Storage and Manipulation of Optical Information
Using Gradient Echo Memory in Warm Vapours and Cold Ensembles

Benjamin M. Sparkes

A thesis submitted for the degree of
Doctor of Philosophy in Physics
The Australian National University

July 2013

Australian National University
This thesis is dedicated to my beautiful Mel, who makes the world a better place simply by being in it.
Declaration

This thesis is an account of research undertaken between February 2009 and February 2013 at The Department of Quantum Science, Research School of Physics & Engineering, The Australian National University (ANU), Canberra, Australia. The author was a visitor at Laboratoire Kastler Brossel (LKB), Université Pierre et Marie Curie, Paris, France, from October 2011 to December 2011, and the work performed at the LKB is reported in Chapter 11.

The majority of the research presented here was supervised by Prof. Ping Koy Lam (ANU), Dr. Ben Buchler (ANU), and Dr. Thomas Symul (ANU). Part of the work recorded in Chapter 11 was supervised by Dr. Julien Laurat (LKB) and Prof. Elisabeth Giacobino (LKB). Except where acknowledged in the customary manner, the material presented in this thesis is, to the best of my knowledge, original and has not been submitted in whole or part for a degree in any university.

Benjamin M. Sparkes
July, 2013
Acknowledgements

The work presented in this thesis would not have been possible without the help and support of many, many people.

I would like to start by thanking Dr. Mahdi Hosseini for all his help and advice over the past four years. Having someone as talented and knowledgeable as Mahdi around to start me on the right path was a large part of the reason why I was able to achieve the results presented here; while having his company in the lab also made the many hours spent there a much more pleasurable experience.

I must also thank my supervisors, Dr. Ben Buchler and Prof. Ping Koy Lam, for their assistance and guidance. Their innate understanding of both the experimental and theoretical components of quantum-atom optics is staggering, and I feel privileged to have caught even a sliver of this. I will always appreciate the freedom they allowed me to design and construct the cold atom GEM experiment.

A supervisor in all but name, I would like to express my sincerest gratitude to Dr. Nick Robins for all he has done for me during my time at ANU. It was working with Nick that gave me my first taste of quantum optics in 2006 and I haven’t looked back. I am still in awe at his generosity, both in terms of his equipment and his time: without his many cupboard-cows there is no way the cold atom GEM experiment could have been built in such a short time and his cold atom expertise was pivotal in achieving the results we did. In the last few months of my lab work, Nick’s endless optimism and amazingly positive personality not only kept me sane but also made the nights in the lab much less lonely.

A big thank you to all of the above who have given up their time to proof-read this thesis, especially Mahdi, which has made it a much more concise, comprehensible and complete work.

For my time in Paris I would like to thank Prof. Elisabeth Giacobino and Dr. Julien Laurat for giving me the opportunity to work on an exciting project in an amazing city. I learnt a lot from my visit and will always look back on my time at the LKB with fond memories. These were contributed to by Lambert Giner, Lucile Veissier, Adrien Nicolas and Sasha Sheremet, who were so welcoming and patient as I stumbled around both the lab and my French. Merci bien!

I have had the privilege of working with many exceptional people over the years. A big thank you to Dr. Julien Bernu for his help constructing the cold atom GEM experiment, his thoroughness and attention to detail helped make this project turn out as well as it did (not to mention his hard-core fibre aligning!). Thanks also to Jiao Geng for providing a dose of sunshine to the lab during the last few months of my PhD, and to Dr. Quentin Glorieux for his help with the final surge. I had the pleasure of working with Geoff Campbell, Daniel Higginbottom, Cameron Cairns, Dr. Gabriel Hétet and Dr. Olivier Pinel on the warm atom GEM experiment over the years, and would like to thank them for making the lab such a fun place to be. A special thank you to Helen Chrzanowski for
letting me experiment on her experiment, and for many interesting conversations. Thanks also to David Parrain for his assistance while working on the digital locking system and to Dr. Thomas Symul - without whose vision, and amazing knowledge of all things LabVIEW, the digital locking code would not have been created.

Other people whose help during my PhD was greatly appreciated include Paul Altin for his help on the cold atom experiment, Simon Bell for the variable-pitch solenoid design code, Daniel Döring for enlightened discussion on the ac Stark shift and his Mathematica code, and Pete Uhe for the initial testing of the multi-element coils. Thanks to all of you.

I would like to express my appreciation for the invaluable assistance I have received from various parts of the ANU over the years. Thanks to Shane Grieves, Neil Hinchey and James Dickson for their guidance on all things electronic and for building various critical components including LabVIEW break-out boxes, clock racks and the current drivers used for the spectral manipulation experiments. Thanks also to Oliver Thearle and Paul Redman for constructing the ADC racks to accompany the digital locking software, and to Colin Dedman for helping to design the fast switching GEM coils. There are too many experimental components made in-house that were vital to this thesis to ever list, but for their masterful creation I would like to thank Paul McNamara, Paul Tant and Neil Devlin from the mechanical workshop. I would also like to thank Gaye Carney, Laura Walmsley, Kerrie Cook and Amanda White for their help with all administration matters. A huge additional thanks to Amanda for the disproportionate amount of ordering she has placed for me, the fun conversations, and the occasional cookie.

While not contributing directly to the work presented in this thesis, there are many people without whom the last four years would have been far less enjoyable. Thanks to Phil and Richard for allowing me to disrupt their work on an almost-daily basis, I really enjoyed our conversations and the many, many Simpson quotes. My time in Paris was greatly enhanced by the presence of Mathieu and Fabbio, among others. Rock and roll guys! Back in Canberra I thank the rest of the quantum optics group for the fun times, and terrible jokes, we’ve had together.

To Mr. Owen and Rik, I thank you for the oases you provided away from the constant stream of physics, and your infinite patience when I invariably failed to practise. A huge thank you to Joe and Chrissie for all the lunches, TV nights (the fruits of which can be found at the start of almost every chapter), Brumbies matches and amazing dinners.

To Karen, Doug and Sarah, thank you so much for accepting me into your family, it is a great privilege and one that I will forever cherish. To my own family, Mum, Dad, Sophie and Jeremy, I will never be able to repay the belief you have always had in me or the unconditional support you have always offered. I count myself very lucky to have all of you in my life and, though “thank you” seems far too inadequate a phrase after all that you have done for me, I thank you from the bottom of my heart.

Lastly, and by far the most beautifully, to Mel - for always being there, for listening as I described my days in the lab in arduous detail (see Chapters 1-13), for understanding, for being happy for me when things went well, and for commiserating when things invariably didn’t - thank you. But mostly thank you for being the amazing person that you are. I cannot wait to spend the rest of my life with you!
Abstract

Quantum memories for light lie at the heart of long-distance provably-secure communication [1], while containing the potential to help break current encryption methods [2], and allow better measurement of quantities than ever before [3]. Demand for a functioning quantum memory is therefore at a premium. Unfortunately, the same properties of light that make it such an effective carrier of quantum information make it difficult to store. Furthermore, by the laws of quantum mechanics, storage must be achieved without measurement to preserve the quantum state.

A quantum memory needs to have an efficiency approaching unity without adding noise to the state, and storage times from milliseconds to seconds. Ideally it would also have a high bandwidth and be able to store many pieces of information simultaneously. Many different techniques are currently being developed and much experimental progress has been made over the past few years, with: efficiencies approaching 90% [4]; storage times of over seconds [5]; bandwidths of gigahertz [6, 7]; and over 1000 pieces of information stored at one time [8]. These results were, however, achieved using different memory schemes in different storage media. The challenge now is to reproduce these results with one memory.

This thesis focuses on extending the gradient echo memory (GEM) scheme, which shows great promise due to the high efficiencies achieved (87%) [4]. GEM has also been used to demonstrate temporal compression and stretching of pulses, as well as a capacity to arbitrarily resequence stored information [9] and the interference of initially time-separated pulses [10].

Firstly, we demonstrate the noiseless nature of GEM storage in a warm vapour cell to prove that the output from the memory is the best-possible copy of the input allowed by quantum mechanics. We show GEM’s ability to coherently and precisely spectrally-manipulate stored information by having fine control over the memory’s frequency gradient, with potential applications for dynamic conditioning of information inside quantum networks [11]. We demonstrate cross-phase modulation of a stored light pulse with an additional optical field, a process with applications in quantum computing [12]. We also carry out storage of different spatial modes and arbitrary images, demonstrating the potential for orders of magnitude improvement in storage capacity.

We then switch from warm vapour cells to cold atomic ensembles to improve the storage time of GEM, seeing a maximum coherence time of 350 μs (seven times that of the warm vapour system) and achieving efficiencies of up to 80%, on a par with the highest efficiency achieved with a cold atomic ensemble [13]. In the process we developed an ultra-dense cold atomic cloud with potential applications in a range of quantum optics experiments. Cold atoms, and the small volumes they occupy, also allowed us to develop an alternative to using magnetic field gradients for our alkali-atom memories in the form of a light-field gradient. This holds promise for extremely fast gradient switching and fine control over the gradient.

We also present a digital locking code with application in a range of quantum optics experiments.
Contents

Declaration iii
Abstract vii

I Introduction to Quantum Memories 3

1 Introduction: Quantum Memories for Fun and Profit 5
 1.1 Introduction to the Introduction 5
 1.2 Quantum “Conundrums” and Resources 6
 1.2.1 Quanta ... 6
 1.2.2 Uncertainty, Superposition and Measurement 6
 1.2.3 Phase and Coherence 7
 1.2.4 Quantum Bits ... 7
 1.2.5 Entanglement .. 8
 1.2.6 Squeezing .. 8
 1.3 Quantum Information Processing 9
 1.3.1 Quantum Key Distribution, Quantum Repeaters, and Quantum Networks 9
 1.3.2 Quantum Computing 12
 1.3.3 Single-Photon Sources 15
 1.3.4 Quantum Metrology 15
 1.4 Quantum Memory Metrics 16
 1.4.1 Efficiency .. 16
 1.4.2 Fidelity ... 16
 1.4.3 Storage Time ... 17
 1.4.4 Bandwidth ... 17
 1.4.5 Delay-Bandwidth Product 18
 1.4.6 Multi-Mode Capacity 18
 1.4.7 Wavelength ... 18
 1.4.8 Storage Media ... 18
 1.5 A Trip to the Quantum Memory Zoo 19
 1.5.1 Delay Lines and Cavities 19
 1.5.2 Electromagnetically-Induced Transparency 20
 1.5.3 Raman Memory .. 21
 1.5.4 The Duan-Lukin-Cirac-Zoller Protocol 22
 1.5.5 Photon Echo Techniques 23
 1.5.6 Other Species .. 30
 1.6 Conclusions and Thesis Outline 31

2 Quantum Theory of Atom-Light Interactions

2.1 Introduction .. 35
2.2 Quantum Formalism ... 35
 2.2.1 Quantum States and Operators 35
 2.2.2 Quantum Measurements and Uncertainty 36
 2.2.3 Pictures and Time-Evolution 37
2.3 Quantum Theory of Light 38
 2.3.1 Number States, Creation and Annihilation Operators 38
 2.3.2 Indistinguishability, Entangled States and Teleportation 38
 2.3.3 Coherent and Squeezed States 41
 2.3.4 The Quantised Multi-Mode Electric Field 42
 2.3.5 Detection .. 44
2.4 Quantising Atoms .. 45
2.5 The Interaction of Atoms and Light 46
 2.5.1 The Interaction Hamiltonian 46
 2.5.2 The Dressed State Picture 48
 2.5.3 Time-Evolution 48
 2.5.4 Optical Bloch Equations 50
2.6 Conclusions ... 53

3 Quantum Memory Theory ... 55

3.1 A Memorable Introduction 55
3.2 Quantum Memory Metrics Take II 55
 3.2.1 Efficiency, Fidelity and T-V Diagrams 55
 3.2.2 Bandwidths and Coherence Times 57
3.3 Electromagnetically-Induced Transparency Theory 58
 3.3.1 Slowing Light with EIT 58
 3.3.2 EIT Polariton and Storing Light 59
3.4 Gradient Echo Memory Theory 60
 3.4.1 Echo Memories 60
 3.4.2 Two-Level Gradient Echo Memory 61
 3.4.3 GEM Polariton 63
 3.4.4 Stepping Up a Level - Three-Level GEM 65
3.5 Conclusions ... 67

4 A Digital Locking System for use on Quantum Optics Experiments 69

4.1 Introduction .. 69
4.2 Control Theory ... 71
4.3 The Digital Control System 75
 4.3.1 The Hardware 75
 4.3.2 The Software 77
 4.3.3 The Controller 79
4.4 Locking Analysis and Optimisation 80
 4.4.1 Measuring System Responses 80
 4.4.2 Lock Optimisation 84
 4.4.3 Long-Term Stability and Comparison with Analog PI Controller 85
 4.4.4 Other Optimisations 85
4.5 Quantum Measurements 90
Contents

4.6 Conclusions ... 92

II Warm Vapour Experiments ... 93

5 Introduction to Light Storage with Warm Atomic Ensembles ... 95

5.1 Introduction - Why Warm Atoms are Hot Stuff ... 95
5.2 Literature Review of Warm Atom Light Storage Experiments: 2001-Present ... 96
5.3 Not So Hot - Decoherence Effects in Warm Vapours ... 97

5.3.1 Doppler Broadening ... 98
5.3.2 Diffusion ... 99
5.3.3 Buffer Gas, Collisional Broadening and Anti-Relaxation Coating ... 100
5.3.4 Power Broadening and Spontaneous Raman Scattering ... 101
5.3.5 Four-Wave Mixing Effects ... 102
5.3.6 Magnetic Field Effects ... 103

5.4 Conclusions ... 104

6 Digitising GEM ... 107

6.1 Introduction ... 107
6.2 Λ-GEM Experimental Set-Up ... 107
6.3 Digital Acquisition for Noise Measurements ... 110
6.4 FPGA Control System ... 114
6.5 Digital Phase-Insensitive Heterodyne Demodulation ... 115
6.6 Conclusions ... 116

7 Precision Spectral Manipulation Using GEM ... 117

7.1 Introduction ... 117
7.2 The Multi-Element Coil ... 119
7.3 Spectral Manipulation Experiments ... 122

7.3.1 Centre Frequency Offset Characterisation ... 122
7.3.2 Input/Output Bandwidth Characterisation ... 125
7.3.3 Spectral Filtering ... 128

7.3.4 Pulse Interference ... 130
7.4 Cross-Phase Modulation ... 133
7.5 Discussion ... 135
7.6 Conclusions ... 138

8 Spatially Multi-Mode Storage Using GEM ... 139

8.1 Introduction ... 139
8.2 Spatial Mode Detection Set-Up ... 140
8.3 Four-Wave Mixing Pulse ... 142
8.4 Spatial Mode Storage Results ... 143
8.5 Selective Storage ... 145
8.6 Image Storage ... 145
8.7 Discussion ... 145
8.8 Conclusions ... 147

III Cold Atom Experiments ... 149
Contents

9 Introduction to Light Storage with Cold Atomic Ensembles

9.1 Introduction - Why Cool Kids Use Cold Atoms .. 151

9.2 Theory of Atom Trapping and Cooling ... 152

9.2.1 Magneto-Optical Traps ... 152

9.2.2 Further Cooling ... 155

9.2.3 Dipole Traps and Optical Lattices .. 156

9.3 Decoherence Effects in Cold Atomic Ensembles ... 159

9.3.1 Collisions ... 159

9.3.2 Diffusion and Time of Flight .. 159

9.3.3 Scattering Rate ... 160

9.3.4 Heating Rate ... 162

9.4 Literature Review of Cold Atom Light Storage Experiments 162

9.4.1 A History of Cold Atom Light Storage Experiments 1999-Present 162

9.4.2 Experimental Improvements .. 164

9.5 Conclusions .. 166

10 ac Stark Gradient Proposal

10.1 Introduction - An Enlightened Idea ... 167

10.2 AC Stark Shift Proposal .. 169

10.2.1 AC Stark Shift Theory ... 169

10.2.2 Atom Trapping ... 172

10.2.3 Gradient Creation ... 173

10.2.4 Switching Protocols ... 175

10.3 Limiting Factors ... 178

10.3.1 Time Scales .. 178

10.3.2 Efficiency ... 179

10.4 Experimental ac Stark Gradient Generation ... 180

10.5 Conclusions .. 182

11 Experiments Towards Cold Atom GEM

11.1 Introduction .. 183

11.2 Experiment 1 - Three-Tier Rubidium MOT and Dipole Trap 183

11.2.1 Memory Set-Up ... 184

11.2.2 Atom Trapping Set-Up .. 185

11.2.3 Absorption Imaging ... 188

11.2.4 Interface and Detection Set-up 1a - Opposite Polarisations, \(F = 2 \) 191

11.2.5 Interface and Detection Set-up 1b - Opposite Polarisations, \(F = 1 \) 191

11.2.6 Interface and Detection Set-up 1c - Same Polarisations, \(F = 1 \) 195

11.2.7 Interface and Detection Set-up 1d - Dipole Trap, \(F = 1 \) 199

11.2.8 Experiment 1 Discussion .. 201

11.3 Experiment 2 - Caesium MOT .. 202

11.3.1 Experiment 2 Set-Up ... 202

11.3.2 Diagnostic Tools .. 204

11.3.3 EIT Experiments .. 207

11.3.4 Experiment 2 Discussion ... 210

11.4 Conclusions .. 211
Contents

12 Cold Atom Gradient Echo Memory

12.1 Introduction ... 213
12.2 Common Experimental Set-Up 213
12.2.1 Table 1 .. 213
12.2.2 Table 2 .. 214
12.3 Configuration 1 - MOT Fields at 45° to GEM Fields 215
12.3.1 MOT 1 Set-Up, Optimisation and Characterisation 215
12.3.2 GEM Set-Up and Results with MOT 1 218
12.4 Configuration 2 - MOT Fields Parallel and Perpendicular to GEM Fields 221
12.4.1 MOT 2 Set-Up, Optimisation and Characterisation 221
12.4.2 GEM Set-Up and Results with MOT 2 223
12.5 Configuration 3 - MOT Fields at 45° to GEM Fields, Again 225
12.5.1 MOT 3 Set-Up, Optimisation and Characterisation 225
12.5.2 GEM Set-Up and Results with MOT 3 228
12.6 Discussion ... 231
12.7 Conclusion ... 232

13 Conclusions and Future Outlook

A Alkali Structure

A.1 Comments on Level Structures 241
A.2 Rubidium .. 241
A.3 Caesium .. 244

B PDH Lock 5001 Instruction Manual - Rev. 0.1

B.1 Introduction ... 246
B.2 Set-up .. 246
B.2.1 Hardware .. 246
B.2.2 Software ... 248
B.3 First Time .. 248
B.4 Locking the System .. 249
B.5 Lock Optimisation ... 252
B.5.1 Control Theory .. 252
B.5.2 Lock Optimisation Protocol 254
B.6 Sequential Locking .. 256
B.7 Menu Overview ... 258
B.7.1 Lock # ... 258
B.7.2 Clocks and Timing and Misc 261
B.7.3 Sequential Locking 263
B.7.4 Scope ... 263
B.7.5 Transfer Functions 264
B.7.6 Controller Measures 266
B.7.7 Saving Data ... 267
B.7.8 Re-ordered IP/OPs and Errors 268
B.7.9 PC_Sound_Gen.vi 269
B.8 Known Problems .. 269
B.9 Acknowledgements ... 270
C Cavities and Pound-Drever-Hall Locking 271
 C.1 Cavities ... 271
 C.2 Pound-Drever-Hall Locking 273

D Mathematica Codes 275
 D.1 Code to Calculate Multi-Element Coil Currents 275
 D.2 Heterodyne Data Extraction Code 278
 D.3 ac Stark Shift Code 284

Bibliography 289
List of Figures

1.1 Classical Vs Quantum Memory ... 7
1.2 Qubit ... 8
1.3 Squeezed State .. 9
1.4 Quantum Repeater Protocol .. 11
1.5 Quantum Computing .. 13
1.6 Single-Photon Gun ... 15
1.7 Fidelity ... 17
1.8 Electromagnetically-Induced Transparency 20
1.9 Raman Memory .. 21
1.10 DLCZ Scheme .. 23
1.11 Two-Level Photon Echo Scheme 24
1.12 Three-Pulse Photon Echo Scheme 25
1.13 AFC Scheme ... 26
1.14 CRIB Scheme .. 27
1.15 The GEM Scheme ... 29
1.16 Thesis Outline .. 33
2.1 Indistinguishability ... 39
2.2 Coherent, Squeezed and Thermal States 40
2.3 Transverse Electromagnetic Modes 43
2.4 Heterodyne Detection Set-Up .. 44
2.5 The Three-Level Atom ... 46
2.6 Dressed States .. 47
2.7 Bloch Sphere ... 50
3.1 Loss from Quantum Systems .. 55
3.2 GEM Bandwidth .. 62
3.3 GEM Polaritons .. 64
3.4 Two-Level, Three-Level Equivalence 66
4.1 Feedback Control System .. 72
4.2 Controller Properties ... 73
4.3 Digital Locking System Set-Up 76
4.4 Digital Locking Racks ... 77
4.5 Sequential Locking .. 78
4.6 PII Controller .. 79
4.7 Approximating G and Simulating H 81
4.8 Lock Optimisation Protocol .. 83
4.9 Analog and Digital Controller Comparison 86
4.10 Low-Pass Filtering ... 87
4.11 Digital Noise .. 89
<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.12</td>
<td>Schrödinger Cat Experiment</td>
<td>91</td>
</tr>
<tr>
<td>5.1</td>
<td>Warm Vapour Cell</td>
<td>95</td>
</tr>
<tr>
<td>5.2</td>
<td>High Efficiency and Multi-Pulse Λ-GEM Storage</td>
<td>97</td>
</tr>
<tr>
<td>5.3</td>
<td>Diffusion and Buffer Gas</td>
<td>100</td>
</tr>
<tr>
<td>5.4</td>
<td>Four-Wave Mixing Double-Λ Scheme</td>
<td>103</td>
</tr>
<tr>
<td>6.1</td>
<td>Λ-GEM Set-Up</td>
<td>108</td>
</tr>
<tr>
<td>6.2</td>
<td>Zeeman States</td>
<td>109</td>
</tr>
<tr>
<td>6.3</td>
<td>Λ-GEM Noise Measurements 1</td>
<td>111</td>
</tr>
<tr>
<td>6.4</td>
<td>Λ-GEM Noise Measurements 2</td>
<td>112</td>
</tr>
<tr>
<td>6.5</td>
<td>FPGA Control and Monitoring</td>
<td>113</td>
</tr>
<tr>
<td>6.6</td>
<td>Digital Phase-Insensitive Heterodyne Demodulation</td>
<td>115</td>
</tr>
<tr>
<td>7.1</td>
<td>Multi-Element Coil Set-Up</td>
<td>120</td>
</tr>
<tr>
<td>7.2</td>
<td>LabVIEW MEC Gradient Code</td>
<td>121</td>
</tr>
<tr>
<td>7.3</td>
<td>Basic Λ-GEM Set-Up</td>
<td>122</td>
</tr>
<tr>
<td>7.4</td>
<td>Centre Frequency Offset Characterisation</td>
<td>123</td>
</tr>
<tr>
<td>7.5</td>
<td>Extra Centre Frequency Offset Characterisation</td>
<td>124</td>
</tr>
<tr>
<td>7.6</td>
<td>Input/Output Bandwidth Characterisation</td>
<td>126</td>
</tr>
<tr>
<td>7.7</td>
<td>Extra Input/Output Bandwidth Characterisation</td>
<td>127</td>
</tr>
<tr>
<td>7.8</td>
<td>Spectral Filtering</td>
<td>129</td>
</tr>
<tr>
<td>7.9</td>
<td>Interference with Pulses of Different Frequencies</td>
<td>131</td>
</tr>
<tr>
<td>7.10</td>
<td>Interference with pulses of the same frequency</td>
<td>132</td>
</tr>
<tr>
<td>7.11</td>
<td>Cross-Phase Modulation Set-Up</td>
<td>134</td>
</tr>
<tr>
<td>7.12</td>
<td>Cross-Phase Modulation Results</td>
<td>136</td>
</tr>
<tr>
<td>7.13</td>
<td>Memory Network</td>
<td>137</td>
</tr>
<tr>
<td>8.1</td>
<td>Spatial Mode Detection Set-Up</td>
<td>141</td>
</tr>
<tr>
<td>8.2</td>
<td>Four-Wave Mixing Pulse</td>
<td>142</td>
</tr>
<tr>
<td>8.3</td>
<td>Multi-Mode Storage in GEM</td>
<td>144</td>
</tr>
<tr>
<td>8.4</td>
<td>Selective Maxima Storage</td>
<td>145</td>
</tr>
<tr>
<td>8.5</td>
<td>Image Storage</td>
<td>146</td>
</tr>
<tr>
<td>9.1</td>
<td>Magneto-Optical Trap</td>
<td>153</td>
</tr>
<tr>
<td>9.2</td>
<td>Dipole Trap Modelling</td>
<td>157</td>
</tr>
<tr>
<td>9.3</td>
<td>Cold Atom Diffusion</td>
<td>160</td>
</tr>
<tr>
<td>9.4</td>
<td>Scattering Rate</td>
<td>161</td>
</tr>
<tr>
<td>10.1</td>
<td>Proposed ac Stark GEM Experiment</td>
<td>168</td>
</tr>
<tr>
<td>10.2</td>
<td>Rubidium-87 Level Structure</td>
<td>169</td>
</tr>
<tr>
<td>10.3</td>
<td>ac Stark Frequency Splitting</td>
<td>171</td>
</tr>
<tr>
<td>10.4</td>
<td>Scattering Rate for a One Megahertz ac Stark Gradient</td>
<td>173</td>
</tr>
<tr>
<td>10.5</td>
<td>ac Stark Switching Methods</td>
<td>177</td>
</tr>
<tr>
<td>10.6</td>
<td>ac Stark Cold Atom GEM Efficiency</td>
<td>178</td>
</tr>
<tr>
<td>10.7</td>
<td>ac Stark Gradient Generation</td>
<td>181</td>
</tr>
<tr>
<td>11.1</td>
<td>Cold Atom Memory Set-Up</td>
<td>184</td>
</tr>
<tr>
<td>11.2</td>
<td>Cold Atom Trapping Set-Up</td>
<td>186</td>
</tr>
<tr>
<td>11.3</td>
<td>Interface and Detection set-up 1a,b</td>
<td>190</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

11.4 Scanning EIT in MOT on $F = 2$, Expt. 1a .. 192
11.5 Population Pumping from $F = 2 \rightarrow F = 1$ Level, Expt. 1b 193
11.6 EIT in MOT on $F = 1$, Expt. 1b ... 194
11.7 Interface and Detection Set-up 1c, and Optical Pumping Effects 196
11.8 Optimising Magnetic Field Compensation, Expt. 1c 197
11.9 Raman Absorption, Expt. 1c .. 198
11.10 Interface and Detection Set-Up 1d - Dipole Trap 200
11.11 Cold Atom Cs Memory Set-Up, Expt. 2 203
11.12 Optical Depth Measure, Expt. 2 .. 205
11.13 Magnetic Field Compensation, Expt. 2 206
11.14 EIT Delay and Storage, Expt. 2 ... 207
11.15 EIT to Autler-Townes Transition, Expt. 2 209
12.1 Cold GEM Set-Up 1 ... 216
12.2 Imaging Frequency Calibration ... 217
12.3 MOT 1 Characterisation Images ... 218
12.4 MOT 1 GEM Results .. 220
12.5 Cold GEM Set-Up 2 ... 221
12.6 MOT 2 Characterisation Images ... 222
12.7 GEM Coil Switching .. 223
12.8 MOT 2 GEM Results .. 224
12.9 Cold GEM 3 Set-Up .. 225
12.10 MOT 3 Characterisation Images ... 226
12.11 Peak OD Characterisation .. 227
12.12 Probe Diffraction ... 228
12.13 MOT 3 GEM Results .. 230
12.14 Full Cold Atom GEM Set-Up - Table 1 233
12.15 Full Cold Atom GEM Set-Up - Table 2.1 234
12.16 Full Cold Atom GEM Set-Up - Table 2.2 235
12.17 Full Cold Atom GEM Set-Up - Table 2.3 236

A.1 Full Rubidium-87 Level Structure .. 242
A.2 87Rb Saturation Absorption Traces 243
A.3 Caesium-133 D2 Level Structure ... 244

B.1 Manual - Set-Up .. 247
B.2 Manual - First Time .. 249
B.3 Manual - Locking the System .. 250
B.4 Manual - Lock Optimisation .. 253
B.5 Manual - Lock Optimisation Protocol 255
B.6 Manual - Sequential Locking .. 257

C.1 Cavity Theory .. 272
C.2 PDH Error Signals ... 273
List of Tables

1.1 Quantum Memory Performance Summary ... 31
5.1 Decoherence Rates and Frequency Changes in Warm Vapours 104
7.1 Interference Echo Parameters ... 133
11.1 Main Run Times for Expt. 1 ... 188
11.2 Beam Alignment Run for Expt. 1 ... 189
11.3 Light Storage Runs for Expt.1a-d ... 192
11.4 Light Storage Run for Expt.1d (Dipole Trap) 199