USE OF THESES

This copy is supplied for purposes of private study and research only. Passages from the thesis may not be copied or closely paraphrased without the written consent of the author.
PHYSIOLOGY, COGNITION AND PERFORMANCE
IN TEST ANXIETY

Crista Wocadlo

A thesis submitted for the
degree of Doctor of Philosophy
from the Australian National
University.

May, 1990
I declare that this thesis reports my original work; that no part has been previously accepted or presented for the award of any degree or diploma from any university; and that, to the best of my knowledge, no material previously published or written by any other person is included, except where due acknowledgement is given.

Crista Wocadlo
ACKNOWLEDGEMENTS

I would like to thank the following people for their assistance with the preparation of this thesis:

Dr Don Byrne, who in his role as supervisor was always patient, and had faith in my ability.

Dr Bryan Furnass, my consulting physician, for encouragement and lovely lunches.

Mr Martin Schaeffer and Mr Neville Whitworth, who assembled my laboratories and made my experiments a reality.

Mrs Monica Reinhart, who helped the statistical panic to subside.

Dr Fernando Roldan, for friendship, much help and all those jokes.

Professor Mary O’Kane, who read and commented on my ideas and writing.

My subjects, whose participation and interest made this thesis possible.

Mrs Shirley Steer, who typed it all with such skill and speed, and turned my sandscrit into a thesis.

I would also like to extend my personal thanks to:

My Parents, Alfred and Mitzi, whose support and encouragement were an immeasureable contribution to my success.

Mr Geoff Mortimore, who helped me through the darkest times.

My Friends, Sue and Simon, to whose unfailing friendship I owe so much.

Also to Helen, Donald, Katelin, Andrew, Thomas, Cath, Jo, Robert, Juanita, Kim, Margaret, Jane, Dennis and Jeannie, who all contributed in their own way.

The Steer Family, who have made me so welcome.

Finally, to Colette, for more than I could ever say.
We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

T.S. Eliot
TABLE OF CONTENTS

Abstract ix

Chapter One

Definition and Description of Anxiety 1
The Concept of Arousal in Anxiety Theory 5
Psychophysiological Assessment of Arousal in Anxiety: Cardiovascular Measurement 7
Cardiovascular Activity of Non-Anxious Individuals in Exercise and Experimentally-Induced Threat 7
Cardiovascular Activity in Anxiety Patients 10
Cardiovascular Activity and Anxious Normals 12
Electrodermal Activity and Anxiety 14
Electrodermal Activity in Anxiety Patients 15
Electrodermal Activity in Experimentally-Induced Stress, State Anxiety and Trait Anxiety 17
Respiration, Induced Stress and Anxiety 19
Cognitive Factors in Anxiety 25
Cognitive Content Factors in Anxiety 25
The Process of Worry in Anxiety 27
Worry, Emotionality and Physiological Activity 30
Test Anxiety 33
Conclusion 41

Chapter Two

Introduction: Study One 42
Anxiety, Arousal and Attention 42
Studies Examining the Effects of Arousal on Cue Utilization: Use of Incentives to Increase Arousal 43
Use of Shock to Increase Arousal 43
Use of Noise to Increase Arousal 44
Use of Exercise to Increase Arousal 45
Use of Anxiety to Produce an Aroused State 46
Theoretical Explanations for the Effects of Arousal on Attention 49
Aims of Study One 53
Method 55
Results 60
Discussion 69
Performance Measures: Reaction Time and Accuracy Data 59
: Simultaneous Trials 71
Physiological Indices: Tonic Measures of Arousal 72
Self-Report Measures 74
Conclusion 76
<table>
<thead>
<tr>
<th>Chapter Three</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction: Study Two</td>
</tr>
<tr>
<td>Autonomic Perception and Anxiety</td>
</tr>
<tr>
<td>Methods Used to Investigate the Accuracy of Visceral Perception</td>
</tr>
<tr>
<td>The Influence of Arousal on Visceral Perception</td>
</tr>
<tr>
<td>Visceral Perception, Arousal and Emotion</td>
</tr>
<tr>
<td>Aims of Study Two</td>
</tr>
<tr>
<td>Method</td>
</tr>
<tr>
<td>Results</td>
</tr>
<tr>
<td>Discussion</td>
</tr>
<tr>
<td>Arousal Manipulations</td>
</tr>
<tr>
<td>Accuracy of Heart Rate Estimation and Anxiety</td>
</tr>
<tr>
<td>Task Demands and Accuracy</td>
</tr>
<tr>
<td>Self-Report Measures</td>
</tr>
<tr>
<td>Conclusions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter Four</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction: Study Three</td>
</tr>
<tr>
<td>The Action of Beta-Adrenergic Blockade</td>
</tr>
<tr>
<td>Controlled Beta Blocker Studies in Humans</td>
</tr>
<tr>
<td>Beta Blockade and Performance Anxiety</td>
</tr>
<tr>
<td>Studies Using Musicians</td>
</tr>
<tr>
<td>Studies Using Public Speakers</td>
</tr>
<tr>
<td>Studies Using Students Under Exam Stress</td>
</tr>
<tr>
<td>Studies Using Athletes</td>
</tr>
<tr>
<td>Studies Using Experimentally-Induced Stress</td>
</tr>
<tr>
<td>Central Effects of Beta Blockade</td>
</tr>
<tr>
<td>No Effect on Performance Following Beta Blockade</td>
</tr>
<tr>
<td>Impaired Performance following Beta Blockade</td>
</tr>
<tr>
<td>Beta Blockade, Mood Changes and Heart Rate Estimation</td>
</tr>
<tr>
<td>Aims of Study Three</td>
</tr>
<tr>
<td>Method</td>
</tr>
<tr>
<td>Results</td>
</tr>
<tr>
<td>Discussion</td>
</tr>
<tr>
<td>Arousal Manipulations</td>
</tr>
<tr>
<td>Propranolol and Accuracy of Heart Rate Estimation</td>
</tr>
<tr>
<td>Task Demand and Propranolol</td>
</tr>
<tr>
<td>Propranolol and State Anxiety</td>
</tr>
<tr>
<td>Propranolol and Physical Symptom Report</td>
</tr>
<tr>
<td>Propranolol and Cognitive Interference</td>
</tr>
<tr>
<td>Propranolol, Physiological Indices and Self-Report</td>
</tr>
<tr>
<td>Conclusions</td>
</tr>
</tbody>
</table>
Chapter Five

Introduction: Study Four

- Page 144

Test Anxiety and Performance

- Page 145

Experimental Conditions Which Influence Performance in Test Anxiety

- Page 145

The Influence of Stress on Test Anxiety and Performance

- Page 147

Performance Deterioration in Test Anxiety: Theoretical Explanation

- Page 149

Expectation, Task Difficulty and Anxiety

- Page 150

Aims of Study Four

- Page 152

Method

- Page 154

Results

- Page 157

Discussion

- Page 165

Performance on Anagrams: Effects of Actual Difficulty

- Page 166

: Effects of Expected Difficulty

- Page 167

Self-Report, Anxiety and Expectation

- Page 170

Actual Physiological Responses, Anxiety and Expectation

- Page 172

Physiological Change, Anxiety and Expectation

- Page 173

Conclusion

- Page 174

Chapter Six

Introduction: Study Five

- Page 175

Cognitive Aspects of Test Anxiety

- Page 175

Worry and Intrusive Thinking in Anxiety

- Page 180

Beliefs, Self-Statements and Affect

- Page 182

Role of Beliefs in the Mediation of Emotional Responses

- Page 183

The Use of Self-Statements to Induce Mood States

- Page 184

Use of Self-Statements to Induce Physiological Change

- Page 184

Use of Positive and Negative Self-Statements

- Page 186

The Nature of Self-Statements

- Page 187

Aims of Study Five

- Page 189

Method

- Page 191

Results

- Page 193

Discussion

- Page 201

Self-Report Measures

- Page 201

Belief in Statements

- Page 204

Physiological Measures

- Page 205

Performance: Speed and Accuracy

- Page 207

Cautions and Conclusions

- Page 209
Chapter Seven

Introduction: Study Six 210
Investigations of Physiological Changes in Anxiety 210
Adrenergic Agents and Physiological Arousal 212
Beta Blockade and Anxiety 215
Cognition, Arousal and Anxiety 216
Aims of Study Six 217
Method 219
Results 220
Discussion 225
Heart Rate and Propranolol 226
Self-Report and Propranolol: State Anxiety 226
Cognitive Interference 228
Symptom Report 229
Skin Response Data 230
Typicality of Statements 231
Performance Measures 232
Conclusion 233

Chapter Eight

General Discussion 234
Aims of the Research 236
Review of Studies 238
Major Conclusions 243
Future Directions 248
Clinical Treatment Implications 249

References 251

Appendices
Appendix A 304
Appendix B 322
Appendix C 331
Appendix D 339
Appendix E 351
Appendix F 362
ABSTRACT

There has been some debate within test anxiety theory as to the importance of physiological arousal and cognition in the maintenance of this emotional state. Recent investigations have emphasised cognitive factors, such as worry, intrusive thinking and cognitive interference. Earlier conceptualizations used the concept of hyperarousal to explain the effects of anxiety on behaviour. These theories do not however explain the relationship between cognitive factors and physiological arousal. A theoretical difficulty then arises when investigators use the arousal concept to explain elements of their findings, with no explicit explanation of how physiological arousal influences cognition or the anxiety state. The following studies examined the relationship of physiological arousal to perceptual and cognitive processes in test anxiety.

Study One aimed to replicate previous findings of cue utilization changes in high test anxious subjects under stress conditions. The assumption being that high anxiety leads to increased physiological arousal, and it is this heightened arousal which changes cue utilization. Study One revealed that increased arousal did change cue utilization, by placing a greater emphasis on peripheral stimuli. This change in arousal however appeared in the low test anxious group.

Studies Two and Three examined the influence of anxiety and arousal on the utilization of visceral cues and the accuracy of visceral perception. Study Two found that high test anxious individuals misperceived their heart rates to a significantly greater degree than low test anxious subjects and this misperception was more related to task demand than actual physiological events. Study Three used propranolol (a beta-blocker) to decrease sympathetic arousal, and found under these conditions, high test anxious subjects became more accurate in their heart rate estimation and their estimations were more related to actual physiological events.

Study Four then investigated the possibility that expectation of task difficulty has a significant effect on the performance of high test anxious individuals. The performance and self-report of highly test anxious subjects were significantly affected by expectation of difficult anagrams. Physiological arousal did not change significantly between anxiety groups or in relation to task difficulty. Cognitive interference however did appear to influence performance, and the report of anxiety.
Studies Five and Six examined the effect of task interfering statements and task facilitating statements on performance, physiology and mood report. In Study Five, task interfering statements did not significantly influence anxious mood report. Physiological and self-report variables did not respond to the statements manipulations. General trends suggested that following task facilitating statements, high test anxious individuals' performance did marginally improve.

Study Six then investigated the effects of reducing arousal on the impact of interfering and facilitating statements. Propranolol-induced arousal reduction did not significantly alter self-report. Propranolol subjects showed improved performance and rated task facilitating statements as more typical of normal performance cognitions than placebo subjects. Both groups were high test anxious.

It was concluded that increased physiological arousal does alter perceptual processing and the manner in which information is utilized both from the environment and from internal cues. Reductions in arousal in high test anxious individuals led to more accurate perception of physiological events and greater accessibility of positive cognitions about task performance and the self.

The clinical implications of beta-blockade for the treatment of test anxiety are discussed along with the importance of a multi-faceted treatment approach.