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Abstract

This thesis is a contribution to applied relevant logics. In
Part One relevant logics are presented proof-theoretically
and semantically, These logics are then extended to modal
logics. Completeness proofs for all of the logics presented
in Part One are provided. In Part Two, the logics of Part
One are applied to certain problems in philosophical logic
and Artificial Intelligence. Deontic and epistemic logics
based on relevant logics are presented in chapter three and
chapter four contains an extensive investigation of the logic
of theory change (or database updating).
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Introduction

This dissertation is a contribution to the study of relevant logics. Its
emphasis is on applications. Such an emphasis, I believe, is timely. For
the purely philosophical debate about the notion of entailment has reached
a deadlock. It has issued on the one side in an elaborate classical
epicycle! and on the other side in a rich fundus of well-investigated
alternatives to classical logic.2 The divide between these two sides is
unlikely to become permeable by further reflections on the elusive notion
of entailment or introspection of one’s linguistic intuitions about if..
then.... Progress, however, can perhaps be made by observing the
contenders "in use” rather than in vacuo.

Almost coinciding with the decline of the entailment debate within
the philosophical community is the increasing interest in non-classical
logics among researchers in Artificial Intelligence (AI). It has become
plain in recent years that for the solution of many problems in AlI,
classical logic is either not suited at all or an extremely cumbersome tool
to use. Thus, in Al, alternatives to classical logic are now considered and
evaluated free from the philosophical prejudices hardened in a seven
decades spanning debate about "deviant" logics — non-classical logics
suddenly get a "fair go".

The present dissertation attempts to take advantage of the open-
minded attitude with which various logics are now considered in AL
Thus, the applications of relevant logics in Part Two of this dissertation
are presented with a view to problems in AL. These problems fall under
the heading of database theory. Chapter three offers some tools for
reasoning about databases in a fixed state; chapter four treats the problem
of database updating. In more traditional terms, however, these chapters
contain also contributions to philosophical logic: chapter three presents
some epistemic and deontic logics based on relevant logics, and chapter
four is an exercise in the logic of theory change. The discussion in Part
Two will frequently switch between philosophy and Al. Such a transfcr
of ideas, I believe, is beneficial to both disciplines.

Chapter one provides a grounding in the proof theory and semantics
of relevant logics. - We give axiomatic formulations of a group of logics,
starting from a very weak system BM and proceeding to classical logic K
via the comparatively strong relevant logics of Anderson and Belnap

1 See e.g. Jackson (1987).
2 See e.g. Routley, Meyer et al. (1982).
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(1975) and the semi-relevant systems RM ("Mingle") and RM3. Al of
these logics will be proved complete with respect to appropriate classes of
model structures (frames) of the kind used in Routley, Meyer, et al.
(1982). The aim of this chapter is to provide a selfcontained
completeness argnment for all of the major relevant logics (and a few
more) as a background to the following chapters. In presenting this
argument I have benefited from Dunn’s survey article on relevant logics
(1986).

In chapter two we shall consider extensions of the systems presented
in chapter one in a language including a unary modal operator. The
resulting modal systems will be proved sound and complete with respect
to two extensions of the semantics introduced in chapter one. The two
extensions are, first, a Kripke-style semantics, modelling the modal
operator by means of a binary accessibility relation, and, secondly, a
Montague-Scott-style semantics in which the modal operator is modelled
by means of a so-called neighbourhood function.

In Part Two, we shall put the systems of Part One to use. The
modal logics of chapter two will be used in chapter three as a means to
represent and reason about the staric properties of theories of various
kinds. We shall consider in some detail two kinds of theories: sets of
sentences an agent is committed to accept as true at a particular point of
time ("acceptance sets"), and sets of sentences an agent is committed to
make true at a particular point of time ("norm sets"). As a result of these
considerations, logics of acceptance (or commitment-to-believe) and of
obligaton will emerge. We shall refrain from enshrining in these logics
idealising assumptions about acceptance sets and norm sets; in particular,
we shall not assume that such sets are always consistent. The possibility,
and indeed actuality, of inconsistent but non-trivial acceptance and norm
sets will motivate the move towards epistemic and deontic logics based
on a paraconsistent logic. The concern with representing correctly the
deductive dependencies within acceptance sets and norm sets will
motivate a move towards epistemic and deontic logics based on a relevant
logic.

Chapter four focuses on certain dynamic aspects of theories. The
study of the formal aspects of theory change - though a natural
complement to the investigations of Tarski (1930) — has been curiously
neglected for a long time. A beginning has only recently been made in
the work of Alchourron, Girdenfors and Makinson. Though squarely
based within the framework provided by these three authors, the present
contribution to the theory of theory change differs in a number of aspects
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from their work. First, Alchourron, Giirdenfors and Makinson (AGM)
consider changes of theories by one sentence at a time. I consider
multiple changes: changes by sets of sentences at a time. Changes by
single sentences will emerge as a special case of multiple changes,
namely as changes by singleton sets of sentences. Secondly, AGM think
of theories as sets of sentences closed under logical consequence; theories
are thus rather amorphous objects. I think of theories as sets of sentences
generated from a distinguished set of sentences (the base of the theory in
question) by means of a logical consequence operation. As I shall argue
in chapter four, the base of a theory does play an important role in
changing a theory. Thirdly, a central concem for AGM is that changes to
theories ought to be minimal: a changed theory should be as big a subset
of the original theory as possible under the circumstances. I shall argue
that minimality of change is a rule of thumb that may easily be
overridden by other constraints on theory change. One such constraint —
not recognised in the work of AGM - is that if a sentence B is in a
theory just because A is in that theory, then B should not remain in the
theory after A has been removed. I call this constraint on theory change
‘the filtering condition’. Fourthly, for AGM, theories are closed under a
consequence operation provided by classical logic. In view of classical
theses like A—.~A—B and A—-.B—A, the change of inconsistent
theories and the removal of logical truths from a theory receive a rather
special treatment in AGM’s theory. The theory advanced in this
dissertation will be more general: any one of the logics of chapter one
may provide the consequence operation theories are closed under.
However, as I shall argne in chapter four, only if theories are closed
under a non-classical, relevant, consequence operation, does a satisfactory
account of how inconsistent theories ought to change and how to remove
logical truths from a theory emerge.

The chapters of Part Two complement each other in a
straightforward sense: while chapter three provides a formal framework
for reasoning about theories at a particular point of time, theories as they
"move" along a time axis are the subject of formal investigations in
chapter four. The formal tools employed in these chapters are, however,
quite distinct. Whereas modal logics provide the background for chapter
three, Tarski’s theory of consequence operations is the unifying theory
behind the considerations in chapter four. In the final section of this
dissertation, an outlook on one way of bringing to bear modal logic on
the theory of theory change will be given by employing the resources of
dynamic logic in order to formulate a logic of theory change.



Part One
Relevant Logics and Modal Logics



Chapter 1

Relevant logics determined by R*-models

1. Language

By a propositional language, PL, we mean a triple <At,Op.,r>,
where At is a set (of propositional aroms), Op is a set (of propositional
connectives), and r is a function (the rank function) from Op to the set of
natural numbers N. We require that At and Op are denumerable and
disjoint sets. We shall use p,7,. (occasionally subscripted with
numerals) as variables ranging over members of At, and ¢ will stand
variably for members of Op.

The function r assigns a rank to every comnective. If r(¢)=0 (=1,
=2, ...) then we shall say that ¢ is a nullary (unary, binary, ...) connective.
Nullary connectives will also be referred to as propositional constants.

An expression of PL is any nonempty finite sequence of members of
AtUOp. The set WIf of well-formed formulae of PL is inductively

- defined as follows.

(i) AtCWIT,

(ii) for each ¢ Op: _
if r(d)=n and A, . . . ,A, e WIf, then ¢4, - - - A, e WiT.

We shall use A,B,C,.. (occasionally subscripted with numerals) as
variables ranging over the set of well-formed formulae. '

~ According to our last definition, formulae are written down in what
is known as Polish notation, that is, with connectives prefixed to
formulae, thereby dispensing with the need for some device, such as
brackets, delimiting the scope of the connectives. Despite the formal
elegance of the prefix notation, it has never enjoyed widespread
popularity; the longer the formula, the more effort has to be spent on
figuring out the subformulae of which it is composed. By contrast, using
brackets often allows to grasp the "meaning" of a formula at a glance.
We shall adopt a device here that allows for economy of primitive
symbols while making formulae more readable. We introduce brackets
into the metalanguage in which we write about formulae of PL by means
of the following notational convention:
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(Let ¢” be a connective of rank n.)
IfA=9¢"A, -+ A, is a formula of L, then A will be represented in
the text as 0" (4, -+ - A,).

Moreover, for binary connectives, we shall help ourselves to infix
notation:
0%(AB) = (AB).

Brackets will be dropped as long as no confusion can arise. We shall
also mix brackets with interpunctuation along the conventions of Church
(1956), adopted and explained in Anderson and Belnap (1973), p.6. And
when fixing the connective set of particular languages, we shall grade the
power of connectives to bind propositional variables as wsual. In sum:
we shall mix all of the better known delimiting devices to make reading
formulae as easy as possible.

A language PL;= <At;,Op;,;7;> is an extension of PL,=
<At,,0p,,r o> if and only if

Atl ;Atz,

Op; < Op,, and

r=r, for domain Op;.
If PL, is an extension of PL,, then PL, is a fragment of PL,, and vice
versa.

The propositional language La will underly all our considerations in
this chapter. Languages considered in subsequent chapters will be
extensions of La. La has as its set of primitive connectives {~,&,v,—}.
The formation rules are as expected, i.e. all atoms are well-formed
formulae of La, and if A and B are well-formed formulae, so are ~A,
&AB, vAB, and —»AB (write ~A , A&B , AvB and A 5B respectively).
As informal readings of these connectives the following are
recommended.

~A - not: A,
A&B -~ A and B,
AvB —~ A orB,

A—>B - A implies B.

The force of these connectives to bind propositional variables — their
"valence” — decreases in the following order: ~,&.,v,—. The natural
valence of a connective may be overridden by punctuation and bracketing
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according to the usual conventions.

2. R*.frames and -models

In this section we shall define the basic set-theoretic structure which
will serve us throughout this thesis as a basis for interpreting the
propositional languages we shall be dealing with. In subsequent chapters
we shall restrict or extend the notion of an R*-model in various ways.
The results of this and the following section will provide a point of
reference for all subsequent developments.

An R*-frame is a structure <0,K,R,*>>, where K is a nonempty set
of indices (points, worlds, situations, set-ups, theories, etc.), 0 is a
distinguished subset of K (including The Real World), R is a ternary
relation on K, i.e. RcK?, and * is a unary operation on members of K,
ie. ¥ KoK,

We shall write (x for xe{ and define

dl1. : apb iff (Fx)(0x and Rxab).

By "default” R*-frames will be equipped with a number of
conditions on R and *.! For any points a,b,c,d in the universe K of an
R*-frame, we require the following conditions to hold.

rl. (Identity) ava
r2. (Monotonicity) if apb and Rbecd then Racd
*]. (>-Inversion) if avb then b* pa*

An R*-model M is represented by a pair <F ,V>, where F is an R*-
frame and V is a valuation function distributing propositional atoms over
members of K, ie. V:At—2K, The valuation is subject to the (atomic)
heredity constraint, i.e.

1 Gabbay (1976) investigates consequence relations determined by frames without our
default conditions. These consequence relations, however, cannot be empty on the left-
hand-side, i.e., the logics determined are "theorem-less”.



2. R*-frames and -models 8
(h) if acb and aeV(p), then beV(p).

Given a valuation V on propositional atoms, we interpret the non-atomic
formulae of La by the following inductive definition of the forcing
relation = (read ‘al=A’: V forces A to hold at a).

For every ae K:

(@) - akFp iff asV(p)

=) akE-A iff a*HFA

(&) akEA&B iff aEA and ak=B

) aEAVB iff aEA orakEB

(=) akFA —B iff (VbceK)(if Rabc and b=A then c=B)

The definitions of truth and validity are as follows. (It will be convenient
to reserve o for an arbitrary representative of the set 0; thus, o FA says
that A holds throughout 0, i.e. (Vx)(0x DxkEA).)

(T) A 1is true at a point a in a model M if and only if alFA in M; A is
true in M if and only if xFA for all x€0 in M (or, simpler: A is
true in M iff oA in M).

(V) A 1is valid in the class of all R¥-frames if and only if A is true in
every model M on an arbitrary R*-frame F.

Furthermore, we shall say that

(E) A entails B in M if and only if for all points @ in M, if al=A then
akE=B.

For the task of verifying formulae in models, two facts will be
useful.

Lemma 2.1. Heredity

For any formula A and any points @ and b in an R¥*-model: if aFA
and ab, then bE=A.

Proof. Induction on the complexity of A; the base is given by the atomic
heredity condition (h).
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For A=~B we need *1: avb Db*>a*. Suppose
(1) aE=~B and (2) avb.
By () from (1), we have
(3) a*RB
and, by *1 from (2), we obtain
4) b*pa*.
Thus, contraposing and instantiating the inductive hypothesis,
a*&B & b*ra* o b* KRB,
it follows from (3) and (4) that b* ¥B whence, by (=), bE~B.
For A=B —C we need 12: avb & Rbcd o Racd. Suppose
(1) aEB—-C and (2) arvb.

To show: bEB—C, ie. (by (=) Ved(Rbcd & cEB o dEC). So
suppose further that

(3) Rbcd and (4) cFEB.
Spelling out (1) according to (—) we have
(5) Ved(Racd & cEB o dEC).

By r2 we obtain from (2) and (3), Racd which we can use together with
(4) to detach the required dFC from (5). B

Tueorem 2.2. Verification
For any R*-model M, A entails B in M if and only if MFA —B.
Proof.
(=>). Suppose that A entails B in M, i.e.
(1) Va{aFA o aEB).

To show: oFA—B, that is, Vab{avh & aFA o> bEB). So suppose
further that

(2) arb and (3) aFA.
From (1) and (3) we derive
(4) aE=B.
Then the required b= B follows from (2) and (4) by the heredity lemma.
(¢<=). For this direction we need rl: a>a. Suppose o FA —B, i.e.
(1) Vab(avh & aEA o bEB).
To show: Va(aFA > gFB). So suppose further that
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(2) akFA.
Then it follows by rl from (1) and (2) that a EB, as required. W

Note that for the proof of the verification theorem we have made
exhaustive use of all conditions on R and * (and we had to appeal to the
atomic heredity condition ¢h)). These conditions on models will stay with
us throughout this thesis. When extending our language La by new
connectives, we shall "match” these connectives semantically by adding a
new frame-operation and extending the definiion of an R*-model
accordingly. Thus, we shall be in a position to take over the results of
this section (the heredity lemma and the verification theorem) provided
that we can complete the induction required in the proof of the heredity
lemma for the extended language.

3. The system BM and the basic completeness result

The logic BM is the smallest set in La such that each sentence in
BM is cither an instance of the axiom schemas listed below or can be
derived from such instances by successive applications of the rules listed
below,

Al, (L-Simplification, I1&E) A&B —A
A2, (R-Simplification, r&E) A&B —B
A3, (&-Composition, &C) (A-=B)Y& (A-C)>.A—-B&C

A4, (L-Addition, 1vI) A SAVB
AS5. (R-Addition, rvl) B —AvB
A6. (v-Composition, vC) (A-C)& (B-C)>AVB SC
A7. (Distribution, Dist) A& (BvC)—=(A&B )W (A&C)
A8. (DeMorgan k, DMk) ~(A&B)Y—>~Av ~B
A9, (DeMorgan j, DMj) ~A& ~B—~(AvB)
AlQ. (Identity, I) A—>A
MP. (Modus Ponens) i—’-—%ﬂ
A.B

ADJ. (Adjunction) 5B
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B-=C

A—->B—oASC
A—-B

BoSC-oA-C
A-oB

~-B—>-A

PREF. (Prefixing)

SUFF. (Suffixing)
CP. (Contraposition)

The rules PREF and SUFF may equivalently be replaced by the single
rule

A—=B ,C->D

( 2 BoC—oA-D

As the completeness argument for BM will reveal, BM is the
smallest logic determined by the class of all R*-models. For that
argument we shall need a few facts about BM listed in the following
theorem.

THEOREM 3.1.
The following formulae are theorems of BM.
i) A-C)&(B-D)>AVB-SCVD
(i) A-C)&B-D)>A&B—-C&D
(iii) A-C)&(B—-D)>A&B -SCvD

Moreover, the rule
A—>B , A&B--C
CUT. -
A-C

is derivable in BM.

Proof.
The derivations of (i), (ii) and (iii) are similar, We illustrate the method
of derivation by giving the proof of (ii). From Al and A2 we obtain by
SUFF

(1) AC—>A&B—-C and (2) BoSD->A&B—-D
whence, using PREF and MP,

3) A-=C)&(B-oD)>A&B —-C and

4 A-C)&(B-D)>A&B-D.
From (3)&(4) it follows by A3 that
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(5) A-C)&(B-SD)-.(A&B -C)& (A&B —D).
But by A3 again,
(6) (A&B —C)& (A&B 5D )—.A&B —>C&D .
Thus, the theorem follows from (5) and (6) by transitivity, i.e. SUFF and
MP.
To derive CUT, assume (1) A—B. It follows from A10 and (1) by ADJ
that
(2) A-B)&(A-A)
whence, by A3 and MP,
(3) A>A&B.
From (3) by SUFF:
4) A&B->C—-.A-C.

Now we make use of the second premiss, A&B —C, to detach A-C
from (4) by MP. B

Before turning to the completeness proof, we shall first show that all
theorems of BM are valid in the class of all R*-models (soundness).

TreoreM 3.2. Soundness

If A is a theorem of BM, then A is valid in the class of all R*-
frames.

Proof. It will suffice to pick an arbitrary R*-model M and prove that all
axioms of BM are truye in that model (i.e. that they hold at an arbitrary
point 0€0) and that the rules preserve truth-in-M. In view of the
verification theorem, an axiom of the form A —B can be shown to hold
throughout 0 by proving for an arbitrary point a=K that if aF=A, then
aFB. The details are routine and hence omitted. (Note that we needed
the special conditions on R and * only for the verification theorem. For
the soundness argument, these conditions need not be invoked again.) M

We shall now prove that formulae true in all R*-models are
theorems of BM. Together with the soundness theorem, these results will
ensure that the notions of provability in BM and validity on R*-frames
are extensionally equivalent, or, as we shall say, that the logic BM is
determined by the class of all R*-frames. Thus, in the remainder of this
section we shall prove the following proposition.
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TueoreM 3.3. Completeness

I A is valid in the class of all R*-frames, then A is a theorem of
BM.

The argument follows a pattern familiar from Henkin-style
completeness arguments for modal logics.2 We shall define a canonical
model Mgy = <0K,R.* V> which refutes some arbitrarily chosen non-
theorem D of BM. We shall then prove that the canonical model M gy,
is indeed an R*-model. Since the non-theorem D was chosen arbitrarily,
we may construct such a canonical R*-model for every non-theorem of
BM. Thus, for any D such that gD, there is some R*-model M such
that M D - which is the contrapositive of T3.3.

The details of this argument require some work. We start with
defining the notion of a canonical model (and, prior to that, the notion of
an L-theory of some kind or another) after which we shall pause for a -
moment to give a brief overview of the argument as a whole.

Dermnrrion 3.4. L-theory
Let L be any subset of the set of well-formed formulae of some ex-
tension of the language La. A set of sentences T is an L-theory, if
and only if both T is closed under adjunction, i.e. for any sentences
AB
(a) if AeT and BeT, then A&BeT,
and T is closed under L-implication, i.e.
() ifAeT and A—»BeL, then BeT.
A set of sentences is regular with respect to L just in case
©) LT
And T is said to be prime if and only if
(d) if AvBeT, then either AcT orBeT.
A set of sentences satisfying the conditions (a) to (d) will be called a
saturated L-theory.

Z Such completeness arguments were first given in Makinson (1966).
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Dermvrrion 3.5. Canonical model of type [R¥] for L
A canonical model of type [R*] for L is a quintuple
My =<0 Kp.Rp,*L V>,
(subscripts ‘L’ from now on omitted) such that
(a) K s a nonempty set of prime L-theories;

(b) OcK is a set of saturated L-theories such that for each non-
theorem D of L there is a theory xe0 with Dx;

(¢©) RcK3 such that
Rabe iff (VA BeWiH(A—Beca & Aeb D Bec);

(d) *:K—K such that
a*=[(A:~Ada).
(&) V:At—2X guch that
aeV({p)iffpea;
V is extended to a relation = cKxWIT such that
akFA iff Aea.

Substitute BM for L and the above definition turns into a definition of a
canonical mode! of type [R*] for BM.

The completeness argument will be completed after we have shown
that the definition of a canonical model is "good” (ie. that such models
exist) and that such canonical models belong indeed to the class of R*-
models. More spectfically, we shall have to discharge five claims:

(i) K is nonempty.

(i) 0 is nonempty.

(iii) The function * maps members of K into members of K.
(iv) R and * satisfy the conditions rl, r2 and *1.

(v) The canonical valuation V satisfies (h) and the canonical F satisfies
the truth-conditions for complex formulae.

We shall settle (i) and (ii) by constructing — in the manner of Lindenbaum
— a saturated BM-theory, keeping an arbitrarily chosen non-theorem of
BM out of the constructed theory (the prime extension lemma and its
corollary). Claim (iii} will be discharged by means of the star lemma.
We shall prove (iv) in the R* lemma. But for the R* lemma we shall
need the inclusion lemma and the priming lemma. The latter will also be
needed for the valuation lemma verifying (v). The dependency relations
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among these lemmata are charted out below. (Roman numerals along
arrows indicate at which point which claims will have been discharged.)

Prime extension
lemma

Corollary

Priming
lemma

f

[nclusion
lemma

() Star lemma || R* lemma Valuation lemma
(1) (i) (iv) (v}
Completeness theorem

Where T and A are sets of sentences, we write
THA
to express the fact that for some finite collections of sentences
(Ay, ..., AL)CT and (D, . . .,.D,}CA,
A& ---&A, =Dy - -vD,ell

for some contextually fixed logic L.

For the remainder of this section we shall mean by a logic any
extension of the basic system BM. It is easily verified that the relation
., (for any logic L) has the following properties.

I AFA
I'A
LAFA
T, AFA,T.BHA
I, AvB A
I'A , T AFA
T'FA

L
IL
HIR
IV.
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v A, AFA

) T'FA

(Proof. 1 follows immediately from A2; II is derivable from Al and
SUFF; to derive III use ADJ, A6, MP, A7, and transitivity (ie. SUFF
and MP); and IV is essentially the rule CUT already derived in T3.1.
Transitivity, V, is derivable from II and IV.)

LemMa 3.6. Prime extensions (Lindenbaum)

Let T be an L-theory and let A be a set of formulae such that T A.
Then there exists a prime L-theory T° such that T<T and T A.

Proof, Enumerate all formulae of La. Then construct T as follows.

TO =T
Tn IU{An+1 }’ if Tn ’An+ll’f-A
Tos1 = T, otherwise
[
T, =T
n=0

Claim (a): TET”. Obvious from the cumulativity-of the construction.

Claim (b): T'FA. Simple inductive argument. The base case holds by
definition of T;. For each further step use property I of .
Claim (¢): T" is closed under adjunction. Suppose A,BeT and yet
A&BeT . Then (1) T'"HFA&B and at some stage i+1 in the construction
A&B could not have been added to T; because T;,A&BFA, hence, (2)
T, A&BFA. But now we can apply IV to premisses (1) and (2) to obtain
T’ FA - contradicting (b).
Claim (d): T is closed under L-implication. Suppose (1) AeT’, (2)
AFB and yet (3) B¢T . It follows from (1) by I that T"HA whence
from (2) by V, (4) T'HB. But, as explained under (c), from (3) we may
infer (5) T',BFA. Hence, IV applied to premisses (4) and (5) gives
T A, contradicting (b).
Claim (e): T” is prime. Suppose (1) AvBeT  and

(2) AT’ and B<T.
Thus,

(3) T",AFA and T ,BFA
whence, by III,
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(4) T AvBFA.

But it follows from (1) that (5) T'+AvB which, together with (4), entails
in virtue of IV that 7" A, again contradicting (b). W

CoroLLARY 3.7. .

For any logic L:

(i) Let T be an L-theory and A be a set of formulae closed under
disjunction (i.e. whenever A ,Be A, AvB e€A) such that TNA=.
Then there exists a prime L-theory T” such that T¢T® and
T rA=, '

(il) The set O, and hence K, in a canonical model of type [R*] for
L is nonempty. '

Prodof.

Ad (i). Notice that THA (by closure of A under disjunction and
disjointness of T and A). Thus we can infer the existence of the required
theory using the lemmma.

Ad (if). Let T in the lemma be L and let'A be {D} where D is not a
theorem of L. Then there exists a prime L-theory x with Déx.
Moreover, since Lgx, x is a saturated L-theory excluding D, i.e. x€0.
|

The next lemma consists of four propositions. We shall use only the
first two ((i) and (ii)) this section. The other two propositions will be
needed in the completeness argument for certain extensions of BM. We
shall explicitly appeal to propositions (iii) and (iv) in the proof of theorem
8.2.
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Lemma 3.8. Priming

Let K’ be the set of all L-theories (where L is some logic). Let R’
be the extension of the canonical relation R cK? to domain K, i.e.,
for any @’ ,b',c’eK": if A>Bed and Aeb’, then Bec’ [A ,BeWIT].

(i) For a b’ eK’ and cek: if R'a’b’c, then there is a theory aeK
such that a’ca and Rab’c.

(ii) For aeK and »’,c’e K’ such that R'ab’c” and B c’, there are
theories b,c €K such that Rabc, b’ b and Béc.

(iii) For a’,b’eK’ and ceK: if R’a’b’c, then there is a theory beK
such that b’ b and R'a’bc.

(iv) For a’.,b’eK’ and ceK: if R’'a’b’c, then there are theories
a,beK such that @ ca and " b and Rabc.

Proof.

Ad (i). Define a set
A= {D:EBCYD—>B—-CelL & Beb' & Céc)).

Claim (a): A is closed under disjunction. Suppose D {,D,€A. Then there
are B,B, and C,,C, such that (ie(1,2})

(1) D;—>.B;5C;
and

(2) B;eb’, hence, B |&B b’
(since b” is adjunctive) and

(3) C;éc, hence, CvCréc
(since ¢ is prime). From (1) it follows that

(4) (D WD y—([B>C )& (B;—»CpeL
whence by

(5) B—=C & B,—>CH—.B&B,—C vCLeL,

(6) DvD,—>.B &B,—>CvC,eL.
Thus it follows from (2), (3) and (6) by the definition of A that D vD,eA
as required.
Claim (b): g’ "A=. Suppose for some D that Dea’” and DeA. Then
there must be B,C such that D 5B —=CeL and Beb’ and Cec. Since
Dea’ and 4 is an L-theory, B—Cea’. But since Ra’b’c by
hypothesis, C ec — contradiction.

From (a) and (b) we may now infer, using C3.7.(i), that there is a

theory a€K such that 4’ ga and a NA=.
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Claim (c): R'ab’c. Suppose B—Cea and Beb’. Since anA=J,
B—CédA. It thus follows by the definition of A that for all B,C”, if

B—>C—-»B —-C’'eL and B'eld’,
then C'ec. So using Identity, B—>C—>.B—C, we have Cec as
required.
Ad (ii). We first extend ¢’ to a prime L-theory ¢. Let

A, = (BL

Clearly, since ¢’ is an L-theory and Béc¢’, ¢iA.. It follows by L3.6
that there is a theory ¢ €K such that ¢"cc and Béc.

Next we extend »" to a prime L-theory b. Let
Ay = {D:3CYD>Cea & Cc)l.

Claim (a): A, is closed under disjunction. Suppose D(,D,eA,. Thén
there are C,C, such that

(1) @>CP&D,—»>Cyea and

(2) CvCadc.
Since

(3) D1=C )& (D —=Cy—D vD=C vCel,
it follows from (1) that

4) DvD,—-CvCqea.
Hence, from (2) and (4) in virtue of the definition of A, D vD €A,
Claim (b): »'MA,=. Suppose for reductio that some Deb’ and

DeA,. Then for some Cdc, D—>Cea. But we have R'ab’c” whence
Cec’ gc - contradiction.

With premisses {a) and (b) at hand we may now apply C3.7.(i) to
infer the existence of a superset beK of 4" such that b A, =.

Finally we check whether Rabc. Suppose A—Cea and A€b.
Since bMA, =, AdA,. So, by the definition of Ay, if A—Cea, asitis
the case, then Ce ¢ as required.

Ad (ii). Define a set .
A:={D:EB)XA—=Bea” & Bédc)}.

Claim (a): A is closed under disjunction. Suppose D |,D,€A. Then there
are B 1,8, such that (ie {1,2})

(1) D;—B;ed’ and (2) B;dc.
Thus, from (1) and (2) respectively, we may infer that
(3) DywD,—B vBed,
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since @” is an L-theory, and

(4) B 1VB zé c, _
since ¢ is prime. Thus, there exists a B, viz. BvB, such that
DwD,—»Bead" (by (3)) and Béc (by (4)), which is to say that
D 1VD 7€ A. .
Claim (b): 5" nA=J. Suppose for reductio that (for some A) AeA and
Aeb’. Then, in virtue of the definiion of A, there must be some Béc

such that A—Bea’. But by hypothesis, R'a’d’c whence Bec -
contradiction.

We can now use C3.7(i) as before to infer from (a) and (b) the
existence of a theory b €K such that 5’ b and b NA=D.

Claim (¢): R'a’bc. Assume A —>Bed’ and Aeb. Since bnA=, AEA.
Hence, (VB)YA—>Bea” D Bec) and so Bec as required.

Ad (iv). Make the assumption and use (i) to obtain the antecedent part of
(iii). Applying then (iii) gives the desired result. W

Levva 3.9, Inclusion

For any sets a,b in the universe K of a canonical model of type
[R¥*] for a logic L:
atb if and only if ach.
Proof. The left-to-right direction is trivial, using the fact that A —»A L.
For the converse suppose ach. We need to show that there is some x€0
such that Rxab, i.e. '
(VBe WIN)(A—->Bex & Aea D Beb).

Let x be the logic L. Then clearly R'Lab since a€K and ach. So we
have R'Lab for L-theory L and a,beK. Thus, by L3.8.(i), there is a
prime L-theory x such that Rxab and Lcx, and in virtue of the latter
conjunct, x is indeed a saturated L-theory, i.c. xe0. H

Corollary 3.7.(ii) gives us already the result that the canonical 0 and
K are well defined. Before turning to the question as to whether a
canonical model satisfies the conditions on R, * and V, we check now
whether the canonical star function is well defined.

Levva 3.10. Star

For any set a in the universe K of a canonical model of type [R*]
for a logic L: a*eK.

Proof. We need to show that on the assumption that a€K, a* is closed
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under (a) L-implication and (b) adjunction, and that (c) a* is prime.

Ad (a). Suppose Aeg*, whence -Ada, and A—BeL, whence
~-B—>~AeL. Then ~B¢a and so Bea¥*.

Ad (b). Suppose A, Bea*. Then ~Ada and -Béa whence
~Av~-Bda. But ~(A&B)—~Av~Bel. Hence, ~(A&B)da, i.e.
A&Bea*.

Ad (c). Suppose AvBea* and A¢a* and Béa*. Then ~A,~Bea, so
~A& ~Bea. But -A& ~B-—>~(AvB)eL. Hence, -~(AvB)ea, ie.
AvB & a* — contradiction. W

Levma 3.11. R*

The relation R and the function * in a canonical model of type [R*]
for a logic L satisfy the following conditions (for any a.,be K).

rl. ata
2. . if apb and Rbcd, then Racd
*1, if apb then b* pa*.

Proof. In view of the inclusion lemma L.3.9, rl is trivial.
For r2 assume
(1) avb
and Rbcd, i.e. for arbitrary formulae A B,
(2) f A—»Beb and Aec then Bed.
Suppose further for some formulae C,D that
(3) C—-Dea and 4) Cec.

We need to show that Ded. It follows from (1) by L3.9 that ach.
Hence (from (3)), C—D eb, and so, from (2) and 4), Ded.

For *1 suppose that acb whence (L3.9) ach. By L3.9 it suffices to
show that b* Ca*. So suppose Beb*. Then -B¢b whence ~-Bda and
soBea*. 1

LemmMa 3.12. Valuation

The forcing relation F in a canonical model of type [R*] for a logic
L satisfies the conditions (h), (p ), (~), (&), (v), and (—).
Proof. (p) and (~) hold by definition. (h) follows immediately from the
inclusion lemma L3.9, The right-to-left direction of (& ) follows from the
adjunctiveness of members of K; for the converse use Al and A2
respectively. Dually, the left-to-right direction of (v) follows from the



3. The system BM and the basic completeness result 22

pﬁrﬁeness of sets in K; for the converse use A4 and AS respectively. The
left-to-right direction of (—) is also easy to prove, using the definition of
R.
For the right-to-left direction of (—) we contrapose and assume that
A—-Deda. We need to find two sets b,ceK such that Rabc, Aeb and
Déc. Define

b = [B:A-BelL)} and ¢ = {C:E@B)YB—-Cea & Beb')}.
Claim (a): b’eK’. For closure under adjunction suppose B,B,eb .
Then (A—B )& (A—B,eL whence A—B&B,eL and so B &B,eb’.
For closure under L-implication, suppose B€bd” and B|~B,sL. Then
A B €L, hence, by transitivity, A —»B,eL, ie. B,ebd’.
Claim (b): ¢"eK’. For closure under adjunction suppose C,Ciec’.
Then there are B |,B,eb” such that

(1) By—C,ea and B,—C,ea.
Since b’ is adjunctive,
(2) B I&B & b.
Since a_is an L-theory, it follows from (1) that
(3) B 1&32—-)(: 1&C2€ a.

Hence, from (2) and (3) by the definition of ¢’, C;&C,e¢’. For closure
under L-implication, suppose (1) Ciec¢” and (2) C1—CyeL. It follows
from (1) that there is some Bebd” such that B—C€a. It follows from
(2) by PREF that B—C;—.B —CyeL, hence, B—C,ea for Bel, ie.
(by the definition of ¢’) C,ec’.
Claim (¢): R'ab’c’. Suppose B—Cea and Beb’ and yet Cdc'. It
follows from the latter assumption by the definition of ¢” that if B—Cea
then B€b" — contradiction.
Claim (d): Aeb’ and Déc¢’. That Aeb’ follows trivially from the
definition of b". Suppose then that Dec’. Then for some Bebd’,
B-—Dea,ie. (1) A—»BeL and (2) B—Dea. It follows from (1) by
SUFF that B—=D—2>A—-Del. whence, in virtue of (2), A—=Dea,
contradicting our hypothesis.

Putting (a) to (d) together, the condition for part (ii) of the priming
lemma L3.8 obtains. Hence, there are b,ceK (b"ch ,c’cc) such that
Rabc,Aeb,and Béc. ®

As explained above, the proof of T3.3 (Completeness) is now
completed. '
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4. Some further relevant logics

In this section we shall consider various extensions of the system M.
We shall indicate how these extensions can be modelled by means of
suitably constrained R*-models. The systems to be presented in this
section will be defined by adding to the above axiomatisation of BM
axioms and rules from the following list of key postulates.

All, (DN-Elimination, DNE) ~~A—4A
A12, (DN-Introduction, DNT) A—o~~A
A13. (Conjunctive Syllogism, WB) (A —=B)& B -5C)—>A—=C
Al4. (Excluded Middle, X) Ay ~A
A15. (Reductio, Rd) Ao~A-~A.
A16. (Contraposition, Cp) A-B—.~-B—o-A
Al7. (Prefixing, B) A—=B->.(C->5A->.C-B
A18. (Suffixing, CB) A—=B 5B -C—-A-C
A19. (Contraction, W) (A= A->SB)>A-B
A20. (Permutation, C) (A>B->C)Y=»(B-o2A-C)
A21. Mingle, M) A—A oA
A22, (M3) Av(A-B)
A23, (Weakening, K) A—>B-A
A
ER. (E-rule, ER) m

Some of the logics produced by adding selected postulates from this
list to BM are:

B BM + DNE + DNI
G B+X

DwW B+Cp

DJ DW + WB

DK DJ+ X

DL DK +Rd -

TW DW+B +CB
TJ TW + WB

TK T+ X

TL TK + Rd

T TL + W
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EW TW + ER
EWX EW + X
EWR EW + Rd
E EWX +Rd
RW EW + C
RWX RW + X
RWK RW + K

R RWX + Rd
RM R+M
RM3 RM + M3
K R+K3

It is, of course not claimed that these axiomatisations are
irredundant. Thus, e.g., as soon as BM is extended by the schemas B,
CB, or Cp, the corresponding rule forms, primitive in BM, become
redundant. So do the two DeMorgan axioms A8 and A9 in the presence
of both double negation axioms All and Al2. There are also many
alternative axiomatisations of the systems just defined. For example, the
set {CP,A11,A12} may be replaced by All together with the DNI-
suppressing contraposition mile A—>~B / B—5~A. And addition of any
of the following principles to RW produces R:

Rd. A—o-A--A

W. (A—>A-B)>(A-B)

S. A—=(B-=C)>.(A-B)=.A-C)
WL A& (A—B)->B

WB. (A-B)& (BoC)2A-C

WC. (A->B-oC)>A&B-C,

In fact, many of these principles are equivalent in R, as are permutation
of premisses, C, and assertion,

CL A A—-B-B 4

3 All of these logics have made their appearance in the relevant literature; hence, we
shail not engage here in a detailed discussion of the motivations behind them or their re-
lative merits and demerits. Most of the systems are discussed in Routley, Meyer et al.
(1982). For the D-systems see also the articles by Brady, and for contraction-free logics
see Slaney (1980).
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The (proper) inclusion relations among these systems are summarised
in the diagram below (if L; is connected with L, by an upward path, then
L, is theoremwise included in L,).

W L W
_ EWR
/ by .Rd/. RIUK
Rd
DL EWXR

RIWK

Cp
¢B

DNE,DNi

®BM

A few remarks on the significance of some of these systems may be
appropriate. The logic K, the strongest system in our list, is the classical
propositional calculus. Just short of K are the semi-relevant logics logics
RM3 and RM. Though neither of the outright paradoxes

4 These resuits are well-known and proofs will therefore be omitted. Standard refer-
ences for these and further results about "axiom chopping” and the inclusion relations
ameng most of the systems just defined, are Anderson and Belnap (1975), Routley,
Meyer et al. (1982), For the D-sysiems see Brady (1985) and for W-free systems see
Slaney (1980).
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A—.B-A A—>.-A—-RB
A—-Byv~B A& ~A—-B

are theses of either of these logics, they do allow the derivation of
somewhat milder irrelevancies, like ~(A—A)—>B -8B and
A& ~A—-Bv ~-B. As decent theories of implication, these logics are thus
mled out. However, RM and RM3 are paraconsistent in the sense that
the closure under any of these logics of an inconsistent set of sentences is
non-trivial, i.e. a proper subset of the set of all well-formed formulae of
the langvage under consideration. If one’s main concern is with
paraconsistency, then in particular RM3 is highly recommendable. For,
RM3 is determined by a set of three-valued matrices:

0 »>l012]|~
| 0l022] 2

tjo124 1
2 2{000]| 0

Designated vatues: 0 and 1; x&y =min(x.y), xvy =max(x.y).

Thus, deciding theoremhood for RM3 involves only marginally more
work than deciding whether a formula is a two-valued tautology. This
makes RM3 just about the simplest paraconsistent logic on the market.
Lest one should think that RM3 is "ad hoc", we point out that the matrix
values may be given interpretations which make RM3 look good as a
paraconsistent logic. Think of 0, 1, 2 as the values true, false, and true
and false respectively. We leave it to the reader to decide whether the
values assigned to compound formulae according to the above matrices
make sense on this interpretation.

The logics T, E, and R are the principal systems investigated in
Anderson and Belnap (1975). While R is their favoured theory of
relevant implication, E was put forward as a theory of entailment,
combining relevant implication with necessity. Anderson and Belnap (in
[Ent]) have motivated their ideas about implicaton and entailment by
analysing proofs in a Fitch-style natural deduction system. The system T
of ticket entailment is one result of such an analysis: it is the result of
constraining the rule for reiterating premisses in a subordinate proof so as
to conform intuitively to an idea of Gilbert Ryle’s that a strict distinction
has to be drawn between tickets for inferences (implicational formulae)
and facts used to cash in such tickets.’ ;

5 See Anderson and Belnap (1975), pp. 44{f. A less elusive motivation, apparenty
also going back to Anderson, s given in Dunn (1986), p.127.
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Contraction free relevant logics are of much interest because they
hold the promise for a non-trivial naive set theory (i.e. with unrestricted
comprehension schema) and a non-trivial truth semantics for languages
closed under the truth schema

‘A’ is true-in-L if and only if ‘A is true’ is ue-in-L.

Both theories can be trivialised in either one of two ways. One may
either form the Russell class by means of the unrestricted comprehension
schema (respectively, create the liar paradox by means of the naive truth
schema) and then produce a contradiction (using Rd and MP); closure
under a logic containing ex falso quodlibet will result in a trivial theory.
Alternatively, we may use the contraction axiom W together with MP (or
just the rulc form of contraction) to produce triviality by an argument due
to Curry

Triviality arguments of the first kind are blocked by adopting a logic
in which EFQ and its easily recognizable cognates cease to be theorems.
However, it turns out that Curry type paradoxes survive in even severly
cut back relevant logics like RWX.7 The strongest result to date, due to
Brady (198+), is that naive set theory based on (the quantificational
extension of) DK is absolutely consistent.

We turn now to our basic logic BM. This system, though hitherto
not unknown, has been somewhat neglected. In building up a lattice of
relevant logics, the start is usually made with B.8

But, first, from a semantic point of view, BM is a more natural
choice of a basic system than B. Waiving any of our default conditions
rl, r2, or *1 in the definition of an R*-frame, or the heredity condition (h)
on R*-models, we obtain frames and models that validate only the empty
set of formulae. In this sense BM — determined by the class of all R*-
models, is the smallest (non-trivial) logic that can be modelled by means
of the semantic methods used in this thesis.

Secondly, it will be recalled that B resuits from BM by adding both
double negation axioms, DNI and DNE, The basic system BM does not
include much that is objectionable from an intuitionist point of view: none

5 See Curry (1942),

7 See Slaney (1980). The question as to whether Curry- type paradoxes can be pro-
duced for naive set theory or semantics based on any of the systems EW, EWX, EWR,
RW or RWK is still open,

8 As in Routley, Meyer et al. (1982). In the projected volume two of Relevant Logics
and Their Rivals, however, will be based on BM as a minimal relevant logic.

8 Gabbay (1976), chapter 15. However, the consequence relation determined by such
frames is non-trivial.
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of the key offenders, excluded middle, double negation elimination,
classical reductio, or classical contraposition are theorems. Thus,
although full BM includes the intuitionistically unacceptable DeMorgan
principle DMk, ~(A&B)—-~Av~B, the [—,-}-fragment of BM is a
subintuitionistic system. The basic system BM is therefore not only a
point of departure for subintuitionist relevant logics in the {—,-}-
fragment of La but gives also rise to a branch of "quasi-intuitionist"
relevant logics.

We shall now show how to extend the determination result of the
last secton for BM to cover logics defined by adding to BM any
combination of postulates taken from the above list. Let L be such a
logic. For the soundness result we shall need to impose additional
© constraints Py, ps, .. on R*-frames, for each new postulate Py, Py, ..
added to BM. Thus, we prove the soundness of L with respect to that
subclass of R*-frames that satisfies the new conditions. This calls for an
extension of the R*-lemma and/or the star lemma in the completeness
argument for L: we now have to ascertain that a canonical model of type
[R*] for L does indeed belong to the newly defined subclass of R*-
models; naturally, the new axioms (or rules) will be used to verify that
the canonical models satisfy the new constraints on models. If proof-
theoretic postulates and modelling conditions thus "fit", we shall say that
they correspond to each other. We make this notion of correspondence
precise as follows.

Dermntrion 4.1, Correspondence
Let L be a logic, let P be a proof-theoretic postulate (i.e. either an
axiom or a rule), let p be a condition on R*-frames, and let M; be a
canonical model of type [R*] for L. Then P corresponds to p if and
only if
(@) if an R*-model satisfies p, then P is true in M (soundness), and

(b) if P is an axiom of L (a rule of L), then M; satisfies p (com-
pleteness).

Thus suppose L = BM+P;+...+P,. I we can show that P corresponds to
p; and ... and p, corresponds to P,, then we have in effect extended the
determination result for BM to the result that L is determined by the class
of all R*-frames satisfying the conditions p, to p,. Conditions on R*-
frames corresponding to axiom schemas All to A23 and the rule ER are
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displayed in the next theorem.

Tueorem 4.2. Correspondence

{We define:
d2.
d3.
®
(i)
(iii)
(iv)
)
(vi)
(vii)
(viii)
(ix)
(x)
(xi)
(xii)
(xiii)

(xiv)

R?abed :=Gx)(Rabx & Rxcd) and
R?a(bc)d =3x)Raxd & Rbcx).)

All corresponds to Ox o x**px

Al2 corresponds to 0x O xDx**

A13 corresponds to Rabc O R2%a(ab)c
Al4 corresponds to Ox D x*px

A1lS5 corresponds to Raa*a

A16 corresponds to Rabc O Rac*b*

A17 corresponds to R2%abecd > R%a (be)d
A18 corresponds to R2abcd o R?b (ac)d
A19 corresponds to Rabc > R2abbc

A20 corresponds to R2abed O R%achd
A21 cormresponds to Rabc D atc v bbc
A22 corresponds to Ox & apb D abx
A23 corresponds to Rabc > atc

ER comresponds to (3x )(0x & Raxa).
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Proof. Except for the first two correspondences, a full proof of this
theorem (and proofs of further correspondences) can be found in Routley,
Meyer et al. (1982), section 4.4. The first two correspondences are easy

to prove:

for completeness use the definiion of the canonical star

function together with DNE and DNI respectively and then the already
established identity condition apa. To give a flavour of the verification
of correspondences, we illustrate the proof of (vi).

Suppose (1) aFA—=B. We need to show that
aF~B-—~A. So assume

Soundness.

(2) Rabc
and for reductio
@) ck-A

and (3) bE=-B

-

It follows from (1) that
(5) (Vxy)(Raxy & xFA > yFB).
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From (2) we have (6) Rac*b* and from (3) and (4),
(7) b*¥B and (8) c*FA.

Hence, from (5), (6) and (8):
(8) b*=B

in contradiction to (7).

Completeness. Assume Rabc. In virtue of the definition of the

canonical relation R, this means that
(1) C—=Dea & Ceb o Dec for any formulae C.D.
We need to show that Rac*b*. So assume
(2) A»Bea and (3) Aec*
and for reductio B¢ b*, i.e.
(4) ~-Beb.
Since a is a theory closed under a logic L which ex hypothesi includes all
instances of the contraposition schema, it follows from (2) that
(5) ~B—>~Aea
whence, in virtue of (1), (5) and 4), ~Aec, i.e., by the definition of the
canonical *-function, A € c*, contradicting (3).

Comrespondences where the consequent part of the modelling
condition postulates the existence of certain points require more work in
the completeness half of the argument: we need to construct prime
theories with the required relational properties. Since we have already
illustrated the method of constructing such theories in L3.8, we refer the

reader to Routley, Meyer et al. (1982), L4.4, for the particular
constructions required for the continuation of this proof. ®

Let C be a class of R*-frames. If a logic L is determined by C, then
we shall say that a frame F in C is an R¥*(L)-frame (or, where there is no
danger of ambiguity, an L-frame). Similarly, if M is a model induced on
a frame in C, then M will be said to be an R*(L)-model (L-model). Just
as there are equivalent axiomatisations of logics, so there are equivalent
characterisations of classes of frames. In particular in view of
completeness arguments, it would be cumbersome to camy a heavy
baggage of conditions on frames, gathered by building up logics and sets
of modelling conditions from BM in a step-by-step fashion. Fortunately,
both economical axiomatisations and characterisations of classes of frames
are available for the logics defined in this section. As an example of how
much pruning can be done, we provide a reaxiomatisation of the system



4. Some further relevant logics

31

R together with a simple definition of an R-frame.

L-Simplification (&I).
R-Simplification (&I).
&-Composition (&C).
L-Addition (vI).
R-Addition (vI).
v-Composition (vC).
Distribution (Dist).

DN-Elimination (DNE).

Contraposition (Cp).
[Identity (I).
Suffixing (B).
[Preﬁxing (CB).
Contraction (W)
[Mportation (W*).
Permutation (C).
[Assertion (CD).

Modus Ponens (MP).

Adjunction (ADJ).

Postulates for R

A&B —A
A&B —B
(A—=B)&k (A—=C)>A—-B&C
A —AvB
B —AvB
(A—=C)&(B—=C)—sAvB =C
A& (BvC)—>{A&B W(A&LC)
~~A—A
A—=~B—3B-—~A
A—-A
A—=B—->B—(C—oA-C
A-B—->.C-o>A->.C—HB
(A—>A—-B)>A-B
(A->B-oC)>A&B —-C
(A=>B-oC){(B—=A-C)
A—.(A—>B)—B
A ,A—B

B
A ,B
A&B

Deleting Identity and choosing any one axiom from each of the
angle-bracketed pairs (B,CB), (W,W¥*), (C,CI) will result in a set of
independent postulates for R. (Of course, many more such alternative

pairs are conceivable.)

Following Dunn (1986), an R*(R)-frame may be defined as an R*-
frame satisfying the following conditions on R and *.

rl. (Identity)
2. (Monotonicity)
r3. (Associativity)

abta
Rbed & avb DO Racd
R?abcd o R%a (bc)d
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r4. (Idempotence) Raaa

r3, (Commutativity) Rabc 5 Rbac
*2. (Inversion) Rabc D Rac*b*
*3. (Involution) ' a** =g

Remark on reduced frames. A reduced R*-frame is an R*-frame
satisfying the condition

0. (Reduction) 0 is a singleton set.

Accordingly, when specifying a reduced R*-frame, the set 0CK may be
replaced by a distinguished point Oe K, whereupon the reduction condition
0 becomes redundant. Reduced frames were the kind of structures used
to provide semantics for R and weaker positive relevant logics in Routley
and Meyer’s "The semantics of entailment” ((1973), (1972a), (1972b)).
However, the kind of completeness argument adopted in these papers,
does not extend to logics that are not a supersystem of TW+WI (called C
in Routley, Meyer et al. (1982)) in the full connective set of La. (The
hangup is located in the right-to-left direction of the inclusion lemma: in
the case of unreduced models we needed to show that members of K are
closed under L-implication. For reduced models we need to show that
members of K are closed under O-implication. But in order to ascertain
this property of members of the canonical model set K, the logic L must
contain the schemas Cp, B, CB and W1.) In particular, the argument does
not extend — at least not in any straightforward way — to RWK or any of
the systems in the above diagram that are weaker than R, Slaney (1987)
has since shown that the original original completeness argument of
Routley and Meyer argument can be amended so as to make reduced
modelling available for logics without WI. With respect to the logics
introduced in this chapter, Slaney has proved the completeness with
respect to reduced R*-frames of all logics in the following fragment of
the diagram displayed earlier:
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RWK

DWW

Cp

Addidon of Excluded Middle to these logics forfeits the reduced
modelling property. (Slaney does not consider the system BM. But we
conjecture that a reduced modelling theorem holds for BM too.)

QOur reasons for preferring unreduced R*-frames will not emerge in
detail until section 8. There it will turn out that one is faced with a
difficulty in principle when attempting to enrich in a straightforward way
R*-frames with a binary relation S to interpret a unary modal operator.
The difficulty can be bypassed by sticking to unreduced frames.
Moreover, the unreduced frames of section 8 are quite powerful: they
allow a relational modelling of modal logics whose classical counterparts
fall outside the scope of Kripke style frames (and, instead, are usually
provided with neighbourhood semantics).
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Chapter 11

Modal extensions of relevant logics

5. The language La®

The background to all our considerations in this chapter will be
provided by a language La® which extends La by a unary (necessity)
operator []. Thus, the set of primitive connectives of La is
{~O,&,v,—}. As an intuitive reading of formulae of the form [JA we
suggest: necessarily A. A further (possibility) operator <> may be
defined as usual, i.e,

D<, <A = ~0O-A.

An expression of the form <A may be read: possibly A.

Nothing in this part hinges on these suggested readings. In
particular, we leave it open, whether the necessity involved is of a logical,
physical, deontic, or temporal kind. Claims to the effect that the box-
operator as characterised in a particular modal logic captures the
inferential hallmarks of a modality about which we may have pre-
theoretical intuitions, will not be made until part two of this thesis.

By a modal logic we shall mean any formal system in the language
La® that extends our basic relevant logic BM. Thus, as a special case —
of not much interest though — BM, when based on La®, is itself a modal
logic.

The modal logics in this thesis are thus specified two-dimensionally,
as it were. Any particular modal logic is, first, an extension of some
(non-modal) relevant logic L and, secondly, characterised by a set of
specifically modal postulates. Most of the results in this chapter will be
schematic: they will be valid not for a particular modal logic, that 1s, an
extension of a particular non-modal logic by a particular set of modal
postulates, but for a class of modal logics, that is, for any extension of
some non-modal logic satisfying certain conditions by some set of modal
postulates satisfying certain other conditions. Unless indicated otherwise,
in this chapter we shall mean by a (non-modal) logic any one of the
formal systems presented in chapter one.
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6. Relational semantics; R*S-frames and models

As in the case of La, the modal language La" will be interpreted by
means of certain set-theoretical structures. The basis of the determination
results for the logics in the language La, discussed in chapter one, with
respect to certain classes of R*-frames, were two facts: (a) to each
connective in La there corresponded a certain operation on the universe
set K of an R*-frame, and (b) these operations had properties
"corresponding” to the inferential properties of the connectives in La, as
laid down in the postulates for the various logics considered. Thus, the
simple set-theoretic operations « and M corresponded to the Boolean
connectives v and &, and the relation R and the function * comresponded
to the intensional connectives — and ~ respectively. In order to interpret
the language La™, we shall match the connective 00 with a binary relation
S in the semantics. Determination results will be forthcoming by giving
S just the "right” properties. Since modal logics are, by definition, mere
extensions of non-modal logics in a richer language, one should hope and
expect that the semantics for modal logics are, in as straightforward a
sense as possible, mere extensions of the semantics for non-modal logics.
That is to say, the R*-part of the semantics should remain intact and the
definition of a mode! should just be extended by a valuation clause for the
new connective [J.

In order to interpret the modal language La”, let us then extend R*-
frames by adding a relation S cK2 Where F is an R*-frame, we shall
say that <F,§> is an R*S-frame, i.e. an R*S-frame is represented by a
quintuple <0,K,R §.,*>, where -~ as for R*-frames — K is a non-empty
set, 0cK, RcK3, *:K—K; and § is a binary relation between members
of K (the modal accessibility relation).

An R*S-frame satisfies the conditions

for all ac K,

rl. (Identity) ara,

r2. (Monotonicity) Rbcd & avbh o Racd and
*2. (e>-Inversion) abb o b*pa*

as for R*-frames and, in addition, the following condition on S:

d4. Sa = {x:Sax}
s1. (S-Monotonicity) atb o SbcSa
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(The condition sl will be needed in order to complete the inductive proof
of the heredity lemma.)

A valuation function V mapping atomic sentences into sets of points
induces a model <F,V> on an R*S-frame F. Again, the distribution of
atomic sentences over members of K is subject to the atomic heredity
condition,

(h) abb & aeV(p)>o beV(p).

The truth conditions for formulae with their principal connectives chosen
from {~,& ,v,—} are as for R*-models. We define

DIl I 1Al = {a:akEA}

and add to the clauses (p), (), (&), (v), and (—) a truth condition for
formulae of the form OA:

) akF0OA iff SaglA |l [for all aeK, A e WIT].

Finally, the definitions of truth (at a point), validity (in a class of
frames), and entailment (according to a model) are as for R*-models.
That is, where a is a point in the universe set K of an R*S-model M, a
formula A is true at @ in M just in case aFFA in M; A is true in M iff
xEA for all xe0 in M; A is valid (in-a class C of R*S-frames) iff A is
true in all models induced on frames in C; and A entails B according to
M iff x=B whenever xA, for all xeK in M.

At the end of section 2 it has been noted that the heredity condition
for arbitrary formulae is satisfied in an R*S-model, provided that we can
extend the inductive proof of the heredity lemma L2.1, by the case for
formulae of the form OJA. We can:

Lemma 6.1, Heredity

For any formula A and.any points ¢ and » in an R*S-model: if
akA and avb, then bEA,

Proof. Induction on the complexity of A. For sentential atoms and the
connectives of La, the argument is the same as in L2,1. We need to
consider one additional case, namely A=0B; for this case we shall use
the inclusion condition sl. So assume
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(1) aFOB and (2) avb.

It follows from (1) by the clause (O) that
(3) SaciBI.

Premiss (2) yields by sl that
4 SbgSa

whence in virtue of (3) we have SbcIB | which is to say (by @)) that
bFOB, completing the inductive proof. W

As for R*-models, the verification theorem follows from the heredity
lemma in conjunction with the condition rl:

TrEOREM 6.2. Verification

For any R*S-model M, A entails B according to M if and only if
MEA->B (ie. for 0in M: (Vx)(0x > xEA —B)).

Thus armed we can now proceed to the soundness and completeness
theorems of the next section.

7. C-modal logics and the basic completeness result

Let L a logic in the sense of chapter one: an extension of the basic
system BM by any combination of the axioms All to A23 or the rule
ER. For any such logic L, we define a system L.C as the smallest set of
sentences in the language LaP that is closed under the following rules.

RL. if F1A then bp cA
MP. A, LA->B
B

A ,B
ADJ. —t

A&B

Al& et &An-}A

RC. (1<n)

04 & - - &0A, —0A

Where L is a logic, we shall say that L.C is the smallest C-modal
logic based on L. In the sequel we shall frequently refer to "the” logic
L.C. It will be a convenient fiction to treat ‘L.C’ as a singular term.
But, of course, whenever we make assertions about the system L.C, these
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assertions must be understood as universal generalisations with the (tacit)
universal quantifier binding the varighle ‘L’ in ‘L.C’. That is, such
assertions must be treated as assertions about any logic L extended by the
rule RC. And mutaris mitandis for terms like ‘L.E’, ‘L.M’, ‘L.KT4’, etc
which will be used later.

Given the class of all R*(L)-frames, that is, the class of R¥*-frames
determining a logic L, we now want to define a class of all R*(L)S-
frames. Let F be an R¥*(L)-frame <0,K,R,*> and let F’ be a frame
<VK\R*¥S§> F is an S-extension of F just in case
0=0", K=K’, R=R’, *=*¥, and S is a relaton on K? satisfying the
condition sl. The class of all R*(L)S-frames is the class of all S-
extensions of all R*(L)-frames. Thus, in nuce, an R*(L)S-frame adds to
an R*(L)-frame just a binary relation § constrained by the condition si,
leaving everything else as it is. Consequently, for any non-modal formula
A, if A is true in an R*(L)-model M, then A is true in all §-extensions
of M.

THeorEM 7.1. Soundness
For any logic L: if A is a theorem of L.C, then A is valid in the
class of all R*(L)S-frames. In particular, if gy o then FpssA.

Proof. Given the verification theorem T6.2, the verificaton of the non-
modal postulates of L is as for R¥(L)-models. (To verify postulates that
are not theorems of BM, use the soundness direction of the relevant
correspondence schema listed in T4.2.) It remains to show that the rule
RC preserves truth at all points in 0. (According to the definition Di |, we
may rewrite aFA; & ---& aFA, as aeld|in---NlA, L) So
assume that the premiss of RC holds throughout 0, i.e.

D AIn---nIAIglAL
Assume secondly that al=00A & - - - &0A, for an arbitrary point 2K,
ie.

(2) aclOAIN---AIOA,,
which, by (Od), is to say that '

(3) SaclA|In---NIA, L
It follows from (1) and (3) that

(4) SaclAl, ie akFOA
as required. M
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The completeness argument for a C-modal logic L.C simply extends
the argument for non-modal logics in section 3. We shall define the
notion of a canonical model which refutes some non-theorem of L.C. We
shall then observe that such a canonical model is an R*(L)S-model.
Hence, we conclude that we may construct for any non-theorem D of
L.C an R*(L)S-model such that M D - or, contrapositively:

TueoreM 7.2. Completeness

If A is valid in the class of all R*(IL)S-frames, then A is a theorem
of L.C.

Now for the details,

DennrmioN 7.3. Canonical model of type [R*S] for L.C
A canonical model of type [R*S] for a C-modal logic L.C, is a
sextuple
Mype =<0 cKpcRLeSLe*LoVLe™
(subscripts L.C from now on omitted) such that
(a) K is a nonempty set of prime L.C-theories; )
(b) OcK is a set of saturated L.C-theories such that for each non-
theorem D of L.C, there is a theory xe0 with Déx;
(¢) RcK3 such that
Rabe iff (VA BeWIN(A 3Bea & Aec D Bec),;
(d) *:K—-K such that
a*=[A:~Ada};
() ScK? such that
Sab iff (VAeWiH[OAea o Aeb);
() V:At—2K such that
aceVp)iff pea;
V is extended to a relation F CKxXWIT such that
akEA iff Aea.

As before, in order to show that the just defined canonical models
exist and that they fall into the class of R*(L)S-models, we need to
ascertain six facts:

(i) K is nonempty.
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(ii) 0 is nonempty.

(iii) The function * is a mapping from K into K.

(iv) R and * satisfy the conditions required for R*(L)-models.
(v) S satisfies the condition sl.

(vi) The canonical valuation satisfies the heredity condition (h) and k
satisfies the truth-conditions for complex formulae.

We can be brief: As L.C is a modal logic, L.C extends, by
definiion of ‘modal logic’ the system BM. Hence, the arguments in
section 3 apply without modification to discharge claims (i) to (iii), and,
for the logic BM.C, also claim (iv). For C-modal logics based on logics.
stronger than BM, we use the correspondence theorem T4.2 in order to
verify (iv). New work needs to be done in verifying (v) and (vi).

LemmMa 7.4.
The relation S in a canonical model of type [R*S] for L.C satisfies
the condition
sl. atb o ShcSa.

Proof. Assume that (1) apb and that (2) Sbc. We need to show that
Sac, ie. that if OAeqg then Aec, for some formula A. So suppose
- further that (3) 04 €a. Now we use the inclusion lemma

avh iff ach
for canonical models of type [R*S] for C-modal logics (proof is as for
L3.9) to infer from (1) and (3) that DAeb whence, by (2), Aec as
required. W

Finally, we show that the valuation function V' satisfies the valuation
clauses defining an R*S-model. The argument for the heredity condition
and the valuation clauses for the connectives of La is given in L3.13. In
order to extend the argument to the box-operator, we need to prove
another priming lemma.
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Lemma 7.5. Priming

Iet L be a C-modal logic, let a be a prime L-theory, and define

b = {BeWif{lBea}. Then

@ & is an L-theory;

(ii) there exists a superset » of ¥ such that » is a prime L-theory,

and for any formula A such that Aed’, Adb.
Proof. Ad (i). For closure under adjunction suppose that BB,eb’.
Then OB 0B,€a and since a is an L-theory, OB &O0B,ea. Now, in
virtue of the rule RC,
OB ,&0OB,—0(B 1&B )

is a theorem of any C-modal logic L. Hence, O(B;&B;)ea and so, by
the definiion of b°, B &B,ed’. For closure under L-implication,
suppose Beb’ and B —B,eL. From the latter conjunct we derive by a
special case of RC that OB —0B,eL. From the former conjunct it
follows (by the definition of »”) that OB ;ea and so, since a is an L-
theory, OB sea, i.e. B,eb’. Thus, b is an L-theory.
Ad (ii). Given that b’ is an L-theory, the prime extension lemmma L3.6
guarantees the existence of a prime L-theory b such that b'cbh.
Furthermore, if A€d’, then »" may be extended to a prime L-theory b
such that A€ b (by the corollary C3.7.(1) to L3.6). &

Levma 7.6.
The relation F in a canonical model of type [R*S] for L.C satisfies
the condition
(m)) akFDOA iff SaglA |

Progf. (=) The proof of this direction of {1} is trivial.
(<) Assume

(1) VxeK(Sax D Aex)
and, for reductio,

(2) OAéda.

Define b" :={B1JBea}. It follows from the definition that A€b". So,
by the preceding priming lemma, there exists a prime L.C-theory b such
that b’ch and Aeb. Note also that for all OBea, Beb’ cb; hence,
Sab. But then (by (1)) Aeb - contradiction. &

The proof of the last lemma concludes the completeness argument for
L.C.
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8. C-modal logics in context and semantics for some extensions of
L.C

In the first part of this section, the class of C-modal logics will be
situated in a wider context of classes of modal logics. Various extensions
of L.C will be considered in the second part; we shall provide the
essential prerequisites for proving the completeness of such extensions in
the form of a comrespondence theorem, relating additional modal
postulates to conditions on the accessibility relation S.

8.1. A classification of modal logics

By a (single-conclusion) deducibility relation |y, determined by a
logic L we mean a set of ordered pairs, 2V"xWHT, such that <I,A>e},
just in case A is deducible from I" according to L (and in that case we
write ‘I’ A’). The collection to the left of the turnstile is called ‘the
premisses’ and the formula on the right-hand-side of the turnstile is called
‘the conclusion’. Just now we shall refrain from enquiring into the exact
meaning of the relation of deducibility; in a moment, however, two
possible candidate explications will emerge. For the time being, it will
suffice to notice that a deducibility relation |, is a2 meralogical relation,
specifying which transitions from premisses to conclusion are sanctioned
by L as good inferences.

When, for example, proving facts about - by induction, three cases
concerning the cardinality of the set of premisses stick out: (1) the
premise set is empty; (2a) there is exactly one premise; (2b) the premise
set contains one or more premisses. Where the logic under consideration
is modal, the distinction between these three cases issues in three basic
properties which consequence relations determined by modal logics may
or may not have.l

(nec) if FA then FOA ;
(mon) if AFB thenOA OB ;
(reg) ifAq,...,A,FB thenOA,, ..., ,04,F0OB (n21).

In addition, we list a fourth property:

! The followmg conditions are due to Scott (1971}, The congruence condition below
is taken from Bull and Segerberg (1984).
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(cgn) if A-+B then OA-+0OB.

We now return to the question as to what we should mean by ‘the
sentence A is deducible (according to L) from the set of sentences I".
(To make the point of our purely heuristic considerations, we assume that
sets of premisses are finite.) By way of an answer, we suggest the
following: B is deducible from A, . . . ,A, according to L just in case
L "says so", that is to say, just in case a representation C of the fact that
Ay, ... ,AFB is a theorem of L, ie. FC. But how do such
deducibility facts about 1. get represented as theorems in L? Here are
two candidates.

Ded.1 A, A B iffA& - - &A,—BelL;
Ded.2 A, AL BiffA; .- A, -Bel;
(n20).

If the logic L is the classical propositional calculus K, then there is not
much to choose between Ded.l and Ded.2. In virtue of the classical
equivalence :

Exportation & Importation
(A&B —-C)e(A =B —C),

! and F? are equivalent. However, for logics which lack either one of
Exportation or Importation, such as relevant logics, F! and F? are quite
distinct. (But notice that Importation, (A —».B »C)—(A&B—C), is a
- theorem of the relevant logic R; hence, Fg is a (proper) subset of Hlg.)
Where L is a relevant logic, this distinction can be brought out in
Churchian terms (Church (1951)) as follows. While Ay, ... ,A,FH4B
expresses the fact that B may be deduced from A,, . . . ,A,, using all of
the premisses A, . .. ,A, — that there is a relevant deduction of B from
Ay, ...,A, — F! need not satisfy a use-of-premisses condition. As a
consequence, F! is monotonic: if TH'A holds, so does AF!A, for any
ADT; by contrast, 2 is non-monotonic.

The distinction between ! and F2? necessitates a differentiation in
the clause (reg) above. We need to distinguish between
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(regl) ifAy,...,AFB thenDA,, ..., 0A OB (n21).
(reg2) ifA;,...,A,F2B thenOA,, ... ,04,F20B8 (n2l).

(Clearly, for (nec), (mon), and (cgr), such a differentiation would be
otiose.)

We now represent the conditions (nec), (mon), (regl), (reg2), and
(cgr) as possible rules of a modal logic, generating theorems from
theorems.

.. A
RN. (Necessitation —_
( ) A
.. A->B
RM M t i A ——
(Monotonicity) A 0B

RC. (Conjunctive Regulari Ard&A A 21)
. (Conjunctive Regularity) OA.& - &0A S0OA (n2

RI licative R i A A, A 21
. {Implicative Regularity) S S04 (n21)
A©B
RE. (C —
(Congruence) " 3

A modal logic is

congruential, if closed under RE,

monotonic, if closed under RM,

C-regular, if closed under RC,

I-regular, if closed under R],

regular, if both C-regular and I-regular,
necessitative, if closed under RN, _
C-normal, if both C-regular and necessitative,
I-normal, if both I-regular and necessitative,
normal, if both regular and necessitative.

Where L is a logic (in the sense of chapter one), L.E denotes the smallest
extension of L that is closed under the rule RE (L.E is the smallest
congruential modal logic based on L). Similarly,
LM,LC,LLLR,LC,LY,LK, and L.N denotes the smallest
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monotonic, C-regular, [-regular, regular, C-normal, I-normal, normal, and
necessitative modal logic based on L respectively. The inclusion relations
among these systems are depicted below. (The smallest necessitative
system L.N is omitted from the diagram as the system is of little
importance and would "disturb” the picture.)

LK
Rl RC
Lc L
RN RN
LC Ll
RC Ri
LM
RM
LE

These inclusion relations are immediate reflections of the definitions of
the systems and need no further justification. The split at the L.M-node
is justified in view of the preceding discussion concerning the rules RC
and RI. However, where L is a logic including all instances of both
Exportation and Importation, like classical logic, L.C=L.I=L.R and
L.C’=L.I=L.K whence the (classically) familiar linear order of
congruential, monotonic, regular and normal systems of modal logic
emerges.

The pairs of rules RC and RN, and RI and RN can be merged into
the two rules of C-normality and I-normality respectively:

RC. (C-Normality) R B
LemAlyy TA& - &DA,—04

A9 24,94
OA;—-. - —>0A4,—04

RI’. (I-Normality) (n20)

Though proof-theoretically quite elegant, the rules RC’ and RI’ are very
cumbersome baggage in model-theoretic investigations. It is therefore
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good to know that these rules can be replaced by more manageable sets
of postulates including the axiom schemas

aC. (C-regularity) OA&OB -0OA&B) and
0OI. (I-regularity) O(A—B)—0A —=0OB.
TueoreM 8.1.

A modal logic is
(i) C-regular iff it is closed under RM and contains OC,
(ii) I-regular iff it is closed under RM and contains O1I,
(iii) C-normal iff it is closed under RM and RN and contains OC,
(iv) I-normal iff it is closed under RN and contains O1,
(v) regular iff it is closed under RM and contains both OC and O1,
(vi) normal iff it is closed under RN and contains both OC and OI.
Proof. Propositions (v) and (vi) are immediate corollaries to (i) and (ii)
and (iii) and (iv) respectively. The left-to-right directions of (i) to (iv) are
proved by applying the rules RC (RI) to premisses A—B and
A&B —»A&B (A—B —.A—B). For the converse directions note first that
we have
0A&OB «(A&B)
in all C-regular modal logics. (One half is of course OOC; the other half
follows by &E, RM, and ADJ) Thus, by the associativity of
conjunctions and replacement, we have '
™ OA & - - &0OA,-0A & - - - &A,).
To prove the right-to-left directions of (i) to (iv) it will suffice to show (a)
that OC together with closure under RM implies closure under RC, (b)
that OO together with closure under RM implies closure under RI, and (c)
that OI and closure under RN implies closure under RM.
Ad (a). Assume
(1) A& --- &A, 5B,
It follows by RM that
2) O & -+ - &A,)>OB
whence by transitivity of provable implication from (*) and (2),
(3 O0A& --- &0A,-0OB.
Ad (b). Assume
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4) A=, - —>A,>B.
Thus, by RM,

(5 OA,=0@A@q—. - - 2A,5B).
The following formula is an instance of OII:

(6) OWA>. - - =A,-B)>0A,-0(A3—>. - - - 2A,—2B).
Hence, by transitivity from (5) and (6), we obtain

(7) OBA|=»0A-0(A3—. - -+ 2.4, 9B).
After repeating the last two steps n~3 times, we shall eventually arrive at
the required

8) OA;—=. - —>0A,-0B.

8.2. Extensions of C-modal logics and their semantics

In sections 6 and 7 we have shown that L.C is determined by the
class of all R*(L)S-frames. This result sets the lower bound for the scope
of modelling afforded by the semantics in terms of R*S-frames to the
class of C-modal logics. In section 9 we shall consider a more powerful
modelling technique whose scope extends to congruential -model logics,
that is, extensions of the system L.E. For the remainder of this section
we shall contend ourselves with extending the present modelling
technique to C-modal systems enriched by modal postulates chosen from
the list below.

o A
RN. (Necessitation) EX
OI (Impl. Regularity) 0@ —-B)—DA-0B
OT. @-Elimination) OA—-A
OD. (Consistency) O-~-A—--~0A
0O4. (LL-Expansion) OA -0O0A
OB. (Brouwer) A-O<A
O5. (LM-Expansion) <A SO<A

Under the principal — necessity- — interpretation of the box-operator,
DT expresses the triviality that what is necessarily true, is true simpliciter.
But under other interpretations, such as the deontic "it is obligatory that
...", OT is far from being a truism and should indeed be rejected. When
D is interpreted as an obligation operator, BT is usually — and arguably



8. C-modal logics in context and semaniics for some extensions of L.C 48

erroneously — weakened to the schema OOD which is derivable from OT
(using CP and TRANS). On this deontic interpretation, 0D requires that
obligations be consistent. OO0B — or rather the equivalent A —~<>~<A
~ is the so-called Brouwer’sche axiom. Contrary to what the name
suggests, it was not introduced by Brouwer but by Becker (1930) as a
principle about the iteration of the impossibility modality: if A is true,
then it is impossible that A is impossible. Together with OT, OB allows
to reduce modalities in a way reminiscent of "Brouwer’s Rule": an
uneven (even) iteradon of absurdity (= ~<>) is equivalent to simple .
(double) absurdity.2 04, the distinctive postulate of C.I. Lewis’s system
S4, leads ~ in the presence of OT - to a similar reduction of modalities:
iterated necessity is equivalent to simple necessity. 05 is the distinctive
postulate of Lewis’s system S5; it is perhaps best be viewed as a
weakening of O0B: for it to be true that it is impossible for A to be
impossible, it suffices, according to 05, that A be possible, while,
according to Brouwer, it suffices that A be true.

Let L.CP; P, be a C-modal logic including some selection
P ...,P, from the above list of postulates. In order to prove that
L.CP, -+ - P, is sound and complete with respect to some.class of R*S-
models, we need to extend the argument of section 8 by proofs of two
facts for each postulate P added to L.C. We need to find a modelling
condition p for P and verify (a) that R*S-models that satisfy p, validate P,
and (b) that a canonical model of type [R*S] for L.CP, - - « P, satisfies
the condition p if L.CPy - - * P, contains the schema P or, if P is a rule,
is closed under P respectively. In the terminology introduced earlier: we
need to prove correspondences for each additional postulate.

Tueorem 8.2. Correspondence
(i) OI corresponds to
si. =x (Rabx & Sxc) o 3yz(Say & Shz & Ryzc).
(ii) RN corresponds to sn. 0a & Sab o avb.
(iii) OT corresponds to st. Saa.
(iv) OD corresponds to sd. Jx (Sax* & Sa*x).
(v) 04 corresponds to s4. Sab & Sbc o Sac.

2 See Becker (1930), footnote 2.
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(vi) OB corresponds to sb. Sab > Sh*a*.
(vii) OS5 corresponds to s3. Sa*c & Sab > Sb*c.

Proof. As it will be expected, one uses the semantic condition to validate
the corresponding proof-theoretic postulate (soundness) and, conversely,
one uses the postulate in order to show that the canonical model under
consideration satisfies the corresponding condition. In the cases of (ii),
(iii), (v), (vi) and (vii), this task is easily accomplished and, hence, the
proofs will be omitted. As the reader will expect, the soundness parts of
(i) and (iv) are also easily established. Thus, we shall supply only the
completeness-halves of (i) and (iv).
Ad (3). Assume that for some xe K,

(1) Rabx and (2) Sxc.
Define

y ={Af0Ae€a} and 7 = {B{dBebh}.

Claim (a); ¥ and 2z are L.Cl-theories. This follow by L7.5()
immediately from the facts that L.CI is a C-modal logic and that @ and b
are prime L.Cl-theories.
Claim (b): For any formula A: if JAe€a then Ae)’, and if JAeb then
AeZ. Both implications hold in virtue of the definitions of y* and z’
respectively.
Claim (c): For any formulae A B: if A—>Bey’ and Aez’ then Bec.
Make the assumptions. Then ‘

(3) O —B)ea and (4) OAeb.
Since a is ex hypothesi an L.ClI-theory, it follows from (1) that

(5) DA-0Bea.

Using (1), we may infer from (4) and (5) that there is some theory x such
that _

(6) OBex
whence, by (2),

(7) Bec.

We now apply L3.8(iv): in virtue of (a), (¢) and the hypothesis that
cekK, the antecedent condition of L3.8.(iv) is satisfied. Hence, there are
¥,2€K such that Ryzc and y' ¢y and z’ ¢z whence, by (b), Say and Sbz,
as required.

Ad (iv). Define x" := {Af1Aea*}. Since aek, sois a*. Thus, since
a is ex hypothesi a prime L.CD-theory, so is a*. It follows by L7.5.()
that ¥ is an L.CD-theory. Moreover, it is immediate from the definition
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of X' that (for any formula A)
(1) DAea* DAeX.
Next we show that
(2) OAea o ~AdX.

Assume that JAea. Then ~OA ~ea since a is closed under OD. Thus
O~A¢<a* whence, by the definition of X', ~A¢x’.

We shall now construct a prime extension x of x* such that Se*x and
Sax*. Define A:={A{]~Aecal.

Claim (a): A is closed under disjunction. Suppose A.,BeA. Then
O~Aeca and O~Bea whence O0~A&O0~Bea. Since a is an L.CD-
theory, it follows that O(~A& ~B)ea whence O0~(AvB)ea. So, by the
definition of A, AvBeA.

Claim (b): A’ ={J. Assume for some sentence A that AeA and, for
contradiction, that Aex’. Then O~Aea. Thus, it follows from (2) that
A¢x - contradiction.

By C3.7.(i), it follows from (a) and (b) that there is some theory x such
that

3 xek,
- (4) Y¢x, and
(5) Arx =,
By the definition of S in a canonical model, it follows immediately from
(1), (3) and (4) that Sa*x. To show that Sax*, suppose that OAe€a, so

O~~Aea. Then by the definition of A: ~AeA. Hence, by (5), ~A€x,
ie. Aex* asrequired. B

With the correspondence theorem T8.2 at hand, we can now extend
the soundness and completeness result for L.C to C-modal logics L.C+P,
where P denotes any set of postulates chosen from the list displayed at
the beginning of this section. We need some convention for naming
modal logics and adapt the conventions of Lemmon (1977) to our present
needs. Given some basic modal system L.U (Ue{EM,C,C" K, LI'R})
and axiom schemas OP; ,.., OP,, L.UP; -+ P, names the smallest
extension of L.U by all instances of the schemas OP; ..., OP,. A thus
name for a modal system thus generated is the Lemmon code for that
system.> For example, BM.K4 denotes the smallest normal modal logic

3 The term ‘Lemmon code’ is borrowed from Bull and Segerberg (1984), p.20.
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based on BM that contains all instances of the schema (04; and L.K4 is a
generic name for any smallest normal modal logic containing (14 based
on some (non-modal) logic L. Sometimes synonyms for Lemmon codes
are well entrenched in the literature and in such cases we reserve the right
to use these synonyms, especially when the corresponding Lemmon code
is rather long.

Only one of the relevant modal systems thus definable has, to my
knowledge, so far appeared in print. This is the system R.KT4 which
may be axiomatised by adding to the postulates for R the pair of
normality rules RC’ and RI” and the schemas OT and O4. Equivalently
(by T8.1) R.KT4 results by adding to postulates for R the rule RN*
together with the schemas OI, OC, OT, and 04. The latter formulation is
found in Meyer (1966) and Routley and Meyer (1972a) where the system
goes under the name of NR.5

There is a sense in which R.KT4 should have been Anderson and
Belnap’s Official Theory of Entailment. For, according to Anderson and
Belnap, entailment is necessary relevant implication, and while the
authors favour S4 as the cormrect theory of logical necessity, their
champion theory of relevant implication is the system R. However,
entailment according to R.KT4 does not coincide with entailment
accordmg to E, Anderson and Belnap’s favourite theory of entailment:
the Min¢-formula

(A>(B-C)& (B oAVC)YHB -C

fails to be a theorem of E, while its appropriately translated counterpart
((A=B) :=0{4 -5B))
(A=>(B=C ))& (B =2AvC )=>B =C, i.e.
OE{A =03 ->C)&O(B —AvC )—->0@B -C))

is a theorem of R.KT4.% The authors of Entailment decided to "postpone,
at least to Volume II, the decision as to whether to laugh or cry” (p.352).
The present author is inclined to bid farewell to entailment in the sense of
E. While the idea of entailment as necessary good (relevant) implication
is simple and natural, the Fitch-style natural deduction system for E —
Anderson and Belnap’s principal vehicle for motivating E - is decidedly
not. Therefore, if R provides the theory of implication and if the S4-

4 Or the closure of all axiom schemas under 0.
5 To record yet another name: RKT4 = NR is the system RO appearing in Anderson
and Belnap (1975) and Read (1988).
6 Chidgey found a eight elements matrix for E rejecting the Minc-formula; see
Anderson and Belnap (1975), p.352. A three-worlds model for E in which the Minc-
formula fails is displayed in Read (1988).
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modal axioms capture the hallmarks of logical necessity, then R.KT4, and
not E, should be thought of as the logic of entailment.

The system K.KT is Fey’s system T (von Wright's M); K.KTB is
the "Brouwer’sche system"” B; and K.KT5 is better known under the
name S5. All these systems have deontic cousins which result by
weakening the schema OT to OD. Thus for example, K.KD is the
minimal (or standard) deontic logic D in Chellas (1580), earlier
introduced in Hansson (1971) as Standard Deontic Logic, SDL. Clearly,
relevant versions of these betier known modal logics may be obtained by
basing the respective modal superstructure on a relevant logic L rather
than on the classical propositional calculus K.

8.3. Reduced frames for R KT4 ?

At the end of section 4 we have briefly mentioned that stronger
relevant logics, that is, from TW+WI "upwards”, can be proved sound
and complete with respect to reduced R*-frames. Reduced R*-frames, it
will be remembered, are R*-frames in which the set 0 of distinguished
points is reduced to a single point. Similarly, an R*S-frame is said to be
reduced just in case the set 0 in such a frame is a singleton set. We
know, for example, that the system R can be modelled by means of
reduced frames.” A natural question to ask, therefore, is whether the
modal extensions of R considered in this section are determined by
reduced R*-frames extended by a relation § (with appropriate constraints,
including sl1) in just the same way in which we earlier extended
unreduced frames by a relation S. One would expect the answer ‘Yes'.
For, just as we have conservatively extended R by a set of modal
postulates, so we should be able to extend the frames for R by whatever
is required to interpret the extended language, leaving the R*-component
of such frames completely undisturbed. Or, as we have put it earlier: just
as we have grafted syntactically a theory of necessity onto R, so we
should graft its semantic counterpart onto R*-frames and models. It turns
out, however, that reduced R*-frames — unlike unreduced frames — are not
stable with respect to modal extensions. If reduced R*-frames are to be
transformed into a semantics for modal extensions of R, then that
transformation cannot be a mere extension; changes in the R*-component
of such frames will be called for, and, accordingly, the answer to our
question at the beginning of this paragraph is ‘No’. We shall demonstrate

7 See for example Routley and Meyer (1973).
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this by showing that the comparatively strong system R.KT4 is
incomplete with respect to the class of all reduced R*S-frames.

By a reduced R*S-frame, we mean an R*S-frame satisfying the
condition _
0. (Reduction) 0 is a singleton set,
We denote that single element of 0 by ‘0’.

THEOREM 8§.3.

For any reduced R*S-model M, if OFA —B then OFJA -0OB.
Proof. Since both the heredity lemma L6.1 and the verification theorem
T6.2 are true for all R*S-models, these results hold in particular for R*S-
models satisfying the reduction condition 0. By the verification theorem
we need to show that if |A I¢iB | then |10A IgIOB |,

i.e. Vx(xFOA > xkFOB). Thus, suppose that

(1) I1AlciB}{ and

(2) akDA. '

Then Vy(Say = yk=A) from (2) and, hence (from (1)),

(3) Vy(Say > yEB). _

It remains to show that g =00B, i.e. Vz(Saz o z=B). Thus assume Sab.
Then (from (3)) bEB as required. W

A reduced R*(R)S-frame is an R*(R)S-frame (i.e. an R*S-frame
satisfying the characteristic modelling conditions on R and * for the
system R) satisfying the reduction condition 0. The proof that R is sound
with respect to the class of all reduced R*(R)S-frames is routine and,
hence, omitted.

The formula

(D p—=p—-pvp—-p-p)).

is a theorem of R. (T) may be viewed as an instance of excluded middle
in the form (t—A)v(A —f ) where the sentential constants ¢ and f are
defined as A —A and ~(A —A) respectively. By the soundness theorem
for R with respect to reduced R*(R)S-frames, we have

(D OF@—op—pp—-@-p)

for the 0-point of an arbitrary reduced R*(R)S-model M. Hence, by the
forcing condition (v) for disjunctive formulae,
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2) OFp—p—op orOEp—-~(pop) .

It follows now from the closure of 0 under the rule RM (T8.3) that
3 0FO@—p)—0p or OFOp -0~ -p)

whence, by (v) again,

C)) OF @@ —p)—-0p)v@p-0-~@-p).

Thus, the formula

43)] Q@ —-p)-0p)v@p-0-p-p),

54

is valid in the class of all R*(R)S-frames and so in particular in the class
of all R*(R)S-frames that satisfy the conditions si, sn, st, and s4

(R*(R)S (kt4)-frames).

When unreduced models are under consideration, the argument
breaks down at step (3). Although 0 is "collectively” closed under £3-

monotonicity, i.e.
(Vxed)(xEA—-B) o (Vxed)(xFOA-OB),
it is not generally the case that each member of 0 is thus closed, i.e.
not: (Vxe0)(xFA —-B > xFOA-0B),
as it would be required for the transition from (2) to (3).

The matrix set M6 below shows that (F) is not a theorem of R.KT4.

2012345 ~:0
0jS555555|5]0
11044445140
2{034345{31(0
310224451213
41012345} 1]4
S|]000005|01{5

Designated values: 4 and 5; x&y =min (x-,y ), xvy =max (x,y).

R.KT4 is sound with respect to M6. But for A=1, (F) gets evaluated to

the undesignated value 3.8 Thus, we have found a formula, viz (F), which

8 Both claims have been verified using Belnap and Chidgey’s matrices-versus-
formulag testing program TESTER (Version PGH-1980A). For the pair (T) and (F) and

the lead to M6 I am indebted to Dr John Slaney.
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is valid according to the definiion of a reduced R*(R)S(kt4)-frame but
fails to be provable according to R.KT4. So R.KT4 is incomplete with
respect to the class of all R*(R)S(kt4)-frames.

Routley and Meyer (1972a) have obtained a completeness result for
R.KT4 with respect to certain kinds of reduced frames. Their frames,
however, differ significantly from our R*S-frames in that the heredity
relation > is now "necessitated": a>b iff for some xe K, SOx and Rxab.
While this move may be seen as giving some semantic substance to the
claim that entailment combines relevant implication with necessity, its
success depends crucially on the fact that RKT4 is closed under RN and
contains 0T and OI; the semantics in Routley and Meyer (1972a) are
ingeniously tailor-made for R.KT4 (though they presumably extend to
other normal modal logics containing the schema OT) and consequently
lack the versatility of the notion of an R*S-frame as defined in this thesis.

9. Neighbourhood semantics: R*N-frames and models

In the preceding sections we have provided semantics for
conjunctively regular modal logics (i.e. modal logics extending the system
L.C). This leaves the question as to how to model modal logics that fall
short of being closed under the rule RC, like the systems L.E, L.M and
their implicatively regular extensions LI and L.I. An answer will be
provided in this and the following two sections in terms of so-called
neighbourhood frames.? After having defined the concept of a
neighbourhood (R*N-) frame, we shall engage in a brief excursus about
the relationship between R*N- and R*S-models.

An R*N-frame is a structure <0K,R.N,*>, where K#d, 0ckK,
RcK3, and *:K—K, just as for R*-frames. The new element N (the
"neighbourhood”-function) maps members of K into collections of subsets
of K ("neighbourhoods™), i.e. N:K—22",

Again we assume that R and * are subject to the conditions familiar
from the definition of an R*-frame. As a default condition for the
function N, we add:

9 Neighbourhood semantics for unary intensional operators were first publicised in
Montague (1968) and Scott (1970). The classical study of neighbourhood semantics for
modal logics based on classical logic K is Segerberg (1971).
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nl. (Inclusion) atb D NagcNb.

An R*N-model is an R*N-frame F together with a wvaluation
function V:At—2¥ induced on F, such that the atomic heredity condition
(h) is satisfied. The forcing clauses for the nonmodal connectives are as
for R*-models and for modal formulae we define:

(m)) aFEOA iff |A leNa.

The definitions of truth at a point and in a model, entailment
according to a model, and validity on a class of frames are the usual ones.

Excursus. 'What is the relationship between relational and
neighbourhood models? The concept of a neighbourhood model is not, in
any obvious sense, a generalisation of that of a relational model.
However, in an extensional sense, the class of all relational models can be
identified with a certain subclass of neighbourhood models. This
extensional sense in which relational models are special kinds of
neighbourhood models is supplied by the notion of pointwise equivalence:
two models M, and M, are pointwise equivalent just in case there is a
one-to-one mapping between the two model sets K; and K; such that for
every formula A, A holds at the point g,eK, iff A holds at the
corresponding point a,€K,;. The subclass of neighbourhood models
which are in this sense equivalent to the class of relational models is the
class of augmented R*N-models, An R*N-model is augmented just in
case it satisfies the condition (for every point a and set of points X)

na. XeNa iff riVa cX.

THEOREM 9.1.
(i) Every R*S-model My is pointwise equivalent to some augmented
R*N-model My, and (ii) every augmented R*N-model M), is point-
wise equivalent to some R*S-model M.
Proof. (The theorem is a standard result in the literature on modal logics;
full proofs may be found in Chellas (1980) (T7.9) and Segerberg (1971)
(T2.8 and corollary). Thus we shall provide only a sketch of the
argument which, we hope, will nevertheless be instructive.) To show (i)
we define the model My induced by My as follows. My, is just like Mg
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except that the relation S is now replaced by an S -induced neighbourhood
function: '
N XeNa (in My) iff SacX (in My).
It is easily verified that My is an R*N-model. In particular, since
~Na = Sa (by the definition), My is augmented. By induction on the
complexity of formulae, we show that My and My are pointwise
equivalent. The only case of interest in the induction arises when a
formula is of the form [JA, and that case is quickly dealt with using the
definition (N).

For (ii) assume that we are given an augmented R*N-model My.
The R*S-model Mg induced by My is just like Mg except that the
function N is now replaced by an N -induced relation S:
(S) Sab (in Mg ) iff be~Na (in My).
Again, we can show that M is an R*S-model. And by induction on the
complexity of formulae we show that My and Mg are pointwise

equivalent, the only non-trivial case being again formulae of the from
0OA:

My .a)EDA iff 1A leNa in My by @) for R¥N-models
iff "NagiAl in My by augmentation
iff (Vx)}(Sax D (Mg,b)FA) by (S) and ind. hyp.
iff (Ms,a)FOA by (3O) for R*S-models. W

Note that as a corollary to T9.1 and the soundness and completeness
theorems for L.C with respect to the class of all R*S-models, we have
thus obtained a determination result for L.C with respect to the class of
augmented R*N-models. (End of excursus)

The proof of the heredity lemma for R*N-models builds as
straightforwardly on the basic heredity lemma for R*-models (L2.1) as
does the corresponding argument concerning R*S-models (L6.1).

Lemma 9.2. Heredity

For any formula A and points @ and & in an R*N-model: if akFA
and ab, then bFA.
Proof.
In addition to what we have shown in lemma 2.1, we need to consider
one more case in order to complete the inductive proof: A =008. As to
be expected, we shall use the condition nl. Assume
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(1) a=0OB and (2) avb.
It follows by @Q) from (1) that
(3) IBleNa
and by nl from (2) that
(4) NacNb
whence we infer from (3) and (4),
(5 IBIcND
which, by () again, is to say that bEB. B

Given the heredity lemma, we are entitted to assert the verification
theorem:

Turorem 9.3. Verification

For any R*N-model M, A entails B according to M if and only if
MEASB (ie. (Vxe®)(xEA—-B)).

10. The basic completeness result for congruential modai logics
A congruential modal logic is 2 modal logic closed under the rule

AoB
RE. (Congruence e
(Congruence) 0A OB
For any logic L, L.E is the smallest congruential modal logic based on L.
In this section we shall prove that L.E is determined by the class of all
R*(L)N-frames.

TueoreM 10.1. Soundness

If A is a theorem of L.E, then A is valid in the class of all R*(L)N-
frames.

Proof. We extend the soundness result for L. with respect to R*(L)-frames
by showing that the rule RE preserves truth in an arbitrarily chosen
R*(L)N-model M. Thus, assume that MEA&B. Then, by the
verification theorem T9.3, |4 |=1B | in M. Hence, for any point ae M,
lAleNa iff iBleNa,ie. (by Q) aFOA iff aFEOB whence (again by
T3 MEOAOBR. N
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In order to prove completeness, we start again by defining the notion
of a canonical model. The canonical models to be defined presently, are
simple extensions of the canonical R*-models of section 3. Thus, in
verifying that our canonical models are indeed R*N-models, we can build
again on the results already proved about canonical R*-models (and
R*(L)-models).

Dermnrmion 10.2. Canonical model of type [R*N] for L.E

A canonical model of type [R*N] for a congruential modal logic L.E
is a sextuple

My g = <OLpKLgRLENLE*LEVLE>
(subscripts L.E henceforth omitted) such that

(@) K s a nonempty set of prime L.E-theories;

(b) 0cK is a set of saturated L.E-theories such that if D is not a
theorem of L.E, then there is a theory xe0 with Déx;

(¢) RcK?3 such that

Rabc iff (VA BeWIH(A—>Bea & Aeb D Bec);
(d) *:K—K such that

a*={A:~Acdal);
e) N :K—22" such that

Na={X:EA)Aeca & X=iA )};

) V:At—2K such that
aeV(p)iffpr-:-a; akA iff Aea.

Given the results of sections 3 and 4 about canonical R*(L)-models,
it will suffice to prove the following.

(i) The neighbourhood function N satisfies the condition nl.

(ii)) Canonical models (as just defined) satisfy the valuation condition for
formulae of the form A .

(iii) The function N is well-defined.

Observe first that since L.E is an extension of L, the following
inclusion lemma holds by the same argument as given for L3.9.
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Levma 10.3. Inclusion

For any sets ¢,b in the universe K of a canonical model of type
[R*N] for L.E:
avh iff ach.

Using this lemma, we now verify (i).

Levva 10.4. .
The function N in a canonical model of type [R*N] for L.E satisfies
the condition
nl. atb o NacNb.

Proof. Assume that _
(1) avb and (2) XeNa.
It follows from (2) that there is some formula A such that
(3) IAI=X and (4) DAea.
From (1) we may infer by L10.3 that
(5) ach
whence, by (4),
(6) DAeb.

Thu_s, combining (3) and (6), it' follows by the definition of N that