USE OF THESES

This copy is supplied for purposes of private study and research only. Passages from the thesis may not be copied or closely paraphrased without the written consent of the author.
APPENDIX E

DEFORMATIONAL RESPONSE
LOAD vs RELATIVE DISPLACEMENT

$\frac{3}{8}$ sq. blocks (B_i)

BLOCK LAYOUT & DISPLACEMENTS MEASURED

Y (x-Sect. area = 2.06 sq. ins.)

Length $A-B = 4.13''$

$C-D = 3.75''$

LOADING SEQUENCE

Hydrostatic to 126 lb

only verticle Y to 252 lb

LOAD

1st cycle

Scale 1" = 50 lb

100

200

300

DISPLACEMENT

Scale 1" = 0.01

$0 \rightarrow 0.01 \rightarrow 0.02 \rightarrow 0.03 \rightarrow 0.04 \rightarrow 0.05$
LOAD vs RELATIVE DISPLACEMENT

\[\frac{1}{2} \text{ sq. blocks} (B_2) \]

LOADING SEQUENCE
- 1st X up to 126 lb
- then Y thereafter

BLOCK, LOAD & DISP.

- **A.B.** 2nd cycle
- **C.D.** 2nd cycle
- **Hor. Length** A.B. = 3.75"
- **Ver.** C.D. = 3.85"

LAYOUT

- Area = 3.0 sq. ins
- Area = 2.9 sq. ins

DISPLACEMENT

- Scale 1" = 0.01"
LOAD vs RELATIVE DISPLACEMENT

BLOCK, LOAD & DISP.
SYSTEM

\(\frac{1}{2} \) sq. blocks (B3)

area = 2.3 sq. ins.

Hor. Length A.B = 3.5"
Ver. " C.D = 3.8"

LOADING SEQUENCE
1st X up to 126 lb
then Y thereafter

DISPLACEMENT

Scale 1" = 0.005"

DISPLACEMENT

scale 1" = 0.01
LOAD vs RELATIVE DISPLACEMENT

3/4" sq. blocks (B₄)
BLOCK, LOAD & DISP SYSTEM

area = 1.65 sq. ins.

LENGTH A-B = 2.9"
" C-D = 3.8"

LOADING SEQUENCE.
1st X up to 126 lbs
then Y thereafter.

AB 1st cycle
AB 2nd cycle
CD 1st cycle
CD 2nd cycle

LOAD
Scale 1" = 50 lbs.
200
100

DISPLACEMENT
Scale 1" = 0.01"
LOAD vs RELATIVE DISPLACEMENT

BLOCK, LOAD & DISP SYSTEM

\[\frac{3}{8} \text{ sq. blocks (B5)} \]

LENGTH A-B = 3.0"
CD = 3.8"

LOADING SEQUENCE
1st X up to 126 lbs
then Y thereafter.

1st cycle
2nd cycle

LOAD Scale 1" = 50 lbs.

DISPLACEMENT
Scale 1" = 0.01"
LOAD vs DISPLACEMENT (RELATIVE)

block, disp, & load system 1" x 2" rectangular blocks (B_6)

area = 6 sq. ins.

$\angle 30^\circ$

Hor. length A·B = 4.6"
" " C·D = 7"

LOADING SEQUENCE
1st X loading raised to 189 lbs
then Y load increased

DISPLACEMENT Scale 1" = 0.02"
LOAD vs Pt. DISPLACEMENT

1" x 2" rect. blocks (B6)

Displacement
Scale 1" = 0.02"

LOAD
Scale 1" = 100 lbs

Point B
Point A
LOAD vs RELATIVE DISPLACEMENT

1"x2" rect. blocks, 3 removed (Br)

Block, disp, & load system

Hor. Length A-B = 4.6"
Ver. " C-D = 7"

LOADING SEQUENCE
1st X loading raised to 189 lbs then Y load increased

DISPLACEMENT
Scale 1" - 0.02"
LOAD vs Pt. DISPLACEMENT

1" x 2" rect. blocks 3 removed. (B)
LOAD vs RELATIVE DISPLACEMENT

1" x 2" rect blocks, 5 removed (y2)

Block, load & disp. system

area = 0.012"

Hor. length AB = Ver. CD =

LOADING SEQUENCE
1st load X increased to 189 lbs, the Y increased thereafter.

Hor. load reduced to 189 lbs.

AB 1st cycle

CD 1st cycle

LOAD scale 1" = 50 lbs

DISPLACEMENT

scale 1" = 0.02"
LOAD vs. REL. DISPLACEMENT

1" sq. blocks with 8 blocks removed

LENGTH A.B. = 7"
" C.D. = 6"

LOADING SEQUENCE
Hydrostatic to 630 lbs then vertical loading thereafter.

LOAD
Scale 1" = 200 lbs

DISPLACEMENT
Scale 1" = 0.01"
LOAD vs Pt DISPLACEMENT

1" x 2" rect. blocks 5 removed (δ_2)
1st loading cycle

LOAD
Scale 1" = 100 lbf, 200

DISPLACEMENT
Scale 1" = 0.02"
LOAD vs. RELATIVE DISPLACEMENT

Rect. blocks of varying sizes (\(\frac{1}{2} \))
disp of large blocks

2 blocks removed.
LOAD vs RELATIVE DISPLACEMENT

Rect. blocks of varying sizes (ca.)
disp of large blocks
5 blocks removed.

A.B.
1st cycle

C.D.
1st cycle

LOAD
Scale 1" = 100 lbs

DISPLACEMENT
Scale 1" = 0.01"
LOAD vs Pt DISPLACEMENT

1/2" sq. blocks (65)

DISPLACEMENT
Scale 1"=0.02"

Pt A
Pt B
Pt D
Pt C

Scale 1"=200 lbs.

0.02 0.04 0.06 0.08 0.1 0.12
LOAD vs RELATIVE DISPLACEMENT
1½" sq. blocks, 3 removed \(\delta_4 \)

LENGTH \(AB = 3'' \)
\(CD = 6'' \)

LOADING SEQUENCE
1st hydrostatic load to 504 lbs.
then load increased in \(Y \) direction only.

LOAD
scale 1''=200 lbs
600
1000

DISPLACEMENT
scale 1''=0.02''
LOAD vs Pt. DISPLACEMENT

1½" sq. blocks (V₀)
3 blocks removed.
LOAD vs RELATIVE DISPLACEMENT

1/2" sq. blocks with 5 removed (C7)

LENGTH A.B. = 9"
" C.D. = 6"

LOADING SEQUENCE
Hydrostatic for all loads.

LOAD
scale 1" = 200 lbs

800

600

400

200

0.02
0.04
0.06
0.08
0.1

DISPLACEMENT
scale 1" = 0.02"
LOAD vs RELATIVE DISPLACEMENT (hanging wall)

$1\frac{1}{2}$ sq. blocks with 4 removed (θ)

\[\text{area} = 93.3 \text{ sq. ins.} \]

\[\text{area} = 863 \text{ sq. ins.} \]

LENGTH AB = 9"
LENGTH CD = 3"

\[CD, 1^{st} \text{ cycle} \]

\[AB, 1^{st} \text{ cycle} \]

DISPLACEMENT

Scale 1" = 0.02"
LOAD vs RELATIVE DISPLACEMENT

1½" sq blocks with 5 blocks removed (63)

LENGTH AB = 9''
LENGTH CD = 3''

LOADING SEQUENCE
Hydrostatic loading for all loads.
LOAD vs. RELATIVE DISPLACEMENT

1½" blocks. δ11

area = 8.63 in²

HOR. AB = 5"
VER. CD = 5½"

LOADING SEQUENCE
Hydrostatic loading for all loads.

LOAD vs. DISPLACEMENT

Scale 1" = 0.01"

0.01 0.02 0.03 0.04

200 400 600 800 1000
LOAD vs. RELATIVE DISPLACEMENT
1" x 2" rectangular blocks (θ_{12})

LENGTH AB = 6"
" CD = 6"
LOADING SEQUENCE
Hydrostatic loading for all loads

LOAD
Scale 1"/100 lb

DISPLACEMENT
Scale 1" = 0.02
LOAD vs Pt. DISPLACEMENT

1" x 2" rectangular blocks. (δ12)

LOAD
Scale 1" = 200 lbs

DISPLACEMENT
Scale 1" = 0.02"
LOAD vs RELATIVE DISPLACEMENT.

1" x 2" rectangular blocks. (θ_{13}) 2

LENGTH AB = 6"
LENGTH CD = 6"

LOADING SEQUENCE
Hydrostatic loading for all loads.

LOAD
Scale 1" = 100 lbs

DISPLACEMENT
Scale 1" = 0.01"
LOAD vs Pt. DISPLACEMENT

1" x 2" rectangular blocks (9/2) 2nd
LOAD vs DISPLACEMENT (pt.)
Rect blocks of varying sizes (Y31)

Pt A
Pt B
Pt D disp. of small blocks
Pt C

LOAD
200 Scale 1" = 5016
100

DISPLACEMENT
Scale 1" = 0.01"
LOAD VS RELATIVE DISPLACEMENT

rect. blocks of varying sizes. (V31)
disp. of small blocks

DISPLACEMENT
Scale 1" = 0.01"
LOAD vs RELATIVE DISPLACEMENT.

Rect. blocks of varying sizes (\(\sigma_{52} \))
disp. of large blocks.
LOAD vs RELATIVE DISPLACEMENT

1" sq. blocks. (S1)

LENGTH AB = 7"
LENGTH CD = 6"

LOADING SEQUENCE
Hydrostatic loading for all loads
LOAD vs. Pt. DISPLACEMENT

1" sq blocks with 8 removed
Mt. ISA, N°2 & 4 ore body
configuration.

Pt D

Pt C

Pt B

Pt A

LOAD
Scale 1" = 200 lbs.

DISPLACEMENT
Scale 1" = 0.02"
LOAD VS. REL. DISPLACEMENT.

1" sq. blocks. 2 blocks removed. (85)

LENGTH AB = 4"
" CD = 2"

LOADING SEQUENCE
Hydrostatic loading up to 630 lbs.
then vertical loading thereafter.
LOAD vs Pt. DISPLACEMENT

1" sq blocks, 8 removed (Sf)
LOAD vs. Pt. DISPLACEMENT

1" sq. blocks with 11 blocks removed (δσ)

LOAD
scale 1" = 200 lb

600
800
1000
1200
1400

DISPLACEMENT
scale 1" = 0.01"

Pt A
Pt B
LOAD vs. Pt. DISPLACEMENT

1" sq. blocks with 15 blocks removed (S6)

Pt A
Pt B
Pt C

Scale 1" = 200 lb
Scale 1" = 0.01"
LOAD vs. Pt. DISPLACEMENT
MOUNT ISA PROFILE (εi)
LOAD vs. RELATIVE DISPLACEMENT

MOUNT ISA No. 2 & 5 ORE BODIES (E.)

LOAD
Scale 1" = 200 lbs

DISPLACEMENT
Scale 1" = 0.005"
LOAD vs. Pt. DISPLACEMENT

MOUNT ISA N°2 & S ORE BODIES (E₂)

LOAD

scale 1" = 200 lbs

0.01

Pt D

Pt A

Pt B

Pt C

DISPLACEMENT

scale 1" = 0.01"
LOAD vs. REL. DISPLACEMENT

MOUNT ISA NO. 2 & 5 ORE BODIES (ε_2)
LOAD vs. Pt DISPLACEMENT

MOUNT ISA Nº 2 & 5 ORE BODIES (E3)

Pt D
Pt C
Pt B
Pt A

LOAD
Scale 1" = 200 lbs

DIsPLACEMENT
Scale 1" = 0.01"
LOAD vs Pt. DISPLACEMENT.

MOUNT ISA NO 2 & 5 ORE BODIES (E_i)

LOAD

Scale 1" = 200 lbs.

800

600

400

200

Pt D

Pt C

Pt A

Pt B

DISPLACEMENT

Scale 1" = 0.01"
LOAD vs Pt. DISPLACEMENT

MOUNT ISA NO. 2 & ORE BODIES (η₄)

LOAD

scale 1" = 200 lbs

DISPLACEMENT

scale 1" = 0.01"

Pt A
Pt B
Pt C
Pt D
LOAD VS. REL. DISPLACEMENT

MOUNT ISA No 2 & ORE BODIES (η_4)
LOAD vs. Pt. DEFLECTION

MOUNT ISA N° 2 & 5 ORE BODIES (η₅)

LOAD
scale 1" = 200 lbs.

DEFLECTION
scale 1" = 0.01"
LOAD vs. REL. DEFLECTION.
MOUNT ISA No. 2 & 5 ORE BODIES

DEFLECTION
scale 1" = 0.01

LOAD
scale 1" = 200 lb.
LOAD vs REL DISPLACEMENT
SOLID ARALDITE BLOCK (η_B)
LOAD vs. Pt. DISPLACEMENT

Solid Araldite block with thin (approx. 1/8") surround of silicon rubber.

2nd load cycle

E\text{\textit{eo}} (\text{elastic}) = 3.7 \times 10^5 \text{ p.s.i.}

LOADING SEQUENCE

Hydrostatic up to 158 lb, then vertical loading thereafter.

1st load cycle

E\text{\textit{eo}} (\text{elastic}) = 3.6 \times 10^5 \text{ p.s.i.}
LOAD vs. Pt. DISPLACEMENT

Solid Araldite block with thick (1/4") surround of silicon rubber.

LENGTH AB = 3"
CD = 3"

LOADING SEQUENCE
Hydrostatic loading up to 158 lb then vertical loading thereafter.

1st loading cycle

E_\text{ca (elastic)} = 3.9 \times 10^5 \text{psi}

2nd loading cycle

E_\text{ca (elastic)} = 3.4 \times 10^5 \text{psi}
LENGTH AB
LENGTH CD
LOADING SEQUENCE
Equal loading increments in the X & Y directions up to 630 lbs, then Y increments thereafter.
LENGTH AB.
LENGTH CD.
LOADING SEQUENCE
Equal loading increments in the X & Y directions (630%)
in increments in Y direction thereafter

LOAD VS. PT. DEFLECTION
1 x 2 ft. rectangular blocks (46)

DISPLACEMENT scale 1" = 0.01"
LOAD vs. Pt. DISPLACEMENT

1" x 2" rect blocks with 7 blocks removed (ML)
MOUNT ISA No. 2 & 5 ORE BODIES.

LENGTH AB
LENGTH CD
LOADING SEQUENCE
Hydrostatic loading in the X & Y directions up to 620 lbs.
then vertical thereafter.

Y creep
scale 1" = 0.01"
LOAD vs. Pt. DISPLACEMENT

1" x 2" rectangular blocks with 4 blocks removed (A9)

LENGTH AB = 10"
LENGTH CD = 4"
LOADING SEQUENCE
Equal loading in the X & Y directions up to 630 lbs then vertical loading thereafter.

DISPLACEMENT scale 1" = 0.02"
LOAD

Scale 1" = 100 lbs.

DEFLECTION

Scale 1" = 0.01"

LOADING SEQUENCE
Hydrostatic loading to 221 lbs., then vertical loading thereafter.

LENGTH AB = 3"
" CD = 4"

area = 2.06 sq. ins

60°
LOAD VS. Pt DISPLACEMENT

1/2" sq. blocks with 10 blocks removed (47)

LENGTH AB. = 1"
" CD. = 2.5"

LOADING SEQUENCE
Hydrostatic loading up to 221 lbs. then vertical loading thereafter.
LOAD vs. Pt. DEFLECTION

LENGTH AB = 1"
LENGTH CD = 4"

LOADING SEQUENCE
Hydrostatic loading up to 221 lb then vertical thereafter.

Scale 1" = 0.01"
Area = 2.06 sq. in.

\[\frac{1}{2} \text{ sq. blocks with 4 blocks removed (A)} \]
LOAD vs Pt. DISPLACEMENT

½" sq. blocks with 12 blocks removed (h9)

LENGTH CD = 3 sq. ins.
dial gauge B slipped
LOADING SEQUENCE
Hydrostatic up to 221 lbs.
then vertical loading thereafter

LOAD
scale 1" = 100 lbs.

DISPLACEMENT
scale 1" = 0.01"

area = 2.06 sq. ins.
area = 1.97 sq. ins.

Pt. D Pt A Pt C
LOAD VS. REL. DISPLACEMENT

$\frac{3}{6}$ sq. blocks with 26 blocks removed (\bar{N}_d)

MOUNT ISA Nº 2 & 5 ORE BODIES.

LENGTH AB = 2.25"
LENGTH CD = 1.125"
LOADING SEQUENCE
Hydrostatic loading up to 158 lbs then vertical loading thereafter.
LOAD vs. Pt. DISPLACEMENT

\(\frac{3}{8} \) sq. blocks with 26 blocks removed (\(\bar{A}_4 \))

MOUNT ISA No. 2 & 5 ORE BODIES

LOAD

\[\text{scale } 1" = 500 \text{ lbs} \]

DISPLACEMENT

\[\text{scale } 1" = 0.01" \]
LOAD VS. REL DISPLACEMENT

3.8" sq. blocks with 13 blocks removed (Δs)

MOUNT ISA Nº 2 & 5 ORE BODIES

LENGTH AB = 2.25"
LENGTH CD = 1.125"
LOADING SEQUENCE
Hydrostatic loading up to 158 lbs.
then vertical loading thereafter.
LOAD vs. Pt. DISPLACEMENT

$\frac{3}{8}$" sq. blocks with 13 blocks removed (\bar{A}_e)

MOUNT ISA No. 2 & 5 ORE BODIES

Pt. D

Pt. B

Pt. A

Pt. C

DISPLACEMENT

scale 1" = 0.01"
LOAD VS. PT. DISPLACEMENT

LENGTH AB. = 12"
LENGTH CD. = 6"
1st LOADING SEQUENCE (V252)
Equal load increments in the X & Y directions up to 252 lbs then vertical loading thereafter.

2nd LOADING SEQUENCE (V630)
Equal load increments in the X & Y directions up to 630 lbs then vertical loading thereafter.

DISPLACEMENT
scale 1" = 0.01"
LOAD VS REL. DISPLACEMENT

2" x 3" rectangular blocks with 3 blocks removed. (V₀)
LENGTH AB = 9"
LENGTH CD = 4"
1st LOADING SEQUENCE (V252)
Equal load increments in the X & Y directions up to 25.2 lbs than vertical loading thereafter.

2nd LOADING SEQUENCE X
Equal load increments in the X & Y directions up to 630 lbs than vertical loading thereafter.

LOAD Vs. DISPLACEMENT
2"x3" rectangular blocks with 5 blocks removed (X,Y)
LOAD VS. REL. DISPLACEMENT

2" x 3" rectangular blocks with 2 blocks removed (Y9)

LENGTH AB. = 9"
LENGTH CD. = 4"

1st LOADING SEQUENCE (V452)
Equal load increments in the X & Y directions up to 252 lbs.
then vertical loading thereafter

2nd LOADING SEQUENCE (V530)
Equal load increments in the X & Y directions up to 630 lbs then vertical loading thereafter

DISPLACEMENT
scale 1" = 0.01"
LOAD vs. Pt. DISPLACEMENT
2"x3" rectangular blocks with 2 blocks removed (V_0)
LOAD vs Pt. DISPLACEMENT

Rect. blocks of varying sizes
disp of large blocks.

Pt D

Pt C

LOAD
Scale 1" = 50 lbs

DISPLACEMENT
Scale 1" = 0.01"

100
200
300
400

0.01
0.02
0.03
0.04
0.05
0.06
APPENDIX F

STRESS PATTERNS
HOR. Ld. = 126 lbs. x 2
VER. Ld. = 126 lbs. x 2

2 b
HOR. Ld. = 252 lbs. x 2
VER. Ld. = 252 lbs. x 2

3 b
HOR. Ld. = 315 lbs. x 2
VER. Ld. = 315 lbs. x 2

4 b
HOR. Ld. = 315 lbs. x 2
VER. Ld. = 378 lbs. x 2

5 b
HOR. Ld. = 315 lbs. x 2
VER. Ld. = 441 lbs. x 2

6 b
HOR. Ld. = 315 lbs. x 2
VER. Ld. = 567 lbs. x 2

7 b
HOR. Ld. = 315 lbs. x 2
VER. Ld. = 630 lbs. x 2

3" x 2" Rectangular Blocks
Multiple Openings
Post-loading applied
APPENDIX G

Classification of breaks in drill core

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Criteria</th>
<th>Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Pre-existing bedding or foliation break.</td>
<td>Shiny to dull, may have evidence of movement. Planar or undulatory.</td>
<td>α, β properties.</td>
</tr>
<tr>
<td>B2</td>
<td>Indefinite whether pre-existing or drilling break on bedding or foliation.</td>
<td>Dull, no evidence of movement. Generally planar or undulatory.</td>
<td>α, β properties.</td>
</tr>
<tr>
<td>B3</td>
<td>Drilling break along bedding or foliation.</td>
<td>Dull, clean, fresh surface. No evidence of movement.</td>
<td>α, β properties.</td>
</tr>
<tr>
<td>B4</td>
<td>Drilling break partly along bedding or foliation.</td>
<td></td>
<td>α, β properties.</td>
</tr>
<tr>
<td>J1</td>
<td>Pre-existing fracture, continuous across drill core.</td>
<td>Single plane, may have coating. May have evidence of movement. No cohesion.</td>
<td>α, β properties.</td>
</tr>
<tr>
<td>J2</td>
<td>Pre-existing partial fracture.</td>
<td>Terminated on bedding or foliation. No cohesion.</td>
<td>α, β properties.</td>
</tr>
<tr>
<td>J3</td>
<td>Pre-existing partial fracture.</td>
<td>Fracture dying-out in solid rock. Partly broken during drilling.</td>
<td>α, β properties.</td>
</tr>
<tr>
<td>J4</td>
<td>Drilling break on weakness other than bedding or foliation</td>
<td>Clean, fresh surface, residual coating indicating pre-existing weakness e.g. vein.</td>
<td>α, β properties.</td>
</tr>
<tr>
<td>F1</td>
<td>Fragments, due to rock condition.</td>
<td>Pre-existing fractures, may have coating. Fractures one or two particular kind and orientation.</td>
<td>Depth, depth to.</td>
</tr>
<tr>
<td>F2</td>
<td>Fragments, due to drilling.</td>
<td>Dull, clean, fresh surfaces, generally irregular breaks.</td>
<td>Depth, depth to.</td>
</tr>
<tr>
<td>F3</td>
<td>Intact shear or fracture zone, due to rock condition.</td>
<td>Fragments can be fitted together. Breaks generally one kind and orientation.</td>
<td>Depth, depth to, α, β properties.</td>
</tr>
<tr>
<td>X1</td>
<td>Irregular drilling break.</td>
<td>Clean, fresh, irregular, rough surface. No apparent pre-existing weakness plane.</td>
<td>(only record for E. of R., orientation, New ref.).</td>
</tr>
</tbody>
</table>