PROCEEDINGS OF THE 13TH AUSTRALASIAN SYMPOSIUM ON PARALLEL AND DISTRIBUTED COMPUTING
(AusPDC 2015), SYDNEY, AUSTRALIA, 27 - 30 JANUARY 2015

Model-driven optimisation of memory hierarchy and
multithreading on GPUs

Andrew A. Haigh

Eric C. McCreath

Research School of Computer Science,
The Australian National University,
Canberra, Australia
Email: {andrew.haigh,eric.mccreath}@anu.edu.au

Abstract

Due to their potentially high peak performance and
energy efficiency, GPUs are increasingly popular for
scientific computations. However, the complexity of
the architecture makes it difficult to write code that
achieves high performance.

Two of the most important factors in achieving
high performance are the usage of the GPU memory
hierarchy and the way in which work is mapped to
threads and blocks. The dominant frameworks for
GPU computing, CUDA and OpenCL, leave these
decisions largely to the programmer. In this work,
we address this in part by proposing a technique
that simultaneously manages use of the GPU low-
latency shared memory and chooses the granularity
with which to divide the work (block size).

We show that a relatively simple heuristic based
on an abstraction of the GPU architecture is able
to make these decisions and achieve average perfor-
mance within 17% of an optimal configuration on an
NVIDIA Tesla K20.

Keywords: Parallel programming, Graphics Process-
ing Unit (GPU), optimisation, performance analysis.

1 Introduction

It is well known that writing code that gives high per-
formance on GPUs is a challenging task. This is due
to a number of factors, including the complex mem-
ory hierarchy and multiple levels of parallelism. Au-
tomated optimisation is difficult due to the existence
of local optima in the optimisation space (Zhang &
Mueller 2012), and challenges in predicting the effect
of combining optimisations (Ryoo et al. 2008).

In this paper, we investigate the problem of si-
multaneously balancing the GPU’s occupancy and re-
source usage in order to achieve high performance.
This is done by using a cost model that can take into
account the balance between these factors. This is
done by static analysis of the source code and device
to extract features of the computation and hardware.
Then, we construct a model that is evaluated exhaus-
tively for all possible variants of the kernel in order
to determine the best configuration.

On a NVIDIA Tesla K20 this technique is shown
to achieve performance on average within 17% of an
optimal configuration. This can be achieved an order
of magnitude faster than an empirical search. In ad-
dition, it does not require usage of the GPU itself to
perform this search.

We present an overview of related work followed

by a description and evaluation of this technique.

1.1 GPU architecture

The graphics processing unit (GPU) is an architecture
suited to highly parallel computations. It operates in
a SIMD fashion, i.e., the user writes a kernel that
runs the same computation on many different pieces
of data simultaneously. The hardware is subdivided
logically into a number of symmetric multiprocessors
(SMs), each of which contains a number of cores and
hardware instruction schedulers. Each SM is allo-
cated a number of blocks (work-groups) that consists
a group of threads.

The architecture is throughput-oriented such that
if one thread is waiting due to a high-latency instruc-
tion or dependency, another can execute during the
intervening cycles.

Each SM contains a fixed amount of block-private
shared memory, which is available to the threads al-
located to that SM. Due to the throughput-oriented
nature of GPUs, the cache is useful primarily for ex-
ploiting spatial locality in data, and not temporal lo-
cality. Hence, the shared memory is typically used
to retain data that has to be accessed multiple times
over the lifetime of the kernel. Shared memory us-
age is controlled by the programmer in the popular
CUDA and OpenCL frameworks.

A number of authors (Ryoo et al. 2008, Daga et al.
2011) give a classification of the kinds of optimisa-
tions that are useful for achieving high performance
in GPUs. Broadly, these are, utilise occupancy (cover
latency with parallelism), utilise memory hierarchy,
data layout, minimise divergence, and minimise in-
struction count. In this work, we consider how to
optimise for the first two factors.

1.2 Related work

There are a number of existing frameworks that al-
low the programmer to manage shared memory from
a high level perspective. CUDA-lite (Ueng et al. 2008)
is a general framework for CUDA codes that uses an-
notations to allow the programmer to specify trans-
formations that take a kernel accessing only global
memory and modify it to use shared memory, cor-
rectly inserting the code to load/store the relevant
values. Other frameworks, such as hiCUDA (Han &
Abdelrahman 2009), are able to generate GPU code

Copyright (©2015, Australian Computer Society, Inc. This pa-
per appeared at the 13th Australasian Symposium on Paral-
lel and Distributed Computing (AusPDC 2015), Sydney, Aus-
tralia, January 2015. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 163, Bahman Javadi
and Saurabh Kumar Garg, Ed. Reproduction for academic,
not-for-profit purposes permitted provided this text is included.

71

CRPIT VOLUME 163 - PARALLEL AND DISTRIBUTED COMPUTING 2015

from high-level annotations of serial code. However,
these frameworks still leave the burden of choosing
the right transformations to achieve high performance
to the user.

Early literature on general optimisation princi-
ples for GPUs identifies the issue of achieving a bal-
ance between resource usage and active threads (Ryoo
et al. 2008) in a qualitative sense.

There is a substantial body of literature on tech-
niques for auto-tuning GPU code. A large number
of works have focused on tuning specific algorithms,
such as stencil computations (Zhang & Mueller 2012,
Datta et al. 2008, Kamil et al. 2010, Holewinski et al.
2012). All of these works propose exhaustive empiri-
cal search of the parameter space, which may be un-
suitable for problems tuning a large number of pa-
rameters.

A number of authors propose methods for search-
ing the auto-tuning space. Bergstra et al. (2012) use
a machine learning technique to learn a model that
can be used to predict runtimes for the purpose of
choosing block size and memory layout for a stencil
code. Ma & Agrawal (2010) propose a framework
for optimising shared memory usage using an integer
linear programming formulation. However, their cost
model does not take into account the effect of chang-
ing the occupancy/block size. Instead, they perform
this search empirically.

Baskaran et al. (2008) focus on parallelising loops
with an emphasis on careful usage of the memory hier-
archy. However, they choose to place all reusable data
into shared memory, and introduce an extra level of
tiling that can be used to reduce the working set if it
is too large to fit into the shared memory.

Complementary work on utilising a small scratch-
pad memory has been studied in other domains such
as embedded systems (Avissar et al. 2002).

2 Approach

Our aim is to simultaneously manage the occupancy
and use of shared memory for a given kernel, with the
goal of optimising for maximum performance.

It is well established (Ma & Agrawal 2010) that
in general placing reusable data in shared memory
improves performance because it reduces the num-
ber of off-chip high-latency global memory accesses.
However, because the shared memory must be shared
between all active blocks on an SM, increasing the
shared memory usage per block may decrease the
number of blocks (and hence threads) that can be
‘in-flight’ at any given time. This may worsen per-
formance if the number of threads is not enough to
cover these high-latency operations and other depen-
dencies. Thus, we intend to explore this trade-off.

The computation is divided into blocks. We de-
note N as the number of threads in each block, and
F determines the number of computations mapped to
each thread. Thus, each block is responsible for NF'
independent calculations scheduled to the threads in
a round-robin fashion.

The rationale for allowing F' > 1 is that it may im-
prove performance by amortising the total cost of in-
structions that are common to all threads and provid-
ing more independent instructions to exploit instruc-
tion level parallelism (ILP) within a thread without
stalling the pipeline.

In addition, we allow the choice of which of the ar-
rays accessed by the kernel to cache in shared mem-
ory. If the array is cached, the region of the array
that is required to be read will be preloaded by a

72

block cooperatively before it is needed and, if mod-
ified, written back to global memory at the kernel’s
completion. This avoids having to potentially fetch
the same data multiple times from global memory.

2.1 Performance model

Our approach relies on a heuristic to estimate the
performance of each possible configuration for a given
kernel. Our heuristic can be evaluated without com-
piling the kernel. The number of configurations is
small enough that we can estimate the best configu-
ration by applying the heuristic to each. Performance
models of GPU execution have been proposed by a
number of authors, the most notable being Hong &
Kim (2009).

Occupancy. A preliminary to the full model is to
determine statically the number of blocks that can
be active simultaneously on a single SM. Hardware
limits dictate that the number of blocks that can run
simultaneously on a single SM is given by the largest
k s.t.

h M
k = min (max blocks/SM, shared memory /S

shared memory/block’
max threads/SM registers/SM
N " N (registers/thread)

All of our benchmarks consist of at least one point
in the code where every variable in shared memory is
active. Thus, the shared memory usage per block is
given simple by the sum of all the allocations that we
make. We have observed that register usage is not a
limiting factor for any of our benchmarks. Due to the
difficulty in estimating it, we have ignored it here.

Memory access cost. This is an attempt to esti-
mate the time required to make all the read/writes to
the high-latency global memory, which is bounded by
the total global memory bandwidth. It is given by

total reads/writes
effective bandwidth

We ignore the effect of L1/L2 cache hits/misses due
to the fact that GPU caches are primarily optimised
for spatial rather than temporal locality. The total
number of reads/writes are easily counted via inspec-
tion of the kernel, under our framework described
below. We distinguish between coalesced and non-
coalesced accesses and adjust the cost accordingly
(non-coalesced accesses require potentially transfer of
a whole cache line). The maximum bandwidth can
be computed from specifications available by prob-
ing the device. However, this is only achieved if the
number of threads is enough to provide work to do
during the period of memory access latency (Hong
& Kim 2009). The detailed estimation of achieved
bandwidth is given in Figure 1.

Computation cost. Though our kernels, if prop-
erly implemented, should be memory-bound, a poor
configuration (i.e. with very low occupancy or su-
perfluous shared memory use) may be instruction-
throughput bound. Thus, we also factor the cost of
arithmetic operations into the model to identify bad
configurations.

Our framework allows counting the number of as-
signment operations. Inspection (using cuobjdump)
of the binaries shows around 5 instructions for each
calculation, taking into account load/store instruc-
tions and calculating addresses. We add this to the
total cost using a calculation analogous to above that
factors in how many threads are required to saturate
the arithmetic pipeline.

memory cost =

PROCEEDINGS OF THE 13TH AUSTRALASIAN SYMPOSIUM ON PARALLEL AND DISTRIBUTED COMPUTING
(AusPDC 2015), SYDNEY, AUSTRALIA, 27 - 30 JANUARY 2015

maximum bandwidth memory latency

saturating threads =

effective bandwidth = (maximum bandwidth) min (17

number of SMs

core clock

ANFEk
saturating threads

Figure 1: Detailed equation for memory throughput

Table 1: Specifications of GPUs used in tests

Device

Specifications GTX580 K20
SMs 16 13
Clock speed (MHz) 1564 705
Memory bandwidth (GB/s) 192.4 208
Memory latency (cycles) 400-600 | 200-400
Cores/SM 32 192
(4 byte) Registers/SM 32k 65k
Sh. Mem/SM (kB) 48 48
Max threads/SM 1536 2048
Max blocks/SM 8 16

Synchronisation. In order to model the effect of
block synchronisations that are necessary when shar-
ing data between threads, we multiply the estimated
runtime by 2 for configurations where only one block
can run per SM and the inner loop of the kernel con-
tains a block synchronisation. This is to approximate
the fact that under such circumstance we only have
on average half the number of active threads.

3 Results

We restrict attention to the case in which the work to
be done by the kernel consists of M independent com-
putations. Accordingly, the basic kernel does not con-
tain any block synchronisations and we do not have to
consider issues of correctness with regard to mapping
work to blocks.

To implement our approach we use benchmarks
that are templated with N and F are template pa-
rameters. This avoids any overhead (e.g. not loop
unrolling) of having these values unknown at compile
time.

The benchmarks are written in a very small sub-
set of CUDA C such that it is possible to extract
relevant features of the kernel using a preprocessing
script. Loops are annotated with a fixed trip count to
facilitate statically determining properties of the ker-
nel. We provide a wrapper library written in Python
that is able to both analyse, and compile and run a
particular configuration governed by the parameters
above.

To implement the shared memory management,
all kernels are originally written making only use of
global memory accesses. They are annotated with di-
rectives that indicate at which point to load/store an
array into shared memory and the region of the array
that will be accessed by the kernel. If shared memory
use is enabled for an array, any intermediate accesses
are remapped from global memory to shared memory
and the directives are replaced with the correct code
to preload/store the data into shared memory.

We evaluate this approach on the following simple
benchmark kernels that have patterns of computation
similar to some members of the Rodinia benchmark
suite (Che et al. 2009) used in previous GPU litera-

ture. .
e increment: a kernel that reads an array and in-

crements each element by one. This is purely a
test of whether the chosen configuration achieves
a high memory throughput.

e dense: a dense matrix-vector product.

e dense2: dense matrix-vector product, but with
the matrix stored in row-major order, so that
accesses to it are non-coalesced, unless a block is
prestored to shared memory.

e kmeans: calculating the distance between all
pairs of points in two sets.

e blur: a synthetic 1D stencil that exhibits poten-
tial data reuse between threads.

For each benchmark, we compare the real runtime of
the configuration estimated by the heuristic (heuris-
tic) to have the best performance to the runtime of the
best configuration (optimal) found by exhaustively
searching the optimisation space of possible combi-
nations of block sizes and shared memory mappings.
For all tests, we ensure that M is large enough so that
for all choices of N and F' we create enough blocks to
schedule to all SMs to avoid load imbalancing. For the
dense benchmark on the K20, we use a larger data
set compared to the GTX580, because more memory
allows a higher M, which reduces this effect.

The relative performance of configurations is likely
to vary significantly depending on the underlying ar-
chitecture, especially given that our heuristic tunes
for a particular device. Therefore, we apply this
methodology to two different GPUs, an NVIDIA
GTX 580 and a NVIDIA Tesla K20. Table 1 gives
the relevant specifications for each of these devices.
They differ significantly in a number of factors that
are key in the behaviour of the benchmarks that we
consider. Thus, we consider this a good test of the
generality of our approach.

Table 2 gives for each benchmark and device the
runtime for the configuration chosen by our heuristic
and the best found runtime. Each result is averaged
over 10 runs of each kernel. To demonstrate how our
transformations help to approach theoretical limits
on performance, we also compare (except for kmeans,
which, if all data is cached, is not memory bound) to
the lower bound which is the time required to make
all the transfers between the SMs and global memory
assuming peak memory bandwidth, which is similar
for both devices.

The average slowdown compared to the optimal
configuration for K20 across all benchmarks is around
17%. Tt takes less than 30 seconds to choose the best
configuration according to the heuristic, compared to
on average two hours to search all configurations em-
pirically. Thus, the overhead of evaluating our heuris-
tic is very small.

We note the fact that the heuristic is able to some-
what successfully choose configurations suited to in-
dividual devices. Qualitative analysis of the chosen
configurations run on the other device showed rela-
tively poor performance in a number of cases.

We note the relatively poor result for the K20,
which has much higher peak performance than the
GTX580. This is largely due to the fact that the
kernels are memory bound and it is not possible to
take advantage of this extra power. In addition, our
framework does not attempt to make use of the larger
caches and register files present on this architecture.

We also note that successes in having any config-
uration (not necessarily the one picked by our heuris-
tic) with high performance is evidence that the set of

73

CRPIT VOLUME 163 - PARALLEL AND DISTRIBUTED COMPUTING 2015

Table 2: Runtimes (ms) for each benchmark under different configuration selection policies. Slowdown is for
heuristically chosen configuration relative to optimal configuration.

Device Total | Lower GTX580 K20

Policy Configs | bound Optimal @ Heuristic Slowdown | Optimal | Heuristic Slowdown
increment 96 | 0.044 0.054 , 0.056 3.3% 0.054 | 0.056 4.2%
dense 192 5.58 6.25 | 6.27 0.3% 17.8 17.9 0.2%
dense?2 192 5.58 30.7 1 46.0 49.9% 43.1 1 51.0 18.4%
kmeans 768 n/a 34.1 47.2 38.4% 289! 41.8 44.6%
blur 576 4.19 5.54 ' 9.36 68.8% 6.44 ' 7.68 19.3%

transformations we consider, particularly the aggres-
sive use of F', are useful as a general strategy for writ-
ing high performance kernels. In particular, F' = 2 or
4 could be combined with the use of vectorised in-
structions present on some GPUs.

4 Conclusion

We aim to address the problem of simultaneously
managing occupancy and reuse of data via shared
memory, two of the most important considerations
when writing efficient code for GPUs. We have
demonstrated that it is possible to use a simple cost
model to determine the balance between these factors
and achieve high performance. Our results show that
we achieve on average within 17% of the best found
configuration on a Tesla K20.

At present, our framework can only handle com-
putational patterns that are essentially one dimen-
sional. We intend to extend our approach to 2D and
3D patterns and also extend our approach to handle
more complicated compositions of loop nests. Subse-
quently, we intend to evaluate our approach on some
real-world examples.

Our performance model does not consider any
caching effects, which is reflected in the weaker re-
sult for kernels with more complicated memory ac-
cess patterns. This will be increasingly important
in the future as newer GPUs contain more sophis-
ticated caches to enable the transition from being
purely throughput-oriented to being able to handle
more diverse workloads. In particular, the result-
ing problem of predicting inter-thread and inter-block
caching effects is not well understood.

References

Avissar, O., Barua, R. & Stewart, D. (2002), ‘An
optimal memory allocation scheme for scratch-pad-
based embedded systems’, ACM Transactions on
Embedded Computing Systems (TECS) 1(1), 6-26.

Baskaran, M. M., Bondhugula, U., Krishnamoorthy,
S., Ramanujam, J., Rountev, A. & Sadayappan, P.
(2008), Automatic data movement and computa-
tion mapping for multi-level parallel architectures
with explicitly managed memories, in ‘Proceedings
of the 13th ACM SIGPLAN Symposium on Princi-
ples and practice of parallel programming’, ACM,
pp. 1-10.

Bergstra, J., Pinto, N. & Cox, D. (2012), Machine
learning for predictive auto-tuning with boosted re-
gression trees, in ‘Innovative Parallel Computing
(InPar), 2012’, IEEE, pp. 1-9.

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer,
J. W., Lee, S. & Skadron, K. (2009), Rodinia:
A benchmark suite for heterogeneous computing,
in ‘“Workload Characterization, 2009. IISWC 2009.

74

IEEE International Symposium on’, IEEE, pp. 44—
54.

Daga, M., Scogland, T. & Feng, W. (2011),
Architecture-aware mapping and optimization on
a 1600-core GPU, in ‘Parallel and Distributed Sys-
tems (ICPADS), 2011 IEEE 17th International
Conference on’, IEEE, pp. 316-323.

Datta, K., Murphy, M., Volkov, V., Williams, S.,
Carter, J., Oliker, L., Patterson, D., Shalf, J.
& Yelick, K. (2008), Stencil computation opti-
mization and auto-tuning on state-of-the-art mul-
ticore architectures, in ‘Proceedings of the 2008
ACM/IEEE conference on Supercomputing’, IEEE
Press, p. 4.

Han, T. D. & Abdelrahman, T. S. (2009), hiCUDA:
a high-level directive-based language for GPU pro-
gramming, in ‘Proceedings of 2nd Workshop on
General Purpose Processing on Graphics Process-
ing Units’, ACM, pp. 52-61.

Holewinski, J., Pouchet, L. & Sadayappan, P. (2012),
High-performance code generation for stencil com-
putations on GPU architectures, in ‘Proceedings of
the 26th ACM international conference on Super-
computing’, ACM, pp. 311-320.

Hong, S. & Kim, H. (2009), An analytical model for
a GPU architecture with memory-level and thread-
level parallelism awareness, in ‘ACM SIGARCH
Computer Architecture News’, Vol. 37, ACM,
pp. 152-163.

Kamil, S., Chan, C., Oliker, L., Shalf, J. & Williams,
S. (2010), An auto-tuning framework for parallel
multicore stencil computations, in ‘Parallel & Dis-
tributed Processing (IPDPS), 2010 IEEE Interna-
tional Symposium on’, IEEE, pp. 1-12.

Ma, W. & Agrawal, G. (2010), An integer pro-
gramming framework for optimizing shared mem-
ory use on GPUs, in ‘High Performance Computing
(HiPC), 2010 International Conference on’, IEEE,
pp. 1-10.

Ryoo, S., Rodrigues, C. 1., Baghsorkhi, S. S., Stone,
S. S., Kirk, D. B. & Hwu, W. W. (2008), Op-
timization principles and application performance
evaluation of a multithreaded GPU using cuda, in
‘Proceedings of the 13th ACM SIGPLAN Sympo-
sium on Principles and practice of parallel program-
ming’, ACM, pp. 73-82.

Ueng, S.-Z., Lathara, M., Baghsorkhi, S. S. & Hwu,
W. H. (2008), CUDA-lite: Reducing GPU pro-
gramming complexity, in ‘Languages and Compil-
ers for Parallel Computing’, Springer, pp. 1-15.

Zhang, Y. & Mueller, F. (2012), Auto-generation and
auto-tuning of 3D stencil codes on GPU clusters,
in ‘Proceedings of the Tenth International Sym-
posium on Code Generation and Optimization’,
ACM, pp. 155-164.

