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[S]cience includes any approach that is open to reason, to rational
discussion, investigation, skepticism, to critical thinking, to
questioning. . . I wouldn’t say you have to put on a white coat and go
into a laboratory in order to [pursue science].

Dawkins [2012]
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A B S T R A C T

This thesis presents the conceptualization, formulation, development and demon-
stration of Omnispective Analysis and Reasoning (OAR), an epistemic framework
for managing intellectual concerns in scientific workflows.

Although scientific workflows are extensively used to support the management
of experimental and computational research, intellectual concerns are not ade-
quately handled in current practice owing to the focus on low–level implementa-
tion details, limited context support, issues in developing shared semantics across
disciplines and lack of support for verification and validation of the underlying
science of the workflow. The management of intellectual concerns in scientific
workflows can be improved by developing a framework for providing a layer of
abstraction to lift focus from low–level implementation details, adding context
as a workflow parameter, introducing localized ontologies and abstracting and
mapping intellectual concerns in the research–domain to workflow specification
and execution semantics.

Following an examination of typical definitions of scientific workflow offered
in literature, the Scientific Method is applied to develop an enhanced definition
of a scientific workflow. This definition, which extends the scope of ordered
analysis and investigation to a generic problem scenario, is utilized in the OAR
framework. The design of OAR is modular like the Domain of Science Model
(DoSM). The structure and working of OAR incorporate the evolving nature of
science, hierarchy of conceptualization, omnispection, and the logical processes
of analysis, reasoning and abstraction. These form the Foundation and Theory
of OAR. Abstracting concerns in terms of unit knowledge entities (ukes) and
groups of ukes (recipes), use of context to identify relation between recipes, the
management of recipes in shelves, and the processes of concern refinement and
context refinement constitute the Methodology.

A comprehensive and simple example of the application of OAR to the
abstraction, analysis, formulation and orchestration of a scientific workflow at
different levels of granularity is provided by applying it to the problem of
origami paper folding. The use of OAR in capturing the rationale of design
decisions and mapping them to desired outcomes is demonstrated by applying
OAR for contextualizing course design. Another example illustrates the use
of OAR in the analysis, understanding and management of complex systems.
Localized ontologies enable the exposure of side–effects and emergent behavior in
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large–scale systems due to the choice of any particular solution specification. These
examples constitute a first step in building the Applications block of OAR. While
OAR may be manually applied even to large–scale problems, it is expedient to
avail of tool support. Soma — a simple and illustrative tool prototype is developed
to indicate directions for a reference tool implementation.

The thesis concludes with a consideration of ideas for future work. The
contribution in this thesis corresponds to an instance of the DoSM for scientific
workflow management. The OAR framework has great potential for further
development as a well–formed Science of Workflows.
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