td>6</td>
<td>%</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1498</td>
<td>71313</td>
<td>7</td>
<td>71313</td>
<td>1000</td>
<td>7</td>
<td>%</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1673</td>
<td>81500</td>
<td>8</td>
<td>81500</td>
<td>1167</td>
<td>8</td>
<td>%</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>2248</td>
<td>92000</td>
<td>9</td>
<td>92000</td>
<td>1333</td>
<td>9</td>
<td>%</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>2623</td>
<td>102500</td>
<td>10</td>
<td>10250</td>
<td>1500</td>
<td>10</td>
<td>%</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>3000</td>
<td>11x3000</td>
<td>11</td>
<td>11x3000</td>
<td>1875</td>
<td>11</td>
<td>%</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>4750</td>
<td>123500</td>
<td>12</td>
<td>123500</td>
<td>2250</td>
<td>12</td>
<td>%</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>6418</td>
<td>134000</td>
<td>13</td>
<td>134000</td>
<td>2625</td>
<td>13</td>
<td>%</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>4500</td>
<td>14x4500</td>
<td>14</td>
<td>14x4500</td>
<td>3000</td>
<td>14</td>
<td>%</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>5000</td>
<td>155000</td>
<td>15</td>
<td>155000</td>
<td>4500</td>
<td>15</td>
<td>%</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>5500</td>
<td>16x5500</td>
<td>16</td>
<td>16x5500</td>
<td>6000</td>
<td>16</td>
<td>%</td>
<td>0</td>
</tr>
</tbody>
</table>

% = Glass flakes and beads, 0BP
* = Upper peak in artefact deposition, c.1,500BP
Cal = Calibrated radiocarbon date
x = First bifacial point, c.3,000BP
= Lower peak in artefact deposition, c.7,294BP
$ = Inferred basal age
Figure 9.3: Changes in stone artefact discard and occupational intensity over the last 15,000 years. A: Raw stone artefact numbers per spit for each site, and B: complete artefacts, bone weights from Gordol-ya, charcoal and burnt earth overlayed over total artefacts deposited over time.
Figure 9.4: Three measures of artefact reduction plotted against peaks in artefact discard. A: Numbers of core rotations, B: maximum retouch, and C: percent late stage flake platforms.
Figure 9.5: Changes in core morphology over time. Changes in morphology are closely tuned to fluctuations in the mean number of core rotations.
Figure 9.6: Changes in flake morphology over time.
Figure 9.7: Temporal modes in the discard of various types of pointed flakes.
Figure 9.8: Frequency of reduction sequences through time, as well as changing technological diversity for the region over time.
Figure 9.9: Frequency of artefact reuse as a possible indicator of the use of situational gear. A: Frequency of retouched broken edges, and B: reuse of flakes with old weathered surfaces.
Figure 9.10: Changes in raw material richness over time. A: Nimji, B: Garnawala 2, and C: Gordol-ya.
Figure 9.11: Changes in the proportions of local vs exotic raw materials. A: Nimji, and B: Garnawala 2.
Figure 9.12: Changes in the size and abundance of cores transported over varying distances to Nimji. A: Number of cores, and B: mean weight of cores.
Figure 9.13: Evidence of heritable continuity in stone artefact manufacturing technologies over the last 14,000 years.
Figure 9.14: Changes in variation and central tendency in four measures of retouched implement shape.
Figure 9.15: Changes in mean and standard error for several measures of retouched implement size.
Figure 9.16: Changes in variation and central tendency for two measures of flake retouching. A: the invasiveness of retouch scars, and B: the number of bifacially retouched segments.
Glossary

Anvil
A stone with impact pitting on one or more flat surfaces, sometimes forming a distinct depression.

Biface
A core with two distinct faces that has had alternate blows directed around its circumference onto each face, creating a characteristically sinuous platform edge.

Bifacial Point
A retouched flake (or biface) whose lateral margins are retouched to a point, with a low thickness to length ratio, and showing retouch on both the dorsal and ventral surfaces.

Bipolar Technique
Bipolar artefacts were created through the application of compressive forces between hammerstone and anvil. Crushing of the platform edge, together with a flattish fracture surface and a battered distal end are the usual criteria employed to identify bipolar flakes, although not all flakes removed from bipolar cores possess these features (Cotterell and Kamminga 1977), and some possess platform features at both ends, or crushing in addition to fully formed Hertzian initiations. Negative scars can sometimes also appear on the ventral surfaces of bipolar flakes directed from either end as a result of the crushing blow. Bipolar flakes also are not easily separated from bipolar cores, but the presence of a single flat scar on one face may serve as a guide, whereas bipolar cores will tend to exhibit a number of scars on all faces.

Burin
A flake from which elongate spalls have been detached along one or more lateral margins. The number of burin spall scars, the direction of removal and location of platform, the length and width of each scar, and the termination type for each spall were all recorded for burins.
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>A core is a nucleus from which a flake has been detached, as indicated by the presence of negative flake scar and no positive flake scar.</td>
</tr>
<tr>
<td>Cortex</td>
<td>Cortex is the weathered exterior of rocks formed by long periods of exposure to chemical and physical weathering. The percentage of cortex remaining on either the dorsal (if limited to the dorsal), the platform (if limited to the platform) or both dorsal and platform (if occurring on both) is recorded in 10% increments. On flaked pieces, cortex is recorded as an estimation of the total surface area covered.</td>
</tr>
<tr>
<td>Cortex Type</td>
<td>Cortex type varies according to the environment in which it formed and the subsequent processes by which it came to be transported to its current position. Three types of cortex are recorded for all artefacts preserving a cortical remnant. These are angular, rounded and irregular.</td>
</tr>
<tr>
<td>Double Side Scraper</td>
<td>A flake that has been dorsally retouched on two lateral margins that is not a point, burren or tula.</td>
</tr>
<tr>
<td>Double End Scraper</td>
<td>A flake that has been dorsally retouched on the distal margin, but is not a point, burren or tula.</td>
</tr>
<tr>
<td>Double Side and Double End Scraper</td>
<td>A flake that has been dorsally retouched on all margins that is not a point, burren or tula.</td>
</tr>
<tr>
<td>Distal Width</td>
<td>Width taken at the distal end of complete flakes, perpendicular to the percussion axis. Recorded to the nearest millimetre.</td>
</tr>
</tbody>
</table>
Edge Curvature
Index of the degree to which the retouched edge is convex or concave. The index is calculated by dividing the diameter of retouch by the depth of retouch. Convex edges return positive results while convex edges return negative ones.

![Diagram of Edge Curvature](image)

Edge-Damage
The presence on a flake of numerous flake scars deriving from the lateral margins that are no longer than 2mm.

Edge Ground Axe
Implement shaped on at least one margin by grinding against another surface. Such implements are often shaped by flaking, pecking, flaking and pecking or grinding and/or burnishing around much of their exterior. Also known as an edge ground hatchet. Edge ground axes may be made from bifaces, large flakes or large retouched flakes.

Edge Ground Axe Flake
Rejuvenation flake from an edge ground axe that preserves a portion of the ground surface or edge on its dorsal surface or platform.

Edge Rounding
Rounding of on or more portions of the lateral margins through heavy use on a yielding material or weathering.

End Scraper
A flake with a flat ventral surface and a retouched distal end that is not a point, burren or tula.

End and Side Scraper
A flake retouched dorsally along the distal end and one lateral margin that is not a point, burren or tula.

Faceting
Faceting looks much like overhang removal, but is oriented in the reverse direction, with smallish flake scars initiated from the dorsal surface onto the platform surface of cores and flakes. The cut off between faceting scars and 'struck flakes' is arbitrarily set at 15mm.
Flake

Any piece of stone detached from a nucleus, be it a core or another flake, that possesses one or a combination of the following: ring crack, platform, errailure scar, positive bulb of force, or clearly discernable dorsal and ventral surfaces.

Flaked Piece

Any piece of rock clearly created by human fracture (including heat shatter), but for which no attributes exist to identify it as a core, a flake or any other identifiable technological category.

Hammerstone

Piece of stone used to strike flakes from a core or to retouch flakes. Identified by the presence of impact pitting and/or cracking on one or more ends.

Hammerstone and Anvil

A hammerstone that also shows anvil pitting on the flat faces in between the pitted ends.

ID#

Each artefact in the assemblage is assigned an individual identifying number. This number is recorded on each artefact bag.
Index of Fragmentation Calculation of the intactness of an assemblage. This statistic is calculated by dividing the total number of flake fragments, by the number of complete flakes larger than 2cm.

Index of Invasiveness A measure of the invasiveness of retouch (recorded as a value of 1 or 0.5) for retouch scars spread across the 16 segments of a flake (8 per face – divided into proximal end, left proximal, right proximal, left medial, right medial, left distal, right distal and distal end). The sum of invasiveness scores is divided by the number of segments present (see Clarkson (2002) for measurement and calculation procedures). Recorded for all retouched flakes.

\[
\text{Index} = \frac{\text{Total Segment Scores} (1 + 0.5 + 0.5)}{\text{Total Segments} (16)} = 0.093
\]

Geometric Index of Unifacial Reduction (GIUR) A measure of the thickness of retouch relative to the total medial thickness of a flake. The measure is effective for quantifying retouch located on the dorsal surface of the lateral margins only (see Kuhn (1990) for measurement procedures). Recorded for all dorsally retouched flakes.
Grindstone

A large stone with surface/s that have been worn away through abrasive grinding, sometimes forming large flat to convex depressions. Fine parallel or concentric striations (sometimes microscopic) aligned in the direction of the grinding motion are sometimes present, and these may blur pre-existing fracture (or other surface) features or polish high points on the surface of the artefact. Lengthwise grinding may cause long depressions in the surface of the artefact, while concentric actions typically create a worn circular surface with rounded edges.

Lancet

An elongate unretouched flake less than 10cm in length, with tapering margins that meet at a point at the distal end, possess one or more arises, have low thickness to length ratios, and are roughly symmetrical over their length.

Leilira

A lancet-like flake that is greater 10cm in length.

Length

Length is measured as the distance between the ring crack and the distal termination parallel to the plane of force. Recorded to the nearest millimetre.
Length of Retouch The total perimeter of retouch scars around the margins of a flake. Recorded to the nearest millimetre.

Location of Retouch The surface from which retouch originates (e.g. the dorsal or ventral surfaces) or the order of scar superimposition. Retouch was recorded as dorsal only, ventral only, dorsal first, ventral first, alternating or dorsal-ventral dorsal (DVD), ventral-dorsal-ventral (VDV), dorsal last, ventral last, or bifacial.

Longitudinal Ridges Longitudinal ridges (or arises) are protruding ridges running most of the length of the dorsal surface, formed by flake removals subsequent to the creation of the ventral surface.

Marginal Angle A measure of the degree to which flakes expand or contract along their percussion axis. Negative angles indicate expansion of the lateral margins along the percussion axis away from the platform. Positive angles indicate that the flake tapers along its axis. A value of 0° indicates that the lateral margins are parallel. The angle of the lateral margins was calculated by employing the following formula:
\[
\theta = \frac{\text{proximal width - distal width}}{2 \times \text{length}}
\]

And hence angle of the lateral margins \((\theta) = 2 \tan^{-1} \left(\frac{\text{proximal width - distal width}}{2 \times \text{length}}\right)\)

Maximum Dimension
The maximum length of an artefact in any plane. Recorded to the nearest millimetre.

Maximum Face Length
The maximum face length is recorded for all cores in the assemblage. This measure is defined as the length in millimetres of the longest face showing evidence of flake scarring, perpendicular to the platform. Recorded to the nearest millimetre.

Minimum Number of Flakes (MNF)
A measure of the number of flakes present in an assemblage reconstructed from frequencies of uniquely occurring flake fragments. MNF is calculated by adding the number of complete flakes to whichever is the greater number of proximal or distal fragments, plus the greater number of left or right fragments, plus the greater number of left or right proximal or distal
fragments. For a full description of this method see Hiscock (2002).

Multidirectional Bipolar Core

Bipolar core that has been rotated such that flaking has taken place along more than one axis.

Multiplatform Core

Core with more than one platform, or truncated scars originating from more than one direction, resulting from a change in the orientation of the direction of applied force.

Number of Aberrant Terminations

The number of flake scars on cores showing terminations other than feather terminations (i.e. step, hinge or outrépasse).

Number of Rotations

The number of times that the orientation of blows to a core has changed. The number of rotations is arrived at by subtracting one from the total number of flaking reorientations. Recorded on all cores.

Number of Segments

The number of segments out of a total of 16 (8 per face – divided into proximal end, left proximal, right proximal, left medial, right medial, left distal, right distal and distal end) that are present on a flake or flake fragment.

Overhang Removal

Overhang removal is performed by rubbing or gently tapping the edge of the core to remove the lip remaining after previous flake removals to strengthen the platform for subsequent blows. Overhang removal can be identified by the presence of a series of smallish scars initiated from the platform surface onto the
dorsal surface of flakes or the face of cores. The cut off between faceting scars and 'struck flakes' is arbitrarily set at 15mm.

Platform Quadrants

The number of quadrants on the last platform of a core that show signs of flaking. The measurement is taken by situating the starting point of the first quadrant to the left of the last scar removed from the core and working in an anti-clockwise direction. Recorded on all cores.

Platform Thickness

Platform thickness is measured as the distance between the ring crack and the outer platform edge, perpendicular to the ventral surface. Recorded to the nearest millimetre.

Platform Type

Platform type records whether the platform is comprised of a single conchoidal scar, multiple conchoidal scars, cortex, cortex and conchoidal scars or whether it is crushed or focalised. Focalised platforms are defined as those with a total area less than or equal to twice that of the ring crack.

Platform Width

Platform width is taken as the distance between the two points at which the lateral margins meet with the platform. Recorded to the nearest millimetre.
Proximal Width

Width taken at the proximal end perpendicular to the percussion axis. Recorded to the nearest millimetre.

Raw Material Type

Raw material type records the common geological category into which an artefact falls (e.g. chert, rhyolite etc). No attempt has been made to identify stone type beyond these broad categories (e.g. the various types of volcanic stone, or varieties of chert).

Redirecting Flake

A flake that preserves a former platform edge on its dorsal surface. This type of flake represents the removal of an old edge by rotating the orientation of force application to the core.

Reduction Sequence

A conceptual model of the time-ordering of manufacturing actions involved in the reduction of a single nucleus of stone. The recurrent use of particular reduction sequences likely
represents a tradition. The reduction sequence need not be a normative or unilinear depiction of manufacturing sequences aimed at producing a particular end-product. The term can also refer to a set of contingent and variable procedures resulting in branching reduction pathways. In this case, the reduction sequence constitutes all of the branches that can be traced back to a single starting point (i.e. the trunk of the reduction flow chart). Multiple starting points represent different reduction sequences.

Retouch
The presence on a flake of scars deriving from the lateral margins that are longer than 2mm in maximum length.

Retouched Flaked Piece
A flaked piece that has one of its lateral margins retouched.

Retouched Segments
The number out of a total of 16 segments (8 per face) that have retouch.

Side Scraper
A flake that has been dorsally retouched on one lateral margin only, and is not a point, burren or tula.

Single Platform Core
Core with a single cortical or unflaked platform and flake scars aligned along a single plane of force application.

Termination
The termination is the distal extremity of the ventral surface created as force leaves the core. One of four termination types is recorded: feather, hinge, step and outrépasse terminations. Also recorded for the last four scars found on cores.

Feather
Step
Hinge
Plunging (Outrépasse)

Thickness
Thickness is measured as the maximum distance between the dorsal and ventral surfaces, halfway between the ring crack and the distal termination. Recorded to the nearest millimetre.
Topstone (Muller) A flattish to rounded stone with one or more surfaces clearly ground to form faceted surfaces with striations, polish and rounded surface features. Topstones tend to be much smaller and thinner than grindstones.

Tradition An evolutionary lineage in stone-working procedures.

Transformation The recycling of a flake via the removal of the margins through burination, by retouching a break, or by removing fresh flakes from an older, weathered surface.

Tula A retouched flake with a pronounced bulb of percussion, dorsal bulbar trimming, and a high thickness to length ratio. Tulas are characteristically resharpened until a slug form is reached. Tulas tend to be distally retouched only, such that length is reduced without much loss to width. Tulas were ethnographically observed in use throughout the arid and some semi-arid regions as heavily curated hafted tools used to work hard wood among other things (Gould 1980; Tindale 1965).

Tula Slug The worked down remnant of a tula. Tula slugs are defined as tulas with a length to width ration of greater than 3:1. Tula slugs often exhibit heavily stepped edges, and may be turned 180 degrees in the haft, such that the platform is use and completely removed through retouching.

Unifacial Point Retouched flake where the distal retouch forms a well defined point, thickness to length ratios are low, and the artefact is more or less symmetrical along its length.
Unidirectional Bipolar Core

Bipolar core that has been flaked along one axis only.

Weight

Weight was recorded for all artefacts to the nearest 0.1g.

Width

The distance between the right and left margins, taken perpendicular to and half-way along the percussion axis. Recorded to the nearest millimetre.