
Transverse spin angular momentum of tightly 
focused full Poincaré beams 

W. Zhu,1,2 V. Shvedov,2 W. She,1,* and W. Krolikowski2,3 
1State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, 

China 
2Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 Australia 

3Science Program, Texas A&M University at Qatar, Doha, Qatar 
*shewl@mail.sysu.edu.cn 

Abstract: We show theoretically that by tightly focusing a full Poincaré 
beam one can create states of light whose average spin angular momentum 
(SAM) is purely transverse. Moreover, the transverse SAM is significantly 
increased if a narrow annular aperture is inserted into the Poincaré beam. In 
this case the state with transverse SAM can exist over an extremely long 
distance along the optical axis. To avoid diffraction on the aperture and 
increase the light conversion efficiency we employ the phenomenon of 
conical diffraction in biaxial crystals to convert a Gaussian beam into a 
ring-shaped beam, with a high ratio of the ring radius to its width. 
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1. Introduction 

Linking the classical electromagnetic “spin” with the rotation of the electric and magnetic 
field vectors about the light propagation direction has constituted a significant step in 
understanding the nature of the spin angular momentum (SAM) of light [1–5]. 

In the case of an ideal elliptically polarized plane wave, the degree of circular polarization 
(helicity) is directly represented by the longitudinal SAM, i.e. the projection of SAM on the 
wave propagation direction. The transverse component of SAM is equal to zero in this case. 
The same holds true for freely propagating scalar (i.e. homogeneously polarized) paraxial 
Gaussian-type beams. As such beams are almost purely transverse with respect to the 
electromagnetic field components, the direction of their SAMs coincides with the beam axes, 
i.e. remains longitudinal [3–6]. 

Nevertheless, even a simple superposition of noncollinear plane waves or scalar paraxial 
beams does contain a longitudinal projection of the electromagnetic field on the common 
optical axis and, as a result, may potentially carry transverse SAM. Indeed, Bekshaev et al. 
have shown recently that the interference of two plane waves, or paraxial Gaussian beams, 
with different states of polarization gives rise to a large transverse SAM [7]. In an analogous 
manner, a tightly focused superposition of spatially separated beams with carefully tailored 
individual polarization states can produce transverse SAM in the focal region [8–12]. 

In their recent work Banzer et al. [9] have generated light states with pure transverse SAM 
by tightly focusing a light field with a specially engineered polarization structure. A 
polarization converter comprising two quarter-wave plates with orthogonal orientations of 
their fast axes was utilized to generate spatially separated regions of left- and right-handed 
circular polarization in the beam of light in the pupil of a high numerical aperture (NA) 
focusing system. The presence of transverse SAM has been detected in the narrow region 
near the focal plane along the optical axis where the strong interference between the left- and 
right-handed circularly polarized light occurred. Under these experimental conditions, the 
light diffraction at the boundary between the wave plates had a detrimental effect on the beam 
quality and formation of transverse SAM out of the focal plane. 

On the other hand, the state of polarization can vary spatially even in paraxial regime in so 
called vector beams, formed by superimposing scalar beams with different states of 
polarization [13,14]. Consequently, the SAM density of vector beams (i.e., SAM associated 
with the local polarization state) can be distributed non-uniformly. Moreover, vector beams 
typically contain non-negligible longitudinal components of electromagnetic field when they 
are focused tightly [15], and thus can potentially carry transverse SAM. The natural 
representatives of beams with polarization structure resembling that studied by P. Banzer et 
al. [9] are the so-called full Poincaré beams, i.e. beams whose spatially variant polarization 
states span the whole Poincaré sphere [17–20]. In general, these beams can be represented as 
a superposition of orthogonally polarized modes such as Laguerre-Gauss or Bessel beams 
with the same frequency and beam waist [14, 21]. As a result, the local polarization of 
Poincaré beams, which may be linear, elliptical, and circular, varies both azimuthally and 
radially. 

In this work, we propose to realize transverse SAM by tight focusing of a full Poincaré 
beam comprising two simplest Laguerre-Gauss modes – the LG00 and LG01 modes with 
orthogonal linear polarizations. We show that the efficiency of the formation of transverse 
SAM strongly depends on the NA and shape of the entrance pupil of the focusing system. For 
a fixed NA the maximum efficiency can be obtained by using an ultrathin annular aperture 
such that the resulting focused beam is similar to the Poincaré-Bessel beam [14]. Moreover, it 
appears that the state with a transverse SAM can exist over an extremely long distance along 
the optical axis. Finally, we show that the desired nontrivial beam structure in the form of a 
thin ring with variant polarization can be efficiently realized by using the phenomenon of 
conical refraction in biaxial crystals. Tight focusing of conically refracted light leads to the 
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formation of a full Poincaré-Bessel beam with a very strong transverse SAM and can provide 
an additional degree of freedom in optical spanners [22–24] and polarization-sensitive optical 
manipulation [25,26]. Tightly focused Poincaré-Bessel beams can also have potential 
applications in laser material processing [27–29], acceleration of charged particles [30], and 
microscopy [31]. 

2. Theory 

To describe the distribution of SAM density we start from its general definition in Gaussian 
units ( 0 0 1ε μ= = ) as [4,5,32,33]: 

 * *Im[( ) ( )].∝ × + ×s E E H H  (1) 

Here, we note that even though for plane waves, as well as for paraxial beams, there is no 
difference between the electric and magnetic representation of SAM [4], in general case the 
electric part is different from its magnetic counterpart. In spite of the fact that the most 
common materials predominantly react to the local electric field when SAM is measured 
[34,35], generally the magnetic contribution to the SAM density cannot be ignored. The SAM 
density (1) can be rewritten explicitly in the Cartesian coordinates as: 

 
* * *

* * *

Im[( ) ( ) ( ) ],

Im[( ) ( ) ( ) ],

E y z x z x y x y z

H y z x z x y x y z

E E E E E E

H H H H H H

∝ + +

∝ + +

s e e e

s e e e
 (2) 

where ex and ey are Cartesian unit vectors, Ex,y,z and Hx,y,z are the x-, y- and z-components of 
the electric and magnetic vectors of the light field, respectively. 

In the paraxial approximation, the electromagnetic of a monochromatic light beam 
propagating along the positive direction of the z-axis can be expressed as a superposition of 
purely orthogonally polarized components ( , , ) ikzx y z eU characterized by the slow varying 

complex amplitude [36]: 

 ( , , ) ( , , )x x y yU x y z U x y z= +U e e  (3) 

In terms of the complex amplitude U, the paraxial electric and magnetic fields are given by 
[5,36]: 

 

1

1

( ) ,

( ) ( ( ) .

ikz
z

ikz
z z z

ik e

ik e

−
⊥

−
⊥

 = + ∇ ⋅ 
 = × + ∇ ⋅ × 

E U U e

H e U e U e
 (4) 

In the zero-order paraxial approximation, the second terms appearing in the brackets in Eq. 
(4) are neglected and the energy flow density (EFD) and the SAM density are therefore 
determined only by the transverse components of the field. The intensity of the beam is 

nothing else but EFD, while the total power in the beam is * 2/ (8 )W c dπ ρ= ⋅U U , where c 

is the speed of light in vacuum. 
Here, we consider a paraxial Poincaré beam in the pupil plane z = 0 of the focusing 

objective. The Poincaré beam is represented by a superposition of an x-polarized LG00 mode 
and a y-polarized LG01 mode (i.e., single charge optical vortex), each of which has power W 
and beam waist radius w0 [21]. In this case, the scalar complex amplitudes Ux and Uy in polar 
coordinates (ρ, φ, z) are: 

 
2 2 2
0 0

2 2 2
0 0 0

( , 0) ( ) 4 / ( ) exp( / ),

( , , 0) ( ) 4 2 / ( )( / ) exp( / ) ,

x x

i i
y y

U z u W w c w

U z u e W w c w w eϕ ϕ

ρ ρ ρ

ρ ϕ ρ ρ ρ− −

= ≡ = −

= ≡ = −
 (5) 
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Such a beam can be synthesized, for instance, with the help of a spatial light modulator 
combined with a Mach-Zender interferometer [21], by using q-plates [37], or by employing 
the phenomenon of conical refraction in biaxial crystals [38–45]. Figure 1(a) shows the 
intensity and polarization distribution in the cross section of the beam. 

Below we will discuss the focusing of the above Poincaré beam with a lens of focal length 
f and numerical aperture NA. The complex amplitude of the field in the pupil plane of the lens 
can be presented as: ˆ ˆ( , ) ( ) ( ) i

x x y yu u e ϕθ ϕ θ θ −= +U e e , where 

 

2 2

2 2
2 2

1
( ) 4 / exp{ sin / ( ) },

sin
( ) 4 2 / exp[ sin / ( ) ] .,

x f
f

i
y f

f

u W c NAw
fNAw

u W c NAw e
fNA w

ϕ

θ θ

θθ θ −

= −

= −
 (6) 

In the above equations we expressed the radial coordinate ρ through the focal length f and 
focal angle θ as sinfρ θ=  and normalized the beam waist w0 to the outer radius of the 

focusing lens, i.e., wf = w0 /(NAf) [see Fig. 1(b)]. 
The electric and magnetic field components of the incident Poincaré beam can be written 

as: 

 
( , ) ( ) ( ) ,

( , ) [ ( ) ( ) ] .

i ikz
in x x y y

i ikz
in y x x y

u u e e

u e u e

ϕ

ϕ

θ ϕ θ θ

θ ϕ θ θ

−

−

 = + 
= − +

E e e

H e e
 (7) 

 

Fig. 1. (a) The polarization and intensity distribution of the full Poincaré beam given by Eq. (7) 
for wf = 1.30. Right-handed circular, linear and left-handed circular polarization states are 
shown in red, green, and black, respectively. The blue circle represents polarization states 
along the meridian of the Poincaré sphere. (b) Schematic of tight focusing with a high NA lens. 

We would like to emphasize that the beam (7) is purely paraxial (w0>>λ) in the plane z = 0 
and the electric and magnetic fields are purely transverse. Therefore, the direction of its SAM 
coincides with the beam axis, i.e. the z-axis. 

The electric and magnetic field components of the beam (7) in the focus of the lens can be 
calculated by using the Richards-Wolf theory [46] as x x y y z zE E E= + +E e e e and 

x x y y z zH H H= + +H e e e , where each component is, respectively: 
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and 
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In Eqs. (8) and (9) 

 
2

0

1

cos
, 0 ,cos sin ( sin ) (cos 1) ( ) ,ik zn n

x y n x yI i C J k r e u d
θ θ

θ
θ θ θ θ θ θ= +   

 
2

0

1

cos
, 0 ,cos sin ( sin ) (cos 1) ( ) ,ik zn n

x y n x yK i C J k r e u d
θ θ

θ
θ θ θ θ θ θ= −   

 
2

0

1

cos2
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θ
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where C is the normalization factor, Jn(x) is the Bessel function of the first kind of order n, 
and θl, and θ2 are determined by the annular aperture, as shown in Fig. 1(b). 

By integrating and normalizing the SAM density over the xy-plane we get the average 

SAM per photon, 2 2/ [| | | | ] .dxdy dxdy= + S s E H  

The normalized average SAM can be alternatively obtained by the quantum-operator 

formalism /σ σ σ σ= σκS U U U U or 2 2 2 2| | / | |d dσ σ

σ σ
σ ⊥ ⊥=  κ κ κS U U  

described in Ref [33], where 1/22 ( )x yiσ−= +σ e e  and 

sin cos sin sin cosx y zθ ϕ θ ϕ θ= + +κ e e e  are a unit circular vector and a unit spherical vectors 

respectively, 1σ = ±  and sign + (–) corresponds to right (left) circular polarization. Our 

initial conditions give [ ( ) ( ) ]i
x yu iu eσ ϕθ σ θ −= − σU , and then the normalized average can be 

finally found as: 

 

2

1

2

1

2

2 2

sin
ˆ .

[ ]sin

x y

y

x y

u u d

u u d

θ

θ
θ

θ

θ θ

θ θ
=
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


S e  (10) 

From the Eq. (10) it is clearly seen that the longitudinal component of the average SAM 
vanishes and, therefore, the average SAM is purely transverse. 

Figure 2 shows how the average transverse SAM depends on θl and the normalized beam 
waist wf. The numerical simulations are performed using Eq. (10) with NA = 0.95 and θ2 = 
71.8°. As wf increases, the average transverse SAM first grows, reaches its maximum value, 
and then gradually declines. On the other hand, it always monotonically increases with θl. The 
normalized beam waist wf required to achieve the maximum average transverse SAM varies 

slightly with θl, from 1.30 at θl = 0° to 2  at θl→71.8°. When θl →θ2, which corresponds to 

the situation when the annular aperture is infinitely narrow, and wf = 2 , the average 
transverse SAM takes on its maximum value of 0.475. Interestingly, in this limit the focal 
field has the form of a Bessel-Poincaré beam [14] consisting of J0 and J1 beams. 
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Fig. 2. Average transverse SAM [Sy]on the minimum focal angle θl and the normalized beam 
waist wf. The black line indicates the maximum value of SAM. 

In Figs. 3 and 4 we plot the transverse distributions of total intensity and SAM density (s) 
for the cases with (θl = 64°) and without (θl = 0°) an annular aperture, when wf = 1.3. It is 
clear that the presence of a narrow annular aperture leads to smaller focal spot size. At the 
same time however, it results in appearance of diffraction rings in the spatial intensity 
distribution. Moreover, in both cases the focal spots exhibit a small transverse shift toward the 
negative x direction, which corresponds to the emergent nonzero y-component of average 
SAM. Although the y-component of SAM density sy takes negative and positive values, the 
positive sy prevails leading to the nonzero average SAM, Sy = 0.315 for θl = 0°, and up to 
0.463 for θl = 64°. The increase of average SAM results from the filtering out low spatial 
frequencies of the focal field. In both cases the x and z components of SAM densities are 
small, and their alternating sign results in zero average SAM. 
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Fig. 3. The distributions of electric EE*(first and third rows) and magnetic HH* (second and 
forth rows) parts of field energy (a,e) and the SAM densities [sx (b,f), sy (c,g), and sz (d,h)] of 
focal field in the focal plane for θl = 0° (a-d) and θl = 64° (e-h), when wf = 1.30. All quantities 
are normalized to the maximum electric field energy. 

It is worth mentioning that not only does the geometry of annular aperture determine the 
magnitude of the transverse SAM, but it also has a dramatic effect on the size of the region 
along the optical axis when the SAM is nonzero. This is illustrated in Fig. 4, which depicts 
numerically calculated longitudinal (along the propagation axis) cross-section of distribution 
patterns of electric (left column) and magnetic (right column) parts of field energy and the 
SAM density in the focal area of high numerical aperture lens (NA = 0.95). Figures 4(a)-4(d) 
and 4(e)-4(h) correspond to two different inner apertures of θl = 0° and θl = 64°, respectively. 
It is evident that for the fully open aperture (θl = 0°) the nonzero transverse SAM is confined 
to a narrow (submicron) region near the focal plane, while it significantly expands (up to few 
microns) when the aperture is very narrow (θl = 64°). This property is of great importance for 
practical application of the transverse SAM. 
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Fig. 4. The distributions of electric EE* (left column) and magnetic HH* (right column) parts 
of field energy (a,e) and the SAM densities [sx (b,f), sy (c,g), and sz (d,h)] of focal field in xz 
plane for θl = 0° (a-d) and θl = 64° (e-h),, when wf = 1.30. All quantities are normalized to the 
maximum electric field energy. The size of the figures are 5μm × 2μm 

Although adding a narrow annular aperture can lead to the creation of a high average 
transverse SAM in the focal field, the energy efficiency of this approach is very low. 
Fortunately, the narrow ring-shaped intensity pattern with anti-symmetrically distributed 
polarization can be easily and efficiently produced via spin-orbit coupling in the process of 
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conical refraction (CR) which takes place in propagation of optical beams along an optical 
axis of biaxial crystal (BC) [38–45]. 

3. Formation of states with SAM via conical refraction 

The optical field distribution corresponding to Eq. (7) of the full Poincaré beam can be 
formed experimentally by employing the conical refraction phenomenon inside a biaxial 
crystal. Moreover, it is well known that CR can produce a sharp rings of intensity in the focal 
plane if the light is focused through the crystal [38–40]. The ring-shaped intensity distribution 
together with the required polarization state allow one to avoid formation of multiple rings 
caused by light diffraction on the annular aperture, and subsequently limiting the efficiency of 
the transverse SAM generation process. 

In order to produce the required ring-shaped optical field distribution, the first step is to 
focus the initial circularly polarized paraxial Gaussian beam in the biaxial crystal along one of 
its optic axes (here z). The complex amplitude inU  of this input beam is: 
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where 0( ) 1 /Z iz zξ = + , 2
0 0 2z kw=  is the Rayleigh length of the beam, 

1/22 ( )x yiσ± −= +σ e e  is a unit circular vector, 1σ = ±  and sign + and – corresponds to right 

hand and left hand states of polarization respectively, and k is the wave number. 
The conical refraction phenomena in the biaxial crystal is characterized by the half 

intersection angle of the two ellipsoids of refractive indices or conicity parameter, 

( )( )2 2 2 2 2
2 1 3 2 2n n n n nα = − − , where one assumed n1<n2<n3 [38, 39]. When the length of the 

crystal along its optical axis is l, it is convenient to introduce the parameter R0 = αl, that has 
simple geometrical optics interpretation as a ring radius of the conical refraction pattern 
behind the crystal. When the fundamental Gaussian beam propagates along the optical axis, 
the resulting distribution of the light field strongly depends on both crystal and beam 
parameters, such as R0 and waist radius w0 of the input beam in the vacuum. Hence, the use of 
common parameters ρ0 = R0/w0 and ρ1 = ρ /w0 simplifies description of the light beam after 
the crystal. Moreover, for convenience in an analytical description, we will express the 
longitudinal position with respect to a new origin located at 2(1 1/ )z l n= −  [40]. 

According to the Belsky-Khapalyuk-Berry theory [39, 40] and as confirmed by other 
authors [41–45], for the circularly polarized input Gaussian beam the complex amplitude 
corresponding to both electric field and magnetic field of output beams can be written as: 

 ( )0 1 ,iB B e ϕ± ±= +U σ σ  (12) 

where B0 and B1 are given as: 
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Here η is the modulus of transverse wave vector 0 0k wη ⊥= k , measured in units of 1/w0, a(η) 

denotes the spatial Fourier spectrum of an incident beam. For a Gaussian input beam 

( )2
1 1( ,0) expG ρ ρ= −  one gets 2( ) exp( / 4)a η π η= −  [40]. 
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The first term in Eq. (12) represents a topologically uniform circularly polarized beam, 
while the second one is orthogonally polarized single charge optical vortex. The handedness 
of the circular polarization of the first beam coincides with that of the input beam while the 
vortex-like component’s is opposite. Moreover, the sign of the topological charge of the 
second beam coincides with the sign of the initial circular polarization. 

While the resulting light intensity distribution is spatially nonuniform, it is symmetric 
with respect to the focal plane z = 0. In particular, when the parameter ρ 0>1 the central axial 
intensity peak splits up into a pair of separate bright spots (Raman spots) symmetrically 
located on both sides of z = 0 where the light intensity acquires minimum. For 0 1ρ >>  this 

intensity minimum is of the order of 1/ ρ 0
2 [40]. The spatial intensity pattern at the focal 

plane z = 0 has a form of a pair of concentric rings separated by a dark (Poggendorff) ring. 
The two bright rings represent two conical fields – one diverging from and the second 
converging towards corresponding Raman spots. Therefore, in order to create the uniform 
ring of light intensity distribution, one starts with focusing the circularly polarized Gaussian 
inside the crystal and ensuring that 0 1ρ >> . 

 

Fig. 5. The schematic for the creation of narrow ring-shaped intensity pattern with anti-
symmetrically distributed Stokes parameter. A circularly polarized Gaussian beam is focused 
by the focal lens (FL) with NA = 0.3 into BC. After collimated by a collimating lens (CL) (NA 
= 0.65), the conically diffracted beam is filtered by a pin hole. The ring-shaped intensity 
pattern is obtained in the focal plane of lens 1 (L1). The lens 2 (L2) and CCD forms an image 
system. The QWP convert the polarization into the desired one. (b) The intensity distribution 
of total intensity near the image focal plane, where red line and two white lines indicate the 
focal and front and back spots planes, respectively. Two white vertical lines indicate positions 
of two Raman spots. (c, d) The experimentally measured intensity distributions in front of pin 
hole (c) and in the CCD plane (d). 

As discussed earlier, for the formation of states with high transverse SAM, the ring-
shaped field should carry anti-symmetric distribution of polarization in the form (7). It 
appears that for the circularly polarized input beam, the polarization of the CR field is linear 
and its orientation varies azimuthally along the ring. However, when such a state of 
polarization is converted by a quarter wave plate (QWP) whose fast axis forms an angle φ0 
with the x-axis and whose corresponding transmission matrix is: 
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the resulting state of the polarization has exactly the required anti-symmetric spatial 
distribution. After the conversion the complex amplitude distribution reads: 

 0 0( 2 ) 2
0 1 0 11 / 2{[ ] [ ] }.i i iB iB e iB e B e± − ±± ±= − + − + ϕ ϕ ϕ ϕσ σU  (15) 

In an experimental setup we consider right handed circularly polarized Gaussian beam 
1σ = +  propagating along the optic axis of the KGD(WO4)2 biaxial crystal of thickness l = 

2.8mm as shown in the Fig. 5. The principal refractive indices of the crystal at 632 nm 
wavelength are n1 = 2.013, n2 = 2.045, n3 = 2.086, respectively [47]. The beam is focused into 
the BC by a lens (FL) with NA = 0.3. In these focusing conditions the beam waist parameter 
is w0~1.3μm. After the crystal the beam is converted by QWP to obtain the required 
polarization distribution (15) in the focal imaging plane. The conically refracted field forms 
an optical bottle near the image focal plane. In the focal plane (z = 0), the cross-section of the 
bottle has a form of double bright rings, separated by a dark Poggendorff ring. 

 

Fig. 6. (a) The polarization states of conically diffracted fields after QWP with φ0 = π/2. The 
red, green, and pink lines represent s3>0, s3<0, and s3 = 0, respectively. (b~c) The 
experimentally recorded intensity distributions of the CR ring structure after a polarizer with 
diagonal (b), horizontal (c), and vertical (d) directions. 

To obtain a required single narrow ring-shaped intensity pattern, one needs to remove one 
of the bright rings. This can be done by placing a small aperture at either the front or back 
Raman’s spot allowing only one of the conical fields to pass through. Experimentally, we first 
collimate the conically diffracted beam with a high NA (0.65) lens (CL), and then put the 
pinhole at the rear Raman’s spot, whose intensity distribution is shown in Fig. 5(c). After 
passing through another lens (L1), the emerging beam forms the desired ring-shaped intensity 
pattern appearing in the focal plane, which is imaged by a combination of lens (L2) and a 
CCD camera. This ring-shaped intensity pattern is shown in Fig. 5(d). The measured ratio of 
radius of the ring to its width at the 1/e2 intensity level is about 20. In comparison, the 
corresponding ratio for the full Poincaré beam with the annular aperture of θl = 64° is 18.5. 
Therefore, one may expect the average transverse SAM generated by using the ring-shaped 
field obtained in CR will be close to that of the full Poincaré beam. Moreover, it turns out that 
conversion efficiency in the former case can be as high as 50%. 

Figure 6(a) depicts calculated distribution of polarization states along the ring for φ0 = π/2. 
This polarization pattern is observed experimentally by propagating the beam through a linear 
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polarizer. The transmitted field distribution, for various orientation of the polarizer is shown 
in Figs. 6(b)-6(d) and clearly validates the polarization distributions in Fig. 6(a). It should be 
noted that the distribution of the polarization pattern also rotates linearly with φ0. Therefore, 
one can control the polarization by tuning the fast axis of QWP, and thus the direction of 
transverse SAM. 

The above discussion shows that the average transverse SAM by a conically refracted 
beam can reach a value close to the theoretical limit 0.5NA ( = 0.46) for a full Poincaré beam. 
This value should be compared with that reported earlier by Neugebauer et. al. [10]. In their 
work the transverse SAM was formed with the aid of segmented states of polarization such 
that the light field in the upper (lower) half space carried right-handed (left-handed) circular 
polarization. This state was realized by passing a linearly polarized TEM10 (Hermite-Gauss) 
mode through a segmented quarter wave plate. The subsequent focusing by a high NA lens 
led to a non-zero transverse component of average SAM in the focal plane. Using the same 
NA = 0.95, the average transverse SAM per photon could be estimated to reach in that case a 
value of 0.27 which is significantly smaller than that generated by the full Poincaré beam 
considered above. 

Therefore, conical refraction allows one to efficiently generate a Poincaré beam, which 
should yield high average transverse SAM when tightly focused. The experimental 
verification of this high transverse SAM is a challenging task and will be a subject of future 
work. In principle, this could be achieved by using recently demonstrated a nanoprobing 
technique based on the directional far-field emission of a transversely spinning dipole located 
on a dielectric interface [9]. 

4. Conclusions 

In conclusion, we have demonstrated that the full Poincaré beam in linear polarization basis is 
a suitable candidate for efficient generation of transverse spin angular momentum. The 
average transverse SAM can be controlled by varying the spatial spectrum of the incoming 
field and attains maximum value of 0.5NA per photon which, for typical value of NA = 0.95 
is significantly higher than that reported earlier. Moreover, we have shown that similar highly 
efficient generation of transverse SAM can be achieved by employing the field generated in 
conical refraction of light. In general, it appears that the high transverse SAM combined with 
small focal spot make the full Poincaré beams promising candidates for applications 
involving laser-matter interaction with light beam carrying transverse spin angular 
momentum. 
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