
A study of well-balanced finite volume

methods and refinement indicators

for the shallow water equations

Sudi Mungkasi

September 2012

A thesis submitted for the degree of

Doctor of Philosophy

of The Australian National University





Dedicated to my wife, Asti,

our daughter, Daniella,

and my parents, Wagimin and Sulasmi.



This page was intentionally left blank.



Declaration

The work in this thesis is my own except where otherwise stated.

Sudi Mungkasi



This page was intentionally left blank.



Contents

Acknowledgements xi

Publications, Talks, and Awards xiii

Abstract xvii

Abbreviations xix

1 Thesis overview 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline and contributions . . . . . . . . . . . . . . . . . . . . . . 4

PART I: WELL-BALANCED METHODS 7

2 Well-balanced methods 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Governing equations and numerical methods . . . . . . . . . . . . 10

2.3 Quantity reconstructions . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Steady state: a lake at rest . . . . . . . . . . . . . . . . . . 16

2.4.2 Unsteady state: oscillation on a parabolic bed . . . . . . . 18

2.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 19

PART II: SOME EXACT SOLUTIONS 23

3 Avalanche involving a dry area 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Saint-Venant models . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii



viii CONTENTS

3.2.1 Equations in the standard Cartesian coordinate . . . . . . 28

3.2.2 Equations in the topography-linked coordinate . . . . . . . 30

3.3 Existing solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 A new solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Avalanche involving a shock 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 A new solution in the standard Cartesian system . . . . . . . . . 45

4.2.1 Derivation of the analytical solution . . . . . . . . . . . . . 45

4.2.2 Properties of the analytical solution . . . . . . . . . . . . . 51

4.3 A new solution in the topography-linked system . . . . . . . . . . 52

4.4 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 The Carrier-Greenspan periodic solution 59

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Periodic waves on a sloping beach . . . . . . . . . . . . . . . . . . 62

5.3.1 Carrier-Greenspan solution . . . . . . . . . . . . . . . . . . 63

5.3.2 The formulation of Johns . . . . . . . . . . . . . . . . . . . 64

5.3.3 Calculating the stage and velocity . . . . . . . . . . . . . . 65

5.3.4 The Johns approximate solution . . . . . . . . . . . . . . . 67

5.3.5 More accurate approximations . . . . . . . . . . . . . . . . 68

5.4 Computational experiments . . . . . . . . . . . . . . . . . . . . . 70

5.4.1 First test case: the Johns prescription is successful . . . . 72

5.4.2 Second test case: the Johns prescription fails . . . . . . . . 77

5.5 Rate of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 83

PART III: INDICATORS FOR ADAPTIVE METHODS 85

6 Numerical entropy production 87

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Numerical entropy production in 1D . . . . . . . . . . . . . . . . 88

6.2.1 An existing numerical entropy scheme . . . . . . . . . . . . 88



CONTENTS ix

6.2.2 An alternative numerical entropy scheme . . . . . . . . . . 91

6.2.3 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Numerical entropy production in 1.5D . . . . . . . . . . . . . . . 104

6.3.1 Governing equations and numerical schemes . . . . . . . . 104

6.3.2 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Numerical entropy production in 2D . . . . . . . . . . . . . . . . 109

6.4.1 Numerical entropy scheme . . . . . . . . . . . . . . . . . . 109

6.4.2 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Weak local residuals 117

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Weak local residuals of balance laws . . . . . . . . . . . . . . . . . 118

7.3 Weak local residuals of shallow water equations . . . . . . . . . . 120

7.3.1 Well-balancing the weak local residual . . . . . . . . . . . 121

7.3.2 Wet/dry interface treatment for weak local residuals . . . . 124

7.3.3 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4 Weak local residuals in adaptive methods . . . . . . . . . . . . . . 131

7.4.1 A one-dimensional flow with topography . . . . . . . . . . 134

7.4.2 A one-dimensional dam break with passive tracer . . . . . 135

7.4.3 A planar dam break . . . . . . . . . . . . . . . . . . . . . 136

7.4.4 A radial dam break . . . . . . . . . . . . . . . . . . . . . . 138

7.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8 Conclusions and future work 143

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A Equations and methods in two dimensions 145

A.1 Integral forms of shallow water equations . . . . . . . . . . . . . . 145

A.2 Finite volume methods . . . . . . . . . . . . . . . . . . . . . . . . 146

B Data structure for triangulations in iFEM 149

B.1 A newest vertex bisection for refinement . . . . . . . . . . . . . . 150

B.2 A nodal-wise algorithm for coarsening . . . . . . . . . . . . . . . . 150

B.3 Conserved quantites in finite volume methods . . . . . . . . . . . 151



x CONTENTS

References 153



Acknowledgements

The work for this thesis was undertaken at the Department of Mathematics,

Mathematical Sciences Institute, The Australian National University (ANU).

Here I acknowledge the contribution and support of a number of people, in-

stitutions and committees over the years of my candidature.

First and foremost, I sincerely thank my primary supervisor, Stephen Roberts,

for his guidance, support, and encouragement. I have learnt a lot from him

academically and non-academically. He has been very helpful in supporting me

to do research in the directions of my own interests, which make me enjoy my

PhD research. He has also been supportive to me in getting funds and travel

grants during my PhD studies.

I am very grateful to my co-supervisors, Markus Hegland and Linda Stals.

I acknowledge some discussions with Markus on weak local residuals and with

Linda on adaptive grid methods.

I am indebted to some lecturers, postdoctoral fellows, staff, colleagues, and

friends at the ANU. For some discussions, I thank Christopher Zoppou, Vikram

Sunkara, Padarn Wilson, Brendan Harding, Mathew Langford, Shi Bai, Bin Zhou,

Jiakun Liu, Srinivasa Subramanya Rao, Kowshik Bettadapura, Yuan Fang, and

Chin Foon Khoo. I also thank Bishnu Lamichhane, John Urbas and Paul Leopardi

also for some discussions. Kind thanks are due to Jodi Tutty and Annie Bartlett

at the ANU Academic Skills and Learning Centre for some suggestions on the

writing of this thesis. Thanks also go to Nick Guoth, Warren Yang and Kelly

Wicks for technical and administrative support.

I thank my friends from Indonesia in Australia for the friendship, which has

made me feel at home. Thanks are due to Robertus Anugerah Purwoko Pu-

tro and family, Hendra Gunawan Harno, Teddy Kurniawan, Jack Matsay and

family, Supomo Suryo Hudoyo and family, Br Budi Hernawan OFM, and other

Indonesian friends during my studies in Australia.

xi



xii CONTENTS

In my PhD period, I was visiting the Department of Applied Mathematics,

the University of Washington, U.S.A. and Institut für Geometrie und Praktis-

che Mathematik, RWTH Aachen University, Germany. I thank Professor Ran-

dall John LeVeque for his assistance and for some discussions, and Jihwan Kim,

Jonathan Varkovitzky and Grady Lemoine at the University of Washington for

some discussions. I thank Professor Sebastian Noelle for his assistance and some

supervision on part of my work, and K. R. Arun, Guoxian Chen, and Marcel

Makowski at RWTH Aachen University for some discussions.

During my PhD candidature, I was supported financially by The Australian

National University. I acknowledge and thank the following institutions, organi-

sations and committees for funding supports during my PhD candidature.

• The Australian National University for ANU PhD and Tuition Scholar-

ships, ANU Vice Chancellor’s travel grants, ANU Miscellaneous (top-up)

Scholarships, and funding support for conferences,

• The Australian Mathematical Society (AustMS) for partial funding for my

presentations in the AustMS conference meetings,

• ANZIAM and CSIRO for partial funding through ANZIAM-CSIRO Student

Support Schemes for my presentations in the Engineering Mathematics and

Applications Conference as well as Computational Techniques and Appli-

cations Conferences,

• Sanata Dharma University for covering the premium of my Overseas Health

Cover Insurance,

• RWTH Aachen University for partial accommodation support while I vis-

ited Professor Sebastian Noelle,

• The University of Washington for one time in-city travel assistance while I

visited Professor Randall John LeVeque,

• The Committe of the 2012 Gene Golub SIAM Summer School (G2S3) for

the G2S3 travel grant funded by the U.S.A. Naval Postgraduate School for

my participation in the summer school.

Last but not least, I thank my parents for their continuous encouragement

and my wife, Asti, for her constant love.



Publications, Talks, and Awards

The following publications and preprints correspond to the work in this thesis.

• S. Mungkasi and S. G. Roberts, 2010, ”On the best quantity reconstructions

for a well balanced finite volume method used to solve the shallow water

wave equations with a wet/dry interface”, ANZIAM Journal (E), 51: C48–

C65, Australian Mathematical Society. (Based on the work in Chapter 2.)

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/2576/1289

• S. Mungkasi and S. G. Roberts, 2011, ”A new analytical solution for test-

ing debris avalanche numerical models”, ANZIAM Journal (E), 52: C349–

C363, Australian Mathematical Society. (Based on the work in Chapter 3.)

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3785/1465

• S. Mungkasi and S. G. Roberts, 2012, ”Analytical solutions involving shock

waves for testing debris avalanche numerical models”, Pure and Applied

Geophysics, 169 (10): 1847–1858, Springer. (Based on the work in Chap-

ter 4.)

http://dx.doi.org/10.1007/s00024-011-0449-1

• S. Mungkasi and S. G. Roberts, 2012, ”Approximations of the Carrier-

Greenspan periodic solution to the shallow water wave equations for flows

on a sloping beach”, International Journal for Numerical Methods in Flu-

ids, 69 (4): 763–780, John Wiley & Sons. (Based on the work in Chapter 5.)

http://dx.doi.org/10.1002/fld.2607

• S. Mungkasi and S. G. Roberts, 2011, ”Numerical entropy production for

shallow water flows”, ANZIAM Journal (E), 52: C1–C17, Australian Math-

ematical Society. (Based on part of the work in Chapter 6.)

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3786/1410

xiii

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/2576/1289
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3785/1465
http://dx.doi.org/10.1007/s00024-011-0449-1
http://dx.doi.org/10.1002/fld.2607
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3786/1410


xiv CONTENTS

• S. Mungkasi, S. G. Roberts, and S. Noelle, 2012, ”Numerical entropy pro-

duction as a refinement indicator for shallow water equations”, preprint.

(Based on part of the work in Chapter 6.)

• S. Mungkasi and S. G. Roberts, 2012, ”Well-balanced computations of weak

local residuals for shallow water equations”, preprint. (Based on part of the

work in Chapter 7.)

• S. Mungkasi and S. G. Roberts, 2012, ”Weak local residuals as refinement

indicators for shallow water equations”, preprint. (Based on part of the

work in Chapter 7.)

• S. Mungkasi and S. G. Roberts, 2011, ”A finite volume method for shal-

low water flows on triangular computational grids”, Proceedings of IEEE

International Conference on Advanced Computer Science and Information

Systems (ICACSIS) 2011, pages 79–84. (Based on the work in Appendix A.)

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6140781

I have presented some parts of this thesis in talks during my PhD candidature.

The talks are as follows.

• ”Well-balanced finite volume methods for shallow water flows involving

wet/dry interface” in the 53rd Australian Mathematical Society Annual

Meeting, The University of South Australia, Adelaide, Australia, 28 Sep –

1 Oct 2009

• ”Well-balanced finite volume methods for shallow water flows involving

wet/dry interface” in Engineering Mathematics and Applications Confer-

ence 2009, The University of Adelaide, Adelaide, Australia, 6 – 9 Dec 2009

• ”A new analytical solution for testing debris avalanche numerical models in

the standard Cartesian coordinate system” in the 54th Australian Mathe-

matical Society Annual Meeting, The University of Queensland, Brisbane,

Australia, 27 – 30 Sep 2010

• ”A new analytical solution for testing debris avalanche numerical models”

in Computational Techniques and Applications Conference 2010, The Uni-

versity of New South Wales, Sydney, Australia, 28 Nov – 1 Dec 2010

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6140781


CONTENTS xv

• ”Numerical entropy production for shallow water flows” in Computational

Techniques and Applications Conference 2010, The University of New South

Wales, Sydney, Australia, 28 Nov – 1 Dec 2010

• ”Approximations of the Carrier-Greenspan periodic solution to the shallow

water wave equations for flows on a sloping beach” in the 55th Australian

Mathematical Society Annual Meeting, The University of Wollongong, Wol-

longong, Australia, 26 – 29 Sep 2011

• ”A finite volume method for shallow water flows on triangular computa-

tional grids” in the IEEE International Conference on Advanced Computer

Science and Information Systems (ICACSIS) 2011, Jakarta, Indonesia, 17

– 18 Dec 2011

• ”Some exact solutions to shallow-water-type models and their use as nu-

merical test problems” in a Seminar at IGPM, RWTH Aachen University,

Aachen, Germany, 9 February 2012

I received the following awards during my PhD candidature.

• Best paper award in the IEEE International Conference on Advanced Com-

puter Science and Information Systems (ICACSIS) 2011, Jakarta, Indone-

sia, 17 – 18 Dec 2011,

• Best presentation award, again in the IEEE International Conference on

Advanced Computer Science and Information Systems (ICACSIS) 2011,

Jakarta, Indonesia, 17 – 18 Dec 2011,

• ANU Vice Chancellor’s travel grants to visit Professor Randall John LeV-

eque at the University of Washington, Seattle, U.S.A., 16 Nov–14 Dec 2011

and Professor Sebastian Noelle at RWTH Aachen University, Aachen, Ger-

many, 6 Jan – 17 Feb 2012, and

• Travel grant from the U.S.A. Naval Postgraduate School to participate in

the Gene Golub SIAM Summer School “Simulation and Supercomputing in

the Geosciences”, Monterey, California, U.S.A., 29 Jul – 10 Aug 2012.



This page was intentionally left blank.



Abstract

This thesis studies solutions to the shallow water equations analytically and nu-

merically. The study is separated into three parts.

The first part is about well-balanced finite volume methods to solve steady

and unsteady state problems. A method is said to be well-balanced if it preserves

an unperturbed steady state at the discrete level. We implement hydrostatic

reconstructions for the well-balanced methods with respect to the steady state of a

lake at rest. Four combinations of quantity reconstructions are tested. Our results

indicate an appropriate combination of quantity reconstructions for dealing with

steady and unsteady state problems.

The second part presents some new analytical solutions to debris avalanche

problems and reviews the implicit Carrier-Greenspan periodic solution for flows

on a sloping beach. The analytical solutions to debris avalanche problems are

derived using characteristics and a variable transformation technique. The an-

alytical solutions are used as benchmarks to test the performance of numerical

solutions. For the Carrier-Greenspan periodic solution, we show that the lin-

ear approximation of the Carrier-Greenspan periodic solution may result in large

errors in some cases. If an explicit approximation of the Carrier-Greenspan pe-

riodic solution is needed, higher order approximations should be considered. We

propose second order approximations of the Carrier-Greenspan periodic solution

and present a way to get higher order approximations.

The third part discusses refinement indicators used in adaptive finite volume

methods to detect smooth and nonsmooth regions. In the adaptive finite volume

methods, smooth regions are coarsened to reduce the computational costs and

nonsmooth regions are refined to get more accurate solutions. We consider the

numerical entropy production and weak local residuals as refinement indicators.

Regarding the numerical entropy production, our work is the first to implement

the numerical entropy production as a refinement indicator into adaptive finite

xvii
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volume methods used to solve the shallow water equations. Regarding weak local

residuals, we propose formulations to compute weak local residuals on nonuni-

form meshes. Our numerical experiments show that both the numerical entropy

production and weak local residuals are successful as refinement indicators.
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