Enhanced electrical activation in In-implanted Ge by C co-doping

Citation: Applied Physics Letters 107, 212101 (2015); doi: 10.1063/1.4936331
View online: http://dx.doi.org/10.1063/1.4936331
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/107/21?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Structural and electrical properties of In-implanted Ge

Study of millisecond laser annealing on recrystallization, activation, and mobility of laser annealed SOI doped via arsenic ion implantation
J. Vac. Sci. Technol. B 33, 011201 (2015); 10.1116/1.4902020

Heavily Ga-doped germanium layers produced by ion implantation and flash lamp annealing: Structure and electrical activation
J. Appl. Phys. 107, 053508 (2010); 10.1063/1.3309835

P implantation doping of Ge: Diffusion, activation, and recrystallization
J. Vac. Sci. Technol. B 24, 494 (2006); 10.1116/1.2162565

Impact of the end of range damage from low energy Ge preamorphizing implants on the thermal stability of shallow boron profiles
J. Appl. Phys. 96, 4939 (2004); 10.1063/1.1776624
Enhanced electrical activation in In-implanted Ge by C co-doping

1Department of Electronic Materials Engineering, Australian National University, Canberra ACT 0200, Australia
2Nuclear Science and Technology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
3KU Leuven, Instituut voor Kern-en Stralingsfysica, 3001 Leuven, Belgium
4Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
5Applied Physics, School Applied Sciences, RMIT University, Melbourne 3001, Australia

(Received 10 September 2015; accepted 11 November 2015; published online 23 November 2015)

At high dopant concentrations in Ge, electrically activating all implanted dopants is a major obstacle in the fulfillment of high-performance Ge-channel complementary metal oxide semiconductor devices. In this letter, we demonstrate a significant increase in the electrically-active dopant fraction in In-implanted Ge by co-doping with the isovalent element C. Electrical measurements have been correlated with x-ray absorption spectroscopy and transmission electron microscopy results in addition to density functional theory simulations. With C + In co-doping, the electrically active fraction was doubled and tripled at In concentrations of 0.2 and 0.7 at. %, respectively. This marked improvement was the result of C-In pair formation such that In-induced strain in the Ge lattice was reduced while the precipitation of In and the formation of In-V clusters were both suppressed. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936331]
deposition, were implanted with C and In ions. We used a Ge/Si heterostructure to enable the subsequent removal of the Si substrate for superior synchrotron-based measurements.13 The influence of misfit dislocations near the Ge/Si interface (due to the lattice mismatch between Ge and Si) was minimized by confining the implanted C and In depth distributions to <1.2 \textmu m. Implantations were performed at 250 °C to avoid amorphization and the surface normal was offset 7° from the incident ion direction to avoid channeling. C ions were first implanted, with four ion energies (100, 200, 450, and 750 keV) and variable fluences \((7.73 \times 10^{14} \text{–} 3.74 \times 10^{16} \text{ions/cm}^2)\) to produce a uniform C depth distribution over 0.2–1.2 \textmu m, as calculated with TRIM-2008.31 In ions were then implanted with ion energies and fluences appropriate to yield overlapping C and In depth distributions, and at the same concentration to C in each sample (C: In = 1:1). The In implantation details are given in a previous report.13 The In concentrations (0.07–1.3 at. %) were determined with RBS after annealing. A three-step annealing process in N\(_2\), at temperatures of 550, 450, and 350 °C for 0.5, 1, and 2 h, respectively, was used to initially activate the implanted In atoms and reduce lattice disorder (550 °C) and then enhance the concentration of In-defect configuration by lowering the solid solubility limit (350 °C). For the electrical characterization, samples were patterned into clover-leaf van der Pauw geometries of 1 cm radius for high measurement accuracy32 by means of photolithography and H\(_2\)O\(_2\) etching at room temperature. To achieve an Ohmic contact, four 0.75 mm diameter, 200 nm thick Al contacts were thermally evaporated on the corners of the sample surface. The Ohmic nature of the contacts was confirmed with I–V measurements. Fluorescence-mode extended x-ray absorption fine structure (EXAFS) measurements were performed at the XAS beamline of the Australian Synchrotron, with data analysis carried out using the IFFEFIT package33 and FEFF9 code.34 Complimentary DFT simulations were performed using the VASP code.35 DFT-guided EXAFS analysis was performed, and the input models to the EXAFS spectrum fittings were geometrically-optimized by DFT, a previous applied strategy.36–38 The fitting parameters, including In metal fraction, coordination number (CN), and Debye-Waller factors (DWFs), are given in Table I. Cross-sectional transmission electron microscopy (TEM) images were acquired in a Phillips CM300 electron microscope operating at 300 kV. Samples were prepared with conventional methods of mechanical grinding and polish using Ar ion milling, with the sample maintained at liquid N\(_2\) temperature.

Figure 1 compares the resistivity, carrier density, and carrier mobility of In and C + In implanted Ge samples as a function of In concentration. All samples exhibited p-type conductivity. At low In concentrations (\(~\sim\)0.06 at. %), the effect of co-doping was negligible with the vast majority of In atoms electrically active either with or without C present. Indeed, analysis of the XAS spectra of Figure 2 indicated that In atoms occupied substitutional lattice sites and were four-fold coordinated with or without C present, thus corroborating the electrical measurements. (CNs surrounding an In atom are shown in Table I.) Clearly, the low concentration (\(~\sim\)0.06 at. %) of both C and In atoms yielded a low probability for C-In pair formation. Also, no evidence of electrically-inactive configurations (In metal precipitates or In-V clusters as shown in Table I) was apparent with XAS at this concentration (\(~\sim\)0.06 at. %). Finally, the TEM images of Figures 3(a) and 3(d), In and C + In co-doped samples, respectively, show no significant differences in structural disorder.

As Figure 1 demonstrates, the influence of co-doping was more significant at higher In concentrations. At 0.2 at. %, the carrier density of the C + In implanted sample doubled from the In implanted sample (activation ratio increased from 42.3% to 85.9%). While the carrier mobility decreased (by 30%) as a result of increased lattice disorder and ionized impurity scattering, the resistivity was halved in the co-doped sample. Evidence of C-In pairing was found in the DFT-guided EXAFS analysis of this sample (0.2 at. %). The DFT calculations showed that a substitutional C-In pair in Ge splits the Ge second and third shells surrounding an In atom into six different shells (with distances of 3.51, 4.10, 4.38, 4.45, 4.82, and 5.09 \textAA). This increase of disorder surrounding an In atom was manifested as smearing of the second and third nearest neighbor peaks of the corresponding FT EXAFS spectrum (Figure 2(d)). Using the DFT-geometrically-optimized model of a C-In pair in substitutional sites of Ge, a high quality fit to the EXAFS spectrum

<table>
<thead>
<tr>
<th>In (and C) concentration (at. %)</th>
<th>In metal fraction (%)</th>
<th>CN_{Ge} (atoms)</th>
<th>CN_{C} (atoms)</th>
<th>DWFs ($\times 10^{-3}$ \textAA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0</td>
<td>4</td>
<td>~</td>
<td>3.2, 4.1, 6.4</td>
</tr>
<tr>
<td>0.06</td>
<td>0</td>
<td>4</td>
<td>~</td>
<td>3.4, 4.6, 7.1</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>4</td>
<td>~</td>
<td>3.6, 5.1, 7.4</td>
</tr>
<tr>
<td>0.6</td>
<td>63 ± 4</td>
<td>3.1 ± 0.4</td>
<td>~</td>
<td>3.6, 5.5, 7.1</td>
</tr>
<tr>
<td>1.2</td>
<td>72 ± 5</td>
<td>2.6 ± 0.5</td>
<td>~</td>
<td>3.9, 5.6, 6.8</td>
</tr>
</tbody>
</table>

For C + In doped Ge

<table>
<thead>
<tr>
<th>C + In doped Ge</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.07</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>3.3, 4.2, 6.7</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>3.65 ± 0.17</td>
<td>0.35 ± 0.17</td>
<td>3.5, 4.9, 7.3</td>
</tr>
<tr>
<td>0.65</td>
<td>0</td>
<td>3.45 ± 0.11</td>
<td>0.55 ± 0.11</td>
<td>3.8, 5.5, 7.7</td>
</tr>
<tr>
<td>1.3</td>
<td>0</td>
<td>2.71 ± 0.11</td>
<td>1.29 ± 0.11</td>
<td>4.2, 6.3, 9.4</td>
</tr>
</tbody>
</table>

aReference 13.
was obtained for this sample (0.2 at. %) (Figure 2(d)). Note not all In atoms were paired: on average, one In atom was coupled to 0.35 ± 0.07 C atoms as shown in Table I, a result in agreement with earlier PAC measurements.29 Our DFT calculations also supported the result by showing that C-In pairing is energetically favorable in Ge, the binding energy of the pair calculated to be 0.27 eV, in agreement with the previous DFT study (−0.46 eV).30 At this concentration (0.2 at. %), we attribute the enhanced carrier density in the C + In implanted sample to strain compensation by C-In pairing and not the suppression of In precipitation or In-V cluster formation. This was further validated by (i) Raman Spectroscopy (not shown), which indicated that strain in the Ge lattice was reduced with C co-doping and (ii) the XAS results for In-doped Ge without C where the two electrically-inactive configurations were not apparent (Figures 2(a) and 2(c)). Regarding (ii), the defect concentrations were expected to be lower than the sensitivity limit of EXAFS (~15%).

The greatest effect of C + In co-doping was observed at an In concentration of 0.6 at. %. Without C, the electrically-active dopant fraction was only 21% (Figure 1) as a result of the formation of electrically-inactive configurations.13 For example, the corresponding XAS spectra (Figures 2(a) and 2(c)) was dominated by a metallic In component (apparent upon comparison with the In metal standard), with 63% ± 4% (Table I) of In atoms in the metallic phase. Those In atoms still in solution (the peak at a non-phase-corrected radial distance of ~2 Å) were on average surrounded by 0.9 ± 0.4 vacancy (an In-V cluster) and 3.1 ± 0.4 Ge atoms as shown in Table I. Metallic In precipitates were evident in the corresponding TEM image (Figure 3(b)) while line defects (dislocations) were observable in the associated dark-field image (inset). At the similar concentration (0.65 at. %), C + In co-doping yielded a three-fold improvement in electrically-active fraction (~63%, from Figure 1). The corresponding XAS spectra (Figures 2(b) and 2(d)) remain similar to that of substitutional, four-fold coordinated In with no evidence of metallic In or In-V clusters, a result consistent with the co-doping strategies proposed by Chroneos22 that the V concentration can be controlled by isovalent element co-doping in Ge. Applying the same EXAFS analysis method aforementioned to the spectrum of this sample (0.65 at. % C + In doped Ge), we found that one In atom was on average paired with 0.55 ± 0.11 C atoms (Table I). Note that no In precipitates were observed in the TEM image of Figure 3(e), demonstrating the effectiveness of co-doping as a means of achieving an above-equilibrium solid solubility limit. For this sample (0.65 at. % C + In doped Ge), the three-fold enhancement of the electrically-active dopant fraction is mainly a result of C co-doping in suppression of the formation of In metal and In-V clusters.

At the highest In concentration of 1.2 at. %, co-doping yielded no improvement to the electrical properties (Figure 1). The XAS spectra for In-doped Ge was again dominated by the metallic component (72% ± 5% of In atoms in the metallic phase; Table I and Figures 2(a) and 2(c)) while those for C + In doped Ge (Figures 2(b) and 2(d)) were clearly damped relative to lower In concentrations. For the co-doped sample (1.3 at. %), one In atom was paired with 1.29 ± 0.11 C atoms as shown in Table I. In precipitates were readily apparent in the TEM image of the sample without C (Figure 3(e)), again consistent with the XAS analysis. The high-resolution image shown in Figure 3(e) inset shows a metallic In precipitate. Amazingly, In precipitates were again not visible in the TEM image for the C + In co-doped sample (Figure 3(f)) demonstrating that the above-equilibrium solid solubility limit in this sample was increased at least two-fold with C present. A fit of the C + In doped 1.3 at. % sample spectrum with additional In metal fraction was also tested, which yielded no evidence of a two component system (non-physical DWFs obtained).

The metallic In amount is lower than the limit that is detectable by EXAFS. The low EXAFS amplitude of the 1.3 at. % C + In sample (as seen in Figures 2(b) and 2(d)) clearly indicates that the high In and C concentration causes significant lattice disorder. Quantitative confirmation of this increase in disorder is manifested by an increase in the DWF as shown in Table I. The high level of lattice disorder was considered to...
be responsible for the unimproved electrical properties given the electrical inactive clusters were not found.

In conclusion, we have characterized the electrical and structural properties of C + In co-doped Ge, demonstrating that this approach can yield a significant three-fold increase in carrier density relative to a conventional dopant-only implantation protocol. We attribute the enhanced carrier density in the 0.2 at. % sample to strain compensation, and that in the 0.6 at. % sample to the suppression of In precipitation and In-V cluster formation. An above-equilibrium solid solubility limit In in Ge was achieved. Our experimental identification of C-In pairing is in excellent agreement with theoretical predictions and demonstrates that co-doping with isovalent elements is an effective strategy for attaining the high electrically-active dopant fractions required for advanced devices.

We acknowledge access to NCRIS and AMMRF infrastructure at the Australian National University including the Australian National Fabrication Facility, the Heavy Ion Accelerator Capability, and the Center for Advanced Microscopy. We also thank the Australian Research Council and Australian Synchrotron for support.