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  Red/near-infrared irradiation therapy for 
treatment of central nervous system injuries 
and disorders   
  Abstract:   Irradiation in the red/near-infrared spectrum 
(R/NIR, 630 – 1000 nm) has been used to treat a wide range 
of clinical conditions, including disorders of the central 
nervous system (CNS), with several clinical trials currently 
underway for stroke and macular degeneration. However, 
R/NIR irradiation therapy (R/NIR-IT) has not been widely 
adopted in clinical practice for CNS injury or disease for 
a number of reasons, which include the following. The 
mechanism/s of action and implications of penetration 
have not been thoroughly addressed. The large range 
of treatment intensities, wavelengths and devices that 
have been assessed make comparisons difficult, and a 
consensus paradigm for treatment has not yet emerged. 
Furthermore, the lack of consistent positive outcomes in 
randomised controlled trials, perhaps due to sub-optimal 
treatment regimens, has contributed to scepticism. This 
review provides a balanced pr é cis of outcomes described 
in the literature regarding treatment modalities and effi-
cacy of R/NIR-IT for injury and disease in the CNS. We 
have addressed the important issues of specification of 
treatment parameters, penetration of R/NIR irradiation 
to CNS tissues and mechanism/s, and provided the neces-
sary detail to demonstrate the potential of R/NIR-IT for the 
treatment of retinal degeneration, damage to white matter 
tracts of the CNS, stroke and Parkinson ’ s disease.  
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   Introduction 
 Irradiation in the red/near-infrared spectrum (R/NIR, 
630 – 1000 nm) was developed as a therapeutic strategy 
for the treatment of a range of injuries and diseases, 
 following observations of beneficial effects on astronauts 
in space (Whelan et al., 2001). Therapeutic use of irradia-
tion at these wavelengths is characterised by relatively 
low energy densities and is referred to as R/NIR-IT. It is 
distinct from high-energy ablative or thermocoagulatory 
laser treatments, or light dependent imaging techniques. 
Improvements following R/NIR-IT have been observed in a 
wide array of clinical conditions, including wound healing 
(Yu et al., 1997; Whelan et al., 2001, 2003), oral mucositis 
(Eells et al., 2004), cardial infarct size (Oron et al., 2001) 
and renal and hepatic complications during diabetes (Lim 
et al., 2009, 2010), although clinical efficacy is not always 
clear cut. Specific to the nervous system, beneficial effects 
have been reported following retinal degeneration (Natoli 
et al., 2010; Albarracin and Valter, 2012b), central nervous 
system (CNS) injury (Byrnes et al., 2005; Fitzgerald et al., 
2010), stroke (Lapchak et  al., 2007), peripheral nerve 
damage (Rochkind et al., 2009; Ishiguro et al., 2010) and 
for restless leg syndrome (Mitchell et al., 2011). However, 
R/NIR-IT has not been widely adopted in clinical practice 
for a number of reasons. Firstly, the mechanism/s of action 
is/are still not clear, and the impact of limited penetration 
of irradiation is unknown. Secondly, the large range of 
treatment intensities, wavelengths and devices that have 
been employed make inter-trial comparisons difficult 
and a consensus paradigm for treatment of CNS injury or 
disease has not yet emerged from preclinical studies, yet 
alone clinical ones. Finally, the lack of a definitive posi-
tive effect to date in randomised controlled trials, perhaps 
due to sub-optimal treatment regimens, has contributed 
to scepticism. 
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 Here, we provide a synthesis of the literature regard-
ing treatment modalities and efficacy of R/NIR-IT for injury 
and disease in the CNS. We begin by defining the princi-
ples of R/NIR-IT, and emphasise the importance of speci-
fying the parameters of wavelength, intensity,  duration of 
treatment and the nature of the irradiation  administered 
to enable comparison across different studies. R/NIR-IT 
cannot be effective without adequate penetration to the 
target tissue, and to this end, we have reviewed infor-
mation describing penetration of R/NIR irradiation to 
CNS tissue and included additional calculations to aid 
interpretation. We briefly address mechanistic elements 
common to R/NIR-IT therapy across a range of disease 
and injury conditions and then comprehensively review 
the literature referring to retinal degeneration, damage to 
the optic nerve (ON) and visual cortex, spinal cord injury 
(SCI), traumatic brain injury (TBI), stroke and Parkin-
son ’ s disease. Further, we provide a detailed tabulated 
comparison of the studies described, with information 
detailing the models used, irradiation source,  intensity, 
wavelengths, duration of treatments and outcomes. We 
conclude by providing an assessment of the potential clin-
ical application of R/NIR-IT for treatment of CNS injuries 
and disorders.  

  Parameters of R/NIR-IT 
 Despite positive results from preclinical research studies 
and successful clinical trials, as well as the obvious appeal 
of a relatively cheap and easily administered therapy, 
R/NIR-IT remains controversial and little used in main-
stream medicine (Huang et al., 2011). This is in part due 
to the lack of a standardised technical approach: a search 
of the literature reveals a bewildering array of irradiation 
sources (laser or light-emitting diode), mode of delivery 
(pulsed or continuous), stimulation wavelength (630, 670, 
780, 810, 830, 880 or 904 nm), total dose (i.e., joules of 
irradiation per unit area), rate of delivery of the irradiation 
energy [watts per unit area (note: watts = joules  ×  time), 
also referred to as fluence], duration (length of exposure), 
timing (pre- or post-insult) and frequency of treatment 
(Quirk and Whelan, 2011). This is confounded by the fact 
that dosages are usually specified in energy rather than 
quantal units; because photon energy varies with wave-
length, an equal energy dose at different wavelengths 
will comprise different numbers of photons, and it is the 
number of photons interacting with a target photoaccep-
tor that define the actual dose. Although a range of treat-
ment parameters have been trialled, we find few studies 

where variations in wavelength, total dose and dose rate 
have been tested in the same model. In short, although 
the empirical basis of R/NIR-IT for CNS injury and neu-
rodegenerative disease is sound, its clinical application 
is hampered by uncertainty regarding treatment param-
eters. As an example of this variability, a comparison of 
the parameters used in pre-clinical studies of R/NIR-IT for 
treatment of CNS injury or Parkinson ’ s disease is provided 
in  Table 1 .   

  Penetration of irradiation in the 
human brain 
 The extent to which R/NIR irradiation can penetrate the 
brain is a key determinant of potential efficacy. Here, we 
describe factors affecting penetration and give some bio-
physical examples to demonstrate that extremely low irra-
diation levels are sufficient to affect cells. 

  Extent of penetration (transmission) 

 When irradiation strikes biological tissue, it is absorbed, 
scattered or transmitted. Optimal penetration within bio-
logical tissues occurs within a  ‘ therapeutic ’  or  ‘ optical ’  
window with a wavelength range of 600 – 1000  nm 
(Parrish, 1981). The effective penetration depth of a given 
wavelength of irradiation is dependent upon the optical 
properties of the tissue, i.e., absorption and scattering 
(Cheong et  al., 1990). Irradiation in the range of 600 –
 1000  nm penetrates tissue because scattering by tissue 
inhomogeneities is dominant (Profio, 1989). Scattering 
increases the distance travelled by photons, thus diffus-
ing the propagating irradiation. Absorption occurs pre-
dominantly by chromophores such as melanin and hae-
moglobin at short wavelengths and water and cytochrome 
c oxidase, a photoacceptor within the mitochondrial elec-
tron transport chain, at longer wavelengths (Karu, 1989; 
Sutherland, 2002). 

 Detailed characterisation of irradiation distribution 
in tissues is highly complex and ultimately requires the 
extrapolation of measurements that, for technical reasons 
discussed further below, must be made on samples that 
are considerably thinner than the tissue or organ of inter-
est (Lenz, 1999). Issues such as tissue fixation, the limi-
tations in availability and access to appropriate regions 
within living tissue as well as limitation of the sensitiv-
ity of available equipment used to measure irradiation 
intensity must all be considered. However, the theory of 
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irradiation transmission through highly scattering media 
is well established, and theoretical approximations com-
monly used to derive optical penetration depths (delta, 
 δ ) closely follow empirical measurements (Stolik et  al., 
2000).  δ  is the tissue thickness that causes irradiation 
to be attenuated to 37% of its initial value (Muller and 
Wilson, 1986), i.e., not the maximum distance that irra-
diation will penetrate a tissue sample. 

 By way of example, we have used a diffusion model 
(Svaasand and Ellingsen, 1983) to calculate irradiation 
penetration to the centre of the human brain. We assumed 
brain dimensions of W140 mm  ×  L167 mm  ×  H93 mm and a 
surface irradiance of 60 mW/cm 2  (e.g., the FDA-approved 
Vet 75 device at 670 nm, Quantum Devices Inc., Barneveld, 
WI, USA) and that the head would be illuminated from 
the top, with the irradiation source positioned above the 
shaved scalp. We also assumed that the optical penetra-
tion depth of the skull is similar to that of the overlying 
skin and the brain (Firbank et al., 1993), which suggests 
that all these tissues (and any other sub-cranial tissues 
and fluids) pass irradiation at any particular wavelength 
in a similar fashion, thereby simplifying calculations. 

 Calculated fluence rates just inside the cranium 
(assumed to be  ∼ 7  mm thick with a 3-mm-thick skin 
 covering to give a total thickness of 10 mm) were calcu-
lated to be 2.5 mW/cm 2  for 670-nm irradiation ( δ  = 2.4 mm 2 ) 
and 13 mW/cm 2  for 1064 nm ( δ  = 4.0 mm 2 ). Note that these 
two wavelengths are chosen as they are commonly used 
in R/NIR-IT; 670-nm irradiation is thought to change the 
oxidation reduction state of cytochrome c oxidase (see 
below), and 1064  nm irradiation is transmitted better 
through biological tissues (Karu, 1989; Sutherland, 2002). 
Indeed, greater transmission of irradiation at longer wave-
lengths has been shown previously for a total human scalp 
and skull thicknesses of up to 13 mm (Wan et al., 1981). By 
contrast, and due to the exponential relationship between 
irradiation penetration and tissue thickness, fluence rates 
in the centre of the brain (10-mm skull and skin  + 46-mm 
brain = 56 mm) were calculated to be very much lower at 
1.2  ×  10 -11  W/cm 2  for 670-nm irradiation and 1.4  ×  10 -7    W/cm 2  
at 1060 nm. The considerably greater (10 4 ) value for the 
penetration of longer wavelength irradiation calculated 
to reach the centre of the brain is in agreement with 
other studies comparing tissue penetration for a variety 
of wavelengths (Eichler et al., 1977; Lenz, 1999; Neupane 
et al., 2010). 

 To our knowledge, only two studies have directly 
measured the penetration of R/NIR irradiation in intact 
animals. Spectrophotometric and power transmission 
analyses in rats revealed that 6% (9 mW) of transcuta-
neous 810-nm laser irradiation (power output 150 mW) 

was transmitted from the dorsal surface of the skin to the 
ventral side of the spinal cord (Byrnes et al., 2005). Simi-
larly, a study in rats showed that when irradiation was 
directed at the dorsal surface of the head (total R/NIR irra-
diance 252 W/m 2 , 550 – 750 nm), 0.7% (1.75 W/m 2 ) reached 
the ventral surface of the optic nerve, and 0.1% (0.3 W/m 2 ) 
reached the ventral surface of the braincase (Fitzgerald 
et al., 2010).  

  Factors affecting penetration 

 A number of factors affect R/NIR irradiation penetration of 
tissue. Haemoglobin and water are major chromophores, 
i.e., they absorb irradiation (Sterenborg et al., 1989), thus 
the extent of R/NIR irradiation penetration will presum-
ably vary according to vascularisation and fluid balance. 
Although the absorption coefficient of water is low in the 
visible region, it is significant for R/NIR irradiation, and 
the large volume fraction of water in biological tissue, 
together with haemoglobin, contributes significantly to 
absorption (Ankri et al., 2010). Indeed, in  ex vivo  human 
kidney and liver tissue,  δ  is greater for slices containing 
blood compared to those in which the blood has been 
removed (Eichler et  al., 1977). Furthermore,  δ  values 
obtained from freshly resected human brain tissue were 
greater in malignant brain tumours that were more vas-
cularised, compared to normal brain tissue (Muller and 
Wilson, 1986). Both vascularisation and water balance 
are profoundly influenced in neurodegenerative disease, 
such as Alzheimer ’ s disease (AD) and Parkinson ’ s disease 
(PD) as well as stroke. For example,  β -amyloid promotes 
angiogenesis and blood-brain barrier permeability in 
Tg2576 AD mice (Biron et  al., 2011) and in humans with 
cerebral amyloid angiopathy (Hartz et al., 2012), whereas 
integrin  α v β 3, a marker for angiogenesis, is increased 
in human PD brains (Desai Bradaric et  al., 2012). Aqua-
porin expression, indicative of changed water transport, 
is enhanced in AD brains (Moftakhar et  al., 2010), and 
blood-brain barrier permeability is increased following 
ischaemic stroke (Topakian et al., 2010; Hom et al., 2011). 
Not unexpectedly, vascular damage is also extensive fol-
lowing TBI, both acutely (Iwamura et al., 2012) and with 
evidence for long-term remodelling (Rodr í guez-Baeza 
et  al., 2003). Reactive gliosis is a further contributor to 
changes in cellular architecture that may modulate pene-
tration of R/NIR-IT (Sykova and Vargova, 2008). However, 
in these pathological conditions, it is unknown whether 
the increased blood supply and changed water balance 
would act as a more prominent substrate for the absorb-
ance of R/NIR irradiation during therapy. 
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8      M. Fitzgerald et al.: R/NIR-IT for treatment of CNS injuries

 Oxygenation also influences penetration of irradia-
tion. Compared to room air (21% O 2,  0.039% CO 2 ), carbo-
gen breathing (95% O 2 , 5% CO 2 ) in mice increased the pen-
etration of R/NIR irradiation and improved the outcome 
of photodynamic therapy for tumour ablation (Mitra and 
Foster, 2004). Conversely, in situations where hypoxia 
occurs, such as after traumatic and hypoxia-ischaemia-
induced brain injury (Oddo et  al., 2011; Howards et  al., 
2012), any therapeutic use of R/NIR irradiation may 
require higher intensity irradiation to offset reduced 
tissue penetration. Myelination is also thought to influ-
ence penetration of irradiation, with greater  δ  values in 
grey compared to white matter (Lenz, 1999). A study of 
bovine brain showed that irradiation penetration was 
greatest when irradiation was oriented parallel to white 
matter tracts (Hebeda et al., 1994), a finding that explains 
the increased incidence of lesions within the corpus cal-
losum after photodynamic therapy in normal mouse brain 
(Sandeman et al., 1986).  

  Extremely low irradiation levels can affect 
cells 
 The foregoing calculations suggest that fluence/fluence 
rates at limited depths into the skull and brain are quite 
significant. A 20-min exposure to a 60-mW/cm 2  670-nm 
LED array (e.g., Vet 75) positioned above the head would 
give a total fluence (irradiation dose) of  ∼ 3 J/cm 2  at a 
fluence (dose) rate of 2.5 mW/cm 2  to the surface of the 
brain just under the cranium. This is within known effec-
tive dose/rate ranges (cf. Huang et al., 2011). Whether or 
not the extremely low level of irradiation reaching the 
centre of the brain is  ‘ effective ’  for irradiation therapy of 
CNS injury or disease remains to be determined. 

 Nevertheless, very low levels of irradiation can trigger 
significant biophysical phenomena. For example, at the 
threshold of useful vision, such as when we are able to 
detect the edges of large objects at night under a moonless, 
overcast sky, the ambient light intensity is such that (on 
average) each rod photoreceptor in the retina only absorbs 
a single photon of light or irradiation  every 84 min . Even 
at dawn, when there is enough light to see clearly and 
objects appear coloured because cones are also active, 
rods are only capturing (on average) one photon every 
5 s (Rodieck, 1998). However, because the retina contains 
approximately 90 million rods (Curcio et al., 1990), we are 
able to use this limited information to form an image and 
not just detect light. To put this into context, the intensity 
of the dimmest extended light source that can be seen by 
a human corresponds to a fluence rate of 1.5  ×  10 -14  W/cm 2 , 

i.e., well below that reaching the centre of the brain in 
our modelled scenario. Although the exact mechanism of 
R/NIR-IT remains to be elucidated, it is clear that the low 
levels of irradiation encountered are more than capable 
of triggering cellular signalling and probably sufficient to 
drive metabolic events.   

  Potential mechanisms of efficacy 
of R/NIR-IT 
 Several recent reviews have summarised existing 
 knowledge regarding the potential mechanisms by which 
R/NIR-IT exerts its effects (Hashmi et  al., 2010; Chung 
et  al., 2012), and we therefore address this subject rela-
tively briefly. Cytochrome  c  oxidase is proposed to act as 
a photoacceptor for irradiation at these wavelengths, with 
absorption spectra matching efficacious wavelengths and 
irradiation leading to changes in the oxidation reduction 
state of the enzyme (Karu, 1999; Karu and Kolyakov, 2005; 
Karu et al., 2005, 2008). Increases in cytochrome  c  oxidase 
activity with R/NIR-IT are associated with increases in 
ATP content in treated tissues, indicating increased flux 
through the electron transport chain (Wong-Riley et  al., 
2005; Lapchak and De Taboada, 2010). Although it has 
been proposed that these changes are associated with 
increased reactive oxygen species (ROS) and resultant 
downstream signalling (Hashmi et al., 2010; Chung et al., 
2012), it is important to note that studies linking various 
facets of oxidative metabolism to ROS and reactive nitro-
gen species (RNS) production have been contradictory, 
largely conducted  in vitro , and highly dependent on the 
timing of the experimental observations and the condi-
tions employed (Tretter et al., 2007; Peng and Jou, 2010). 
Indeed, it is possible that an increased flux of electrons 
through the electron transport chain may maintain mito-
chondrial membrane potential, reduce passage through 
the reverse electron transport chain, alter cAMP release 
and increase ATP synthesis, all of which may result in 
reduced leakage of free radical intermediates (Camello-
Almaraz et  al., 2006; Rojas et  al., 2008; Kowaltowski 
et al., 2009). Although direct deductions concerning the 
sequence of effects in mitochondria with R/RIR-IT are 
problematic with the existing information available to us, 
R/NIR-IT has been shown to improve indices of mitochon-
drial function following damage to the CNS in a range of 
model systems, many of which have been associated with 
improvements in function (Eells et al., 2004; Rojas et al., 
2008). Further descriptions of reported effects of R/NIR-IT 
on cytochrome  c  oxidase and mitochondrial function in 
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specific CNS injuries and disease states are provided in 
the sections below. 

 Although a significant proportion of the available data 
on the mechanism of R/NIR-IT point towards cytochrome 
 c  oxidase as a primary photoacceptor, this does not pre-
clude other potential modes of action. The chromophores 
melanin and haemoglobin may also play roles (Karu, 
1989; Sutherland, 2002; Peoples et al., 2012a). Nitric oxide 
released from cytochrome  c  oxidase may lead to down-
stream vasodilatation (Mason et al., 2006; Ball et al., 2011) 
and signal transduction, potentially also contributing 
to functional improvements. R/NIR-IT has been shown 
to modulate gene expression (Natoli et al., 2010), reduce 
apoptosis (Wong-Riley et al., 2005; Liang et al., 2008), alter 
cytokine release and modulate immune responses (Moreira 
et al., 2009; Albarracin and Valter, 2012a;  Kokkinopoulos 
et  al., 2012; personal observation), and these outcomes 
may be upstream, downstream or independent of the mod-
ulation of cytochrome  c  oxidase activity.  

  R/NIR-IT for treatment of retinal 
degeneration 
 The studies discussed here employ R/NIR LED devices to 
deliver a therapeutic dose to the retina in an experimental 
setting or to monitor effects on the ageing retina. The high 
metabolic activity of photoreceptors renders the retina 
highly susceptible to oxidative damage (Winkler, 1981; Yu 
et al., 1999). Oxidative damage to photoreceptors has been 
implicated in many forms of retinal degeneration, includ-
ing age-related macular degeneration (AMD) (Age-Related 
Eye Disease Study Group, 2001), retinitis pigmentosa 
(Shen et al., 2005), retinopathy of prematurity (Tsukahara 
et  al., 2004) and in the later stages of all photoreceptor 
degenerations regardless of the initiating event (Stone 
et al., 1999). Arguably, amelioration of oxidative damage 
is the key to long-term survivability of the retina. Several 
laboratories have now used R/NIR irradiation to attenu-
ate experimentally induced retinal degeneration, includ-
ing models of AMD (Natoli et  al., 2010; Qu et  al., 2010; 
Albarracin et  al., 2011; Albarracin and Valter, 2012a,b), 
Parkinson ’ s-related retinopathy (Peoples et al., 2012a) and 
methanol (Eells et  al., 2003) and rotenone (Rojas et  al., 
2008) toxicity, with beneficial effects in normal ageing 
(Kokkinopoulos et al., 2012). None of these studies report 
any adverse effects of 670-nm irradiation on the retina. 

 Methanol is a potent mitochondrial toxin that inhib-
its cytochrome c oxidase activity (Seme et al., 1999). Eells 
et al. (2003) reported the first direct link between the mode 

of action of R/NIR irradiation in retinoprotection using a 
methanol toxicity model. They found that mitochondrial 
damage in photoreceptors caused by methonal toxicity 
was reduced by exposure to 670-nm irradiation. Mitochon-
dria retained their normal structure in animals intoxicated 
with methanol and treated with 670-nm irradiation. Rod 
and cone response amplitudes  (electroretinogram) were 
reduced up to 75% by methanol toxicity; however, when 
combined with 4-J/cm 2  treatments of 670-nm irradiation at 
5, 25 and 50 h of methanol intoxication, the response ampli-
tudes were reduced by only ~33%. The authors  concluded 
that because formic acid (derived from the breakdown of 
methanol) acts directly to inhibit  cytochrome  c  oxidase, 
a key enzyme in mitochondrial metabolism, 670-nm irra-
diation appeared to be directly modulating enzyme activ-
ity to reduce this toxic effect and promote mitochondrial 
function. In an  in vivo  study in rat retina, 633-nm irradia-
tion was protective against rotenone, a potent inhibitor 
of mitochondrial function,  providing a further direct link 
between these organelles and R/NIR irradiation (Rojas 
et al., 2008). This link has also been noted in experiments 
using the mitochondrial dye JC-9, in which there is a shift 
in mitochondrial membrane potential in retinal pigment 
epithelial cells in direct response to 670-nm irradiation 
(Kokkinopoulos et al., 2012). 

 Oxidative damage generated by excessive photo- 
oxidation of rod outer segments is thought to be the 
 initiating event in light-induced retinal damage (LD) 
(Demontis et al., 2002). However, it has also been shown 
in LD that retinal degeneration continues long after 
removal of the damaging stimulus (white light) (Rutar 
et al., 2010). This progressive degeneration has been used 
to model the factors contributing to the expansion of the 
degenerative area, as occurs in AMD, and appears to be 
largely mediated by inflammation (Hollyfield et al., 2008). 
Microarray analysis (Natoli et  al., 2010) shows that the 
expression of genes in pathways involved in inflamma-
tion, apoptosis and metabolism are down-regulated in LD 
retinas treated with 670-nm irradiation. One of the most 
highly modulated genes identified in that study is Ccl2 - 
a potent chemokine involved in the recruitment of mac-
rophages to sites of tissue injury. Ccl2 has become a gene 
of interest from investigations in models of AMD, and this 
chemokine family is now implicated in its pathogenesis 
(Rutar et al., 2011). 

 Several studies have found that 670-nm irradiation 
is protective against retinal degeneration in LD, citing 
histological, functional and molecular evidence (Natoli 
et al., 2010; Qu et al., 2010; Albarracin et al., 2011; Albar-
racin and Valter, 2012a). Treatment with 670-nm irradia-
tion before, during or after exposure to damaging white 
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light attenuates retinal degeneration (Qu et  al., 2010; 
 Albarracin et  al., 2011), protects photoreceptor function 
and reduces the expression of stress markers in the retina, 
as well as microglial and macrophage invasion (Albarra-
cin and Valter, 2012a). Although treatment prior to expo-
sure to bright light is most effective, animals treated with 
670-nm irradiation  after  light damage recover photorecep-
tor function by 1 month post-exposure (Albarracin et al., 
2011). LD induces upregulation of a number of markers of 
oxidative stress, and these are downregulated by 670-nm 
irradiation (Natoli et al., 2010). Two independent studies 
report downregulation of the pro-inflammatory cytokine 
TNF-alpha following treatment with 670-nm irradiation. 
In the first, quantitative polymerase chain reaction (PCR) 
was used to show a reduction in TNF alpha levels in the 
LD retina pre-treated with 670-nm irradiation (Albarracin 
and Valter, 2012a). In the second, it was shown that treat-
ment of aged mice with 670-nm irradiation reduces TNF-
alpha immunoreactivity, as well as recruitment of IBA1-
positive macrophages to the outer retina, and C3b and C3d 
immunoreactivity in Bruch ’ s membrane (Kokkinopoulos 
et al., 2012), all indicating downregulation of inflamma-
tory responses. In addition, components of the  ‘ classi-
cal ’  pathway of complement activation, as well as C3 are 
downregulated by pretreatment with 670-nm irradiation 
in the LD model (unpublished observation). 

 Collectively, these studies provide strong evidence 
that 670-nm irradiation gives significant protection to 
the retina, and some studies indicate that cytochrome  c  
oxidase is the most likely photoacceptor. The observed 
effects can be explained by a theoretical model of 670-nm 
IT promoting effective mitochondrial function, resulting 
in a reduction of free radical production and oxidative 
damage. The downstream effects appear to be a downreg-
ulation of inflammatory processes. The LD model specifi-
cally, and the retina in general, are ideal models to explore 
the mechanisms, potential and limitations of R/NIR-IT due 
to the relative ease of inducing damage and the known 
interactions between oxidative stress and inflammatory 
pathways, combined with accessibility for treatment.  

  R/NIR-IT for treatment of damage 
to the optic nerve and visual cortex 
 Evidence supporting the role of cytochrome  c  oxidase as 
a key photoacceptor for irradiation in the R/NIR spectrum 
has also been generated in studies of neurons from the 
visual cortex.  In vitro  experiments assessing the effects 
of inhibitors on neurons from the post-natal rat visual 

cortex demonstrate that potassium cyanide (KCN) inacti-
vation of cytochrome  c  oxidase (by 100  µ m KCN or less) is 
reversed by treatment with 670-nm irradiation delivered 
by LED array once or twice daily for 100 s (energy density = 
4 J/cm 2 , power density = 50 mW/cm 2 ) (Wong-Riley et  al., 
2001, 2005). Effects with twice-daily treatments are more 
pronounced for neurons lightly reactive for cytochrome 
c oxidase activity (Wong-Riley et  al., 2005). Longer pre-
treatments with 670-nm irradiation (10 min prior to KCN 
exposure, equivalent to 30 J/cm 2 ) significantly reduce 
nuclear condensation (Wong-Riley et  al., 2005) attrib-
uted to reduced apoptosis and associated with reduced 
oxidative stress (Liang et al., 2006). The effects of a range 
of wavelengths of irradiation, delivered via LED array in 
the R/NIR spectrum, on cytochrome  c  oxidase activity fol-
lowing blockade of voltage-dependent sodium channels 
with tetrodotoxin have also been compared in visual cor-
tical neurons. Irradiation of 670 nm and 830 nm (energy 
density = 4 J/cm 2 , power density = 50 mW/cm 2 ) restores 
cytochrome  c  oxidase activity and ATP content, whereas 
728-nm, 770-nm and 880-nm irradiation are less effective 
(Wong-Riley et al., 2005). Effective wavelengths correlate 
positively with the known absorption spectra of oxidised 
cytochrome  c  oxidase (Carter and Palmer, 1982; Karu, 
1999; Wong-Riley et al., 2005; Karu et al., 2008). 

 Cytochrome  c  oxidase activity in retinal ganglion cell 
(RGC) somata has been linked to the survival of these cells 
following complete ON transection (von Bussmann et al., 
1993). Although cytochrome  c  oxidase activity is higher in 
unmyelinated than myelinated regions of the human ON 
(Balaratnasingam et  al., 2009), we have recently dem-
onstrated  in vivo  that cytochrome  c  oxidase activity is 
increased in the ON following partial ON transection and 
670-nm irradiation treatment (LED, 30 min/day, 25 mW/
cm 2 ) and that activity is colocalised with oligodendro-
cytes, at least in the short term (unpublished observa-
tion). Increased cytochrome  c  oxidase activity in the ON is 
associated with reduced oxidative stress reactive species, 
both in nerve homogenates and, more specifically, in 
astrocytes (Fitzgerald et  al., 2010) and oligodendrocytes 
(unpublished observation). Irradiation with 670-nm 
(LED) treatment also decreases proliferation of oligo-
dendrocyte progenitor cells (Fitzgerald et  al., 2010) and 
reduces paranode elongation in injured ONs vulnerable 
to secondary degeneration, which is associated with later 
preservation of RGC numbers and restoration of visual 
function (Fitzgerald et  al., 2010; unpublished observa-
tion). Similarly, daily treatments of rat ON crush injuries 
with 630-nm irradiation (delivered by He-Ne laser, 10.5 
mW) for 2 weeks significantly increases compound action 
potentials in the ON  ex vivo  and postpones degeneration 
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(Assia et  al., 1989). For positive effects, treatment needs 
to be rapidly initiated (< 5 h after injury), maintained and 
used on moderately rather than severely injured nerves 
(Assia et al., 1989).  

  R/NIR-IT for treatment of traumatic 
brain injury (TBI) 
 Neuropathological consequences of TBI include disruption 
in axonal transport leading to axonal swelling followed by 
secondary disconnection, extensive demyelination and 
Wallerian degeneration (Brambilla et  al., 2006; Johnson 
et al., 2012; Tang-Schomer et al., 2012). Alterations to mito-
chondria (including membrane permeability) influence 
axonal integrity as well as ionic imbalance, oxidative stress 
and lipid peroxidation (associated with both mitochondrial 
dysfunction and cytoskeletal degradation), which play a 
central role post-injury in both axonal degeneration and 
dysfunction of viable and intact axons (Buki et al., 1999; 
Maxwell et al., 2003; Johnson et al., 2012). Of the ten TBI 
studies presented here describing R/NIR-IT in mice (Oron 
et al., 2007, 2012; Ando et al., 2011; Khuman et al., 2012; Wu 
et al., 2012), rats (Moreira et al., 2009; Quirk et al., 2012) 
and humans (Naeser et al., 2011;  Nawashiro et al., 2012), 
eight reported effects in acute (short-term) or sub-acute, 
and only one in chronic (long-term) (Naeser et  al., 2011) 
contusive TBI. Of these ten studies, nine used lasers to 
deliver the R/NIR-IT. A further study using laser-delivered 
R/NIR-IT (McCarthy et  al., 2010) provides evidence that 
treatment with an 808-nm wavelength in the  uninjured  rat 
brain is safe at single and multiple doses ( Table 1 ), with 
no treatment-related lesions, neoplasia or other toxicologi-
cal abnormalities for up to 1 year after injury (McCarthy 
et al., 2010). Most rodent model studies report statistically 
significant improvements in outcomes, including neuro-
logical severity scores (NSS), evidence of increased axonal 
numbers and distance of re-growth, reduced lesion size, 
modulation of apoptotic and inflammatory responses and 
pronounced anti-depressant effects. 

 Treatment of TBI generated by a cortical impactor 
device in mice with an 808-nm Gs-As (gallium-arsenide) 
diode laser (10 and 20 mW/cm 2 , 1.2 – 2.4 J/cm 2 ) for 2  min 
(at 4  h post-trauma) results in no significant improve-
ments in NSS up to 48 h after treatment. However, from 
days 5 – 28, NSS are reduced by about 27% in irradiated 
mice, which also have smaller lesion sizes compared to 
controls (1.4% vs. 12.1%) (Oron et al., 2007). Continuous 
wave (CW) GaAIAs (gallium-aluminium-arsenide) 780-nm 
or InGaAIP 660-nm low level laser irradiation following 

a 40-s cryoinjury to the brain results in immunomodula-
tion of TNF- α , IL10 and IL1 β  cytokine responses following 
R/NIR-IT (Moreira et  al., 2009), although no functional 
recovery experiments were performed in this study. Neu-
roprotective effects are also seen with 808-nm GaAIAs 
laser treatment at 50 mW/cm 2  (CW at 10  Hz and pulsed 
wave (PW) at 100 Hz) for 12 min at 4 h, following contu-
sive TBI in mice. These neuroprotective effects, which are 
more pronounced after 10  Hz PW frequency treatment 
than 100 Hz CW, include improved behavioural recovery 
(NSS), reduced brain lesion volume and a pronounced 
anti-depressant effect at up to 4 weeks post-TBI (Ando 
et  al., 2011). A 2 – 7  min exposure to an 800-nm GaAIAs 
laser treatment at a variety of doses (250, 500 or 1000 
mW/cm 2 ), at 60 – 80 min or 4 h after contusive TBI in mice 
results in no effects on post-injury motor function (days 
1 – 7), brain oedema (24 h),  nitrosative stress (24 h) or lesion 
volume (14 days); however, there are improved cognitive 
outcomes and inhibition of microglia activation (Khuman 
et al., 2012). 

 Four weeks after a single 4-min exposure at 4 h post-
contusive TBI (36 J/cm 2  CW, 665 nm, 730 nm, 810 nm or 
980 nm) in mice, there is improved behavioural recovery 
(NSS) and reduced brain  ‘ deficits ’ , but only in 665-nm- 
and 810-nm-treated animals (Wu et al., 2012). Treatment 
of rats with 670-nm irradiation (at 50 mW/cm 2 , 15 J/cm 2 ) 
for 2  ×  5 min per day for 72 h or 10 days, post contusive TBI, 
results in functional (NSS) and morphological improve-
ments, including decreased pro-apoptotic Bax expression 
and increased anti-apoptotic Bcl2 expression (Quirk et al., 
2012). Finally, Oron et al. (2012), using an 808-nm GaAIAs 
laser to deliver 10 mW/cm 2  (1.2 J/cm 2 ) treatment (either CW 
or PW, at 100 or 600 Hz) for 2 min (at either 4, 6, or 8 h post-
trauma) following contusive TBI in mice, show improved 
neurobehavioural function (NSS) and an overall reduc-
tion in lesion size at 56 days. It has been proposed, based 
mainly on  in vitro  cortical neuron models (see above), that 
R/NIR-IT benefits recovery from TBI by inhibiting apop-
tosis while increasing mitochondrial activity, transcrip-
tional activation, angiogenesis and neurogenesis (Chung 
et al., 2012; Huang et al., 2012). 

 In humans, R/NIR-IT using 830 – 870-nm irradiation 
has been tested in a 40-year-old male (2  ×  30-min treat-
ments per day for 73 days, applied 5 mm from the skin at 
11.4 mW/cm 2 , 20.5 J/cm 2  (Nawashiro et al., 2012) and in two 
females, aged 52 and 59. In the latter case, R/NIR-IT using 
633 or 870 nm was administered either (i) as treatments of 
5-min duration and 10 s per area treated for 7 months, then 
3 weeks per month at 25.8 mW/cm 2  (CW) or (ii) daily for 
7-min duration per area for 1 month, increasing by 1 min 
per area for each successive month at 22.2 mW/cm 2  (CW) 
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for treatment durations ranging from 3 months to 7 years 
(Naeser et al., 2011). In both studies, improved neurologi-
cal outcomes (including executive function and memory) 
were reported, as well as reduced post-traumatic stress 
disorder and improved cerebral blood flow in chronic TBI 
(Naeser et al., 2011; Nawashiro et al., 2012). Patients were 
able to eventually self-treat in the home, but benefits are 
reduced if the daily/weekly treatment frequency is not 
maintained.  

  R/NIR-IT for treatment of spinal 
cord injury (SCI) 
 Pathological changes following acute SCI are character-
ised by focal injury (Sekhon and Fehlings, 2001) followed 
by an expanding wave of secondary degeneration and 
cell death (Nashmi and Fehlings, 2001; Park et al., 2004; 
 Baptiste and Fehlings, 2006) that is associated with oxida-
tive damage (Liu et al., 1997; Profyris et al., 2004; Keane 
et al., 2006). Of the three SCI studies presented here, all 
describe R/NIR-IT using lasers in rats (Byrnes et al., 2005; 
Wu et al., 2009; Medalha et al., 2010). To date, no R/NIR 
irradiation treatments have been reported in humans with 
SCI. In all rat studies, treatment began either immediately 
(Wu et  al., 2009; Medalha et  al., 2010) or within 15  min 
(Byrnes et al., 2005) after SCI, which involved either dorsal 
hemisection at T9 – T10 alone (Byrnes et al., 2005), dorsal 
hemisection at T9 or moderate contusion at T9 – T10 (10 g 
dropped from 12.5 mm, NYU impactor) (Wu et al., 2009) or 
complete transection (Medalha et al., 2010) ( Table 1 ). 

 R/NIR-IT using 810-nm irradiation (2-week treatment 
at 1589 J/cm 2 /day) results in an increased axonal number 
and distance of regrowth, as well as immunomodulation 
and some aspects of functional recovery improvement 
as measured by ladder footfall, run time and hindlimb 
paw placement—but no open field [Basso, Beattie and 
Bresnahan (BBB)] assessment (Byrnes et al., 2005). Simi-
larly, 810-nm irradiation treatment (daily for 14  days 
at 2997  s per day, 1589 J/cm 2 /day) results in increased 
axon length and number in both dorsal hemisection and 
moderate contusion SCI models (Wu et al., 2009). In the 
contusion model, improved open field (BBB) locomotion 
scores were reported with R/NIR-treated rats, reaching 
BBB scores of 12 – 13 at 3 weeks after injury (i.e., frequent 
to consistent weight-supported plantar steps with fre-
quent coordination between forelimbs and hindlimbs) 
compared to non-treated rats, which reach BBB scores of 
9 – 10 (i.e., occasional weight-supported plantar steps but 
with no coordination) (Wu et  al., 2009). More recently, 

830-nm-treated rats showed a  ‘ trend ’  toward improved 
hindlimb diaphysis, but no biomechanical or densitomet-
ric improvements following complete spinal cord transec-
tion (Medalha et al., 2010). No behavioural (locomotory) 
improvements as measured by BBB scoring were observed 
in any treatment group. It is of note, however, that the 
830-nm treatment was not actually applied directly to 
the spinal cord in this study, rather at two points on the 
hindlimb (Medalha et al., 2010).  

  R/NIR-IT for treatment of stroke 
 Although at least 1000 agents have been shown to be effi-
cacious in preclinical ischaemic stroke evaluation, to date 
only intravenous tissue plasminogen activator (tPA) has 
been approved for clinical use in treating acute ischae-
mic stroke (Segura et  al., 2008). However, the majority 
of stroke patients either do not meet the strict criteria 
for treatment with tPA or fail to receive adequate reper-
fusion. Therefore, additional new therapies are needed. 
Recently, non-invasive laser therapy has been applied to 
acute ischaemic stroke patients with positive results; spe-
cifically, R/NIR irradiation is applied to the scalp within 
24 h of the onset of stroke symptoms. The principle objec-
tive of this section is to evaluate the literature regard-
ing R/NIR-IT delivered by laser in experimental stroke 
models and recent clinical trials, demonstrating that 
the most advanced application for R/NIR-IT to date is in 
ischaemic stroke with promising pre-clinical and clinical 
results. This subject has recently been comprehensively 
reviewed by Lapchak (2012); as such, details are provided 
for purposes of comparison with other CNS injury and 
disease states. 

  Pre-clinical rabbit studies 

 Positive findings of the efficacy of R/NIR-IT in reducing 
lesion volume in myocardial infarction (Ad and Oron, 
2001) prompted an investigation into whether a similar 
procedure would reduce stroke-related behavioural defi-
cits due to the similarities between myocardial and cere-
bral ischaemia. A small clot embolic stroke model (RSCEM) 
was used in rabbits treated with transcranial R/NIR-IT, 
employing CW irradiation at high power densities (25 mW/
cm 2 ) for 10 min. This initial exploratory study found that 
laser treatment significantly improves behavioural rating 
scores (reviewed in Lapchak et al., 2012), remaining effec-
tive when initiated within 6  h post-occlusion (Lapchak 
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et  al., 2002). PW R/NIR-IT was more beneficial than CW 
(Lapchak et  al., 2007), which is attributed to increased 
penetration of photons through the brain using the pulsed 
peaks (Lapchak, 2012). 

 It is well established that the core ischaemic area 
 following occlusion of a major cerebral artery experi-
ences rapid loss of ATP and energy production with wide-
spread neuronal depolarisation (Streeter et  al., 2004). 
 Embolisation-induced decreases of cortical ATP are atten-
uated by subsequent treatment with either CW R/NIR-IT 
or PW  R/NIR-IT, although PW R/NIR-IT is more effective 
(Lapchak and De Taboada, 2010). Indeed PW R/NIR-IT 
leads to increases in cortical ATP that are significantly 
higher than those seen in na ï ve animals. These results are 
compatible with the hypothesis that mitochondrial cyto-
chrome  c  oxidase is a potent chromophore for 808-nm 
irradiation energy (Streeter et al., 2004), as described in 
detail for other disease states above.   

  Pre-clinical rodent studies 

 Given the therapeutic benefits of R/NIR-IT in a myocardial 
infarction setting and its promising results after applica-
tion in stroke models in rabbits, Oron and his colleagues 
studied the effects of transcranial R/NIR-IT initiated 4 and 
24 h after a middle cerebral artery occlusion (MCAO) stroke 
in rats (Oron et al., 2006). Using both CW and PW modes of 
R/NIR-IT at 7.5 mW/cm 2 , they found that R/NIR-IT signifi-
cantly attenuates neurological deficits in CW laser-treated 
rats, without decreasing stroke lesion volume when 
administered at 24 h, but not 4 h after the onset of a stroke 
(Oron et  al., 2006). Unlike the neuroprotective effects of 
R/NIR-IT demonstrated in the RSCEM, the authors found 
no early neuroprotective benefit of R/NIR-IT when admin-
istered at 4 h after a stroke. Furthermore, both PW and CW 
R/NIR-IT have similar effects on motor outcome, although 
only the CW group reach significance in comparison to 
non-treated animals. This contrasted with an earlier study 
(Lapchak, 2010), the disparity perhaps attributable to the 
use of different experimental models and species. Interest-
ingly, Oron et al. (2006) proposed another potential mech-
anism of action of R/NIR-IT, with immunocytochemical 
analysis of the brain post-treatment revealing increased 
markers of neurogenesis, which may increase the func-
tionality of neuronal circuits and promote neuronal 
survival within this penumbral region (Lapchak, 2010). 
Others have agreed in principle with this finding, noting 
the 2 – 4 week delay in neurological outcome improvement 
evident post-stroke in rat models (Detaboada et al., 2006, 
Shen et  al., 2008). Further investigations (Detaboada 

et al., 2006) revealed that the location of laser treatment 
does not affect its efficacy, with ipsilateral, contralateral 
or bilateral laser treatment (CW 808 nm, 7.5 mW/cm 2 ) 
administered 24  h post-stroke efficiently improving neu-
rological outcome. Furthermore, marked and significant 
improvements in neurological deficits are evident at 14, 
21 and 28  days post-stroke. Additional proposed mecha-
nisms of action of R/NIR-IT in preventing neuronal death 
include irradiation-mediated upregulation of anti-apop-
totic proteins (Liang et al., 2008), heat shock proteins and 
antioxidant enzymes, upregulation of the neuroprotective 
agent transforming growth factor beta 1 (TGF- β 1) and sup-
pression of the potentially neurotoxic agent nitric oxide 
synthase (NOS) (Leung et al., 2002). In summary, the ben-
eficial effects of R/NIR-IT seen following stroke appear far 
reaching and are likely achieved by attenuation of several 
processes in concert. 

 It is important to note that safety studies in rodents 
investigating the possible short and long-term adverse 
neurological effects of R/NIR-IT given at different power 
densities and frequencies have been conducted. A diode 
laser (808-nm wavelength) used to deliver power densities 
of 7.5, 75 or 750 mW/cm 2  in either CW or PW modes results 
in no discernible damage to tissue and no difference 
between laser-treated and control groups up to 70  days 
post-treatment. The only rats showing adverse neuro-
logical effects are those in the CW 750 mW/cm 2  group   (an 
approx. 100-fold increase over the current/optimal dose) 
(Ilic et al., 2006). 

  Acute ischaemic stroke clinical trials 

 Two randomised double-blind clinical trials with 
R/NIR-IT, NeuroThera ®  Effectiveness and Safety Trials 1 
and 2 (NEST-1 and NEST-2) have already been completed 
(Lampl et al., 2007; Zivin et al., 2009) and because pooled 
results indicate a clinical improvement, a third trial 
(NEST-3) is currently underway. The phase II NEST-1 was 
a prospective, randomised 2:1, double-blinded, placebo-
controlled, international and multicenter trial involving 
120 ischaemic stroke patients [79 in the active treatment 
group and 41 shams (Lampl et al., 2007)]. Its primary aim 
was to assess the safety and efficacy of R/NIR-IT admin-
istered within 24 h of onset of stroke symptoms. The low-
energy lasers with a wavelength of 808 nm were applied at 
20 locations on the scalp with 2 min of irradiation at each 
site, for a power density of 10 mW/cm 2  and energy density 
of 1.2 J/cm 2 . Mean time to treatment was over 16 h (ranging 
from 2 to 24 h). The primary endpoint was the National 
Institutes of Health Stroke Scale (NIHSS) score collapsed 
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into a binary outcome and the modified Rankin scale 
(mRS). Briefly, patients receiving R/NIR-IT had a higher 
proportion of positive NIHSS and mRS outcomes than did 
sham-treated patients (Lampl et al., 2007), and therefore 
this trial provides some indication that R/NIR-IT is useful 
in treating the motor function deficits resulting from 
ischaemic strokes. Furthermore, no adverse outcomes 
could be attributed to the laser therapeutic procedure. 

 The larger phase III NEST-2 trial was conducted in 
660 stroke victims (Zivin et al., 2009). This was an acute 
ischaemic stroke study within 24  h of stroke onset and 
excluded patients who had received thrombolytic therapy 
and patients with evidence of intracerebral haemorrhage. 
The trial results did not reach statistical significance 
( p  = 0.094) and were considered not to be positive when all 
patients were included. However, post-hoc subgroup anal-
ysis detected significant improvements at 90 days ( p   <  0.04) 
in the moderately impaired stroke patients (n = 434) that 
were not evident in the severely impaired patients. Pooled 
analysis of the 778 patients from the NEST-1 and NEST-2 
trials revealed a significant improvement in those patients 
treated with laser therapy (Stemer et al., 2010). 

 The NEST-3 clinical trial design is very similar to the 
NEST-2 trial and proposes to include 1000 patients within 
24 h of a stroke with an NIHSS baseline of 7 – 17, which is the 
range where beneficial effects of R/NIR-IT were seen in the 
NEST-1 and NEST-2 trials (Lampl et al., 2007; Zivin et al., 
2009). Patients have begun to be enrolled in the NEST-3 
trial with the aim of demonstrating the safety and efficacy 
of TLT with the NeuroThera ®  Laser System in the treat-
ment of subjects diagnosed with acute ischemic stroke. 
The initiation of the R/NIR-IT procedure must be feasi-
ble for each subject between 4.5 and 24 h of stroke onset. 
The earliest treatment time of 4.5 h is in agreement with 
the recently expanded 4.5 h therapeutic window data for 
tPA (Lansberg et al., 2009). Patients with infarcts located 
exclusively in the brainstem, cerebellum or who have 
small deep infarctions or massive hemispheric strokes are 
excluded from this trial, inferring that trial enrolment may 
be limited to stroke patients with only small superficial 
cortical infarcts, perhaps owing to the limitations of the 
CW R/NIR-IT regimen (Lapchak, 2012). 

 Interestingly, both the NEST-1 (Lampl et  al., 2007) 
and NEST-2 (Zivin et  al., 2009) trials used a CW treat-
ment regimen with a power density similar to preclini-
cal rabbit studies (Lapchak and De Taboada, 2010). This 
CW method is also currently in use in the NEST-3 trial. 
Perhaps given the fact that the CW R/NIR-IT regimen was 
not effective in all patients in the NEST-2 trial and that 
some preclinical studies demonstrated greater efficacy of 
the PW R/NIR-IT method, the CW method employed may 

not be optimal (Lapchak, 2012). A thorough review of the 
NEST trials leads to the conclusion that, based upon the 
translational stroke results and experimental studies in 
other neurodegenerative conditions (De Taboada et  al., 
2011), laser devices in the future should incorporate PW 
modes to provide optimal photobiostimulation (Lapchak, 
2012). Based upon the scientific justification presented in 
this review, there is little doubt that R/NIR-IT should be 
pursued as a potential non-invasive neuroprotective treat-
ment for ischaemic stroke patients. However, the highly 
novel NEST trials have not taken into account many 
important factors such as PW utilisation, dosimetry and 
adequate tissue coverage (Lapchak, 2012). Results from 
the NEST-3 trial are much anticipated and may pave the 
way for future studies, potentially incorporating PW R/
NIR-IT.   

  R/NIR-IT for treatment of PD 
 PD is currently the most common movement disorder 
worldwide, affecting 1% to 2% of the population over the 
age of 60 and approximately 5% of people over the age of 
85 (Alves et al., 2008). Interventions that can reduce this 
escalating disease burden are therefore urgently required. 
Although regarded as a multifactorial disorder triggered 
by a combination of age, genetic, environmental and 
other factors, mitochondrial dysfunction has consistently 
been implicated in the disease and is widely considered 
as a potential unifying factor (Banerjee et al., 2009). Con-
sistent with this, a number of experimental models of 
the disease are based on inhibition of the mitochondrial 
respiratory chain function [using rotenone or 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)], resulting in 
the depletion of intracellular ATP levels and the genera-
tion of free radicals. Accordingly, interventions targeted at 
improving mitochondrial function, such as R/NIR-IT, are 
highly attractive as potential treatments in PD. 

 In a series of  in vitro  experiments utilising striatal 
and cortical neurones exposed to a variety of mitochon-
drial toxins (cyanide, rotenone and MPTP), Wong-Riley 
and colleagues (Liang et al., 2006, 2008; Ying et al., 2008) 
demonstrated that treatment with R/NIR irradiation 
(670-nm LED for 80 sec, 50 mW/cm 2 ; 4 J/cm 2 ) increases 
cytochrome  c  oxidase activity and reduces the production 
of ROS/RNS. This is associated with a preservation of ATP 
content as well as a reduction in toxin-induced apoptosis. 
They also note in normal control tissue that the irradia-
tion therapy increases cytochrome  c  oxidase activity and 
ATP content (Liang et al., 2008), consistent with the view 
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that energy absorption by the mitochondrial chromo-
phores will increase ATP production (Eells et al., 2003) by 
delivering protons across the mitochondrial membrane 
and generating a transmembrane proton-motive force 
(Lapchak, 2012). Increasing ATP content will presumably 
facilitate the ability of the neurons to combat the effect of 
the neurotoxins. Notably in the neurotoxin experiments, 
pretreatment is more effective than treatment during toxin 
exposure (Ying et  al., 2008), presumably reflecting the 
advantage of having increased ATP stores prior to toxin 
exposure. 

 A subsequent series of experiments utilising  in vivo  
models of PD also demonstrated beneficial effects of 
R/NIR-IT on histological outcome measures. In a rapid-
onset model of MPTP challenge in mice, R/NIR-IT (670-nm 
LED for 90 s, 50 mW/cm 2 ; 5 J/cm 2 ) administered immedi-
ately after the neurotoxin increases survival of dopamin-
ergic neurons in the substantia nigra pars compacta by 
35% – 45% (Shaw et al., 2010). Similar results are observed 
in a chronic MPTP model designed to replicate the slow 
progressive nature of human PD. Specifically, R/NIR-IT 
increases the survival of dopaminergic cells in the sub-
stantia nigra pars compacta by up to 25%, despite being 
administered during the 3-week survival period after the 
5-week MPTP insult period (Peoples et  al., 2012b). No 
effects are observed on other dopaminergic neurons in 
the periaqueductal grey matter or zona incerta-hypothal-
amus, which suggests that the beneficial effects of R/NIR 
irradiation exposure are likely to improve motor function 
in PD, rather than other non-motor abnormalities such as 
sleep-wake cycles. Nonetheless, there are neuroprotective 
effects of R/NIR-IT on dopaminergic cells in the retina in 
both an acute and chronic MPTP-based murine model of 
PD (Peoples et al., 2012a). In these experiments, R/NIR-IT 
via LED protects cells from degeneration when adminis-
tered simultaneously with the toxin, as well as rescues 
cells when exposure is administered after the toxin 
(during the 3-week survival period after 5 weeks of MPTP 
injections). The authors propose that the irradiation treat-
ment stimulates the release of melatonin, a well-known 
and powerful antioxidant that is localised to dopaminer-
gic neurons. 

 Other reports suggest that the antioxidant action may 
also involve the normalisation of levels of a number of 
antioxidant enzymes, including superoxide dismutase 
and catalase (Komel ’ kova et  al., 2004). In their studies 
of PD patients, these authors also demonstrated that 
R/NIR-IT normalized blood levels of monoamine oxidase 
B, which catalyzes dopamine oxidation, in addition to 
superoxide dismutase and catalase. Whether the normali-
sation of blood levels reflects the normalisation of brain 

levels of these enzymes is unclear and requires further 
investigation. 

 Although the effects of R/NIR-IT on antioxidant 
enzymes have been widely reported, other mechanisms 
of action may also play a role in improving outcomes in 
experimental PD. R/NIR irradiation has been shown to 
promote the production of neurotrophic factors (Leung 
et al., 2002), as well as to suppress inflammation, specifi-
cally the production of IL-1B, TNF α  and TGF (De Taboada 
et  al., 2011). Whether these reported effects account for 
the positive effects of R/NIR-IT on neurogenesis is cur-
rently unknown (Oron et al., 2006); although both neuro-
trophic factors and inflammation are widely recognised as 
having modulatory effects on cell survival. These and the 
previously discussed mechanisms of action suggest that 
R/NIR-IT may thus represent a pleiotropic intervention 
that has been widely called for in the treatment of both 
acute and chronic conditions of the CNS. 

 Aside from the early studies of blood enzyme levels 
in PD (Komel ’ kova et  al., 2004), few studies have inves-
tigated the effects of R/NIR-IT in a clinical setting for this 
disease. Nonetheless, several patents have been lodged 
over the past decade in an effort to facilitate such transla-
tion. A series of patents by Streeter and De Taboada (2012) 
describe the use of R/NIR-IT on PD patients through the 
scalp and skull to the brain more generally, whereas Di 
Mauro and colleagues (Di Mauro et al., 2007; Toselli et al., 
2009) describe using an implantable probe to deliver 
R/NIR-IT locally to the substantia nigra. It has yet to be 
determined which approach is the most efficacious.  

  Clinical application of R/NIR-IT 
 It was originally thought that lasers (coherent, monochro-
matic) were essential to achieving therapeutic efficacy 
(Mester et  al., 1985). However, the advent of LEDs (non-
coherent and with a wider bandwidth), a semiconduc-
tor irradiation source that releases energy in the form of 
photons, provided cheaper alternatives (Posten et  al., 
2005) and enabled rapid uptake in a large number of 
human studies and randomised controlled trials (RCTs). 
Nevertheless, lasers currently remain the predominant 
irradiation source for R/NIR-IT of stroke, SCI and TBI. At 
last count, 112 RCTs and clinical studies have been pub-
lished since 1994 on an extraordinary variety of condi-
tions, including osteoarthritis and rheumatoid arthri-
tis (Christie et  al., 2007; Hegedus et  al., 2009), carpal 
tunnel syndrome (Tascioglu et  al., 2010), oral mucositis 
for chemotherapy patients (Cauwels and Martens, 2011; 
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Silva et al., 2011), neck pain (Chow et al., 2009) and leg 
ulcers (Kaviani et  al., 2011). By contrast, only a small 
number of RCTs have been published for neurological 
conditions ( Table 2 ). Efficacy has been reported for stroke 
(Lampl et al., 2007; Zivin et al., 2009; Stemer et al., 2010), 
as described above, along with three case reports for TBI 
(Naeser et al., 2011; Nawashiro et al., 2012) and a study on 
major depression (Schiffer et al., 2009). However, across 
the broad range of conditions that have been examined, 
clinical efficacy is not always clear cut, with many reports 
showing no benefits, for example, oral mucositis (Gouv ê a 
de Lima et al., 2012), leg ulcers (Kokol et al., 2005), stroke 
(Zivin et al., 2009), pain and joint disorders (Bjordal et al., 
2003) and tinnitus (Teggi et al., 2009). Information from 
the far larger number of RCTs and clinical studies for non-
neurological conditions may offer insights into published 
studies, current RCTs on neurological conditions and aid 
in the optimal design of low irradiation laser therapy treat-
ments for a broader range of neurological dysfunctions.  

 Regardless of the irradiation source (laser or LED), the 
dosimetry of R/NIR-IT is highly complex because a wide 
range of parameters can be altered, including wavelength, 
irradiance, pulse structure, coherence and polarisation, 
as well as the actual dose delivered, which can involve 
variations in energy, energy density, irradiation time and 
treatment interval in addition to the site of the injury or 
disease (Chung et  al., 2012). Highly variable dosimetry 
between studies makes direct comparison difficult if not 
impossible (Jenkins and Carroll, 2011) and has contrib-
uted to lack of consensus as well as scepticism regarding 
efficacy. 

 Indeed, for conditions that have been widely studied, 
three Cochrane Database Systematic Reviews reveal con-
flicting data for osteoarthritis [5 RCTs, 112 patients (Bros-
seau et  al., 2003b)], some benefit for rheumatoid arthri-
tis [5 RCTs, 222 patients (Brosseau et  al., 2003a)] and 

insufficient data to draw conclusions for low-back pain 
[6 RCTs, 318 patients (Yousefi-Nooraie et al., 2008)]. The 
Cochrane Reviews points to a lack of standardised, vali-
dated outcomes, lack of harmonised dose calculation and 
an absence of data on how effectiveness is affected by 
wavelength, treatment duration, dosage and site of appli-
cation. The recent call to harmonise reporting of R/NIR-IT 
suggests mandatory inclusion of eight beam parameters 
(wavelength, power, irradiation time, beam area, pulse 
parameters, anatomical location, number of treatments 
and the interval between treatments) as well as other 
details for the reporting of both clinical and laboratory 
studies (Jenkins and Carroll, 2011). 

 An interrelated dosimetry issue is that of the biphasic 
dose response in biological tissue that is observed both 
 in vitro  and  in vivo,  which is characterised by initial effi-
cacy as irradiance and time are increased, followed by a 
decline, no effect or even inhibition (Huang et  al., 2011; 
Chung et  al., 2012). The mechanism underpinning the 
biphasic response is thought to involve ROS/RNS that are 
normally produced at low levels in healthy cells and are 
key signalling transcription factors (Shi and Gibson, 2007; 
Leonarduzzi et al., 2011). Low R/NIR-IT doses result in cel-
lular events such as proliferation, migration and neurite 
outgrowth  in vitro  as well as improvements in various 
conditions  in vivo , such as wound healing, cardiac infarc-
tion and arthritis. However, higher doses, which result 
in excessive ROS, show reduced effects or inhibition 
(reviewed by Hashmi et al., 2010; Huang et al., 2011). 

 In this context and as described earlier, Huang et al. 
(2011) have shown in a mouse pneumatic cortical impact 
model that delivering a single dose (36 J/cm 2  810-nm laser 
at 50 mW/cm 2 ) over 12 min is beneficial on the NSS but that a 
10-fold greater dose (360 J/cm 2  810-nm laser at 500 mW/cm 2 ) 
also delivered over 12 min results in worse outcomes com-
pared to no treatment. Intriguingly, delivering the same 

 Table 2      Currently registered trials on the WHO International Clinical Trials Registry Platform Search Portal.  

 Title  Registration date  Status 

 Brain plasticity underlying back pain response to different acupuncture methods  5/2012  NR 
 Effects of LEDs on memory in TBI patients  5/2012  R 
 Transcranial laser therapy in the rehabilitation of hemiplegic patients from ischaemic stroke  3/2011  NR 
 Safety of Rt-PA  +  transcranial emission of low energy lasers for acute stroke recovery  10/2010  R 
 Efficacy and safety trial of transcranial laser therapy within 24 h from stroke onset (NEST-3)  5/2010  R 
 Brain effects of acupuncture 2: laser acupuncture vs. laser EMLA  4/2010  NR 
 Brain effects of acupuncture 2: needle acupuncture vs. laser acupuncture  4/2010  NR 
 Managing fatigue and sleep disturbance following traumatic brain injury  7/2008  R 
 Managing fatigue and sleep disturbance following traumatic brain injury  1/2008  NR 
 Effectiveness and safety trial of a new ischaemic stroke treatment within 24 h from stroke onset (NEST-2)  1/2007  NR 

  R, recruiting; NR, not recruiting.  
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low dose daily for 14 days starting at 4 h after injury results 
in a slight improvement at day 4 compared to the single 
dose but, between days 14 – 28, NSS is no better than with 
no treatment and shows a trend to worse outcomes. The 
biphasic tissue response cautions that  ‘ more is not nec-
essarily better ’ . As we argue above, this conclusion is 
supported by the fact that only extremely low irradiation 
doses are sufficient to elicit biophysical changes at the 
cellular level. Nevertheless, the almost complete lack of 
adverse/serious adverse events reported in clinical trials 
argues for continued clinical investigation of R/NIR-IT. 

 In addition to relative safety, the non-invasive nature 
of R/NIR-IT has undoubtedly contributed to its relatively 
rapid uptake in clinical trials. For example, R/NIR laser 
therapy was developed and patented between 1997 and 
2001, with the first clinical trial in acute ischaemic stroke 
published in 2007 (NEST-1) (Lampl et al., 2007). This was 
followed by NEST-2 (Zivin et  al., 2009), an analysis of 

pooled data from NEST-1 and NEST-2 (Stemer et al., 2010) 
and NEST-3 now underway (Lapchak, 2010). With respect 
to the future, there are 10 currently registered RCTs for 
R/NIR-IT in neurological conditions, one of which is pub-
lished (NEST-2). The hope is that these will yield data 
that avoid the shortcomings highlighted by the Cochrane 
Reviews on R/NIR-IT in other conditions (Brosseau et al., 
2003a,b; Yousefi-Nooraie et  al., 2008) and progress the 
field regarding the use of R/NIR-IT.   
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