Declaration

I hereby certify that this thesis is entirely the work of the author and has not been submitted to any other institution. Furthermore, all sources used in the preparation of the thesis have been acknowledged in the usual manner.

..

John Swieringa

15 February 2013
Acknowledgements

I would like to thank my supervisors Emma Schultz and Tom Smith. Emma was an indefatigable reader of drafts whose ruthless efficiency with a red pen was invaluable. She was the best sounding board a PhD student could ask for and I am very grateful for her opinions, her judgement and her enthusiasm. Tom provided key direction to the research, using his vast depth of experience and knowledge to point out relevant literature and empirical techniques. I would also like to thank Raymond Liu and Carole Comerton-Forde for insightful comments on drafts of the first chapter.

PhD students are always indebted to those who put up with them during their struggles and in that regard I thank Gaurav Khemka, with whom I share an office and revelled in our daily coffee and darts sessions. I thank my parents for their encouragement and for bravely attempting to read my work. Most importantly, I would like to thank my wife Jess, who went through with marrying me in the depths of this undertaking. Her love and support made this work possible.
Abstract

We provide the first evidence on the catalysts for price discovery in the European Union Emissions Trading System. Short-run return dynamics are analysed using a regression approach similar to Fleming, Ostdiek and Whaley (1996), while the permanent contribution of securities to long-run price equilibrium is examined by calculating Hasbrouck’s (1995) information shares. By employing high frequency data across a wide range of securities, we find that trading costs are a more important determinant of price discovery than the implicit provision of leverage in securities such as futures and options. Securities with low trading costs display greater price discovery than those with high trading costs.

We also examine price discovery within the European markets for coal, natural gas and crude oil. Results show that Brent crude oil futures display greater price discovery than a proxy for the physical Brent market, while there is evidence that West Texas Intermediate futures still dominate price discovery globally. In natural gas markets, UK natural gas futures display greater price discovery than physical trading at North-West Europe’s main natural gas hubs, though weak links to the crude oil market remain. Due to a lack of liquidity and transparency, it remains difficult to distinguish between coal securities. Overall, our results support the importance of futures contracts as a source of price discovery in contrast with opaque over-the-counter physical trading.

Having established where price discovery is taking place in the European emission allowance and energy markets, we examine volatility and information linkages between them by employing a rational expectations framework similar to Fleming, Kirby and Ostdiek (1998). The model specifies volatility linkages operating through common information and information spillover channels. We estimate a representation of this model using GMM for bivariate pairings of emission allowances with coal, natural gas and crude oil. We find that emission allowances are most strongly linked to the crude oil market, in spite of more direct economic relationships with coal and natural gas.
Table of Contents

CHAPTER 1: INTRODUCTION ...1

CHAPTER 2: PRICE DISCOVERY IN THE EUROPEAN UNION EMISSIONS TRADING SYSTEM4
 2.1 A BRIEF INTRODUCTION TO THE EU ETS ..8
 2.1.1 Emission Allowances ...8
 2.1.2 Phases ...11
 2.2 DATA ..14
 2.2.1 Series Selection ...15
 2.2.2 Measures of Trading Cost ...20
 2.2.3 Return Series Construction ..21
 2.2.4 Serial Correlation ..23
 2.2.5 Stationarity and Cointegration ..27
 2.3 METHODOLOGY ...30
 2.3.1 Basic Regression Specification ..30
 2.3.2 Cointegration and Error Correction ...33
 2.3.3 The Final Model Specification ...35
 2.3.4 Information Shares ..36
 2.4 RESULTS ..39
 2.4.1 Regression Results ..39
 2.4.2 Regression R-Squared and F-Statistics ..44
 2.4.3 Ordinal Ranking ...48
 2.4.4 Information Shares ..53
 2.4.5 Strength of Findings ..57
 2.5 CONCLUSION ...58

CHAPTER 3: PRICE DISCOVERY IN EUROPEAN ENERGY MARKETS60
 3.1 METHODOLOGY ...64
 3.1.1 Regression Approach ..64
 3.1.2 Information Shares ..65
 3.2 COAL ..67
 3.3 NATURAL GAS ..73
 3.4 CRUDE OIL ...82
 3.4.1 Price Discovery in the Brent Crude Oil Complex82
 3.4.2 Price Discovery in Brent and WTI Futures ..88
 3.5 CONCLUSION ...100
 3.6 APPENDIX ..102

CHAPTER 4: INFORMATION LINKAGES BETWEEN THE EMISSION ALLOWANCE AND ENERGY MARKETS ...108
 4.1 EXISTING EVIDENCE ON MARKET INTERACTIONS110
 4.2 INFORMATION LINKAGES ..112
 4.3 METHODOLOGY ...117
 4.3.1 Directionality of Emission Allowance and Energy Market Relationships ..117
 4.3.2 Stochastic Volatility Model ..117