


















FIG 7 Reduced DHFR function leads to alterations in the erythroid compartment and impaired response to 5FU-induced hematoablation. (A) Flow cytometry
analysis of blood progenitors in adult bone marrow. *, P 	 0.05 (t test). The bars in all the graphs indicate the medians; each data point indicates an individual
mouse. (B) Representative flow cytometry plot indicating gates used to determine maturing erythroid populations in panels B and F. The graphs show relative
abundances of Ter119� erythroid populations in BM and spleens of �/� and �/Ora adult mice. *, P 	 0.05 (t test). (C) Peripheral blood RBC counts in young
and older �/� and �/Ora mice. (D) Plots showing total TNC, Hgb, and platelets in peripheral blood (PB) of 8- to 9-month-old �/� and �/Ora mice following
5FU treatment. *, P 	 0.05 (t test). (E) Spleens of 8- to 9-month-old �/� and �/Ora mice 28 days after 5FU treatment. The asterisk indicates the spleen from
mouse 503. (F) Relative abundances of Ter119� erythroid populations in BM and spleens of 8- to 9-month-old �/� and �/Ora adult mice 28 days after 5FU
treatment. *, P 	 0.05 (t test). The data points from the spleen of mouse 503 (red squares marked with �) were excluded from statistical analysis. (G) Plots
showing TNC of 2- to 3-month-old �/� and �/Ora mice following 5FU treatment. (H) Wright-stained PB smears from 2- to 3-month-old �/� and �/Ora
mice following 5FU treatment. The arrows indicate abundant nucleated red cells in the peripheral blood. The error bars indicate SEM.
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reduced in Ora/Ora FLs at E11.5 and E13.5 (Fig. 6A and C), and
the known requirement for folate in erythropoiesis (37), we asked
whether erythroid maturation was altered in �/Ora mice. In the
BM, there was a trend toward reduced proportions of nucleated
erythroblasts (Fig. 7B, left graph, II to IV) and a significant in-
crease in the proportion of mature erythrocytes (Fig. 7B, VI), sug-
gesting that erythrocyte release is delayed in �/Ora mice. The
gross spleen morphology was unchanged between �/� and
�/Ora mice (data not shown), but flow cytometry analysis of
erythroid maturation showed a trend toward increased propor-
tions of nucleated erythroblasts (Fig. 7B, right graph, I to IV).
However, these changes did not translate to alterations in the
number of circulating RBCs at any age (Fig. 7C).

We next asked whether we could reveal a more striking pheno-
type in �/Ora mice under conditions of stress hematopoiesis. We
treated a cohort of older (8- to 9-month-old) �/� and �/Ora
mice with 5FU, which kills cycling hematopoietic cells but spares
the quiescent HSCs, which are then stimulated into the cell cycle
to repopulate the depleted marrow. As expected, total nucleated
cells (TNC), hemoglobin (Hgb), and platelets dropped in the first
7 days after treatment and then recovered over the following 3
weeks (Fig. 7D). We observed a striking increase in TNC at day 14
in �/Ora mice compared to �/� controls, which resolved by day
21 (Fig. 7D). At day 28, �/Ora mice had marked splenomegaly
(Fig. 7E), highlighting the fact that �/Ora mice have prolonged
extramedullary hematopoiesis. This splenomegaly was not ob-
served in untreated mice of similar age (data not shown). Day 28
BM looked similar to the untreated controls (compare Fig. 7F to
B). Despite the splenomegaly observed in the 5FU-treated �/Ora
mice, the distributions of maturing erythroid cells in the spleen
were similar between �/� and �/Ora mice, with the exception of
erythrocytes (Fig. 7F, VI) which were present in slightly higher
numbers in the �/Ora mice.

We hypothesized that the increased nucleated cells observed in
peripheral blood at day 14 were not leukocytes but rather nucleated
red cells that appeared in the circulation in response to hematopoietic
stress. To test this hypothesis, we treated an additional cohort of
younger (2- to 3-month-old) �/� and �/Ora mice with 5FU. We
once again observed an increase in TNC at day 14 (Fig. 7G). Periph-
eral blood smears indicated a marked increase in nucleated red blood
cells in �/Ora mice at day 14, consistent with the notion that �/Ora
mice release immature nucleated red cells into the circulation under
stress hematopoiesis conditions. Together, these data indicate that
although �/Ora mice show mild changes in erythroid maturation at
rest, these mice are able to produce normal numbers of circulating
erythrocytes. However, following treatment with 5FU, �/Ora
mice have perturbed erythropoiesis consistent with prolonged
extramedullary hematopoiesis.

Reduced DHFR leads to impaired endothelium-dependent
vasorelaxation in Orana mice, which can be restored by bolster-
ing BH4 levels with sepiapterin. Along with its primary role in
converting dietary folate to THF, DHFR has a secondary role in
BH4 recycling, where it reduces BH2 to BH4 to maintain the ho-
meostatic cellular BH4/BH2 ratio. This in turn prevents eNOS
uncoupling and maintains NO bioactivity and endothelial func-
tion (Fig. 8A) (4, 38, 39). To examine the effect of DHFR deficiency
on endothelial function in Orana mice, endothelium-dependent re-
laxation responses were measured in aortic rings from adult�/�and
�/Ora mice. Endothelium-dependent relaxation was significantly
impaired in aortas from �/Ora mice compared to �/� mice

(Fig. 8B). No significant difference was observed for endothelium-
independent aortic relaxation induced by the NO donor DEANO
(Fig. 8C and E), indicating that the relaxation defect observed in
�/Ora mice was a result of altered endothelium-derived NO signal-
ing and not an intrinsic defect in the aorta itself. Elevating vascular
BH4 levels by preincubating vessels with sepiapterin restored endo-
thelium-dependent relaxation responses in �/Ora mouse aortic
rings to those seen in �/� mice (Fig. 8D). These data verify that the
endothelium in �/Ora aortas was dysfunctional, providing further

FIG 8 Reduced DHFR leads to impaired endothelium-dependent vasorelax-
ation in Orana mice, which can be restored by bolstering BH4 levels with
sepiapterin. (A) Schematic representation of de novo BH4 synthesis and recy-
cling pathways. BH4 is synthesized de novo from GTP via a series of reactions
involving the rate-limiting enzyme GTPCH-1 and sepiapterin reductase (SR).
BH4 is oxidized to BH2 in cells. DHFR can regenerate BH4 from BH2 via the
recycling pathway. eNOS coupling is maintained when it is bound to BH4,
producing NO, whereas BH2-bound eNOS leads to uncoupling and subse-
quent production of superoxide instead of NO. (B and C) Endothelium-de-
pendent relaxation responses to Ach (B) and endothelium-independent relax-
ation responses to DEANO (C) of �/� or �/Ora mice. The data are means �
SEM (n 
 5). *, significant (P 	 0.05) difference between �/� and �/Ora
aortic rings (unpaired t test). (D and E) Endothelium-dependent vasorelax-
ation responses to Ach (D) and endothelium-independent relaxation re-
sponses to DEANO (E) of �/� or �/Ora mice in the absence or presence of
sepiapterin (Sepi) (100 �mol/liter; 1 h preincubation). The data are means �
SEM (n 
 3). *, significant (P 	 0.05) difference between �/Ora and �/Ora
Sepi aortic rings (unpaired t test). The relaxation responses to Ach or DEANO
were recorded after vessel contraction with phenylephrine (300 nmol/liter).
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support for the previously described role of DHFR in maintaining
endothelial BH4 levels through reduction of BH2 (38) and thereby
preserving endothelium-dependent vasorelaxation responses.

DISCUSSION

In this study, we describe a mouse generated through an ENU
mutagenesis screen that has a single point mutation in the Dhfr
locus leading to a Thr136Ala substitution in the DHFR protein.
Homozygote animals died of blood defects between E13.5 and
E14.5, while heterozygote adults survived with a relatively intact
blood compartment but showed tissue-specific defects in distri-
bution of folate species and impaired vascular endothelial func-
tion. The Thr136Ala substitution is predicted to result in reduced
affinity of DHFR for its substrate, consistent with our observation
that the enzyme activity of recombinant DHFROra was blunted.
Interestingly, in vitro mutagenesis of Glu30, an amino acid that
also forms a hydrogen bond with the pteridine moiety of folate
(30, 32) and bonds directly to Thr136 (31, 32), produced a cata-
lytically inactive form of DHFR (40). The Thr136Ala mutated
version of the DHFR protein (DHFROra) was barely detectable in
either Ora/Ora mice or 293T cells transfected with a DHFR cDNA
encoding the mutated version. Full-length and truncated versions
of DHFROra could be detected in transfected 293T cells treated
with the proteasome inhibitor bortezomib, suggesting that
DHFROra was produced in cells but rapidly degraded.

Several families with mutations in the coding region of DHFR
have been described in the literature. Individuals with deficiencies
in DHFR are anemic and show various neurological symptoms
(15, 16). Banka and colleagues (15) have described two apparently
unrelated families in which infants presented with megaloblastic
anemia and seizures. Subsequent genetic analysis in both families
revealed a Leu80Phe substitution in DHFR, which is predicted to
disrupt binding of the essential cofactor NADPH. However, West-
ern blot analysis of an affected individual compared to controls
and a heterozygote parent indicated that the DHFR protein was
essentially absent in the homozygote. The lack of DHFR in these
patients is similar to our findings with the Orana mouse, although
the absence of DHFR appears to have less severe consequences in
humans, since Ora/Ora mice die by E14.5. In contrast, affected
humans survived into early childhood in cases where the DHFR
deficiency was recognized and treated with folinic acid supple-
ments. We attempted to rescue Ora/Ora pups with maternal fo-
linic acid supplementation, but this did not yield an Ora/Ora ne-
onate (data not shown). Interestingly, the proband in the first
family was also identified as having low levels of BH4, but normal
BH2, in the cerebrospinal fluid (CSF). This would be predicted to
have effects on eNOS similar to those we describe here in �/Ora
mice. A second family with an Asp153Val substitution has also
been described (16). This mutation appears to be less disruptive to
normal DHFR function than either Leu80Phe or Thr136Ala
(Orana). DHFR protein was detectable at variable levels in all
three affected patients; two patients with substantially lower
DHFR both presented with childhood absence epilepsy and meg-
aloblastic changes in the bone marrow.

A common feature in the human DHFR cases and our Orana
mouse is defective blood production, as indicated by anemia in the
human cases and reduced functional blood progenitors in Ora/
Ora mice. Together, these data present a strong case for implicat-
ing DHFR as playing a role in definitive hematopoiesis. Our
analysis of Ora/Ora embryos indicates a critical defect in he-
matopoietic progenitor expansion in the fetal liver. HSCs are
initially formed in the AGM and then migrate to the FL, which
is the primary embryonic hematopoietic organ from about

E11.5 (34–36). Functional progenitor cells were present in the
AGM at E11.5, and flow cytometry analysis indicated that the
progenitor cells migrated normally and were present in the FL
at E13.5, despite having reduced capacity to expand. Thus, the
DHFR-induced defect is not in blood formation per se but
rather reflects an inability to expand progenitors and form the
terminal blood cell types. We have not quantified whether the
absolute numbers of HSCs generated by Ora/Ora mice are al-
tered compared to �/� mice; however, data from human pa-
tients with absent DHFR protein (identified in the postnatal
period) combined with the data presented here suggest that the
reduced DHFR primarily affects progenitor cell expansion
rather than generation of HSCs per se. Further experimentation
would be required to resolve whether the changes observed in
FLs are cell autonomous or are a result of DHFR-dependent
alterations in the surrounding microenvironment, as well as
the progenitor cells themselves.

Our observations regarding embryonic blood production are
consistent with the key role that DHFR plays in DNA synthesis and
maintenance of DNA methylation, both of which are rate-limiting
processes in cell proliferation. Although �/Ora mice have marginally
reduced DHFR protein, hematopoietic progenitor expansion was
similar to that in controls, while the adult mice had normal blood
counts and only very mild changes in erythroid maturation at steady
state. However, erythropoiesis was significantly perturbed under
stress conditions in the �/Ora mice, with nucleated erythroblasts
observed in the peripheral blood at day 14 following treatment with
5FU. It is unclear why the rapid proliferation of early embryogenesis
is not impaired in Ora/Ora mice. Presumably, maternal folate stores
are sufficient to maintain DNA synthesis and methylation through
the early stages of embryogenesis but are inadequate to support ex-
tensive proliferation of blood progenitors by E13.5. This study also
links DHFR deficiency to defective NO regulation in the vasculature.
It is known that NO mediates HSC emergence from the AGM and
perturbation of NO reduces hematopoietic potential in vitro and in
vivo (41, 42). It is possible that the reduced progenitor expansion we
observed in Ora/Ora embryos is due not only to compromised folate
metabolism but also to effects of reduced DHFR on NO signaling in
the AGM and the emergence of HSCs.

DHFR is critical for converting dietary folate into THF, and its
downstream folate species are required for both DNA synthesis and
methylation reactions. As expected, the distribution of folate species
in Ora/Ora embryos was substantially altered, with a clear increase in
the concentration of folic acid and a concomitant decrease in THF.
Surprisingly, we did not observe differences in global DNA methyl-
ation in Ora/Ora embryos or differences in methylation within the
CpG island of a known imprinted gene, which suggested that mater-
nally derived folate was sufficient to maintain methyl donors (at least
to E13.5). Even though we saw no changes in global DNA methyl-
ation, or methylation at the imprinted gene Kcnq1ot1, in either Ora/
Ora embryos or �/Ora adults, we cannot rule out the possibility that
the DHFR deficiency in Orana mice led to epigenetic changes at loci
other than the one measured here. Previous studies have shown that
there is no change in DNA methylation in either the erythroblasts of
folate-deficient mice (37) or the BM of human patients with vitamin
B12 deficiency anemia (vitamin B12 is required for conversion of
5-methyl THF to THF) (43).

Our investigations uncovered a number of hematopoietic
changes in Ora/Ora and �/Ora mice compared to �/� controls.
These changes were largely centered on the erythroid compart-
ment, which is consistent with the known requirements for folate
in erythroid development (37). In �/Ora adults, erythroid matu-
ration in both the BM and spleen was altered compared to �/�
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mice. Specifically, we saw an overall reduction in nucleated eryth-
roblasts in the BM and a concomitant increase in nucleated eryth-
roblasts in the spleen. This phenotype is mild but suggests that the
erythroid compartment is sensitive to even the small reduction in
DHFR protein and subsequent reduction in folate concentration
in the BM of �/Ora mice. These mice are able to compensate
under steady-state conditions, possibly by increasing erythroid
maturation in the spleen. A more striking phenotype became ap-
parent in the �/Ora animals following treatment with 5FU, where
we saw a large efflux of nucleated red cells into the circulation on
day 14. Treatment with 5FU is known to damage the BM vascula-
ture (44) and is likely to also damage the vasculature in other
organs, including the spleen. Assuming that the �/Ora spleen
continues to produce more nucleated red cells than �/� controls
following 5FU treatment (as observed at steady state), the in-
creased nucleated red cells in the circulation of 5FU-treated
�/Ora mice may be due to a combination of increased output
from the spleen (and BM) and damaged vasculature with de-
creased capacity to regulate erythroblast release. Given that the
�/Ora mice also have altered NO regulation in the vasculature
(Fig. 8), it is likely that the combination of increased erythroblast
production in the spleen, vascular damage, and altered endothelium-
dependent vasorelaxation collectively produces the increased circu-
lating nucleated erythroblasts. Alternatively, day 14 after 5FU treat-
ment is the peak period of HSC mobilization, and this process may
also involve release of erythroid cells into the circulation. Taking the
data together, it is clear that while �/Ora mice can compensate for
erythroid defects at steady state, their ability to increase hematopoie-
sis under stress conditions is compromised.

A feature of vascular diseases, such as diabetes, hypertension,
and atherosclerosis, is endothelial dysfunction that manifests as a
reduction in the bioactivity of NO produced by the endothelium.
Considerable evidence has identified oxidative stress as an impor-
tant cause of such endothelial dysfunction (6). More specifically,
the endothelium from diseased vessels produces increased levels
of O2˙� that rapidly reacts with NO to form peroxynitrite, a reac-
tion that impairs NO bioactivity (6). It is apparent that during
disease, eNOS itself acts as a significant source of O2˙� when its
electron flow is “uncoupled” and O2 accepts a terminal electron,
generating O2˙� instead of NO. A key determinant of eNOS cou-
pling is the maintenance of a homeostatic BH4/BH2 ratio that is
governed by the biosynthesis of BH4 by GTP-cylohydrolase-1
(GTPCH-1) and recycling of BH2 back to BH4 by DHFR (38).
Thus, small interfering RNA (siRNA) inhibition of DHFR expres-
sion in endothelial cells elevates BH2 levels relative to BH4, with
the increased BH2 capable of displacing eNOS-bound BH4, pro-
ducing uncoupled eNOS, elevated O2˙�, and impaired NO bioac-
tivity (4, 38, 39). Employing the novel Orana mouse, our data
provide in vivo support for a key role for DHFR in the mainte-
nance of endothelial BH4 levels, NO bioactivity, and endothelial
function within intact mouse blood vessels. Thus, adult �/Ora
mice exhibited impaired endothelium-dependent vasorelaxation
in a manner that was reversed by bolstering BH4 levels via the ex
vivo supplementation of aortas with the BH4 precursor sepiap-
terin. The finding that sepiapterin supplements effectively re-
stored endothelial function in �/Ora mice suggests that although
the in vivo deficiency in DHFR in Orana heterozygotes impairs
NO bioactivity and endothelium-dependent relaxation, sufficient
wild-type DHFR enzyme is available to convert excess ex vivo se-
piapterin supplements into BH4 via the salvage pathway. These

data are consistent with DHFR deficiency in �/Ora adult mice,
resulting in an imbalance in the BH4/BH2 ratio, eNOS uncou-
pling, and impaired bioactivity of endothelium-derived NO.

The current study indicates that in vivo DHFR gene deficiency
alone in mice impairs endothelial function in the absence of any car-
diovascular disease or metabolic stress. DHFR expression levels are
reduced in the aortas of diabetic mice (45, 46), angiotensin II-infused
wild-type mice (47), BH4-deficient hph-1 mice, (48), ApoE gene
knockout mice (49), and aged hypercholesterolemic LDL receptor
gene knockout mice (50), which all correlates with reduced vascular
BH4 levels and NO bioactivity. Where examined, restoration of
DHFR levels via endothelium-targeted overexpression of the DHFR
gene or folic acid supplements prevents eNOS uncoupling and inhib-
its the degree of hypertension or aortic aneurysm in Ang II-infused
hph-1 (48) or ApoE gene knockout (49) mice and improves endo-
thelial function in diabetic mice (46). Accordingly, the Orana hetero-
zygote mouse represents a promising model to further define the in
vivo role of DHFR in cardiovascular disease, similar to the hph-1
mouse also generated by ENU mutagenesis as a model of BH4 defi-
ciency due to 90% constitutive reduction in GTPCH-1 activity (51).
The hph-1 mouse has been instrumental in establishing the impor-
tance of GTPCH and BH4 in cardiac autonomic regulation (52) and
protection against pulmonary hypertension (53, 54), in vivo eNOS
uncoupling (55), and endothelial progenitor cell number and func-
tion during hypertension (56).

Orana mice should serve as a useful model for probing the
in vivo function of DHFR, particularly its role in regulating NO
signaling and its impact on hematopoietic stem cell emergence,
erythroid maturation, and cardiovascular homeostasis. They will
also be a useful tool to probe tissue- and locus-specific aberrations
in DNA methylation and cancer susceptibility due to sustained
defects in folate metabolism.
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