USE OF THESES

This copy is supplied for purposes of private study and research only. Passages from the thesis may not be copied or closely paraphrased without the written consent of the author.
THE VISUAL STRUCTURE OF A

PLANE SURFACE

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

by

Michael Lewis Cook

Australian National University
September 1968
This thesis describes original research carried out by the author in the Department of Psychology of the Australian National University from October 1965 to September 1968.
I acknowledge with gratitude the contribution made to this study by my supervisor, Professor Gavin Seagrím. His encouragement and his interest in this research have been invaluable.

I acknowledge also the help received from Mrs Susan Page, who has always been ready to discuss at length the problems associated with the study. Many of her suggestions have been incorporated here.

I am grateful to Dr Martin Ward of the Department of Pure Mathematics in the School of General Studies of the ANU for his advice with regard to the contents of Chapter 2.

I thank Mrs Felicity Wickland, who typed this final copy of the thesis; Mrs Phyllis Mayson, who typed a substantial portion of the final draft; and the Visual Aids Unit of the ANU, which reproduced the illustrations.

Finally, I wish to express my gratitude to my wife, Yvonne, who, by her encouragement and tolerance in the final stages, made possible the completion of this study.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii

ABSTRACT ix

CHAPTER 1 INTRODUCTION 1

1.1 The scope of the study 1

1.2 The specification of location on the plane 4

1.3 The structure of the study 9

CHAPTER 2 THE REPRESENTATION OF INTERVAL-ORDERING JUDGMENTS 13

2.1 The description of interval-ordering judgments: explicit and implicit representation-functions 13

2.1.1 The explicit representation-function 13

2.1.2 The implicit representation-function 18

2.2 The consistency of interval-ordering judgments 20

2.2.1 The structure of interval-ordering judgments 21

2.2.2 The existence of an implicit representation-function 27

CHAPTER 3 THE DETERMINATION OF AN IMPLICIT REPRESENTATION-FUNCTION: THE BISECTION-METHOD 32

3.1 The bisection-function 32

3.2 The bisection-function and the implicit representation-function 35
3.3 The representation-function for a half-path 36

3.4 The complete implicit representation-function 41

3.4.1 Generalisation within a half-path 41

3.4.2 Generalisation to both half-paths 42

3.5 The case of a linear bisection-function 46

3.5.1 The form of the representation-function 47

3.5.2 The generalisation of the representation-function 51

3.5.3 The parameters of the implicit representation-function 54

3.5.4 The implementation of the bisection-method 57

CHAPTER 4 THE JUDGMENT OF DISTANCE ON THE MEDIAN PATH 60

4.1 Studies of median distance-judgment 60

4.2 The implicit representation-function for the median path: Experiment 1 65

4.2.1 The experimental arrangement 66

4.2.2 Procedure 71

4.2.3 Results and discussion 73
CHAPTER 5

THE CONSISTENCY OF MEDIAN INTERVAL-ORDERING JUDGMENTS

5.1 Alternative implicit representation-functions: the multiplication method

5.2 The consistency of median distance-judgments: Experiment 2

5.2.1 The experimental arrangement

5.2.2 Procedure

5.2.3 Results and discussion

CHAPTER 6

THE JUDGMENT OF DISTANCE ON A FRONTO-PARALLEL PATH

6.1 Studies of lateral distance-judgment

6.2 The form of the lateral implicit representation-function: Experiment 3

6.2.1 The experimental arrangement

6.2.2 Procedure

6.2.3 Results

6.3 Lateral exponents at different distances: Experiment 4

6.3.1 The experimental arrangement

6.3.2 Procedure

6.3.3 Results and discussion

CHAPTER 7

THE JUDGMENT OF DISTANCE ON THE PLANE: COORDINATED IMPLICIT REPRESENTATION-FUNCTIONS

7.1 The representation of inter-path comparisons
7.1.1 Coordinated implicit representation-functions
7.1.2 The coordination of a family of implicit representation-functions

7.2 Determination of the coordination-function: Experiment 5
7.2.1 The experimental arrangement
7.2.2 Procedure
7.2.3 Results

7.3 The visual structure of the plane
7.3.1 Individual differences in judgment
7.3.2 A visual map of the plane
7.3.3 Size-constancy on the plane
7.3.4 The problem of complete representation

CHAPTER 8

VISUAL STIMULATION BY A PLANE SURFACE

8.1 The optical projection of the plane
8.1.1 The visual direction of an image-point: the image-surface
8.1.2 The visual direction of a point on this plane
8.1.3 The projection of a surface-pattern
8.2 The role of visual direction in the judgment of distance
8.2.1 Visual direction as a cue to distance
8.2.2 The judgment of distance as a function of visual direction

APPENDIX I Demonstrations of properties of the equivalence and order relations 196
APPENDIX II Results of Experiment 1 203
APPENDIX III Results of Experiment 2 215
APPENDIX IV The statistical structure of the multiplication method 226
APPENDIX V Results of Experiment 3 231
APPENDIX VI Results of Experiment 4 238
APPENDIX VII Results of Experiment 5 and tables for Chapter 7 249

BIBLIOGRAPHY 255
This study is concerned with the capacity to make judgments of distance on an horizontal plane surface. In particular, it provides a descriptive account of the patterns of interval-ordering judgment along certain rectilinear paths on such a surface. A scaling technique has been employed which enables a metrical representation of judgment to be made for each selected path. The foundations of this technique are examined in Chapters 2 and 3, and an experimental validation is provided in Chapter 5. Chapter 4 employs the technique to examine the pattern of judgment on the median path of the plane, and Chapter 6 provides a corresponding account of judgment on fronto-parallel paths at various distances from the observer. In Chapter 7 consideration is given to the possibility of providing a general representation of judgment on the plane, and an examination is made of intra-path interval comparisons which involve the median path and the family of fronto-parallel paths. Finally, Chapter 8 examines the visual input which results from viewing a plane surface, and a reinterpretation of the earlier findings is made in terms of this input.