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Dissipative soliton resonance (DSR) is a phenomenon where the energy of

a soliton in a dissipative system increases without limit at certain values of

the system parameters. We have found that the DSR phenomenon is robust

and does not disappear when perturbations are introduced into the model. In

particular, parameter management is benign to DSR: the resonance property

remains intact even when a pulse experiences periodic changes of system

parameters in a laser cavity. We also show that high energy pulses emerging

from a laser cavity can be compressed to shorter durations with the help of

linear dispersive devices. c© 2008 Optical Society of America

OCIS codes: 190.4370, 320.5520.

1



1. Introduction

Dissipative soliton resonance (DSR) is a phenomenon where the energy of a soliton in a

dissipative system becomes infinitely high at certain values of the system parameters.

Specifically, we have found that systems that can be modeled using the cubic-quintic

complex Ginzburg-Landau equation (CGLE) [1,2] admit a region of parameters with

stable solitons whose energy goes to infinity at the boundary of that region. The

edge of this region in our five-dimensional parameter space is a co-dimension one

surface. Thus, the energy of the dissipative solitons remains infinite even when the

parameters are changed in a continuous way along that surface. Clearly, the definition

of ‘resonance’ used here is wider than that used in the physics of linear oscillations.

Instead of varying frequencies, we vary the generalized system parameters to achieve

the emission of high energy pulses. This phenomenon can be useful in designing optical

oscillators generating pulses with exceptionally high energies [3].

Up to now, there has not been a way to find the DSR using any analytical pro-

cedure. However, we can use trial function techniques to find the resonance approxi-

mately [4]. The method allows us to obtain an equation which roughly describes the

position of the resonant surface in the multi-dimensional parameter space. Numerical

simulations of the CGLE allow us to confirm their existence and to find the resonant

surface more accurately. A question arises as to whether the resonance is a robust

phenomenon relative to perturbations of the model itself. To be specific: does the
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phenomenon still exist when we make the model closer to real systems? The CGLE is

a good approximation for describing optical oscillators with passive mode-locking [5].

However, a better approximation is needed in specific cases.

In this paper, we answer this question by introducing parameter management into

the system. Thus, we allow for changes in the medium in which the pulse propagates,

and this means that the parameters of the governing equation also change. If we are

dealing with a fiber laser [6,7], then typically the pulse periodically passes through an

erbium-doped fiber, mode-locking device and a standard single mode fiber. Passing

through the amplifier and mode-locking element in the cavity can be described by

the nonlinear non-conservative terms of the master equation, while the propagation

through the single mode fiber is affected simply by second-order dispersion. In solid-

state lasers, such as Ti:sapphire lasers with Kerr-lens mode-locking [8], prisms and

mirrors provide purely chromatic dispersion while the crystal itself serves simultane-

ously as an amplifier and nonlinear transmission element. Thus, a periodic change in

the parameters of the CGLE will roughly describe the propagation of the pulse in

laser cavities [9].

These modifications are certainly needed if the pulse experiences relatively large

changes during each round trip around the cavity. If the pulse variations are modest,

then the averaged model [10] with constant parameters is good enough to describe

the pulse generation process. Thus, to be even more specific, our task in this work is

to answer the question outlined above: will the periodicity in the cavity result in the

3



disappearance of the DSR, or is the phenomenon so robust that these changes will

influence only the location of the resonance surface but not cause the phenomenon to

fade? For this purpose, we introduce a model which does not describe any specific laser

system but does allow for relatively large changes in the pulse evolution. In numerical

modeling of this particular situation, we have found that the DSR phenomenon does

indeed persist. It does not disappear and we can hope that a real system can be

suitably constructed to produce high energy pulses. The system dispersion generally

has to be chosen in the normal regime [6], but this is not an absolutely necessary

condition.

2. The model

The sketch of the laser model that we consider in this paper is shown in Fig. 1(a).

It consists of three main elements. 1) A single-mode fiber, of length L2, where only

second-order chromatic dispersion takes place. 2) A piece of fiber with length L1 where

amplification, nonlinearity and mode-locking occur. 3) A 80/20 coupler located in the

middle of the element of length L1. Another example that is described qualitatively

by this model would be a solid state laser with Kerr-lens mode-locking [8, 11]. In

the latter case, the mode-locking and amplification are concentrated inside the laser

crystal and the rest of the cavity can be described as a dispersive line. The model is

very simple and serves only for the demonstration of the principle. If the dissipative

soliton resonance does exist in this model, there is no reason why it should disappear
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in more complicated systems.

Pulse propagation in a passively mode-locked laser can be modeled by the cubic-

quintic complex Ginzburg-Landau equation (CGLE). This is given by [2]

iψz +
D

2
ψtt + |ψ|2ψ + ν|ψ|4ψ

= iδψ + iǫ|ψ|2ψ + iβψtt + iµ|ψ|4ψ , (1)

where z is the propagation distance normalized to the cavity round trip length, t is

the retarded time, ψ is the normalized envelope of the field, D is the group velocity

dispersion coefficient, being positive (negative) in the anomalous (normal) dispersion

regime, δ is the linear gain-loss coefficient, β accounts for spectral filtering and ǫ

represents the nonlinear gain, the term with µ represents, if negative, the saturation

of the nonlinear gain, while the one with ν corresponds to the quintic nonlinearity.

The propagation of a pulse through a laser cavity is a periodic process [9] that

can be modeled by Eq. (1), but here the parameters D, δ, β, ǫ, µ and ν are periodic

functions of z. The period is defined by the cavity round-trip, and the parameters

are step-wise functions of z. The parameter map that we are using in this work is

shown in Fig. 1(b). Clearly, there is a great variety of laser designs [12–16] and this

particular map cannot cover all of them. However, as we mentioned, it serves as an

example which shows that the model admits the resonance phenomenon.

In our model, amplification and nonlinear effects are concentrated in a section of

the cavity of length L1, while a section of length L2 (standard telecom fiber or prisms
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and mirrors) serves as the dispersive line. Eq. (1) in the first section is solved using

a split-step Fourier method. For the second section, the dispersion is the only effect

that acts on the pulse. Here, Eq. (1) can be reduced to its simpler version:

iψz +
D2

2
ψtt = 0 . (2)

A stationary regime of pulse evolution in the cavity is shown in Fig. 2. The station-

ary regime is reached after a few round-trips, provided that the system parameters

are chosen in the range of stable soliton solutions. The cavity parameters that we have

used are given in the figure caption. The pulse evolution is periodic, with the width

increasing in the dispersive part of the cavity and the amplitude increasing in the

part of the cavity with amplification. Within the fiber loop, the pulse energy drops

by 20% each time the pulse passes the coupler. This implies that small amplitude

waves experience an overall linear loss, despite the fact that δ is positive in the active

medium. The pulse energy, Q =
∫
∞

−∞
|ψ|2dt, is monitored at the end of each round-

trip, i. e. at point 1 in Fig. 1. The pulses outside the cavity, i. e. in lower coupler

output, have an energy which is 20% of the value of Q before it.

3. Resonance

Fig. 3 shows the pulse energy, Q, at the point 1 of the cavity, i. e. before the pulse

passes the coupler, versus the dispersion parameter, D1. The three distinct curves

in this plot are calculated for three values of the linear dispersion, L2D2. The case

L2D2 = 0 corresponds to the case without the purely dispersive piece. Thus, the
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pulse propagation is described by a single CGLE with constant coefficients and it is

disturbed only by the coupler. This case is the closest to the model that was studied

before in Ref. [3, 4].

The major feature of the plot in Fig. 3 is that the energy, Q, increases to infinitely

large values at the left-hand-side of each curve. This happens for every value of the

linear dispersion, L2D2. This is exactly the same feature that was observed in the

continuous model [3]. We called this phenomenon “dissipative soliton resonance” [4].

As we can see, the phenomenon does not disappear when we move away from the

continuous model. Thus, the resonance of dissipative solitons is a robust phenomenon

that reveals itself even when the model is perturbed.

The pulse profiles and the corresponding spectra are shown in Fig. 4(a) and

Fig. 4(b), respectively, for three different values of D1. The pulse width in Fig. 4(a)

is the highest for D1 = −1.3. When the dispersion, D1, approaches the point of reso-

nance, the width of the soliton further increases without limit. The spectra are quite

distinctive when the cavity is in the negative dispersion regime. They are symmetric

and have two side maxima. The strength of the central maximum in Fig. 4(b) in-

creases when we approach the point of resonance. This is also in accordance with the

fact that the soliton energy increases to infinity. Although the spectra of the pulses are

not exactly the same as in the continuous model [3], their changes when approaching

the resonance follow the same scenario.

When we change L2D2 to negative values, the energy, Q, also increases, as can be
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seen from Fig. 3. Fig. 5(a) and Fig. 5(b) show the change in the pulse profiles and

their spectra in this case. A comparison with the data in Fig. 4 shows that changing

L2D2 has qualitatively the same effect as changing the linear dispersion D1.

Moreover, the curves in Fig. 3 have fairly similar shapes, and so we can also conclude

from this that changes in D1 and D2 may have similar effects. In fact, the three curves

in Fig. 3 can be roughly approximated by the following empirical expression:

log
10

(Q) =
2.8

〈D〉 + 2.2
, (3)

where the effective (average) dispersion is defined by

〈D〉 = D1 + 10L2D2 . (4)

Therefore, we can represent the results in Fig. 3 by using the L2D2 = 0 curve if we

replace D1 with 〈D〉 on the horizontal axis. Thus, the system functions like a single

element with an effective value of dispersion. However, this is only an approximation.

4. Pulse Compression

Indeed, the energy of the pulse outputs generated from the oscillator that we have

discussed in the previous section increases dramatically as we approach the resonance.

This increase is achieved mainly from the increase in the pulse width, rather than from

an increase in its amplitude. The peak amplitude is usually limited by the parameters

of the mode-locking device, i. e. by the saturation of the nonlinear transmission (in

our model basically by ǫ and µ). Nevertheless, as the output pulse from the oscillator
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is highly chirped, this can be used to compress the pulse [17] and hence obtain high

energy ultra-short pulses.

The phase profiles of the output pulses are shown in Fig. 4(c) and Fig. 5(c). The

phase is roughly parabolic in the central part of the pulse and linear in the soliton

wings. Each pulse is very far from being transform-limited. The presence of the chirp

makes it possible to carry out pulse compression using linear devices [17]. One of the

simplest methods of compressing such pulses is to use a linearly-dispersive medium,

such as a pair of gratings [18] or a dispersive fiber, to compensate for the linear

component of the chirp. A compression scheme is known to work well for a linearly-

chirped pulse [19]. If the initial pulse is Gaussian, then its shape is retained after

compression. In our case, the pulse is not Gaussian and the chirp is not linear across

the whole pulse but, nonetheless, a good compression can still be achieved.

Mathematically speaking, compression is achieved with the use of Eq. (2) where

D2 is chosen to be positive. The particular value of D2 influences only the length of

propagation distance needed for achieving the optimal compression. Fig. 6 shows the

results for the numerical pulse compression of two different pulses taken at the output

of the oscillator (point 1 in Fig. 1). When the parameters of the oscillator are chosen

to be not too close to the resonance point, the pulse can be compressed nicely to a

fraction of its initial width. The resulting pulse shape is close to being bell-shaped with

a single maximum. The compression result for the solid black point in Fig. 1 is shown

in Fig. 6(a). The dashed line in this figure shows the pulse shape before compression
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and the solid curve corresponds to the pulse shape after the compression.

When the parameters are chosen closer to the resonance point, the chirp has a

large part that is far from being linear. Then linear compression does not completely

eliminate the chirp. The pulse is compressed, but not up to the transform limit. The

compression result for the black solid square point in Fig. 1 is shown in Fig. 6(b).

The dashed line shows the pulse shape out of the oscillator, while the solid curve

corresponds to the compressed pulse. The remaining chirp leads to the pulse with

the narrowest width that is multi-peaked. Pulses of this shape still can be used in

practice, but in some applications the transform-limited pulses are more desirable.

These can be achieved with the help of more sophisticated dispersive lines [20–22],

even near the resonance points. A choice of parameters which is different from the

set shown in Fig. 3 can also improve the pulse chirp and consequently the results for

pulse compression. Clearly, more work is needed in this direction.

5. Conclusion

In conclusion, we have shown that the dissipative soliton resonance observed pre-

viously in [3, 4] is a robust phenomenon that does not disappear when we strongly

perturb the model with parameter management. The phenomenon can be used to

generate high energy pulses from a single laser oscillator. The output pulses are usu-

ally highly chirped and the pulse duration can be significantly reduced using a linear

dispersive line at the output of the laser system.
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List of Figure Captions

Fig. 1. (a) Schematic of the model and (b) map of the parameters of the CGLE for

a single round-trip of the pulse in the cavity. Pulses travel counter-clockwise around

the nonlinear (L1) and linear (L2) sections of the loop. At the coupler, 20% of the

light is tapped off, and this enters the compressing piece of fiber.

Fig. 2. Evolution of the soliton within the dispersion-managed cavity for three consec-

utive round-trips. The pulse shape repeats at the end of each round-trip, and hence

fixed shape solitons are generated at the output of the oscillator. The system param-

eters are L1 = 0.1, L2D2 = −0.02, D1=-1, ǫ = 1.0, δ = 1.1, β = 0.08, ν = 0.01 and

µ = −0.003.

Fig. 3. Soliton energy, Q, in the L1 section of the oscillator versus the dispersion

parameter, D1, for three different values of L2D2. The solid circle and solid rectangle

show the points for which pulses are compressed (see Fig. 6 below).

Fig. 4. (a) Pulse profiles, (b) soliton spectra and (c) phase profiles for three different

values of D1. The rest of the parameters are shown inside the figure (a).

Fig. 5. (a) Pulse profiles, (b) soliton spectra and (c) the phase for three different

values of L2D2. The rest of the parameters shown inside the figure (a). Comparison

with Fig. 4 shows that the effect of changing L2D2 is qualitatively the same as the

effect of changing D1.

Fig. 6. Pulse profiles before (dashed lines) and after (solid lines) the linear compression
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of the pulse. The oscillator output pulses (dashed lines) are chosen for the set of

parameters shown in Fig. 3 and (a) D1 = −1.0 (solid circle in Fig. 3) and (b) D1 =

−1.3 (solid square in Fig. 3).
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Fig. 1. (a) Schematic of the model and (b) map of the parameters of the CGLE

for a single round-trip of the pulse in the cavity. Pulses travel counter-clockwise

around the nonlinear (L1) and linear (L2) sections of the loop. At the coupler,

20% of the light is tapped off, and this enters the compressing piece of fiber.
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Fig. 2. Evolution of the soliton within the dispersion-managed cavity for three

consecutive round-trips. The pulse shape repeats at the end of each round-trip,

and hence fixed shape solitons are generated at the output of the oscillator.

The system parameters are L1 = 0.1, L2D2 = −0.02, D1=-1, ǫ = 1.0, δ = 1.1,

β = 0.08, ν = 0.01 and µ = −0.003. Fig02.eps
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Fig. 5. (a) Pulse profiles, (b) soliton spectra and (c) the phase for three dif-

ferent values of L2D2. The rest of the parameters shown inside the figure (a).

Comparison with Fig. 4 shows that the effect of changing L2D2 is qualitatively

the same as the effect of changing D1. Fig05.eps
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Fig. 6. Pulse profiles before (dashed lines) and after (solid lines) the linear

compression of the pulse. The oscillator output pulses (dashed lines) are chosen

for the set of parameters shown in Fig. 3 and (a) D1 = −1.0 (solid circle in

Fig. 3) and (b) D1 = −1.3 (solid square in Fig. 3). Fig06.eps
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