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We study the scattering of polaritons by free electrons in hyperbolic photonic media and demonstrate
that the unconventional dispersion and high local density of states of electromagnetic modes in composite
media with hyperbolic dispersion can lead to a giant Compton-like shift and dramatic enhancement of the
scattering cross section. We develop a universal approach to study multiphoton processes in nanostructured
media and derive the intensity spectrum of the scattered radiation for realistic metamaterial structures.
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Scattering is one of the most fundamental processes
enabling us to probe an internal structure of matter. One of
the first scattering experiments was performed by Lord
Rutherford with the discovery of a structure of atoms
extracted from the a-particle scattering from a gold target
[1]. More recently, scattering experiments have become the
most frequently used tool in atomic and condensed matter
physics [2] and related cross-disciplinary areas.

One of the main parameters that defines the probability
of any scattering process is the density of available states
which a scattered particle could occupy. While under
frequently used conditions this physical characteristic is
predefined by a scattering object, the surrounding envi-
ronment could contribute significantly to the scattering
process. This idea is employed frequently for manipulating
the spontaneous emission of light by placing an emitter
inside a cavity [3].

These concepts could be pushed further by employing
metamaterials with broadband nonresonant engineering of
the local density of states (LDOS), e.g., by using the
properties of hyperbolic metamaterials. Hyperbolic meta-
materials are a special class of composite media [4] with
electromagnetic properties described by the diagonal per-
mittivity tensor with the principal components being of the
opposite signs which results in a hyperbolic shape of the
isofrequency contours [5]. Practical realizations of hyper-
bolic media are based on metal-dielectric layered structures
[6], arrays of vertically aligned metal nanorods [7], or
semiconductor heterostructures [8]. One of the most in-
triguing properties of hyperbolic media is the nonresonant
broadband enhancement of the LDOS, that is limited only by
the smallest yet finite scale of the system [9] and can affect
the emitters placed inside or near hyperbolic media.

While the spontaneous emission and photon absorption
are the first-order perturbation processes being directly
influenced by the LDOS, higher-order interactions could
have a nontrivial dependence on the LDOS and, as a result,
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they can be tailored strongly by an electromagnetic
environment, as shown both theoretically [10-12] and
experimentally [13,14]. In this Letter, we study higher-
order light-matter interaction processes and, in particular,
analyze the analogue of the Compton scattering [15] for
polaritons modified significantly in hyperbolic media. First,
we notice that the commonly used theoretical quantum
methods [16] result in unphysical divergences of both
frequency shifts and scattering cross sections being inap-
plicable to metamaterials. Being motivated to remove these
singularities, we develop a quantum formalism based on
the Langevin approach. We notice that due to the inherent
dispersion and losses in hyperbolic metamaterials, the
scattering occurs between dressed photons, polaritons,
and free carriers and this process differs substantially
from the well-known Compton effect. While the account
for the losses and finite period of the structure destroys the
singularity appearing in the description of lossless and
uniform hyperbolic media, such characteristics as fre-
quency shift and scattering cross-section are still much
larger than in the case of conventional materials.

We consider a structure shown schematically in Fig. 1(a)
where a monochromatic photon is normally incident upon
the a semi-infinite hyperbolic medium. The presence of an
interface enables us to approach a probable experimental
layout as well as highlights the impact of the geometric
arrangement.

Within our theoretical approach based on the Born
approximation, electrons in the conducting wires cannot
play the role of scattering centers since their interaction
with the electromagnetic field is accounted for by an
effective negative dielectric permittivity of the wires.
Thus, we should generate an additional population of free
electrons in the system, e.g., by using a direct injection with
an e gun [17]. An alternative way is to use a heavily doped
semiconductor as a matrix for the wire array [18]. Free
carriers in the semiconductor matrix can play the role of
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FIG. 1 (color online). (a) Schematic of the Compton-like
scattering in a hyperbolic medium. An incident photon (green)
is scattered (red) by a free electron (blue). (b) Diagrams illustrate
phase-matching conditions, to be satisfied in vacuum (left) and a
hyperbolic medium (right). Red curves correspond to the initial
(solid) and scattered (dashed) photon isofrequency surfaces, blue
vector shows the momentum of the electron after the scattering.

scattering centers as was shown in a number of studies [19]
where the scattering of light from free carriers in semi-
conductors was experimentally observed.

The essence of the Compton-like polariton scattering
effect can be illustrated by means of the scattering diagram
shown in Fig. 1(b). If the initial momentum of an electron is
zero, the momentum conservation implies that the acquired
electron momentum Agq, is equal to a difference between
initial and final photon wave vectors. In vacuum, the wave
vector of a photon is much smaller than the wave vector of
an electron of the same energy and, as can be seen in
Fig. 1(b), the maximum electron wave vector |Aq,| is
limited by 2w;/c. This defines the upper bound for the
electron kinetic energy, that is equal to the photon energy
shift due to the energy conservation. In sharp contrast to
vacuum, in a hyperbolic medium the final photon momen-
tum is bounded only by the inverse period of the structure,
leading to the large electron kinetic energy and thus the
large Compton frequency shift. The scattered quanta then
occupy one of the large wave vector states, the TM
electromagnetic mode. Scattering to the TE eigenmodes
is also allowed; however, the cross section of this process is
much smaller due to the small density of the TE modes, and
the frequency shifts will not be enhanced. In what follows,

we consider the scattering of the TM modes only. It is
worth noting that TM eigenmodes, having a k vector much
larger than those in the free space, will experience the total
internal reflection and, as a result, will be trapped inside the
hyperbolic medium. However, its near field [shown sche-
matically with a glowing disc in Fig. 1(a)] can be detected
in close proximity to the interface or inside the hyperbolic
metamaterial. A proper theoretical description of the above
scenario is developed below.

The permittivity tensor of the metamaterial is taken in the
form & = diag(e,,, €, €..), with the dispersion relation for
the TM modes given by (w/c)?> = k2/e.. +k*/e.. In
order to calculate the frequency shift and differential cross
section of the scattering process, we introduce the
Hamiltonian for the electron system coupled to the electro-
magnetic field [20,21]:

hot
H Hk1n+H£1r?

e A A
c/erA, (1)
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where A5l and I:Igf " are electron kinetic energy operator
and free electromagnetic field energy operator, respectively;
where ¢y, c,t are the annihilation and creation operators
for the electron with the momentum &, and A is the vector
potential operator of the electromagnetic field in the second
quantized form. The first term in Eq. (2) is the paramagnetic
current which corresponds to the process of absorption
(or emission) of the photon by an electron, which is
forbidden for free electrons in special relativity. Thus, we
account for the second, diamagnetic term in Eq. (2) only.
Scattering of a single photon by a single electron is a
textbook problem [16], and the scattering cross section is
given by

e e |*c?
omm =12 // kdefdgzi' 1%
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wg = mc?/h, - oy, Ak =
\/k? + kj% —2kikscos 0, k; = (/€ w;/c and k; are initial
and final photon momenta, e, ; are the polarization vectors
for the initial and scattered photon, dQ = sin6d0d¢ is
the differential of the solid angle, r, = ¢?/(mc?) is the
classical electron radius, and the delta function in the
expression Eq. (3) ensures the energy conservation in

the system, and it defines the scattered photon frequency
;. We assume that the electron was initially at rest.

where Aw = w;
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FIG. 2 (color online).  (a) Frequency of the photon and (b) differ-
ential cross section for the Compton-like scattering in a lossless
dielectric medium with permittivity e = 4 (red dashed curves)
and in a hyperbolic medium with permittivity e, =4, ¢,, = —4
(blue solid curves). The initial photon frequency is 1 eV.

The plots of the scattered photon frequency and differ-
ential cross section in an ideal case of a uniform lossless
hyperbolic medium are presented in Figs. 2(a) and 2(b). We
notice that as the scattering angle approaches the value
O = cot™'(y/ex/|e..|) the scattered photon frequency
vanishes, and the differential cross section diverges. The
scattering cross section vanishes exactly for the scattering
angles 0., < 0 < m — 6,. This can be easily explained if we
recall that for these angles Green’s function is evanescent in
lossless hyperbolic media [22]. As for the case of the
Purcell enhancement, the divergencies can be overcome if
we account for a finite period of the structure. Simple
calculations suggest that the Compton shift enhancement is
proportional to (1/D)?, where 1 is the wavelength and D is
the period of the structure, and the cross-section enhance-
ment, just as the density of states, is proportional to (1/D)?.

To evaluate the experimental feasibility of the suggested
effect, we consider a more realistic case of a lossy and
bounded metamaterial. We employ the Langevin approach
when the problem is fully characterized by Green’s
function determining the electromagnetic response to
local currents [20]. The calculation procedure involves
three steps: (i) calculation of a wave transmitted inside the
medium; (ii) determination of the local currents arising due

to the wave scattering by electrons, and (iii) reconstruction
of the scattered wave from the known currents. A similar
approach has been recently applied to the Brillouin
scattering of exciton-polaritons in semiconductor super-
lattices [23].

First, we consider an electromagnetic plane wave inci-
dent normally upon an interface of a semi-infinite hyper-
bolic medium. The vector potential of the incident wave in
the hyperbolic medium can be written as A(z, 1) =
€Aty exp[—iw,-t—l—ikgzz], where e, is the polarization
basis vector, w; is the initial photon frequency, ¢, is the
transmission coefficient for the normal incidence,
and kj, = /e w;/c.

Second, in order to consider the scattering process
we account for the incident field interaction with an
ensemble of free electrons inside the hyperbolic
media. The incident wave excites a current described

by the following density operator: j(r,t) = e?/
(mCZV)Zq,-,qfélTlf @qiei(‘li—qf)r—i(h/Qm)(4?—47)’A(Z’ t) [21],
that corresponds to the second, diamagnetic, term in

Eq. (2). Here V is the normalization volume. The (scat-
tered) electric field operator at the position z, reads

. 1 - oy
E(r, 1) :?/G(r, r',t—t’)%d%’dr’, (4)

where G is a dyadic Green’s function for the semi-infinite
hyperbolic medium. In the case when the source is placed
inside a hyperbolic medium and the observation point is
outside, at the distance z, from the interface, the Green’s
tensor reads [24]

o )
G(p.20.0'. 7 @) :/ e e p=p) =ik k)
(27)*k,
X Z fhveni ® ey, (5)
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where k, = [Exx(w/c>2 - (8xx/8zz)kﬂl/2’ k;/ = [(a)/c)2 -
k2]'/? is the normal component of the wave vector in
vacuum, k, is the in-plane photon wave vector, 7, is the
transmission coefficient, and e;,, e, are the polarization
basis vectors in the hyperbolic media and vacuum,
respectively.

Finally, by performing the spatial and time Fourier
transformations, we obtain the intensity of the scattered
polaritons averaged over the electron distribution,

1K) 20.) = / die (B(K,. z0.1) - B (k,.20.0)).  (6)

The resulting correlators have the form P =
(6& ?:ql,?:lii, qu,) and can be straightforwardly evaluated
by using Wick’s theorem: P =&;p8;n;(1—ns)+

6if5i’f’ n;n;.
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The second term corresponds to the Rayleigh scattering
with the conservation of frequency and in-plane wave
vector. Here we focus on the first term, that is responsible
for the inelastic scattering. The expression for the spectral
density function can be written as

o \21672r2V?3m
I(w,kp):Eg(—) —  —T(w.k,), (7)

i Exxh

where the dimensionless factor 7 is given by the expression

—2Imk‘/z0 42 ; l l—n
I(a), k/)) / qin fi ))
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£ [aiz + (ko — Rek;) + £q.]* + ImkZ
(8)
and Gy, = [qF, + 3 (0 — wi) = k3 + 2q,k, cos(5¢)]'/2,

where g, is the in- plane component of the electron before
scattering, o¢ is the angle between the in-plane wave vector
of the incident radiation and in-plane wave vector of the
electron, n; ; are the Fermi distribution functions, and n(;
means that the electron final energy is determined by the
conservation laws EY = (h*/2m)|g7, + (q;, — k,)?]. The
dimension of I in Eq. (8) is volume energy density per
frequency per two-dimensional wave vector, and thus it
corresponds to the intensity of the reflected field at the fixed
frequency and wave vector. This value is directly propor-
tional to the differential cross section per unit area of a
metamaterial surface.

The integral in Eq. (7) can be calculated analytically in the
special case of zero temperature and small carrier concen-
tration 7, when the Fermi wave vector kp = (37°n,)'/? is
much less than A = \/2m(w; — w)/h. For the Compton
shifts f(w; — w), as small as 0.01 meV, this regime is
realized for the electron densities up to n, &~ 4 x 101 cm™!
and kr ~ 4.9 x 10° cm™!. Below, we demonstrate that the
actual values of the Compton shift can be much larger, so
the low-density approximation may work even better. The
dimensionless integral in Eq. (8) is then given by

| Ank )3
|\/A? = k3| é&=%1 (ko, — ko + & - k3)? + ImkZ,

©)

In Fig. 3 we plot the dimensionless part of the scattered
intensity [Eq. (8)] for a hyperbolic medium with ¢,, = 4.0,

. = —4.0 4+ 0.3i [see Fig. 3(a)], and a dielectric medium
with the permittivity 4.0 4 0.3i [see Fig. 3(b)]. Figure 3(c)
shows the integrated spectral intensity as a function of
the Compton shift for both dielectric and hyperbolic media.
The dielectric permittivity dispersion could be neglected,
since we are working in a narrow frequency range. The
intensity of the scattered radiation is calculated at the
distance of 20 nm from the surface of the structure.
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FIG. 3 (color online). (a),(b) Logarithmic map of the dimen-
sionless part of the spectral density / vs in-plane wave vector and
the frequency shift for the case of (a) hyperbolic and (b) isotropic
dielectric media. (c) Integral of the spectral density over the in-
plane momenta.

The Fermi wave vector is equal to 10° cm~!. For the case
of light scattering by an electron gas rather than an isolated
free electron, the value of the shift increases with the Fermi
wave vector of the gas: éw ~ h? /mko(kokp + ko/2), ko =
w;/c [19]. To isolate the contribution of the modified
photonic density of states from the overall shift enhance-
ment, we assume the same electron distributions for the case
of dielectric and hyperbolic media which correspond exper-
imentally to the case of a bulk semiconductor and a metallic
wire array grown in the same semiconductor matrix [18].

Our formalism also allows us to account for a periodicity
of the structure. In periodic structures, the in-plane wave
vector k, cannot exceed 27/D. Thus, in Figs. 3(a) and 3(b)
we extend the axis &, only to 150 um~! which corresponds
to the period of 20 nm.

The spectra of the scattered radiation shown in Figs. 3(a)
and 3(b) and calculated numerically with Eq. (8), are well
approximated by the analytical result of Eq. (9).
Singularities in Eq. (9) describe different scattering reso-
nances. Two scattering channels can be distinguished in
Figs. 3(a) and 3(b). The first channel is marked by a dashed
curve, and it corresponds to a pole of the first factor of
Eq. (9). The Compton shift is defined as w; —w; =
hk%/(2m), ie., the scattered electron propagates along
an 1nterface with vacuum. This interface feature is similar to
the van Hove singularity in the electronic density of states
of one-dimensional systems [25], or Wood’s anomalies in
the grating diffraction [26]. While it extends up to the large
wave vectors, it is integrable and does not contribute much
to the overall scattered intensity.
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For hyperbolic media, another scattering channel
becomes dominant, and it is marked by a dash-dotted
curve in Fig. 3(b). This channel corresponds to the
resonance in the second factor of Eq. (9) described by
the bulk momentum conservation law. Large in-plane wave
vectors of scattered photons and electrons mean larger
scattered electron kinetic energies and, as a result, larger
Compton shifts. For dielectric media, this scattering chan-
nel does not exist because the photon modes with large
in-plane wave vectors are not available, see Fig. 1(b).
Figure 3(c) demonstrates the main result of our analysis: the
scattering becomes much stronger in the hyperbolic regime
so that the Compton shifts up to ~10 cm™!, which is of the
order of 1 meV can be attained.

The use of hyperbolic media could facilitate a detection
of very weak nonlinear processes, similar to the case of
rough plasmonic surfaces enabling the detection of the
Raman scattering via a local field enhancement [27]. Giant
Compton-like shifts and enhanced scattering cross sections
could be detected via near-field imaging, either inside a
bulk structure or close to a surface. Also, the internal
structure of hyperbolic media leads to local field correc-
tions, since the value of the Compton shift and cross section
depend on the exact position of electron. However, if the
spatial distribution of the free electrons is quasiuniform,
then the local field corrections can be averaged and the
effective medium approximation can be applied [28]. A
similar effect appears in extremely anisotropic metamate-
rials with positive dielectric permittivities which can be
realized with plasmonic periodic structures [29].

In conclusion, we have developed a general formalism
for describing inelastic scattering processes in hyperbolic
metamaterials. In particular, we have demonstrated theo-
retically that the Compton-like polariton scattering in
hyperbolic media differs substantially from the well-known
Compton scattering in vacuum, and we have predicted that
Compton shifts for the visible light can be enhanced to
become observable in realistic experiments. The concept of
inelastic scattering enhancement in hyperbolic media is
rather general, and it can be extended to other types of
quasiparticles excited in media with hyperbolic dispersion,
including phonons and surface plasmons.
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