
Optimising Bounds in Simple Temporal Networks with Uncertainty under
Dynamic Controllability Constraints

Jing Cui
ANU & NICTA

u5392410@anu.edu.au

Peng Yu, Cheng Fang
MIT

{yupeng,cfang}@mit.edu

Patrik Haslum
ANU & NICTA
patrik.haslum
@anu.edu.au

Brian C. Williams
MIT

williams@mit.edu

Abstract

Dynamically controllable simple temporal networks with un-
certainty (STNU) are widely used to represent temporal plans
or schedules with uncertainty and execution flexibility. While
the problem of testing an STNU for dynamic controllability
is well studied, many use cases – for example, problem re-
laxation or schedule robustness analysis – require optimising
a function over STNU time bounds subject to the constraint
that the network is dynamically controllable. We present a
disjunctive linear constraint model of dynamic controllability,
show how it can be used to formulate a range of applications,
and compare a mixed-integer, a non-linear programming, and
a conflict-directed search solver on the resulting optimisation
problems. Our model also provides the first solution to the
problem of optimisation over a probabilistic STN subject to
dynamic controllability and chance constraints.

Introduction
The simple (non-disjunctive) temporal network with uncer-
tainty, or STNU (Vidal and Fargier 1999), is a widely used
model for representing schedules or temporal plans that have
both uncertainty about the timing of some events (for exam-
ple, the time needed to complete an activity) and flexibility
for the executing agent to choose the timing of other events
(for example, the time to start an activity). An STNU is
a constraint satisfaction problem over real-valued time point
variables, with constraints that are (upper and lower) bounds
on the differences between pairs of variables. However,
some time points are uncontrollable, meaning that in any ex-
ecution of the schedule or plan, their values will be chosen
non-deterministically (by the environment) within the given
bounds, while the values of remaining time point variables
are chosen by the executing agent, subject to the constraints.

If there is no uncertainty, it suffices to verify that the STN
is consistent to know that executing agent will be able to
meet the constraints. Consistency of an STN can be formu-
lated as a set of linear constraints. An STNU, however, re-
quires controllability, meaning, informally, that the execut-
ing agent has a valid (constraint-satisfying) response to any
choice by the environment. If the agent can make this choice
before making any observation, the network is strongly con-
trollable. The more practically useful, but also more com-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

plex, property of dynamic controllability means the agent
can choose a value for each controllable time point variable
using only observations of uncontrollable events that have
taken place earlier, such that all constraints will be respected
under any outcome of future uncertainties.

It is known that deciding if a given STNU is dynami-
cally controllable can be done in polynomial time (Morris,
Muscettola, and Vidal 2001). The problem that we consider
is optimising an objective function over the bounds on time
point differences, subject to the constraint that the network
is dynamically controllable. This has a broad range of ap-
plications. As illustrative examples, we consider minimally
relaxing an over-constrained (non-controllable) STNU to
make it dynamically controllable (Yu, Fang, and Williams
2014); finding the minimum schedule flexibility needed to
maintain dynamic controllability (Wah and Xin 2004); max-
imising different measures of schedule robustness; and opti-
mising a preference function over a probabilistic STN with
chance constraints (Fang, Yu, and Williams 2014).

The problem of optimising time bounds under dynamic
controllability was previously considered by Wah and Xin
(2004), who formulated a non-linear constraint optimisation
model. In fact, dynamic controllability is a disjunctive linear
constraint, and using this insight we consider several alter-
native ways of dealing with it, including a conflict-driven
search (Yu, Fang, and Williams 2014), a formulation as a
mixed-integer linear program with 0/1 variables, and the
non-linear encoding proposed by Wah and Xin.

Background
Formally, an STNU (Vidal and Fargier 1999) consists of
a set of nodes X = XE ∪ XU , representing executable
(XE) and uncontrollable (XU) time points, and a set of links
E = R ∪ C, called requirement and contingent links. Each
link eij has a lower bound Lij and upper bound Uij , rep-
resenting the constraints Lij ≤ tj − ti ≤ Uij . Each un-
controllable time point has exactly one incoming contingent
link, whose lower bound is non-negative. In other words,
executable time points correspond to choices of the agent,
contingent links represent uncontrollable durations, and the
uncontrollable time points are when the agent finds out what
duration the environment has chosen. Requirement links
may connect any pair of time points.

A schedule is an assignment of values to all time points.

Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling

52

The schedule is consistent iff it satisfies the bounds of all re-
quirement links. A projection of an STNU replaces each
contingent link eij ∈ [Lij , Uij] with a requirement link
eij ∈ [d, d] for some Lij ≤ d ≤ Uij . The resulting net-
work represents a possible outcome of the uncontrollable
choices, and has no remaining uncertainty; it is called an
STN. In an STN, the tightest bounds on the difference be-
tween any two time points that are implied by the given links
can be computed in polynomial time by solving the set of
linear constraints (1). Thus, there is, implicitly, a require-
ment link between every pair of time points. If any link’s
bounds are inconsistent (Lij > Uij), the network has no
satisfying schedule (Dechter, Meiri, and Pearl 1991).

An execution strategy, S, maps projections of the STNU
to schedules. S is valid iff S(π) is consistent for every pro-
jection π. Given a schedule, T , and a time point x ∈ X , T<x
is the restriction of T to all time points scheduled before x.
An execution strategy S is dynamic iff S(π1)<x = S(π2)<x
implies S(π1)(x) = S(π2)(x) for all projections π1, π2 and
executable time point x. This means that the time the strat-
egy assigns to the executable point x can only depend on
uncontrollable durations observed earlier. An STNU is dy-
namically controllable iff there exists a valid dynamic exe-
cution strategy for it.

Problem Formulation
The general form of the optimisation problem can be stated
as follows: We are given the structure of an STNU, that is,
the set of time points X = XE ∪XU and links E = R∪C,
but not the upper and lower bounds on (all) links, and an
objective function. The problem is then to set those bounds
so as to optimise the objective function value:

opt fobj(lij , uij | eij ∈ E)
s.t. Lij ≤ lij ≤ uij ≤ Uij

N(lij , uij | eij ∈ E) is dynamically controllable
application-specific side constraints

The decision variables, lij and uij , represent the lower and
upper bounds on link eij . Thus, a satisfying assignment de-
fines an STNU, N(lij , uij | eij ∈ E), and this STNU must
be dynamically controllable. The main contribution of this
paper is the formulation of dynamic controllability as set of
disjunctive linear constraints. We then show how these con-
straints can be reformulated into a mixed-integer linear pro-
gram (MIP) or a non-linear program (NLP), which can be
given to different optimisation solvers.
Lij and Uij are constants, which constrain the range of

the bounds variables. In principle, these constants are not
needed. They can be set to −∞ and∞, respectively, leav-
ing the bounds variables unrestricted. Many of the applica-
tion problems we consider (cf. section after next), however,
specify narrower ranges, and we use this to simplify the con-
straint formulation.

Constraint Model of Dynamic Controllability
Checking dynamic controllability of an STNU was first
shown to be tractable by Morris, Muscettola and Vidal
(2001). Their algorithm repeatedly applies a set of reduc-
tions, tightening the bounds on requirement links, until no

A C

B

[lAC , uAC]

[lAB , u
AB] [lBC

, uBC
]

Figure 1: An STNU triangle. The A–C link is contingent.

more reductions apply (in which case the network is control-
lable) or the network becomes inconsistent (implying it is
not controllable). Our constraint model uses essentially the
same reduction rules, but in the form of constraints between
the decision variables that represent link bounds. Therefore,
we briefly review the algorithm before presenting the model.
For a detailed explanation, we refer to their paper.

The DC Checking Algorithm
Morris, Muscettola and Vidal’s (2001) algorithm repeatedly
examines each triangle of time points in the STNU, con-
sidering at most one contingent link each time. Figure 1
shows a triangle, with time points A, B and C. The link be-
tween A and C is contingent, the other two are requirement
links. (If eAB is also contingent, it is considered in a sepa-
rate triangle.) First, the algorithm applies the implied (short-
est path) bounds (e.g., LBC ← max(LBC , LAC−UAB) and
UBC ← min(UBC , UAC − LAB)).

Recall that there is an implicit requirement link between
each pair of time points, including parallel to each contin-
gent link. If the implied requirements on a pair of vari-
ables connected by a contingent link are tighter than the
contingent links’ bounds, the contingent link is said to be
“squeezed”. In this case, the network cannot be controllable.

The next step depends on the relation between B and C:
• If UBC < 0, B must be scheduled after C (hence, after
C has been observed), so no further adjustments are needed.
This is called the “follow” case.
• If LBC ≥ 0, B must be scheduled before or simulta-
neously with C (i.e., before C has been observed). This
is called the “precede” case, and the bounds on the eAB
link are updated to LAB ← max(LAB , UAC − UBC) and
UAB ← min(UAB , LAC − LBC).
• If LBC < 0 and UBC ≥ 0, B may be scheduled before
or after C. This case, called the “unordered” case, intro-
duces a conditional bound, called a “wait”, 〈C,UAC−UBC〉
on eAB , with the meaning that execution of B must wait
for either C to occur or at least UAC − UBC after A. If
UAC − UBC ≤ LAC , C cannot occur before the wait ex-
pires, so the wait is replaced by the unconditional bound
LAB ← max(LAB , UAC − UBC). Otherwise, LAB ←
max(LAB , LAC), since the wait for C will delay B to at
least LAC after A.
Tighter bounds on a requirement link propagate to any other
triangle that the link is part of. In addition, the algorithm
performs “wait regression”, in which conditional bounds are
propagated to other links. If 〈C,w〉 is a wait on eAB , where
w ≤ UAC , then (i) if there is any link eDB with upper bound
UDB , a wait 〈C,w−UDB〉 is added to eAD; and (ii) ifw ≥ 0

53

and there is a contingent link eDB , where B 6= C, with
lower bound LDB , a wait 〈C,w − LDB〉 is added to eAD.

Disjunctive Linear Model
Constraints are formulated over each triangle of nodes in the
STNU, considering at most one contingent link each time.
Shortest path constraints

lAC ≤ uAB + lBC ≤ uAC
lAC ≤ lAB + uBC ≤ uAC
uAC ≤ uAB + uBC

lAB + lBC ≤ lAC

(1)

The shortest path constraints can propagate in any direction
(i.e., from the contingent link eAC to the requirement links
and vice versa.) This may seem contradictory, since a con-
tingent link may not be squeezed by requirements. However,
lAC and uAC here are variables, whose values will be the
bounds on the contingent link. In some applications (e.g.,
the problem of minimising flexibility which motivated Wah
and Xin) these variables are fixed to given constant values
but other applications (e.g., problem relaxation) allow the
bounds of contingent links to vary.

If no link in the triangle is contingent, these are the only
constraints. Assuming, w.l.o.g., that the eAC link is con-
tingent, what constraints are needed is determined by the
outer bounds on the eBC link, following the cases in Morris,
Muscettola and Vidal’s (2001) algorithm. If UBC < 0, then
uBC < 0 and the triangle must always be in the follow case.
Thus, no additional constraints are needed.
Precede constraints IfLBC ≥ 0, then lBC ≥ 0 and the tri-
angle will be in the precede case. The following constraints
must hold:

uAB ≤ lAC − lBC
lAB ≥ uAC − uBC (2)

This together with (1) is equivalent to

uAB = lAC − lBC
lAB = uAC − uBC (2’)

since lAB ≤ uAB is always required. If LBC < 0 and
UBC ≥ 0, the triangle can be in any case, depending on the
values given to lBC and uBC . The precede constraint then
becomes disjunctive:

(lBC < 0) ∨
(
uAB ≤ lAC − lBC
lAB ≥ uAC − uBC

)
(3)

Triangular wait constraints If it is possible that the trian-
gle may be in the unordered case (LBC < 0 and UBC ≥ 0),
a variable representing the conditional wait bound is added:

wABC ≥ uAC − uBC (4)

Regression of waits (described below) may introduce wait
variables wABX , where X is any uncontrollable time point
(not necessarily in the same triangle as A and B). For each
requirement link eAB and wait variable wABX , the follow-
ing disjunctive constraint must hold:

lAB ≥ min(lAX , wABX) (5)

If UAB ≤ LAX , this simplifies to wABX = lAB . The con-
straint wABX ≤ uAB must also hold.
Wait regression Each wait bound 〈X, t〉 on a link eAB is
represented by a variable wABX . If there is a wait wABX
and a contingent link eDB , then wait regression implies the
constraint

(wABX < 0) ∨ (wADX ≥ wABX − lDB) (6)

It is disjunctive because the regression only applies when
wABX ≥ 0. The weaker constraint

wADX ≥ wABX − uDB (7)

holds in all cases (i.e., also when eDB is a requirement link,
or the wait is negative).

Correctness
The correctness of our constraint formulation can be shown
to follow from that of Morris, Muscettola and Vidal’s (2001)
DC checking algorithm. Their algorithm applies a set of re-
duction rules, which tighten the bounds on links, until quies-
cence; if the network at that point is consistent, the original
network is dynamically controllable.

Let N(lij , uij | eij ∈ E) be an STNU that is defined
by a solution to our model, i.e., constraints (1)–(7). We can
then show that applying all the reduction rules from the DC
checking algorithm to this STNU will not result in a tight-
ening of any bound. That is, the STNU is already at qui-
escence. Since it must satisfy the shortest path constraints
(1), it is also consistent. Thus, the DC checking algorithm
applied to N will report that it is dynamically controllable.

Reducing the Size of the Model
The model formulated above has up to O(n3) constraints
and O(|XU |n2) variables, where n = |X| is the number
of time points. Wah and Xin (2004; 2007) proposed sev-
eral rules for eliminating redundant constraints and variables
from the model. Although there is, in principle, a require-
ment link for every pair of time points, not all of these must
be represented with decision variables. For example, if, in
Figure 1, UBC < 0 so that B must follow C, only the short-
est path constraints apply to lAB and uAB , in this triangle.
If there are no other constraints on eAB these can always be
satisfied, in which case it is not necessary to include them.
Any link with bounds constrained in the input STNU must
be represented (unless fixed to a constant), as must any link
whose bounds can potentially be tightened by precede or
wait constraints. Among the remaining implicit links, which
are subject only to shortest path constraints, a sufficient set
is found by a triangulation of the network.

Formulation as a MIP
The disjunctions in constraints (3) and (5) mean the model is
not a linear program. Wah and Xin (2004) used non-linear
constraints to encode the disjunctions (as explained in the
next section) and tackled it with the non-linear programming
solver SNOPT. As an alternative, we formulate a mixed-
integer linear programming (MIP) formulation, where dis-
junctions are encoded using binary (0/1) variables. Although

54

MIP is an NP-hard problem, MIP solvers such as CPLEX or
Gurobi are often very efficient in practice, and, in particular,
typically more efficient than non-linear solvers. Experiment
results across all application problems confirm this.

The wait bound constraint (5) can be formulated as

if α > 0 then β ≥ 0 else γ ≥ 0

where α = wABX − lAX , β = lAB − lAX and γ = lAB −
wABX are all linear expressions. The disjunction can be
replaced by the following linear constraints

α− xUα ≤ 0 (8a)
α− (1− x)(Lα − 1) > 0 (8b)

β − (1− x)Lβ ≥ 0 (8c)
γ − xLγ ≥ 0 (8d)

where x ∈ {0, 1} is a binary variable, Lα, Lβ and Lγ are
constant lower bounds on α, β and γ, respectively, and Uα is
a constant upper bound on α. This forces α > 0 and β ≥ 0
when x = 1, and α ≤ 0 and γ ≥ 0 when x = 0. In the
wait bound constraint, where α = wABX − lAX , we can
choose Uα = UAB −LAX , because UAB is an upper bound
on wABX (wABX ≤ uAB ≤ UAB) and LAX is a lower
bound on lAX . The wait wABX is lower-bounded by the
maximum of all wait constraints – triangular and regressed
– on eAB . The triangular wait lower bound is wtABX =
uAX − uBX , and from the shortest path constraint lAB +
uBX ≤ uAX we have wtABX ≥ lAB . Thus, we can choose
Lα = LAB−UAX . For the lower bounds on β = lAB−lAX
and γ = lAB − wABX we have Lβ = LAB − UAX and
Lγ = LAB − UAB , respectively.

The precede constraint (3) and regressed wait bound (6)
are similar, except they have conditions only in one of the
two cases (either “then” or “else”). Where one side of a
disjunction consists of (a conjunction of) several linear con-
straints, as in (3), it is only necessary to add a constraint like
(8c) for each conjunct, all using the same binary variable.

The wait regression constraint (6) can be strengthened to

(wABX ≤ lAX) ∨ (wADX ≥ wABX − lDB) (6’)

The advantage of this is that one disjunct, wABX ≤ lAX ,
is the same as the branching condition in (5), so both con-
straints can be captured with one binary variable.

Constraint (6’) is valid because regressing a wait wABX
through a contingent link eDB , via (6), is redundant if
wABX is not greater than the lower bound of the contingent
link eAX that causes the wait. If wABX ≤ lAX , the wait
bound constraint (5) implies lAB ≥ wABX ≥ 0. Hence, the
triangle DAB is in the precede case and lAD = −uDA =
−(lDB − lAB) = wABX − lDB , which implies the wait
regression constraint (6).

Formulation as an NLP
The non-linear model formulated by Wah and Xin (2004)
uses quadratic constraints and terms in the objective func-
tion to encode disjunctions. The precede constraint (3) is
formulated as follows:
lBC(lAB − uAC + uBC) ≥ 0 (9a)
lBC(uAB − lAC + lBC) ≤ 0 (9b)

For each wait bound constraint (5), they introduce an auxil-
iary variable β and the following constraints:

(lAX − wABX)(lAB − wABX) ≥ 0 (10a)
β ≥ 0 (10b)
β ≥ wABX − lAX (10c)

β(lAB − lAX) ≥ 0 (10d)

Furthermore, a quadratic term β(β − (wABX − lAX)) is
added to the objective function. (This term must be min-
imised; if the problem is one of maximisation, its negative
is used.) Its purpose is to ensure that β is 0 when wABX ≤
lAX and otherwise equal to the differencewABX−lAX . For
this to work, the penalty incurred by a non-zero value of this
must term outweigh the actual objective function. Note also
that there is a situation in which this formulation fails to im-
pose the lower bound on lAB , since if lAX = wABX , con-
straint (10a) is satisfied even if lAB 6≥ wABX , and (10b)–
(10d) are satisfied by setting β = 0. A similar encoding is
used for the wait regression constraint (6’).

Conflict-Directed Relaxation with Uncertainty
Finally, we consider the Conflict-Directed Relaxation with
Uncertainty (CDRU) algorithm (Yu, Fang, and Williams
2014). CDRU takes an STNU that is not dynamically con-
trollable and finds a least-cost relaxation of the temporal
constraints that makes it controllable. Relaxing an STNU
means tightening contingent links (reducing uncertainty)
and/or loosening requirement links. The cost of a relaxation
is a function of the change to each link, and some links may
be excluded from change.

Relaxing over-constrained STNUs is one application of
optimising bounds subject to dynamic controllability (cf.
next section). In other applications, the initial STNU may
already be dynamically controllable and the aim is to im-
prove the value of an objective function by increasing un-
certainty or tightening requirements, while maintaining con-
trollability. We adapt CDRU to such problems by taking a
dual approach: initial link bounds are chosen to maximise
the objective, disregarding controllability, and the resulting
(typically uncontrollable) STNU is then gradually relaxed to
a feasible solution.

CDRU draws on conflict-directed A* (Williams and
Ragno 2002), extending conflict learning and resolution to
continuous variables (Yu and Williams 2013) and contingent
constraints. The algorithm explores candidate relaxations in
best-first order by interleaving two steps:
• First, it runs a dynamic controllability checking algorithm
on the current best candidate STNU. If it is not dynamically
controllable, the check returns an unsatisfied disjunction of
linear constraints over subsets of link bounds. This is called
a conflict: at least one constraint in the set must be satisfied
to make the STNU controllable. The conflict is recorded as
a new constraint that any solution must satisfy.
• Given a set of conflicts, the algorithm computes least-cost
relaxations that eliminate them. A relaxation may loosen the
bounds of requirement links, or tighten the bounds of con-
tingent links. Since conflicts can be disjunctive, a conflict
may generate several new candidates.

55

To apply CDRU to optimisation problems other than
linear-cost relaxations, we have to replace the objective
function and redefine the initial candidate accordingly. For
example, in the maximum delay problem (see next section),
the objective is to maximise the minimum width of con-
tingent link intervals. Thus, we need a max-min function:
max(mineij∈C(uij − lij)). Finding the least-cost resolver
of a single conflict disjunct (linear constraint) under this cost
function can still be formulated as a linear program, and
solved by a fast linear optimiser. The revised version of
CDRU is shown as Algorithm 1. The input is an STNU in
which the upper bounds of all contingent links are set to a
very large number1. A candidate is a pair 〈UB,Cr〉, where
UB is a set of tightenings to the upper bounds of contingent
links and Cr the set of conflicts resolved by this candidate.
For the initial candidate both sets are empty.

Input: An STNU N = 〈X,E = R ∪ C〉.
Output: A set of tightened contingent link upper bounds

{uij |eij ∈ C} making N dynamically controllable.
Initialization:

Cand← 〈UB,Cr〉; the first candidate;1
Q← {Cand}; a priority queue of candidates;2
Cft← ∅; the set of known conflicts;3

Algorithm:
while Q 6= ∅ do4

Cand←Dequeue(Q);5
currCft←UNRESOLVEDCONFLICTS(Cand,Cft);6
if currCft == null then7

newCft← DYNAMICCONTROLLABLE?(Cand);8
if newCft == null then9

return Cand;10
else11

Cft← Cft ∪ {newCft};12
Q← Q ∪ {Cand};13

endif14
else15

Q← Q∪EXPANDONCONFLICT{Cand, currCft};16
endif17

end18
return null;19

Algorithm 1: The CDRU algorithm adapted for the maxi-
mum delay problem.

As an example, consider the STNU shown in Figure 2(a),
with three contingent and three requirement links. The up-
per bounds of the contingent links are initialised to 107.
This STNU is not dynamically controllable, since the upper
bound of linkBF is less than the sum of the upper bounds of
CD and EF . This generates a conflict involving five links:
uBF − lDE − uCD − uEF − lBC ≥ 0. The least-cost re-
solver of this conflict tightens uCD and uEF , and generates
the new best candidate shown in Figure 2(b). However, this
candidate is still not controllable. Checking returns the con-
flict uBF − uEF − uCD − lBC − uAB + lAB − lDE ≥ 0 ∨
uBF −uEF −uCD− lDE ≥ 0. This conflict is a disjunction
of two linear inequalities, meaning it can be resolved in two
ways. This is the property of dynamic controllability: we
can either apply relaxations to make the “negative cycles”

1Due to numerical issues, we do not use +∞

(a)
> -1 > 0[3, 10^7] [1, 10^7] [10, 10^7]

[5,19]

A B C D E F

(b)
> -1 > 0[3, 10^7] [1,10^7]→[1,5.5] [10,10^7]→[10,14.5]

[5,19]

(c)
> -1 > 0[3, 10^7] [1,10^7]→[1,5.0] [10,10^7]→[10,14.0]

[5,19]

(d)
> -1 > 0[3,10^7]→[3,6.0] [1,10^7]→[1,4.0] [10,10^7]→[10,13.0]

[5,19]

Figure 2: (a) Example of an uncontrollable STNU (upper
bounds on contingent links are too large); (b–d) first, second
and third relaxation candidate.

in the graph positive, or apply relaxations to shift the order
of some constraints such that the cycle itself is eliminated.
Only one of the linear inequalities needs to be satisfied to
resolve this conflict. CDRU finds two alternative sets of re-
laxations, leading to the two new candidates shown in Figure
2(c) and (d). It first considers candidate (c), since it allows
a width of 4 for all contingent links, while candidate (d) al-
lows only 3. Since candidate (c) is also controllable, it is
returned as the preferred solution to the input STNU.

Applications
Next, we review different problems from the literature that
can be formulated as optimisation over an STNU with dy-
namic controllability constraints, and compare the effective-
ness of different methods of solving them. All experiments
were run on 3.1GHz AMD cores with 64Gb memory.

Relaxing Over-Constrained Problems
An STNU that is not dynamically controllable often arises
in planning and scheduling because users’ goals (require-
ments) are too ambitious or the desired robustness to uncer-
tainty (width of contingent links) is too great. In this sit-
uation, dynamic controllability can be restored by relaxing
the problem: widening requirement links and/or tightening
contingent links (Yu, Fang, and Williams 2014).

Let l̂ij and ûij denote the original (desired) bounds on
link eij . The relaxation problem can be formulated as

min
∑
eij∈E fij(δ

l
ij , δ

u
ij)

s.t. lij = l̂ij − δlij + τ lij ≤ uij = ûij + δuij − τuij
eij ∈ R

lij = l̂ij + δlij ≤ uij = ûij − δuij eij ∈ C
δlij , δ

u
ij , τ

l
ij , τ

u
ij ≥ 0

dynamic controllability (1)–(7)

where fij(δl, δu) encodes the relative cost relaxing the lower
and upper bounds on link eij by δl and δu, respectively. The
dynamic controllability constraints enforce not only that the
network is dynamically controllable, but also that bounds are
minimal (i.e., the tightest implied) on each requirement link.
Because of this, we must allow also for requirement links to

56

be tightened, without affecting the objective function. This
is why deviations from the target value are split into two
non-negative variables, e.g., δlij and τ lij for the lower bound,
and only the relaxation part appears in the objective. (Note
that minimal bounds are computed also as part of the re-
ductions made by the DC checking algorithm, but a network
does not have to be minimal to be dynamically controllable.)

For contingent links we can set the constants Lij = l̂ij
and Uij = ûij , since their bounds can only shrink. For re-
quirement links there are no given limits in this problem.

Comparison of Solvers We compare the conflict-directed
relaxation procedure (CDRU), the MIP model solved with
Gurobi2 and the non-linear model solved with SNOPT3 on
2400 relaxation test cases used by Yu, Fang and Williams
(2014). The STNUs have between 14 and 2000 nodes,
and a number of contingent and requirement links approx-
imately linear in the number of nodes. The objective func-
tion is a linear function of the amount of relaxation; it is
symmetric w.r.t. relaxation of lower and upper bounds (i.e.,
fij(δ

l
ij , δ

u
ij) = cij(δ

l
ij + δuij)).

Not surprisingly, the CDRU is the fastest on this problem
and scales much better than both the MIP and non-linear
solver, as shown in Figure 3(a). The non-linear solver does
not guarantee solution optimality: of the solutions it finds
on the relaxation problem set, 84.2% are within 1% of the
optimal objective value (provided by the other solvers).

Robustness with Non-Probabilistic Uncertainty
Providing flexibility in schedules and temporal plans is
viewed as a means to increase their robustness against un-
foreseen disturbances, such as delays. Several metrics
for the flexibility of a schedule have been proposed (e.g.,
Cesta, Oddi, and Smith 1998; Aloulou and Portmann 2003;
Wilson et al. 2014), as well as algorithms for finding high-
flexibility schedules (e.g., Aloulou and Portmann 2003;
Policella et al. 2009; Banerjee and Haslum 2011).

However, flexibility does not necessarily imply robust-
ness: this depends on how “robustness” itself is defined. In
abstract terms we may define robustness as the greatest level
of disturbance (deviation from expected outcomes) at which
the schedule is still successfully executed. (If we assume
a probability distribution over deviations is given, the level
of disturbance at which the schedule breaks equates to the
probability of it breaking during execution. We consider this
case in a later section.) To operationalise this definition, we
have to specify what kind of disturbances are considered,
and how the schedule executive can use flexibility to cope
with them. Here, we exemplify by assuming (1) that the pos-
sible disturbances are deviations in the time taken to execute
an activity from its normal duration, and (2) a partial-order
schedule with a dynamic execution strategy.

A partial-order schedule (POS) consists of a set of time
constraints between activities such that any realisation that
meets these constraints is also resource feasible. In the de-
terministic case, where the duration of each activity i is a

2http://www.gurobi.com/
3http://ccom.ucsd.edu/∼optimizers/; cf. also Gill, Murray and

Saunders (2002)

constant di, the POS can be represented as an STN with
time points tsi and tei for the start and end, respectively,
of each activity. Assuming the duration of each activity can
vary within some bounds, [lsi,ei , usi,ei], the schedule can be
modelled as an STNU where the link esiei from each ac-
tivity’s start to its end is contingent, while remaining time
constraints are requirement links. Thus, given a POS we can
ask, what is the maximum deviation (i.e., width of the con-
tingent bound) on any activity at which the STNU is dynam-
ically controllable? This defines our measure of robustness.
To compute it, we solve the following problem:

max ∆
s.t. lsi,ei = di − δi ≥ 0 ∀i

usi,ei = di + δi ∀i
0 ≤ ∆ ≤ δi ∀i
POS constraints (requirement links)
dynamic controllability (1)–(7)

As explained above, requirement link bounds must be al-
lowed to shrink, but their outer limits can be set to the given
POS constraints. Since contingent links represent durations,
a hard lower bound Lsiei = 0 applies.

We can also define a one-sided variant of this robustness
metric, accounting for delays only, by fixing lsi,ei = di (i.e.,
adding deviations only to the upper bound).

Comparison of Solvers We compared solvers on the one-
sided (maximum delay) variant of the problem. As test
cases, we use 3400 partial-order schedules for RCPSP/max
problems (e.g., Kolisch and Padman 2001) with 10–18 jobs4.
The schedules are generated by a scheduler that optimises
a measure of POS flexibility (Banerjee and Haslum 2011).
The STNU representation of a schedule has a time point for
the start and end of each activity, as described above. Hence,
the number of nodes and contingent links is determined by
the number of jobs, but the number of (given) requirement
links varies from 50 to 300.

The adapted CDRU algorithm is very effective for this
problem, and the relative runtimes of the MIP and non-linear
solvers, as shown in Figure 3(b), are similar to the previous
case study. The non-linear solver frequently fails to find op-
timal solutions. To remedy this issue we run SNOPT repeat-
edly, using the the last solution as the starting point for the
next iteration and using its objective value as a lower bound.
This configuration (labelled “NLP M” in Figure 3) is more
time-consuming, but improves final solution quality: 93%
of solutions found by NLP M are optimal, compared to only
around 70% for a single run of the solver.

Strong vs. Dynamic Controllability We can evaluate the
robustness of a schedule under strong controllability as well.
This requires only solving a linear program. For 84.3% of
the test cases, the value of the maximum delay metric is the
same. However, 6.38% of cases allow zero delay (i.e., have
no robustness) under strong controllability but admit a non-
zero value with dynamic exection.

4Set J10 from PSPLIB (http://www.om-db.wi.tum.de/psplib/),
plus additional problems generated to have more max time lag con-
straints and allow more variation in resolving resource conflicts.

57

0 10 20 30 40 50

0
1
0

2
0

3
0

4
0

5
0

Run Time(s)

%
 S

o
lv

e
d
 P

ro
b
le

m
s

Run Time(s)

%
 S

o
lv

e
d
 P

ro
b
le

m
s

Run Time(s)

%
 S

o
lv

e
d
 P

ro
b
le

m
s Confict−directed

MIP

NLP_S

0 50 100 150 200 250

0
2
0

4
0

6
0

8
0

1
0
0

Run Time(s)

%
 S

o
lv

e
d
 P

ro
b
le

m
s

Run Time(s)

%
 S

o
lv

e
d
 P

ro
b
le

m
s

Run Time(s)

%
 S

o
lv

e
d
 P

ro
b
le

m
s

Run Time(s)

%
 S

o
lv

e
d
 P

ro
b
le

m
s

Confict−directed

MIP

NLP_S

NLP_M

0 100 200 300 400 500 600

0
2
0

4
0

6
0

8
0

1
0
0

Run Time(s)

%
 S

o
lv

e
d
 P

ro
b
le

m
s

Run Time(s)

%
 S

o
lv

e
d
 P

ro
b
le

m
s

MIP

NLP_S

(a) (b) (c)

Figure 3: Runtime distributions for three different solvers (conflict-directed relaxation (CDRU), the MIP model solved with
GuRoBi and the non-linear model solved with SNOPT) on (a) minimum relaxation problems, (b) schedule robustness (maxi-
mum delay) problems and (c) minimum flexibility problems.

Minimising Flexibility
Although flexibility may improve robustness, there can also
be a cost associated with it. For example, to permit a job to
start at any point in an interval it may be necessary to reserve
resources for the entire time from its earliest starting time to
its latest ending time, an interval that may be much larger
than the duration of the job. Thus, for a given, fixed level of
temporal uncertainty we may seek the smallest flexibility –
meaning the tightest requirement bounds – that is sufficient
to maintain dynamic controllability. This is the application
that motivated Wah and Xin (2004). Their formulation is:

min
∑
eij∈R(uij − lij)

s.t. Lij = lij ≤ uij = Uij eij ∈ C
Lij ≤ lij ≤ uij ≤ Uij eij ∈ R
dynamic controllability (1)–(7)

where Lij and Uij are the bounds of the input STNU. That
is, contingent link bounds are fixed, and requirement link
bounds may only be tightened.

Comparison of Solvers We use a set of 600 random
STNUs of the “GRID” family, generated by the same
method used by Wah and Xin (2004). The number of nodes
ranges from 41 to 201, contingent links from 6 to 63, and
requirement links from 60 to 360. The runtime distribution
is shown in Figure 3(c). Since there is no CDRU imple-
mentation for this problem, we compare only the MIP and
non-linear solvers.

Robustness with Probabilistic Uncertainty
It is a natural extension to the STNU model to associate
probabilities with the outcome (timing) of uncontrollable
events (Tsamardinos 2002; Fang, Yu, and Williams 2014).
As mentioned earlier, this allows us to define robustness as
the probability of successful plan or schedule execution.

In the probabilistic STN (pSTN) model proposed by Fang,
Yu and Williams (2014) the duration of each contingent link
eij (i.e., the difference tj − ti) is a random variable Dij .
The model makes no assumption about independence or the
distribution of these variables.

It is straightforward to transfer the STNU representation
of a partial-order schedule, described above, to a pSTN.
Since the random variable Dsiei represents the duration of
an activity we assume it is non-negative. The probability of
a successful dynamic schedule execution is then at least

max P (
∧
i lsiei ≤ Dsiei ≤ usiei)

s.t. 0 ≤ lsi,ei ≤ usi,ei ∀i
POS constraints (requirement links)
dynamic controllability (1)–(7)

The objective value is a conservative (lower) bound on the
success probability, because it is the probability that all un-
controllable events fall inside the chosen bounds. The sched-
ule may still execute successfully even if some durations fall
outside these bounds, as the outcomes of other events may
fortuitously compensate so that no constraints are violated.

The objective function form depends on the probability
distributions over activity durations. For example, if each
Dsiei is uniform over an interval, we can conservatively
approximate the success probability with a linear function.
Other distributions give rise to non-linear objectives.

Flexibility vs. Robustness As we are now able to compute
different measures of schedule robustness, we can put to test
the hypothesis that different measures of schedule flexibility
correlate with robustness. We consider two flexibility met-
rics: fluidity, defined by Aloulou and Portmann (2003), and
improved flex, defined by Wilson et al. (2014). Both metrics
are averages of some form of temporal slack in the schedule.

We use the same set of RCPSP/max problems as before.
For each of the two metrics, we take the schedules with the
least and greatest fluidity/flex score for each instance. (Of
course, we can only use instances for which the scheduler
found at least two schedules with different fluidity/flex val-
ues.) For both schedules in each such pair, we compute the
non-probabilistic (maximum delay) and probabilistic mea-
sures of robustness (where this is possible within reasonable
time). For probabilistic robustness, we use uniformly dis-
tributed durations over an interval between ±30% of the
nominal activity duration. We then count how often the
schedule that has the higher score according to each flexi-
bility metric has a higher, lower or equal robustness score,

58

Maximum Delay Prob. of Success
> = < > = <

fluidity 291 332 125 185 441 77
improved
flex 476 513 192 334 698 141

Figure 4: Correlation between schedule flexibility, as mea-
sured by fluidity (Aloulou and Portmann 2003) and improved
flex (Wilson et al. 2014), and robustness. Each entry is the
number of instances in which the schedule with a higher flu-
idity/flex score has a higher (>), equal (=) or lower (<) max
delay and probability of success, respectively, compared to
that of the schedule with lower fluidity/flex.

according to each of the two robustness measures. The re-
sults are summarised in Table 4. If there was no correlation
between flexibility and robustness, we should find roughly
equal proportions of schedules with higher and lower robust-
ness scores. A simple binomial test shows that the observed
result is extremely unlikely under this hypothesis. Thus, we
conclude that there is a (positive) correlation between fluid-
ity/flex and robustness, although it is quite weak.

Dynamic Controllability with Chance Constraints
Fang, Yu and Williams (2014) argue that in many situa-
tions, minimising risk (probability of failure) is too conser-
vative, and may compromise other objectives (such as cost)
too much. Instead, users may prefer to give an absolute
bound on risk and optimise other metrics subject to this con-
straint. They propose a pSTN optimisation algorithm sub-
ject to strong controllability and the chance constraint∑

eij∈C(1− P(lij ≤ Dij ≤ uij)) ≤ ρ. (11)

This makes use of the union bound (Boole’s inequality), so
it is a conservative estimate of risk: That is, it ensures the
probability of violating a requirement is ρ or less.

Combining the dynamic controllability model (1)–(7)
with (11) enables us to find dynamic execution strategies
under chance constraints. Whether the constraint is linear
or non-linear, and hence which solvers can be applied, de-
pends on the probability distributions, as noted above.

Dynamic vs. Strong Controllability Since a strongly
controllable network is also dynamically controllable, the
optimal value of any objective function can only improve
as we consider dynamic instead of strong execution strate-
gies. We can now evaluate how much it improves, by com-
paring the quality of solutions obtained under dynamic and
strong controllability constraints on the test cases used by
Fang, Yu and Williams (2014). The objective is to minimise
makespan under chance constraints. Since the problems fea-
ture normally distributed uncertain durations, only the non-
linear solver is able to tackle them.

Figure 5 shows the distribution of the improvement, mea-
sured by the reduction in makespan achieved under dynamic
controllability from that of the optimal strongly controllable
solution, expressed as a fraction of the latter. (Strongly con-

[0.0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0) Feasible

Improvement from SC to DC

%
 P

ro
b
le

m
s

0
1
0

2
0

3
0

4
0

Figure 5: Reduction in makespan achieved with dynamic
as opposed to strong controllability. Instances in the last
column are infeasible under strong controllability, but have
a valid dynamic execution strategy.

trollable solutions to chance-constrained problems are gen-
erated with Fang, Yu and Williams’ solver.)

This clearly shows the value of using a dynamic execution
strategy. (In fact, the possible improvement may be even
greater since solutions returned by the non-linear solver are
often not optimal.) 8.5% of problems are infeasible under
strong controllability constraints – that is, no strong (uncon-
ditional) execution strategy exists – but are feasible under
dynamic controllability constraints. On the other hand, op-
timisation with dynamic controllability is harder: the NLP
solver failed to find a solution for 33% of the instances.

Conclusions
In many cases where an STNU is used to represent a plan
or schedule, the ability to optimise a function of STNU time
bounds subject to the constraint that the network is dynam-
ically controllable make it far more useful than being able
only to test if dynamic controllability holds. For exam-
ple, we showed how it enables optimisation of a chance-
constrained pSTN under dynamic controllability, leading to
better solutions than possible if strong controllability is im-
posed. It also enabled us to measure schedule robustness in
new ways, and thereby test the hypothesis that greater flexi-
bility leads to more robust schedules.

Dynamic controllability is a disjunctive linear constraint.
Comparing solution approaches, we found that dealing with
disjunctions explicitly, as in the CDRU algorithm (Yu, Fang,
and Williams 2014), is the most efficient. However, the MIP
and NLP formulations are very flexible, allowing controlla-
bility to be combined with other constraints. Our constraint
model follows closely the algorithm by Morris, Muscettola
and Vidal (2001). It is an open question if a better model can
be derived from Morris’ (2006) structural characterisation of
dynamic controllability.

Acknowledgements This work was supported in part by
Boeing Corporation, under grant number MIT-BA-GTA-1,

59

and ARC project DP140104219, “Robust AI Planning for
Hybrid Systems”. NICTA is funded by the Australian Gov-
ernment through the Department of Communications and
the Australian Research Council through the ICT Centre of
Excellence Program.

References
Aloulou, M. A., and Portmann, M.-C. 2003. An efficient
proactive reactive scheduling approach to hedge against
shop floor disturbances. In Proc. 1st Multidisciplinary In-
ternational Conference on Scheduling: Theory and Appli-
cations (MISTA), 337–362.
Banerjee, D., and Haslum, P. 2011. Partial-order support-
link scheduling. In Proc. 21st International Conference on
Automated Planning and Scheduling (ICAPS), 307–310.
Cesta, A.; Oddi, A.; and Smith, S. F. 1998. Profile-based
algorithms to solve multiple capacitated metric scheduling
problems. In Proc. 4th International Conference on Artifi-
cial Intelligence Planning and Scheduling (AIPS), 214–223.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.
Fang, C.; Yu, P.; and Williams, B. C. 2014. Chance-
constrained probabilistic simple temporal problems. In
Proc. 28th AAAI Conference on Artificial Intelligence,
2264–2270.
Gill, P. E.; Murray, W.; and Saunders, M. A. 2002. SNOPT:
an SQP algorithm for large-scale constrained optimization.
SIAM Journal on Optimization 12(4):979–1006.
Kolisch, R., and Padman, R. 2001. An integrated survey of
project scheduling. OMEGA International Journal of Man-
agement Science 29(3):249–272.
Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In Proc. 17th
International Conference on Artificial Intelligence (IJCAI),
494–499.
Morris, P. 2006. A structural characterization of temporal
dynamic controllability. In Proc. 12th International Confer-
ence on Principles and Practice of Constraint Programming
(CP), 375–389.
Policella, N.; Cesta, A.; Oddi, A.; and Smith, S. 2009.
Solve-and-robustify. Journal of Scheduling 12:299–314.
Tsamardinos, I. 2002. A probabilistic approach to robust
execution of temporal plans with uncertainty. In Methods
and Applications of Artificial Intelligence (Proc. 2nd Hel-
lenic Conference on AI), 97–108.
Vidal, T., and Fargier, H. 1999. Handling contingency
in temporal constraint networks: From consistency to con-
trollabilities. Journal of Experimental and Theoretical AI
11(1):23–45.
Wah, B. W., and Xin, D. 2004. Optimization of bounds
in temporal flexible planning with dynamic controllability.
In Proc. 16th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), 40–48.
Wah, B. W., and Xin, D. 2007. Optimization of bounds
in temporal flexible planning with dynamic controllabil-

ity. International Journal on Artificial Intelligence Tools
16(1):17–44.
Williams, B. C., and Ragno, R. J. 2002. Conflict-directed
A* adn its role in model-based embedded systems. Journal
of Discrete Applied Mathematics 155(12):1562–1595.
Wilson, M.; Klos, T.; Witteveen, C.; and Huisman, B. 2014.
Flexibility and decoupling in simple temporal networks. Ar-
tificial Intelligence 214:26–44.
Yu, P., and Williams, B. 2013. Continuously relaxing over-
constrained conditional temporal problems through general-
ized conflict learning and resolution. In Proc. 23rd Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
2429–2436.
Yu, P.; Fang, C.; and Williams, B. C. 2014. Resolving
uncontrollable conditional temporal problems using contin-
uous relaxations. In Proc. 24th International Conference on
Automated Planning and Scheduling (ICAPS), 341–349.

60

