
OMNISPECT IVE ANALYS IS AND REASON ING

an epistemic approach to scientific workflows

srinivas chemboli

A thesis submitted for the degree of
Doctor of Philosophy

of the
Australian National University

September 2012



BY NC SA

This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/.

Copyright c© 2012 Srinivas Chemboli
version 12.09.04

http://creativecommons.org/licenses/by-nc-sa/3.0/


DECLARAT ION

I declare that the work in this thesis is entirely my own and that to the best of my
knowledge it does not contain any materials previously published or written by
another person except where otherwise indicated.

Srinivas Chemboli
04 September 2012





[S]cience includes any approach that is open to reason, to rational
discussion, investigation, skepticism, to critical thinking, to
questioning. . . I wouldn’t say you have to put on a white coat and go
into a laboratory in order to [pursue science].

Dawkins [2012]





ACKNOWLEDGMENTS

The research presented in this dissertation could not have been done without the
help of many colleagues and friends who supported me in many ways during all
the years. Only the names of some of them can be listed here.

First and foremost, I would like to thank my supervisor, Clive Boughton, for his
unstinting support and encouragement. Thank you, Clive, for skillfully ensuring
the right mix of ‘supervision’ and ‘independent latitude’ in research. I have learnt
much these past years, and that could not have happened without your guidance.

I have benefited greatly from the valuable feedback and suggestions of my
advisors, Shayne Flint and Ramesh Sankaranarayana. Thank you Shayne, for the
informed critique and many hours of brainstorming and discussion. I am grateful
to Ramesh for steering me towards ‘scientific workflows.’

I am also thankful to Elisa Baniassad, chair of my supervisory panel — although
Elisa came on board at a later stage of my study, her advice and insights have been
very helpful in shaping the research.

Over the past several years, I have had the great pleasure of interacting with an
incredible group of people in the School of Computer Science.

In particular, I would like to thank Henry Gardner for taking an active interest
in my research and offering valuable advice.

I am also thankful to Lynette Johns–Boast, Chris Johnson, Clem Baker–Finch
and Alexei Khorev for giving me the opportunity to learn to teach. The skills
acquired from this experience have been very useful in my research. I would like
to thank Tom Worthington, Malcolm Newey and Jay Larson for numerous helpful
and enlightening discussions about conducting and presenting research.

To Julie Arnold, Chelsea Holton, Fiona Quinlan, Bethany Flanders, Suzy
Andrew, Debbie Pioch, Jill Mayo, Marie Katselas, Sue van Haeften, Jonathan
Peters, Paul Melloy and Jadon Radcliffe: A Big Thank You for cheerfully handling
all administrative niggles. Special thanks to Bob Edwards, Hugh Fisher, Steven
Hanley and in particular to James Fellows, for technical support and wizardry.

During my PhD, I also had the opportunity to work as an educational
technologist in the Division of Information at the ANU. I would like to thank
Karen Visser, Jenny Edwards, Marina Lobastov, Peter Yates, Jaymie Parker, Sam
Primrose, Grazia Scotellaro, Candida Spence, Hans Joerg–Kraus, Kim Blackmore
and Lauren Thompson — it was a privilege to work with you.

vii



In addition, I also participated in the Pinnacle Teaching Program, the Graduate
Teaching Program and the Foundations of University Teaching and Learning
course. I am thankful to Trevor Vickers and Beth Beckmann for their support in
these programs.

It would be remiss of me not to express my thanks to Mark Drechsler for insights
of Moodle and learning management systems.

I would also like to thank Deborah Veness for her comments and suggestions
on the application of OAR to course design and for encouraging me to present the
work at ascilite.

I am thankful to Tony Karrys, Gina Denman, Kaori Oikawa and Walter Sauer
for their assistance and kindness.

This research has been supported by the Australian National University, and
the Commonwealth of Australia, through the Cooperative Research Centre for
Advanced Automotive Technology. I would like to thank Kate Neely for her
support and assistance in coordinating with the AutoCRC.

I would like to thank the many people with whom I have shared my time at
CECS: Agung Fatwanto, Normi Abu Bakar, Zoe Brain, Luke Nguyen–Hoan, Alvin
Teh, Amir Hadad, Sukanya Manna, Josh Milthorpe, Jaison Mulerikkal, Derek
Wang and Ian Wood. You have been excellent company. I must particularly thank
my officemate and friend Ziyad Alshaikh. Thank you for the sparkling wit and
interesting discussions — no research ideas were too outlandish for conversation!

Special thanks to:

Aditi Barthwal and Kate Sullivan, for your friendship, support and encour-
agement.

Josephine Wright, for your optimism and friendly advice.

Ganesh Venkateswara, for taking time out and providing thoughtful insights
and feedback.

Finally, I would like to thank my family for their continuous support and
encouragement. Without you this work would never have been possible.

viii



acknowledgments of permissions

I want to acknowledge the permissions of various copyright holders.

The Workflow Management Coalition kindly permitted me to use the following
material:

From D. Hollingsworth, ”The Workflow Reference Model”, Document
Number TC00-1003, The Workflow Management Coalition, Hampshire, UK
: 1995 http://www.wfmc.org/standards/docs/tc003v11.pdf ,

Figure 6 (Figure 2.1 in the thesis, redrawn for style and appearance)

Dr Shayne Flint of the Australian National University kindly permitted me to use
the following material:

From S. Flint, ”Rethinking Systems Thinking”, Proceedings of the 14th
ANZSYS Australia New Zealand Systems Society Conference, Perth,
Australia : 2008 http://www.anzsys.org/anzsys08/papers/Shayne%20Flint%

20Rethinking%20Systems%20Thinking.pdf

Figure 2 (Figure 3.1 in the thesis, redrawn for style and appearance)

The International Society for the Systems Sciences kindly permitted me to use the
following material:

From J.N. Warfield, ”The Domain of Science Model: Evolution and Design”,
Proceedings of the Society for General Systems Research, Salinas, CA:
Intersystems, 1986, H46-H59,

Figure 1 (Figure 3.2 in the thesis, redrawn for style and appearance)

Lynette Johns-Boast of the Australian National University kindly permitted me to
use the following material:

”A Model of Curriculum Design”, Personal communication : 2010,

(Figure 5.1 in the thesis, redrawn for style and appearance)

ix

http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.anzsys.org/anzsys08/papers/Shayne%20Flint%20Rethinking%20Systems%20Thinking.pdf
http://www.anzsys.org/anzsys08/papers/Shayne%20Flint%20Rethinking%20Systems%20Thinking.pdf




ABSTRACT

This thesis presents the conceptualization, formulation, development and demon-
stration of Omnispective Analysis and Reasoning (OAR), an epistemic framework
for managing intellectual concerns in scientific workflows.

Although scientific workflows are extensively used to support the management
of experimental and computational research, intellectual concerns are not ade-
quately handled in current practice owing to the focus on low–level implementa-
tion details, limited context support, issues in developing shared semantics across
disciplines and lack of support for verification and validation of the underlying
science of the workflow. The management of intellectual concerns in scientific
workflows can be improved by developing a framework for providing a layer of
abstraction to lift focus from low–level implementation details, adding context
as a workflow parameter, introducing localized ontologies and abstracting and
mapping intellectual concerns in the research–domain to workflow specification
and execution semantics.

Following an examination of typical definitions of scientific workflow offered
in literature, the Scientific Method is applied to develop an enhanced definition
of a scientific workflow. This definition, which extends the scope of ordered
analysis and investigation to a generic problem scenario, is utilized in the OAR
framework. The design of OAR is modular like the Domain of Science Model
(DoSM). The structure and working of OAR incorporate the evolving nature of
science, hierarchy of conceptualization, omnispection, and the logical processes
of analysis, reasoning and abstraction. These form the Foundation and Theory
of OAR. Abstracting concerns in terms of unit knowledge entities (ukes) and
groups of ukes (recipes), use of context to identify relation between recipes, the
management of recipes in shelves, and the processes of concern refinement and
context refinement constitute the Methodology.

A comprehensive and simple example of the application of OAR to the
abstraction, analysis, formulation and orchestration of a scientific workflow at
different levels of granularity is provided by applying it to the problem of
origami paper folding. The use of OAR in capturing the rationale of design
decisions and mapping them to desired outcomes is demonstrated by applying
OAR for contextualizing course design. Another example illustrates the use
of OAR in the analysis, understanding and management of complex systems.
Localized ontologies enable the exposure of side–effects and emergent behavior in

xi



large–scale systems due to the choice of any particular solution specification. These
examples constitute a first step in building the Applications block of OAR. While
OAR may be manually applied even to large–scale problems, it is expedient to
avail of tool support. Soma — a simple and illustrative tool prototype is developed
to indicate directions for a reference tool implementation.

The thesis concludes with a consideration of ideas for future work. The
contribution in this thesis corresponds to an instance of the DoSM for scientific
workflow management. The OAR framework has great potential for further
development as a well–formed Science of Workflows.

xii



PUBL ICAT IONS

Some ideas and figures have appeared previously in the following presentations
and publications:

Chemboli, S. and Boughton, C. [2012a]. “Managing Large and Complex Systems
with Omnispective Analysis and Reasoning.” In: Proceedings of SETE APCOSE 2012.
Brisbane, Australia. url: http://hdl.handle.net/1885/9009

Chemboli, S. and Boughton, C. [2012b]. “Omnispective Analysis and Reasoning:
A Framework for Managing Intellectual Concerns in Scientific Workflows.” In:
Proceedings of the 5th India Software Engineering Conference. Kanpur, India, pp. 143–
146. doi: 10.1145/2134254.2134279

Chemboli, S. and Boughton, C. [2011]. “Contextual Course Design with Om-
nispective Analysis and Reasoning.” In: Changing Demands, Changing Directions.
Proceedings ascilite. Ed. by Williams, G. et al. Hobart, pp. 210–219. url: http://www.

leishman-associates.com.au/ascilite2011/downloads/papers/Chemboli-full.pdf

Chemboli, S. [Oct. 2010a]. Contextualizing learning outcomes and course design in
Moodle. Presented at Moodleposium AU 2010. Canberra, Australia. url: http://

hdl.handle.net/1885/9279

Chemboli, S., Kane, L., and Johns-Boast, L. [July 2010]. Translating Learning
Outcomes in Moodle. Presented at Moodlemoot AU 2010. Melbourne, Victoria,
Australia. url: http://ubuntuone.com/4RBjlozHyEyITuy21aDCfe

Chemboli, S. [Feb. 2010b]. Omnispective Analysis and Reasoning: An epistemic
approach to scientific workflows. Presented at the CECS Seminar Series, Australian
National University. Canberra, Australia. url: http://cecs.anu.edu.au/seminars/

more/SID/2503

xiii

http://hdl.handle.net/1885/9009
http://dx.doi.org/10.1145/2134254.2134279
http://www.leishman-associates.com.au/ascilite2011/downloads/papers/Chemboli-full.pdf
http://www.leishman-associates.com.au/ascilite2011/downloads/papers/Chemboli-full.pdf
http://hdl.handle.net/1885/9279
http://hdl.handle.net/1885/9279
http://ubuntuone.com/4RBjlozHyEyITuy21aDCfe
http://cecs.anu.edu.au/seminars/more/SID/2503
http://cecs.anu.edu.au/seminars/more/SID/2503




CONTENTS

acknowledgments vii

abstract xi

publications xiii

contents xv

list of figures xix

list of tables xxi

I Introduction 1

1 overview 3

1.1 Initial Motivation and Research Aim 4

1.2 Research Design 4

1.3 Thesis Scope 5

1.4 Thesis Structure 5

1.4.1 Part I: Introduction 5

1.4.2 Part II: Omnispective Analysis and Reasoning 7

1.4.3 Part III: Proof of Concept 7

1.4.4 Part IV: Conclusion 7

1.5 Main Contributions 7

2 background 9

2.1 Workflows 10

2.1.1 Scientific Database Systems 10

2.1.2 Unstructured Activities 11

2.1.3 Dynamic Process Composition 13

2.1.4 Distributed and Decentralized Processes 13

2.1.5 The Workflow Reference Model 15

2.1.6 Participatory Analysis 17

2.1.7 Emergence of Scientific Workflows 18

2.1.8 Scientific Workflows 20

2.2 Issues in Scientific Workflow Management 23

xv



xvi Contents

2.2.1 Focus on Low–level Detail 23

2.2.2 Limited Context Support 26

2.2.3 Inadequate Management of Intellectual Concerns 28

2.3 Impact of the Above Issues 29

2.3.1 Observation 1 30

2.3.2 Observation 2 30

2.3.3 Observation 3 30

2.4 Conjecture 31

2.5 Summary and Conclusion 32

II Omnispective Analysis and Reasoning 33

3 omnispective analysis and reasoning 35

3.1 The Nature of Science 36

3.2 Fixation of Belief 38

3.3 Universal Priors to Science 39

3.4 Law of Triadic Compatibility 40

3.5 Hierarchy of Conceptualization 41

3.6 Domain of Science Model 42

3.7 Expanding Scale and Complexity of Scientific Work 44

3.8 Intellectual Concerns in Scientific Work 44

3.9 Defining Scientific Workflows 45

3.10 ‘Reforming’ Scientific Workflow Management 48

3.10.1 Managing Intellectual Concerns 49

3.10.2 Dealing with Inadequate Context Support 51

3.10.3 Inadequate Support for Verification and Validation 51

3.11 Theoretical Foundations of OAR 52

3.11.1 Omnispective Analysis 53

3.11.2 Lifting Focus from Low–level Details 54

3.11.3 Defining Context and Adding Context Support 56

3.11.4 Localized Ontologies 58

3.11.5 Epistemological Basis 60

3.12 Overview of the OAR Framework 60

3.13 Prototypes, Archetypes and Constraints 62

3.14 Concern Refinement 63

3.15 ‘Bootstrapping’ External Shelves 65

3.16 Context Refinement 66

3.17 Constructed and Organic Solution Specifications 70

3.18 Rationale for the Structure of OAR 71



Contents xvii

3.19 Nature of the OAR Framework 73

3.20 Summary and Conclusion 74

III Proof of Concept 77

4 origami folding workflow 81

4.1 Paper Folding as a Scientific Workflow 82

4.2 Folding the Iris Flower 82

4.3 Applying OAR to the Iris Flower Workflow 85

4.3.1 Identifying Relevant Archetypes and Constraints 86

4.3.2 Formulating the Solution Specification 86

4.4 Implementing the Solution Specification 87

4.5 Summary and Conclusion 88

5 contextualizing course design 91

5.1 Learning, Teaching and Course Design 92

5.1.1 Learning Outcomes 94

5.1.2 Translating Learning Outcomes to Course Design 95

5.2 Contextualizing Course Design 96

5.3 Translating Learning Outcomes for COMP8120 97

5.3.1 Learning Outcomes for COMP8120 97

5.3.2 Analyzing Context for LO–1 and LO–2 98

5.3.3 Analyzing Context for LO–3 98

5.3.4 Analyzing Context for LO–4 99

5.3.5 Analyzing Context for LO–5 99

5.4 Solution Specification for LO–5 99

5.4.1 Initializing External Shelves 99

5.4.2 Identifying Relevant Archetypes and Constraints 100

5.4.3 Solution Shelf for LO–5 101

5.4.4 Implementing the Solution Specification 102

5.5 Summary and Conclusion 102

6 managing large and complex systems 103

6.1 Large and Complex Systems 104

6.2 Some Characteristics of Large Systems 105

6.3 How complexity builds and escalates in large systems 106

6.4 Applying OAR to Complex Systems 107

6.5 The Ubuntu Platform as a Complex System–of–Systems 109

6.6 Capturing intellectual concerns for the Ubuntu ecosystem 109

6.6.1 Initializing External Shelves 110



xviii Contents

6.7 Identifying Relevant Archetypes and Constraints 111

6.8 Solution Specification for Selecting the Default Music App 111

6.9 Utilizing a Solution Specification 113

6.10 Summary and Conclusion 117

IV Conclusion 119

7 soma: oar tool prototype 121

7.1 Soma: A Tool for Simple Omnispective Analysis and Reason-
ing 122

7.1.1 Initialization 122

7.1.2 Building the Problem–domain Shelf 123

7.1.3 Contextualization 124

7.1.4 Practical Considerations in Soma 124

7.2 Product Vision and Goal 126

7.3 Architecture Vision and Sprint Planning 126

7.3.1 Architecture Vision 127

7.4 Soma Development 128

7.4.1 Soma Sprint 1 128

7.4.2 Soma Sprint 2 135

7.5 Summary and Conclusion 137

8 summary and conclusions 141

8.1 Summary of Contribution 142

8.1.1 An Enhanced Definition of Scientific Workflow 142

8.1.2 Omnispective Analysis and Reasoning 142

8.2 Limitations of Contribution 145

8.3 Related Work 147

8.4 Viewing Enterprise Architecture through OAR 148

8.4.1 Enterprise Architecture and Architecture Frameworks 149

8.4.2 Applying OAR — Architecture Views as Workflows 152

8.5 Directions for Future Work 155

8.5.1 Managing Fractional Values for Firmness and Influence in
Recipe Context 155

8.5.2 Tool Support 155

8.5.3 Moodle OAR Plugin 156

8.5.4 Application to Complex Systems 156

8.5.5 OAR as Science of Workflows 156

bibliography 157



L I ST OF F IGURES

Figure 1.1 Activity diagram depicting the structure and flow of ideas
and results throughout the thesis. 6

Figure 2.1 Components and interfaces in the workflow reference
model (after Hollingsworth [1995]). Copyright c©1995 The
Workflow Management Coalition. Adapted with permis-
sion. 16

Figure 2.2 Delineating high–level concerns and low–level details in an
experiment. 25

Figure 2.3 Illustrating context. 28

Figure 3.1 An adaptation of Boyd’s OODA loop for managing com-
plex problem situations (after [Flint, 2008]). Copyright
c©2008 Flint, S. Adapted with permission. 37

Figure 3.2 The Domain of Science Model (after [Warfield, 1994]).
Copyright c©1986 International Society for the Systems
Sciences. Adapted with permission. 43

Figure 3.3 A definition of the OAR framework. 52

Figure 3.4 Composite nature of Unit knowledge entity (uke). 55

Figure 3.5 Hierarchy of concerns 56

Figure 3.6 Uke context as a function of Firmness and Influence. 57

Figure 3.7 Relation between concern, recipe and uke. 62

Figure 3.8 Shelves and recipes. 64

Figure 3.9 Managing concerns in the OAR framework. 65

Figure 3.10 Visualization of shelf bootstrap. 67

Figure 3.11 Representing context by profiles of the attributes Influence
and Firmness. 68

Figure 3.12 The process of context refinement. 69

Figure 4.1 Workflow for folding the Iris flower starting with a Frog
Base. 83

Figure 4.2 Illustrating the implementation–level focus of current sci-
entific workflow practice. 84

Figure 4.3 External shelves and prototypes. 85

Figure 4.4 Selected prototypes in the Problem–domain shelf for the
Iris Flower specification. 86

Figure 4.5 Origami Iris Flower specification. 87

xix



xx List of Figures

Figure 4.6 Formulating a solution specification for implementing the
Iris Flower solution shelf of Figure 4.5. 89

Figure 5.1 A model of curriculum design. Copyright c©2010 Johns-
Boast, L. Adapted with permission. 93

Figure 5.2 External shelves and prototypes. 100

Figure 5.3 Archetype and constraint identification for LO–5. 101

Figure 5.4 Solution specification for LO–5. 101

Figure 6.1 Escalation of problem complexity when additional inputs
are provided. 106

Figure 6.2 External shelves and recipes for deciding the default music
app. 110

Figure 6.3 Archetype and constraint identification in the problem
domain shelf. 111

Figure 6.4 Solution shelf for the default music app specification. 113

Figure 6.5 Local ontology for default apps. 115

Figure 6.6 The problem–domain shelf for selecting the default note
app. 116

Figure 6.7 In this recipe, the Ubuntu 12.04 LTS distribution does not
ship with a default note app. 116

Figure 6.8 In this recipe, the Ubuntu 12.04 LTS distribution can ship
with GNote as the default note app even though it lacks
critical synchronization features. 117

Figure 7.1 The initial state of Soma with several external shelves and
an empty problem–domain shelf canvas. 123

Figure 7.2 The newly initialized PDS is populated 124

Figure 7.3 Possible ambiguity due to visual simplification of constraint
representation in a solution shelf. 125

Figure 7.4 The requirements pyramid for the Soma OAR tool proto-
type. 127

Figure 7.5 Sliced view of the Soma architecture cluster. 127

Figure 7.6 Data architecture model of Soma. Storage of OAR data is
independent of its representation in the Soma Logical Layer.
The Soma Visual Layer can be customized to generate
different outputs. 128

Figure 7.7 Soma data ring during Sprint 1. 129

Figure 7.8 Soma data model. 130

Figure 7.9 Opening screen of Soma. 131

Figure 7.10 Creating a new recipe. 132



Figure 7.11 Filling in the details for a new recipe. The recipe UUID is
auto–generated. 132

Figure 7.12 A recipe for the Flat technique. 133

Figure 7.13 A recipe for Valley fold. 133

Figure 7.14 Entering the details of a new specification. 134

Figure 7.15 Recipes in the Problem–domain Shelf view. 134

Figure 7.16 Assigning recipe state. 135

Figure 7.17 Constraints for the origami iris flower specification. The
Frog Base, Mountain Fold and Flap recipes are not shown in
this figure. 136

Figure 7.18 Selecting recipes for context refinement. 136

Figure 7.19 Assigning recipe influence. 137

Figure 7.20 Saving the solution specification. 138

Figure 8.1 OAR process for generating architecture views. 154

L I ST OF TABLES

Table 3.1 Ideas in the OAR framework. 72

Table 3.2 Some OAR translation engines. 73

Table 7.1 Soma release and sprint planning. 129

xxi





Part I

Introduction

1





1 OVERV IEW

The White Rabbit put on his spectacles. ’Where shall I begin, please
your Majesty?’ he asked.
’Begin at the beginning,’ the King said gravely, ’and go on till you come
to the end: then stop.’

Carroll [2008]

1.1 Initial Motivation and Research Aim 4

1.2 Research Design 4

1.3 Thesis Scope 5

1.4 Thesis Structure 5

1.4.1 Part I: Introduction 5

1.4.2 Part II: Omnispective Analysis and Reasoning 7

1.4.3 Part III: Proof of Concept 7

1.4.4 Part IV: Conclusion 7

1.5 Main Contributions 7

This thesis is submitted for the degree of Doctor of Philosophy of the Australian
National University. Exploratory research leading to the conception, development
and demonstration of Omnispective Analysis and Reasoning (OAR), an epistemic
framework to enhance the management of intellectual concerns in scientific
workflows is described in this thesis. The application of the framework to
manage ideas and concepts in generic workflows and large and complex systems
management is also discussed.

An introduction to the research and information about the structure and
organization of the remainder of the thesis is given in Chapter 1. This chapter
also provides a high–level overview of the research and the main contributions
reported in the thesis.

3



4 overview

1.1 initial motivation and research aim

The research leading to the development of the OAR framework commenced with
an initial aim to study scientific workflow management in order to understand
and improve upon the handling of intellectual concerns (ideas, concepts and
hypotheses) in scientific processes and research.

The results of preliminary research, which are presented in Chapter 2, lead
to the conjecture that the handling of intellectual concerns in scientific workflow
management can be improved by adding a layer of abstraction to shift focus
from low–level implementation details. This can be further improved by adding
context support to scientific workflow components and processes and providing
a suitable level of abstraction to capture and organize the underlying concepts,
theories, ideas and rules in the problem domain being explored and map them
to the workflow specification and execution semantics. An amplification of these
concepts is used to formulate and develop Omnispective Analysis and Reasoning
(OAR), an epistemic framework to effectively manage the associated intellectual
effort in scientific workflows.

Accordingly, the research aim of this thesis can be stated as: Formulate, develop
and demonstrate an epistemic framework for managing intellectual concerns in scientific
workflows.

1.2 research design

As stated above, a key motivation for undertaking the research documented in this
thesis is a need to improve the management of intellectual concerns in scientific
workflows.

A two–phase approach to Omnispective Analysis and Reasoning research is
utilized using the Engineering Method of Research, which is outlined by Flint [2009].
The first phase comprises the theoretical work and proof of concept presented in
this thesis. The second phase constitutes future research in the OAR framework.
The research has been conducted by observing the use of current approaches
to intellectual concern management in scientific workflows (Chapter 2), and
then conceptualizing, formulating and demonstrating the OAR framework for
managing intellectual concerns (chapters 3 to 6).



1.3 thesis scope 5

1.3 thesis scope

Aside from meeting the research aim stated above, the scope of work also includes
the illustration of the applicability of OAR. This is presented in chapters 4 to 6.
However, extensive evaluation and quantification of the framework is beyond the
scope of the thesis.

An approach to develop tool support for OAR is suggested and a prototype
implementation is presented in Chapter 7. The full analysis, design and imple-
mentation of a complete end–to–end OAR toolset is outside the scope of the work
discussed in this thesis.

1.4 thesis structure

Following the approach presented by Flint [2006], the structure of this thesis
is depicted in Figure 1.1 using a Unified Modeling Language (UML) activity
diagram [Mellor and Balcer, 2002]. Each chapter of the thesis is represented by
an activity (rounded box). The flow of ideas and research results is represented
by directed arrows between the chapters. Key contributions of this research are
depicted by objects in the diagram (white square boxes).

As indicated by the vertical partitions in Figure 1.1, this thesis is organized in
four parts.

A detailed overview of the research can be obtained by reading chapters 2, 3

and 8. The overall conclusion is presented in Chapter 8. The OAR framework
itself is presented in Chapter 3.

1.4.1 Part I: Introduction

As indicated in Figure 1.1, Part I comprises two chapters. The motivation and
aim for the research are presented in Chapter 1. The background for OAR
is discussed in Chapter 2. This includes a historical overview of scientific
workflow management to identify approaches to address the problem of managing
intellectual concerns. As also indicated in Figure 1.1, this study resulted in the
formulation and development of Omnispective Analysis and Reasoning.



6 overview

Chapter 1
Overview

Chapter 2
Background

Research 
aim

Chapter 8
Summary and 
Conclusions

Plans for 
future 

research

Part I
Introduction

Part II
Contribution

Part IV
Conclusion

Part III
Proof of Concept

[Motivation to improve 
scienti!c work"ow
management]

[The idea of 
Omnispective 
Analysis and 
Reasoning]

OAR 
foundations

Chapter 3
Omnispective 
Analysis and 
Reasoning

Chapter 4
Origami 
Folding

Chapter 5
Course 
Design

Chapter 6
Complex 
Systems

OAR 
framework

Chapter 7
Tool 

Prototype

Figure 1.1: Activity diagram depicting the structure and flow of ideas and results
throughout the thesis.



1.5 main contributions 7

1.4.2 Part II: Omnispective Analysis and Reasoning

Part II of this thesis comprises one chapter. The OAR framework and its
foundations are described in Chapter 3. The OAR framework has been designed to
bridge the cognitive chasm between the underlying theory, rationale and concepts
and the design and execution of workflows in scientific processes.

1.4.3 Part III: Proof of Concept

The application of the OAR framework is illustrated by three examples in
Part III. The focus of these applications is to clearly demonstrate the working
and potential of the OAR framework across diverse disciplines. The application
of OAR to an origami iris flower workflow is presented in Chapter 4. The second
illustration presents the use of OAR in contextual course design (Chapter 5). The
applicability and potential of OAR in analyzing, understanding and managing
complex systems is demonstrated in Chapter 6.

1.4.4 Part IV: Conclusion

The development of a tool prototype for OAR is presented in Chapter 7. Summary,
discussion and conclusions are given in Chapter 8. Directions for future work and
research are also presented.

1.5 main contributions

The research reported in this thesis has resulted in the following contributions to
existing knowledge required to understand and manage intellectual concerns in
scientific workflow management.

1. Omnispective Analysis and Reasoning: OAR is a novel epistemic framework
to identify, capture and reuse intellectual concerns (ideas, concepts and
hypotheses) in scientific workflows (Chapter 3).

2. Definition of scientific workflow: An extended and enhanced definition of
scientific workflow beyond the currently understood scope of “computer
flowcharting” (Section 3.9).



8 overview

3. Hierarchy of Conceptualization: A hierarchy for the conceptualization of
an entity at the concept, model and implementation levels is presented
(Section 3.5).

4. Idea of localized ontologies: The idea of localized ontologies, applicable to a
particular instance of a problem situation, is introduced and realized through
shelf management in OAR. Localized ontologies assist the process of arriving
at shared semantic understanding by reducing the scale and complexity of
the ontological mapping (Section 3.11.4 and Chapter 6).



2 BACKGROUND

Listen to others as you would have others listen to you.

Booth, Colomb, and Williams [2008]

2.1 Workflows 10

2.1.1 Scientific Database Systems 10

2.1.2 Unstructured Activities 11

2.1.3 Dynamic Process Composition 13

2.1.4 Distributed and Decentralized Processes 13

2.1.5 The Workflow Reference Model 15

2.1.6 Participatory Analysis 17

2.1.7 Emergence of Scientific Workflows 18

2.1.8 Scientific Workflows 20

2.2 Issues in Scientific Workflow Management 23

2.2.1 Focus on Low–level Detail 23

2.2.2 Limited Context Support 26

2.2.3 Inadequate Management of Intellectual Concerns 28

2.3 Impact of the Above Issues 29

2.3.1 Observation 1 30

2.3.2 Observation 2 30

2.3.3 Observation 3 30

2.4 Conjecture 31

2.5 Summary and Conclusion 32

This chapter commences with a discussion of workflows and workflow man-
agement systems. The evolution of scientific workflow systems as distinct from
business workflow systems is traced in Section 2.1. Some of the issues that need
to be addressed in order to improve the management of intellectual concerns
in scientific workflows are identified in Section 2.2. The impact of these issues
is considered in Section 2.3. Based on these observations, the conjecture leading
to the formulation and development of Omnispective Analysis and Reasoning is
presented in Section 2.4.

9



10 background

2.1 workflows

Scientific workflows are generally considered as a formal representation of the pro-
cesses undertaken by scientists or researchers in the investigation and exploration
of a problem situation. Over the years, the terms scientific workflow and scientific
workflow management have taken on different meanings in different contexts and
disciplines, being mostly used as generic terms to describe any dynamic series of
structured activities and computations that are routinely encountered in scientific
problem–solving [Singh and Vouk, 1996; Wainer et al., 1997].

The Workflow Management Coalition (WFMC) defines a workflow and work-
flow management system as [Hollingsworth, 1995]:

Workflow: The computerized facilitation or automation of a business
process, in whole or part.

Workflow Management System: A system that completely defines, man-
ages and executes workflows through the execution of software whose
order of execution is driven by a computer representation of the
workflow logic.

The concept of workflows and workflow management originated in the activities
to manage, organize and optimize business and office processes [Ludäscher
et al., 2009; Medina-Mora et al., 1992]. Business workflow management systems
were used to handle the challenges of automation of increasingly complex
processes such as inventory control, personnel and payroll management, purchase
order processing and financial management in business and office environments.
Various workflow management systems such as Bonita, JBoss and YAWL are
geared towards specifying, enacting and managing business processes [Garces
et al., 2009].

The use of workflow management systems in the scientific domain led to
the development of customized workflow management paradigms specific to
exploratory research, analysis, scientific data management and execution of com-
plex and computationally intensive experimental processes which require keeping
track of data, activities and resources which are geographically distributed and
structurally heterogeneous.

2.1.1 Scientific Database Systems

Shoshani, Olken, and Wong [1984] proposed a type classification for scientific
data, and identified the following characteristics which distinguish scientific data
management from business data processes:



2.1 workflows 11

1. Scientific data is typically multidimensional with a high occurrence of sparse
data sets.

2. Most searches of scientific data routinely exhibit a high degree of locality.

3. Though most scientific databases are usually quite large, they are also quite
modular in structure. This makes it possible to design a structural decompo-
sition which is better suited to scale efficiently in terms of organization and
storage.

4. A large part of scientific data is made up of results generated by associated
scientific instrumentation. Thus it is desirable to store information about the
pertinent instrumentation along with the data generated.

5. Summary analysis of scientific datasets is common enough to warrant
specialized support to optimize the process. This analysis encompasses a
varied set of data types exhibiting a high degree of mix–in, which is quite
atypical of traditional mainstream database management where data sets
tend to be more uniform.

Based on these observations, Shoshani, Olken, and Wong concluded that
scientific data management requires features which are not generally available
in business databases. They proposed that it might be desirable to have a class
of specialized database management systems which are tailored specifically to
scientific data and its associated instrumentation.

These developments, coupled with the particularly challenging requirements
posed by the management of scientific data [Shoshani, Olken, and Wong, 1984],
and the disparities between exploratory scientific research and technological
processes in industrial production [Ioannidis et al., 1997] resulted in additional
requirements leading to the branching of scientific workflow development from
general workflow management systems for business and office use.

2.1.2 Unstructured Activities

Subsequent advances in computational research made it feasible to consider the
use of automation to capture process logic and coordinate workflow control.
Medina-Mora et al. [1992] describe and present a procedure for office work
(business workflows) using a number of interconnected loops, where each loop
represents an elementary function as a transaction between a customer and a
performer. This approach, while generic enough in theory to represent workflows
in scientific processes, was primarily focused on realizing efficiency gains in office
procedure automation to enhance customer satisfaction.



12 background

The recognition of these specific needs to scientific data management listed
above vis–a–vis data and process automation saw the advent of Experiment
Management Systems (EMS) which aimed to enable the generation and man-
agement of experimental scientific data. The MOOSE Experiment Management
System [Wiener and Ioannidis, 1993] was developed to support experimental data
management via a specialized query language. Experimental objects in scientific
processes and their associated data were stored in customized Object–Oriented
Database Management Systems and manipulated using a specialized declarative
query language. This approach sought to address the special concerns of data
and process locality, periodicity in temporal data sets and the maintenance of
interconnected data sets and their generating processes.

Increasing mainstream use of workflow management processes in business or-
ganizations led to further research in enhancing workflow management practices
to accommodate exception handling. Workflow exceptions were now handled at
two levels of management — the workflow description or modeling level, and
the workflow execution level. A mechanism for handling exceptional data and
processes in workflow management was proposed by Barthelmess and Wainer
[1995]. This approach presented one of the early abstractions for managing
workflow processes at two distinct levels of granularity. Issues dealing with
workflow user–interface concerns, data organization and process schematics were
grouped together in the workflow modeling level. Workflow implementation was
handled in the execution level with support for exception handling in workflow
enactment.

Adding support for exception handling was the first step for building support
for unstructured activities in workflow management processes. However, the
flexibility offered to customize the workflow process as per suitability still
remained limited until the introduction of contextual information agents [Blumenthal
and Nutt, 1995]. Though rather limited in scope and form at this stage, the
addition of context information to unstructured activities enabled their inclusion
in the hitherto highly structured and rigid workflow process specifications. The
Bramble context information agent [Blumenthal and Nutt, 1995] added support
for the following context variables as a tuple to better specify the scope of the
workflow process:

1. A description of the context environment.

2. A statement of goals of the activity within the purview of the context
description.

3. A set of constraints which governed the context criteria; and



2.1 workflows 13

4. A specification of the user role participating in the workflow process.

This rather limited view of context as a scope delimiter remained prevalent even
with further developments in workflow execution methodologies.

2.1.3 Dynamic Process Composition

The diversification of scientific workflow processes from business workflows
continued with further work to address the dynamic nature of scientific research.
Bogia and Kaplan [1995] presented a model for handling dynamic changes to
workflows. This approach handled dynamic exceptions locally within the entire
workflow with support for composing the individual sub–workflows together. This
enabled better handling of modifications that were not shared in the entire
workflow, and were local to a particular context of execution. This overlay
metaphor to workflows added support for workflow inheritance, while delegating
the decision–making in the composition process to a human agent, still providing
the ability to incorporate automation features from decision support systems.

A major consequence of dynamic workflow composition was the increasing
need to address issues due to process and data parallelism. An approach to
manage parallelism in workflow processes was presented by Ellis, Keddara, and
Rozenberg [1995]. They classified dynamic changes as structural and component
changes and presented a petri–net based approach for tackling dynamic structural
changes. Dynamic component changes affect workflow components such as
roles, repositories and resources, while dynamic structural changes are limited
to the changes within the structure of procedures. A chief use of the petri–net
approach for managing structural dynamism is in the modeling component,
without undue emphasis on the execution and implementation of the workflow.
Further developments in handling dynamic evolution in workflows have been
reported [Casati et al., 1998; van der Aalst and Basten, 2002]. However, none of
these approaches make any mention of features for ensuring correctness or validity
of the modeled structural changes.

2.1.4 Distributed and Decentralized Processes

The growing dichotomy of business and scientific workflows was further con-
cretized by the development of database management systems specifically cus-
tomized for scientific processes and data.

Medeiros, Vossen, and Weske [1995] outline an architectural framework to
support scientific applications in which huge amounts of data have to be managed



14 background

efficiently and in an application–specific way. The framework is constructed with
distinct layers of abstraction and functionality and can be built atop arbitrary
existing types of databases. The operation of the framework crucially centers
around the paradigm of database management for scientific applications.

Compared to previous customization of database systems for scientific appli-
cations, Workflow–based Architecture to support Scientific Applications (WASA)
[Medeiros, Vossen, and Weske, 1995; Weske, Vossen, and Medeiros, 1996] ap-
proaches scientific workflow management with a layered paradigm. Similar to
data warehouse management systems [Han, Kamber, and Gray, 2000], workflow
management is handled over four layers:

1. A user interface layer to handle communication between users and the system.

2. An internal tool layer to coordinate experiment specification, documentation
and execution.

3. An enhanced database functionality layer to present a unified interaction layer
to the internal tool layer, and

4. A database layer to interface with the underlying database systems used in
the application.

Though WASA exhibits a hierarchical abstraction of workflow management
concerns, the end user is not insulated from the low level architectural details
even at the user interface layer.

In contrast to earlier attempts at workflow abstraction, WASA views all
workflow activities as steps and tasks in an experiment, and aims to support their
specification, control and execution by delineating workflow execution semantics
from architectural concerns. A primary application for this pipeline architecture
was demonstrated in model sequencing in DNA fragment assembly [Meidanis,
Vossen, and Weske, 1996].

A parallel development in workflow evolution was the emergence of decentral-
ized workflow management. As opposed to a central task director, this approach
was based on the concept of a workflow component mediator which was built
upon existing commercial middleware platforms utilizing the Object Management
Group (OMG) Common Object Request Broker Architecture (CORBA). Schill and
Mittasch [1996] implemented a strongly structured view of workflow tasks on
top of the CORBA Internet Inter–ORB Protocol (IIOP) to handle communication
between remotely located business workflow objects. Each workflow object which
is located on a participating node exposes an invocation interface to the workflow
coordinator.



2.1 workflows 15

A paradigm shift from traditional Experiment Management Systems (EMS) and
Engineering Data Management Systems (EDMS) to comprehensive decentralized
scientific workflow management was demonstrated by Baker, McClatchey, and
Le Goff [1997]. The CRISTAL (Concurrent Repositories and Information System
for Tracking Assembly and production Lifecycles) monitoring and production
system [Baker, McClatchey, and Le Goff, 1997] incorporated the management of
workflow instantiation and enactment processes over an object–oriented database
layer. Their system considered each evolving and changing workflow specification
as a one–off production workflow leading to a refined deployment workflow in
the end. This enabled them to track the workflow changes and their correlated
constructs in order to execute and evaluate partially developed workflow speci-
fications. The use of meta–objects and indirection to support dynamic workflow
changes was considered, but not implemented owing to the added complexity and
impact on efficiency in the CRISTAL system.

Enhancements in computing power of commodity desktop computers further
facilitated the development of scientific workflows. A synthesis of scientific
database management and scientific workflow concepts was put forward by
Ioannidis et al. [1997]. The ZOO Desktop Experiment Management Environment
was developed as an experimental lifecycle management system for individual
researchers to specify, execute and manage various phases of the research lifecycle,
with particular customizations in the domain of soil science. The emergence
of individual experiment management systems for scientists led to a further
interest in research pertaining to the sharing, comparison and collation of
experimental data and procedures in addition to managing the processing of
scientific workflows. Further developments have incorporated dynamic coupling
to manage distributed workflow processes [Akarsu et al., 1998; McClatchey et al.,
1997; Reuß, Vossen, and Weske, 1997].

2.1.5 The Workflow Reference Model

With a view to standardizing the growing diversity of workflow management
practices and approaches, the WFMC was established in 1993 as a non–profit
international body for the development and promotion of standards for software
terminology, interoperability and connectivity between workflow products. A
chief contribution of the WFMC was the proposal for a workflow reference model
for business workflow processes [Hollingsworth, 1995].

The workflow reference model describes an architecture for the major compo-
nents and interfaces of workflow systems.



16 background

All workflow systems contain a number of generic components which interact in
a variety of ways. The model shown in Figure 2.1 identifies the major components
and interfaces of the workflow reference model:

Work!ow 
Engine(s)

Process 
De"nition 

Tools

Administration 
and 

Monitoring 
Tools

Work!ow 
Client 

Applications

Invoked 
Applications

Work!ow 
Engine(s)

Interface 1

Interface 2 Interface 3

Interface 4

Interface 5 Other Work!ow 
Enactment ServicesWork!ow Enactment 

Service

Work!ow API and 
Interchange formats

Figure 2.1: Components and interfaces in the workflow reference model (after
Hollingsworth [1995]). Copyright c©1995 The Workflow Management Coali-
tion. Adapted with permission.

1. Process Definition Tools are used to analyze, model and describe business
processes.

2. Workflow Enactment Service is the run–time environment where workflow
processes are executed. This may involve multiple workflow engines. This
service is responsible for reading process definitions and creating and
managing process instances.

3. Workflow Client Applications are the software entities which present items
to the end user, invoke application tools which support the task and the data
related to it, and allow the user to take actions before passing control back
to the workflow enactment service.

4. Administration and Monitoring Tools can be used to track process status for
control, management and analysis purposes.

The reference model defines five interfaces to the workflow enactment service:



2.1 workflows 17

1. Process definition import/export interface.

2. Interaction with workflow client applications and software for presentation
of worklists.

3. Tools and external application invocation.

4. Interoperability between several workflow management systems.

5. Interaction with administration and monitoring tools.

The workflow reference model defines a common interchange format, the
Workflow Process Definition Language (WPDL), which supports the transfer of
workflow process definitions between separate products.

A set of extensibility mechanisms to support vendor specific requirements is
proposed in the WPDL definition. This is based on the definition of a Workflow
Meta–Model, a limited number of entities that describe a workflow process
definition. The meta–model identifies a basic set of entities and attributes for the
exchange of processes: Process Definition, Process Activity, Participant Definition,
Transition Information, Application Definition, and Process Relevant Data. These
entities contain attributes which support a common description mechanism for
processes. Further entities and attributes may be added to the model to create
future conformance models.

The WFMC reference model also includes one representative business case that
can be used to verify the feasibility of the implementation of the standard, as well
as to constitute a preliminary test of a conformance assessment procedure.

Lin et al. [2009] adapted the workflow reference architecture to scientific
workflows, by suggesting six interfaces instead of five — assigning separate
interfaces for data management and program management. They supposed that
this separate interface would be able “to support scientific result reproducibility
and to facilitate and speed–up data analysis.”

2.1.6 Participatory Analysis

The review of the evolution of workflow management practices thus far identifies
the following emerging research themes [Shi et al., 1998]:

1. Flexibility in workflow modeling and process specification in order to
provide support for temporal reordering of repetitive processes.

2. The use of object–oriented workflow management systems to map dis-
tributed object repositories to workflow coordinators.



18 background

3. Dealing with issues of workflow synchronization and coordination among
distributed workflow participants.

4. The development and customization of web–based interfaces for existing
workflow systems.

Work on providing support for adaptive exploratory workflows [Adelsberger,
Körner, and Pawlowski, 1999; Han, Sheth, and Bussler, 1998] sought to optimize
automated workflows by interfacing them with computer assisted learning
environments. The requirement of pre–structured and pre–modeled workflows,
a remnant of the business domain origins of workflow practices, was rapidly dis-
carded in favor of dynamic approaches for managing scientific workflow processes.
While Adelsberger, Körner, and Pawlowski [1999] focused primarily on connecting
workflow processes to computer–assisted learning systems in order to optimize
business processes using rule–based inference sets, Chin et al. [2000] investigated
the application of interactive problem solving environments to scientific workflow
systems. The increasing complexity of interacting workflows [Bussler, 1999] gave
rise to approaches to make distributed workflow processes more tractable and
reusable [van der Aalst et al., 2000, 2001]. These participatory and interactive
processes are characteristic of scientific research.

Additionally there is a high degree of uncertainty coupled with added require-
ments of openness, interoperability, sharing and connectivity in scientific activi-
ties [Adelsberger, Körner, and Pawlowski, 1999] as compared to the pre–modeled,
highly structured and heavily goal–oriented proprietary nature of business and
commercial processes [Bussler, 1999]. Business workflow systems therefore lack,
in general, the requisite degree of customizability and flexibility to be easily
adaptable for scientific process management without extensive reengineering and
changes.

Thus, the development of scientific workflows and their management was
pursued independent of and concurrently with business workflows laying firm
foundations for the specific field of scientific workflow management systems.

2.1.7 Emergence of Scientific Workflows

Following on these developments, a formalization of the term scientific workflow
began to emerge [Singh and Vouk, 1996]. This approach sought to bring together
various customizations of workflow practices from traditional business manage-
ment domains under the specific grouping of scientific workflow management.
The following main features of scientific workflows were identified:



2.1 workflows 19

1. Scientific workflows are typically used in research and exploratory analysis
domains.

2. These involve activities revolving around computation–intensive research
practices.

3. As a result, they require robust support for extensive parallelization of tasks
and computations.

4. Scientific workflows are a custom specialization of concepts, processes and
methods utilized in traditional business workflows.

5. There is a high incidence of unstructured activities in scientific workflows in
the initial exploratory phases of research.

6. Composition of scientific workflows is highly dynamic, often requiring
changes while the workflow is being specified and executed.

7. A common approach in the development of production workflows is the
refinement and optimization of exploratory scientific workflows. Initial
problem analysis is undertaken using a highly dynamic scientific workflow
formulation. As the workflow matures and develops into a stable process
specification, it can be standardized and deployed as a production workflow
in a specific business domain.

Based on these characteristics, the term scientific workflows was put for-
ward [Singh and Vouk, 1996]:

We use the term scientific workflows as a blanket term to describe
series of structured activities and computations that arise in scientific
problem–solving.

Wainer et al. [1997] further identify the following distinguishing characteristics
between business workflows and the newly emerging paradigm of scientific
workflows:

1. Both business and scientific workflow management systems are primarily
used to control and organize the sequence of processes in a business or
scientific procedure. Business processes are primarily goal driven, whereas
the main focus of scientific workflows is data management.

2. As a consequence, business workflows are heavily structured and modeled
prior to enactment, with little modification while the workflow is executed.
On the other hand, scientific workflows require a greater amount of
flexibility in collating and analyzing data from heterogeneous sources.



20 background

3. Business workflows are usually executed with a stated endpoint that signals
the termination of the sequence of steps. The exploratory nature of scientific
workflows means that a given data step may be either entirely abandoned or
restructured while the workflow is being executed.

With these distinctions in mind, Wainer et al. [1997] coined the term ad hoc flow
for scientific workflows that need to be adaptive enough to either alter, repeat or
reroute intermediate process steps while the workflow is executing. An additional
characteristic of ad hoc flows is the shift in emphasis away from pre–modeled
workflows to workflow processes that are scripted in response to exceptional
situations, as suggested earlier by Barthelmess and Wainer [1995].

2.1.8 Scientific Workflows

Scientific workflows are being used extensively to support the management of
experiments and computational research in various scientific domains in order to
support large–scale data management, control and coordination of computation-
ally intensive processes, and the allocation, sharing and organization of resources
in complex scientific environments [Barker and Hemert, 2008; Ludäscher, Bowers,
and McPhillips, 2009].

Scientific workflow management systems in vogue are primarily designed to
fulfill the following two requirements:

1. Enable the scientist to focus on issues of scientific research, and to delegate to
the scientific workflow management system all or most of the chores associ-
ated with managing the details of the software systems and instrumentation
used in the research.

2. Automate repetitive and computationally intensive tasks associated with
data gathering and analysis, which are highly error–prone if carried out
manually owing to the complexity of the systems involved. This is necessary
in order to efficiently utilize shared resources and systems by optimizing the
details of process and task scheduling.

Pursuing this path, various scientific workflow management systems like
Kepler [Altintas et al., 2004], Taverna [Oinn et al., 2004b], VisTrails [Callahan et al.,
2006a] and Triana [Churches et al., 2006] have been built to facilitate research
activities in different domains of scientific research.

All of these scientific workflow management systems adhere to the following
definition of a scientific workflow [Ludäscher, Bowers, and McPhillips, 2009]:



2.1 workflows 21

A scientific workflow is the description of a process for accomplishing
a scientific objective, usually expressed in terms of tasks and their
dependencies.

It may be noted that the term scientific workflow has been established by ad
hoc usage. References like “typical scientific workflows” and circular definitions
are often encountered in literature. Thus, it is necessary to provide an improved
definition of scientific workflows. This issue is addressed in Chapter 3.

Current scientific workflow systems provide features to design and orchestrate
experimental and computational steps in scientific data collection, organization
and analysis [Baker, McClatchey, and Le Goff, 1997; Curcin and Ghanem, 2008;
McPhillips et al., 2009; Weske, Vossen, and Medeiros, 1996]. The user can specify
the steps to run for each experimental process, which data to draw from and
connect to, and publish data and results in shared repositories and databases.
This allows better exception handling in the research and supports automation of
repetitive and computationally intensive tasks.

The key features of a few popular scientific workflow management systems are
presented below.

Kepler

The Kepler scientific workflow management system [Altintas et al., 2004;
Ludäscher et al., 2006] uses a data–centric approach [Shields, 2007] to scientific
workflow management. Data is input from databases of interest and the workflow
is designed using workflow actors to link and execute process stubs on a workflow
canvas. A workflow director is defined to coordinate workflow design and
execution.

Kepler provides the following features to assist the specification and execution
of the scientific workflow:

1. Kepler uses an actor driven modeler to support rapid prototyping of work-
flows. Participating components are represented as actors in the workflow
specification which is then compiled to execute and run the workflow.

2. The support of shared components enables interaction with distributed
workflow services. This allows grid–enabled workflow systems such as
Pegasus [Deelman et al., 2004] and Webflow [Akarsu et al., 1998] to
coordinate and share data and results with the Kepler workflow.

3. A scientific workflow specified in Kepler can accept data input from a
variety of supported data interchange formats using XSLT–based data
transformation actors.



22 background

4. Provenance information about workflow actors, data inputs and process con-
trol is provided. Invocation dependency graphs help manage and establish
process provenance. Data provenance is supported by flow graphs and data
lineage graphs.

The Kepler workflow system has been used in research and analysis in various
fields such as astrophysics, biology, chemistry and ecology [Altintas et al., 2004].

VisTrails

VisTrails [Callahan et al., 2006a,b] is a visualization based scientific data and
workflow management system. The main focus is on presenting an accessible
visualization of the experimental data and its provenance in order to support the
scientist in making an informed selection of relevant datasets.

In addition to support for workflow modeling and management, VisTrails
provides the following features to facilitate the selection and management of large
data sets:

1. VisTrails provides support for managing the history of a workflow speci-
fication. Versioning information for dataflows presents a clear provenance
timeline of the workflow evolution.

2. Support for caching and replaying workflows and dataflows makes it easy to
optimize dataflows based on computed results and process outputs without
repeating the entire workflow from the beginning. This allows the user to
inspect the workflow at different stages of evolution and trace any metadata
describing the nature of workflow progression.

3. Inbuilt support for visualization of provenance trails helps capture, annotate
and manage rich metadata describing the workflow specifications. The
detailed provenance trail allows workflow states to be restored to previously
stored checkpoints corresponding to different stages of computations.

The VisTrails scientific workflow management system has been used in visualiz-
ing and managing provenance trails in medical imaging, simulation management
and uncertainty modeling.

Taverna

Taverna is a specialized scientific workflow management system developed for
bioinformatics applications [Hull et al., 2006; Oinn et al., 2004b, 2006].

Taverna provides the following features for scientific workflow management:



2.2 issues in scientific workflow management 23

1. Workflows are specified in the Simple Conceptual Unified Flow Language
(Scufl) [Oinn et al., 2004a], a high–level workflow language in which each
step in the process chain is represented as one atomic task. This feature was
meant to address the absence of a suitable high–level workflow specification
language with features for data, process and resource specification at a
semantic level in bioinformatics workflows.

2. A workbench is provided for writing and enacting Scufl workflows using
a higher level of abstraction to enable users to write workflows without
learning the low level intricacies of Scufl.

3. Communication with interacting services is handled by the Freefluo enactor
core, a dedicated management layer which provides data sharing and
process communication features. Workflows can then be adapted to interface
with different services by specifying an enactor interface using the Freefluo
enactor core.

2.2 issues in scientific workflow management

In scientific research, all the key issues revolve around the intellectual concerns
in the problem. Intellectual concerns constitute mainly of research aims and
objectives, exploratory domain concepts, scientific models, representation of
underlying theories, and process specifications which form the basis of the
scientific investigation. The methodologies and processes involved in conducting
the activities of experimentation, data collection, data management, computations
etc. are well–developed practices in scientific research from even long before the
use of computers in these areas. The use of computers enables handling of these
issues on a larger scale, yet the steering and guiding importance of the intellectual
concerns is what needs to be carefully captured, preserved and used for effective
management of scientific research. Explicit and deliberate efforts at incorporating
support for the management of intellectual concerns are not noticeable in the
current practice of scientific workflow management. The main factors responsible
for the inadequate management of intellectual concerns are now examined.

2.2.1 Focus on Low–level Detail

Emphasis and focus in current scientific workflow management practice is more
on the logistics of the workflow processes than on ensuring that the appropriate
processes are used. This restricted scope of workflow specification, orchestration



24 background

and execution often obscures significant cues and feedback which can greatly
aid and facilitate in better realizing the primary goals and objectives of the
workflow exercise. In addition, even though current approaches to scientific
workflow management scale well to solve complex workflow problems typical of
a chosen domain of scientific research, none of them mention features to provide
additional support for understanding and verifying the rationale behind workflow
orchestration and instrumentation. The lack of this ability to check the pertinence
and appropriateness of process orchestration may often hinder and diminish the
relevance and usefulness of the experimental results and analysis.

This could possibly be due to the fact that scientific workflow management
systems have been developed as modifications on top of and extending concepts
and implementations of business workflow or database management systems.
Consequently, scientific workflow management systems also inherit some of the
fundamental ad hoc artificiality characteristic of business systems [Meidanis,
Vossen, and Weske, 1996].

Though there are occasional references to high–level and low–level repre-
sentation of “workflow plumbing” mentioned in relation to scientific work-
flows [Ludäscher et al., 2006, 2009], these represent completely unrelated concepts
and the only similarity is one of language. Delineating what constitute high–level
concerns and low–level implementation details depends on the nature of the
research problem and the granularity at which the goals of the research are set.
This delineation is illustrated in Figure 2.2.

When studying a problem at a theoretical level, all other concerns like
experimental setup, the design, operational procedures and limitations of the
instruments may be considered as low–level details within the theoretical context.
On the other hand, while conducting the experiment with the aid of instruments,
design principles and limitations of the instruments assume importance as high–
level concerns and operational procedures of the instrument (for e.g., switching on,
recording the experimental data, preparing tables and graphs as per pre–defined
guidelines, etc.) form the low–level implementation details.

Owing to the vastness of even ‘narrow’ fields of specialization, scientific
practitioners are often not able to devote attention to all of the high–level concerns
involved in the working of the instruments being used. Most times, their working
has to be accepted only on faith of certification, where validation is only implicit.
This is, in part, focus on low–level experimental detail without paying attention
to the scientific concerns involved in the design and operation of the instrument.
Consequently, valid results obtained may only be a coincidence. The reliability of
the conclusions drawn therefrom may be in question; the researchers may not even
be aware of this possible issue.



2.2 issues in scientific workflow management 25

Design Instrument Limitation

Experiment

Theory

Operation

is based on

used in

uses

a!ects

governs

works by

hasis 
based 
on

is 
base 

for

is base for

High-level concern 
when considering 
experiment and 
instrument

High-level concern 
when considering 
experiment and 
instrument

Low-level when 
considering 
experiment and 
instrument

Low-level when 
considering 
theory of the 
experiment

Figure 2.2: Delineating high–level concerns and low–level details in an experiment.



26 background

Superficially one may argue that these difficulties occur because of not paying
attention to the ‘low–level’ details of instrument calibration. But, in the context
of the experiment, the scientific principles involved in the design, calibration and
operation of the equipment are not really low–level details of the investigation.
This observation is illustrated in the retraction [Marcus, 2011; National Academy
of Sciences, 2011] of a research paper owing to the fact that “the experimental data
was based on incorrect calibration of the apparatus in viscous solutions and there
is no basis for the major conclusions of the study.”

Thus, when the specification of a workflow for scientific systems focuses more
on details of data variables, process branching, looping and control, memory
allocation and optimization, and other chores connected with the system–level
tasks of process and systems control and management, this takes away the focus
from the main objective of the scientific activity — forcing users to lose sight of
the forest for the trees [Chemboli, 2010b]. A similar observation is made by Chin Jr.
et al. [2011] who contend that “the basic objects of workflows are too low–level
and high–level tools and mechanisms to aid in workflow construction and use are
largely unavailable,” and this discourages extensive and widespread development
and use of workflows. Pignotti et al. [2011] also observe that existing workflow
languages do not provide support for focusing on the scientific constraints and
goals (which the authors call “scientist’s intent”) because they are “designed
to capture low–level service composition rather than higher–level descriptions
of the experimental process.” Additionally, Turuncoglu [2012], in the context of
workflows for Earth System Modeling, mentions that the inability to adequately
address intellectual concerns “may prevent researchers from focusing on scientific
issues, and may make it difficult, or even impossible, to undertake some Earth
system science problems.”

2.2.2 Limited Context Support

Although the term context has been mentioned in the literature of scientific
workflows in the limited sense of ‘conveying a relation within an environment’,
no significant attempt seems to have been made to define context and use it as a
specific feature of scientific workflow management.

In business and office workflow management, the term context has been used
to mean information about the person executing the workflow (who, what, when,
where) [Maus, 2001]. In a similar vein, the term context is also used to simply
represent the assigned role (workflow creator, designer or user) of the person using
the workflow [Ardissono et al., 2007].



2.2 issues in scientific workflow management 27

The treatment of context in scientific workflows [Chin Jr. et al., 2011; Ngu et al.,
2010; Pereira and Travassos, 2010] has been primarily limited to:

1. Information about execution environment (machines used).

2. Information about user (which scientist).

3. Which computation steps (which actors in the workflow).

This view of context is not too different from the limited scope of the term
in business workflows. For that matter, it seems no attempts to define and
utilize context as a characteristic of software systems have been reported until
recently. Alshaikh and Boughton [2009] utilize the definition of context as given
by Alexander [1964] and Scharfstein [1991]. They consider an entity as “contextual”
or “non–contextual” to a problem in an “implicit” or “explicit” manner.

In this thesis, context is considered as the relationship and influence of a concern
on other concerns in the domain of the scientific problem under consideration.
It represents the degree of relevance of the concern in the problem domain. A
formal definition of context and its representation as used in the OAR framework
is presented in Chapter 3.

Here, it should be noted that context as used in OAR is not a material object
and does not constitute a defining property of a concern. Context can be realized
only in relation to other concerns. It is not absolute to the concern and is an
environmental property in this sense. It plays a defining role in the relationship
the concern bears with respect to other concerns.

To illustrate the concept of context in the OAR framework, consider the property
of a gas, embodied in Boyle’s Law, the relation between the pressure P and the
volume V of a gas as:

PV = constant
where mass m and temperature T are held constant.
Here, under the context of m and T acting as constraints, P and V are

contextually related and result in the property PV = constant (as illustrated in
Figure 2.3).

Incorporating a definition of context which reflects the relationship between
different workflow concerns and their influence on each other in the scientific
problem can help establish their role in the workflow formulation and specifica-
tion. Using context as a formally defined and qualified feature will enable the
specification of rich context scenarios to support defining and disseminating the
intent and purpose of the workflow specification and execution.



28 background

P V PV = constant
Contextually

related

Resulting

 in
property

m
constant

T
constant

Contextually
related

Contextually
related

Figure 2.3: Illustrating context.

2.2.3 Inadequate Management of Intellectual Concerns

The capture, organization and dissemination of intellectual concerns plays an
important role in the validation and reuse of scientific workflows. Intellectual
concerns consist of exploratory domain concepts, scientific models, representation
of underlying theories and process specifications which form the basis for the
scientific experiment and workflow. This information about the intellectual content
of the initial formulation of a research problem will greatly assist de novo exam-
ination if the need arises for re–examination and reformulation of the problem.
This examination can now be repeated by third party researchers by avoiding and
excluding ineffectual workflow steps carried out by earlier researchers. This is also
helpful in the investigation of alternative workflow scenarios.

In spite of the necessity of handling intellectual concerns in scientific workflow
management, there is no indication of any ongoing efforts in this direction.
Intellectual concerns are not handled well, if at all, in current scientific workflow
management systems.

As observed in Section 2.2.1, the focus on low–level engineering details in cur-
rent practices of scientific workflows diminishes their ability to assist adequately
in the understanding and verification of the rationale behind workflow orchestration
and instrumentation. In addition, the lack of ability to directly map the underlying
research principles to the workflow specification makes it difficult to validate the
scientific soundness of the workflow.



2.3 impact of the above issues 29

2.3 impact of the above issues

The focus on low–level workflow engineering details also makes it difficult to
rapidly adapt the workflow to changing problem conditions without the danger
of inadvertent breakage. Consequently, debugging and repairing the workflow
becomes error prone and time consuming. This is compounded by the open
nature of science and scientific research, wherein newer streams of data are
added from diverse sources faster than the ability of the scientist to analyze
them comprehensively and effect changes and modification in the workflow
specification to account for any anomalies, contradictions or unexpected new
results [Steffen, 2008]. Additionally, the multidisciplinary nature of scientific
research necessitates connecting together the knowledge of different disciplines.
Approaches suggested for sharing concepts across different domains [Berkley
et al., 2005] require defining significantly large sets of shared semantics. Thus,
there is an absence of relatively localized ontologies, as a result of which,
depending on the scale of the problem, the task of developing shared semantics
can become intractable and unmanageable.

As disciplinary knowledge keeps on expanding, it becomes increasingly difficult
to manage and sift through the huge amount of available information pertaining
to a problem domain. This issue of scale and complexity of data management
has been termed the data ‘deluge’ problem in literature [Deelman and Gil, 2006a;
Deelman et al., 2009; Sahoo, Sheth, and Henson, 2008]. It becomes necessary and
important to not only interconnect the vast ‘silos’ of information in each discipline,
but also to adequately preserve and exchange the rationale of data and knowledge
selection.

As a result of the deficiencies described above, scientific workflow modeling
tends to become artificially deterministic and inflexible. Dynamic flexibility of data
processing and analysis in scientific research is not available to the degree that
would be desirable to ensure a highly robust and adaptive in–silico simulation of
scientific processes. This is further compounded by data and process control issues
which are routinely encountered in simulation science.

Feynman presents the following five criteria as essential for simulation of
scientific processes [Feynman, 1982]:

1. Scientific and Physics computation and simulation data needs to be locally
inter–connected.

2. In an approximate simulation, the algorithms used are approximations of
physical systems to various degrees of semblance.



30 background

3. Exact simulations of physical scientific processes cannot be realized due to
the unsatisfiable criterion to replicate a finite volume of space and time
modeling the problem domain exactly within a finite number of logical
operations.

4. Simulation of causality is at best a partial imitation of real systems.

5. As a consequence of the above facts, the probabilistic nature of physical
experiments can only be simulated by repetition of a statistically large
number of experiments.

Adopting the reasoning presented by Feynman, the modeling of scientific
workflows and their results necessitates additionally stringent probabilistic re-
quirements. Therefore, the scientific workflows need to to be made adaptive
enough to conveniently abstract and represent natural laws and processes which
form the basis of research in a particular domain. This is necessary to understand
and share the intellectual content of the scientific experiment.

Based on the above considerations, the following observations can be made:

2.3.1 Observation 1

Current scientific workflows are not abstract enough to capture the intent,
rationale and intellectual concerns because they are heavily focused on low–level
engineering details of execution and implementation.

2.3.2 Observation 2

It is not currently easy to record and encapsulate contextual information along
with the scientific workflow specification. Underlying implicit assumptions are not
known. This lack of information affects the ability to decide the appropriateness
of the use of the workflow implementation or process for a specific purpose in a
repeatable manner with proven validity.

2.3.3 Observation 3

Indeterminate provenance of the assumptions, data, context and theories under-
pinning the scientific workflow specification affects the confidence in the results
and analysis provided by the scientific workflow management system.



2.4 conjecture 31

2.4 conjecture

In light of the above observations, it can be seen that in the current state of
practice, even if a scientific workflow can be verified, i.e., checking that the
workflow execution adheres to the workflow specification, there is little support
for ensuring validity, i.e., ensuring that the proper workflow has been specified
and implemented for the problem under study. So it is highly desirable to
explicitly address these concerns in the management of scientific workflows. This
can be achieved by:

1. Providing a layer of abstraction to lift focus from low–level implementation
details.

2. Adding context support to scientific workflow components and participating
processes.

3. Introducing localized ontologies applicable to a particular instance of a
problem situation. This accommodates multidisciplinary interactions in
intellectual concerns by significantly simplifying the process of arriving at
a shared semantic understanding by reducing the scale and complexity
of the ontological mapping. It is expected that localized ontologies will
make it easier to effect changes owing to the resultant simplification in the
management of the connections between the different disciplines involved in
the workflow.

4. Providing an abstraction to capture and organize concepts, theories, ideas
and rules (intellectual concerns) in the problem domain being explored and
map them to the workflow specification and execution semantics.

This will ease the scientist’s concern about data structures, formats and such
low level–chores, enabling greater focus on the scientific issues of the research
problem. As explained above, this will help clarify the rationale and intent behind
the choices and decisions governing workflow specification, thus resulting in an
improved understanding of the underlying concepts, models and theories. Also,
reexamination and reformulation of the research problem becomes more tractable
because of the enhanced information and support provided in the workflow.

The Omnispective Analysis and Reasoning (OAR) framework is proposed in
order to address the above issues in scientific workflow management. OAR
is conceptualized as an epistemic framework to better manage the intellectual
concerns in scientific workflow management. The development of the OAR
framework is intended to:



32 background

1. Raise the level of abstraction of scientific workflow management.

2. Enable support for enhanced context management.

3. Provide a mechanism to effectively capture and manage intellectual con-
cerns.

4. Extend the scope and applicability of the scientific workflow process to other
domains of exploration and research.

2.5 summary and conclusion

A historical overview of the evolution of scientific workflow management systems
has been presented. Widely used systems like Kepler, Taverna and VisTrails have
been briefly described. The main issues that are needed to be addressed in order to
improve the management of intellectual concerns in scientific workflows have been
identified. These have formed the basis for the observations and the conjecture
as presented above, which has resulted in the research aim: Formulate, develop
and demonstrate an epistemic framework for managing intellectual concerns in scientific
workflows.

In Chapter 3, the formulation and development of Omnispective Analysis and
Reasoning is presented.



Part II

Omnispective Analysis and
Reasoning

33





3 OMNISPECT IVE ANALYS IS AND
REASON ING

If science cannot provide an intellectual discipline for human activity, it
is no better than mysticism.

Warfield [1994]

3.1 The Nature of Science 36

3.2 Fixation of Belief 38

3.3 Universal Priors to Science 39

3.4 Law of Triadic Compatibility 40

3.5 Hierarchy of Conceptualization 41

3.6 Domain of Science Model 42

3.7 Expanding Scale and Complexity of Scientific Work 44

3.8 Intellectual Concerns in Scientific Work 44

3.9 Defining Scientific Workflows 45

3.10 ‘Reforming’ Scientific Workflow Management 48

3.10.1 Managing Intellectual Concerns 49

3.10.2 Dealing with Inadequate Context Support 51

3.10.3 Inadequate Support for Verification and Validation 51

3.11 Theoretical Foundations of OAR 52

3.11.1 Omnispective Analysis 53

3.11.2 Lifting Focus from Low–level Details 54

3.11.3 Defining Context and Adding Context Support 56

3.11.4 Localized Ontologies 58

3.11.5 Epistemological Basis 60

3.12 Overview of the OAR Framework 60

3.13 Prototypes, Archetypes and Constraints 62

3.14 Concern Refinement 63

3.15 ‘Bootstrapping’ External Shelves 65

3.16 Context Refinement 66

3.17 Constructed and Organic Solution Specifications 70

3.18 Rationale for the Structure of OAR 71

35



36 omnispective analysis and reasoning

3.19 Nature of the OAR Framework 73

3.20 Summary and Conclusion 74

The Omnispective Analysis and Reasoning (OAR) framework is presented in
this chapter. This framework has been conceived as a means for providing
effective management of all the concerns — particularly intellectual concerns — in
scientific workflows. The structure of this chapter is as follows: As part of the key
fundamentals in the development of the OAR framework, a brief exposition of the
nature of science, the method of fixing belief, universal priors to science, the law of
triadic compatibility and an outline of the Domain of Science Model (DoSM) are
presented. A hierarchy of conceptualization is proposed in a form which is easy to
comprehend and apply. The status of scientific workflows is revisited vis–a–vis the
areas where there is need to focus attention and effect improvements as pointed
out in Chapter 2. An enhanced definition of scientific workflows is developed and
presented in this discussion. The theory and foundations of the OAR framework
and its structure and operation are presented. Within this chapter, all the terms
and concepts used in the description of the framework are explained and the
rationale for the particular choice of the framework structure is discussed.

3.1 the nature of science

According to Chalmers [1999], science and scientific understanding encompass an
epistemological discipline which consolidates the ability to effect interventions
in problem scenarios of interest. Observations and understanding of physical
phenomena lead to the design, development, construction and utility of practical
applications and systems. For instance, analysis and understanding of electrical
and magnetic forces has led to the construction of functional devices like
generators and motors — devices that play an important role in daily life. Here
it is interesting to note that the understanding of electrical and magnetic forces
may not be final — it may evolve further as newer and newer experimental
results are observed, resulting in improved understanding at a finer grain which
may facilitate more and more esoteric applications (like lasers, which are based
on the principles of electrical and magnetic interactions in atoms). However,
refinement or reformulation of theories will not invalidate the applications that
are based on earlier forms of the theory. Theories and hypotheses are simply
constructs to analyze and organize the knowledge obtained through scientific
studies in order to enhance comprehension and understanding. Thus, it is simply
the basis of understanding that is altered and updated to be in tune with newly



3.1 the nature of science 37

acquired knowledge. This evolving nature is the essence of science and scientific
understanding.

Sneider and Larner [2009] observe that “science cannot provide unassailable
proof that its understanding and interpretation of the natural world is correct.”
For that matter, further reflection leads to the conclusion that unassailable proof
of proper understanding is a utopia. The steps involved in the process of
understanding can at best be demonstrated, the process itself being limited to
the exercise of relating the phenomenon under study to more elementary ab initio
concepts.

These steps in understanding may be considered to be a non–linear sequence of
hypothesis–formulation, experimentation, observation and analysis. This is similar
to the Observe–Orient–Decide–Act (OODA) loop given by Boyd [1986]. Though
this concept has been originally formulated by Boyd in the context of devising and
managing strategies in warfare, the loop consisting of Observation, Orientation,
Decision and Action (OODA) models how a problem can be analyzed, organized
and a response or solution designed and implemented.

Flint [2008] gives a customized version of the OODA loop in the domain of
software and systems engineering Figure 3.1.

OBSERVE
What is happening in

the problem situation?

ACT
Implement

Improvements

DECIDE
How should the

improvements be implemented?

ORIENT
What does it mean?
What improvements

are required?

Systems built, operated,
maintained and
retired to improve the
problem situation

Systems built to
support other phases
(eg. models, simulations,
experiments, prototypes)

Autonomous and independently
evolving models, theories, concepts,
expertise, services and other
systems used to specify, build,
operate and maintain systems

Figure 3.1: An adaptation of Boyd’s OODA loop for managing complex problem situa-
tions (after [Flint, 2008]). Copyright c©2008 Flint, S. Adapted with permission.

Here, the OODA loop can be considered as a model to represent the evolving
nature of understanding a process by the method of science. The feature of



38 omnispective analysis and reasoning

falsifiability of science leads to the process of modifying the basis of a science in
light of new observations. This feature lies at the basis of the OODA loop.

As depicted in Figure 3.1, the initial step of Observation involves examining the
problem situation to identify its characteristic features that can be extracted and
listed for further use. Orientation involves the analysis of the problem situation to
look for possible areas of improvement. Interventions in these areas are planned
during the Decision step — the nature, mechanism and execution details of
the improvements are considered. Finally, the recommended improvements are
implemented during the Act step. If at any stage, any of the steps are found
lacking in some details, or newer data or changes in situation are encountered,
the looping is carried out at each of the individual steps. Consequently, there
can be multiple micro/embedded OODA loops at each step depending upon the
granularity at which the problem is being analyzed. It may thus be noted that this
has a parallel with the lifecycle of a scientific activity. Whereas a scientific activity
mainly operates in the physical world with artifacts of instruments, observations
and calculations, the adapted OODA loop operates with data, concepts, formulas,
processes, computational procedures, etc. which may be either predefined or
dynamically accessed.

3.2 fixation of belief

Before organizing and formulating the science pertaining to a chosen activity, the
method of fixing belief and the priors of the science have to be agreed upon.

Fixing of belief means, starting from a state of doubt one would engage in a
thought process to come to a state of belief — i.e., perceiving a feeling of certainty
— on any given subject. According to Peirce [1877], four methods are employed to
analyze, formulate and fix belief: the Method of Tenacity, the Method of Authority,
the a prior Method, and the Method of science.

The Method of Tenacity consists of holding steadfastly to a belief as it used to
exist and rejecting any and all beliefs that deviate from the one held previously.
The process of forming a belief and sticking to it at all costs is sometimes
mistakenly considered as a virtue of resoluteness. However, reflection shows
that this corresponds to having a closed mind on a given subject. Adherence to
this method results in dogmatism and retards the progress of knowledge and
understanding. Also, in the long run, the dogmas may result in conflicts and
confrontations with the beliefs of other people.

In the Method of Authority, the function of fixing belief is vested in an agent
of authority who would decide which beliefs should be accepted and which



3.3 universal priors to science 39

should be discarded. Others are expected to abide by the prescription and obey
the authority. The process of arriving at the belief is not open for scrutiny or
change. Amongst several drawbacks of this method, as pointed out by Peirce
[1877], the possibility of institutionalizing and glorifying intellectual slavery is the
most severe one and is detrimental to the progress of knowledge.

The a prior Method (also referred to as the Method of Metaphysics [Warfield,
1994]) requires that the fixation of belief be with reference to a system of thought
or metaphysical philosophy propounded by one or more of thinkers and should
be “agreeable to reason or harmonious and artistically pleasing.” The method does
not insist that fixing belief should have basis in observed facts. It is like ivory–tower
thinking and the beliefs arrived at may not relate to real–world situations.

The Method of Science requires that fixation of belief be carried out with refer-
ence to observed data and the verified and established laws of the science using
repeatable and logical procedures. According to Peirce [1877], the fundamental
hypothesis of the Method of Science is that the characteristics of an entity do not
depend on any one’s opinions about the entity, and with sufficient observation and
reasoning, these characteristics will be evidenced to be to the same by different
observers. The data as well as the process of arriving at the belief is open to
scrutiny or modification depending on the developments in the state of knowledge
about the given problem.

Out of these four methods, the Method of Science can be considered as
fundamentally superior because it insists on validation/modification in terms of
future experiences (as has been outlined in the operation of the OODA loop).

3.3 universal priors to science

The Law of Universal Priors which has been established by the Doctrine of Necessity
states [Warfield, 1994]:

The human being, language, reasoning through relationship and
archival representation are universal priors to science.

No science can be formulated in any useful form unless these four prerequisites
are ensured. In other words, a science is the result of human endeavor, expressed
and communicated through a language, organized in terms of the relationships
arrived at by reasoning (as provided by the procedures of logic) and archived for
scrutiny and acceptance.



40 omnispective analysis and reasoning

Knowledge of the characteristics of these priors gained from the studies in the
relevant subject fields needs to be suitably incorporated in the design of a science
to enhance the utility of the science.

Characteristics of the human being are taken largely from Social and Behavioral
science. Language appropriate to the science may be adapted from mathematical
and philosophical bases with elaboration of relevant meta–language (terminology)
adequately in terms of natural language. Reasoning through relationship follows
the processes of Analytical Philosophy. Archival representation uses terminology
appropriate to the particular domain of study; it is necessary to avoid any
miscommunication and terminology war by exercising restraint in using technical
terms and taking the help of natural language to clarify whenever there is
possibility of overloaded terminology across related branches of study. Being less
elegant is better than being misunderstood.

3.4 law of triadic compatibility

One important factor that needs to be given due consideration in the concept of
any design is related to the limitation of the cognitive power of the human mind.
Expressions like foolproof and tamper–proof design of even commonly used gadgets
would suggest allowance for human limitations though this is not explicitly spelt
out.

According to Warfield [1994], the capacity of human mind is limited; it cannot
work with more than a limited number of concepts at a time. In this consideration,
extremes of mental capacity are to be excluded. Warfield [1994] names this as a
part of “bounded rationality” and emphasizes the importance of “finding ways to
rationalize human problem–solving processes and thought processes within this
limitation.” Based on several studies and rationalizations, Warfield [1994] proposes
the Law of Triadic Compatibility as follows:

The human mind is compatible with the demand to explore interac-
tions among a set of three elements, because it can recall and operate
with seven concepts, these being the three elements and their four
combinations; but capacity cannot be presumed for a set that both has
four members and for which the members interact.

Thus, it is a highly recommended practice to structure a design such that at any
instant at most three entities are presented for the mind to consider.



3.5 hierarchy of conceptualization 41

3.5 hierarchy of conceptualization

In this section, a hierarchy for the conceptualization of an entity is postulated in
terms of three levels of conceptualization — Concept, Model and Implementation
levels, with Concept placed at the highest level of abstraction.

The Data–Information–Knowledge–Wisdom (DIKW) hierarchy is widely men-
tioned in the literature of Information Science and Information Technology. It is
generally attributed to R.L.Ackoff [Warfield, 1994], though the antiquity of such a
concept has been pointed out in the literature (for e.g. see [Rowley, 2007]).

Ackoff suggests a hierarchy with five levels — Data, Information, Knowledge,
Understanding and Wisdom and that the abundance of the entity decreases as one
ascends the hierarchy. He contends further that these five entities are contents of
the human mind and the entity at a lower level can be transformed to one at the
next higher level by some kind of transformation. Warfield [1994] considers this
hierarchy as a tautology. There has been considerable discussion and criticism of
the hierarchy [Frické, 2009; Rowley, 2007], but there appears to be no clarification
regarding the entities in the hierarchy or the transformations that change one
into another. It has not been rendered into clear, simple and readily usable form.
The scarcity of applications of the DIKW hierarchy indicates the possibility of the
burden on comprehension due to including too many levels. Taking a fresh look
from a different angle is needed for providing clarity.

The DIKW hierarchy hides more than it reveals. The terminology has not been
explained and is subject to interpretation. When the entities are residing in the
mind, it is not clear what is the meaning in saying that the abundance of the entity
at one level is much less than the one lower. Data and information may have
quantifiable features, but it is not so with understanding and wisdom. Sweeping
statements like “more data than information” and “more information than knowl-
edge” and pictorially representing with a pyramid may all be metaphysically
appealing but do not help in either clarifying the idea or in enhancing the practical
use of the hierarchy.

If a transformation renders the entity at one level into the entity at the next
higher level, it is reasonable and logical to think that the various entities all
represent the same substance at different levels of conceptualization or abstraction.

From the above observations, a hierarchy of conceptualization is proposed here
based on the following premises:

1. It is the same entity or concern that is represented at different levels of the
hierarchy. The different levels refer to different levels of abstraction.



42 omnispective analysis and reasoning

2. Limiting the levels of the hierarchy to three will make the representation
easy to comprehend and use.

A concern or entity (present in the study of a problem domain) can be abstracted
at three levels — Concept Level, Model Level and Implementation Level (C–M–I).

The Concept Level represents the highest level of abstraction. Using analysis and
reasoning processes to clarify the concern, it is abstracted at any of the three levels.
Here the idea is not of transforming one level into another, but of conceptualizing
the same concern at different levels of abstraction. The Concept Level abstraction
represents the meaning and understanding of the entity as it exists in relation to
the domain of study. The Model Level abstraction stands for the way the entity is
represented in terms of simpler and related concepts and constructs of the domain.
The Implementation Level considers the concern in terms of practical details like
measurements, data collection, data processing etc.

3.6 domain of science model

To bring out explicitly the mapping between the Content of a Science and the
applications that are based on the Science, Warfield [1994] proposed the Domain
of Science Model (DoSM). Its main features are:

1. Presents the knowledge embodied in a science and the methodology for
representing the science.

2. Highlights the concepts and fundamentals that go into an application of the
science.

3. Provides standards to ascertain the scientific nature of the contents and
claims of the science.

The DoSM is constructed in such a way as “to describe what a science consists
of, how its information must be organized in order to fulfill reasonable standards,
and in what way a science must relate to its applications.” In this model, the
domain of a science is divided into four functional blocks — Foundations, Theory,
Methodology and Applications (Figure 3.2) where the blocks are connected to one
another by a steering relationship.

The Foundations of the science form the basis for decision making and therefore
should incorporate the universal priors as applicable for the particular science. The
foundation should also contain the characteristic concepts of the science and the
postulates that are essential for resolving issues in the theory and applications. A



3.6 domain of science model 43

FOUNDATION

A
P

P
LIC

A
T

IO
N

S

T
H

EO
R

Y

METHODOLOGY

T
H

E
 S

C
IE

N
C

E

THE CORPUS

THE ARENA

Postulates
Strengths &
Weaknesses

Roles,
Environment

Selection
Criteria

Figure 3.2: The Domain of Science Model (after [Warfield, 1994]). Copyright c©1986

International Society for the Systems Sciences. Adapted with permission.

well–formed Foundation is lean — it contains only those entities that can stand
on their own and are established as valid and essential for providing referential
transparency for their influence on the other components of the model.

The Theory block is meant to explain and establish the concepts and relation-
ships in such a way as to demonstrate the integrity of the science as a body
of coherent knowledge. It is very important to ensure that the theory provides
“criteria for the acceptability of Methodology” and also should clearly define
the conditions under which the Laws and Principles are applicable. This is
necessary to guard against spurious methodologies and provide an “intellectual
discipline” particularly in planning and designing large–scale systems where
spurious methodologies may produce unexpected failures.

Methodology is mostly “prescriptive” and is intended to steer the Applications
and may contain ideas, concepts, experimental procedures, process protocols etc.
which are appropriate to the particular science.

All the applications supported by the content of the science form the Applica-
tions block. In the case of a complex application, a single science may not support
it fully, and it may be necessary to combine a number of sciences in some fashion
to do the job.

By organizing a science clearly in terms of blocks, the DoSM facilitates creation
of a new integrative science by putting together in a compatible manner parts of
a number of recognized scientific disciplines. The modular organization of DoSM,
therefore, enables adequate management of complex problems.



44 omnispective analysis and reasoning

3.7 expanding scale and complexity of scientific
work

All except the simplest of scientific study involve a number of interacting
disciplines and a variety of data logging, processing and management techniques.
Increasingly ambitious planning in terms of scope and magnitude of projects often
results in an explosive increase in the number of interacting concerns.

Nowadays, conceiving and planning a new scientific project is, in general,
a complex exercise involving the interaction and ingenuity of a number of
collaborating researchers, each having different areas of specialization, but all
(presumably) geared to common interest in the progress of the research project. As
projects are getting to be large and complex, lone researchers are becoming scarcer.
A single person ‘sitting under an apple tree’ is no longer in a position to carry out
experiments like the Large Hadron Collider (LHC) project. Research is becoming
more and more collaborative and multidisciplinary, vast and distributed, requiring
huge investments not only in terms of capital, manpower and equipment, but also
in terms of ideas, theories, concepts, frameworks, methodologies, computational
techniques etc. These resources may often be distributed geographically and
additional requirements of communication, data transfer and synchronization
need to be addressed.

Because of the huge ‘costs’ involved, every part of the project needs to be
planned and executed with due care. All the data generated requires careful
recording and evaluation for provenance, precision and relevance to the goals
and objectives of the research program. This adds huge overheads of data
book–keeping.

Scientific workflows come to the rescue of this kind of activity. They have
been developed for the purpose of managing experimental and computational
research, particularly for supporting large–scale data management, control and
coordination of computationally intensive processes and the allocation, sharing
and organization of resources in complex environments.

3.8 intellectual concerns in scientific work

A variety of intellectual concerns are involved in scientific work. These include
exploratory domain concepts, scientific models, representation of underlying the-
ories and process specifications which form the basis for the scientific experiment
and workflow. In this context, it may be mentioned that the term intellectual



3.9 defining scientific workflows 45

concerns is not related in any manner to the term “intellectual property” often
mentioned in relation to proprietary software systems and platforms.

In managing large and complex projects, considerable overheads of database
management are added to the already present complex concerns of the research
task. These additional overheads may not be intellectual concerns of the project;
yet these require efficient management.

The theories and models that are used in a scientific investigation usually
evolve from the past experience of science, settled principles and laws in the
particular branch of investigation and the intuitive and analytical efforts of the
practitioners planning the scientific investigation. For example, in natural sciences,
entities like the laws of thermodynamics, Maxwell’s equations of electromagnetic
waves, the electronic structure of atoms resulting in their chemical behavior etc.
are considered as settled principles embodied in various laws. Models are built
specifically to arrange and account for the results obtained by experimentation
and observations. The models are based partly on settled principles and partly
on hypotheses. Because of their very nature, the concepts and models keep on
evolving as more and more data is examined or new situations are encountered in
the experimentation. This requires that the data generated be properly identified,
sourced and cataloged for use in data processing and computational activities of
the research project.

3.9 defining scientific workflows

Scientific workflows as they are practiced today are software artifacts produced
using the tools and techniques of computer programming primarily meant
for aiding scientific work in the design, experimentation, data collection, data
management and computation with facilities for presenting the results in a
suitable format. Individual workflows may differ very much in scope, scale and
complexity, but their main structure and ethos are essentially the same.

The following are three typical definitions offered in literature for scientific
workflows as they are currently being used:

A scientific workflow is the description of a process for accomplishing
a scientific objective, usually expressed in terms of tasks and their
dependencies [Ludäscher et al., 2009].

We use the term scientific workflow as a blanket term to describe a
series of structured activities and computations that arise in scientific
problem solving [Singh and Vouk, 1996].



46 omnispective analysis and reasoning

Scientific workflows are the formalization of the ad hoc processes that
a scientist may go through to get from raw data to publishable
results [Altintas et al., 2004].

While each of these definitions could be appropriate within the context in
which they are presented, they are not of strong form and do not provide much
information about the concept defined, and lack generality.

The term ‘scientific workflow’, for that matter, betrays a lack of precision in
naming — it is primarily a workflow used for calculations and carrying out a
sequence of steps during a scientific research project. However, such misnomers
often get established in scientific literature from time to time — classic examples
being: no reduction of efficiency in “reduced efficiency curves” of hydrocyclones,
“fast breeder reactors” which actually do not breed fast, and many more such
terms.

Essentially a workflow is intended to take care of the static and dynamic needs
of a computational/procedural orchestration — either automated or manual — a
set of procedures carried out in a logical sequence starting with a group of data
as input and resulting in useful groups of derived data. In this light, since the
term scientific workflow has been established by ad hoc usage, with researchers
often talking about “typical scientific workflows” without providing any formal
definition, or giving circular definitions like “a scientific workflow is a workflow
used by scientists in their work,” it is necessary to formalize and expand the
definition of a scientific workflow.

Since the main purpose of scientific workflows is to capture, model, implement
and publish a particular scientific project, it is reasonable to suppose that a
structure similar to the DoSM will be helpful in defining a scientific workflow.

According to Warfield [1994], “a Restriction that currently enjoys unwarranted
favor is one that omits from the Domain of Science Model the Foundations and
Theory, and includes only the Methodology and Applications. In this restriction,
Science is cavalierly taken as synonymous with Methodology; or, alternately, one
may say that the Arena is floating free of any scientific corpus.” Methodology is
often dubbed as science and current workflow management systems do not appear
to be any different in this respect. The emphasis and focus is more on the logistics
of the workflow process than ensuring the appropriate processes are at play. This
restricted (blinkered) vision of workflow specification, orchestration and execution
often obscures significant cues and feedback which can greatly aid and facilitate
in better realizing the primary goals and objectives of the workflow exercise.

Hence it can be concluded that a ‘scientific workflow’ as currently understood
and practiced does not qualify as science in view of the above considerations about
the nature of science, nor does it correspond to the tenets of scientific investigation.



3.9 defining scientific workflows 47

So, it can be reiterated that there is a need to broaden the definition of scientific
workflow. It is desirable to base this new definition on the idea of the science of
design of large–scale systems and the method of science for fixing belief to make
it more inclusive of the four universal priors of science.

The definition of a scientific workflow should encompass any process from the
simplest to the most involved. Examples of scientific workflows can range from the
most trivial to the most complex — such as opening a bottle of jam, investigating
the interactions in a chemical reaction and building and operating a nuclear power
plant. A broadened definition of a scientific workflow should be able to encompass
all these cases. So, circular definitions are not the answer. The definition should
reflect the basic nature of science.

It is instructive to inquire whether a certain activity which is not commonly
described as a scientific activity can yet be analyzed, modeled and orchestrated by
a scientific method. Reflection tells that the answer is yes. Once a basis is assumed
and data, parameters, processes and interactions are specified, application of the
scientific method will enable intervention in the problem situation irrespective of
whether the problem is initially considered a ‘scientific problem’ or not. Therefore,
the definition or concept of a scientific workflow need not be tied down to
structured steps of scientific objectives.

The application of the scientific method can be suitably adapted to give a
well–rounded definition of the term scientific workflow. The nature of scientific
method incorporates logical, systematic and repeatable inquiry. Hence the follow-
ing definition of a scientific workflow can be arrived at:

definition 1 A scientific workflow is a representation of any logical, systematic
and repeatable inquiry, investigation and corresponding set of actions.

The inquiry and investigation represented by a scientific workflow is logical,
i.e., derivable from a set of consistent and valid premises. In other words, it has
basis in the Foundations of a Science. Inquiry and investigation cover exploratory
research as well as detailed in–depth studies.

The set of actions are the various steps involved in the formulation and
implementation of the workflow and are required to be logical, systematic and
repeatable (and may be ad hoc or structured).

The results obtained from the execution of the workflow need to be of repeatable
nature. If variability in the outcomes is inherent in the nature of the investigation,
repeatability has to be in the sense of such a behavior.

Based on the criteria outlined by Warfield, it can be seen that Definition 1 is
a Definition by Relationship [Warfield, 1994] and in addition to incorporating
the traditional view of scientific workflows, it also extends the scope of ordered



48 omnispective analysis and reasoning

analysis and investigation to any generic problem scenario. Any workflow that
has been specified in terms of a well–formed structure consisting of Foundation,
Theory and Methodology comes under this definition.

3.10 ‘reforming’ scientific workflow management

Issues that require to be addressed to improve the management of intellectual
concerns in scientific workflows have been identified in Chapter 2. However,
definite proof of the existence of these needs cannot be adduced owing to the
peculiar nature of the practices of scientific workflows. Extensive literature search
does not reveal much progress in these directions — even when mentioned, these
ideas have been considered in a cursory manner only.

In order to establish the case for the need of effective management of intellectual
concerns, the line of reasoning presented by Warfield [1994] in the context of
developing new approaches is employed.

1. “Most–usedness” is not necessarily completeness of a design. A few areas of
excellent application and useful results do not obviate the need to make the
system applicable to generic cases.
In dealing with scientific activities, it may so happen that intuitively felt
procedures are tried out and often with useful outcomes. This idea is
supported by the contentions of Sneider and Larner [2009]. The merit of
such ad hoc procedures consists of expediency in obtaining useful results.
However, there is no forthright acknowledgement of such expediency in the
documentation of the activities. Therefore, these should not be construed
as evidence of systematic, well–designed and well–understood practices for
managing intellectual concerns.

2. Big projects and great names should not deter from attempting fresh
thinking and making structural changes in an attempt to better an existing
practice.
Occasionally, large and complex socio–technical problems surface, and these
are managed by experts using ad hoc ingenuous methods. However, these
are not intended to provide a systematic approach to problems of that type,
since they are mainly focused on mitigation of a particular instance of a
problem situation. Therefore the original issue of providing a systematic
formulation of solution methodology is not touched upon, and it still
remains an open research problem. Various large–scale projects have been
undertaken with specific goals of promoting exchange and sharing of



3.10 ‘reforming’ scientific workflow management 49

scientific workflow specifications and artifacts [De Roure, Goble, and Stevens,
2009]. However, their focus and aim is not on enabling the identification,
capture and management of intellectual concerns. Consequently, the need
for addressing the issue of intellectual concern management still exists and
requires a novel perspective and approach.

3. Once the need for improvement in current practices is felt, efforts should not
be frittered away on simply providing “cosmetic treatment where a heart
transplant is required.”
Approaches geared to ‘tinkering and tweaking’ existing practice often run
in the groove and may not produce complete remedies. Attempting a few
touches of refinement here and there in existing workflow management
systems will not provide much success in addressing the issue of managing
intellectual concerns since the requisite scaffolding to support the manage-
ment of intellectual concerns is not in place. A new direction and approach
is likely to produce more fruitful results.

Based on the line of reasoning presented above, the issues identified in Chapter 2

are discussed further.

3.10.1 Managing Intellectual Concerns

It may be argued that there is no special need for making the effort to manage
intellectual concerns, given that current scientific workflows with the existing
emphasis on low–level details still manage to produce useful results. However,
the fallacy of this argumentation becomes apparent in light of the visible increase
in the complexity of problems encountered by scientific researchers. Left to its own
means, the present approach of tackling problems exclusively at low levels of data
and process management will add to the difficulty of managing the issues of scale
and interaction.

Hence it is desirable to introduce some discipline in this seemingly intractable
complexity by ‘stepping back’ in order to ensure that the intervention made
and resultant workflows still remain relevant in the larger context of multiple
interacting disciplines. In addition to having the ability to tackle low–level
protocols of experimentation, research, engineering and organization efficiently,
it is also necessary to develop the capability to interpret and evaluate individual
workflow outcomes under the lens of a wider problem context. In order to realize
these gains, providing a basis for understanding of intellectual concerns in the
workflow has to be deliberate rather than fortuitous happenstance.



50 omnispective analysis and reasoning

Thus, even though current workflow management systems may make it
appear that managing low–level concerns will completely enable robust scientific
workflows from conceptualization to implementation, it is not always so, because
suitable abstraction for mapping the workflow implementation to the underlying
theories, models and data is not present.

As seen in Chapter 2, existing workflows are mainly utilized for flowcharting
control of experimental data collection and processing data to produce computed
results or making database comparisons. Applications like pattern matching —
in genetic code identification — demonstrate the usefulness of existing scientific
workflows in managing huge quantities of processed data. This in itself is
sometimes considered as the end goal of scientific workflows. Although this
is a commendable objective of scientific workflow management, explicit provi-
sions for the analysis, verification and validation of theories, models, concepts,
computational algorithms, approximations and assumptions are not adequately
focused upon. These may often be lost sight of, creating the illusion that great
breakthrough in scientific research has been achieved, indirectly resulting in
cost overruns if it becomes necessary to modify or correct some of the above
intellectual concerns at a later stage of the investigation. Even though mechanisms
for addressing and managing intellectual concerns are not currently available,
the usefulness and need of such mechanisms in order to realize the goals and
objectives of scientific research cannot be overemphasized. Issues encountered in
managing the data ‘deluge’ of scientific computations should not be allowed to
drown the spirit of scientific investigation.

From the abacus to the supercomputer there has been a steady evolution in
the computational capability of digital machines. Digital computers operate by
manipulating numbers. Data processing and data management are an essential
and inalienable part of any scientific workflow. However, it is the ingenuity
and intellectual efforts of scientists that shapes the manipulation of numbers
into useful and powerful programming concepts that form the basis of data
processing techniques and tools. Thus, adequately characterizing all the relevant
intellectual concerns will greatly enhance reliability and repeatability, in addition
to infusing resilience in modifying and correcting underlying concepts, theories
and models. Adding explicit features for managing intellectual concerns in a
scientific workflow can thus be viewed as providing enhancements that are very
much in tune with the basic tenets of computational science. This is now in the
realm of practicability, thus strengthening the claim for giving prime consideration
to intellectual concern and associated intellectual effort management in scientific
workflows.



3.10 ‘reforming’ scientific workflow management 51

3.10.2 Dealing with Inadequate Context Support

In addition to the focus on low–level implementation details, it has also been
pointed out in the previous chapter that no significant attempt seems to have
been made to define context and use it as a specific feature of scientific workflow
management.

The word ‘context’ literally means “the set of facts or circumstances that
surround a situation or event.” It may also have shades of other meanings
depending on usage. However, though the terms ‘context’ and ‘context–aware
workflows’ have been applied in various ways in relation to significant contri-
butions to scientific workflows [Chin Jr. et al., 2011; Ngu et al., 2010, 2011], they
have been used in the sense of a scope or boundary of execution of a process,
personnel or resources involved in a process — their ranks and designations,
data formats like whether something is integer, float or scientific notation and
the when–where–what–who have been involved in a process. Thus, context is
considered more like historical documentation. Such historical information has
its own merit and usefulness and all data sets and databases should be labeled
with such information to keep their usefulness and integrity intact. However,
with reference to the OAR framework, context is defined as the relationship of one
particular entity and its influence on other entities occurring in the workflow (scientific)
process. An entity here is not the low level format of the data or a database record
etc.

A formal definition and model of context for entities in a scientific workflow is
provided in Section 3.11.3.

3.10.3 Inadequate Support for Verification and Validation

As emphasized above, the focus on low–level implementation details and lack
of proper support for context in the sense as elaborated, result in inadequate
support for verification and validation of the underlying science of the workflow.
Such verification and validation cannot occur unless suitable mechanisms based
on analysis and reasoning are deliberately provided in the formulation of the
workflow. In other words, there is inadequate support for the management of
intellectual concerns in the existing practice of scientific workflows.

Reasoning in the above fashion, it can be concluded that developing a suitable
framework for managing intellectual concerns in scientific workflows is highly
desirable. Accordingly the idea of Omnispective Analysis and Reasoning (OAR)
has been developed as an epistemic framework for managing intellectual concerns
in scientific workflows. The concept and scope of the OAR framework is defined



52 omnispective analysis and reasoning

in Figure 3.3. The extended definition of a scientific workflow, developed earlier
in this chapter, is used in this framework.

An outward 
looking rich 

context 
perspective

Omnispective
1

epistemic
2

managing
3

intellectual concerns
4

in scienti!c work"ows
5

1

Supports evidentiary 
validation in a 

repeatable manner

2

Capturing and 
reusing theories, 

concepts, 
interactions and 

constraints in 
prototypes

3
Exploratory 

domain concepts, 
scienti!c models, 
representation of 

theories and 
process 

speci!cations

4

Any logical 
and 

repeatable 
inquiry, 

investigation 
and action

5

Analysis and Reasoning

framework foris an

Figure 3.3: A definition of the OAR framework.

3.11 theoretical foundations of oar

The theoretical foundations for the design of the OAR framework to manage
the concerns — particularly the intellectual concerns — in scientific workflows,
are presented in this section. The issues that have been identified earlier can be
addressed by:

1. Introducing the concept of Omnispection coupled with the logical processes
of Analysis and Reasoning. This ensures that all available knowledge
(relevant to the given problem) is included in the workflow and areas
relevant but lacking information are identified.

2. Adding a suitable layer of abstraction to lift focus from low level implemen-
tation details.

3. Adding context support to the workflow components and participating
processes; an appropriate model of context is defined and used for this
purpose.



3.11 theoretical foundations of oar 53

4. Introducing the idea of localized ontologies applicable to a particular
instance of a problem situation.

5. Providing an epistemological basis to consolidate the knowledge incorpo-
rated in the workflow in order to capture and organize the intellectual
concepts, theories, ideas and rules in the problem domain being explored
and map them to the workflow specification and execution.

While the processes of context support and localized ontologies are akin to
“information operations” [Warfield, 1994], the framework provides additional
support for the intellectual burden of dealing with data structures, formats
and low–level chores, thus enabling greater focus on the scientific issues of the
problem. This not only helps clarify the rationale and intent behind the choices
and decisions governing workflow specification, but also leads to an improved
understanding of the concepts, models and theories involved.

The foundations of the framework have been conceptualized in light of the
basic considerations which have been presented earlier in this chapter. Almost all
scientific workflow systems are large scale systems and therefore it is important to
render the design easy to understand, comprehend and utilize in a given problem.
For instance, the Law of Triadic Compatibility is used as a general guide (limiting
hierarchical arrangement to triads wherever possible) to conceive and realize the
foundation and framework, respectively.

3.11.1 Omnispective Analysis

Omnispection means “looking at All of It” — examining all that can be discerned
and gathered about the problem under study.

Analysis by division, which is attributed to Plato and Aristotle, is a powerful
process to ascertain and bring out the characteristics of a complex concept and
provides a means for defining the concept. Analysis consists of dividing a concept
into a set of constituents, second level concepts, and then to proceed to divide
each of these into smaller parts and continue with the process until no further
clarification results by further division.

Reasoning is the process used for discovering the relationships between different
entities and forms the basis for drawing inferences and making decisions.
Reasoning, at a formal level, is considered as part of Analytical Philosophy.

Application of Omnispection, Analysis and Reasoning, results in assembling
all the relevant information of the inquiry domain abstracted into convenient
units (concerns) encapsulating clearly all the relevant interrelationships forming
the overall repertory from which one can define the scope of the problem and



54 omnispective analysis and reasoning

formulate a solution. This is similar to the concept of universe or universal system
in thermodynamics, where the universe pertains to the entirety of the problem
under study, while extracting concerns is like defining unit processes in the study
of complex chemical engineering processes.

Following the analogy of unit processes in chemical engineering, and to
preclude any possible confusion with ‘concern–oriented’ software development,
a concern is designated here as a Unit knowledge entity (uke). A uke is a
certain amount of knowledge and information which has been abstracted into
a convenient form to bring out its relationship to the problem under study and to
other concerns in the problem.

In carrying out the omnispective analysis, the problem needs to be examined
from all angles of all the interacting disciplines that are considered relevant.
Iteration steps as explained in the OODA loop are employed during the process
to achieve well–formed uke groups to represent the problem in its entirety. At this
stage, it will be possible to identify areas considered relevant but not adequately
enunciated or recorded — these can then be marked as areas needing further study
and experimentation. Some more benefits of the analysis and abstraction processes
are identifying ukes that are critical to the problem, revealing the precision of
data and recognizing the possible interactions between different sub–domains
to avoid unexpected results. This capability of omnispective analysis would be
significant in analyzing and understanding the emergent behavior of large and
complex systems.

3.11.2 Lifting Focus from Low–level Details

In current practices, scientific workflows are specified and constructed in terms of
“processes, tasks and their dependencies” [Ludäscher et al., 2009] or as “structured
activities and computations” [Singh and Vouk, 1996]. The focus is mainly on the
implementation details and is divorced from the scientific context of the problem.

In the approach presented here, the lifting of focus from low–level details is
achieved by adding a layer of abstraction to the process of analysis. For this
purpose, a uke is considered at three levels of abstraction — concept, model
and implementation levels, which have been discussed in Section 3.5. A uke may
encapsulate concept, model, implementation or a synthesis of any combination
from the three as shown in Figure 3.4. The abstraction process effectively
‘separates’ the implementation details from the entity and enables capturing and
mapping of the underlying science to the workflow process.

The ukes are collected and managed at three levels in the hierarchy (Figure 3.5).
At the concept level, the ukes include exploratory domain concerns and the



3.11 theoretical foundations of oar 55

Concept

Model

Implementation

represented by

corresponds to

translation of

translated into

(a) Representation by XTUML (relations).

(C,M,I)

(C,I)

(M)

(Ø)

(M,I)

(I)

(C,M)

(C)

C = Concept
M = Model
I = Implementation

(b) Representation by lattice (states).

Figure 3.4: Composite nature of Unit knowledge entity (uke).



56 omnispective analysis and reasoning

interactions and constraints between them. At the model level, they represent
physical and logical systems in terms of formalisms incorporating theories and
paradigms. These may be abstracted in mathematical and analytical models,
vocabularies, data sets, natural language representations, ontologies and process
guidelines. Implementation level entities capture system frameworks, mechanism
and translation processes to satisfy specifications in terms of and conforming to
the ukes at the concept and model levels.

Concept-level
concerns

Model-level
concerns

Exploratory 
domain 

concepts

Conceptual 
interactions 

and 
constraints

Scienti!c 
models

Theoretical 
frameworks

Process 
speci!cations

Realized 
artifacts

Process and 
software 

frameworks

Work"ow
prototypes

Work"ow
speci!cations

de!ned
in terms of

Implementation-level 
concerns

Process 
speci!cations

automated/manual 
translation

Figure 3.5: Hierarchy of concerns

Every uke within the repertory can be evaluated at any of the three levels
depending upon the context of the problem analysis. Depending upon the
outcomes of the analysis and the relevance of the uke to the problem under study,
it is considered at an appropriate level of abstraction.

Thus operation of the layer of abstraction will effectively ‘separate’ the imple-
mentation details and enable focus on the underlying science.

3.11.3 Defining Context and Adding Context Support

In Section 3.10.2 the context of an entity has been considered as the relationship
of the entity and its influence on other entities in the scientific problem domain.
Here, the well–formedness of a uke or group of ukes and its influence on another



3.11 theoretical foundations of oar 57

is referred to as context. Additionally, the idea of describing entities by attributes
characterized by profiles [Warfield, 1994] is interwoven into the definition; these
attributes may be either quantifiable or qualitative parameters judged by gradation.
In using attributes that have connotations of notional, perceptional or judgmental
character, it is necessary to anchor the description and use of the attributes to
referential transparency encapsulated in the method of science.

In the present study, the interest is to employ context which is clearly specified
in terms of a set of attributes or dimensions in such a way as to bring out the
soundness and relevance of the intellectual concerns embodied in the ukes as also
to establish their role in the workflow formulation and solution.

Here, context is considered as a function of two dimensions (attributes) —
Firmness and Influence. A graphical representation of the context of a uke is
shown in Figure 3.6. In Figure 3.6a the two dimensions I and F characterize the
context of the uke. The same is shown by the profiles of the two attributes in
Figure 3.6b.

(a) Two dimensional

Recipe context 
is a function of 
Firmness and 
In!uence

Recipe A

(1, 1)

Firmness (F)

F = 1 (Fmax) 

Recipe is an 
archetype

F = 0 (Fmin) 

Recipe is a 
prototype

(0, 0)

I = 0 (Imin) 

Weak 
in!uence

In!uence (I)

I = 1 (Imax) 

Strong 
in!uence

(b) Pro"les

In!uence (I)

Firmness (F)

weak

low

strong

high

Figure 3.6: Uke context as a function of Firmness and Influence.



58 omnispective analysis and reasoning

Firmness is a measure of the degree of well–formedness of a uke. If a uke
is ambiguously defined, vague, or peppered with implicit characteristics, the
knowledge encapsulated therein can be considered to be pliable and has low
firmness. On the other hand, a well–formed and explicitly defined uke has high
firmness.

Influence is a measure of the effect exerted by a uke in the analysis of the
problem domain. If an entity is identified as relevant to the problem domain, then
it exerts a non–trivial influence. If it exerts a strong influence, then it is identified
to encapsulate exemplar criteria or best practice for the problem situation. If it does
not affect the problem domain, but may still be considered relevant, it is identified
as exerting weak influence.

To illustrate firmness, consider a uke T representing the temperature of a room.
If T is characterized as warm, a bit hot, or rather cold, it is vague and hence the
firmness of T is low (F = 0). Instead, if it is specified as T = 301K, the firmness of
the uke is high (F = 1).

To illustrate influence, consider the following three ukes.
A: rise of temperature from 301K to 305K

P: volume of a room
Q: state of aggregation of a sample of gallium (Ga) kept in the room
It can be easily reasoned that the influence of A on P is negligible (I = 0). On

the other hand, influence of A on Q is quite significant because gallium melts at
302.8K and changes from solid to liquid state (I = 1). The context C(I, F) for these
two cases can be denoted by the relations:
A C(I = 0, F = 1) P

and
A C(I = 1, F = 1) Q

3.11.4 Localized Ontologies

The concept of localized ontologies introduced here, is applicable to a particular
instance of a problem situation. This will facilitate the process of arriving at
a shared semantic understanding and reduce the scale and complexity of the
ontological mapping. This will also make it easier to make changes owing to the
simplified management of the connections between different disciplines involved
in the workflow.

The increasing heterogeneous and multidisciplinary nature of scientific pro-
cesses generates new challenges in interconnecting the knowledge of the domains
involved. Each discipline has its own deep ‘silos’ of knowledge with its own
terminology, notations, conventions and semantics. These need to be connected



3.11 theoretical foundations of oar 59

together. This is not trivial and puts forth issues of common agreement of
terms, data presentation and formats to various degrees of tolerances. To take a
simple example, this scenario is routinely encountered when comparing a modern
data set having standardized metrics with a historical data set where no strict
adherence to one set of units or conventions is maintained.

Although various ontological approaches have been suggested to address
this problem by forming and managing a shared set of concepts across dis-
ciplines [Berkley et al., 2005], in these approaches, the degree of ontological
formalism necessitates a priori agreement on a significantly large set of shared
semantics before the ontology can become useful. While it is necessary and
important to interconnect vast ‘silos’ of information in each discipline, it is
also important to adequately preserve and exchange the rationale of data and
knowledge selection for the problem under consideration.

A localized ontology is realized by relaxing the requirement of exhaustiveness
in the ontology. Only satisficing knowledge is encapsulated in the ontology which
is applied to the problem workflow, even if it may lack universal applicability.
For instance, planetary motion is analyzed in terms of classical mechanics, while
electron motion in atoms is analyzed by quantum mechanics. Although not
explicitly labeled as such, this illustrates the concept of localized ontologies. Thus,
depending on the scale of the problem, localized ontologies are necessary to make
the task of developing shared semantics manageable and tractable.

The concept of localized ontologies springs from the logical process of analysis
by division and has been in use in some form or other in the documentation and dis-
course of scientific knowledge. The archival exposition of human anatomy [Gray,
1918] can be considered as an outstanding application of localized ontologies.
The anatomy is considered as a collection of several systems; each system is
described separately, keeping in view the interactions with other systems. This
clearly illustrates the role and usefulness of localized ontologies in analyzing,
understanding and managing a large and complex system.

In the domain of software engineering, enhancing the flexibility and com-
prehensibility of software systems by means of modularization [Parnas, 1972],
separation of concerns in software development [Dijkstra, 1982], partitioned
iterative approach for speeding up development of “Large Complex Business
Management Systems” [Sessions, 2006] and Aspect–Oriented Thinking process
of dividing a problem situation into a number of “autonomous domains” and
describing them by “Domain Models” [Flint, 2006] represent ideas similar to the
concept of localized ontologies.



60 omnispective analysis and reasoning

3.11.5 Epistemological Basis

To ensure the evidential validation of the ukes and the workflow intent and
rationale, there is a need to provide explicit epistemic hooks in the workflow
management. An epistemic hook is a deliberate provision for encouraging the
practitioner to ensure that a given concern encapsulates the necessary information
regarding its applicability, correctness and completeness for a given problem
scenario.

Incorporating hierarchical management of ukes enables the capture and
cataloging of workflow concerns in a repeatable manner. This also facilitates
end–to–end mapping of the underlying theory and data in the scientific analysis
to the workflow execution.

The processes of concern refinement and context refinement are incorporated
into the operation of the framework to ensure verification, validation and mapping
of the relevant ukes to the workflow and solution specification. These are
elaborated further in sections 3.14 and 3.16.

3.12 overview of the oar framework

Designing a framework involves considering the options possible and organizing
them to realize the purpose of the design. The OAR framework is designed based
on the theoretical foundations presented earlier in this chapter.

The basic concepts of the DoSM and the Science of Generic Design are kept in
view in constructing the OAR framework. Since the scope of scientific workflows
may range from ‘fairly simple’ to ‘highly complex’ scenarios, the design has to
be such that, even in the case of a highly complex scenario, it should be easily
understood, comprehended and utilized. For this purpose the Law of Triadic
Compatibility (Section 3.4) is used as a guide. This law has been demonstrated
to be effective in producing design of complex systems in such a way as to avoid
unexpected difficulties and failures — by bringing all identified concerns in the
problem clearly into the compass of comprehension of practitioners designing and
using the systems.

As seen in Chapter 2, scientific workflows can be categorized as exploratory
research workflows or service–oriented workflows.

Workflows used for furthering understanding and the search for scientific
knowledge by utilizing experimentation, data collection and processing are
characterized as exploratory research workflows. These comprise of instances
of workflows ranging from concept–level to implementation–level and involve



3.12 overview of the oar framework 61

concerns which may be exploratory concepts, assumptions or hypotheses; these
may be modified depending on the outcomes of the workflows [Baker, McClatchey,
and Le Goff, 1997].

In service–oriented scientific workflows, a settled set of formulas, principles
and processes are utilized to produce data, computed results and inferences
which are put to practical use. These typically correspond to workflows at the
implementation level. For instance, scientific workflows which are designed for
gene pattern matching in bioinformatics that involve processing huge amounts
of data using a selected set of computations; medical investigation by analyzing
blood samples, CAT scans etc.; financial instrument processing by banking
institutions; and grading student performance in standardized tests.

In addition to the above two categories, there may also be instances where an
investigation has features corresponding to a scientific inquiry, but the adjective
‘scientific’ is not explicitly applied. One can find a number of examples for such
scientific activities from various domains like mathematics, humanities, economics,
applied arts etc. On the other hand, there may be instances where certain domains
are referred to as ‘sciences’ even though they may not stand the test of referential
transparency. These fall outside the scope of systematic and logical investigation
and are not considered in the present study.

Based on these considerations, OAR is designed as an epistemic framework for
managing intellectual concerns in scientific workflows. The definition illustrated
in Figure 3.3 states the scope and approach of the framework. The scope covers the
study and management of any generic problem situation that can be represented
and analyzed in terms of logical and repeatable steps and procedures. This follows
from the enhanced definition of scientific workflow given in Section 3.9, and also
from the epistemic nature of analysis and reasoning combined with the process
of abstracting concerns as ukes at concept, model and implementation levels. This
in turn, results in revealing the intellectual concerns and contextual relationships
between various entities. Additionally, this encourages the researcher to verify and
validate the problem and solution specification with reference to the scientific basis
of the research domain containing the problem scenario.

A problem scenario in a scientific investigation generally consists of numerous
interacting concerns. All concerns that are identified as relevant and likely to
influence the outcomes of the scientific investigation are considered for formulat-
ing and implementing the workflow. Hence the framework is intended to enable
an omnispective appraisal of the scientific investigation, providing an outward
looking rich context perspective for analyzing and reasoning about the underlying
concerns in the problem situation. These concerns are abstracted as ukes and
formed into convenient groups called recipes. Based on consideration of their



62 omnispective analysis and reasoning

relevance and well–formedness, recipes are categorized as prototypes, archetypes
and constraints. These, collectively, represent all the information available about the
problem scenario. These are managed in shelves which are unordered collections
of recipes. Three categories of shelves are used — external, problem–domain and
solution shelves. All known recipes from different domains are held in external
shelves. Recipes that satisfy problem criteria are selected by the process of concern
refinement; these are held in the problem–domain shelf. In a solution shelf, a
specification of the solution is obtained by analyzing the prototypes, archetypes
and constraints in the problem–domain shelf using context refinement. If the solu-
tion specification requires further translation, the OAR processes are carried out
again to formulate an implementation in terms of available implementation–level
recipes.

3.13 prototypes, archetypes and constraints

In an earlier section, the term uke was defined as a unit knowledge entity
abstracted during the process of omnispective analysis. Following the general
usage of language, the terms ‘concern’ and ‘uke’ were used as interchangeable.
However, for the purposes of clarity, the terms ‘concern’, ‘recipe’ and ‘uke’ will be
used with their meanings related as shown in Figure 3.7.

Concern Recipe

Uke

manages managed in

follows from

leads 
to

Figure 3.7: Relation between concern, recipe and uke.

A recipe consists of one or more ukes (that are related and interacting) which
will be directly useful in the formulation of the workflow specifications. Recipes
are formed to facilitate a clear and repeatable representation of the problem



3.14 concern refinement 63

scenario. Concerns are related to the problem being investigated. Recipes are
useful in managing the concerns.

Depending on the degree of Firmness and Influence, OAR recipes are catego-
rized in three types — Prototypes, Archetypes and Constraints.

A Prototype is any OAR recipe that is available in a given domain without
particular consideration of its applicability, degree of formalism or robustness for
any fitness or purpose. Thus, a prototype can encapsulate either nascent or well–
formed domain concerns that may be available to support the analysis of any
problem situation using the OAR framework. Depending on the area of study,
the prototypes can range from rudimentary outlines and sketch–ups to formal
blueprints.

An Archetype is a prototype that may be considered an exemplar or best practice
recipe for a concern in a particular domain. The choice of an archetype is
dependent upon the analysis of the problem under study and influences the net
understanding of the problem domain.

A constraint is a special instance of an archetype which is identified as imposing
strict criteria on an OAR specification. A valid solution of the problem is required
to sufficiently satisfy all the requirements of the constraint without exception, and
is often subject to strict conformance.

3.14 concern refinement

Individual concerns (ukes and recipes) in OAR are managed in collections known
as a shelf. A shelf is simply an unordered collection of recipes categorized by
individual subject domains and their relevance to the problem under consideration
within the OAR framework.

Each OAR shelf can accommodate zero or more prototypes. A prototype need
not necessarily be an atomic uke and overlapping prototype groups can exist
depending on the granularity of the domains under study. The distinction between
individual prototypes is ultimately dependent on the context of the problem
situation. Shelves can be further categorized into external, problem–domain and
solution shelves (Figure 3.8).

Various External Shelves hold all the known recipes (prototypes) from different
domains of interest in the analysis of the problem situation. Each external shelf
is populated with concepts, data, constraints, models, details of data collection
procedures, and experimental processes — in a reasonably usable form. Any
number of external shelves can be populated to accommodate all the recipes.



64 omnispective analysis and reasoning

Shelf

External

Problem 
Domain

Solution

Prototype

Concern

Recipe

ArchetypeConstraint

analyzed in

in terms of

captures

captured in

captured in

initialized 
in contains

contains

Figure 3.8: Shelves and recipes.

The Problem domain shelf holds recipes selected from various external shelves
that satisfy given criteria in the problem under consideration. These exemplars or
best practice recipes are effectively Archetypes in the problem domain.

The Solution Shelf consists of recipes which are specifications of the archetypes in
the problem domain subject to Constraints that are identified and imposed on the
particular instance of a Solution.
Depending on the context, a solution shelf may either be an executable domain or
may require further translation.

Concern refinement is carried out in the following way, as illustrated in
Figure 3.9:

cnr–1 Initialize and populate external domain shelves with prototypes. This
bootstrap step is not required if domain knowledge is available in identified
preexisting external shelves.

cnr–2 Identify prototypes and possible archetypes and constraints from various
external shelves which have a bearing upon the problem under consideration.
Collect these recipes in the problem domain shelf. All recipes identified in
this step need not be utilized in the solution shelf.



3.15 ‘bootstrapping’ external shelves 65

Prototype Archetype Constraint

External 
Shelves

Problem 
domain 
Shelf

Solution 
Shelf

Archetypes in the 
Problem Domain

An Archetype 
identi!ed as a 
Constraint

Figure 3.9: Managing concerns in the OAR framework.

cnr–3 Analyze the archetypes in the problem domain using context refinement to
specify a solution specification in the solution shelf. This step also identifies
the problem domain archetypes which impose limiting criteria on the
specification and are termed as constraints.

The OAR framework facilitates localized ontologies via shelf management.
The external shelf need not represent a formally complete understanding and
representation of all domains that are cataloged in the framework. The problem
domain shelf helps to build a localized ontology which is good enough for
the particular problem situation even if it may be inadequate for universal use.
The solution shelf removes any ambiguity since it captures all identified recipes
and constraints. If further analysis of the problem situation reveals additional
interacting concerns, the localized ontologies can be further extended and refined.

3.15 ‘bootstrapping’ external shelves

Buchholz [1953] observes that “[a]nother area where the programming facilities of
the computer have successfully replaced physical hardware is in the loading of a
new program into the computer. There is a load button and a selector switch on



66 omnispective analysis and reasoning

the machine, but they do just barely enough to get the process started. The rest is
accomplished by a technique sometimes called the bootstrap technique.”

The problem of Shelf Bootstrapping will be routinely encountered whenever the
OAR framework is applied to a new subject domain.

The initial step of identifying, analyzing and representing recipes for a domain
of interest is known as Shelf Bootstrapping. This is required because at the outset
of domain analysis using OAR, there will be no identified recipes encapsulating
intellectual concerns. Over time, the recipe repertory will be populated with
concerns belonging to different domains of interest as and when they are
analyzed and encapsulated. This activity qualifies as a bootstrap step because it
is possible to often commence the omnispective analysis with recipes available in
external shelves that have been populated earlier. Depending on whether a new
problem domain is being examined or new situational knowledge in a preexisting
problem/subject domain is being analyzed, the shelf bootstrap step may or may
not be a prerequisite.

These two scenarios of the shelf bootstrap process are visualized in Figure 3.10.
Depending upon the granularity of the problem under consideration, the

composition and inventory of the external shelves varies.
This bootstrap abstraction is a necessary step if the analysis of the problem

is started afresh without the benefit of any preexisting relevant recipes. On the
other hand, if preexisting repertories with relevant recipes are already available,
the OAR process commences with the identification and selection of recipes into
a problem domain shelf.

3.16 context refinement

The determination of which recipes are relevant to a problem domain is carried
through the process of context refinement. Context specifies the degree of
relevance of individual recipes in the problem domain.

As discussed earlier, OAR recipe context (C) is defined as a function of the
attributes Influence (I) and Firmness (F) (Figure 3.11).

To start with, no a priori assumption is made regarding the influence and
firmness of the recipes. If analysis suggests the use of a particular recipe, then
it is identified as exerting a non–zero influence on the problem under study. In
addition, if the recipe falls under the category of an exemplar or best practice in the
discipline, then it is identified as firm. Consequently, the specification composed
from the selected recipes will become increasingly firm as situational and imposed
constraints are satisfied.



3.16 context refinement 67

Universe of 
Intellectual 

Concerns

? ? ?

External shelves 
non-existent

Recipe encapsulation 
in Shelf Bootstrap

Identi!ed 
recipes

. . .

External Shelf 1 External Shelf 2 External Shelf n

(a) No pre-existing external shelves.

Universe of 
Intellectual 

Concerns

Some external shelves present
Recipe 

encapsulation 
in additional 

shelves

Identi!ed 
recipes

External Shelf n

(b) Some pre-existing external shelves.

External Shelf 1 External Shelf 2 External Shelf n+1

External Shelf n+m

.

.

.

.

.

.

Figure 3.10: Visualization of shelf bootstrap.



68 omnispective analysis and reasoning





 

 











 



 

 



Figure 3.11: Representing context by profiles of the attributes Influence and Firmness.

Though OAR recipe context is a continuous function of two dimensions, in most
circumstances, recipe context can be conveniently tagged by discrete labels of the
function C(I, F) affecting prototype selection:

1. C(I = 0, F = 0): a context state corresponding to weak influence and low
firmness.

2. C(I = 0, F = 1): a context state corresponding to weak influence and high
firmness.

3. C(I = 1, F = 0): a context state corresponding to strong influence and low
firmness.

4. C(I = 1, F = 1): a context state corresponding to strong influence and high
firmness.

These are illustrated in Figure 3.11b to Figure 3.11e.
The process of context refinement (Figure 3.12) is carried out by the following

steps:

ctr–1 Identify those recipes that influence the outcome of the process and also
those influencing other recipes.

ctr–2 Determine if there are context connections between the recipes identified
in the first step.



3.16 context refinement 69

Identify recipes 
which exert 

in!uence

Determine connections 
between the recipes

Evaluate In!uence and 
Firmness of the 

connection

Develop the context 
mapping for the 

solution speci"cation

A

B

D

C

E

A

D

A

D

A

B

D

C

E

C(I,F)

C(I1,F1)

C(I2,F2)
C(I3,F3)

C(I4,F4)

Figure 3.12: The process of context refinement.



70 omnispective analysis and reasoning

ctr–3 Evaluate the Influence and Firmness of the connection and assign a context
label to the connection.

ctr–4 Develop the context mapping for the entire specification of the problem.

The first two steps of context refinement in Figure 3.12 may be carried out
recursively to obtain a complete mapping of the context relationship in the final
specification.

3.17 constructed and organic solution specifica-
tions

The processes of concern refinement and context refinement as described in the
previous sections result in a solution specification for the problem under study.

Considering the criteria for a satisficing path as “a path that will permit
satisfaction at some specified level of all its needs” [Simon, 1956], it can be deduced
that in the minimal case, the OAR specification will at least map a satisficing path
of connected prototypes. However, if the specification consists entirely of exemplar
recipes (archetypes), then the specification can be expected to be optimized.

From this, it can be inferred that when a specification consists only of archetypes
subject to firm constraints, such a specification can only be achieved as a limiting
process. In the OAR framework, such a specification is termed as a constructed
specification. Thus, a constructed specification is a fully optimized specification.

On the other hand, if a specification incorporates a mix of prototypes and
archetypes, or is fully composed only of prototypes, or is also subject to at least
one pliable constraint, the specification can be identified as an evolving or organic
specification. Such a specification, which is woven together, is termed as an organic
specification.

The presence of organic specifications is a necessary and sufficient condition for
handling incomplete prototypes and partial specifications or specification groups
(which are also similar to overlapping prototype groups). These specifications
are indistinguishable except for the difference in behavior due to the set of
constraints used (i.e., same specifications can exhibit different behavior with
different constraints). In a formal sense, these can be considered uniquely different
specifications. The idea of specification groups (and prototype and constraint
groups) is incorporated for convenience and tractability.

Even though discrete values are assigned to influence and firmness for con-
venience, it must be noted that in practice the influence and firmness of the
contextual relationship between two recipes can vary from very significant to very



3.18 rationale for the structure of oar 71

insignificant in a continuous manner. Thus fractional values of I and F are real
possibilities.

The existence of fractional firmness and fractional influence implies that ‘exact’
solution specifications of the problem are not possible with the available set of
recipes in various external shelves and problem domain shelves. Very low values
of influence and firmness in context refinement imply that the possible solutions
may not be optimal or the understanding of the interacting domains may be
incomplete, signifying a need for further analysis of the problem situation. Going
by the axiom that “all models are wrong” [Sterman, 2002], i.e., any model is only
an approximation, even though fractional values of I and F is the norm in theory,
the four discrete context tags are assigned as a working solution. Further work
to handle fractional context parameters will help reduce any uncertainty in the
resulting OAR specification. However this work is beyond the scope of the present
investigation.

3.18 rationale for the structure of oar

In OAR, an identified concern is abstracted at one or more levels — Concept,
Model and Implementation. This is based on the CMI hierarchy of conceptual-
ization proposed earlier in this chapter. Implementation–level is the lowest level
(where the concern is put into practice); model level is higher level of abstraction
(where representation of the concern is done); concept level is the highest level of
abstraction (where understanding of the concern is involved). Labeling the level
of abstraction as higher or lower is relative to the circumstances of the problem
situation as explained in Chapter 2 in connection with delineating the details of a
concern (Figure 2.2).

According to Warfield [1994], a design of a system has to be as simple as
possible in order to reduce situational complexity and cognitive burden. A design
will be simplest when it is conceived in terms of ideas (thought processes) and
operates with ideas [Warfield, 1994]. This is so because the operations that can be
carried out with ideas are limited to only five — generating, clarifying, structuring,
interpreting (the structure) and amending the ideas.

In managing the concerns in a workflow, the main ideas employed in the OAR
framework are: omnispection, analysis, reasoning, abstraction, and providing
epistemic hooks through concern refinement and context refinement. The manner
in which these ideas are used to realize the various facets of the OAR framework
is shown in Table 3.1.



72 omnispective analysis and reasoning

Ideas used in
OAR

Operations with
Ideas

Related features of OAR

Omnispection;
Analysis;
Reasoning;
Abstraction

Generating;
Clarifying;
Amending

Abstraction of ukes at
three levels. Management
of Recipes by Shelves.

Reasoning;
Concern
Refinement

Clarifying;
Structuring;
Amending

Managing Problem
Domain Shelf. Workflow
specification.

Reasoning; Con-
text refinement

Interpreting
structured ideas;
Amending

Managing Solution Shelf.
Solution Specification

Table 3.1: Ideas in the OAR framework.

The concept of amending ideas can be seen as included in the operation of the
OODA loop. This is the process by which abstraction of concerns is carried out
to be consistent with the scientific basis of the problem domain when the basis
‘evolves’ or is modified due to new findings in the field.

The hierarchy of the three levels at which ukes can be abstracted, as seen from
Table 3.1, is additionally related to the concept of operations with ideas.

OAR is designed to be modular, similar to the modular organization of the
DoSM. The management of recipes in shelves provides such modularity. The
(identified) concerns from different domains of knowledge that are considered
relevant to the problem under study (as revealed by the process of omnispection,
analysis and reasoning) are abstracted as recipes (ukes and groups of ukes). These
are added to the external shelves in a modular fashion. Organization in shelves
encourages the inclusion of all the information that is considered to be relevant to
the investigation. This enables use of localized ontologies if required.

The management of recipes using the concept of shelves, and the processes
of concern and context refinement form an essential part of the methodology
of the OAR framework. The process of concern refinement in tandem with
context refinement provides (extensive) epistemological support to the working
of OAR — in identifying archetypes and constraints and in the formulation of the
workflow and the solution that is obtained therefrom. They provide the means
for formulating the workflow, i.e., modeling the workflow in the problem domain
shelf and obtaining the solution specification in the solution shelf. The solution
shelf may result in a solution that may be directly implemented, or it may require
further translation by invoking a suitable translation engine. As shown in Table 3.2,



3.19 nature of the oar framework 73

the kind of translation engine depends on the nature of the study and the desired
solution.

Kind of Solution Kind of Translation Engine

Quantitative
evaluation of
computed data

Computational algorithms incorpo-
rated in software programs

Operation of
devices as per
the solution
specification

Interface for actuating the device and
related control programs

Decision–making
process involving
judgement

Human agent making decision based
on the solution specification

Table 3.2: Some OAR translation engines.

The data handling and implementation details as necessary for these translation
engines themselves could be abstracted as suitable recipes in external shelves.
As pointed out in Section 3.11, support for the intellectual burden of dealing
with implementation details is provided by encapsulating them as recipes at a
suitable level of abstraction; depending on the granularity of the problem, these
may involve high or low–level concerns, as explained in Section 2.2.1.

3.19 nature of the oar framework

The OAR framework is formulated as an epistemic framework for managing
the intellectual concerns in scientific workflows. A framework is a generic term
representing a scaffolding in which a number of entities are arranged in order to
realize a certain functionality. A variety of frameworks are used in scientific and
software engineering domains.

A theoretical framework is a collection of interrelated concepts and methods
developed for analyzing and solving a problem. In the OAR framework, a set of
logical, conceptual and procedural principles are introduced for the management
of scientific workflows. Hence, OAR may be termed a Theoretical Framework.
It is epistemic because of the emphasis on capturing the intellectual concerns
in the problem under study and deliberately encouraging their verification with
reference to the scientific basis of the problem.



74 omnispective analysis and reasoning

The design of OAR is modular, like DoSM, consisting of Foundation, Theory and
Methodology. As explained in the previous section, the structure and working of
OAR incorporate the evolving nature of science, hierarchy of conceptualization,
omnispection, and the logical processes of analysis, reasoning and abstraction.
These form the Foundation and Theory of OAR. Abstracting concerns in terms
of ukes and groups of ukes (recipes), use of context to identify relation between
recipes, the management of recipes in shelves and the processes of concern
refinement and context refinement constitute the Methodology.

While the Applications block is conspicuous by its absence in the current
formulation of the OAR framework, the three applications in chapters 4 to 6

illustrate the use and applicability of OAR to workflow management and provide
a first step in this direction.

3.20 summary and conclusion

The foundation, theory and methodology of Omnispective Analysis and Reason-
ing have been presented in this chapter. OAR is conceived and developed as
an epistemic framework for the management — particularly intellectual concern
management — of scientific workflows. Following the reasoning and conjecture
presented in the Chapter 2, additional considerations are presented to support
the necessity of developing an enhanced definition of scientific workflow and of
lifting focus from low–level implementation details in order to effectively manage
intellectual concerns.

An enhanced definition of scientific workflow is formulated in Definition 1 as:
A scientific workflow is a representation of any logical, systematic and repeatable inquiry,
investigation and corresponding set of actions.

In addition to incorporating the traditional view of scientific workflows, this
definition also extends the scope of ordered analysis and investigation to any
generic problem scenario.

A hierarchy of conceptualization of an entity at concept, model and implemen-
tation levels is postulated.

The evolving nature of science, the method of science for fixing belief and the
limitations of human comprehension as enunciated in the law of triadic compati-
bility are utilized in the conceptualization and formulation of the framework.

The OAR process for formulating the workflow for a problem starts with
omnispection and the processes of abstracting the concerns in the problem domain
as ukes and groups of ukes (recipes) at three levels of abstraction — concept,
model and implementation levels.



3.20 summary and conclusion 75

Context of a recipe is defined in terms of the well–formedness (firmness) of the
recipe and its influence on other recipes.

The workflow formulation and implementation is carried out by management
of recipes in shelves as unordered collections of recipes. The process of concern
refinement is utilized in order to formulate the problem–domain shelf. An
unambiguous solution specification is realized from the problem–domain shelf
using context refinement. These OAR processes enable focus on intellectual
concerns, while facilitating localized ontologies pertinent to the particular instance
of problem formulation. The abstraction and contextualization of recipes further
enables the identification and enunciation of concerns that may not be immedi-
ately apparent, but are relevant to the problem.

The description of OAR is followed by an elaboration of the rationale of its
structure and design, along with a discussion of the nature of the framework. OAR
is a modular framework, consisting of a Foundation, Theory and Methodology.
The Foundation and Theory of OAR are based on the evolving nature of science,
the CMI hierarchy, omnispection, and the logical processes of analysis, reasoning
and abstraction. Methodology consists of recipe formulation, use of context to
identify relation between recipes, and management of recipes in shelves by
concern and context refinement.

In the next part of the thesis, the use of the OAR framework is illustrated by
three different applications.





Part III

Proof of Concept

77





DEMONSTRAT ING A NEW
FRAMEWORK

proof of concept, case study and illustration by
application

The scientific method requires that a set of new ideas and methods need to
be demonstrated and evaluated before they can be applied to general practice.
This demonstration and evaluation can be achieved in a number of ways — as
a Proof of Concept (PoC), a Case Study or Illustration by Application (IbA). It
may be pointed out that the terms PoC and Case Study are frequently used
without clear distinction of their scope and purpose and are sometimes confused
with PoC for seeking commercial support for new ventures or with Case Study
Research in fields like Sociology. Semantics apart, the exercise of demonstrating
the potential and applicability of new concepts and methods is an important step
in integrating the new–found knowledge into the scientific stream of the relevant
research domain.

Proof of Concept, as generally understood, consists of a made–up example,
created for the sole purpose of illustrating the ideas, concepts, frameworks and
methods. The example may be small or incomplete and is primarily intended to
show the consistency of the ideas involved, but need not necessarily show the
manner of applying them in practice nor their desirability or usefulness.

Hartmanis [1995] contends that in the domain of Computer Science, after a new
idea or method is conceptualized, a demonstration provides adequate proof of
concept. This is attributed to the nature of computer science which is different
from natural sciences and deals with concepts and ideas rather than physical
entities. According to Tichy [1998], demonstration of an idea or method provides
a proof of concept in the “engineering sense” and shows that it has potential for
use and is suitable for further extensive development.

A fully developed case study, on the other hand, consists of a detailed and
in–depth application of the proposed ideas, methods and frameworks, through
all the stages of a real problem situation. This has the advantage of thoroughly
evaluating and testing the fitness and applicability and understanding the benefits
and limitations. However, this would be feasible only if the proponents of the new
ideas are themselves part of a team tackling a new research problem wherein they
might attempt to apply and evaluate the new ideas, while at the same time trying

79



80

to address the research problem. This becomes even more difficult if the research
is an ongoing one, since the risk–averse considerations of project management do
not normally encourage the use and adoption of new and untried ideas in an
existing project. Further, applying new ideas that emanated from ‘outsiders’ (who
are not part of the core team) is usually considered as adding project risk and
uncertainty. Real projects are driven by deliverable outcomes and not by the need
to evaluate new ideas, unless evaluating the new ideas itself is the goal of the
project. A similar sentiment is expressed by Flint [2006] to justify the choice of the
PoC approach.

A middle ground between the PoC and Case Study approaches is Illustration
by Application (IbA). Here one applies the new ideas and methods to a part or
whole of an existing or new problem scenario without necessarily being part of
a team working on the particular problem. Certain areas and characteristics of
the problem are used to illustrate and bring out the applicability and potential
usefulness of the new ideas and concepts. Although IbA is not as exhaustive and
complete as a Case Study, it is much more concrete in demonstrating applicability
and merit than a simple PoC involving an entirely made–up example.

In this thesis the OAR framework is demonstrated following Illustration by
Application. Three different examples are considered. The primary aim is to show
clearly the working of the different processes of the OAR framework; the focus
is not per se on the novelty or usefulness of the outcomes of the illustrations
employed. Here a parallel can be drawn with the demonstration of scientific
concepts using simple and well–articulated experiments.

The first application presented is a workflow for folding an Iris Flower, a
problem in the domain of origami. It is a known problem with logical and clearly
defined steps and is elaborate enough to demonstrate the features of the OAR
framework.

The second application, contextual course design, is a new problem situation
in the educational domain and illustrates the applicability of OAR to a generic
workflow across disciplines.

The third illustration is application of OAR to the analysis of a complex system
and demonstrates the potential of OAR for the analysis, understanding and
management of such systems.

These three applications, which demonstrate the applicability and potential of
the OAR framework and have appeared in refereed publications [Chemboli and
Boughton, 2011, 2012a,b] are discussed in the following three chapters.



4 OR IGAM I FOLD ING WORKFLOW

Before you can think outside the box, you have to be in the box.

Tharp and Reiter [2006]

4.1 Paper Folding as a Scientific Workflow 82

4.2 Folding the Iris Flower 82

4.3 Applying OAR to the Iris Flower Workflow 85

4.3.1 Identifying Relevant Archetypes and Constraints 86

4.3.2 Formulating the Solution Specification 86

4.4 Implementing the Solution Specification 87

4.5 Summary and Conclusion 88

The Omnispective Analysis and Reasoning framework has been presented in the
previous chapter. Application of the OAR framework is demonstrated in this
chapter by considering a scientific workflow problem in origami — the process of
folding paper into shapes representing various objects.

This chapter is organized as follows. Firstly, the characteristics of origami that
qualify it as a scientific workflow are presented. Secondly, the workflow for folding
an Iris Flower is presented in the fashion of the current practices of scientific
workflow management, in which a workflow is considered as a sequence of “tasks
and their dependencies.” The shortcomings in intellectual concern management
in this approach are highlighted. Next, the Iris Flower workflow is considered
again using the OAR framework. In particular, this demonstration illustrates how
the OAR framework facilitates the mapping of an implementation–level workflow
(for folding the Iris Flower) to intellectual concerns at the Concept and Model levels
(origami intellectual concerns). The processes of shelf representation, concern
and context refinement to obtain the solution specification and its corresponding
implementation are demonstrated.

81



82 origami folding workflow

4.1 paper folding as a scientific workflow

The art of paper folding holds great fascination for artisans as well as scientists
and engineers [Demaine and O’Rourke, 2007]. The concepts of origami find wide
applications in many technological innovations like arterial stents, solar panels
for spaceships, novel and innovative architectural designs and mathematical
algorithms for systematic folding of varied and intricate shapes from a sheet
[Wang-Iverson, Lang, and Yim, 2011].

Origami folding embodies several of the characteristics of scientific practice.
Starting with the selection of suitable paper, techniques for handling the paper,
folds, bases and the sequence of folding operations are all well–defined and have
been established by exploration and experimentation by origami practitioners.
These constitute the intellectual concerns in origami and can be abstracted as
recipes for the purpose of formulating an origami pattern.

The folding operations are unambiguously defined sequences of steps and
have a clear dependence on the previously executed steps. Thus the processes
of origami constitute logical, systematic and structured activities and display the
features of contextual relations, interactions and constraints at play.

An origami workflow not only possesses the basic characteristics of a scientific
workflow, but also is sufficiently adequate to provide a clear demonstration of the
salient features of the OAR framework.

4.2 folding the iris flower

The iris flower is a traditional figure in origami construction [Kenneway, 1987]. It
is generally constructed starting either with a preliminary base or with a frog base.
Figure 4.1 illustrates the workflow modules and steps for folding the iris flower.

Starting with a Frog Base, a sequence of structured steps is carried out. The
workflow consists of a number of sub–workflows or modules which are composed
of additional steps — this reflects the current status of scientific workflow practice.
As discussed in chapters 2 and 3, the current practice of scientific workflows
provides features to design and orchestrate experimental and computational steps
in data collection, organization and analysis. This allows effective handling of
research and supports automation of repetitive and computationally intensive
tasks. However, the specification of workflows has more focus on low–level
details of data variables, process branching, looping and control and other chores
connected with system–level tasks of control and management.



4.2 folding the iris flower 83

Frog Base

Fold Triangular Flap

x 4

fold()

Invert Fold Flap

x 2
fold()

invert()

Fold Diagonal

x 4

fold()

Fold Top Point

x 4
fold()

open_!ap()

Raise Flower

x 4

lift_!ap()

Iris Flower

Figure 4.1: Workflow for folding the Iris flower starting with a Frog Base.



84 origami folding workflow

The workflow illustrated in Figure 4.1 does not have any explicit provision for
identifying, verifying and validating intellectual concerns of the problem domain.
Also, no deliberate focus exists on ensuring and verifying that the correct scientific
workflow is modeled and implemented for a given problem situation. Any
validation done is performed outside the workflow as an independent activity.

Based on these considerations, the origami workflow described is an
implementation–level workflow. This is depicted in Figure 4.2

Analysis of Problem 
Situations

Conceptualization and 
Modeling

Decreasing
work!ow

abstraction

Intellectual 
concerns and 

their contextual 
relationship 

considered here

Work!ow Speci"cation, Flowcharting and 
Implementation

Frog Base

Fold Triangular Flap

x 4

fold()

Invert Fold Flap

x 2
fold()

invert()

Fold Diagonal

x 4

fold()

Fold Top Point

x 4
fold()

open_!ap()

Raise Flower

x 4

lift_!ap()

Iris Flower

Current 
work!ow 

practices focus 
here

Concept 
level

Model 
level

Implementation 
level

Figure 4.2: Illustrating the implementation–level focus of current scientific workflow
practice.

In light of the discussion in chapters 2 and 3, it can be discerned from
Figure 4.2 that, by itself, an implementation–level workflow does not go into
the underlying principles nor does it provide end–to–end correlation between the
science, modeling and implementation. Such workflow takes away focus from the
rationale and intent of the scientific activity and obscures the interpretation and
analysis of the results in terms of the underlying science.



4.3 applying oar to the iris flower workflow 85

4.3 applying oar to the iris flower workflow

The origami Iris Flower workflow is revisited in this section by using the OAR
framework. The OAR process starts with examining the problem situation and
identifying the (intellectual) concerns and their interactions.

Folds, bases, paper characteristics, folding algorithms and steps, folding tech-
niques and types, visual notations for folding sequences etc. are the various
concerns involved in origami. As explained in Chapter 3, the idea of concept–level,
model–level and implementation–level concerns is a theoretical foundation for the
OAR framework. Every recipe within the framework can be evaluated at any of
the three levels depending upon the context of the problem analysis. Separation
of recipes into concept, model and implementation levels does not occur until
the recipe is considered for analysis. Depending on the outcome of the analysis,
and the relevance of the recipe to the problem situation under study, the recipe is
considered at an appropriate level of the CMI hierarchy.

The recipes are managed in a number of external domain shelves corresponding
to the folding vocabulary and procedures. Depending upon the granularity of
the problem under consideration, the composition and inventory of the external
shelves varies. For example, if the problem scenario is a comparison of different art
forms (such as origami, painting, sculpting, etc.), one may consider all the known
recipes pertaining to origami as the contents of a contiguous origami shelf. On
the other hand, for a problem situation within origami, such as folding of the Iris
Flower, the relevant recipes pertaining to origami may be viewed as members of
different external shelves that capture the (intellectual) concerns in origami.

External shelves with recipes that can be identified as relevant for formulating a
specification for the iris flower workflow are given in Figure 4.3. This corresponds
to the bootstrapping process when starting an origami problem as a new workflow,
with no preexisting recipes in the external shelves.

Fold
Valley

Mountain

Return

Flap

Petal

Paper
Single

Double

Square

Washi

Duo

Weight
120gsm

80gsm

60gsm

Base
Frog

Kite

Fish

Blintz

Preliminary

Technique
Sweep

Air

Flat

Figure 4.3: External shelves and prototypes.



86 origami folding workflow

The list of recipes illustrated here is not exhaustive; but is sufficient to develop
an OAR specification for the folding of an iris flower.

4.3.1 Identifying Relevant Archetypes and Constraints

The process of concern refinement is now carried out to select the specific recipes
that can be imported into the problem domain shelf. The Iris Flower can be
folded starting either from the Preliminary Base or the Frog Base. The recipes for
the Preliminary Base and Frog Base are selected from the Base external shelf.

The Flat recipe from the Technique external shelf is identified as a constraint.
Though the Iris Flower can be constructed using either the Flat or the Air technique
of folding, the Flat technique is chosen here as a personal choice of the practitioner,
which now acts as a constraint. It is easier to fold the Iris Flower if a paper of a
relatively lighter weight is used, and accordingly the 60 gsm prototype is selected
into the Problem–domain shelf.

The resultant problem–domain shelf is illustrated in Figure 4.4.

Mountain

Flap

Petal

Square

Frog

Preliminary

Flat60gsm

Figure 4.4: Selected prototypes in the Problem–domain shelf for the Iris Flower specifica-
tion.

4.3.2 Formulating the Solution Specification

The process of context refinement is carried out to define the solution specification
for the Iris Flower as follows.

ss–1 The Frog base archetype is implemented using the Flat technique with a
Square paper. Therefore, this is an archetype that exerts a high degree of
influence on the workflow.

Flat C(I = 1, F = 1) Square

Square C(I = 1, F = 1) Frog



4.4 implementing the solution specification 87

ss–2 Although the Preliminary Base can also be used as a starting point for the
Iris Flower, it is not as convenient as starting with the Frog Base.

Preliminary C(I = 0, F = 1) Iris

Frog C(I = 1, F = 1) Iris

ss–3 The petals of the Iris Flower can be formed by folding the Frog Base further
along the flaps. Thus the process to form the petal from the Frog Base is
firmly defined. This is enumerated in the following context relation:

Frog C(I = 1, F = 1) Petal

ss–4 Four symmetric petals are formed in order to construct the Iris Flower. Not
only is this a well–articulated process, but is also a necessary step. Hence:

Petal C(I = 1, F = 1) Iris

With these constraints, the following solution specification, illustrated in Fig-
ure 4.5 is obtained.

Frog

Mountain Petal

Square

Flap

Flat

C (I=0, F=1)
C (I=0, F=1)

C (I=1, F=1)

60gsm

Figure 4.5: Origami Iris Flower specification.

It may be noted that the recipes imported into the Problem Domain Shelf and
utilized in the Solution Shelf for specifying the solution, are firm; they are either
archetypes or constraints. Accordingly, as explained in Section 3.17, the resultant
solution specification is a constructed specification and may be considered as an
optimized specification.

4.4 implementing the solution specification

Recipe membership in an external shelf is not required to be exclusive. Depending
on the granularity of the problem analysis, the same recipe (perhaps a solution
shelf formulated earlier) may be considered across multiple external shelves. In
addition, multiple instances of solution specifications for a problem situation may



88 origami folding workflow

also form a family of recipes in related shelves. Although there is no requirement
of uniqueness for either shelf categorization or recipe membership, individual
recipes are still unambiguously specified and translated even though they may
correspond to different pathways of translation depending on the context of the
problem situation.

The solution shelf in Figure 4.5 is a model–level instance of solution formulation
for the problem of folding the Iris Flower, which is consistent with recipes at the
concept–level and represents the rationale of the steps in the workflow. The actual
task of folding the iris flower is performed by an implementation–level workflow,
which is obtained by repeating the OAR process at a lower level of abstraction.

To implement the solution specification of Figure 4.5, it is now considered as
a recipe in an external shelf of origami flower folding specifications. A new OAR
process is now initiated by carrying out concern refinement and context refinement
for the new workflow. The process is illustrated in Figure 4.6.

In the new OAR process now initiated, recipes of the Iris Flower folding
specification, the Traditional School of origami folding and a Translation Engine
recipe are selected into the problem–domain shelf. The solution shelf obtained
represents the workflow at the implementation–level. Depending on the choice
of the Translation Engine recipe, this is equivalent to the implementation–level
workflow shown in Figure 4.1.

4.5 summary and conclusion

The application of the OAR framework has been illustrated in this chapter through
the formulation of a workflow for origami. It is seen that an origami workflow is
a structured activity with interdependent tasks and exhibits typical characteristics
of scientific workflows.

In the first instance a workflow for folding the Iris flower is given, following
the current approach of scientific workflow management. As shown in Figure 4.2,
this workflow is an implementation–level workflow, which does not map the
intellectual concerns of origami (folds, paper types, techniques etc.) and the
rationale and intent of the steps of workflow implementation.

Next, the OAR framework is applied to the origami Iris Flower workflow.
After examining the problem situation (folding an origami shape) from different
perspectives and domains relevant to origami (for e.g., types of folds, paper
types, origami techniques etc.), relevant intellectual concerns are abstracted,
categorized and enumerated in an unambiguous and reusable manner, as recipes
in external shelves. Following this, the processes of concern refinement and context



4.5 summary and conclusion 89

Fold
Valley

Mountain

Return

Flap

Petal

Paper
Single

Double

Square

Washi

Duo

Weight
120gsm

80gsm

60gsm

Base
Frog

Kite

Fish

Blintz

Preliminary

Technique
Sweep

Air

Flat

Mountain

Flap

Petal

Square

Frog

Preliminary

Flat60gsm

Iris Traditional

Translation 
Engine

Traditional

Iris

Translation 
Engine

C (I=1, F=1) C (I=0, F=1)

= Frog Base

Fold Triangular Flap

x 4

fold()

Invert Fold Flap

x 2
fold()

invert()

Fold Diagonal

x 4

fold()

Fold Top Point

x 4
fold()

open_!ap()

Raise Flower

x 4

lift_!ap()

Iris Flower

Frog

Mountain Petal

Square

Flap

Flat

C (I=0, F=1)
C (I=0, F=1)

C (I=1, F=1)

60gsm

Generator
Translation 
Engine

Human Agent

3-D Printing

School

Traditional

Kirigami

Modular

Pureland

Flowers

Iris

Lily

Flower

Lotus

Figure 4.6: Formulating a solution specification for implementing the Iris Flower solution
shelf of Figure 4.5.



90 origami folding workflow

refinement are performed to formulate a model–level solution specification for
the Iris Flower folding workflow in terms of and conforming to the selected
recipes. This solution–specification recipe is then used for further developing
an implementation–level solution shelf, which corresponds to the step–by–step
workflow available for the origami task.

This application of the OAR framework:

1. Illustrates the lifting of focus of the origami task from low–level folding
concerns, facilitating their analysis in terms of the concepts of origami such
as fold techniques, choice of paper types and choosing a particular path of
folding operations.

2. Demonstrates the basis for validating an implementation–level workflow
(the sequence of folding steps) against the tradeoffs that can be evaluated
for the model and concept–level concerns.

3. Shows shelf management in action, which enables the formulation of a
problem solution in terms of preexisting recipes that capture concerns from
domains of influence.

4. Provides an illustration of the OAR processes of concern refinement and
context refinement in action.

5. Presents a comprehensive and yet simple enough example of the application
of OAR to the abstraction, analysis, formulation and orchestration of a
scientific workflow at different levels of granularity.

It can be seen that while the second solution specification of Figure 4.6 provides
an implementation workflow for folding an Iris Flower shape starting from
the initial concepts and ideas of origami, it is by no means the only possible
implementation available. Depending on the recipes selected from the Origami
School external shelf and the Generator external shelf, the solution specification
may perhaps represent a physical object of a constructed iris flower instead of the
implementation–level workflow specified in this chapter. Thus, multiple pathways
of translation exist depending on the context of the problem situation, with each
solution shelf as an unambiguous, but yet related recipe. The relevant solution is
chosen depending on whether the desired outcome is a description of the sequence
of ‘folds’ for constructing the Iris flower or an Iris flower artifact (folded from
paper).



5 CONTEXTUAL I Z ING COURSE DES IGN

[I]t is helpful to remember that what the student does is actually more
important in determining what is learned than what the teacher does.

Shuell [1986]

5.1 Learning, Teaching and Course Design 92

5.1.1 Learning Outcomes 94

5.1.2 Translating Learning Outcomes to Course Design 95

5.2 Contextualizing Course Design 96

5.3 Translating Learning Outcomes for COMP8120 97

5.3.1 Learning Outcomes for COMP8120 97

5.3.2 Analyzing Context for LO–1 and LO–2 98

5.3.3 Analyzing Context for LO–3 98

5.3.4 Analyzing Context for LO–4 99

5.3.5 Analyzing Context for LO–5 99

5.4 Solution Specification for LO–5 99

5.4.1 Initializing External Shelves 99

5.4.2 Identifying Relevant Archetypes and Constraints 100

5.4.3 Solution Shelf for LO–5 101

5.4.4 Implementing the Solution Specification 102

5.5 Summary and Conclusion 102

The OAR framework can be applied for the analysis, study and management of
any generic problem situation that conforms to the basic nature of a scientific
activity, i.e., the problem situation can be represented and analyzed in terms
of logical and repeatable steps and procedures. This follows from the enhanced
definition of a scientific workflow presented earlier in Chapter 3, and also from
the epistemic nature of omnispection, analysis and reasoning.

In this chapter, the demonstration of the applicability of the OAR framework
in tackling scientific problems across multiple disciplines is taken forward by
presenting its application for contextualizing educational course design. The
lack of effective means to capture the rationale for design decisions makes it

91



92 contextualizing course design

difficult to validate the design of a course against learning outcomes. The OAR
framework facilitates the capture of intellectual concerns and mapping them to
the formulation and implementation of a workflow. Hence it can be applied to
develop a process for mapping learning outcomes to course design.

This chapter is organized as follows. The problem of translating learning out-
comes to the design and development of a course is considered. This is followed
by the OAR process for contextualizing course design. This application of the
OAR framework is illustrated by considering the process of translating learning
outcomes to the design of a course using the Moodle Learning Management
System (LMS).

5.1 learning, teaching and course design

Educational systems are complex systems and operate in a context which keeps on
changing with changing societal, industrial and economic activities. The goals of
education span a very wide range — from providing simple functional literacy to
gaining competence in technology and management to attaining deep knowledge
and scholarship -- depending on the motivation and the available incentives and
choices to the learners and teachers.

Theoretical and practical research in the field of teaching and learning covers a
number of domains like psychology, sociology, physical sciences, engineering and
information technology. The report on Scientific Research in Education [National
Research Council, 2002] gives a high–level review of the “science and practice of
scientific educational research.” The report emphasizes that all current and future
research in the educational field should “account for the context of the research,
align with a conceptual framework, reflect careful and thorough reasoning and
disclose results to encourage debate in the scientific community.”

In the multifaceted arena of education, learning and teaching are two important
activities for which effectiveness depends to a considerable extent on the design
and delivery of the curriculum. The theory of constructive alignment [Biggs and
Tang, 2007] considers how to design a curriculum with optimum use of all the
teaching and assessment tools to realize a good teaching environment. A well–
designed curriculum in which the learning objectives are mapped to the learning
outcomes together with assessment aligned to the aims of teaching will produce
conditions for quality learning [Csapo, 2009].

In general a curriculum is a description that specifies, for given subject matter to
be taught, the course content, learning objectives and expected outcomes for the
course. An outline of content, method of teaching, method of assessing student



5.1 learning, teaching and course design 93

Curriculum 
Intent

Aims

Goals

Outcomes

(General)
Program

(Speci!c)
Course

re"ect

frames

"ow from

are interpreted by

meet

are translated into

Learning 
Activities

Assessment

evaluate

are tested by

Content
facilitates map to

are evaluated by

aligns to

in"uence

are chosen according to

Figure 5.1: A model of curriculum design. Copyright c©2010 Johns-Boast, L. Adapted with
permission.



94 contextualizing course design

learning and student participation is also included. It is also desirable to include
provision for taking care of students of different levels of learning capability and
inclination and also to allow for the preferences and operating/teaching practices
employed by the teacher delivering the course. In addition, it is also important to
properly plan the interactions between teachers and students and include them in
the curriculum.

The way the learning, teaching and assessment approaches are organized and
practiced is usually represented as a curriculum model. A variety of models for
curriculum design [Marsh, 2009; Walker, 1971] have been proposed and used over
time. A brief overview of a number of curriculum models is given by O’Neill
[2010]. An in–depth exposition of issues in curriculum development can be found
in the scholarly work of Biggs and Tang [2007]. A curriculum design model given
by Johns-Boast [June 2010, private communication] is utilized in this chapter. This
is illustrated in Figure 5.1.

In this model, the aims of the curriculum are decided based on the primary
intent and purpose of the course. These aims are represented in terms of the
goals which in turn are translated into the course outcomes. The course content
is designed and organized to be of adequate depth and breadth to realize
these outcomes. Learning activities are planned in accordance with the desired
outcomes. The learning activities and course outcomes are tested and evaluated
by suitable assessment procedures.

5.1.1 Learning Outcomes

Teaching a course requires the planning of learning outcomes and goals. These
are then mapped to existing educational technologies to deliver the course.
However, current learning technologies often require significant effort to design
and organize courses. As a result, teachers are forced to concentrate their efforts
on the quirks and methods of the underlying technological platform which can
take their focus away from the goals and outcomes of the course. The activities
of online assessment and evaluation tend to become more of a chore, rather than
means to support the goals and objectives of a course. This also makes it difficult
to share ideas and educational objects across courses and adapt them in a reusable
manner.

These difficulties may be overcome by formalizing the implicit rationale in
learning outcomes by identifying and managing the intellectual concerns asso-
ciated with the design and implementation of a course and explicitly capturing
the associated learning context. In terms of the OAR framework, this corresponds



5.1 learning, teaching and course design 95

to abstracting the learning outcomes as recipes and contextualizing them with
reference to course design and delivery.

5.1.2 Translating Learning Outcomes to Course Design

It is recognized that the application of theory of constructive alignment [Biggs
and Tang, 2007] to design course content results in an effective approach to course
delivery. Constructive alignment requires that the teacher align the planned learning
activities with the learning outcomes [Houghton, 2004]. However, because of the
different natures of the domains of course design and learning outcomes and
the Learning Management System, one often encounters mismatch and difficulty
in mapping the learning outcomes to the resources and processes of the LMS. For
instance, while learning outcomes for a course may be formulated in terms of
the desired goals and means for assessment and evaluation of effective learning,
the implementation of the course in an LMS is undertaken in terms of LMS
resources such as lessons and exercise blocks, and widgets like buttons and
checkboxes, accompanied by participatory student activities such as discussion
forums, quizzes and chats. Therefore there is a need to provide a link between the
pedagogical concepts and their implementation in an LMS. Online instruments
would further help this linking of LMS activities and resources to learning
outcomes.

The Moodle LMS [Moodle Community, 2012] is used in the course design
discussed in this chapter. Moodle is a web application that can be used as a tool
for creating a Virtual Learning Environment (VLE) consisting of online websites
for teaching and learning. It is a free application available under the GNU Public
License. A good structural overview of Moodle is presented by Drechsler [2011].

A Moodle course is structured in the form of pages containing Activities,
Resources and Blocks. Activities allow students to interact amongst themselves
and with the teacher. Resources consist of items that are added by the teacher
to support learning. Blocks provide additional information and links to additional
resources and reading materials. All these are provided by the course designer or
teacher.

Some salient features in the use of Moodle are:

1. Small groups to very large groups of students can be addressed.

2. It can be used to organize fully online courses or blended courses that
involve direct engagement in teaching supported and supplemented by
online interaction.



96 contextualizing course design

3. The activity modules like forums, chats and wikis can be used to build
collaborative learning communities for delivery of course content combined
with assessment of the learning outcomes through assignments, quizzes and
online chats.

The following difficulties are encountered while translating the intent and learn-
ing outcomes of a course into activities and resources in an LMS implementation:

1. Resolving the differences between language structure and terminology used
in defining learning outcomes and the LMS implementation.

2. There is a disconnect between stating the goals of a course and developing a
course in the LMS.

3. Lack of an effective means to capture the rationale for design decisions in the
LMS (for instance, which activity/resource is chosen and why in Moodle,
what are the tradeoffs in using different resources to achieve the same
outcome).

4. Communication and collaboration issues that emerge in the interaction
between course designers, lecturers and LMS developers.

5.2 contextualizing course design

In order to analyze and organize the intended learning, teaching and assessment
processes, the OAR framework is employed in the following manner. Firstly,
learning objectives and outcomes of a course are captured in accord with models
of curriculum design. Secondly, these concept level concerns are then expressed as
model level concerns in the form of a specification in terms of available educational
models. Finally, the design decisions of a course are implemented using the LMS
and associated educational technologies, in order to enable a two–way mapping
between the learning outcomes, and the resources in the underlying technological
platform. This will result in two benefits: mapping of learning outcomes to the
underlying educational technology; and facilitation of better evaluation of the
effectiveness and suitability of various teaching and learning approaches and
outcomes.

The preliminary process of understanding the rationale for learning outcomes
begins with identifying relevant concerns of interest in the course under consid-
eration. The OAR framework processes of concern and context refinement are
then applied to analyze the desired learning outcomes against accepted exemplars



5.3 translating learning outcomes for comp8120 97

(external prototypes) presented by Ramsden [2003] and Biggs and Tang [2007] as
applicable within the context of research–based education (constraint factor) at the
Australian National University (ANU) [Strazdins, 2007].

The following steps are executed after the learning outcomes for a course are
determined:

1. Choose a particular outcome for the course.

2. Identify the characteristics of the outcome.

3. Identify the Moodle resource/activity or associated technology which sup-
ports the development of these characteristics.

4. Develop the Moodle activity/resource to satisfy the outcome.

5.3 translating learning outcomes for comp8120

COMP8120 — System/Software Development Methodologies, was a mandatory
course in the Master of Software Engineering Program at The Australian National
University. The Master of Software Engineering was aimed at updating and
equipping software and systems engineering professionals with a repertoire of
best practices and paradigms, empowering them to make informed decisions and
evaluate their impact in a measured and systematic manner.

The prerequisites for the program are quite varied, ranging from systems
engineering, electronics engineering, software engineering to software intensive
systems, biotechnology and policy and governance. Relevant professional experi-
ence of two or more years is also necessary for admission to the program. Thus
the participants have diverse backgrounds, with their individual styles of learning,
interacting and communicating, but not necessarily versed in the aims of the
COMP8120 course.

As it was pointed out in Section 5.1, designing flexibility in addressing the
concerns related to the aims, outcomes and assessment of the course by way of
mapping the goals to the learning outcomes and aligning assessment to the aims
and objectives of the course, results in robust curriculum design which is adaptive
and responsive to the learning outcomes.

5.3.1 Learning Outcomes for COMP8120

lo–1 The students will develop an appreciation of past, contemporary and
emerging software/systems analysis and design techniques.



98 contextualizing course design

lo–2 The students will be able to evaluate and understand the scope, applica-
bility, limitations and extensibility of software/systems analysis and design
techniques.

lo–3 Students will be able to apply and expand the methodologies to accom-
modate appropriate multidisciplinary knowledge, and inform decisions
affecting problem situations.

lo–4 Students will use the approaches learnt to identify necessary improvements
and inform recommendations about their realization using appropriate and
well–informed inputs from multiple sources of knowledge and expertise.

lo–5 The students will reflect, inform and communicate the issues in the
integration approach identified for improving a problem situation to the
satisfaction of all stakeholders identified.

5.3.2 Analyzing Context for LO–1 and LO–2

It is assumed by the designers of the course that the students may not be
conversant with system/software development methodologies (SSDM), or their
application to specific problem situations (Problem Situation). This is expressed in
the following context statement:

Student C(I = 0, F = 0) SSDM
SSDM C(I = 0, F = 0) Problem Situation
Students are introduced to subject matter pertaining to the detail and process of

various methodologies, without concern for specific usage scenarios. Following this
activity, students will now possess the requisite knowledge of system/software
development methodologies even if they may still not be aware of areas of appli-
cation of specific methodologies. Thus, students will acquire explicit knowledge
of methodologies, although they may still be unable to contextually apply them to
targeted problem situations. This can be expressed as:

Student C(I = 0, F = 1) SSDM

5.3.3 Analyzing Context for LO–3

The students participate in guided learning exercises concerning the development
of understanding and evaluation of problem situations while developing informed
recommendations without particular emphasis on solution strategies. This phase of
learning is governed by efforts to credit local knowledge.

Student C(I = 1, F = 0) Problem Situation



5.4 solution specification for lo–5 99

Problem Situation C(I = 0, F = 1) SSDM

5.3.4 Analyzing Context for LO–4

The students now undertake activities to iterate through constraints that bear
upon a particular problem situation and formulate and develop implementation
processes in accordance with all identified aspects of the problem domain. An early
design decision by the course organizers required that the students employ the
Aspect–Oriented Thinking (AOT) framework [Flint, 2006] for this purpose. Conse-
quently, the choice of the AOT framework is a firm constraint (no alternatives are
considered).

Student C(I = 1, F = 1) SSDM
SSDM C(I = 1, F = 1) Problem Situation
Problem Situation C(I = 1, F = 1) AOT

5.3.5 Analyzing Context for LO–5

The students are to undertake activities to effectively communicate and collaborate in
order to actively arrive at an agreement on the identified intervention in a problem
situation.

Student C(I = 0, F = 1) Communication and collaboration

5.4 solution specification for lo–5

The OAR process for formulating a solution specification for implementing
communication and collaboration for LO–5 using the Moodle LMS is now
presented [Chemboli, 2010a].

5.4.1 Initializing External Shelves

The external shelves with prototypes for designing the specification for realizing
LO–5 are illustrated in Figure 5.2.

In order to align the learning outcomes of COMP8120 with assessment criteria,
the prototypes for assessment modes in Bloom’s taxonomy are identified as
relevant recipes for consideration. Recipes for the activities which are pertinent to
LO–5 are given in the Outcomes external shelf. Written or verbal communication
between students can either be synchronous (in real–time) or asynchronous.



100 contextualizing course design

Outcomes Bloom's Taxonomy Communication Moodle LMS

Communication 
Skills

Information
Transfer

Problem Solving

Co-creation

Collaboration

Knowledge

Comprehension

Application

Analysis

Synthesis

Evaluation

Synchronous

Asynchronous

Verbal

Written

Message Tool
Discussion 
Forum

Dialog Tool

Chat Tool

Resource Link

Figure 5.2: External shelves and prototypes.

These recipes are collected in the Communication external shelf. Since, LO–5 will
be implemented using the Moodle LMS, an external shelf with resources and
activities supporting communication and collaboration in Moodle is considered.

Although the original version of Bloom’s taxonomy [Bloom, 1963] was used at
the time of designing this course, there is nothing inherent in the OAR framework
which mandates the kind of taxonomy used for aligning learning outcomes.
The revised Bloom’s taxonomy [Churches, 2008] can also be incorporated in
a straightforward manner as another external shelf which provides additional
prototypes for consideration in the solution specification.

5.4.2 Identifying Relevant Archetypes and Constraints

The next step is concern refinement for LO–5 in order to select the specific
prototypes which can be imported into the problem domain shelf. LO–5 states
the requirement for active communication and collaboration. The recipes for
Communication and Collaboration are selected from the Outcomes external
shelf. Two constraint recipes are also identified — Synchronous and Written from
the Communication external shelf. The students are required to communicate
and collaborate in a synchronous fashion using written tools (these constraints
are imposed by the course designers). Utilizing Bloom’s taxonomy, LO–5 can
be aligned with assessment of Application skill. The students are required to
utilize the communication platform to execute stakeholder engagement. Finally,
prototypes for the activities in Moodle which support communication in a written
form are selected. The resultant problem domain shelf is illustrated in Figure 5.3.



5.4 solution specification for lo–5 101

Synchronous Written

Chat Tool

Communication Application

Collaboration Dialog Tool

Discussion Forum

Message Tool

Figure 5.3: Archetype and constraint identification for LO–5.

5.4.3 Solution Shelf for LO–5

The process of Context Refinement for defining the solution specification for LO–5

(Figure 5.4) is outlined in the following specification statements:

Synchronous Written

Chat Tool

Communication Application

C(I=0,F=1)

C(I=1,F=1)
C(I=1,F=0) C(I=0,F=1)

Figure 5.4: Solution specification for LO–5.

ss–1 The Communication archetype needs to be implemented in a Synchronous
and Written fashion.

Synchronous C(I = 1, F = 1) Communication
Communication C(I = 1, F = 1) Written

ss–2 Although the Dialog Tool, Discussion Forum and Message Tool can be
used for synchronous communication, they are not particularly suited for
interactive text exchange between participants. Therefore, only the Chat Tool
satisfies the requirement of synchronous communication, and is imported in
the solution shelf.

Synchronous C(I = 1, F = 0) Chat Tool

ss–3 The Chat Tool is selected because it is a writing tool.



102 contextualizing course design

Written C(I = 0, F = 1) Chat Tool

ss–4 The use of the Chat Tool will satisfy the requirement for assessing how the
students apply the skills learnt via LO–5 because the course coordinators can
assess the chat logs for significant contributions. This can be stated as:

Chat Tool C(I = 0, F = 1) Application

5.4.4 Implementing the Solution Specification

Finally, the solution specification for setting up a chat tool for satisfying LO–5 is
implemented. This is achieved through either manual or automated translation
using the information provided by the archetype for the chat tool. For instance, a
Moodle workflow for setting up the chat activity in the LMS may be used [Chem-
boli, 2010c]. This workflow can be specified in the chat tool recipe that is imported
from the Moodle external shelf during the process of concern refinement. The use
of the chat tool satisfies the course design requirement for LO–5 (synchronous and
written communication). This is illustrated in Figure 5.4.

5.5 summary and conclusion

The application of the OAR framework to contextualize course design by mapping
the learning outcomes and intent of a course to its development and delivery is
discussed in this chapter. Learning outcomes of a course are aligned with activities
related to teaching and assessment by explicitly capturing the context of course
design. The process is illustrated by an example specification to satisfy a learning
outcome for synchronous and written collaboration between students in a software
engineering course using the Moodle LMS.

This illustration brings out that OAR can be applied for workflow management
across multiple disciplines — in the domain of education in this instance. The
problem of communication and collaboration in realizing LO–5 is considered as
a workflow. Capturing intellectual concerns of the problem domain as recipes
in external shelves and formulating the problem–domain shelf and solution
specification by concern and context refinement is clearly shown. The solution
arrived at is unambiguous in terms of the concerns incorporated in the recipes.



6 MANAG ING LARGE AND COMPLEX
SYSTEMS

Neither your opinion of what users should think, nor my opinion of
what users should think, matters as much as what users actually do
think. Be a scientist, not a priest.

Shuttleworth [2012]

6.1 Large and Complex Systems 104

6.2 Some Characteristics of Large Systems 105

6.3 How complexity builds and escalates in large systems 106

6.4 Applying OAR to Complex Systems 107

6.5 The Ubuntu Platform as a Complex System–of–Systems 109

6.6 Capturing intellectual concerns for the Ubuntu ecosystem 109

6.6.1 Initializing External Shelves 110

6.7 Identifying Relevant Archetypes and Constraints 111

6.8 Solution Specification for Selecting the Default Music App 111

6.9 Utilizing a Solution Specification 113

6.10 Summary and Conclusion 117

The application presented in this chapter demonstrates the use of the OAR
framework for the analysis, understanding and management of complex systems.
The process of analysis, design and operation is considered as a workflow formu-
lation, solution specification and implementation. An omnispective appraisal of all
identified concerns in a system in terms of the component systems, the concerns
within the component systems and the interactions between them is carried
out; these concerns are subjected to the OAR processes of concern and context
refinement for relating them to the modeling of the system and formulating a
solution specification.

This chapter is organized as follows. Firstly, characteristics of large and complex
systems and some issues of complexity are presented. Next, the manner in which
OAR can be applied to complex systems is considered. This is followed by the
application of OAR to an example in the Ubuntu software ecosystem — to analyze
and work through the problem of selecting the default music app for Ubuntu

103



104 managing large and complex systems

12.04 Long Term Support Support (LTS) distribution. Emergent behavior due to
this selection is analyzed.

6.1 large and complex systems

The study of large and complex systems, both engineered as well as naturally
evolving, is gaining importance. This is mainly due to the wide–ranging impact
of such systems on human society. Examples of such systems include large
power networks, computer system networks, ecological systems etc. Though terms
like large systems, complex systems, systems of systems and wicked problems
are employed with varying and several connotations in the literature, complex
systems are seen to possess a set of commonly recognized properties. Firstly,
they consist of many component systems, interacting with each other and with
the environment(s) within which they operate or exist. Secondly, they are open
in nature in the sense that component systems may be added, modified, retired
or replaced. Finally, the goals and objectives of such systems are very likely to
change and evolve with time. Reviews of the salient features and concepts of
complex systems in the context of systems of systems can be found in a number of
references [Jamshidi, 2008; Sage and Cuppan, 2001; Sheard and Mostashari, 2009].

For the development of newer and more sustainable systems, it is usually
necessary to analyze and understand the complex interactions in current systems.
For this it is appropriate:

1. To be able to switch between detailed knowledge of the component systems
and overall appraisal of the entire system. Current efforts to develop ontolo-
gies capturing ‘complete’ and ‘universal’ understanding of the entire system
increase overall complexity, while simply providing minimally sufficient
understanding across all interacting systems which may obscure details of
component systems.

2. To develop the ability to treat each component subsystem and its constituents
as a localized and single ‘control and execution context’ so as to enable
system validation against desired goals and intent.

Inadequate support for the above features, coupled with uncertainties due to
incompletely recognized or unrecognized interactions of the component systems,
may further result in uncertainties in the outcomes of the processes orchestrated by
the system, together with the increased likelihood of cost, effort and development
time overruns in maintaining, enhancing, retiring and replacing systems.



6.2 some characteristics of large systems 105

6.2 some characteristics of large systems

In so far as it could be determined, all the studies and attempts aimed at managing
complexity are based on the implicit belief that proper design of a system can
mitigate the issues/difficulties resulting from the complex interactions of the
component systems comprising it.

According to Warfield [1994], a system is considered to be a large–scale and
complex system only in relation to “human capacity to observe it, comprehend it,
analyze it, steer it, amend it and tolerate it.” This concept of a complex system is
based on consideration of both situational complexity and cognitive complexity,
and any improvements to the management of complex systems should address
both these kinds of complexity.

Systems that have technological underpinnings and have considerable sociolog-
ical impact and interactions, are termed as socio–technical systems. Some of these,
like forestscapes and water–body systems come into existence through a process
of evolution. Some others, like human settlements, are designed and built (at least
initially) and then continue to evolve [Alexander, 1964]. Socio–technical systems
evolve through synergistic interactions between technology and people.

Technological systems that are designed and built can be separated into two
main groups [Warfield, 1994]:

1. Systems that are designed entirely on the basis of well–established principles
of science and engineering. These systems can be validated against the standards
of knowledge of science. Their failures are generally due to components and process
parameter errors/inaccuracies and can be well–characterized. The impact of such
failures can be managed well in most cases. Examples of such systems are radio
and television broadcast systems, chemical plants etc.

2. Systems that are designed and built on the basis of perceptions and models
of the needs of the user and properties of the system, like computer software,
programming languages etc. Some of these systems may additionally include a
number of entities of the first kind. For such systems, reference against primary
standards of science is less direct because their reference is through the models used
in the design. Examples of such composite systems are information systems,
management support systems, expert computer systems, hospital and health
care systems, nuclear plants and banking organizations etc. The behavior
of such systems is similar to socio–technical systems because their satisfactory
performance depends on the synergistic interaction of their component systems.

Basic scientific exploration and research of complex systems consists of recogniz-
ing a system as complex, recognizing possible manifestations of such complexity



106 managing large and complex systems

and formulating the concepts and models that may be used in their description.
Theories of catastrophe [Arnold, 1986], chaos and entropy [Mitchell, 2009] provide
directions to the efforts at gaining knowledge in this domain.

6.3 how complexity builds and escalates in large
systems

A typical scenario of managing complexity consists of careful design of the
processes and working environment and assigning specialized roles to properly
trained personnel. The situational complexity of a system arises due to interactions
amongst the component systems as well as interactions with the environment.
Added to this will be features of cognitive complexity — as felt and perceived
by the personnel managing the system. As depicted in Figure 6.1, additional
resources inducted into the system for the purpose of managing complexity, them-
selves, will escalate complexity by creating new linkages [Warfield, 1994]. Thus,
managing a complex system should focus on control of situational complexity, at
the same time keeping the scope of management within the cognitive abilities of
the people managing the system.

Problem solver

Problem

(a) The problem solver surrounds the 
problem.
Solution can be obtained with available input.

Problem solver

Problem

Additional inputs

(b) Problem solver is enmeshed in the 
problem
Additional inputs escalate complexity.

Figure 6.1: Escalation of problem complexity when additional inputs are provided.

Effective management requires analyzing and understanding the design of the
system in terms of the concepts, models and implementations involved. Recogniz-
ing the concerns that are vaguely understood but relevant to the outcomes of the
system will enable the planning of strategies for managing failures due to these
concerns. The OAR framework has features that are well–suited to address these
problems in large systems, as will be described in the next section. The framework
supports the maxim, what is understood with referential validity is science, and what is
modeled and designed in terms of the science is technology.



6.4 applying oar to complex systems 107

6.4 applying oar to complex systems

In the OAR framework, the process of analysis, design and operation of a system is
considered as a workflow formulation, solution specification and implementation.
In relation to complex systems, a particular outcome or application of the system
is considered to be the problem scenario and the OAR process is applied to it.

Complex systems integrate many interacting (diverse) disciplines. As a result of
this diversity, forcing a common ontology for entire systems of systems may result
in loss of valuable domain insights. Conversely, a highly focused exploration of
individual system domains may also lead to a loss of generality in the nature
of systems understanding. Thus, a common ground between too much detail of
individual domains and too limited a view of the entire system, is highly desirable.
Current efforts in this direction [Staab and Studer, 2009] are focused on developing
and building comprehensive language and concept interchange formats for
“universal use” — ontologies for universal acceptance. Large ontologies have the
side–effect of further adding to the net system complexity owing to the difficulty
of arriving at a common understanding that may be universally applicable across
many/all the disparate component systems. Most strategies employed [Iordan and
Cicortas, 2008; Sahoo, Sheth, and Henson, 2008; Truong et al., 2005] aim to create
ontologies which furnish minimally sufficient understanding across the entire
system, thus losing significant detail of intellectual concerns in the component
systems.

A way forward is to make use of localized ontologies to capture and represent
the individual ‘silos’ of knowledge in domains which constitute the large system
and develop the interchange processes for only that subset of the intellectual con-
cerns which are relevant for the application of the complex system. These localized
ontologies need not be complete in the sense of universal applicability. But they
will unambiguously capture all the system artifacts along with information about
the context of their application.

As a result, large systems of systems may now be viewed as an aggregation
of numerous localized ontologies, each of which can be further adapted, evolved,
retired and replaced as appropriate to changes in the circumstances in which the
systems operate and interact.

Localized ontologies are realized by shelf management in the OAR framework.
Intellectual concerns across component subsystems are captured in recipes by
the process of concern refinement. The collection of external shelves represent all
available interdisciplinary knowledge which can be used to manage the complex
system and its component systems. Interactions between component systems may



108 managing large and complex systems

themselves be the subject matter of further external shelves and the problem
domain shelf.

Large and complex systems are typically characterized by the absence of a
single control and execution context. This often results in difficulty in managing
the component systems and the interactions between them. Using the OAR
framework, context relations within and between individual component systems
can be characterized by:

1. Strong influence and high firmness (C(I = 1, F = 1)), i.e., the context
relations between the recipes within each system and between systems are
significant and well–understood. This means that the interaction between the
systems will not result in any unexpected behavior.

2. Strong influence and low firmness (C(I = 1, F = 0)), i.e., the concerns af-
fecting the behavior of the component systems are recognized as significant,
however the recipes are not well–formed. As a result, unintended system
behavior cannot be ruled out.

3. Weak influence and low firmness (C(I = 0, F = 0)), i.e., the system
interactions are neither properly recognized nor understood — they are only
suspected to be present, and may produce unpredictable and unexpected
effects.

4. Weak influence and high firmness (C(I = 0, F = 1)), i.e., although the recipes
are well–formed, their interaction is either not known or is considered
insignificant.

The last two context relations indicate the need for further research in identify-
ing the particular influences.

Context refinement thus enables the system to be considered as an aggregate of
component systems each with its goals and intent, and then working out a linkage
between them. This facilitates local control and execution contexts for both the
component systems and the interactions between them. The solution specification,
an artifact arrived at by utilizing localized ontologies via shelf management, and
concern and context refinement processes, corresponds to the outcome of the
application of the system.

The nature of omnispective analysis:

1. Enables better management of system development lifecycle by taking into
account component systems and their interactions;

2. Facilitates verification and validation of the underlying intellectual concerns
in the component systems, their interactions and thus of the overall system;



6.5 the ubuntu platform as a complex system–of–systems 109

3. Reduces the cognitive burden on the human interacting with the system by
organizing the intellectual concerns as recipes in accordance with concept
level, model level and implementation level.

6.5 the ubuntu platform as a complex system–of–
systems

According to the criteria outlined by Abbott [2006] the Ubuntu platform ecosystem
qualifies as a complex system. It is open and consists of numerous interacting and
continually evolving component systems; which are added, modified, replaced or
retired over time.

This illustration of the application of the OAR framework centers on analyzing
and working through the problem of selecting the default music app for the
Ubuntu 12.04 Long Term Support (LTS) distribution. The problem involves the
interplay of a number of engineered, societal, legal and various other systems,
each with its own cadence and pace of change and development and the influence
of changes in component systems is felt locally as well as in other systems within
the wider platform ecosystem.

The selection of the default music app for an operating system distribution may
not result in ‘disaster’ in the event of failure. Nevertheless, it amply illustrates
the manner in which all the component systems and their interactions need to be
examined in order to arrive at a solution specification using the OAR framework.
Thus this illustration provides insight to the management of localized ontologies
developed through the OAR process, and also demonstrates how the difficulty
of not having a single control and execution context can be mitigated because
the OAR solution specification provides for validation against desired intent and
goals.

6.6 capturing intellectual concerns for the
ubuntu ecosystem

Identified knowledge in different domains within the Ubuntu ecosystem is
captured in different recipes which are managed through external shelves in the
OAR framework. Depending upon the granularity of the problem objective, the
choice of the external shelves varies.



110 managing large and complex systems

Recipe details incorporate outcomes of Internet Relay Chat (IRC) logs, document
blueprints, Ubuntu Developer Summit proceedings, discussion forums and project
guidelines.

6.6.1 Initializing External Shelves

The external shelves considered in deciding the default music app are shown in
Figure 6.2.

Ubuntu Ecosystem

Societal

Organizational

Technical

Societal Domain

Ethics

Free Software

Open Source

Community
Responsibility

Ubuntu Code
of Conduct

Organizational
Domain

Contributors

Users

LoCo Councils

Marketing

Finance

Administration

UDS Session

Technical Domain

Ubuntu
Platform

Applications

Languages

Ubuntu Platform

Desktop
Experience

Core

Kernel

Toolkits

Core

Graphics

Security

Comms

Network

Multimedia

Accessibility

Figure 6.2: External shelves and recipes for deciding the default music app.

The idea of localized ontologies can be seen in action here in selecting shelves
that are adequate for steering a solution specification.



6.7 identifying relevant archetypes and constraints 111

6.7 identifying relevant archetypes and con-
straints

The process of concern refinement is now carried out in order to select the specific
prototypes which can be imported into the problem domain shelf. As a result,
the prototypes for LTS, ISO Size, Licensing and Release Date are recognized as
constraints. The problem domain shelf is populated with further prototypes which
may now be considered as archetypes owing to their relevance to the problem
domain. This is shown in Figure 6.3.

LTS ISO 
Size Licensing Release

Date

Multimedia

Banshee

Rhythmbox

Toolkits

GTK3

Mono

U1 Streaming

Default Music App

Figure 6.3: Archetype and constraint identification in the problem domain shelf.

6.8 solution specification for selecting the de-
fault music app

A solution specification is arrived at by the OAR process of context refinement.
Accordingly, context refinement is performed to define a solution specification for
selecting the default music app in Ubuntu 12.04 LTS. This process is carried out
as follows:

ss–1 A Long–Term Support (LTS) release of the Ubuntu Operating System is
of five years duration. In addition, each LTS is guaranteed to provide a
dependable upgrade path to the next LTS release. Hence, it can be seen
that Ubuntu 12.04 is subject to the constraint of rigid conformance to LTS
guidelines, and is required to support the platform technologies for the
entire duration.

LTS C(I = 1, F = 1) 5 Years



112 managing large and complex systems

Ubuntu 12.04 C(I = 1, F = 1) LTS

ss–2 The Ubuntu platform distribution is built as a live and installable CD which
has a constraint of maximum size (< 700 mb).

ISO Size C(I = 1, F = 1) <700mb

ss–3 The release date is decided as per policy and is for most intents and
purposes, non–negotiable. Therefore, this is a strict constraint.

Release Date C(I = 1, F = 1) 2012–04–26

ss–4 The MonoGtk3 port is still under development and will not be ready
before the Release Date. The Banshee music app is developed on the
MonoGtk stack. Porting the app to Gtk3 cannot progress until the MonoGtk3

toolset is stable. On the other hand, the development of Rhythmbox is not
dependent on the status of the MonoGtk3 port, since it is coded in the C
programming language with libgobject bindings. Accordingly, the context
states are specified as:

MonoGtk3 C(I = 0, F = 0) Release Date
MonoGtk3 C(I = 1, F = 1) Banshee
MonoGtk3 C(I = 0, F = 0) Rhythmbox

ss–5 One of the goals of the LTS distribution is substantial migration of the
platform to the GTK+3 toolkit. This decision introduces a preference to
include a GTK+3 app where possible if it provides reasonable feature
parity with other alternatives. The Rhythmbox media player has been
completely ported to GTK+3. As seen in SS–4, MonoGtk3 still requires
further development.

GTK3 C(I = 1, F = 1) Ubuntu 12.04

GTK3 C(I = 1, F = 1) Rhythmbox
MonoGtk3 C(I = 0, F = 1) GTK3

ss–6 The Ubuntu One cloud service is fully implemented as a plugin for
Banshee. A Rhythmbox plugin is currently in development, and cannot yet
be considered firm.

U1 Service C(I = 1, F = 1) Banshee
U1 Service C(I = 1, F = 0) Rhythmbox

ss–7 In terms of licensing, both media players satisfy the criteria for Free and
Open Source software.



6.9 utilizing a solution specification 113

Licensing C(I = 1, F = 1) Banshee
Licensing C(I = 1, F = 1) Rhythmbox
With these constraints, the solution specification which is illustrated in Fig-

ure 6.4 is obtained.

ISO Size Licensing
Release 

DateLTS

Default 
Music App

C(I=1,F=0)

U1 Service

C(I=1,F=1)

Rhythmbox

GTK3

Figure 6.4: Solution shelf for the default music app specification.

6.9 utilizing a solution specification

The solution shelf illustrated in Figure 6.4 is one instance of the analysis and
intervention for the selection of the default music app in the Ubuntu 12.04 LTS
system. Subsequently, this recipe (solution specification) may be treated as a
member of another external shelf of recipes within the entire Ubuntu ecosystem.
There is no requirement for recipe membership to be unique to a particular shelf,
and depending on the granularity of analysis of the component system, the same
recipe may be utilized across multiple shelves.

Thus, along with the problem domain shelf, the solution shelf also encapsulates
a localized ontology which captures the intellectual concerns influencing the
selection of the default music app within the Ubuntu 12.04 LTS system.

Moreover, multiple paths of context refinement may provide a family of related
solution specification recipes populating related external shelves. For instance,
a DVD respin of the Ubuntu 12.04 LTS system may include the Banshee media
app since it is free of the ISO Size limitation. This will have further implications
for other component systems and their interactions and behavior. Hence, even
though shelf categorization need not be unique, a solution specification, or for
that matter, any recipe is unambiguous in translation even though multiple
pathways of implementation and further processing may exist depending on
the system context. The solution specification of Figure 6.4 provides a clear
pathway for analyzing the interactions of other component systems which may



114 managing large and complex systems

be affected as a result of the constraint to remove the MonoGTK3 binding
from the standard distribution. This approach provides the ability to treat each
component subsystem and its constituents as a localized and single ‘control
and execution context’ while making it possible to conveniently switch between
detailed component system analysis and an overall appraisal of the entire system.

Unintended side–effects may evolve due to the interactions between the recipe
for the default music app and the rest of the Ubuntu ecosystem. This is illustrated
by considering how the solution specification in Figure 6.4 affects the selection of
the default app for note–taking.

The external shelves (localized ontologies) for App Categories and some Default
Apps are depicted in Figure 6.5. The solution specification for the default music
app is now a recipe in the default apps shelf.

In order to analyze how the choice of Rhythmbox as the default music app
affects the selection of the default note app, concern refinement is performed to
populate the problem domain shelf illustrated in Figure 6.6.

Context refinement yields the following solution specification statements.

ss–8 It is a requirement for the note taking app to synchronize with the U1 Sync
service. Tomboy supports U1 Sync, while GNote lacks this functionality.

U1 Sync C(I = 1, F = 1) Tomboy
U1 Sync C(I = 1, F = 0) GNote

ss–9 As seen in SS–4, Rhythmbox does not have a dependency on the Mono
framework, which is not yet fully ported to Gtk3. In addition, GNote is also
independent of the Mono stack, while Tomboy has a contextual dependency
on the same.

Mono C(I = 1, F = 1) Tomboy
Mono C(I = 0, F = 0) GNote

ss–10 Consequently, the emergence of a contextual relationship between the
choice of the Default Music App and the Default Note App can be seen.

Default Music App C(I = 1, F = 0) Default Note App

ss–11 Following from SS–8, since GNote does not incorporate critical synchro-
nization features, it is not suitable for selection in the LTS distribution.

GNote C(I = 1, F = 0) LTS

ss–12 From SS–10, SS–4 and SS–2, it can be seen that the inclusion of Tomboy
requires the entire Mono stack, affecting the ISO size.



6.9 utilizing a solution specification 115

App Categories

Mail

Browser

Music

Video

Notes

11.10 Default Apps

Thunderbird

Firefox

Banshee

Totem

Tomboy

12.04 Default Apps

Rhythmbox

Note Apps

GNote

Tomboy

Music Apps

Rhythmbox

Banshee

Amarok

ISO Size Licensing
Release 

DateLTS

Default 
Music App

C(I=1,F=0)

U1 Service

C(I=1,F=1)

Rhythmbox

GTK3

Figure 6.5: Local ontology for default apps.



116 managing large and complex systems

LTS ISO 
Size Licensing Release

Date

GTK3

Mono

U1 Sync

Default Music App

Tomboy

GNote

Default Note App

Figure 6.6: The problem–domain shelf for selecting the default note app.

ISO Size C(I = 1, F = 1) Default Note App
ISO Size C(I = 0, F = 0) Tomboy

ss–13 Thus, the choice of the Default Music App results in the exclusion of
Tomboy. The relation between these two recipes is a strong constraint.

Default Music App C(I = 1, F = 1) Tomboy

ss–14 In light of SS–8, SS–9, SS–12 and SS–13, neither Tomboy nor GNote can be
selected as the default note app for the LTS distribution.

Tomboy C(I = 0, F = 0) Default Note App
GNote C(I = 0, F = 0) Default Note App
Default Note App C(I = 0, F = 0) LTS
In this case, owing to the choice of the Default Music App, the Ubuntu 12.04

LTS distribution will not ship with a default note app. The note app can be seen
to be a vaguely defined and unimplemented prototype.

The corresponding solution specification is illustrated in Figure 6.7.

LTS ISO 
Size

Default Music 
App

Tomboy

U1 Sync Default Note App

GTK3

C(I=1,F=1) C(I=0,F=0)

Figure 6.7: In this recipe, the Ubuntu 12.04 LTS distribution does not ship with a default
note app.



6.10 summary and conclusion 117

ss–15 On the other hand, if the presence of a default note app is considered as
a strong constraint, then in spite of the arguments against it, the only valid
choice is GNote. The resulting solution specification cannot be considered
an archetype owing to the ambiguity in the choice of GNote (the app lacks
critical synchronization features).

Default Note App C(I = 1, F = 0) GNote
As a result, GNote cannot be considered an archetype for the resultant solution

specification (Figure 6.8).

LTS ISO 
Size

Default 
Music 
App

GNote

U1 Sync Mono

GTK3

C(I=1,F=0) C(I=0,F=0)

Default 
Note 
App

Figure 6.8: In this recipe, the Ubuntu 12.04 LTS distribution can ship with GNote as the
default note app even though it lacks critical synchronization features.

6.10 summary and conclusion

The application of the OAR framework for the analysis and management of large
and complex systems has been presented in this chapter. The nature of large
systems of systems has been briefly considered, and it has been particularly
identified that the analysis, understanding and management of complex systems
can be further improved by utilizing the OAR framework to develop:

1. Localized ontologies to facilitate switching between detailed knowledge of
the component systems and an overall appraisal of the entire system.

2. The ability to treat each component system and its constituents as a local
and single control and execution context, thus enabling validation of the
component systems against overall goals and intent.

The process of selecting the default music app for the Ubuntu 12.04 LTS
distribution has been considered to illustrate the application of OAR to systems



118 managing large and complex systems

of systems, and a solution specification for this is obtained using the processes
of concern and context refinement. Localized ontologies and fixing the control
context enable the exposure of side–effects that might evolve across the Ubuntu
platform due to a particular solution specification for the default music app.

In the OAR framework, the process of analysis, design and operation of
a system is considered as a workflow formulation, solution specification and
implementation. An omnispective appraisal of large systems of systems enables
the capture of all identified intellectual concerns in component systems as
individual recipes. A problem scenario can then be reformulated in terms of
relevant recipes encapsulating the concerns in the component systems, their
mutual interactions and the influence they have on one another. The management
of these recipes (prototypes, archetypes and constraints in the problem scenario)
in shelves provides the ability to organize and use localized ontologies for
component systems, which are sufficient for analyzing, formulating and obtaining
solution specifications for the given application. Those concerns that are vaguely
understood but may be relevant to the outcomes of the system can be recognized.

The OAR processes of concern and context refinement facilitate the verification
and validation of intellectual concerns in component systems as well as verifying
the interactions between them and formulating their behavior and outcomes as
solution specifications in terms of, and conforming to, the OAR recipes. This
provides the ability to treat component subsystems as localized control contexts
within the larger system scope.

Further studies are needed to fully explore the scope and extent of the benefits
obtained by applying the OAR framework to the analysis and design of complex
systems.



Part IV

Conclusion

119





7 SOMA : OAR TOOL PROTOTYPE

[It] is almost always incorrect to begin the decomposition of a system
into modules on the basis of a flowchart.

Parnas [1972]

7.1 Soma: A Tool for Simple Omnispective Analysis and Reasoning 122

7.1.1 Initialization 122

7.1.2 Building the Problem–domain Shelf 123

7.1.3 Contextualization 124

7.1.4 Practical Considerations in Soma 124

7.2 Product Vision and Goal 126

7.3 Architecture Vision and Sprint Planning 126

7.3.1 Architecture Vision 127

7.4 Soma Development 128

7.4.1 Soma Sprint 1 128

7.4.2 Soma Sprint 2 135

7.5 Summary and Conclusion 137

The necessity of tooling and automation support becomes increasingly apparent
as the scale and magnitude of problems being tackled increases. For instance, the
use of tractors and combines becomes necessary in order to facilitate large–scale
cultivation within manageable timeframes. While manual cultivation, without
either the benefit or speed of tools, is certainly doable (not unlike in the
pre–mechanization era), the task of tilling thousands of acres before the sowing
season commences may simply not be feasible without automated processes.
Here, the need for automation and tooling support does not arise from any
inherent limitations in the concepts and processes of cultivation — concepts and
ideas always scale. Any limitations of scale emerge only through the limitations
of human capacity and the tools employed. Developing suitable automation
and tooling infrastructure bolsters the capacity to carry out large tasks within
reasonable timeframes.

Analogously, while the application of OAR to workflows incorporating signif-
icantly large number of concerns can be carried out manually, it is expedient to

121



122 soma: oar tool prototype

avail of tool support. To this end, the design and implementation of Soma, an OAR
tool prototype [Chemboli, 2012b] is presented in this chapter. This development
has been carried out using the Scrum approach [Pham and Pham, 2012; Schwaber
and Sutherland, 2011]. The origami iris flower workflow (Chapter 4) is used to
illustrate the formulation of a solution specification using Soma. Some directions
for further engineering and development are also indicated.

7.1 soma: a tool for simple omnispective analysis
and reasoning

The workflow for a research activity starts with the examination of the problem
situation and the scientific domain of the problem by omnispection and analysis
and abstracting the concerns of the research domain as suitable recipes. In light
of the discussion of the OAR framework in Part II and the illustrations presented
in Part III, the following requirements can be identified for a tool for supporting
OAR.

The ukes and uke groups that are necessary for formulating the research
problem are identified and formulated in terms of recipes which are abstracted
in a suitable form at the concept, model or implementation levels. Each recipe is
given a Universally Unique Identifier (UUID) for unambiguous reference and use.

The next requirement is the management and organization of recipes in shelves.
All available recipes are categorized and assigned to various external shelves.

The tool should support the definition and formulation of a problem domain
shelf by concern refinement. Here, the recipes which are considered relevant
to formulating the research problem are added to the problem–domain shelf.
Archetypes and constraints are identified by examining these prototypes in light
of the scientific basis of the research problem.

Finally, the tool should support the specification of a solution shelf by contextu-
alizing the archetypes and prototypes in the problem–domain shelf, subject to the
limitations imposed by the constraints.

In addition to the above requirements, provision for editing existing recipes and
shelves is a requirement for carrying out robust shelf management.

7.1.1 Initialization

A convenient way of visualizing the development of the workflow is to depict
the progression of the workflow on a canvas. It may be noted that the concept



7.1 soma: a tool for simple omnispective analysis and reasoning 123

of recipe is generic and various shelves employed may themselves be considered
as recipes which are identified with their UUIDs. As described in Section 3.15, in
case there are no preexisting external shelves with relevant recipes, the first step
consists of bootstrapping external shelves. Subsequently, the initial state of Soma
(Figure 7.1) can consist of external shelves with a number of recipes which are
suitably characterized and identified.

Shelves Recipes Description / Information of 
Shelf / Recipe

Uninitialized Problem-Domain Shelf

Shelf 4

Shelf 3

Recipe 2

Recipe 1✔

Shelf 2

Shelf 1✔

Recipe 4

Recipe 3✔

Figure 7.1: The initial state of Soma with several external shelves and an empty problem–
domain shelf canvas.

At this stage, the problem–domain shelf is an empty canvas.

7.1.2 Building the Problem–domain Shelf

Based on the nature of the research, a suitable name is provided for the
problem–domain shelf and a new recipe is created with this name and assigned
a UUID. Next, the problem–domain shelf is populated with recipes selected from
the external shelves by the OAR process of concern refinement as depicted in
Figure 7.2.

All recipes are initially considered as prototypes; on evaluation by reasoning
some of them are identified as archetypes in the problem–domain.



124 soma: oar tool prototype

Shelves Recipes Description / Information of 
Shelf / Recipe

Newly initialized PDS

Shelf 4

Shelf 3

Recipe 2

Recipe 1✔

Shelf 2

Shelf 1✔

Recipe 4

Recipe 3✔

PDS UUID is 
initialized

Figure 7.2: The newly initialized PDS is populated

7.1.3 Contextualization

Conversion of the problem–domain shelf into a corresponding solution shelf
begins with identifying the sequence of using the recipes and articulating the
contextual relations between them. Recipes that act as constraints in arriving at
the solution specification are identified by the OAR process of context refinement.
Although constraints may pertain to specific recipes or groups of recipes, they are
required for the entire solution specification to emerge. Placing the constraints on
the solution shelf boundary (as used in the illustrations in Part III) provides a
visual simplification. In practice, such a simplification may imply several different
paths of contextual relations as illustrated in Figure 7.3.

Hence explicit elaboration of constraint context may be sometimes required to
avoid any possible ambiguity in the solution specification. No ambiguity arises if
the constraint imposes universally on all the recipes in the solution specification.

7.1.4 Practical Considerations in Soma

In Soma, the processes of concern and context refinement, characterizing recipes
as archetypes and constraints are carried out interactively by the workflow
practitioner.



7.1 soma: a tool for simple omnispective analysis and reasoning 125

(a) Solution Shelf representation with 
Constraints on shelf boundary

(b) The visually simpli!ed representation in (a) may further correspond to 
various elaborations, two of which are illustrated  here.

Figure 7.3: Possible ambiguity due to visual simplification of constraint representation in
a solution shelf.



126 soma: oar tool prototype

All concerns — recipes, shelves, contextual relations — are represented by
recipes in Soma. This may result in rapid increase in the number of defined
recipes. This recipe proliferation may be managed by incorporating appropriate
categorization, tagging, search and retrieval processes. Since OAR is an epistemic
and conceptual framework, and scales infinitely, any limitations of scale in tooling
will arise solely from restrictions imposed by the particular choice and nature of
the underlying database frameworks employed.

A practical approximation in the OAR framework is the consideration of
context in OAR in terms of four discrete pairs of Firmness (F) and Influence
(I) (Section 3.16). The same practical approach is adopted in Soma to represent
contextual relationships.

7.2 product vision and goal

The product vision of Soma is to create a simple and representative application
for handling the processes of recipe creation, shelf management, and concern and
context refinement. The aim of the tool is to provide a reference implementation
of tool principles for OAR. The overall goal of Soma is to illustrate the processes
of OAR as simply as possible.

Accordingly, the scope of Soma can be stated as:

who (are the users) Tool developers and users of simple OAR workflows.

why (purpose) Illustrate a reference approach to automating and tooling the
OAR framework.

what (essential features) Recipe and Shelf management for the OAR frame-
work.

7.3 architecture vision and sprint planning

Using visual requirements gathering, the requirements for the Soma tool proto-
type which have been stated earlier in this chapter can be represented in the tree
and forest analogy illustrated in Figure 7.4.



7.3 architecture vision and sprint planning 127

Forest

Trees

Leaves

OAR Recipe 
and Shelf 

Management

1. Recipe Management
2. Problem-domain Shelf 
Management
3. Solution Shelf Formulation

1. Create Recipe, Save Recipe, Edit Recipe, 
Delete Recipe
2. Create Shelf, Populate Shelf, Edit Shelf
3. Formulate Context Relations in Solution 
Shelf

Figure 7.4: The requirements pyramid for the Soma OAR tool prototype.

7.3.1 Architecture Vision

Using the Feature Cluster process [Pham and Pham, 2012], the architecture cluster
for Soma is formulated as shown in Figure 7.5.

Recipe

OarContext

OAR Core Data 
Management

ShelfView

Shelf

Soma Logical View 
Management

ShelfCanvas

Soma Visual 
Management

Figure 7.5: Sliced view of the Soma architecture cluster.

This corresponds to the data architecture model of Soma illustrated in Fig-
ure 7.6.

As shown in Figure 7.6, a three–layered data architecture model is utilized to
semantically separate the representation of data in OAR and its visualization.



128 soma: oar tool prototype

Soma Visual Layer

Soma Logical Layer

OAR Data Layer

Used for 
managing 
display

Used for 
saving 
shelf views

Used for 
storing all 
OAR data

Figure 7.6: Data architecture model of Soma. Storage of OAR data is independent of
its representation in the Soma Logical Layer. The Soma Visual Layer can be
customized to generate different outputs.

The development of the Soma prototype is carried out using a horizontal sliced
approach across two sprints. In the first sprint, development of features concerning
the management of OAR Core Data and Logical View Management in Soma
is carried out. These features are further developed together with Soma Visual
Management features in the second sprint.

By following this approach, rudimentary Logical View Management features
can be implemented before OAR Core Data Layer is fully realized. As shown
in Table 7.1, this further enables the commencement of feature development for
Visual Management in the second sprint with incremental code drops.

7.4 soma development

The Soma implementation prototype is developed for the Ubuntu 12.04 LTS
platform [Canonical, 2012]. This is implemented in Python 2.7.x [Python Software
Foundation, 2012] using the PyGObject bindings for the GTK+3 toolkit [The
GNOME Project, 2012]. The data store for the application is managed by a local
instance of an SQLite database [SQLite, 2012].

7.4.1 Soma Sprint 1

The development of the data model for Soma and a corresponding workflow
model are undertaken in Sprint 1.

The organization of data models for Sprint 1 is shown in Figure 7.7.
The OAR data layer enables the storage and manipulation of recipe and shelf

definitions in a manner independent of their visual representation. The SQLite



7.4 soma development 129

Forest Trees Leaves

OAR Recipe
and Shelf
Management

Release
0.1

Sprint
1

Recipe
Management

Create, Save
Recipe

Shelf
Management

Create Shelf,
Populate Shelf

Sprint
2

Shelf
Management

Save Shelf,
Edit Shelf

Solution Shelf
Formulation

Formulate
Context
Relations

Table 7.1: Soma release and sprint planning.

Recipe

Shelf

OarContext

ShelfMember

ShelfContext

Figure 7.7: Soma data ring during Sprint 1.



130 soma: oar tool prototype

database stores recipe and shelf information, along with the details of the Soma
Logical Layer and the Soma Visual Layer. Each shelf in Soma corresponds to a
recipe which stores the shelf definition, and is thus a recipe itself.

The data model for Soma is illustrated in Figure 7.8.

Recipe

Recipe ID {I}
Name
Description
Firmness
Detail

Shelf

Shelf ID {I, R1}
Type

R1

Shelf Member

Shelf ID {R1}
Recipe ID {R1} 
Recipe Status

OAR Context

Context ID {I}
Recipe ID {R3} : Recipe A
Recipe ID {R3} : Recipe B
In!uence A_B

Shelf Context

Shelf ID {R2}
Context ID {R2} 

R2

R3
is a

exists 
for

Shelf View

X
Y

R4

Figure 7.8: Soma data model.

Creating a Recipe

The layered data architecture for Soma enables the management of OAR data
independently of its visual representation.

The opening screen of the tool prototype is illustrated in Figure 7.9.
The user–interface of Soma is divided into two main panels. The panel on the

left displays all available shelves and recipes in an expandable tree widget. An
expander widget to the left of a shelf name indicates that the shelf contains a
non–zero number of recipes. All uncategorized recipes are managed in a special
Uncategorized shelf.

The panel on the right is the display area for the recipe and shelf specification
canvas. If a shelf is selected in the shelves and recipes tree, the shelf details are



7.4 soma development 131

Figure 7.9: Opening screen of Soma.



132 soma: oar tool prototype

displayed in the specification canvas. Additionally, the specification canvas can
also be used to create a new recipe or edit an existing recipe.

Operations such as creating a new recipe or specification, or saving and editing
an existing recipe or specification are initiated from the App toolbar (Figure 7.10).

Figure 7.10: Creating a new recipe.

A recipe’s data structure (illustrated in Figure 7.8) is initialized using an
interactive dialog where the user provides information about the firmness of the
recipe. While the user can enter the name and descriptive values for the recipe
(Figure 7.11), the UUID for the recipe is auto–generated by the tool. The generated
UUID is a version 4 UUID, thus ensuring a significantly unique identifier for all
recipes managed by the tool.

Figure 7.11: Filling in the details for a new recipe. The recipe UUID is auto–generated.

All newly created recipes are added to the Uncategorized shelf. This shelf is
specific to the Soma implementation and houses recipes which are not currently
assigned to any domain–specific categorizations.

While each recipe is characterized by the four attributes (Recipe ID, Name,
Description and Firmness) illustrated in Figure 7.8, the specific nature of each
recipe determines its level of detail encoded in its definition.



7.4 soma development 133

56d0ac84-0525-4234-a8ec-0722c1a7e66d

Name : Flat Technique
Description : Flat technique of folding
Firmness :  HIGH
Detail : The !at technique for folding paper 

in origami.  The paper is kept on a 
!at horizontal surface and folded.

Figure 7.12: A recipe for the Flat technique.

For instance, one particular recipe for the Flat Folding Technique may be as simple
as the one–line description illustrated in Figure 7.12, while a recipe for the Valley
Fold (Figure 7.13) may reference external data sources.

ac72b4a5-0f74-4704-8a8a-ea8d3d8884e3

Name : Valley Fold
Description : Valley fold in origami
Firmness :  HIGH
Detail : See https://en.wikipedia.org/wiki/

File:Origami_symbol_valley_fold.svg

Figure 7.13: A recipe for Valley fold.

Thus, the exact nature and detail of recipe encoding depends not only on
the nature of the domain to which the recipe belongs, but also on the level of
abstraction, i.e., concept, model or implementation.

Creating a Shelf

The creation of a new shelf in Soma is similar to the process for a recipe.
As seen from Figure 7.8, every shelf is a recipe with predetermined presets. The

only difference is the absence of user–input for firmness — a new shelf is implicitly
of low firmness in Soma (Figure 7.14).

An external shelf for future use is created by simply creating a new shelf and
adding recipes to it. Recipes can be added to a problem–domain shelf by dragging
them from the available shelves and recipes. Figure 7.15 illustrates the result after



134 soma: oar tool prototype

Figure 7.14: Entering the details of a new specification.

Figure 7.15: Recipes in the Problem–domain Shelf view.



7.4 soma development 135

concern refinement for the problem–domain shelf of the origami iris flower folding
workflow.

7.4.2 Soma Sprint 2

Features in the Soma Logical Layer and the Soma Visual Layer, and the for-
mulation and specification of context relations between recipes in the solution
specification are implemented in this sprint.

Solution Specification Formulation

Right–clicking a prototype in the specification canvas presents a menu for setting
the recipe state (Figure 7.16).

Figure 7.16: Assigning recipe state.

Depending on problem analysis, a prototype can be configured as either an
archetype or a constraint.

Once the constraint is selected, the symbol displayed for the recipe (circle)
changes to a rhombus to show that the recipe has been configured as a constraint.
For instance, the Flat, Square Paper and 60gsm recipes have been identified as
constraints in Figure 7.17.



136 soma: oar tool prototype

Figure 7.17: Constraints for the origami iris flower specification. The Frog Base, Mountain
Fold and Flap recipes are not shown in this figure.

Specifying Context Relations

The contextual relationship between two recipes is defined by first selecting them
and then assigning a value for the influence of the first recipe on the second. As
described in Section 3.16, for any two recipes A and B, the context relation is
defined as CAB(IAB, FA). As illustrated in Figure 7.18, in the Origami problem of
folding an Iris flower, a context relation between the Square Paper constraint and
the Frog Base recipe can be defined by selecting these two recipes. Upon selection,
the color of the first recipe (Recipe A) selected for the context relation changes to
red. Similarly, the color of the second recipe in this relation (Recipe B) changes to
blue when it is selected for specifying the context relationship.

Figure 7.18: Selecting recipes for context refinement.

Next, right–clicking Recipe B (Frog Base recipe) displays the popup menu for
selecting the influence exerted by Recipe A (Square Paper recipe). This is illustrated
in Figure 7.19.



7.5 summary and conclusion 137

Figure 7.19: Assigning recipe influence.

Saving the Shelf

After determining additional context relations between other recipes which are
selected for the problem specification, the solution shelf is saved by selecting the
Save option in the toolbar. Once the solution specification is saved, it is added to
the list of available shelves for further use. As seen in Figure 7.20, a new shelf for
the Iris flower specification is added to the list of shelves and recipes in the left
panel.

This newly created solution shelf recipe for folding an iris flower can now be
refined further or reused in a new problem specification as required. The use of
Soma in the specification of the iris flower folding workflow (Chapter 4) described
in this chapter is also illustrated in a short demonstration [Chemboli, 2012a].

7.5 summary and conclusion

Even though the OAR processes may be carried out manually, there is a need for
systematic tooling support for recipe and shelf management using the processes
of concern and context refinement. Such support is not only desirable but also
necessary to apply OAR to problems involving large number of concerns and
recipes. As a first step in this direction, the design and implementation of Soma, a
prototype tool for OAR, is presented in this chapter. The following requirements
were identified for the tool:



138 soma: oar tool prototype

Figure 7.20: Saving the solution specification.



7.5 summary and conclusion 139

1. Unambiguous management of ukes and uke groups in recipes by assigning
UUIDs.

2. Categorizing and managing recipes in shelves.

3. Support for defining and populating a problem–domain shelf using concern
refinement.

4. Solution shelf specification by context refinement.

5. Visual representation of recipe and shelf management.

The development of the reference tool implementation is carried out using the
Python–GTK+3 development stack for the Ubuntu 12.04 LTS platform. A SQLite
database is employed in this implementation.

The implementation described in this chapter is simple and rudimentary; it is
meant to highlight the essential features that are required of a tool for OAR. The
addition of features such as drag–and–drop editing of shelves, handling direction-
ality of context relations, tagging and categorization support for incorporating
provenance data for recipes and adding support for translation engine recipes for
implementation–level workflows is desirable for handling large–scale workflows
with Soma. While implementing these features in Soma is beyond the scope of the
present thesis, they constitute important future directions of research for robust
tool development for OAR.





8 SUMMARY AND CONCLUS IONS

Now I begin to think my reputation, such as it is, will suffer shipwreck
if I am so candid. ’Omne ignotum pro magnifico.’

Everything becomes commonplace by explanation.

The Adventures of Sherlock Holmes: The Red-Headed League [1985]

8.1 Summary of Contribution 142

8.1.1 An Enhanced Definition of Scientific Workflow 142

8.1.2 Omnispective Analysis and Reasoning 142

8.2 Limitations of Contribution 145

8.3 Related Work 147

8.4 Viewing Enterprise Architecture through OAR 148

8.4.1 Enterprise Architecture and Architecture Frameworks 149

8.4.2 Applying OAR — Architecture Views as Workflows 152

8.5 Directions for Future Work 155

8.5.1 Managing Fractional Values for Firmness and Influence in Recipe
Context 155

8.5.2 Tool Support 155

8.5.3 Moodle OAR Plugin 156

8.5.4 Application to Complex Systems 156

8.5.5 OAR as Science of Workflows 156

The aim of this thesis is to formulate, develop and demonstrate an epistemic framework
for managing intellectual concerns in scientific workflows. This aim has been achieved
through the conception, formulation, development and demonstration of Omnis-
pective Analysis and Reasoning (OAR).

This chapter is organized as follows. A discussion of the main contributions
made in the thesis is presented in Section 8.1. The scope and limitations of the
contribution are considered in Section 8.2. A discussion of similar and related
work is included in Section 8.3. This is followed by a brief discussion on viewing
enterprise architecture through OAR in Section 8.4. Finally, Section 8.5 presents
recommendations for future directions of research.

141



142 summary and conclusions

8.1 summary of contribution

The research reported in this thesis has resulted in the following contributions.

8.1.1 An Enhanced Definition of Scientific Workflow

It has been shown in chapters 2 and 3 that the current practice of scientific
workflows is restricted to the programming of steps for designing and implement-
ing experimental processes and data management techniques. The term scientific
workflow in current parlance has been established by ad hoc usage without formal
definition.

Since scientific workflows deal with all the facets of a scientific project, the
Scientific Method is applied in this thesis to arrive at a well–rounded and
enhanced definition of scientific workflow beyond the currently understood scope
of computer flowcharting:

A scientific workflow is a representation of any logical, systematic and
repeatable inquiry, investigation and corresponding set of actions.

This is a Definition by Relationship which extends the scope of ordered analysis
and investigation to any problem scenario. In addition to incorporating the
traditional view of scientific workflows, any workflow that has been specified in
terms of a well–formed structure consisting of Foundation, Theory and Methodology
is covered by this definition.

This definition brings under the purview of scientific workflow management
even those problems which may not be conventionally described as scientific activ-
ity, but may yet be analyzed, modeled and orchestrated by the scientific method.
Any problem that can be specified in terms of a basis, parameters, processes
and interactions, can be handled by a scientific workflow. Thus, according to the
enhanced definition formulated in this thesis, the concept of a scientific workflow
need not be restricted to structured steps of laboratory processes.

8.1.2 Omnispective Analysis and Reasoning

It has been brought out in Chapter 2 that the management of intellectual concerns
in current scientific workflow practice is unsatisfactory. The following factors were
identified:

1. Focus on low–level implementation details.



8.1 summary of contribution 143

2. Inadequate context support and management.

3. Depending on the scale of the problem, the task of developing shared
semantics across disciplines can become intractable and unmanageable.

4. Lack of support for verification and validation of the underlying science of
the workflow.

These observations led to the conjecture that the management of intellectual
concerns can be improved by:

1. Providing a layer of abstraction to lift focus from low–level implementation
details.

2. Adding context as a parameter of scientific workflow components and
participating processes.

3. Introducing localized ontologies applicable to a particular instance of a
problem situation; and

4. Providing an abstraction to capture and organize intellectual concerns in the
problem domain and map them to the workflow specification and execution
semantics.

Based on this conjecture, the ideas which form the foundations of Omnispective
Analysis and Reasoning were conceived, resulting in the formulation and develop-
ment of the OAR framework which is presented in Chapter 3.

The concepts developed in OAR are:

1. Omnispection, Analysis and Reasoning: Omnispection provides an overall ap-
praisal of a system. Analysis entails a close examination of all the recognized
entities contained therein. Discovery of the relationships and interactions
between the entities and also with their environment is facilitated by
Reasoning.

2. CMI Hierarchy: A concern or entity present in a problem domain may be
abstracted at three levels of conceptualization — the Concept, Model and
Implementation levels.

3. Unit Knowledge Entities (ukes): Application of OAR results in assembling
all the relevant information of the inquiry domain abstracted into Unit
Knowledge Entities (ukes) at the Concept, Model or Implementation levels. This
clearly encapsulates all the relevant interrelationships and forms the overall
repertory from which the scope of the problem can be defined and a solution
formulated.



144 summary and conclusions

4. Context of a recipe: Context in OAR specifies the scientific validity of a uke
and its relevance to the problem under study. Uke context is a function of
the attributes Firmness and Influence. Firmness is based on the validation of
the recipe with reference to the foundation and theory of the science of the
problem. The relevance of a recipe to the problem and solution specification
is denoted by Influence.

5. Prototypes, Archetypes and Constraints: Recipes are groups of ukes formed
for convenience. Depending on the degree of Influence and Firmness in
relation to the problem under study, recipes are considered as Prototypes,
Archetypes or Constraints. A prototype is a recipe without any consideration
of its applicability; archetypes are recipes that are exemplars or best practice;
a constraint is a special instance of an archetype which imposes strict criteria
in the problem domain.

6. Concern Refinement: The OAR process of concern refinement is the identifica-
tion of recipes which are relevant to the problem under consideration.

7. Context Refinement: Context refinement is the process of determining the
relevance of recipes to a problem domain and developing a mapping of
the contextual relationship between recipes within a solution specification.
The processes of concern and context refinement together provide the
epistemological basis that ensures verification, validation and mapping of the
relevant recipes to the workflow.

8. Managing recipes in shelves: Recipes are managed in the OAR framework
using shelves — simple unordered collections. These are categorized as Exter-
nal, Problem–domain and Solution shelves. External shelves hold all the known
prototypes from different domains of interest in the analysis of the problem.
A problem–domain shelf is populated with recipes selected from external
shelves that satisfy given criteria in the problem under consideration. The
solution shelf is an interconnected specification of archetypes in the problem
domain subject to identified constraints.

9. Localized Ontologies: Shelf management facilitates localized ontologies in the
OAR framework. These are formed by considering satisficing knowledge for
the problem domain, thus relaxing the requirement of exhaustiveness in
ontology development. If further analysis of the problem situation reveals
additional interacting concerns, the localized ontologies may be further
extended and refined.

The examples presented in chapters 4 to 6 demonstrate the applicability and
potential of the OAR framework. The Origami workflow for Iris flower folding in



8.2 limitations of contribution 145

Chapter 4 clearly illustrates the processes of OAR — verification and validation of
recipes, concern and context refinement as well as the management of intellectual
concerns by lifting focus from low–level implementation details.

Chapters 5 and 6 demonstrate the application of OAR to tackle generic workflow
problems that can also be considered as systematic scientific activities. The
application of OAR for contextualizing course design demonstrates the use of
OAR in capturing the rationale of design decisions in a course and mapping
them to desired outcomes. The application of OAR for the analysis, understanding
and management of complex systems is described in Chapter 6. Using the OAR
framework, large systems can be analyzed and managed as an aggregation
of localized ontologies with explicit specification of mutual interactions and
influence. The omnispective outlook, taking into account the details of individual
subsystems and their interactions, facilitates verification and validation of the
system with insight as well as management of the system development lifecycle.
Localized ontologies, and fixing the control context, enable the exposure of
side–effects and behavior that may emerge due to the choice of any particular
solution specification.

A simple and illustrative implementation of Soma, a prototype tool for OAR,
is presented in Chapter 7. The current iteration of Soma provides support for
managing and visualizing recipes and external, problem–domain and solution
shelves. Though rudimentary in features, Soma is intended to be a first step in
the development of a reference tool implementation for the OAR framework.

8.2 limitations of contribution

The processes and concepts used in the OAR framework are based on the ideas of
Analytical Philosophy, and hence their limitation is only the limitation of human
thought processes to–date. The OAR framework as such, does not suffer any
limitations. The open and evolving nature of science is embodied in the OAR
framework by adhering to the Domain of Science Model (DoSM) and utilizing the
OODA refinement process. Hence, the framework may always be tuned to meet
the task of analyzing a problem. Any limitations in demonstrating the applicability
of OAR spring from the inherent limitations in the applications considered.

The specification of context within the OAR framework is currently limited
to a simplified approximation of four discrete sets of influence and firmness
values. Fractional values of context indicate vagueness and gaps in knowledge
in the problem domain. Additional research is desirable to devise formalism for
specifying and utilizing fractional values of influence and firmness.



146 summary and conclusions

Ascertaining how well OAR handles the management of intellectual concerns in
comparison to current scientific workflow management methodologies cannot be
reasonably addressed at this juncture because there is no standard for comparison.
In current workflow practice, there is no provision for identifying, capturing,
verifying and validating intellectual concerns of the research domain, nor there
is any deliberate focus on ensuring and verifying that the correct scientific
workflow is modeled and implemented for the problem situation. As discussed
in chapters 2 and 3, current approaches mainly address the logistics of workflow
implementation and orchestration, and any form of validation is normally carried
out outside the workflow as an independent and separate activity.

The choice of simple and concise applications to illustrate the concepts and
application of the OAR framework is not a limitation imposed by OAR. The
examples are deliberately chosen to be pithy and lucid enough to satisfy the aim
of illustrating and explaining OAR. The purpose is not to make a ‘discovery’ in
either origami or course design or complex systems, but to provide an adequate
illustration and demonstration of the OAR framework. Tackling a particular
problem in this exercise is incidental.

Hence, raising objections like — origami is not a scientific workflow, the course
design illustrated may not necessarily be the most desirable one that can be
produced, a ‘complex system’ should be ‘more complex’ than the Ubuntu 12.04

LTS ecosystem — is not relevant here. Such objections, as Peirce [1877] argues,
would only stem from tenacity in fixing belief.

The applications presented in chapters 4 to 6 are manageable examples and
serve to demonstrate the main features and applicability of the OAR framework.
Large–scale evaluation of Omnispective Analysis and Reasoning would require en-
gagement with full–fledged scientific research projects where the OAR framework
guides the planning and execution of the research. The application of OAR to
research problems of significant scale involves considerable effort in proportion to
the magnitude of the problem. This, in turn, requires comprehensive end–to–end
tool support for better manageability — the development of such tooling is beyond
the scope of this thesis. While the reference tool implementation for OAR (Soma)
presented in Chapter 7 enables simple management and visualization of recipes
and shelves, it currently lacks features such as provenance support and recipes for
translation engines for handling large–scale workflows.



8.3 related work 147

8.3 related work

The issues affecting the management of intellectual concerns in scientific work-
flows have been discussed in chapters 2 and 3 of this thesis. It was also pointed
out that in so far as it could be ascertained, there are no indications in literature of
any significant approaches attempting to address these issues. So, finding ‘related
work’ can only be based on seeking a similarity of thinking in other research
contexts. Such similarities may not be readily visible.

Integration and Implementation Sciences (I2S) [Bammer, 2006] is a new initiative
that attempts to bring together experts and scientific information from different
disciplines and facilitate interaction and dialog through a common hub, for the
purpose of creating a pool of interdisciplinary knowledge. Here the parallel one
can discern is with the idea of Omnispection since the I2S initiative attempts
to catalog domain–wise information. The focus of I2S is mainly to provide an
information base that may be useful across multidisciplinary projects. On the other
hand, the OAR framework represents the result of focused research — to analyze
a problem, formulate a workflow specification, and determine means of workflow
implementation.

Some instances can be cited which have ideas somewhat similar to the concept
of localized ontologies formulated in OAR. Unified Structured Inventive Thinking
(USIT) [Sickafus, 1997] is a structured, problem–solving methodology primarily
used in the automotive industry for obtaining solutions to engineering problems
by focusing on a limited set of available information resources, and ‘inventing’
approaches to remove the difficulties encountered. Although USIT does not care
to dwell upon theoretical considerations, the functioning of this methodology
displays similarity to the operation of Localized Ontologies realized in the OAR
framework through the use of shelf management. Aspect–Oriented Thinking
(AOT) [Flint, 2006] is an approach to analyze multidisciplinary problem situations.
The different disciplines involved in the problem are separated into autonomous
domains, each domain corresponding to one particular discipline. Domain
knowledge is captured in a domain model and a set of such models spanning
a variety of disciplines is invoked to create the system. Partitioned Iterative
Development [Sessions, 2006] is a process suggested for rapid development of
system architectures. Partitioning a large system into parts based on functions
or activities and prioritizing development of the partitions based on lower cost
and higher visibility of the outcomes is expected to increase the chances of
rapid development. The set of domain models of AOT and the partitions in
the partitioned iterative development may be considered as concepts somewhat
similar to localized ontologies in OAR.



148 summary and conclusions

In OAR the term context stands for the well–formedness of a uke (designated
as firmness F) and its influence on another uke (designated as influence I) and
is denoted as C(F, I). Here, context as a parameter has been introduced and
employed in a manner analogous to a thermodynamic parameter, making it
useful for identifying archetypes and constraints and for unambiguously realizing
problem and solution specifications of a workflow. A model of ‘context’ which has
been used in analyzing relationships in a problem [Alshaikh and Boughton, 2009]
has been mentioned in Chapter 2. This model of context uses two conceptual
entities ‘perception’ and ‘influence’; if the connection between two objects is
‘obvious’, the context is termed as ‘explicit’ and in the absence of such obvious
connection it is termed ‘implicit’. Influence is considered to be a ‘force’ graded
from a tangible feature like ‘fit’ to notional features like ‘passion’ and ‘culture’.
Alshaikh and Boughton [2009] observe that their formulation when applied to
a problem, may result in some context relations that seem to be ‘incorrect’ or
‘awkward’, and therefore would require further development and refinement.

8.4 viewing enterprise architecture through oar

The growing importance of architectures and architecture frameworks in the
design and management of large software–intensive systems, has been well–
recognized for over two decades [Garlan and Shaw, 1993]. Nowadays it is trendy to
mention Architectures and Architecture Frameworks like Department of Defense
Architecture Framework (DoDAF) [DoD CIO, 2010] while discussing frameworks
of any kind. This is particularly so in view of the visibility of such architecture
frameworks and the involvement of several reputed agencies, tool developers and
vendors in developing and advocating their use and usefulness.

It has been suggested [Boughton, C. (May 2012), private communication] that
it would be interesting to consider how enterprise architecture frameworks stand
when viewed with reference to the processes of OAR.

At first sight, it may appear extraneous to include a discussion of enterprise
architecture framework in the context of presenting OAR which is an epistemic
and theoretical framework. However, one can contend that there is a certain
relevance based on two considerations:

1. The tradition of software engineering research has been adaptive inclusion
of ideas and concepts from a variety of domains and this would encourage
foraging into other domains.



8.4 viewing enterprise architecture through oar 149

2. In OAR, the concept of a workflow has been generalized to include any logi-
cal and systematic inquiry. The views produced by means of an architecture
framework are based on a logical and systematic inquiry directed at the
architecture description.

A brief overview of architecture frameworks is presented in this section. As a
representative case, the salient features of DoDAF are given. The similarity of an
architecture view to a service workflow is pointed out. The process of generating
architecture views using OAR is outlined.

8.4.1 Enterprise Architecture and Architecture Frameworks

The ISO/IEC/IEEE/42010 standard [ISO/IEC/IEEE, 2011] defines architecture
and related terms. An architecture according to the standard is defined as:

Fundamental concepts or properties of a system in its environment
embodied in its elements, relationships and in the principles of its
design and evolution.

According to this definition, an architecture is a set of concepts pertaining to
the essential features of a system, or it may stand for a set of properties of the
system as perceived by the designer (referred to as an Architect). All the artifacts
used to express and document the architecture are considered as comprising an
Architecture Description (AD).

An architecture has the following key features:

1. An architecture exists in the context of its environment and consists of the
essential concepts and/or perception of the system represented by it.

2. The features of an architecture are archived in the form of an architecture
description. The AD is required to indicate clearly who are the individual
stakeholders and how their needs and concerns are fulfilled.

3. Addressing stakeholder concerns is realized through a number of Architec-
ture Views of the system. Each view is designed in such a way as to clearly
present an identified and pre–determined set of stakeholder concerns.

4. The rules and processes for generating the views are prescribed by an
Architecture Viewpoint (AVP). These rules and processes are to be explicit
and unambiguous in producing the view. Each view, by design, has to be
specific to address the concerns of a particular stakeholder.



150 summary and conclusions

Since Architectures can be as diverse as the systems they represent, with
different systems having vastly different sets of concerns and stakeholders, the
standard does not specify how many views or what kind of views are to be
incorporated; it only insists that all stakeholders should be identified and their
concerns presented as views.

An Architecture Framework (AF) embodies all the conventions, principles and
practices that are formulated for the purpose of describing the architecture specific
to a particular domain of application.

All the details of the features of the architecture, architecture description, views
and viewpoints are captured and documented in the form of a Conceptual Model
or meta–model of the Architecture. The meta–model is expected to articulate ex-
plicitly all the key concepts and terms for providing the Architecture Description.
Additionally, it should encompass all the features of the architecture framework,
the Architecture Design Language (ADL) and the viewpoints. The AF must clearly
spell out which are the concerns, the stakeholders who have these concerns and
the viewpoints that capture these concerns. Consistency between the different
views generated is assured by including in the architecture framework suitable
rules integrating the viewpoints. Thus a system is represented by an Architecture,
the details of which are given by the Architecture Descriptions that are embodied
in a Framework consisting of ViewPoints that can be utilized to produce Views for
different stakeholders. The purpose of the Views is to enable the stakeholders to
carry out necessary action in the management of the system.

In a fast–growing field like Software Engineering, innovative applications do
not wait for standards to be formulated; it is rather the standards would try to
categorize and describe the innovations and record the best practices. A number
of Enterprise Architectures have come into vogue with a spread in the meaning of
the term Architecture with confusion (a lament indicated in the Standard) between
abstract ideas and the artifacts used for describing the ideas.

Several enterprise architecture frameworks, proprietary as well as open–source,
are being used in various organizations and enterprises. Some of these are
developed by consortia of industry and research organizations and some by
defense and other governmental agencies.

A comparative analysis of six architecture frameworks in terms of how the
goals, inputs and outcomes have been addressed in the frameworks is presented
by Tang, Han, and Chen [2004]. They find that all the frameworks examined
support the purpose of software architecture development to various degrees
and the frameworks TOGAF, DoDAF and FEAF additionally address issues of
architecture planning, evolution and system interoperability. They point out one
main deficiency — the level of detail required in an architectural model is generally



8.4 viewing enterprise architecture through oar 151

not specified and the architecture rationale is not a mandatory part of the model
and consequently the architecture models cannot be verified or traced.

A concise account of the various processes involved, the status and challenges of
enterprise architecture is given by Op’t Land et al. [2009]. They describe enterprise
architecture as an “instrument for informed governance” which is still “in early
stages of development” with no scientifically documented evidence of success in
application. It is pointed out that the practice of enterprise architecture has yet to
demonstrate its effectiveness “to aid organizations in solving their transformation
problems in a repeatable and predictable fashion,” and the need for fundamental
research to clarify several aspects of the field is advocated.

As an example of a typical architectural framework, the salient features of
DoDAF are reproduced below [DoD CIO, 2010; IEEE, 2012]:

id DoDAF

name US Department of Defense Architecture Framework

purpose To enable the development of architectures to facilitate
the ability of Department of Defense (DoD) managers at all
levels to make key decisions more effectively through organized
information sharing across the Department Joint Capability Areas
(JCAS), Mission Component and program boundaries.

scope US DoD

viewpoints All; Capability; Data and Information; Operational;
Project; Services; Standards; Systems

DoDAF, essentially, is specification of a standard for Enterprise Architecture
Framework in the domain of US Department of Defense. This consists of a
framework and a conceptual model to enable development of a number of
architecture views for the use of managers at various levels. The views are meant
to assist management and decision–making functions. How the data has to be
exchanged is prescribed by the DoDAF Meta–Model (DM2). The standard and
the meta–model contain details and guidelines for tool designers and vendors to
follow in developing and producing tool support.

The configuration — structure and details of content — of DoDAF has evolved
over the past twenty years as a continuing effort of the Department. The DoDAF
viewpoint definitions, model specifications, glossary, and DM2 meta–model are
still undergoing improvements and clarifications with the participation of various
stakeholders [DoD CIO, Architecture & Infrastructural Directorate, 2012]. Tools
by various vendors are at different levels of development and readiness, and the



152 summary and conclusions

ongoing “Configuration Management Process” is scheduled to be completed by
the end of 2012.

It is interesting to note that the evolution and development of DoDAF spans
the development timeframe of enterprise architecture and architecture framework
evolution. Hence the documentation of the various stages of DoDAF development
is a good source for the historian to trace the evolution and development of this
technology.

8.4.2 Applying OAR — Architecture Views as Workflows

As pointed out in Chapter 2, a marked distinction exists between the conventional
view of business workflows and scientific workflows concerning the way the
workflow may evolve and change during execution and the agent responsible for
specifying the workflow process. A business process specialist or administrator is
responsible for setting up a business workflow. Once formulated, the workflow
is used in a routine manner with minimal changes over time. In architecture
frameworks, the viewpoints are predefined to produce the views as outcomes.
Hence, these fall under the category of business workflows. Alternately, one may
consider these as service oriented workflows.

Another way of looking at architecture frameworks is that they are database
management systems with report generating tools incorporated to produce reports
(views) having a predetermined structure and content with the constraint that all
of the several views generated are consistent with each other and with the contents
of the database (which in this case is the architecture description). Epistemological
considerations do not figure in these frameworks.

The process of enterprise architecture development consists of four steps —
data collection, preliminary view generation, review and revision of the views
and publishing the views [CIO Council, 2001]. The framework requires support of
relevant tools at various stages of this process. Building an architecture is steeped
in a variety of implementation details. All the nouns, verbs and connective phrases
of architecture viewpoints, procedures and outcomes are geared to low–level
procedural constructs. Since there can be several flavors of enterprise architectures,
they will be considered in abstract terms to keep generality for the purpose of
examining them in terms of OAR.

Collecting data sufficient to provide adequate and clear description of the
enterprise is akin to omnispection. Generating preliminary views and refining
them is like formulating models of the process and publishing the views is the
implementation providing the outcomes. This, in short, is a concept–level view of
enterprise architecture.



8.4 viewing enterprise architecture through oar 153

Since the procedures for data validation and the rationale of the models used
are not mandated in the framework, validation of data and verification of the
models depend on the strategies, policies, present state and vision of the enterprise
(which are incorporated in the architecture meta–model). Consequently, validation
of data and verification of models is not an open feature and no epistemological
considerations are specified in these frameworks.

Stakeholder concerns are addressed by providing views that are designed to
present the concerns considered relevant at a level of detail appropriate to the
role of the stakeholder. The rules, procedures and details of the information to be
presented are specified in a viewpoint. Details of stakeholders and their concerns,
viewpoints and views, rules and tools needed for implementation fall within
the purview of the architecture framework and are defined and specified in the
architecture meta–model.

In OAR, the analysis, design and operation of a system is considered as a
workflow formulation and solution specification. All identified entities in the
system — which include details of component systems and their interactions,
conventions, rules, policies, procedures, software implementations and tools —
which constitute the architecture description are the recipes in external shelves.

To obtain a viewpoint appropriate for a given stakeholder, the OAR process
of concern refinement is carried out as per the prescription of the meta–model
to select relevant recipes into the problem–domain shelf. Context refinement
gives the viewpoint in the solution shelf. Viewpoints so generated for different
stakeholders are considered as recipes and held in a viewpoints external shelf for
future use.

The workflow for generating the views is analogous.
The problem–domain shelf contains the relevant viewpoint, tools and con-

straints as prescribed by the meta–model. A conceptual representation of the OAR
process for realizing the view is shown in Figure 8.1. The views generated are
collected in a views shelf for reuse.

Any changes in the status of the concerns or specifications in the meta–model
are incorporated by adding new recipes or modifying existing recipes. Such
changes may be recorded in the representation of the recipes to indicate their
evolution.

Examining the context of recipes (contextualizing the recipes with respect to the
outcomes) exposes the concerns that might have become irrelevant or relevant
but not adequately enunciated. The former are considered for retirement or
replacement while the latter represent ‘gaps’ in the architecture description and
require further study.



154 summary and conclusions

SC1

SC2

SCn

.

.

.

Stakeholder
Concerns

VP1

VP2

VPn

.

.

.

Viewpoints

R1

R2

Rn

.

.

.

Meta-model
Rules

T1

T2

Tn

Tools

V1

V2

Vn

Views

SCx

Rx

TxVPx

SCx

Rx

Tx

VPx

External
Shelves

Problem-domain
Shelf

C(I=1,F=1)
C(I=1,F=1)Solution

Shelf

Figure 8.1: OAR process for generating architecture views.



8.5 directions for future work 155

The OAR processes of concern and context refinement ensure that the views
generated are consistent with each other as well as with the overall system
description provided by the recipes in the external shelves.

The application of OAR can be carried out at different levels of granularity,
and facilitates integrated management of a system with reference to the criteria
incorporated in the architecture framework. OAR does not impose any scalability
restrictions, any issues of scalability and interoperability only arise from the
technology and tools employed for implementing the architecture.

8.5 directions for future work

Some activities for future research and development of the OAR framework are
given in this section.

8.5.1 Managing Fractional Values for Firmness and Influence in Recipe Context

The existence of fractional values for firmness and influence implies that exact
solution specifications may not be possible with the available set of recipes.
This reflects vagueness and lack of knowledge in the understanding of the
problem situation. As discussed in Section 3.17, recipe context in OAR is currently
represented by four discrete context tags as a practical approximation. “Managing
unknowns is just as important as making maximum use of what is known when
responding to real world problems” [Bammer and Smithson, 2008]. Thus it would
be useful to evolve a formalism for managing fractional values for firmness and
influence and using them to characterize vagueness and associated risks that may
evolve from the use of ‘imprecise’ solution specifications.

8.5.2 Tool Support

Extending Soma by integrating existing scientific workflow management systems
and methodologies as implementation level recipes in OAR solution specifica-
tions will provide support for translating the solution shelf to executable form.
Additionally, it is desirable to develop end–to–end tool support to facilitate the
application of OAR to large systems. Incorporating automated reasoning support
for OAR tasks and processes, and providing support for rapidly bootstrapping
external shelves with domain–specific knowledge will significantly contribute to
the management of large projects.



156 summary and conclusions

8.5.3 Moodle OAR Plugin

Application of the OAR framework to contextualize course design has been
presented in Chapter 5. This could be further extended by the development of a
workflow plugin for the Moodle LMS to facilitate the capture and representation
of intellectual concerns and rationale in course design and implement them using
Moodle tools and resources. Such a plugin would improve the connection between
the goals and intent of a course and its delivery using the Moodle LMS.

8.5.4 Application to Complex Systems

The application of OAR to the analysis and understanding of a complex system
has been considered in Chapter 6. Further studies are necessary to fully explore
the scope and extent of benefits of the application of OAR to the analysis and
management of complex systems.

8.5.5 OAR as Science of Workflows

The need for the development of a science of workflows has been felt for quite
some time in the workflow community [Deelman and Gil, 2006b]. The foundation,
theory and methodology for a science of workflow management have been
proposed, developed and designed as the OAR framework in this thesis. The
applicability of the framework has been demonstrated by examples. In other
words, the contribution in this thesis corresponds to an instance of the Domain
of Science Model (DoSM) for workflow management. Thus, if augmented with
reasoning systems, implementation engines and knowledge bases for different
domains, the OAR framework has great potential for evolving into a well–formed
Science of Workflows.



B IBL IOGRAPHY

Abbott, R. (2006). “Open at the top; open at the bottom; and continually (but
slowly) evolving.” In: 2006 IEEE/SMC International Conference on System of
Systems Engineering. IEEE. doi: 10.1109/SYSOSE.2006.1652271 (cit. on p. 109).

Adelsberger, H., Körner, F., and Pawlowski, J. (1999). “Continuous improvement
of workflow models using an explorative learning environment.” In: Proceedings
of World Conference on Educational Media EdMedia 1999, pp. 506–511 (cit. on p. 18).

Akarsu, E., Fox, G., Furmanski, W., and Haupt, T. (1998). “WebFlow: high-level
programming environment and visual authoring toolkit for high performance
distributed computing.” In: Proceedings of the 1998 ACM/IEEE conference on
Supercomputing. doi: 10.1109/SC.1998.10046 (cit. on pp. 15, 21).

Alexander, C. (1964). Notes on the Synthesis of Form. Harvard University Press. isbn:
978-0674627512 (cit. on pp. 27, 105).

Alshaikh, Z. and Boughton, C. (2009). “The Context Dynamics Matrix (CDM): An
Approach to Modeling Context.” In: Proceedings of the 16th Asia-Pacific Software
Engineering Conference, pp. 101–108. doi: 10.1109/APSEC.2009.74 (cit. on pp. 27,
148).

Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B., and Mock, S. (2004).
“Kepler: an extensible system for design and execution of scientific workflows.”
In: Proceedings of the 16th International Conference on Scientific and Statistical
Database Management, pp. 423–424. doi: 10.1109/SSDM.2004.1311241 (cit. on
pp. 20–22, 46).

Ardissono, L., Furnari, R., Goy, A., Petrone, G., and Segnan, M. (2007). “Context-
aware workflow management.” In: Web Engineering. Lecture Notes in Computer
Science 4607. Ed. by Baresi, L., Fraternali, P., and Houben, G., 47–52. doi: 10.

1007/978-3-540-73597-7 4 (cit. on p. 26).

Arnold, V. (1986). Catastrophe Theory. 2nd ed. Springer-Verlag. isbn: 3540161996

(cit. on p. 106).

Baker, N., McClatchey, R., and Le Goff, J. (1997). “Scientific workflow management
in a distributed production environment.” In: Proceedings of the First International

157

http://dx.doi.org/10.1109/SYSOSE.2006.1652271
http://dx.doi.org/10.1109/SC.1998.10046
http://dx.doi.org/10.1109/APSEC.2009.74
http://dx.doi.org/10.1109/SSDM.2004.1311241
http://dx.doi.org/10.1007/978-3-540-73597-7_4
http://dx.doi.org/10.1007/978-3-540-73597-7_4


158 Bibliography

Enterprise Distributed Object Computing Workshop (EDOC 97), pp. 291–299. doi:
10.1109/EDOC.1997.628370 (cit. on pp. 15, 21, 61).

Bammer, G. (2006). “Integration and Implementation Sciences: Buidling a New
Specialisation.” In: Complex science for a complex world: exploring human ecosystems
with agents. Ed. by Pascal, P. and Batten, D. ANU E Press, pp. 95–107. isbn:
1920942386 (cit. on p. 147).

Bammer, G. and Smithson, M. (2008). “Understanding uncertainty.” In: Integration
Insights 7. url: http://i2s.anu.edu.au/sites/default/files/integration- insights/

integration-insight 7.pdf (cit. on p. 155).

Barker, A. and Hemert, J. (2008). “Scientific Workflow: A Survey and Research
Directions.” In: Parallel Processing and Applied Mathematics. Lecture Notes in
Computer Science 4967. Ed. by Wyrzykowski, R., Dongarra, J., Karczewski, K.,
and Wasniewski, J., pp. 746–753. doi: 10.1007/978-3-540-68111-3 78 (cit. on
p. 20).

Barthelmess, P. and Wainer, J. (1995). “WorkFlow systems: a few definitions and a
few suggestions.” In: Proceedings of conference on Organizational computing systems.
Milpitas, California, United States: ACM, pp. 138–147. doi: 10.1145/224019.

224033 (cit. on pp. 12, 20).

Berkley, C., Bowers, S., Jones, M., Ludäscher, B., Schildhauer, M., and Tao, J. (2005).
“Incorporating semantics in scientific workflow authoring.” In: Proceedings of the
17th international conference on Scientific and statistical database management, pp. 75–
78. isbn: 1-88888-111-X (cit. on pp. 29, 59).

Biggs, J. and Tang, C. (2007). Teaching for Quality Learning at University: What the
Student Does. 3rd ed. Open University Press. isbn: 9780335221264 (cit. on pp. 92,
94, 95, 97).

Bloom, B. (1963). Taxonomy of Educational Objectives: The Classification of Educational
Goals: Handbook 1: Cognitive Domain. New York: D. McKay (cit. on p. 100).

Blumenthal, R. and Nutt, G. (1995). “Supporting unstructured workflow activities
in the Bramble ICN system.” In: Proceedings of conference on Organizational
computing systems. Milpitas, California, United States: ACM, pp. 130–137. doi:
10.1145/224019.224032 (cit. on p. 12).

Bogia, D. and Kaplan, S. (1995). “Flexibility and control for dynamic workflows
in the WORLDS environment.” In: Proceedings of conference on Organizational
computing systems. Milpitas, California, United States: ACM, pp. 148–159. doi:
10.1145/224019.224034 (cit. on p. 13).

http://dx.doi.org/10.1109/EDOC.1997.628370
http://i2s.anu.edu.au/sites/default/files/integration-insights/integration-insight_7.pdf
http://i2s.anu.edu.au/sites/default/files/integration-insights/integration-insight_7.pdf
http://dx.doi.org/10.1007/978-3-540-68111-3_78
http://dx.doi.org/10.1145/224019.224033
http://dx.doi.org/10.1145/224019.224033
http://dx.doi.org/10.1145/224019.224032
http://dx.doi.org/10.1145/224019.224034


Bibliography 159

Booth, W., Colomb, G., and Williams, J. (2008). The Craft of Research. 3rd ed. The
University of Chicago Press. isbn: 978-0-226-06566-3 (cit. on p. 9).

Boyd, J. (1986). Patterns of Conflict. Tech. rep. Unpublished. url: http://danford.

net/boyd/patterns.pdf (cit. on p. 37).

Buchholz, W. (1953). “The system design of the IBM Type 701 computer.” In:
Proceedings of the IRE 41.10, 1262–1275. doi: 10 . 1109 / JRPROC . 1953 . 274300

(cit. on p. 65).

Bussler, C. (1999). “Enterprise wide workflow management.” In: Concurrency, IEEE
7.3, pp. 32–43. doi: 10.1109/4434.788777 (cit. on p. 18).

Callahan, S., Freire, J., Santos, E., Scheidegger, C., Silva, C., and Huy, T. (2006a).
“Managing the Evolution of Dataflows with VisTrails.” In: Proceedings of the
22nd International Conference on Data Engineering. doi: 10.1109/ICDEW.2006.75

(cit. on pp. 20, 22).

– (2006b). “VisTrails: visualization meets data management.” In: Proceedings of the
2006 ACM SIGMOD international conference on Management of data, 745–747. doi:
10.1145/1142473.1142574 (cit. on p. 22).

Canonical (2012). Ubuntu. url: http://www.ubuntu.com/ (visited on 2012-08-06)
(cit. on p. 128).

Carroll, L. (2008). Alice’s Adventures in Wonderland (Project Gutenberg Edition).
Project Gutenberg. url: http://www.gutenberg.org/ebooks/11 (cit. on p. 3).

Casati, F., Ceri, S., Pernici, B., and Pozzi, B. (1998). “Workflow evolution.” In: Data
& Knowledge Engineering 24.3, pp. 211–238. doi: 10.1016/S0169-023X(97)00033-5

(cit. on p. 13).

Chalmers, A. (1999). What Is This Thing Called Science? 3rd ed. University of
Queensland Press. isbn: 0702230936 (cit. on p. 36).

Chemboli, S. (2010a). Contextualizing learning outcomes and course design in Moodle.
Presented at Moodleposium AU 2010. Canberra, Australia. url: http://hdl .

handle.net/1885/9279 (cit. on pp. xiii, 99).

– (2010b). Omnispective Analysis and Reasoning: An epistemic approach to scientific
workflows. Presented at the CECS Seminar Series, Australian National University.
Canberra, Australia. url: http://cecs.anu.edu.au/seminars/more/SID/2503

(cit. on pp. xiii, 26).

http://danford.net/boyd/patterns.pdf
http://danford.net/boyd/patterns.pdf
http://dx.doi.org/10.1109/JRPROC.1953.274300
http://dx.doi.org/10.1109/4434.788777
http://dx.doi.org/10.1109/ICDEW.2006.75
http://dx.doi.org/10.1145/1142473.1142574
http://www.ubuntu.com/
http://www.gutenberg.org/ebooks/11
http://dx.doi.org/10.1016/S0169-023X(97)00033-5
http://hdl.handle.net/1885/9279
http://hdl.handle.net/1885/9279
http://cecs.anu.edu.au/seminars/more/SID/2503


160 Bibliography

– (2010c). Workflow for creating a chat activity in Moodle. url: http://csrins.wordpress.

com/2010/07/19/workflow-for-creating-a-chat-activity-in-moodle/ (visited on
2011-06-25) (cit. on p. 102).

– (2012a). Soma - Origami Folding Demo. url: http : / / ubuntuone . com /

7Zz2B3fWLh8azFFgpT9rxR (cit. on p. 137).

– (2012b). Soma: An OAR Tool Prototype. url: https://launchpad.net/soma-app

(visited on 2012-08-31) (cit. on p. 122).

Chemboli, S. and Boughton, C. (2011). “Contextual Course Design with Omnis-
pective Analysis and Reasoning.” In: Changing Demands, Changing Directions.
Proceedings ascilite. Ed. by Williams, G., Brown, N., Pittard, M., and Cleland, B.
Hobart, pp. 210–219. url: http://www.leishman-associates.com.au/ascilite2011/

downloads/papers/Chemboli-full.pdf (cit. on pp. xiii, 80).

Chemboli, S. and Boughton, C. (2012a). “Managing Large and Complex Systems
with Omnispective Analysis and Reasoning.” In: Proceedings of SETE APCOSE
2012. Brisbane, Australia. url: http://hdl.handle.net/1885/9009 (cit. on pp. xiii,
80).

– (2012b). “Omnispective Analysis and Reasoning: A Framework for Managing
Intellectual Concerns in Scientific Workflows.” In: Proceedings of the 5th India
Software Engineering Conference. Kanpur, India, pp. 143–146. doi: 10 . 1145 /

2134254.2134279 (cit. on pp. xiii, 80).

Chemboli, S., Kane, L., and Johns-Boast, L. (2010). Translating Learning Outcomes
in Moodle. Presented at Moodlemoot AU 2010. Melbourne, Victoria, Australia.
url: http://ubuntuone.com/4RBjlozHyEyITuy21aDCfe (cit. on p. xiii).

Chin, G., Schuchardt, K., Myers, J., and Gracio, D. (2000). “Participatory Workflow
Analysis: Unveiling Scientific Research Processes with Scientists.” In: PDC
2000 Proceedings of the Participatory Design Conference. Ed. by Cherkasky, T.,
Greenbaum, J., Mambrey, P., and Pors, J. New York, NY, USA: CPSR, pp. 30–39.
url: http : / / collaboratory . emsl . pnl . gov / resources / publications / papers /

workflow%20analysis.html (cit. on p. 18).

Chin Jr., G., Sivaramakrishnan, C., Critchlow, T., Schuchardt, K., and Ngu, A.
(2011). “Scientist-Centered Workflow Abstractions via Generic Actors, Workflow
Templates, and Context-Awareness for Groundwater Modeling and Analysis.”
In: 2011 IEEE World Congress on Services (SERVICES). IEEE, pp. 176–183. doi:
10.1109/SERVICES.2011.31 (cit. on pp. 26, 27, 51).

http://csrins.wordpress.com/2010/07/19/workflow-for-creating-a-chat-activity-in-moodle/
http://csrins.wordpress.com/2010/07/19/workflow-for-creating-a-chat-activity-in-moodle/
http://ubuntuone.com/7Zz2B3fWLh8azFFgpT9rxR
http://ubuntuone.com/7Zz2B3fWLh8azFFgpT9rxR
https://launchpad.net/soma-app
http://www.leishman-associates.com.au/ascilite2011/downloads/papers/Chemboli-full.pdf
http://www.leishman-associates.com.au/ascilite2011/downloads/papers/Chemboli-full.pdf
http://hdl.handle.net/1885/9009
http://dx.doi.org/10.1145/2134254.2134279
http://dx.doi.org/10.1145/2134254.2134279
http://ubuntuone.com/4RBjlozHyEyITuy21aDCfe
http://collaboratory.emsl.pnl.gov/resources/publications/papers/workflow%20analysis.html
http://collaboratory.emsl.pnl.gov/resources/publications/papers/workflow%20analysis.html
http://dx.doi.org/10.1109/SERVICES.2011.31


Bibliography 161

Churches, A. (2008). Bloom’s Digital Taxonomy. url: http://edorigami.wikispaces.

com/Bloom%27s+Digital+Taxonomy (visited on 2011-08-11) (cit. on p. 100).

Churches, D., Gombas, G., Harrison, A., Maassen, J., Robinson, C., Shields, M.,
Taylor, I., and Wang, I. (2006). “Programming scientific and distributed workflow
with Triana services.” In: Concurrency and Computation: Practice and Experience
18.10, pp. 1021–1037. doi: 10.1002/cpe.992 (cit. on p. 20).

CIO Council (2001). A Practical Guide to Federal Enterprise Architecture v1.0. Tech.
rep. P00201. U.S. Government Accountability Office. url: http://www.gao.gov/

products/P00201 (cit. on p. 152).

Csapo, B. (2009). “The Scientific Foundations of Teaching and Learning.” In: Green
Book: For the renewal of public education in Hungary. Ed. by Fajekas, K., Kollo, J.,
and Varga, J. Trans. by Babarczy, A. Budapest: Ecostat Government Institute for
Strategic Research of Economy and Society, pp. 227–244. isbn: 978-963-06-6690-9
(cit. on p. 92).

Curcin, V. and Ghanem, M. (2008). “Scientific workflow systems–can one size fit
all?” In: Proceedings of International Biomedical Engineering Conference, CIBEC 2008.
Cairo, pp. 1–9. doi: 10.1109/CIBEC.2008.4786077 (cit. on p. 21).

Dawkins, R. (2012). Jaipur Literary Festival Q&A Session. url: http://youtu.be/

O9E5By0P3Go (cit. on p. v).

De Roure, D., Goble, C., and Stevens, R. (2009). “The Design and Realisation of the
my Experiment Virtual Research Environment for Social Sharing of Workflows.”
In: Future Generation Computer Systems 25.5, pp. 561–567. doi: 10.1016/j.future.

2008.06.010 (cit. on p. 49).

Deelman, E. and Gil, Y. (2006a). “Managing Large-Scale Scientific Workflows
in Distributed Environments: Experiences and Challenges.” In: Second IEEE
International Conference on e-Science and Grid Computing (e-Science’06). doi: 10 .

1109/E-SCIENCE.2006.261077 (cit. on p. 29).

– (2006b). NSF Workshop on the Challenges of Scientific Workflows. Tech. rep.
Arlington, VA: National Science Foundation. url: http ://www. isi . edu/nsf -

workflows06 (cit. on p. 156).

Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M., Vahi, K.,
and Livny, M. (2004). “Pegasus: Mapping Scientific Workflows onto the Grid.”
In: European Across Grids Conference, 11–20. doi: 10.1007/978-3-540-28642-4 2

(cit. on p. 21).

http://edorigami.wikispaces.com/Bloom%27s+Digital+Taxonomy
http://edorigami.wikispaces.com/Bloom%27s+Digital+Taxonomy
http://dx.doi.org/10.1002/cpe.992
http://www.gao.gov/products/P00201
http://www.gao.gov/products/P00201
http://dx.doi.org/10.1109/CIBEC.2008.4786077
http://youtu.be/O9E5By0P3Go
http://youtu.be/O9E5By0P3Go
http://dx.doi.org/10.1016/j.future.2008.06.010
http://dx.doi.org/10.1016/j.future.2008.06.010
http://dx.doi.org/10.1109/E-SCIENCE.2006.261077
http://dx.doi.org/10.1109/E-SCIENCE.2006.261077
http://www.isi.edu/nsf-workflows06
http://www.isi.edu/nsf-workflows06
http://dx.doi.org/10.1007/978-3-540-28642-4_2


162 Bibliography

Deelman, E., Gannon, D., Shields, M., and Taylor, I. (2009). “Workflows and e-
Science: An overview of workflow system features and capabilities.” In: Future
Generation Computer Systems 25.5, pp. 528–540. doi: 10.1016/j.future.2008.06.012

(cit. on p. 29).

Demaine, E. and O’Rourke, J. (2007). Geometric Folding Algorithms: Linkages,
Origami, Polyhedra. Cambridge University Press. isbn: 9780521857574 (cit. on
p. 82).

Dijkstra, E. (1982). “On the role of scientific thought.” In: Selected Writings on
Computing: A Personal Perspective. New York: Springer-Verlag, pp. 60–66. isbn:
0387906525 (cit. on p. 59).

DoD CIO (2010). DoD Architecture Framework Version 2.02. url: http://dodcio .

defense.gov/dodaf20.aspx (cit. on pp. 148, 151).

DoD CIO, Architecture & Infrastructural Directorate (2012). DoDAF Version 2.0
Plenary. Tech. rep. Mclean, Virginia. url: http://dodcio.defense.gov/Portals/0/

Documents/DODAF/DoDAF 2-0 Plenary Minutes 2012-01-05 V2.docx (cit. on
p. 151).

Drechsler, M. (2011). Moodle Structural Overview. url: http://www.slideshare.net/

mark.drechsler/moodle-structural-overview (cit. on p. 95).

Ellis, C., Keddara, K., and Rozenberg, G. (1995). “Dynamic change within
workflow systems.” In: Proceedings of conference on Organizational computing
systems. Milpitas, California, United States: ACM, pp. 10–21. doi: 10.1145/

224019.224021 (cit. on p. 13).

Feynman, R. (1982). “Simulating physics with computers.” In: International journal
of theoretical physics 21.6, pp. 467–488. issn: 0020-7748 (cit. on p. 29).

Flint, S. (2006). “Aspect-Oriented Thinking – an approach to bridging the
interdisciplinary divides.” PhD thesis. The Australian National University. url:
http://hdl.handle.net/1885/49328 (cit. on pp. 5, 59, 80, 99, 147).

– (2008). “Rethinking Systems Thinking.” In: Proceedings of the 14th ANZSYS
Australia New Zealand Systems Society Conference. Ed. by Cook, D. Perth, Australia.
url: http://www.anzsys.org/anzsys08/papers/Shayne%20Flint%20Rethinking%

20Systems%20Thinking.pdf (cit. on p. 37).

– (2009). “A Conceptual Model of Software Engineering Research Approaches.”
In: 2009 Australian Software Engineering Conference. Gold Coast, Australia,
pp. 229–236. doi: 10.1109/ASWEC.2009.42 (cit. on p. 4).

http://dx.doi.org/10.1016/j.future.2008.06.012
http://dodcio.defense.gov/dodaf20.aspx
http://dodcio.defense.gov/dodaf20.aspx
http://dodcio.defense.gov/Portals/0/Documents/DODAF/DoDAF_2-0_Plenary_Minutes_2012-01-05_V2.docx
http://dodcio.defense.gov/Portals/0/Documents/DODAF/DoDAF_2-0_Plenary_Minutes_2012-01-05_V2.docx
http://www.slideshare.net/mark.drechsler/moodle-structural-overview
http://www.slideshare.net/mark.drechsler/moodle-structural-overview
http://dx.doi.org/10.1145/224019.224021
http://dx.doi.org/10.1145/224019.224021
http://hdl.handle.net/1885/49328
http://www.anzsys.org/anzsys08/papers/Shayne%20Flint%20Rethinking%20Systems%20Thinking.pdf
http://www.anzsys.org/anzsys08/papers/Shayne%20Flint%20Rethinking%20Systems%20Thinking.pdf
http://dx.doi.org/10.1109/ASWEC.2009.42


Bibliography 163

Frické, M. (2009). “The knowledge pyramid: a critique of the DIKW hierarchy.” In:
Journal of Information Science 35.2, pp. 131–142. doi: 10.1177/0165551508094050

(cit. on p. 41).

Garces, R., Jesus, T. de, Cardoso, J., and Valente, P. (2009). “Open Source Workflow
Management Systems: A Concise Survey.” In: 2009 BPM and Workflow Handbook:
Methods, Concepts, Case Studies and Standards in Business Process Management and
Workflow, pp. 333–346. isbn: 978-0-9777527-9-9 (cit. on p. 10).

Garlan, D. and Shaw, M. (1993). “An Introduction to Software Architecture.” In:
Advances in Software Engineering and Knowledge Engineering. Ed. by Ambriola,
V. and Tortora, G. Vol. 2. New Jersey: World Scientific Publishing Company,
pp. 1–40. isbn: 978-9810215941 (cit. on p. 148).

Gray, H. (1918). Anatomy of the Human Body. Lea & Febiger, 1918; Bartleby.com,
2000. url: http://www.bartelby.com/107/ (cit. on p. 59).

Han, J., Kamber, M., and Gray, J. (2000). Data Mining: Concepts and Techniques. The
Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann
Publishers Inc. isbn: 1-55860-489-8 (cit. on p. 14).

Han, Y., Sheth, A., and Bussler, C. (1998). “A Taxonomy of Adaptive Workflow
Management.” In: 1998 ACM Conference on Computer Supported Cooperative Work
(CSCW-98). Seattle, WA, USA (cit. on p. 18).

Hartmanis, J. (1995). “Turing Award Lecture: On Computational Complexity and
the Nature of Computer Science.” In: ACM Computing Surveys 27.1. doi: 10.

1145/194313.214781 (cit. on p. 79).

Hollingsworth, D. (1995). The workflow reference model. Tech. rep. Document
Number TC00-1003. UK: The Workflow Management Coalition. url: http :

//www.wfmc.org/standards/docs/tc003v11.pdf (cit. on pp. 10, 15, 16).

Houghton, W. (2004). Engineering subject centre guide: Learning and teaching theory
for engineering academics. Loughborough: HEA Engineering Subject Centre. url:
http://www.engsc.ac.uk/learning-and-teaching-theory-guide (cit. on p. 95).

Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., and Oinn, T.
(2006). “Taverna: a tool for building and running workflows of services.” In:
Nucleic Acids Research 34, W729–W732. doi: 10.1093/nar/gkl320 (cit. on p. 22).

IEEE (2012). Survey of Architecture Frameworks. url: http://www.iso-architecture.

org/ieee-1471/afs/frameworks-table.html (visited on 2012-06-29) (cit. on p. 151).

Ioannidis, Y., Livny, M., Ailamaki, A., Narayanan, A., and Therber, A. (1997). “Zoo:
a desktop experiment management environment.” In: Proceedings of the 1997

http://dx.doi.org/10.1177/0165551508094050
http://www.bartelby.com/107/
http://dx.doi.org/10.1145/194313.214781
http://dx.doi.org/10.1145/194313.214781
http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.engsc.ac.uk/learning-and-teaching-theory-guide
http://dx.doi.org/10.1093/nar/gkl320
http://www.iso-architecture.org/ieee-1471/afs/frameworks-table.html
http://www.iso-architecture.org/ieee-1471/afs/frameworks-table.html


164 Bibliography

ACM SIGMOD international conference on Management of data. Tucson, Arizona,
United States: ACM, pp. 580–583. doi: 10.1145/253260.253415 (cit. on pp. 11,
15).

Iordan, V. and Cicortas, A. (2008). “Considerations on Using Ontologies in
Complex Systems.” In: 10th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, 2008. SYNASC ’08. IEEE, pp. 305–309. doi:
10.1109/SYNASC.2008.78 (cit. on p. 107).

ISO/IEC/IEEE (2011). ISO/IEC/IEEE 42010 - Systems and software engineering
– Architecture description. Standard. Institute of Electrical and Electronics
Engineers Inc. url: http://www.iso-architecture.org/ieee-1471/ (cit. on p. 149).

Jamshidi, M. (2008). “System of systems engineering - New challenges for the 21st
century.” In: IEEE Aerospace and Electronic Systems Magazine 23.5, pp. 4–19. doi:
10.1109/MAES.2008.4523909 (cit. on p. 104).

Kenneway, E. (1987). Complete Origami. London: Ebury Press. isbn: 0852236174

(cit. on p. 82).

Lin, C., Lu, S., Fei, X., Chebotko, A., Pai, D., Lai, Z., Hua, J., and Foutouhi, F. (2009).
“A Reference Architecture for Scientific Workflow Management Systems and the
View SOA Solution.” In: IEEE Transactions on Services Computing 2.1, pp. 79–92.
doi: 10.1109/TSC.2009.4 (cit. on p. 17).

Ludäscher, B., Bowers, S., and McPhillips, T. (2009). “Scientific Workflows.” In:
Encyclopedia of Database Systems, pp. 2507–2511. url: http://dx.doi.org/10.1007/

978-0-387-39940-9 1471 (cit. on p. 20).

Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.,
Tao, J., and Zhao, Y. (2006). “Scientific workflow management and the Kepler
system.” In: Concurrency and Computation: Practice and Experience 18.10, pp. 1039–
1065. doi: 10.1002/cpe.994 (cit. on pp. 21, 24).

Ludäscher, B., Weske, M., McPhillips, T., and Bowers, S. (2009). “Scientific
workflows: Business as usual?” In: Business Process Management, 31–47. doi:
10.1007/978-3-642-03848-8 4 (cit. on pp. 10, 24, 45, 54).

Marcus, A. (2011). PNAS retracts two papers on osmolytes after researchers discover
crucial measurement errors. url: http://retractionwatch.wordpress.com/2011/12/

15/pnas- retracts- two- papers- on- osmolytes- after- researchers- discover- crucial-

measurement-errors/ (visited on 2011-12-18) (cit. on p. 26).

Marsh, C. (2009). Key Concepts for Understanding Curriculum. 4th ed. Routledge.
isbn: 978-0415465786 (cit. on p. 94).

http://dx.doi.org/10.1145/253260.253415
http://dx.doi.org/10.1109/SYNASC.2008.78
http://www.iso-architecture.org/ieee-1471/
http://dx.doi.org/10.1109/MAES.2008.4523909
http://dx.doi.org/10.1109/TSC.2009.4
http://dx.doi.org/10.1007/978-0-387-39940-9_1471
http://dx.doi.org/10.1007/978-0-387-39940-9_1471
http://dx.doi.org/10.1002/cpe.994
http://dx.doi.org/10.1007/978-3-642-03848-8_4
http://retractionwatch.wordpress.com/2011/12/15/pnas-retracts-two-papers-on-osmolytes-after-researchers-discover-crucial-measurement-errors/
http://retractionwatch.wordpress.com/2011/12/15/pnas-retracts-two-papers-on-osmolytes-after-researchers-discover-crucial-measurement-errors/
http://retractionwatch.wordpress.com/2011/12/15/pnas-retracts-two-papers-on-osmolytes-after-researchers-discover-crucial-measurement-errors/


Bibliography 165

Maus, H. (2001). “Workflow Context as a Means for Intelligent Information
Support.” In: Modeling and Using Context 2116. Ed. by Akman, V., Bouquet, P.,
Thomason, R., and Young, R., pp. 261–274. doi: 10 .1007/3 - 540 - 44607 - 9 20

(cit. on p. 26).

McClatchey, R., Estrella, F., Goff, J. le, Kovacs, Z., and Baker, N. (1997). “Object
Databases in a Distributed Scientific Workflow Application.” In: Proceedings
of the 3rd Basque International Workshop on Information Technology (BIWIT’97).
Biarritz, pp. 11–21. doi: 10.1109/BIWIT.1997.614047 (cit. on p. 15).

McPhillips, T., Bowers, S., Zinn, D., and Ludäscher, B. (2009). “Scientific workflow
design for mere mortals.” In: Future Generation Computer Systems 25.5, 541–551.
doi: 10.1016/j.future.2008.06.013 (cit. on p. 21).

Medeiros, C., Vossen, G., and Weske, M. (1995). “WASA: A workflow-based
architecture to support scientific database applications.” In: Database and Expert
Systems Applications. Lecture Notes in Computer Science 978. Ed. by Revell, N.
and Tjoa, A., pp. 574–583. doi: 10.1007/BFb0049154 (cit. on pp. 13, 14).

Medina-Mora, R., Winograd, T., Flores, R., and Flores, F. (1992). “The action
workflow approach to workflow management technology.” In: Proceedings of
the 4th Conference on Computer-supported Cooperative Work. ACM New York, NY,
USA, pp. 281–288. doi: 10.1145/143457.143530 (cit. on pp. 10, 11).

Meidanis, J., Vossen, G., and Weske, M. (1996). “Using Workflow Management in
DNA Sequencing.” In: Proceedings of the First IFCIS International Conference on
Cooperative Information Systems. Brussels: IEEE Computer Society, pp. 114–123.
doi: 10.1109/COOPIS.1996.555003 (cit. on pp. 14, 24).

Mellor, S. and Balcer, M. (2002). Executable UML: A foundation for model-driven
architecture. Addison-Wesley. isbn: 978-0201748048 (cit. on p. 5).

Mitchell, M. (2009). Complexity: A Guided Tour. Oxford University Press. isbn:
9780195124415 (cit. on p. 106).

Moodle Community (2012). Moodle.org. url: http : / / moodle . org/ (visited on
2012-02-03) (cit. on p. 95).

National Academy of Sciences (2011). “Retraction for Dougan et al., Solvent
molecules bridge the mechanical unfolding transition state of a protein.” In:
Proceedings of the National Academy of Sciences. doi: 10.1073/pnas .1118431108

(cit. on p. 26).

National Research Council (2002). Scientific Research in Education: Committee on
Scientific Principles for Education Research. Ed. by Shavelson, R. and Towne,

http://dx.doi.org/10.1007/3-540-44607-9_20
http://dx.doi.org/10.1109/BIWIT.1997.614047
http://dx.doi.org/10.1016/j.future.2008.06.013
http://dx.doi.org/10.1007/BFb0049154
http://dx.doi.org/10.1145/143457.143530
http://dx.doi.org/10.1109/COOPIS.1996.555003
http://moodle.org/
http://dx.doi.org/10.1073/pnas.1118431108


166 Bibliography

L. Washington, D.C.: Center for Education. Division of Social Sciences and
Education. National Academy Press. isbn: 0-309-08291-9 (cit. on p. 92).

Ngu, A., Jamnagarwala, A., Chin Jr., G., Sivaramakrishnan, C., and Critchlow,
T. (2010). “Context-aware scientific workflow systems using KEPLER.” In:
International Journal of Business Process Integration and Management 5.1. Ed. by
Lu, S., Deelman, E., and Zhao, Z., pp. 18–31. doi: 10.1504/IJBPIM.2010.033172

(cit. on pp. 27, 51).

Ngu, A., Jamnagarwala, A., Chin, G., Sivaramakrishnan, C., and Critchlow, T.
(2011). “Kepler Scientific Workflow Design and Execution with Contexts.” In:
International Journal of Computers and Their Applications 18.3. Ed. by Chebotko, A.,
Simmhan, Y., and Missier, P., pp. 133–147. issn: 1076-5204 (cit. on p. 51).

Oinn, T., Addis, M., Ferris, J., Marvin, D., Greenwood, M., Goble, C., Wipat, A.,
Li, P., and Carver, T. (2004a). “Delivering web service coordination capability
to users.” In: Proceedings of the 13th international World Wide Web conference on
Alternate track papers & posters. New York, NY, USA, 438–439. doi: 10.1145/

1013367.1013514 (cit. on p. 23).

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver,
T., Glover, K., Pocock, M., Wipat, A., and Li, P. (2004b). “Taverna: a tool for
the composition and enactment of bioinformatics workflows.” In: Bioinformatics
(Oxford, England) 20.17, pp. 3045–3054. doi: 10.1093/bioinformatics/bth361 (cit.
on pp. 20, 22).

Oinn, T., Greenwood, M., Addis, M., Alpdemir, M., Ferris, J., Glover, K., Goble, C.,
Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M., Senger, M., Stevens,
R., Wipat, A., and Wroe, C. (2006). “Taverna: lessons in creating a workflow
environment for the life sciences.” In: Concurrency and Computation: Practice and
Experience 18.10, pp. 1067–1100. doi: 10.1002/cpe.993 (cit. on p. 22).

O’Neill, G. (2010). Program Design: Overview of curriculum models. Tech. rep.
University College Dublin. url: http://www.ucd.ie/t4cms/UCDTLP00631.pdf

(cit. on p. 94).

Op’t Land, M., Proper, E., Waage, M., Jeroen, C., and Claudia, S. (2009). Enterprise
Architecture: Creating Value by Informed Governance. Springer. isbn: 978-3-540-
85231-5 (cit. on p. 151).

Parnas, D. (1972). “On the Criteria to be used in Decomposing Systems into
Modules.” In: Communications of the ACM 15.12. Ed. by Morris, R., pp. 1053–1058.
doi: 10.1145/361598.361623 (cit. on pp. 59, 121).

http://dx.doi.org/10.1504/IJBPIM.2010.033172
http://dx.doi.org/10.1145/1013367.1013514
http://dx.doi.org/10.1145/1013367.1013514
http://dx.doi.org/10.1093/bioinformatics/bth361
http://dx.doi.org/10.1002/cpe.993
http://www.ucd.ie/t4cms/UCDTLP00631.pdf
http://dx.doi.org/10.1145/361598.361623


Bibliography 167

Peirce, C. (1877). “The Fixation of Belief.” In: Popular Science Monthly 12, pp. 1–15.
url: http://www.peirce.org/writings/p107.html (cit. on pp. 38, 39, 146).

Pereira, W. and Travassos, G. (2010). “Towards the conception of scientific
workflows for in silico experiments in software engineering.” In: Proceedings
of the 2010 ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement. doi: 10.1145/1852786.1852831 (cit. on p. 27).

Pham, A. and Pham, P. (2012). Scrum in Action: Agile Software Project Management
and Development. Course Technology. isbn: 978-1-4354-5913-7 (cit. on pp. 122,
127).

Pignotti, E., Edwards, P., Gotts, N., and Polhill, G. (2011). “Enhancing workflow
with a semantic description of scientific intent.” In: Web Semantics: Science,
Services and Agents on the World Wide Web 9.2. Ed. by Gil, Y. and Groth, P.,
pp. 222–244. doi: 10.1016/j.websem.2011.05.001 (cit. on p. 26).

Python Software Foundation (2012). Python Programming Language. url: http :

//www.python.org/ (visited on 2012-08-06) (cit. on p. 128).

Ramsden, P. (2003). Learning to Teach in Higher Education. 2nd ed. Routledge. isbn:
978-0415303453 (cit. on p. 97).

Reuß, T., Vossen, G., and Weske, M. (1997). “Modeling samples processing in
laboratory environments as scientific workflows.” In: Proceedings of the Eighth
International Workshop on Database and Expert Systems Applications, 1997, pp. 49–
54. doi: 10.1109/DEXA.1997.617233 (cit. on p. 15).

Rowley, J. (2007). “The wisdom hierarchy: representations of the DIKW hier-
archy.” In: Journal of Information Science 33.2, pp. 163–180. doi: 10 . 1177 /

0165551506070706 (cit. on p. 41).

Sage, A. and Cuppan, C. (2001). “On the Systems Engineering and Management
of Systems of Systems and Federations of Systems.” In: Information, Knowledge,
Systems Management 2.4, 325–345. issn: 1389-1995 (cit. on p. 104).

Sahoo, S., Sheth, A., and Henson, C. (2008). “Semantic Provenance for eScience:
Managing the Deluge of Scientific Data.” In: Internet Computing, IEEE 12.4. Ed.
by Blake, M. and Huhns, M., pp. 46–54. doi: 10.1109/MIC.2008.86 (cit. on
pp. 29, 107).

Scharfstein, B. (1991). The Dilemma of Context. NYU Press. isbn: 978-0814779163

(cit. on p. 27).

http://www.peirce.org/writings/p107.html
http://dx.doi.org/10.1145/1852786.1852831
http://dx.doi.org/10.1016/j.websem.2011.05.001
http://www.python.org/
http://www.python.org/
http://dx.doi.org/10.1109/DEXA.1997.617233
http://dx.doi.org/10.1177/0165551506070706
http://dx.doi.org/10.1177/0165551506070706
http://dx.doi.org/10.1109/MIC.2008.86


168 Bibliography

Schill, A. and Mittasch, C. (1996). “Workflow management systems on top of
OSF DCE and OMG CORBA.” In: Distributed Systems Engineering 3.4. Ed. by
Chrysanthis, P., pp. 250–262. doi: 10.1088/0967-1846/3/4/005 (cit. on p. 14).

Schwaber, K. and Sutherland, J. (2011). The Scrum Guide. Scrum.org. url: http:

//www.scrum.org/storage/scrumguides/Scrum Guide.pdf (cit. on p. 122).

Sessions, R. (2006). A Better Path to Enterprise Architectures. Objectwatch Inc. url:
http://ww.objectwatch.com/whitepapers/ABetterPath-Final.pdf (cit. on pp. 59,
147).

Sheard, S. and Mostashari, A. (2009). “Principles of complex systems for systems
engineering.” In: Systems Engineering 12.4, pp. 295–311. doi: 10.1002/sys.20124

(cit. on p. 104).

Shi, M., Yang, G., Xiang, Y., and Wu, S. (1998). “Workflow Management Systems:
A Survey.” In: Proceedings of the International Conference on Communication
Technology (ICCT ’98). doi: 10.1109/ICCT.1998.740974 (cit. on p. 17).

Shields, M. (2007). “Control- Versus Data-Driven Workflows.” In: Workflows for
e-Science: Scientific Workflows for Grids. Ed. by Taylor, I., Deelman, E., Gannon, D.,
and Shields, M. Springer London, pp. 167–173. isbn: 978-1-84628-519-6 (cit. on
p. 21).

Shoshani, A., Olken, F., and Wong, H. (1984). “Characteristics of Scientific
Databases.” In: Proceedings of the 10th International Conference on Very Large Data
Bases. Morgan Kaufmann Publishers Inc., pp. 147–160. isbn: 0-934613-16-8
(cit. on pp. 10, 11).

Shuell, T. (1986). “Cognitive Conceptions of Learning.” In: Review of Educational
Research 56.4, pp. 411–436. doi: 10.2307/1170340 (cit. on p. 91).

Shuttleworth, M. (2012). Re: No more dodge windows in Unity? url: https://lists.

launchpad . net / unity - design / msg07680 . html (visited on 2012-02-09) (cit. on
p. 103).

Sickafus, E. (1997). Unified structured inventive thinking: How to invent. Ntelleck.
isbn: 096594350X (cit. on p. 147).

Simon, H. (1956). “Rational choice and the structure of the environment.” In:
Psychological review 63.2, p. 129. issn: 1939-1471 (cit. on p. 70).

Singh, M. and Vouk, M. (1996). “Scientific Workflows: Scientific Computing Meets
Transactional Workflows.” In: Proceedings of the NSF Workshop on Workflow and
Process Automation in Information Systems: State-of-the-Art and Future Directions,

http://dx.doi.org/10.1088/0967-1846/3/4/005
http://www.scrum.org/storage/scrumguides/Scrum_Guide.pdf
http://www.scrum.org/storage/scrumguides/Scrum_Guide.pdf
http://ww.objectwatch.com/whitepapers/ABetterPath-Final.pdf
http://dx.doi.org/10.1002/sys.20124
http://dx.doi.org/10.1109/ICCT.1998.740974
http://dx.doi.org/10.2307/1170340
https://lists.launchpad.net/unity-design/msg07680.html
https://lists.launchpad.net/unity-design/msg07680.html


Bibliography 169

pp. 28–34. url: http://www.csc.ncsu.edu/faculty/mpsingh/papers/databases/

workflows/sciworkflows.html (cit. on pp. 10, 18, 19, 45, 54).

Sneider, R. and Larner, K. (2009). The Art of Being a Scientist: A Guide for Graduate
Students and Their Mentors. Cambridge University Press. isbn: 9780521743525

(cit. on pp. 37, 48).

SQLite (2012). SQLite Database Engine. url: http://www.sqlite.org/ (visited on
2012-07-30) (cit. on p. 128).

Staab, S. and Studer, R., eds. (2009). Handbook on Ontologies. 2nd ed. Springer.
isbn: 3540709991 (cit. on p. 107).

Steffen, W. (2008). Surviving the Anthropocene: Changing Our Interaction with the
Fragile Planet : Sensible Ways Forward in Response to Global Change. Presented at the
Fenner School Seminar Series, Australian National University. The Australian
National University. url: http://fennerschool.anu.edu.au/news events/seminars/

seminars 2008.php#16oct (cit. on p. 29).

Sterman, J. (2002). “All models are wrong: reflections on becoming a systems
scientist.” In: System Dynamics Review 18.4, pp. 501–531. doi: 10.1002/sdr.261

(cit. on p. 71).

Strazdins, P. (2007). Research-Based Education in Computer Science at the ANU:
Challenges and Opportunities. Tech. rep. The Australian National University. url:
http://cs.anu.edu.au/techreports/2007/TR-CS-07-05.pdf (cit. on p. 97).

Tang, A., Han, J., and Chen, P. (2004). “A comparative analysis of architecture
frameworks.” In: Proceedings of the 11th Asia-Pacific Software Engineering Confer-
ence, 2004, 640–647. doi: 10.1109/APSEC.2004.2 (cit. on p. 150).

Tharp, T. and Reiter, M. (2006). The Creative Habit. Simon and Schuster. isbn:
9780743235273 (cit. on p. 81).

The Adventures of Sherlock Holmes: The Red-Headed League (1985). Granada Television
(cit. on p. 141).

The GNOME Project (2012). PyGObject - GLib/GObject/GIO Python bindings. url:
https://live.gnome.org/PyGObject (visited on 2012-08-06) (cit. on p. 128).

Tichy, W. (1998). “Should Computer Scientists Experiments More?” In: IEEE
Computer 31.5, pp. 32–40. doi: 10.1109/2.675631 (cit. on p. 79).

Truong, H., Fahringer, T., Nerieri, F., and Dustdar, S. (2005). “Performance metrics
and ontology for describing performance data of grid workflows.” In: IEEE

http://www.csc.ncsu.edu/faculty/mpsingh/papers/databases/workflows/sciworkflows.html
http://www.csc.ncsu.edu/faculty/mpsingh/papers/databases/workflows/sciworkflows.html
http://www.sqlite.org/
http://fennerschool.anu.edu.au/news_events/seminars/seminars_2008.php#16oct
http://fennerschool.anu.edu.au/news_events/seminars/seminars_2008.php#16oct
http://dx.doi.org/10.1002/sdr.261
http://cs.anu.edu.au/techreports/2007/TR-CS-07-05.pdf
http://dx.doi.org/10.1109/APSEC.2004.2
https://live.gnome.org/PyGObject
http://dx.doi.org/10.1109/2.675631


170 Bibliography

International Symposium on Cluster Computing and the Grid, 2005. CCGrid 2005.
Vol. 1. IEEE, pp. 301–308. doi: 10.1109/CCGRID.2005.1558569 (cit. on p. 107).

Turuncoglu, U. (2012). “Applying Scientific Workflow to ESM.” In: Earth System
Modelling - Volume 5 - Tools for Configuring, Building and Running Models. Ed. by
Ford, R., Riley, G., Budich, R., and Redler, R. Vol. 5. SpringerBriefs in Earth
System Sciences. Springer Heidelberg, pp. 15–29. isbn: 978-3-642-23931-1 (cit. on
p. 26).

van der Aalst, W. and Basten, T. (2002). “Inheritance of workflows: an approach
to tackling problems related to change.” In: Theoretical Computer Science 270.1-2,
pp. 125–203. doi: doi:10.1016/S0304-3975(00)00321-2 (cit. on p. 13).

van der Aalst, W., Barthelmess, P., Ellis, C., and Wainer, J. (2000). “Workflow model-
ing using proclets.” In: Cooperative Information Systems. Ed. by Scheuermann, P.
and Etzion, O. Vol. 1901. Lecture Notes in Computer Science, 198–209. doi:
10.1007/10722620 20 (cit. on p. 18).

van der Aalst, W., Barthelmess, P., Eliis, C., and Wainer, J. (2001). “Proclets: A
framework for lightweight interacting workflow processes.” In: International
Journal of Cooperative Information Systems 10.4, 443–482. issn: 0218-8430 (cit. on
p. 18).

Wainer, J., Weske, M., Vossen, G., and Medeiros, C. (1997). “Scientific Workflow
Systems.” In: Proceedings of the NSF Workshop on Workflow and Process Automation
in Information Systems: State of the Art and Future Directions (cit. on pp. 10, 19, 20).

Walker, D. (1971). “A Naturalistic Model for Curriculum Development.” In: The
School Review 80.1, pp. 51–65. issn: 0036-6773. url: http://www.jstor.org/stable/

1084221 (cit. on p. 94).

Wang-Iverson, P., Lang, R., and Yim, M., eds. (2011). Origami 5. 1st ed. A K
Peters/CRC Press. isbn: 9781568817149 (cit. on p. 82).

Warfield, J. (1994). Science of Generic Design: Managing Complexity Through Systems
Design. 2nd ed. Iowa State University Press. isbn: 0813822475 (cit. on pp. 35,
39–43, 46–48, 53, 57, 71, 105, 106).

Weske, M., Vossen, G., and Medeiros, C. (1996). Scientific Workflow Management:
WASA Architecture and Applications. Tech. rep. (cit. on pp. 14, 21).

Wiener, J. and Ioannidis, Y. (1993). “A moose and a fox can aid scientists with data
management problems.” In: Proceedings of the International Workshop on Database
Programming Languages, 376–398 (cit. on p. 12).

http://dx.doi.org/10.1109/CCGRID.2005.1558569
http://dx.doi.org/doi:10.1016/S0304-3975(00)00321-2
http://dx.doi.org/10.1007/10722620_20
http://www.jstor.org/stable/1084221
http://www.jstor.org/stable/1084221


colophon

This document was typeset in LATEX using the typographical look-and-feel arsclas-

sica developed by Lorenzo Pantieri, which is a customization of the Classic-Thesis
style designed by André Miede. The text font is Palatino; the heading font is Iwona;
and the font in figures is Ubuntu Regular.

Final Render as of September 26, 2013 ( version 12.09.04).


	Declaration
	Acknowledgments
	Abstract
	Publications
	Contents
	List of Figures
	List of Tables
	I Introduction
	1 Overview
	1.1 Initial Motivation and Research Aim
	1.2 Research Design
	1.3 Thesis Scope
	1.4 Thesis Structure
	1.4.1 Part I: Introduction
	1.4.2 Part II: Omnispective Analysis and Reasoning
	1.4.3 Part III: Proof of Concept
	1.4.4 Part IV: Conclusion

	1.5 Main Contributions

	2 Background
	2.1 Workflows
	2.1.1 Scientific Database Systems
	2.1.2 Unstructured Activities
	2.1.3 Dynamic Process Composition
	2.1.4 Distributed and Decentralized Processes
	2.1.5 The Workflow Reference Model
	2.1.6 Participatory Analysis
	2.1.7 Emergence of Scientific Workflows
	2.1.8 Scientific Workflows

	2.2 Issues in Scientific Workflow Management
	2.2.1 Focus on Low–level Detail
	2.2.2 Limited Context Support
	2.2.3 Inadequate Management of Intellectual Concerns

	2.3 Impact of the Above Issues
	2.3.1 Observation 1
	2.3.2 Observation 2
	2.3.3 Observation 3

	2.4 Conjecture
	2.5 Summary and Conclusion


	II Omnispective Analysis and Reasoning
	3 Omnispective Analysis and Reasoning
	3.1 The Nature of Science
	3.2 Fixation of Belief
	3.3 Universal Priors to Science
	3.4 Law of Triadic Compatibility
	3.5 Hierarchy of Conceptualization
	3.6 Domain of Science Model
	3.7 Expanding Scale and Complexity of Scientific Work
	3.8 Intellectual Concerns in Scientific Work
	3.9 Defining Scientific Workflows
	3.10 `Reforming' Scientific Workflow Management
	3.10.1 Managing Intellectual Concerns
	3.10.2 Dealing with Inadequate Context Support
	3.10.3 Inadequate Support for Verification and Validation

	3.11 Theoretical Foundations of OAR
	3.11.1 Omnispective Analysis
	3.11.2 Lifting Focus from Low–level Details
	3.11.3 Defining Context and Adding Context Support
	3.11.4 Localized Ontologies
	3.11.5 Epistemological Basis

	3.12 Overview of the OAR Framework
	3.13 Prototypes, Archetypes and Constraints
	3.14 Concern Refinement
	3.15 `Bootstrapping' External Shelves
	3.16 Context Refinement
	3.17 Constructed and Organic Solution Specifications
	3.18 Rationale for the Structure of OAR
	3.19 Nature of the OAR Framework
	3.20 Summary and Conclusion


	III Proof of Concept
	4 Origami Folding Workflow
	4.1 Paper Folding as a Scientific Workflow
	4.2 Folding the Iris Flower
	4.3 Applying OAR to the Iris Flower Workflow
	4.3.1 Identifying Relevant Archetypes and Constraints
	4.3.2 Formulating the Solution Specification

	4.4 Implementing the Solution Specification
	4.5 Summary and Conclusion

	5 Contextualizing Course Design
	5.1 Learning, Teaching and Course Design
	5.1.1 Learning Outcomes
	5.1.2 Translating Learning Outcomes to Course Design

	5.2 Contextualizing Course Design
	5.3 Translating Learning Outcomes for COMP8120
	5.3.1 Learning Outcomes for COMP8120
	5.3.2 Analyzing Context for LO–1 and LO–2
	5.3.3 Analyzing Context for LO–3
	5.3.4 Analyzing Context for LO–4
	5.3.5 Analyzing Context for LO–5

	5.4 Solution Specification for LO–5
	5.4.1 Initializing External Shelves
	5.4.2 Identifying Relevant Archetypes and Constraints
	5.4.3 Solution Shelf for LO–5
	5.4.4 Implementing the Solution Specification

	5.5 Summary and Conclusion

	6 Managing Large and Complex Systems
	6.1 Large and Complex Systems
	6.2 Some Characteristics of Large Systems
	6.3 How complexity builds and escalates in large systems
	6.4 Applying OAR to Complex Systems
	6.5 The Ubuntu Platform as a Complex System–of–Systems
	6.6 Capturing intellectual concerns for the Ubuntu ecosystem
	6.6.1 Initializing External Shelves

	6.7 Identifying Relevant Archetypes and Constraints
	6.8 Solution Specification for Selecting the Default Music App
	6.9 Utilizing a Solution Specification
	6.10 Summary and Conclusion


	IV Conclusion
	7 Soma: OAR Tool Prototype
	7.1 Soma: A Tool for Simple Omnispective Analysis and Reasoning
	7.1.1 Initialization
	7.1.2 Building the Problem–domain Shelf
	7.1.3 Contextualization
	7.1.4 Practical Considerations in Soma

	7.2 Product Vision and Goal
	7.3 Architecture Vision and Sprint Planning
	7.3.1 Architecture Vision

	7.4 Soma Development
	7.4.1 Soma Sprint 1
	7.4.2 Soma Sprint 2

	7.5 Summary and Conclusion

	8 Summary and Conclusions
	8.1 Summary of Contribution
	8.1.1 An Enhanced Definition of Scientific Workflow
	8.1.2 Omnispective Analysis and Reasoning

	8.2 Limitations of Contribution
	8.3 Related Work
	8.4 Viewing Enterprise Architecture through OAR
	8.4.1 Enterprise Architecture and Architecture Frameworks
	8.4.2 Applying OAR — Architecture Views as Workflows

	8.5 Directions for Future Work
	8.5.1 Managing Fractional Values for Firmness and Influence in Recipe Context
	8.5.2 Tool Support
	8.5.3 Moodle OAR Plugin
	8.5.4 Application to Complex Systems
	8.5.5 OAR as Science of Workflows



	Bibliography
	Colophon

