USE OF THESES

This copy is supplied for purposes of private study and research only. Passages from the thesis may not be copied or closely paraphrased without the written consent of the author.
This thesis describes original research carried out by the author during the tenure of an Australian National University Postgraduate Scholarship in the Department of Psychology of the Australian National University.

Anne Mathew
PREFACE

I wish to thank my supervisor Dr. Michael Cook for his expert help, guidance and friendship throughout the course of this study and for allowing me unlimited use of his time and advice. I am also grateful to Dr. Cook for writing the computer programs that were critical for the analysis in this study and for help in the preparation of the illustrations presented in the thesis.

Many thanks to my adviser Dr. Kathy Griffiths for her generous assistance and moral support throughout the duration of this project. I am indebted to her for critically reading drafts and for her contribution of ideas to this project.

Thanks also to Mrs. Jess Giddings for her constant encouragement (both moral and material) and gentle caring at all times. I am grateful to many other members of the Psychology Department for their help; in particular Mr. Steve Kelemen for building the experimental apparatus used in the present research; Mr. Len Arnold and Mr. Neville Whitworth for constructing the 'hair-line-generator' that was essential for this work; and last, but not least, Mr. Martin Schaeffer for overall technical assistance, in particular, with computer operations.

I also wish to thank the Australian Capital Territory Health Commission and the Infant Welfare Sisters of Canberra for providing the link between this department and the families (infants) who participated in the study. I am
especially grateful to the parents who willingly provided the infant subjects for this study.

I am grateful to Mathew for helping me make a smooth transition to life in Australia. I am thankful to two other people – Ammachi and Sonny – for their unstinting support and encouragement – to whom this thesis is dedicated. Finally, thanks to Patrick whose constant support, patience and fine sense of humour made the writing of this thesis a less lonely task.

A portion of the study reported in this thesis has been accepted for publication.

TABLE OF CONTENTS

PREFACE iii
ABSTRACT xi

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 REVIEW OF LITERATURE 6

2.1 An historical perspective on the development of reaching and grasping behaviour in infants 6

2.2 Two contrasting theoretical viewpoints regarding the development of eye-hand coordination 8

2.2.1 Gesell's model 9

2.2.2 Piaget's model 10

2.3 Constraints on infant reaching: The status of the infant's visual and motor systems 12

2.3.1 Visual capacity in relation to reaching 13

2.3.2 Motor capacity in relation to reaching 16

2.4 The course of development of reaching in the first year: 20

2.4.1 In neonates 20

2.4.2 In infants between 1 and 3 months 32

2.4.3 The appearance of full reaching 35

CHAPTER 3 THE NATURE OF CONTROL MECHANISMS EMPLOYED IN INFANT REACHING 45

3.1 The organization of reaching movements in infants 45

3.2 The role of visual feedback 50

CHAPTER 4 BACKGROUND TO THE PRESENT STUDY 58

4.1 von Hofsten's study 58

4.2 The present study 63
CHAPTER 5 METHODOLOGY 65
 5.1 Subjects 65
 5.2 Apparatus 66
 5.3 Stimuli 69
 5.4 Procedure 69
 5.5 Data Analysis 72
 5.5.1 Identification of reaching movements 72
 5.5.2 Transcription of identified movements 73
 5.5.3 Analysis of transcribed movements 75
CHAPTER 6 ANALYSIS OF WHOLE MOVEMENTS: RESULTS AND DISCUSSION 90
 6.1 General characteristics of whole reaching movements 93
 6.2 Analysis of whole movements for evidence of "aiming" and "error correction" 105
CHAPTER 7 ANALYSIS OF MAJOR SEGMENTS: RESULTS AND DISCUSSION 117
 7.1 General characteristics of major segments 118
 7.2 Analysis of major segments for evidence of "aiming" and "error correction" 120
 7.3 Analysis of element boundaries within the major segment (trough analysis) 125
CHAPTER 8 ANALYSIS OF MAJOR ELEMENTS: RESULTS AND DISCUSSION 130
 8.1 General characteristics of major elements 131
 8.2 Analysis of major elements for evidence of "aiming" and "error correction" 133
 8.3 Functional significance of multiple peaks in the speed-time curves 140
CHAPTER 9 SUMMARY AND CONCLUSIONS 150
REFERENCES 159
<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MEAN GENERAL CHARACTERISTICS OF 'MISS' MOVEMENTS OF THREE INFANT AGE GROUPS</td>
<td>166</td>
</tr>
<tr>
<td>2</td>
<td>RAW DATA FOR RESULTS PRESENTED IN CHAPTER 6</td>
<td>167</td>
</tr>
<tr>
<td>3</td>
<td>RAW DATA FOR RESULTS PRESENTED IN CHAPTER 7</td>
<td>170</td>
</tr>
<tr>
<td>4</td>
<td>RAW DATA FOR RESULTS PRESENTED IN CHAPTER 8</td>
<td>173</td>
</tr>
<tr>
<td>5</td>
<td>SUMMARY OF DEFINITIONS PRESENTED IN CHAPTER 5</td>
<td>176</td>
</tr>
<tr>
<td>6</td>
<td>A SAMPLE RECORD OF THE RAW DATA AND THE MEASURES EXTRACTED BY THE ANALYSIS PROGRAM FROM A SECTION OF A REACHING MOVEMENT BY A 6 MONTH-OLD INFANT</td>
<td>177</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 6.1.1 Distributions of total reaches analysed for subjects of various ages

Table 6.1.2 Mean general characteristics of total movements (contacts + misses) for subjects of various ages

Table 6.1.3 Mean general characteristics of 'contact' movements for subjects of various ages

Table 6.2.1 Analysis of total movements of subjects of various ages: (a) Means (and standard deviations) of absolute errors of direction (in degrees) (b) Correlations (pooled across subjects) between Target Direction and Initial Direction of movement

Table 6.2.2 Correlations (pooled across subjects) between [Initial Error and Total Veer] and [Initial Error and Intermediate Veer]

Table 7.1 Distributions and mean general characteristics of major segments analysed for subjects of various ages

Table 7.2 Analysis of major segments of reaching movements by subjects of various ages (a) Means (and standard deviations) of absolute errors of direction (in degrees) (b) Correlations (pooled across subjects) between Target Direction and Initial Direction of movement (c) Correlations (pooled across subjects) between [Initial Error and Total Veer] and [Initial Error and Intermediate Veer]

Table 7.3 Analysis of major segments: Mean direction changes (and standard deviations) at element boundaries by infants of various ages

Table 8.1.1 General characteristics of major elements analysed for subjects of various ages

Table 8.1.2 Mean distance travelled and mean duration of whole movements, major segments and major elements in the three infant groups
Table 8.2
Analysis of major elements of reaching movements by subjects of various ages
(a) Means (and standard deviations) of absolute errors of direction (in degrees)

(b) Correlations (pooled across subjects) between Target Direction and Initial Direction of movement

(c) Correlations (pooled across subjects) between [Initial Error and Total Veer] and [Initial Error and Intermediate Veer]

(d) Correlations (pooled across subjects) between Initial Error and Final Error

Table 8.3.1
Analysis of major elements of reaching movements by 6-month-old infants using a constant and variable sampling rate

Table 8.3.2
Analysis of movement elements: The control of distance travelled in infants of various ages
(a) Correlations of absolute Initial Error with Distance Travelled (all elements)

(b) Correlations of [Target Distance with Distance Travelled] and [Total Distance Travelled and point of Maximum Speed] (major element only)
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Analysis of aiming (from von Hofsten, 1980)</td>
<td>60</td>
</tr>
<tr>
<td>5-1</td>
<td>The experimental arrangement</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>(a) Side view</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Top view</td>
<td></td>
</tr>
<tr>
<td>5-2</td>
<td>The stimulus object</td>
<td>70</td>
</tr>
<tr>
<td>5-3</td>
<td>A sample display of a reaching movement by an adult</td>
<td>76</td>
</tr>
<tr>
<td>5-4</td>
<td>A sample display of a reaching movement by a 4.5 month-old infant</td>
<td>77</td>
</tr>
<tr>
<td>5-5</td>
<td>A sample display of a reaching movement by a 6 month-old infant</td>
<td>78</td>
</tr>
<tr>
<td>5-6</td>
<td>A sample display of a reaching movement by a 7.5 month-old infant</td>
<td>79</td>
</tr>
<tr>
<td>5-7</td>
<td>A sample display of a reaching movement by a 6 month-old infant showing the major segment and major element</td>
<td>81</td>
</tr>
<tr>
<td>5-8</td>
<td>Calculation of azimuth and elevation</td>
<td>85</td>
</tr>
<tr>
<td>5-9</td>
<td>Analysis of hand direction</td>
<td>86</td>
</tr>
<tr>
<td>5-10</td>
<td>Analysis of turn of hand path</td>
<td>86</td>
</tr>
<tr>
<td>6-1-1</td>
<td>Distributions of total (contacts + misses) and 'contacts' reaches for 3 infant age groups</td>
<td>95</td>
</tr>
<tr>
<td>6-1-2</td>
<td>Mean general characteristics of total and 'contact' reaches of four age groups</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>(a) Mean movement time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Mean number of speed peaks and movement segments per reach</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Mean initial target distance and mean distance travelled in a reach</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d) Mean linearity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(e) Mean number of distance reversals per reach</td>
<td></td>
</tr>
<tr>
<td>6-2-1</td>
<td>Mean errors of direction of the four age groups</td>
<td>115</td>
</tr>
</tbody>
</table>
ABSTRACT

Infant reaching movements have tortuous handpaths and multipeaked speed curves. It has been hypothesised that these movements comprise sequences of ballistic motor units whose boundaries are marked by troughs in the speed-time curve. Error correction, if any, is assumed to take place between and not within these movement units. This hypothesis was investigated in this study. Samples of reaches were obtained from groups of infants aged 4.5, 6 and 7.5 months as split-screen video recordings, which were then transcribed as sequences of (x,y,z) hand coordinates. There was an improvement in overall efficiency in reaching across the three age groups. Movement paths were examined for evidence of initial aiming and subsequent correction. At all ages, the initial direction of the movement was correlated with target direction, providing evidence that the hand was aimed towards the target. Additionally, changes in movement direction made after the commencement of the movement tended to curve the hand path towards the target, providing evidence of error correction. Local minima of hand speed evident within segments of continuous movement were associated with turn towards the target. However, the movement path was also curved towards the target within the movement elements bounded by these minima. This finding was seen as being consistent with 'continuous' correction of movement errors and as contrary to the suggestion that infant movements are concatenations of ballistic movement units whose boundaries are marked by troughs in the speed profile.