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Abstract 

Hematopoietic stem cells (HSC) undergo expansion and differentiation giving rise to all 

terminally differentiated blood cells throughout life.  HSC are found in distinct 

anatomical sites during development, and in adults, hematopoiesis occurs 

predominantly on the luminal side of the bone cavity in bone marrow.  Millions of 

newly formed blood cells are generated per second to accommodate the short half-life of 

hematopoietic cells. In order for this to happen, HSC must sustain their self-renewal 

capacity as well as their capability to commit and differentiate towards multiple cell 

lineages. Development of the hematopoietic system is finely regulated as the animal 

ages, so that it does not become exhausted or misdirected. This review covers aspects of 

hematopoietic development from the embryonic period through adult life in relation to 

development of dendritic cells (DC).  It also considers a role for HSC in extramedullary 

sites and their possible role in myelopoiesis with formation of tissue-specific antigen 

presenting cells (APC). 
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EARLY HEMATOPOIESIS 

The hematopoietic and cardiovascular organ systems are the first to emerge during 

embryogenesis because the embryo requires a functional heart, vascular system, and blood 

for survival and growth in the early post-implantation period.  Blood cell development in the 

embryo depends on gastrulation and mesoderm formation.  Mesodermal cells contribute to 

the heart, the aorta in the embryo proper, formation of hematopoietic cells in yolk sac and 

vascular interconnection in the embryo.1 Embryonic hematopoiesis in mice begins after 

gastrulation at embryonic day 6 (E6), when mesodermal cells commit to becoming 

hematopoietic cells.2 The sequential sites for hematopoiesis during embryonic development 

then include yolk sac, the aorta-gonad-mesonephros (AGM) region, placenta, fetal liver, 

spleen, and finally bone marrow.3 

Yolk sac, a bilayer structure of mesoderm and endoderm-derived cell layers, is the initial 

site for blood cell formation.  The first hematopoietic precursors derive from mesoderm that 

gives rise to the hemangioblast, a bipotential precursor for blood and endothelium that enters 

the yolk sac to initiate primitive hematopoiesis across E7-E7.5.  Blood cells produced at this 

time are primitive hematopoietic cells consisting mainly of large nucleated red blood cells.4 

The presence of definitive hematopoietic progenitors then marks the start of a second wave of 

blood cell production on day E8.5.5 However, the microenvironment in the yolk sac does not 

support the differentiation of definitive hematopoietic progenitors.  These therefore exit the 

yolk sac via the vitelline veins.  Following transient appearance in the AGM region, HSC are 

seen to colonize fetal liver passing through umbilical cord vessels of the placenta where they 

contribute to robust expansion and definitive hematopoiesis.  

HSC then appear in the fetal liver at E11.5 where they undergo proliferation and 

differentiation, with maximum expansion of HSC across E15.5-E16.5, followed by a decline 

in cell numbers.6 CFU-E and proerythroblasts prevail in early fetal liver, whereas myeloid 
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and lymphoid progenitors accumulate at later stages.  Modification of the liver 

microenvironment during fetal development occurs in preparation for HSC expansion and 

lineage differentiation7, consistent with phenotypic changes in HSC across different 

developmental stages.8  

Bone development begins at E12.5 as mesenchymal condensations are observed.  Briefly, 

mesenchymal progenitor cells first give rise to chondrocytes that create a cartilaginous 

framework for bone.  Chondrocytes are later replaced by osteoblastic cells that build up 

calcified bone through endochondral ossification to form the bone marrow cavity.9 Vascular 

invasion into the bone then facilitates the circulation and seeding of HSC.  Clonogenic 

hematopoietic activity in bone marrow can be found at ~E17.5 and persists throughout 

postnatal life.10   	  

Hematopoiesis in fetal spleen occurs from E13 until the first weeks of the postnatal 

period.  Hematopoietic progenitors from fetal liver migrate to fetal spleen at E13-E14 and 

undergo proliferation and differentiation to give mature blood cells.  In contrast to fetal liver, 

fetal spleen does not have significant hematopoietic activity.11 Hematopoiesis in fetal liver 

depends on expansion of progenitors, while hematopoiesis in fetal spleen relies on immediate 

hematopoietic precursors derived from fetal liver which home directly to spleen.  Special 

microenvironments or niches in fetal spleen appear to restrict or favor the development of 

particular blood cell lineages.12 

      

PROPERTIES OF HEMATOPOIETIC STEM CELLS  

In adult humans, bone marrow is the major hematopoietic organ producing more than 109 

mature blood cells per day.  Due to the short half-life of mature cells, continuous production 

of cells depends on the ability of HSC to self-renew and differentiate to give all blood cell 

types.13 In the steady-state, specialized niches in bone marrow provide an optimal 
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microenvironment for maintenance of HSC by regulation of their self-renewal and 

differentiative capacity, and conservation of their multipotency throughout cell division.14   

Self-renewal is driven intrinsically by gene expression and modulated through HSC 

interaction with extrinsic cues in the environment.  HSC niches are crucial regulators which 

determine whether symmetric or asymmetric cell division occurs.15 During asymmetric 

division, HSC form a daughter cell and another HSC.  Asymmetric division has been 

described for several tissue-specific stem cells, and several cell fate regulators including 

Notch, HoxB4, and Sonic hedgehog have been shown to play a role in the self-renewal 

process.16-19 Wnt signaling is important for self-renewal because induced expression of a 

frizzled ligand-binding domain, an inhibitor of the Wnt signaling pathway, leads to inhibition 

of HSC growth in vitro.20 

Lineage commitment is the process by which HSC become restricted in their 

differentiation and develop into a fully committed progenitor of a single blood cell lineage.21 

All murine adult hematopoietic cells derive from the multipotential HSC.  This single cell 

type can restore the mature peripheral population of hematopoietic or blood cells in lethally 

irradiated recipient mice via bone marrow transplantation.  Murine HSC were first 

characterized by their lack of lineage (Lin) specific antigens, their expression of Sca-1 (stem 

cell associated antigen) and c-Kit, and low expression of Thy-1.22 This subset was later 

classified as the Lin-Sca-1+c-Kit+ compartment (LSK).  Within the HSC hierarchy, LSK 

represent a diverse group which can be classified as long-term self-renewing HSC (LT-HSC), 

shortterm, or transiently, self-renewing HSC (ST-HSC), and multipotential progenitors 

(MPP).23, 24 

LT-HSC have capacity for life long reconstitution of the hematopoietic system.  In mice, 

they are highly enriched in the LSK-Thy1.1lo cell fraction that can be further purified as Flk-

2- cells.25 The CD150, CD244 and CD48 signaling lymphocyte activation molecules have 
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recently been found to discriminate HSC subpopulations such that, LSKCD150+CD48-

CD244-CD34- cells are defined as HSC, LSKCD150-CD48-CD244+CD34- as MPP, and 

LSKCD150-CD48+CD244+ as more committed progenitors.26-28 

A hierarchy of hematopoietic cell differentiation continues to be established using both 

cell surface marker analysis and in vitro colony forming and functional assays.  HSC, as 

multipotent progenitors, sit at the top of the hierarchy and possess high capacity for self-

renewal and differentiation.  Downstream on the hierarchy, HSC lose their self-renewing 

ability and develop into MPP that give rise to several lineages of blood cells.25 MPP represent 

a heterogeneous population of stem/progenitor cells, and remain under investigation in terms 

of their subsets and their differentiative potential.26, 29-31  

In terms of differentiation to give a diversity of APC, the myeloid pathway is of particular 

interest. HSC give rise to common myeloid progenitors (CMP) and common lymphoid 

progenitors (CLP) through a multipotential progenitor (MPP).31, 32 CMP then differentiate to 

give granulocyte-macrophage progenitors (GMP) and megakaryocyte-erythroid progenitors 

(MEP).  GMP are the progenitors of granulocytic and macrophage/monocytic cells including 

neutrophils, eosinophils, basophils, and monocytes. MEP give rise to red blood cells and 

megakaryocytes. CLP give rise to lymphoid and NK cell progenitors, followed by generation 

of mature T cells, B cells and NK cells.  The Flt3+ subset of CMP and CLP give rise to 

dendritic cells (DC).33 Two further progenitors have recently been defined in relation to DC 

development (Figure 1).  The earliest is the MDP, a myeloid dendritic progenitor which 

overlaps with the CMP and CLP, but not the GMP population.34, 35 A downstream common 

dendritic progenitor (CDP) which responds to Flt3L has been identified as a specific 

progenitor of conventional (c)DC and plasmacytoid (p)DC.36, 37 The relationship between 

CDP and the previously defined CLP, CMP and MDP populations is still under investigation.  
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HSC ARE DISTRIBUTED AND NOT RESTRICTED TO BONE MARROW 

Bone marrow primarily provides niches for HSC seeding and contributes the 

microenvironment which supports self-renewal and differentiation. In the adult, HSC 

migration from BM into the bloodstream in the steady-state is important for maintaining 

homeostasis. Collection of stem cells for transplantation in a clinical setting takes advantage 

of this natural migratory phenomenon by enforcing the release, or by ‘mobilising’ HSC, from 

bone marrow by infusion of chemotherapeutic drugs or cytokines like granulocyte-colony 

stimulating factor (G-CSF). HSC can then be collected from blood for stem cell 

transplantation.  Adoptive transfer then leads to reconstitution of all hematopoietic cells after 

HSC home to and infiltrate bone marrow.  One enigma is that HSC introduced into the 

peripheral blood circulation can traffic back into lymphatic circulation and into bone marrow, 

and so find their niches in this tissue (Figure 2).38 It is also clear that following intravenous 

infusion, HSC localize in spleen and other extramedullary tissue niches (Figure 2).38 

Several mechanisms are known to regulate HSC homing into niches.  CXCL12 or stroma-

derived factor-1 (SDF-1) and its receptor CXCR4 are master regulators of HSC migration 

through blood during embryonic development, consistent with reduction of myeloid 

progenitors in CXCR4-/- and CXCL12-/- mice.39, 40 HSC also use VLA-4 (integrin α4β1) to 

localise themselves in contact with blood vessels in bone marrow via binding to VCAM-1 

expressed on bone marrow stromal or endothelial cells (Figure 2).41 Migration of HSC into 

extramedullary hematopoietic organs such as spleen and liver is also mediated via interaction 

of VLA-4 with VCAM-1, ahead of returning to the appropriate niche that secretes SDF-1 

(CXCL12) (Figure 2).41      

Studies now show that HSC can enter and circulate through the lymphatic system.  The 

egress of HSC from bone marrow into extramedullary tissues depends on sphingosine-1-

phosphate receptor (S1P1) (Figure 2).  HSC also use S1P1, to migrate across lymphatic 
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vessels and so restore specialized myeloid cells in peripheral tissues.42 HSC express toll-like 

receptors (TLR), and their co-receptors MD-2 and CD14, required for recognition of 

pathogen associated molecular patterns such as bacterial lipopolysaccharide (LPS).43 

Interaction of TLR with LPS signals myeloid differentiation in migratory HSC localized in 

peripheral tissues.  LPS was found to amplify the differentiation of HSC in local tissues, and 

to reduce the expression of S1P1 on HSC, so leading to retention of HSC within tissue sites.42  

During inflammatory responses, the phagocytic activity of sinusdoidal-lining 

macrophages is dramatically increased in order to remove invading pathogens.  During 

inflammation, HSC protect themselves from macrophage uptake by upregulating CD47, an 

immunoglobulin-like protein which interacts with integrins and thrombospondins to protect 

HSC from reactive phagocytosis.44-46 CD47 interacts with its receptor, SIRPα on 

macrophages and dendritic cells, to prevent phagocytosis, so ensuring survival of HSC during 

inflammation.44, 45    

 

NICHES FOR HEMATOPOIESIS ARE DISTRIBUTED 

Several niches have been described as sites for HSC maintenance, including endosteum of 

bone and vascular niches in bone marrow and spleen.47, 48 In adult mice, the majority of HSC 

reside within osteoblastic and vascular niches in bone marrow where most hematopoietic 

activity occurs, whilst smaller numbers reside in vascular niches in other tissues.  

Bone marrow niches contain specialized cells that provide membrane-bound and secreted 

growth factors to support HSC growth.49, 50 Many studies have focused on the role of 

endosteal cells lining the inner surface of bone at the interface with bone marrow, in HSC 

maintenance.14, 51-54 Endosteal cells differentiate into osteoblasts which support cell-to-cell 

contact with HSC, mediated through multiple adhesive interactions including homotypic 

interactions involving N-cadherin (Figure 2). Osteopontin (OPN) induces HSC retention and 
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quiescence in the bone marrow by binding to several integrins or to CD44, resulting in 

downregulation of Jagged1 expression on stromal cells and Notch1 expression on HSC.55  

Endosteal cells produce growth factors like stem cell factor (SCF) which support HSC 

function and survival (Figure 2). Angiopoietin (Ang-1) and thrombopoietin (TPO) promote 

quiescence of HSC, while SDF-1 (CXCL12) regulates migration of HSC within the bone 

marrow.56-58 The endosteum also comprises the bone resorbing osteoclasts and a balance 

between osteoblastic and osteoclastic activities in the bone marrow is important for 

development of HSC.59   

The highly vascularised nature of the endosteum is also consistent with endothelial cells 

having a critical role in regulation of HSC development in bone marrow.50 Vascular niches 

are considered alternate sites for HSC maintenance. During embyogenesis, HSC arise from 

progenitors located in perivascular sites, and HSC in extramedullary tissues like liver and 

spleen are located in sinusoidal or vascular areas in the absence of osteoblastic cells. 

Lifelong maintenance of the HSC pool depends on protecting HSC from premature 

exhaustion under conditions of stress.  Quiescence in terms of cell cycle is a common 

property of niche-associated HSC. Although HSC divide infrequently, the entire HSC pool 

turns over every few weeks.  In mice, dormant HSC divide every 145 days or 5 times per 

lifetime.28 These multilineage long-term self-renewing cells create a silent reservoir of HSC 

during homeostasis. Upon stimulation with G-CSF, dormant HSC enter cell cycle, and then 

switch back to dormancy. HSC can reversibly undergo self-renewal under conditions of 

stress.28 Quiescence is maintained by signaling within the niche, which induces the Tie-2 

tyrosine kinase receptor on HSC which interacts with angiopoietin-1 (Ang-1) on 

osteoblasts57, as well as the TPO/Mpl and Wnt/β-catenin signaling interactions, also 

important for HSC quiescence (Figure 2).60   
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Vascular conduits are the major highways by which hematopoietic cells and 

hematopoietic progenitors traffic to liver and spleen in adults.61-63 It is generally accepted that 

a small number of hematopoietic progenitors circulate through peripheral sites and then home 

back to the bone marrow.64, 65 Consistent with HSC migration, several studies have identified 

hematopoietic progenitors in heart.66-68 Indeed, c-kit+ cells isolated in the heart after 

myocardial infarction have been reported to have a bone marrow origin69-71.  Hematopoietic 

progenitors from bone marrow can give rise to microglia following transplantation into 

brain.72, 73 After brain injury it is possible that HSC or other hematopoietic progenitors from 

bone marrow may enter the brain and differentiate to become APC. There are also reports of 

the presence of hematopoietic progenitors in peripheral tissue sites like kidney74, skin75, and 

intestinal tract.76 Such progenitors can give rise to hematopoietic cells specific to each tissue 

site.  Similarly, Langerhans cells in skin derive from self-renewing hematopoietic progenitors 

which colonise the epidermis during embryonic development.77  

 

HEMATOPOIESIS LEADING TO A DISTRIBUTED PATTERN OF MYELOID AND 

DENDRITIC CELLS IN MULTIPLE TISSUES 

Hematopoiesis leading to APC formation now appears to reflect a complex set of 

developmental pathways originating from progenitors in bone marrow, leading to a diverse 

range of cells in different states of development within tissue sites such as bone marrow, 

liver, spleen and other lymphoid and non-lymphoid organs.78 DC emerge from bone marrow 

progenitors, but the exact progenitors that give rise to DC and how they relate to known 

progenitors of lymphoid and myeloid cells in vivo is still under investigation (Figure 1). 

Recent developmental studies show that DC subsets and monocytes/macrophages are 

generated along a myeloid pathway.34, 79 Data from parabiotic mice also support the 

hypothesis that lymphoid tissue DC and monocytes share a common bone marrow-derived 
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macrophage/dendritic progenitor (MDP), identified as a Lin-Sca1-c-

KithiCD115+CX3CR1+Flt3+ subset also expressing CD34 and CD16/32.35, 80 A more 

committed, distinct bone marrow progenitor called the common DC progenitor (CDP) has 

been identified as a Lin- Sca1+c-KitloCD115+Flt3+ subset which gives rise cDC and pDC 

(Figure 1).35, 37 Data such as these supports the concept that development of monocytes and 

macrophages is separated from that of DC before these cell types migrate into peripheral 

lymphoid tissues.   

Multiple DC subsets have now been identified in tissues around the body.  Their immune 

capacity varies in terms of ability to take up antigen and presence of inflammatory stimuli. In 

thymus, DC derive from an intrathymic lymphoid progenitor and represent a specialized 

subset important in creating a self-tolerant T cell repertoire78. In murine spleen, several 

subsets are recognized including cDC and pDC (Figure 1), each phenotypically and 

functionally distinct. Conventional DC are small, non-granular cells comprising two subsets 

of CD8α+ and CD8α- cDC.81 Counterpart cells can also be found in humans, free of infection 

and inflammation.82 The majority of DC in spleen are CD8α- cDC with only ~20% cDC of 

CD8α+ phenotype.83 The CD8α+ cDC are localised in the T-cell rich areas or periarteriolar 

lymphatic sheath (PALS) of spleen, while the CD8α− cDC are found in the marginal zone.  

CD8α− cDC can migrate into the T-cell zone upon activation with bacterial 

lipopolysaccharides (LPS).84, 85 Plasmacytoid DC have strong capacity to secrete type-1 

interferon (IFN-α) upon viral or bacterial infection, and express CD11c, B220, CD36, CD4, 

CD68, and MHC-II on their cell surface.  The function of pDC is linked to their expression of 

TLR-7 and TLR-9 which detect viral nucleic acid in early endosomes.86  

Monocytes can also be induced to differentiate in vitro under the influence of 

inflammatory cytokines like GM-CSF and TNF-α to give monocyte-derived DC (mo-DC). 

These have been commonly studied as a model DC type and used in intervention or 
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immunotherapy against malignancies.  However, DC produced by this protocol represent 

inflammatory DC, and are distinct from steady-state cDC. It is not yet clear whether mo-DC 

correspond to any DC subsets in steady-state lymphoid organs.87 Other myeloid subsets 

described in spleen include TNF/iNOS-producing (Tip) DC88 and inflammatory monocytes.89 

In general, DC exist in peripheral tissues in an immature state and possess high capability 

for capturing and processing antigens from the local environment.  After endocytosis of 

foreign antigens, these immature DC in peripheral tissues migrate to lymphoid organs where 

they undergo antigen processing and cell maturation, whereby DC upregulate co-stimulatory 

molecules like CD40, CD69, CD80, and CD86.  Mature DC possess high capacity for 

presentation of antigen to naïve T lymphocytes90, 91, and have high capability for cross 

presentation of endocytosed antigen for subsequent CD8+ T cell activation.92 Presentation of 

antigenic peptides by DC expressing appropriate co-stimulatory molecules results in 

activation of T cells for immunogenic responses, while antigen presentation without co-

stimulation leads to T cell activation for tolerogenic responses.93, 94 A wide range of DC 

subsets are therefore formed which act as extremely important central controllers of tolerance 

and immunity. 

 

EXTRAMEDULLARY SITES FOR MYELOPOIESIS OF DC 

DC can also develop within peripheral tissue sites and this has clearly been demonstrated for 

Langerhans cells. Cells of host origin were found several months after bone marrow 

transplantation77, indicating that skin Langerhans cells are derived from tissue-restricted 

myeloid progenitors.  Thus, DC development from progenitors within peripheral tissue sites 

might be possible given the distribution of HSC within tissues, and the potential for 

hematopoietic niches in multiple tissue sites. However, the extent to which this happens is 

not yet fully understood. In particular, spleen appears to support extramedullary 
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hematopoiesis for development of tissue-specific APC. In humans and mice, steady state-

spleen contains cDC and pDC which are maintained by the replenishment of pre-DC, or 

precursors of cDC and pDC which derive from progenitors in bone marrow.  We now present 

evidence that distinct dendritic-like cells appear to arise in spleen from endogenous self-

renewing progenitors (Figure 1).95  

In vitro studies from this lab showed that continuous long-term stromal cultures (LTC) of 

spleen support production of distinct dendritic-like cells which are large cells expressing 

CD11c, CD11b, and MHC-I, but not MHC-II.96 Since these cells resembled immature 

myeloid DC, they were named LTC-DC.96-100 The phenotype of cells produced has remained 

stable over years of culture with characteristic expression of CD11c, CD11b, CD80, CD86, 

MHC-I, CD205 but not MHC-II CD8α or B220.96, 100 Gene expression studies have shown 

that LTC-DC express genes encoding several cell surface molecules expressed by DC.101, 102 

LTC are distinct from other in vitro cultures for DC production in that stromal cells support 

DC production without addition of exogenous inflammatory cytokines, reflecting the capacity 

of the spleen stromal cells to support DC haematopoiesis.103 The continual production of 

immature myeloid DC in LTC led to the hypothesis that hematopoietic stem or progenitor 

cells are maintained within LTC.104, 105 Ongoing investigations have now supported that 

hypothesis.  

Recently it was shown that LTC-DC have an in vivo counterpart cell, distinguishable 

from other DC subtypes on the basis of marker expression.106 These cells are distinct from 

cDC by their higher endocytic activity, absence of MHC-II expression, and their RelB-

independent development.107, 108 They are also phenotypically and functionally distinct from 

monocytes.106  The in vivo counterpart of LTC-DC, termed ‘L-DC’ has now been identified 

in both adult and neonatal spleen, and these cells possess highly endocytic activity, and can 

cross-present antigens to CD8+ T cells, with very limited ability to stimulate CD4+ T cell 
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responses.106 The inability of L-DC to induce a helper T cell response is likely due to the 

absence or low MHC-II expression on these cells.100 LTC-DC and L-DC are readily 

distinguished from monocytes which cannot cross-present antigen to CD8+ T cells.105, 106 

 Hematopoietic progenitors in LTC and their counterparts in vivo have been investigated 

in order to substantiate the development of L-DC as a distinct APC in the context of the 

spleen microenvironment.  Based on the finding that a population of small cells is maintained 

in LTC, which reflect Lin-c-kit+Sca-1+ progenitors109, the question was raised as to whether 

HSC or MPP could serve the role as L-DC progenitors in spleen.95  HSC derived from 

spleen104 and bone marrow105 have now been shown to act as progenitors of L-DC in LTC.   

When these same subsets of HSC from spleen or bone marrow were adoptively transferred 

into lethally irradiated mice there was a bias favouring production of L-DC over other DC 

subsets in spleen.104, 105 These data raise the possibility that APC can develop in spleen from 

endogenous self-renewing HSC and have tissue-specific function perhaps related to blood-

borne antigens. Further studies are underway to gain complete understanding of the 

development of this putative novel DC subset in the splenic context.  

 

CONCLUSION 

Indeed, there is much to be learned about tissue niches for HSC and about tissue-specific 

hematopoiesis for production of APC, before their importance in tissue-specific inflammation 

and immunity can be interpreted and considered in terms of immunotherapy.  Indeed, a role 

for self-renewing tissue-specific progenitors in production of tissue-specific APC during the 

steady-state and during inflammation can be justified in terms of tissue-specific immunity 

reflecting some level of diversification and compartmentalisation of the immune response.  
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Figure Legends 

Figure 1 Myelopoiesis leading to dendritic cell development. The bone marrow maintains 

hematopoietic stem cells (HSC).  Myeloid cells are produced from a downstream 

common myeloid progenitor (CMP). These further differentiate to give 

macrophage/dendritic progenitors (MDP) which are precursors of monocytes, 

macrophages and dendritic cells. Recently a common dendritic progenitor (CDP) was 

shown to give restricted development of splenic DC via a precursor detectable in both 

blood and spleen. A novel antigen presenting cell type has been characterized in 

murine spleen. These dendritic-like cells have been named ‘L-DC’ and appear to 

derive by direct differentiation from HSC in bone marrow and spleen.         

Figure 2 The bone marrow microenvironment provides signals which control HSC self-

renewal, migration, and quiescence. (A) HSC migrate within the niche by interaction 

of SDF-1 (CXCL12) produced by osteoblasts (OB) with CXCR4 on HSC. HSC are 

maintained on the endosteal surface of bone through cell-cell interactions, including 

homotypic interactions involving N-cadherin, and osteopontin (OPN) interaction with 

CD44 or integrins. Osteopontin supports retention of HSC in the niche by down 

regulation of Jagged-1 expression which interacts with Notch-1 on HSC. These 

interactions allow Tie-2 on HSC to interact with angiopoietin (Ang-1), and cKit to 

interact with stem cell factor (SCF) on the surface of osteoblasts. Angiopoietin (Ang-

1) and thrombopoietin (TPO) interactions with their receptors on HSC supports HSC 

quiescence. (B) HSC migrate from blood into extramedullary tissues via a 

sphingosine-1-phosphate (S1P) gradient. The interaction of S1P with its receptor 

(S1P1), in combination with other molecules such as CXCR4 and VLA-4 which 

interact with ligands on endothelial cells (EC) (CXCL12 and VCAM-1), facilitates 

HSC migration into extramedullary tissues. The S1P level in tissues is lower due to 
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S1P lyase activity. This results in localization of HSC within tissue niches for 

differentiation. HSC can also enter lymphatic tissues including bone marrow through 

the guidance of S1P. 

 






