PART 1.

OBJECTIVES OF THE STUDY, AND

AN ANALYSIS OF LINEAR MEASURMENT.

This thesis comprises four parts., Part I presents the problem. Part
ITI reviews relevant literature. Part III describes an empirical study
and presents a statistical analysis of the results. Finally, Part IV

presents an interpretation of these results.



CHAPTER 1.

CBJECTIVES OF THE STUDY.

Acquisition of the number concept, and attaining skill in using numerical
operations, are considered important intellectual achievements of child-
hood, because they enable the child to use mental operations in lieu of
physical actions. For example, when the child is able to perform addition
operations, he no longer needs to count physically. Similarly, after the
child has acquired an understanding of linear measurement, he no longer
has to align two objects physically, in order to find out which is the

longer.

Psychological research has contributed substantially to an understanding
of how the number concept, and numerical 0perétions, develop, In compar-
ison, however, much less research effort has been expended on finding out
how numerical knowledge is linked with knowledge in other concept domains,
such as length and distance. One way of examining such linkages between
concepts is to stuay the development of an activity which draws upon
knowledge associated with each concept. The development of linear meas—

urement provides an example,
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The present study had two main obijectives. The first was to identify the
“higher-level” knowledge necessary for a child to understand linear meas-
urement. The second was to chart the growth of linear measurement in

terms of the development of its components. In this context, “higher-level”
knowledge refers to skills such as counting an array of objects, as dist-

inct from “lower~level” skills such as attending to an object in an array.

A major empirical study was carried ont to meet these objectives. The main

contribution of the thesis is in this empirical work.



CHADTER 2.

AN ANALYSTS OF LINEAR MEAGUREMENT, -

2.]l SELECTICN OF AN APPROACH.

2.1.1 TWO PCSSIBLE APPROACHES,

One objective of the present research was to chart the develop~
ment of linear measurement in young children. It was necessary
to decide whether the investigation would focus on linear

measurement at a “concept level”, or at a “component level”.

2.1.2 CONCEPT-LEVEL APPROACH.

~Ina concept-level approach, the researcher would focus on the develop-
ment of different levels of performance in the concept being studied,
In the present case, he would define operationally a series of levels of

achievement in linear measurement. For example:

(a) an ability to determine by direct comparison which
of two olyjects is the longer;
(b} an ability to use correctly a measuring rule;
{c} an ability to iterate a unit length; and,
{d} an ability to predict the effect of changing the length of the

of the unit,



The researcher would devise tests appropriate to each level, These would
be administered to a selected population, and subjects categorised accord-
ingly. The statistical analysis would involve correlating conceptual

levels with developmental variables, such as age.

2.1.3 COMPONENT-LEVEL APPROACH,

The component~level approach extends the concept-level approach by also
investigating the development of knowledge components of the concept
being studied. In the present case, the researcher would devise tests
for each component, as well as for different levels of performance, in
1inearrmeasurement. An example of a component would be kﬁawing how to
count., In this approach, concept development would be described in terms
of both Eevéls of achievement in the concept, and the pragressive

acquisition of its components.

. 2.1.4 ADVANTAGES AND DISAINANTAGES CF BEACH APPROACH,

Each approach has advantages and disadvantages. The chief advantage of
the concept-level approach is that the levels of the ooncept may be de-—
fined operationally. The main disadvantage is that empirical evidence

yielded by a study of that kind would provide little information on how,

in a step-by-step sense, the concept develops.

The chief advantage of the component-level approach i5 that it has the
potential to contribute to an'undezstanding of how the concept develops.,
Moreover, this approach links more rea&iﬁy with existing psychological
theory, and its associated empirical data. The main disadvantage is that

it involves making a number of a priori assumptions regarding the list

of components.



2,1.5 CHOICE OF COMPCNENT LEVEL APPROACH.

A motivation of the study was to find information useful in a practical
sense in the field of education. In that regard, the component-level app-
roach is the more useful, because it provides information on which compon—
ents are necessary for linear measurement and, hence assists primary
school curriculum development. It was decided to adopt the component-

level aporoach.

Additionally, with this practical purpose in mind, it was decided to re—
strict the investigation to children in the first two years of primary
school, because it is probable that it is during those years that most
of the growth in understanding of linear measurement occurs. Against
this background, the identification of components of linear measure-

ment will row be discussed,

2,2 IDENTIFICATION OF THE COMPORENTS (F LINEAR MEASUREMENT.

2.2.1 METHODS OF LINEAR MEASUREMENT,

In general, a young schoolchild would know of two ways of measuring the
length of an object. The first would be to use a measuring rule and to
read off numbers which in some way would represent the object”s length,
The second would be to select a shorter object for use as a unit length,
and to iterate that unit along the longer object, counting the number of
iterations, Obviously, the notions underlying the first method corres~

pond to those employved in the second. It would be possible, however, for
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a child to use the first method - because it had been trained to - without
having an understanding of the underlying principles. Similarly, it would
be possible for another child to use the second method - iteration of a
unit Jength - without that child knowing what effect substitution of a
longer or shorter unit length would have on the number of iterations
required to geasure the obiect. Yet another child might know the effect
of substituting & lomger or shorter unit length but, when asked to work
out the combined length of two previously measured objects, that child
might need to join the two obijects together physically, and then measure
their combined length. It could be argued that such a child did not
understand that numerical operations of addition and subtraction can be

used instead of measurement operations.

Each of these three c¢hildren could be said to have a different level of
understanding of linear measurement. Intuitively, it would seem reason—
able to conjecture that these different levels of understanding of linear
measurement result from differences in, or co-ordination between, the

number and length congepts of such children.

2.2.2 UNIT ITERATION AND ™E LENGTH CONCEPT.

An examination of the operations involved in the act of measuring the
length of an object by unit iteration reveals many of the components of
linear measurement. In the following discussion the word “measurer” refers
to @ person who has a full understanding of iterative linear measurement.
By marking off sections of the object being measured (A) into segments

(A1, A2, A3, ete.) equal in length to the unit (B}, the measurer inplies

that he holds the following beliefs regardimg length:—



(a) the length of B remains constant throughout the measure-
ment operation, even though the orientation of B to the measurer
might change;

(b) because the length of Al is equal to the length of B, and
the length of A2 is equal to the length of B, the length of Al
must be the same as the length of A2;

(c) the length of an object is the same as the length of its

concatenated parts,

2,2,3 THE CONSERVATION CF LENGTH,

The first of these beliefs (a), involves several componenﬁs. Yor example,
the measurer must believe that the length of any object does not change
when it is 5i5placed in space. Similarly, the measurer must believe that
the relation of equivalence of length that holds between B and Al when B

is momentarily aligned with Al, does not change when B is not longer so

. positioned. These beliefs would seem to rest on the belief that a relation
between two lengths can only change when something is added to, or taken
away from, one, or other, or both, of the two lengths involved. Beliefs

of this kind are usually referred to as the conservation of length.

It seems plausible that, prior to achieving an understanding of linear
measurement, the child must know that the length of an object, and length
relations between cbjects, are conserved under various kinds of transform-
ation. However, how can the child acquire the conservation of length
without being able to empirically verify it by linear measurement? For

example, the child might know that length P is equal to length Q in



position R. How does the child know that P is still equal to Q when P
has been moved to R“? Obviously, one answer would be that the child
uses visual evidence that nothing has been added or subtracted from P
and/or Q. But, how is this rule acquired without an understanding that
length is measurable? Furthermofe, P in its new position R® may well
look longer or shorter than Q. One way around the problem would be

for the measurer to move Q to R so that the kind of direct comparison
of P and Q made at R can be repeated at R, However, how does the child
know that Q does not change in length, to exactly the same extent as might
have P, whilst being moved fram R to R"? The knowledge that P equals Q
at both R and R”, does not necessarily ensure that P equals Q when Q is

at R and P and R”.

The situatibn becomes more camplex when the transformation of the meas—
uring instrument (or unit) involves changing its shape, as distinct from
changing its position. An example of such an instrument is a piece of
string. How does the child know that the length of the string is the
same whether it is placed in the form of a straight line or, say, a

circle?

The preceding discussion suggests that there is an interdependence between
conservation and measurement. However, for the mament, it will be taken
as a working hypothesis that the child acquires the conservation of

length before an understanding of linear measurement.
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2.2.4 TRANSITIVE REASONING.

The second belief (b), is based upon what is usually known as”transitive
inference”. The length relation between Al and A2 is inferred, rather
than determined by direct comparison. The fact that this inference is
made, means that the measurer also holds the conservation beliefs dis-
cussed above., The measurer”s argument is: (Al=B in position 1) and

(A2=B in position 2) implies (Al=A2). For this conclusion on the relative
magnitude of Al and A2 to be drawn, the measurer must believe that the
length of B has not changed following its change in position. If the
measurer did not hold this belief, then the premises contained in the

transitive inference would not apply.

Ecqually, hoﬁever, the conservation belief seems itself to imply a trans-
itive inference. The argument is: (Al=B in position 1) and,
(A2=B in position 2) implies (Al=A2), which implies (Al=B when B is in

position 2).

2.2.5 PART/WHOLE RELATIONS OF LENGTH,

The third belief (c), concerns the measurer”s understanding of the dis-
tinction between an object and one of its attributes - length. That is,
a child may know that an object may be arbitrarily divided into parts,
and those parts recombined to form the object. However, the child may
not extend that knowledge to encompass the object”s length. If that
knowledge does extend to length, then it would find expression in such
beliefs as: if length A is greater than length B then length A may be

considered as length B concatenated with some other length,
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2.2.6 UNIT TTERATION AND THE NUMBER CONCEPT,

In addition to beliefs concerning length, the measurement operation also
requires the measurer to hold certain beliefs concerning, and to have
certain skills with number. Firstly, the measurer must to be able to
“numerate”: that is, to co—ordinate ordinal position and cardinal value.
Secondly, the measurer must believe that the numerosity of a collection
of objects remains unchanged when the spatial arrangement of the collect-
ion is altered. For example, the measurer must believe that an object
found by iteration to contain, say, six unit parts, will always contain
six unit parts irrespective of the spatial location of the object. This

belief is usually referred to as the conservation of number.

2.2.7 WIT ITERATION AND INTER-CONNECTICN CF LENGIH AND NUMBER CONCEPTS,

In addition to having certain beliefs concerning length and number, the
measurer must also have some degree of interconnection of those beliefs.
For example, a child may conserve number and length, and may be able to
numerate, but unless there is some connection between that child”s number
and length concepts it is unlikely that the child could understand linear
measurement. Similarly, if the measurer has a mature understanding of
linear measurement, then he would also have an ability to perform arith-
metical operations of addition and subtraction in lieu of measurement
operations. For example, the difference in length of two objects can be
determined by subtracting one numerical léngth measurement from the other,
and thereby obviating the need to align both objects and measure the

difference directly.
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2.3 DEVELOPMENTAL PERIOD COVERED,

In any developmental study it is necessary to establish a point at which
to start - a lower boundary — and a point at which to finish - an upper
boundary. These decisions determined the age range of the subjects used

in the study, and the levels of task difficulty employed.

The lower boundary selected for the present study was: determination by
direct comparison of ordinal length relations between two objects. This
study, therefore, has excluded from consideration a host of perceptual skills
and cognitive attainments achieved in the early years of life, Some of
those attainments seem to be linked with estimation processes that appear
to be perceptually-based. For example, very young children appear to
have some idea of what constitutes a distance. They can determine whether
an object within view can be grasped without having to move any part of
their bodies other than arms or shoulders, or whether an object can be
reached without using samething to stand on., It is quite possible that
processes of that kind could either inform, or confuse, the five or six
year old child who is in the course of developing more precise, concept—
ually-based skills for determining length and distance. However, the
contributions madeiby such perceptual processes to the development of the
linear measurement knowledge of young children are outside the scope of

the present research.

The upper boundary selected for the present study was measurement of
straight line lengths of small magnitude {(approximately

30 ems.), and of distances between objects (of similar separatiocn)
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located on a plane, not a curved surface. This study, therefore, dees
nct follow the development of linear measurement through to its complet-
ion. For example, a child may be able to measure correctly a stick 20 oms
in lemath, but not understand how to measure, or what it would mean to
measure, the length of a piece of curved plastic pipe. The former ability
is within the scope of this study, the latter is not. Similarly, a child
may be able to measure the separation between objects located on his play-
room table, but not understand what it would mean to measure the distance
between his home and his school. This study is concerned with the former,

but not with the latter ability.

2.4 LIST OF COMFONENTS OF LINEAR MEASUREMENT. (1)

The following is a list of the components required for a full understanding
of iterative linear measurement, as suggested by the foregoing discussion.
It will be evident that the components listed are not independent. This

matter will be discussed in later paragraphs.

1. There is a widely cited formal theory of measurement due to Suppes and
Zinnes (1963). The theory formally demonstrates that the empirical
#elaticmal system of measurement of length or distance is an isomorphic
image of a particular numerical relational system, the real nunber system.
It is this isomorphism that is the formal basis of everyday activities

of, for exanple, applying arithmetical operations such as addition and

subtraction to lemgth measurement.




(A) NUMBER, The following assumes that the child has a number concept
though it may be in the early stages of development.

(i) EKnowing how to use a 1-to-1 matching rule. This is

| necessary because such a rule is implicit in counting and
in wmit iteration.

(ii) Knowing the natural number order, This is necessary because
each 1-to-1 pairing during unit iteration must be identified
separately, as the first, second, third, etc.

(iii)Knowing how to count arrays of small numerosity, where “count”
implies the co—ordination of ordinal position and cardinal
value. This is necessary because the number of unit iter-
ations must be determined. |

(iv) Knowing how to make transitive inferences of equivalence
and non-equivalence with respect to discrete quantity. This
appears to be necessary for the conservation of number.

(v) Knowing that the numerosity of an array of objects is
invariant under certain transformations {(the conservation
of number). This is necessary to relate a collection of
"n” non-contiguously arranged unit parts-to a collection
of *n” contiguously arranged unit parts.

(vi) Knowing how to perform the arithmetical operations of add-
iton, subtraction, solving for a difference, and balancing
numerosities., This is necessary if arithmetical operations

are to be used in lieu of measurement operations.

14



(B) LENGTH. The following assumes that the child has a concept of length,

as an attribute of an object. That concept may be incomplete, in that

not all of the properties of length may be known to the child.

{i) Knowing that if length A is greater than length B
then A may be considered as B concatenated with same
other length. This is necessary for a unit length,
(B, in this case) to be employed in measurement.

(ii) Knowing that any length may be considered as a con-
catenation of arbitrarily selected sub-lengths.

This is necessary because a

precise statement of any object”s length, expresses
that length in terms of a number of object parts of
shorter length joined together,

{(iii)Knowing that the length of an object can be altered
only by adding samething to it or subtracting some—
thing from it (setting aside, for present purposes,
processes of expansion and contraction). This is
necessary because the unit part changes position
during measurement. However, as nothing is added
to or taken away from it, its length remains constant.

(iv) Knowing that the length relation between two objects
can be changed mly=W adding to, or taking away from,
one, or other, or both, of the objects (setting aside
processes of expansion and contraction). This is
necessary because the unit part changes position during
measurement but, its length remains constant, and so
also must the relation of equivalence between the

lengths of the unit part and the object parts.

CR



{vi Knowing that the length relation between objects A
and B does not change when the spatial relation between
A and B changes. This is necessary because, during
measurement, the unit part changes position, but the parts
of the objects marked off as equal in length to that
of the unit part do not. Hence, the length relations
between them are constant.

(vi) Knowing that objects may be ordered according to their
lengths. This is necessary for transitive inference.

(vii)Knowing that transitive inferences of equivalence and
non-equivalence can be applied to length relations.

This is necessary because it is implied in relating
unit parts of an object to each other, so that an under-
standing is reached that those parts are equal in
length.

(viii)}Knowing that the ordinal length relation between two
obiects is the same as the cardinal mmerical relation
between the collection of parts comprising those objects
(provided that the lengths of these parts are the same).
This forms the basis of the iscomorphism between counting
and measurement that enables arithmetical operations
to be used in lieu of measurement (Suppes and Zinnes
1963) .

(ix) Knowing that length relations between cbjects can be
deduced by applying transitive reasoning to the coll-
ections of unit parts. This is necesséry because it
7is'}n@iied in comparing the lengths of objects by

comparing the number of unit parts contained in them.
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Knowing that length is invariant under certain trans-—
formations {the conservation of length). This is
necessary because the accuracy of unit iteration depends
upon the length relations between the unit part and

the object parts remaining constant.

(C) LENGTH MEASUREMENT.

(1)

(ii)

Knowing how to iterate a unit part along an object.
This is necessary for the operation to be accurate -
e.g. units must be marked off accurately and in a
non-overlapping fashion. |
Knowing that if the length of the unit part is changed,
the number yielded by unit iteration also changes.
This is necessary because, although in linear measure—
ment the measurer can arbitrarily choose a unit part,
the answer given by unit iteration depends upon the

length of that unit part.

(iii)Knowing that the length relation between two objects

can be determined by carrying out a linear measuerment
operation, using unit iteration. (The difference

between this requirement and B{viii) above is that the
latter refers to unspecified numerosity: that is, the
B(viii) relation is expressed in terms of “more” or

“less” or “same”, not in terms of precise numbers of parts,

arithmetical comparison of which yields the answer.)
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(iv) Krnowing that arithmetical addition of linear neasurements
may be used to determine the length of concatenated
objects., This is necessary becausec a main gxgrpc;se of
linear measurement is the derivation of a number that
may be used arithmetically in lieu of carrying out

arnother measurement operation.

(D) DISTANCE., The following assumes that the child has a concept of
distance as a spatial relation between two pointa,

That concept may be incomplete, because all of the properties of distance
may not be known to the child, There is an isomorphism ;etweeﬁ the prop-
erties of length and the properties of distance (Suppes and Zinnes, 1963).
Hence, the properties previously listed for length will not be listed
again for distance, except in the case of congervation., This is mention-
ed again, because of the importance of conservation in psychological

theory concerning concept development.

{1) Krowing that distance is invariant under certain trans-
formations {the conservation of distance). BSee coment

against B(x).
(E} DISTANCE MEASURMENT,

(i} EKnowing how to compare indirectly two distances by a
measurement operation not involving unit iteration.
This is necessary because distances cannot be com-
pared by aligning their end points and making direct

campar1sons,



{i1) Knowing how to measure distance between two points,
using unit iteration. This is necessary because

distance cannot be subdivided directly, as can length.

2.5 NN-INLEPENDENCE OF COMPONENTS OF LINEAR MEASUREMENT,

As previously mentioned, the components listed above are not independent.
There is an assumption of an higrarchical arrangement in each concept
domain, and of cross linkages between concepts. For example, in the
number concept, component (ii) implies component (i), and component {iii)
implies components (i) and {ii), together with other “rules” not mentioned
here (Gelman and Gallistel, 1978), Similarly, there are several different
levels of arithmetical ability listed, each presumably based upon prior
acquisition of less complex arithmetical abilities, All are included in
the list because, at this stage, it is not known which are necessary for
the demcnstration of different levels of understanding of linear measure—
ment. Similarly, for both number and length, distinctions are made
between transitive inferences concerning relations of equivalence and
transitive inferém:aes concerning relations of non~eguivalence

[greater than, and less than). This is because it is not known whether
only the former are involved in linear measurement - which would be
suggested by a theoretical analysis - or whether both must be present.
With respect to length concepts, distinctions are made hetween components
concerned with the length of an object, and components ooncerned with the
relations between lengths of objjects. This is because it is not known
what influence each component might exercise in the development of linear

Measurament.,



Further, transitive inferences regarding length imply the conservation
of length, and the conservation of length implies transitive inference.
If an attempt were made to draw up a non-redundant list of independent
components of linear measurement, it is not at all clear whether congserv-

ation and/or transitive inference should be included.

It may be possible to set down a minimal list of independent components
of linear measurement. However, for the present study, such a list may
not be as useful as a list of the kind given here. This is because the
present study 18 concerned with charting the course of development of

linear measurement in terms of the progressive emergence of its compon-
ents. If only independent components ~that is, ccmponentvs representing
axioms in a linear measurement system - were studied, the emergence of

other components derived logically, but not necessarily psychologically,

from those axioms would not be detécted,

2.6 NATURE OF THE EMPIRICAL (UESTICNS ASKED BY THE PRESENT STUDY,

2,6.1 WHICH QOMPOHENTS ARE NECESSARY FOR LINEAR MEASUREMENT?

The components given in the above list provided the framework within
which the empirical part of the study was conducted. Various empirical
guestions relevant to the general issue of the development of linear

measurement were framed in terms of those components.
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The following operational definition of linear measurement was used as
a benchmark: “a child may be said to have a mature understanding of
linear measurement, if he demonstrates a capacity o use correctly arith-

metical operations instead of carrying out physical measurement operations”.

According to the preceding analysis, this would only be possible if the
child possessed the knowledge listed. Hence, the first guestion is: is
that analysis correct? In other words: are these camponents necessary

for linear measurement?

2.6.2 15 THERE AN ORDER IN WHICH THE COMPONENTS EMERGE?

Developmental research shows that certain of these components emerge at
different times in the child’s thinking. Hence, other questiéns are:

is there a specific order in which the components emerge? Is the devel-
oprent of the components a continuous or discontinuous function? What
is the relationship between levels of achievement in linear measurement
and the progressive acguisition of the components? Does development in

one concept prompt development in the other?

These empirical questions involve consideration of the difference between
a child krowing that arithmetical operations may be substituted for
physical measurement operations, and a child understanding why arithmetic-
al operations may be so used. It seems quite possible that a child could
possess the former, but not the latter., On the other hand, the reverse
would seem unlikely ~ that is, that a child could possess the latter but
not the former. This distinction is conveyed in the terms sometimes used

in comnection with these two different kinds of knowledge. The former is
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often referred to as algorithmic or rule-based (Gagne, 1968), while the
latter is sometimes referred to as operational (Piaget, 1953). The present
study is concerned with both kinds of knowledge. Some of the developmental
precursors of operational knowledge - what might be called its components -
could be expressed as algorithms or rules. However, the present study

does not assume that operations are nothing more than a particular org-

anisation of rules, or that rules “grow” into cperations.
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PART II.

LITERATURE REVIEW,

On the basis of evidence from a number of sources it is possible to make
predictions concerning the course of development of components of linear
measurement. These sources are Plagetian theory, and a large body of emp-

irical work carried out in that tradition.

Developmental guestions ooncerning the components of linear measurement
have been of major and long term interest to Piaget and ﬁis followers
(Brain@ré,'l9?8; Flavell, 1963}. Consequently, all of the predictions
outlined in Part II were derived directly from Piagetian theory,

or from empirical research conducted within the Piagetian tradition.

In this connection, it is noteworthy that, notwithstanding the vast
amount of information emanating from Piagetian research and relevant to
the questions posed in Part I, it is still entirely reasonable to ask those
questions., This is so because of difficulties in interpreting the
results of previous studies, and of collating the results of many diff-
erent - studies, each concerned with perhaps only one or two aspects of the

general issue of the development of linear measurement,

As the work of Piaget and his followers provides the main theoretical
framewcrk for the present study, it is necessary to present briefly
those aspects of Piagetian theory which are releﬁant to the present
topic. Chapter 3 reviews this material and derives predictions,
Following this, Chaptefs 4 to 7 review the empirical evidence for these

predictions,
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CHAPTER 3.

PIAGETIAN VIEW G COMPONENTS

OF LINEAR MEASUREMENT AND

THEIR CROER OF EVELOPMENT,

3,1 PRECICTED ORDER OF DEVELOPMENT,

Piaget lists a number of gbilities which he believes the child must poss—

ess before demonstrating an understanding of linear measurement.

They are:— |

. the ability 0 conserve mumber, length and distance;

. the ability to make transitive inference judgements with respect to
number and length:

. the ability to use a wnit of length for purposes of iteration:

. the ability to carry out arithmetical operations of addition and

subtraction {Piaget, Inhelder and Szeminska, 1960).

Piaget also believes that each of these abilities only emerges in the
child”s reasoning after he has mastered more basic skills, such as numer— i
ation, seriation of length, and understanding of part/whole relations.

(Piaget, 1968},

Additionally, Piaget argues that both the high~order abilities {e.g. the
conservation of mmber), and the more basic skills {(e.g. numeration) emerge

in a predictable order in the development of intelligence (Piaget, 1968).
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The following summarises those predictions. The headings refer to aspects
of Piaget”s theory which are most directly responsible for the predictions

which follow.

3,1.1 PARALLEL TEVELOPMENT.

+ The ability to conserve number emerges at about the same time as the
ability to mdke transitive inferences with respect to discrete
quantity; |

. the ability to conserve length emerges at about the same time as the

ability to make transitive inferences with respect to length,

3.1.2 THREE SUB-HTAGE MODEL,

. The ability to conserve length emerges earlier than the ability to
measure length;

. the ability to conserve distance emerges earlier than the ability to
measure distance:

. the ability to perform the arithmetical operations of addition and
subtraction emerges earlier than the ability to measure length or
distance;

. the ability to conserve number emerges at about the same time as the
ability to perform the arithmetical operations of addition and subr
traction;

. the ability to seriate length emerges earlier than the ability to
make transitive inferences with respect to length;

. the ability to order discrete quantity emerges earlier than the ability

to make transitive inferences with respect to discrete quantity.



3.1.3 HORIZONTAL DECAIAGE,

. The ability to conserve number emerges earlier than.the ability to
céﬁsexve length;

. the ability to conserve length emerges at about the same time as the
ability to conserve distance;

. the ability to measure length emerges at about the same time as the
ability to measure distance;

. the ability to seriate length emerges earlier than the ability to

numerate,

The abilities referred to in the above predictions cover nearly all the
companentslof linear measurement listed in Chapter 2. It would seem,
therefore, that Piagetian theory provides a framework which embraces
virtually all of the empirical guestions asked in this study. Consequ—
ently, it is necessary to present that theory briefly, In doing so, an
attempt will be made to link Piagetian theoretical statements with the
empirical aspects of the present research, so as to make clear the origin

and status of the predictions given above.

As a preface, however, a caveat needs to be made explicit. The present
research is not aimed at testing Piaget™s theory. It is emphasised that
Piagetian theory is consulted because it provides the richest source of

relevant theorstical statements and empirical data.
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3.2 WVERVIEW OF PIAGET'S THEORY OF QOMNITIVE DEVELOPMENT.

3.2.1 HKNATURE F THE THECRY,

Piaget”s theory of cognitive development is structural, holistic, constr-

uctionist, and descriptive.

It is structural because it conceptualises "mental operations" as form—
ing patterns that exhibit properties which change in the course of devel-
optent, Development is seen primarily as a matter of change in cognitive

structure,

Tt is holistic because it asserts that, as every cognitive act is related

in same fashion to all other cognitive aaté, an understanding of intelligence
can only be gained by an understanding of its organisation as a total

system. ‘fhe total system and its component structural elements are said

to change over time, and as a function of experience. Such change is bel-
ieved to be directed by two broad principles, "organisation" and "adaptat-
ion", Because these principles do not change during development they are re-

ferred to as "functional invariants",

The theory is constructionist because it declares that, while experience
permanently alters intelligence, intelligence modifies its own construct-

ion of reality in the process of interpreting it.
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Finally, the theory is more descriptive than explanatory. Its structural
and functional elements provide a way of classifying and charting onto-
genetic developrent, rather than a system of explanations. Thus, the
theory provides a rich and detailed account of the state of intelligence
at various stages of development. However, it provides only general and
exceedingly abstract principles to account for the processes at work

in the formation of, and transition between, such states (Brainerd, 1978).

The following account of the theory is highly condensed and selective.
However, it 1s only intended as a context within which a more detailed
discussion can be presented of the period of concrete operations, because
that is when the number, length and distance concepts uﬁé@r examination

emerge.

J.2.2 COGNITIVE STRUCTURES,

The existence of cognitive structures is inferred from the person”s behay~
iour, Thus, cognitive structure is an hypothetical construct. More spec-

ifically, Piaget regards cognitive structures as being systems of operations.

Piaget states:—

"pPsychologically, operations are actions which are internal-
izable, reversible and co—ordinated into systems characterized
by laws which apply to the system as a whole, They are actions,
since they are carried out on objects before being performed
on symbols., They are internalizable, since they can also be
carried ocut in thought without losing their original character

of actions. They are reversible as against sinmple actions
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vwhich are irreversible. In this way, the operation of combining
can be inverted immediately inte the operation of dissociating,
whereas the act of writing from left to right cannot bte inverted
éo one of writing from right to left without a new habit being
acquired differing from the first, Finally, since operations

do mot exist in isolation they are connected in the form of
structured whsles.- Thug, the construction of a class implies

a classificatory system and the oonstruction of an asymmetrical
transitive relation, a system of serial relations, ......."

{Piaget, 1953 b, p.B).

3.2.3 CONCEPT OF BCHEME,

Piaget”s concept of "scheme® is related to these notions of structure.
Schemes consist of sequences of actions. Structures consist of systems

of operations.

Schemes are defined in terms of overt behaviour {(Piaget & Inhelder, 1969;p4)
Thus, Piaget talks of sensory-motor schemes of grasping, reaching, seeing,
tasting, and so on. Schemes are sald to change as a consequence of oog-

nitive functioning.

3.2.4 COMNITIVE FONCTICNS.

Development is seen mainly in terms of changes in cognitive structures.
Changes occur as a result of experience, and are said to be always under

the control of the two functional invariants, organisation and adaptation,
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Organisation is the ooxgnitive function Piaget holds responsible for the
similarities that exist in intellectual behaviour at all levels of devel-
opiment., Adaptation provides the mechanisms responsiblé for the changes
withiﬁ cognitive structures. Hence, Grganisatica and adaptation are
complementary, The former ensures that the reorganisation of cognitive
structures produces an ordered totality. The latter ensures that cognitive
structures grow internally as elements of the total gsystem, and that new
and different kinds of relationships grow between these elements. Brain-

erd said:—

"The organization principle presumably is responsible for the
organism”s ocognitive ocontinuity across short or long pericds
of time, That is, cognitive organization accounts for the
fact that ‘there is some degree of sameness in intelligence
across time. In contrast, the adaptive side of intelligence
presumably is the c:hief instrument of discontinuity.”

(Brainerd, 1978, pp.23}.

The mechanisms used by adaptation to gquide cognitive growth are assim-
ilation and accommodation, Assimilation is the taking in of experience,
and its interpreta;tim by existing cognitive structures. Accomodation

is the changing of those cognitive structures in such a manner as to make
subsequent interpretations reflect reality more accurately, Hence, assim-
ilation and accomedation are complementary. For Piaget, every cognitive

act implies both mechanisms:-



’*Amgdatim of mental structures to reality implies the
existence of assimilatory (schemes) apart from which any
structure would be impossible. Inversely, the formation
of fschemes) through assimilation entails the utilization
of external realities to which the former must accofdate...”

{Piaget, 1954, pp.352-333).

3.2,5 STRUCTURAL CHANGE,

Piaget has described these and other aspects of structural adjustment in
terms of an equilibrium model, Expressed most simply, the model refers to
a balance between assimilation and ac:w%datim, that leads to a state of
"equilibrium" - one in which the cognitive structures are said to be egquil~
ibrated. This process of equilibration has been defined by Piaget (1972)
as: "a compensation for an external disturhance" (p.120}. When the sys-
tem is not in equilibrium, it has a tendency to adjust itself continuously
to mwe toward a state of eguilibrium. Thus, it is a dynamic process lead-
ing to successively higher and higher levels of equilibration, Inhelder

{1962} described it as:~

"a oconstant progression from a less to a more complete
equilibrium and manifest therein the organism’e steady
tendency toward a dynamic integration. This equilibrium
ig not & static state, but an active system of compen-
sations - not a final conclusion, but a new sté.r:ting

point to higher forms of mental development.®
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Equilibrium is central to Pilaget”s stage concepts. It accounts for the
structural characteristics of invariant order, of acquisition, hierarchical
inclusion, and overall integration that define a stage. It also accounts
for the transition between stages as periods when intelligence is in a
state of disegquilibrium: that is, when its cognitive structures are poorly
equilibrated, It also accounts for the changes that ocour within a stage.
In other words, it represents the organisational and adaptational princi-
ples which account for the continuity and discontinuity aspects of Piaget”s

stage theory (Brainerd, 1978).

3.3 STAGES OF IEVELOPMENT,

An important aspect of intellectual behaviour is that the nature of rea-
soning changes with age. Plaget uses behavioural data as evidence that
intellectual development involves a progression through four distinct
and major stages. Each stage is characterized by different reasoning.

Piaget has argued that there are:~

"four great stages, or four great periods, in the
development of intelligence: first, the sensory-
motor pericd before the appearance of language;
second, the period fram about two to seven years
of age, the pre-operaticnal period which precedes
real operations; third, the period from seven to
twelve vears of age, the period of concrete operations
(which refer to concrete objects); and finally
after twelve years of age, the period of formal
operations, or propositional operations.”
(Piaget,1968 p3s6).
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3.3.1 BSENSCRY-MOTOR BTAGH,

During the sensory-motor stage, the child learns that the world is a
permanent place, which may be explored by his senses, and by physical
movement, Physical movements are co-ordinated, and are internal-

ized into rudimentary cognitive structures. As these structures

develop, the child’s behaviour becomes more purposive and goal directad.
From about 18 months onwards, language development is apparent, and simple
symbolic behaviour appears. These two developments herald the emergence

of the next stage.

3.3.2 PRE-OPERATI(NAL STAGE,

When compared with its precursor, the pre-cperational stage is one of
vast growth in the child’s capacity to reason. Consequently, it is
difficult to summarise the pre-operational stage without conveying the
impression that it is “simply” a pericd during which the foundations are

laid for the development of concrete operational thought.

The pre-operational stage is marked by the development of the "semiotic

function®: -

"at the end of the sensori-motor pericd, at about one and
a half to two years, there appears a function that is
fundamental to the development of later behavior patterns.
It'cbnsists in the ability to represent something (a sig-
nified something: object, event, conceptual scheme, etc.)

by means of a "signifier”™ which is differentiated and which



serves only a representative purpose; language, mental
image, symbolic gesture, and so on. Following H, Head and
the specialists in aphasia, we generally refer to this
function that gives rise to representation as "symbolic,”
However, since linguists distinguish between “symbols" and
"signs," we would do batter to adopt their term "semiotic
Function” to designate those activities having to do with
the differentiated signifiers as a whole,® (Piaget and

Inhelder, 196%, p.51}

During this stage the ¢hild™s symbolic behaviour encompasses complex

activities such as drawing, reading and writing:—

"In spite of the astonishing diversity of its manifestations,
the semiotic function presents a remarkable unity. Whether
it iz a question of deferred imitation, symbolic play, draw-
ing, mental images and image-memories or language, this
function allows the representative evocation of objects and
events not perceived at that particular moment. The semiotic
function makes thought possible by providing it with an un—
limited field of application, in contrast to the restricted
boundaries of sensori~-motor action ardd perception.”

(Piaget and Inhelder, 1969, p.91)



34

3.3.3 CONCEETE CPERATICNAL STAGE,

The concrete operational stage is characterized by the child”s ability

to reason logically, provided that the task makes reference to concrete
objects -~ though such objects need not be present. It is also necessary
that any hypothesis testing involve only simple extrapclations or interpol-
ations. It is during this stage that the ¢hild acquires his ordinal and
cardinal concepts of mmber; develops his ability to argue transitively;
exhibits a capacity to classify objects simultaneously on two or more
dimensions; is able to handle class inclusion problems in logic;

displays an understanding that spatial transformations of chjects, or
collections of objects, leaves certain properties of the objects, or coll-
ections, unaffected; demonstrates an understanding of projective and
Buclidean geometrys and learns to apply mathematical concepts to a range

of concretely-based problems, such as distance and length measurement.

The ¢hild”s thinking, however, is still limited by a dependence on
concretely based information; by an inability to carry out concurrently
the two reversibility operations of negation and reciprocation - although
they can be applied independently; and by severe limitations in his abil-

ity to control for the effects of variables in multi-variable situations.

3.3.4 FORMAL CPERATTCNAL STAGE,

The formal cperational stage represents the highest level of intellectual
development, and marks the emergence of the ability to think about think-

ing. Thought is no longer confined to concretely-based information, no



longer restricted by the force of reality, but is free to generate
possibilities and hypotheses whose only immediate referents are prior

elements of cognition. Piaget said:-

"It is the power of forming operations of operations
which enables knowledge to transcend reality.”

(Piaget, 1972).

It is during this stage that the power of hypothetico-deductive reason-—
ing can be used to gain full understanding of complex concepts in math-~
ematics and science, and where proof of a proposition involves consider-~

ation of all possibilities, in isclation an¢ in combination.

3.4 CONCPRETE CPERATIONS.

3.4.1 LOGICAL AND INFRALOGICAL OPERATIONG.

A more detailed presentation of the stage of concrete operations is needed
because most of the components of linear measurement listed in Chapter 2
appear in the child”s reasoning during that stage. For example, it is
then that the child demonstrates an ability to make transitive inferences,

and to conserve number, length and distance.

Most of the abilities which emerge during the concrete operational stage
fall into two broad categories. They are those concerned with: (a) rel-
ations between objects; and, (b) with relations within objects (Piaget

and Inhelder, 1962). The former involve logical operatioms, and the latter,

infralogical operations, The distinction is based upon the kinds of in-
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formation each provide, Logical operations are concerned with informat-
ion about collections of objects, and are independent of gpatio-temporal
location. Infralogical operations bear upon objects, and their parts.
The logical operation of dividing a class of ¢hbiects into a mumber of
sub-classes is, analogous to the infralogical operation of sub-dividing
a length into component elements. However, they are different in import-
ant respects. The former does not require that the elements of the class
or of the sub-classes be in spatial or temporal proximity and, so, is
called a logical operation. The latter does require that the elements
of the whole (the length) be in spatial proximity, and, hence, is termed

an infralogical operation.

3.4,2 GROUPING AND GROUP STRUCTURES,

Logical and infralogical operations form components of the cognitive
structures of the concrete operational stage. The principles under which
operations in the logical and infralogical domains combine may be stated
in the form of axioms. Those axioms bear a ¢lose resemblance to the log-
ical laws that define two particular mathematical strué%:es: groupe and
lattices. Consequently, Piaget has employed logico-mathematical models

to describe the organisation of concrete operational thought.

Piaget called his structures “groupings", if they modelled systems which
embodied laws of mathematical groups and lattices. The structures were
called "groups®, if the systems they modelled reflected only the laws of

mathematical groups.



3.4.3 TYPES OF GROUPING STRUCIURE.

Piaget posited eight maior groupings:—

"This grouping structurs is found in eight distinct
systems, all represented at different degrees of
completion in the behaviour of children of 7-8 to
10~12 yvears of age, and differentiated according

to whether it is a question of classes or relations,
additive or multiplicative classifications, and
symmetrical (or bi——v.mivﬁcalj or asymmetrical

{co~univocal) correspondences:

Classes Relations
Asymmetrical 1 v
Additives
Symmetrical 11 vi
Co~univocal i1l vil
Multiplicatives
Bi-univocal 1w vii®

{(Beth and Piaget, 1966, p.174).

Examples of the behaviours associated with these groupings are given

belcw:~

jofh)



GROUPING

1 Primary addition of classes

11 Secondarv addition of classes

111 Bi~univocal maltiplication
of classes

1V Co-univocal multiplication
classes,

V  Addition of asymmetrical
relations

V1l Addition of symmetrical

relations.

VilBi~univocal multiplication

of relations,

V1ill Co—univocal multiplication

of relations,
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BEHEAVIOUR.

Addition and subtraction of classes;
class inclusion.

Ability to classify a set of objects
in several different ways.

Ability to find the intersect

of two or more classes.

Ability to set two series of classes
in ocne-~to-many oorrespondence.,
Ability to construct a transitive
asymmetrical series.

Ability to deduce symmetrical
relationships from a geneological
hiérarchy.

Ability to set in l-to-1 corres—
pondence elements of two asymmet-
rical series.

Ability to find the result of
miltiplying a symmetrical relation
and an asymmetrical relation of the
kind found in geneological hier—

archies.

Flavell (1963) succinetly expressed the connection hetween these groupings

and behaviour:
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"thus, if Piaget says that the classificatory behaviour

of the eight year old indicates that he possesses the
grouping of logical class addition, he means the child’s
thought organisation in the classificatory area has

formal properties (reversibility, associativity, composition,
tautology, ete.? very like those which define this logico~
algebraic structure. The latter has certain specific

and definable system properties; we infer from his behav-
iour that the child’s cognitive structure has similar

properties." (Flavell, 1963, p.169),

Reflecting the distinction between logical and infralogical operations,
Piaget has argued that each of the groupings of logical operations has

its infralogical counterpart. Thus, there is a grouping of infralogical
operations corresponding to grouping 1 for logical operations. However,
in the case of the former, the operations relate not to the act of combin-
ing and dissociating classes, but to the act of dividing a whole (say,

a length} into its constituent parts, and combining those parts to recom

stitute the whole,

3.4.4 TYPES OF GROUP STRUCTURE.

In addition to these grouping structures, Piaget posits two further struct~
ures, called groups. The two groups are: {a} the additive group of posit-
ive and negative whole mumbers; and, (bj the multiplicative group of whole
or fractional positive numbers., Just as there are groupings in the domain
of logical operations, and in the domain of infralogical operations, there

are groups in each domain.
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Moreover, these groups are said to come out of a synthesis of grouping
structures: the additive group from a syvnthesis of class addition and
addition of asymmetrical relations; and, the multiplicative group from a
synthesis of class multiplication and maltiplication of symmetrical
relations. In other words, understanding of number implies an understand-
irg of the cardinal (how many}, and ordinal {ordered series), aspects of tne
concept, Plaget (1952) asserted, in respect of the additive group of
numbers, that:—

"eessa Class, asymmetrical relation and number are three

complementary manifestations of the same operational

construction applied either to equivalences, differences

or to both together. It is, in fact, when the child’s

intuitive evaluations have become mobile and he has there-

fore reached the level of the reversible cperation, that

he becxmes capable of inclusions, seriations and counting.

"eeeosclass and number are mutually dependent, in that
while number involves class, class in its turn relies

implicitly on number.

".....number 1S at the same time a class and an asymmetrical

relation." (Piaget, 1952, p. 184).
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3.4.5 QUANTIFICATION,

The grouping structures in the domains of logical and infralogical
operations permit what ?;i,aget calls "intensive® quantification to be
performed. The group structures permit "extensive" gquantification

to be carried cut. Intensive quantification enables judgements such as
bigger than, more than, longer than, etec. to be made. Extensive
quantification enables such judgements to be more precise, by expressing
hew much bigger, how many more, how much longer, etc. Pilaget also argues
that, when the elements of the logical grouping structures (that is, log-
ical operations) become connected to the elements of the mumerical group
structures {that is, numbers), the result is mmerical operations.

At that time, the child becomes capable of understanding arithmetic.
Similarly, when the elemnents of the infralogical grouping structures
{that is, infralogical operations} become comnected to the elements of
the numerical group structures, the result is measurement operations,

At that time, the child becomes capable of understanding the nature

of measurement., Diagramatically, the argument may be sumarised as

followss
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{a) |ILogical Numerical Understanding o
Operations
_J'~ Operations Arithmetic
Numbers
{b} | Infralogical Measur ement Understanding of
Operations
’J- Operations Measur ement
HNumbers

3.5 PARALIEL [EVELCPMENT HYPOTHESIS.

The structures of the concrete operational stage are linked development-
ally, as well as logically. It is argued that all of these structures
develop contemporaneously, and emerge in parallel, as distinct from
emerging sequentially, This is sometimes termed the "parallel develop-

ment hypothesis". (Brainerd, 1978: p.B6),

The paraliel develomment hypothesis is important in the context of the
present research. It predicts that the ability to use transitive
reasoning with respect to discrete gquantity ~ which marks the completion
of grbuping V (addition of asymmetrical relations) ~ appears in the child’s
behaviour at about the same time as the ability to conserve number — which
marks the synthesis of groupings 1 (primary addition of classes) and V.
Similarly, in the domain of infralogical coperations, the parallel devel-
opment hypothesis predicts that the ability to make transitive inferences

with respect to length emerges at about the same time as the ability to
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conserve length. It will be recalled from Chapter 2 that knowing how to
make transitive inferences with respect to number and length, and knowing
of the conservation of number and length, were assumed-to be necessary
for a Ehild to be able to measure length, Consequently, the above

two statements of developmental synchrony form the first two predictions

of the order of emergence of components of linear measurement.

3.6 THREE SUB-STAGE MOLEL,

Piaget also maintains that the structures do not emerge all of a sudden,
when the child enters the concrete operational stage. Instead, he ident-
ifies, generally, three sub-stages in the development of each structure.

As with his stage concept, he maintains that all children must pass through
each sub-stage in a fixed invariant order. Moreover, Piaget also maintains
that children move synchronously through these sub-stages., Thus, a child
at sub-stage 1 in class concept development should also be at sub-stage

1 with respect to relations and number,

The three sub-stage model of development is relevant to the present
research, because Piaget is most explicit regarding the necessary compon—
ents of linear meaéuremenf when discussing sub-stage growth. Also the
model yields predictions concerning the order of emergence of some of the
higher-order abilities assumed to be necessary for linear measurement,
For example, the model posits developmental asynchronies between the
conservation and the measurement of length, and also between the emerg-
ence of proficiency in numerical operations and the demonstration of an

understanding of measurement operations. Additionally, it posits dev-
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elopmental dependencies between certain of the more basic skills, such
as length seriation, and higher order skills such as transitive infer-
ence reasoning. In order that predictions of that kind may be seen in an
approériate theoretical context, a brief account of the three sub-stage

model follaws.

3.6.1 CLASSES.

The growth of class logic is relevant because, in Piagetian theory, the
emergence of an operational grasp of number marks the synthesis of log-

ical groupings 1 and V.

Piaget uses three kinds of task to assess a child”s progress through the
posited three substages of development. They are, in increasing order
of compexity: (a) classification; (b) multiple classification; and,

(c} class inclusion.

In the classification task, the child is asked to sort collections of
objects on one dimension only - e.g. to sort a collection of beads of
differing size and colour on ocolour only. In the multiple classification
task, the child is asked to sort the collection on two dimensions simultan-
eously - e.g. to sort on size and colour. In the class inclusion task,
the child is presented with the information that class A, say green
plastic buttons, is contained in class B, say green and blue plastic
buttons, and asked if there are more green buttons (assume there are nofe
greens than blues) than plastic buttons. Correct performance on the class
inclusion task represents achievement of the class concept, and attairment
of the related grouping structures, Progression through these tasks is

summar ised in the foliowing:w



TEST SUB-STAGE 1 SUB-STAGE 2 SUB-STAGE 3

Fails, Groups Passes. Will sort Passes

Classificat objects into spat- objects into two

ion. ial configurations or more mutually
Called graphic exclusive categor-
collections, ies.

Multiple Fails. Produces Partial success. Passes

Classificat~ graphic ocollections.Will sort on two
ion. dimensions succ—
essively but not

simultaneously.

Class Fails. If A is con- Fails. Any success Passes
Inclusion tained in B, child is matter of trial
asserts A is > B, and error discovery,
not axiomatic assert-

ion,

{Inhelder & Piaget, 1964) (Piaget, 1952).

3.6.2 RELATICNS,

Piaget uses three kinds of task to assess a child”s progress
through the posited three substages of develomment. They are, in
increasing order of difficulty: (a) seriation; (b} multiple seriation;

(c) transitive inference.
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In the seriation task, the child is asked to arrange a number of objects

in order along a particular dimension - e.g. arrange a set of five lengths
of woocden dowel in order of increasimg length. In the miltiple seriation
task, the child is asked to arrange the objects in order along two dimensions
gimultaneously - e.g. to order on length and diameter. In the transitive
inference task, the child is presented with the information that A is
greater than B, and that B is greater than C, but not directly with inform—
ation on the quantitative relationship between A and C, The child

is then asked: what is the relationship between A and C. Correct perform-
ance on the transitive inference task indicates achievement of the relat-
ions concept, and attairmment of the relations grouping structures, Pro-

gression through these tasks is summarised in the following:—

TEST SUB-STAGE 1 SUB-STACGE 2 SUB-STAGE 3

Beriation Fails. Can make pair- Passes. Can construct Passes.

wise comparisons only. series with 5 to 10

elements,
Multiple Fails, As for seriat- Achieves partial success Passes
Seriation ion., Will order on two

dimensions successively

not simaltaneously,

Transitive Fails. Usually Fails. As for sub- Passes
Inference asserts A=C because stage 1.
they look alike,
{Inhelder & Piaget, 1964) (Piaget, Inhelder, & Szeminska, 1960).
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The three sub-stage model predicts that an shility to seriate length will
emerge earlier, in the child”s reasoning, than an ability to make tran~
sitive inferences with respect to length., The model also predicts that an
ability to order discrete quantity will emerge earlier than an ability

to make transitive inferences with respect to discrete quantity.

3,6.3 NUMBER CONSERVATION.

Pilaget”s (1952) classical test of muber is termed conservation of number.
Tyvpically, it involves cshowing a child two rows of objects set in one-to-

one correspondence; having the child agree that each row contains the same
nutber of cbjects; transforming one row so that it is either, shorter and

more dense, or longer and less dense, with the child watching; then asking
the child if the rows still contain the same number of objects, Again,

Piaget sees three sub-stages:—

. Sub-Stage 1 ~ the child”s judgements are dominated by relative
lengths, hence, he asserts that the longer row is
more NUMerous.
. Sub-Stage 2 - the child considers both relative length and relative
.density, but cannot co—ordinate the two; hence, if
a correct judgement requires that both cues be taken into

into acocount, the child fails.

. Sub-Stage 3 - the conservation of mumber is achieved.

At a theoretical level, Piaget sees the child’s acquisition of the conserv—
ation of number as marking the completion, and synthesis, of logical group-

ings 1 and V ~ in other words, as reflecting the co-ordination of the
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cardinal and ordinal aspects, respectively, of number. Piaget also sees
the growth in those areas of class logic as being linked with growth in the
understanding of conservation. Conseguently, the three sub-stage model
predicts that the ability to form one-to-one correspondences, and the
ability to construct ordinal series, appear earlier in the child”s reason-
ing than the conservation of mumber. Additionally, the model predicts
that the conservation of number emerges at about the same time as an

understanding of addition and subtraction operations.

3.6.4 CQONSERVATION, MEASUREMENT AND ARITHMETTICAL OPERATIONS.

The three sub-stage model also posits a develommental sequence between
the conservation of length and linear measurement, and between linear

measurement and arithmetical operations.

Tasks, analogous to that used to assess mmber conservation, have been
designed for conservation of length, distance, weight, volume, and quan—

tity. In all cases, Piaget sees three sub-stages:-—

. Sub-Stage 1 - no conservation, child maintains that the quantitative
relationship has changed.

.‘ Sub-Stage 2 - intermediate reactions, child gives conserving response
if deformation is small, or will predict conservation
before deformation. However, if the subsequent deformation
is large child, the child will reverse its judgement
and assert that the relationship has changed.

. Sub-Stage 3 - conservation response.
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Piaget also sees three sub-stages of development in the measurement of
length and distance, It is the last sub-stage which is most relev-
ant to the empirical work of this thesis, Piaget divides the last sub-

stage into two parts:-

. Sub-Stage 111A— refers to the emergence of conservation of length
and distance; while

. Sub-8tage 111B~~ refers to the emergence of measurement of length
and distance, via the process of unit iteration.

{Piaget, Inhelder & Szeminksa, 1960).

In addition to positing a developmental dependency between conservation
and measurement, Piaget sees a parallel between the development of

number and arithmetical operations in the domain of logical groupings

and groups, and the development of measurement operations in the domain of

infralcgical groupings and groups:~—

"It is perfectly clear that, by Stage 111B the subjects
eeessee.have finally achieved the construction of measure-
ment by fusing or synthesizing the operations of subdivision
and change of position. Both operations were required at
level 111a for the notion of conservation, but there they
were still complementary to one another instead of being
fused inte a single operation. There is a parallel to

this elaboration of measurement cut of two qualitative
operations which are at first distinct but which must be

synthesized to yield one integral operation. The parallel



is in the elaboration of number. This cannot surprise

us since there are isamorphic relations between the iter-
ation of metrical units and the series of whole numbers
(as also between the fractioning of metrical units and
fractional numbers), likewise between subdivision and
composition of parts on the one hand, and nesting class
hierarchies on the other, and finally, between change of
position and seriation of asymmetrical relations., Thus,
measurement, in the field of sublogical operations is the
exact equivalent to number in that of logical operations,
since number is a synthesis involving the logical group-
ing of nesting classes and the seriation of asymmetrical
relations. The only difference is that the whole number
series is constructed at level 111A and so follows immed-
iately on these two logical groupings, while measurement
is delayed for some while after notions of conservation
have been mastered — although these are similarly dep-
endent on its constituent operations: subdivision and
change of position. We have tried to show how that delay
is not unexpected, since numerical unity is samething
which may be perceived intuitively because any collection
of discontinuous items consists of such unique elements,
vhile choosing a unit of length is to make an arbitrary
fragmentation of a whole which is continuous.®™ (Piaget

Inhelder & Szeminska, 1960, p400).



It will be evident from the above that Plaget”s views on the develop-
mental dependencies between conservation, arithmetical operations, and
linear measurement are of central importance to the present research,
Specifically, the three sub-stage model asserts that the following are

necessary components of linear measurement:-—

. the ability to conserve number, length and distance;

. the ability to make transitive inference judgements with respect to
number and length;

. the ability to use a unit of length for purposes of iteration;

. the ability to carry out arithmetical operations of addition and

subtraction.

Additionally, the three sub-stage mcdel predicts that:-

. the ability to conserve length emerges earlier than the ability to
measure length;

. the ability to conserve distance emerges earlier than the ability to
measure distance;

» the ability to perform arithmetical operations of addition and sub-
traction emerges earlier than the ability to measure length or

distance.



3,7 HORIZONTAL CECALAGE,

It has been noted in connection with the parallel development hypothesis,
and the three sub-stage model, that Piaget claims that the final sub-
stages in classes and relations emerge at about the same time, Similar-—
ly, attainment of sub-stage 3 in conservation marks the synthesis of the
logical (or infralogical, depending upon concept type) groupings and
number groups. Since it is these structures which determine the nature of
the child”s reasoning, it might be supposed that, for example, conservation
of number would appear at about the same time as conservation of weight.
This is because the logic of the argument is the same in both cases,
However, Piaget says not. Instead, he arques that logical and infra-
logical operations emerge synchronously within any given concept.

Thus, while transitivity of number and conservation of number emerge in
parallel, and transitivity of weight and conservation of weight are
attained at about the same time, there is a develcpmental lag between
nunber and weight. More specifically, Piaget found that sub-stage 3 of
classes, relations, conservation and measurement is reached in the
following order: number, length, quantity, weight and volume, Piaget

refers to this phenomenon as horizontal decalage.

However, Piaget has also found that length and distance concepts emerge
in parallel. His explanation reflects his conception of space.

When a child is presented with two lengths of dowel in the course of a
conservation experiment, he compares two extents of occupied space. In a
distance conservation experiment he compares two extents of unoccupied

space. Piaget regards space as a network of sub—spaces linked together



in a one, two, or three dimensicnal co-ordinate system. He argues that,
so far as conservation and measurement are concerned, considerations

of whether such sub~spaces are occupied by concrete objects or not, are
irrelevant.

-

In sumnary, Piaget claims that;

. the ability to conserve number emerges earlier than the ability to
conserve length;

. the ability to conserve length emerges at about the same time as the
ability to conserve distance;

. the ability to measure length emerges at about the same time as the

ability to measure distance.

Pinally, Piaget also found that an ability to seriate length emerged earlier
than an sbility to numerate. Since an ability to seriate length, and an
ability to numerate, are assumed to be low-order components of linear
measurement, that finding should also constitute a prediction of the

present study.

3.8 SUMMARY,

Piaget”s theory provides a structural account of cognitive development,
Cognitive structures are defined as systems of operations. Intellectual
growth is directed by the functional invariants of organisation and
adaptation, and the mechanimms of structural change are described in

terms of an equilibrium wmodel.



Four stages of development are identified. The third of these stages,

that of concrete operations, marks the emergence of behaviour and cognitive
structures concerned with logic, number, and certain physical properties
of objects and events in the world, Consequently, it is the stage of

development most relevant to this thesis,

The theory, and the enpirical base of the theory, provide general
predictions regarding the composition, and the order of development, of
the aspects of linear measurement examined empirically in this thesis.
Moreover, the theory provides a descriptive raticnale for that predicted
order of development. These contributions of Piagetian theory to the

derivation of specific hypotheses will be returned to in Part ITI,



CHAPTER 4.

METHODOLOGICAL CONSIDERATICNS.,

4.1 PIAGET’S MODIFIED CLINICAL METHOD,

The predictions made in Chapter 3 concerning the order of emergence of
components of linear measurement stem from Piagetian theory. Moct of the
empirical studies discussed in the following review were undertaken with
a view to testing various aspects of that theory. Difficulties arise in
interpreting much of this research, however, because many of the studies
did not use precisely the same tasks as did Piaget. Also, many did not
use Plaget”s "modified clinical® style of questioning to draw out from the
subject verbal justifications for his answer, In the modified clinical
method the experimenter explores the subject”s reasoning processes by ask-
ing the sublect to justify his answers verbally. The experimenter does

not adhere to a particular form, or to a fixed sequence, of guestioning.

4,2 PERFORMANCE /COMPETENCE ISSUE

A major advantage of the modified clinical method is that it provides evid-
dence of the particular form of reasoning used by the child. Critics of
that approach, however, claim that it is too dependent on the child”s ver-
bal skills, This issue is part of a long and continuing debate known as
the "performance/competence” distinction. More specifically, "competence”

refers to the subject having the particular ability in question. "Perfor-
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mance refers to the subject”s capacity to apply and demonstrate that abil-

ity in a particular situation.

This méthodological issue needs to be be considered before assessing emp—
irical evidence, and in relation to the design of the tasks and administ-

ration procedures employed in this study.

4.3 PERFORMANCE/OCMPETENCE CRITICISM OF

PIAGETIAN CQONCRETE OPERATIONAL TASKS.

Bryant(1974) has criticised some of Piaget”s concrete cperational tasks on
the grounds that they do not sufficiently control performance variables.
These variables might either mask the concept being explored, or they
might falsely give the impression that the child has acquired that concept.
That kind of criticism has most frequently been made of the transitive re-
asoning and class inclusion tasks. (Ahr and Youniss, 1970; Braine, 1959;
Brainerd, 1973,1974; Brainerd and Kaszor, 1974; Brainerd and Vanden Heuvel
1974; Bryant and Trabasso, 1971; De Boysson-Bardies and O“Regan, 1973;

De Soto, London and Handel, 1965; Flavell, 1977; Jennings, 1870; Klahr and
Wallace, 1972; Miller, 1976; Riley and Trabasso, 1974; Roodin and Gruen,
1970; Siegel, 1971a;1971b; Winer, 1974; Winer and Kronberg, 1974; Wohlwill,

1968; Youniss and Dennison, 1971; Youniss and Murray, 1970).

It was argued in the earlier analysis that transitive reasoning is a nec-
essary component of linear measurement. Hence it was decided that studies
of transitive inference would be used to convey the important features of

the argument.
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4.4 CRITICISM OF THE PIAGETIAN TRANSITIVE REASONING TASES

The Piagetian test for transitive inferences concerning length relations
involvés presenting objects A and B, then cbjects B and C, and then obj-
ects A and C, The AB and BC pairings are presented in such a manner as to
permit the child to determine perceptually which is the longer or shorter.
Objects A and C are usualiy presented in such a manner as to create a
misleading perception, the intention being to force the child to use prin-
ciples of transitive reasoning. Finally, the experimenter questions the
child to ensure that the given answer was derived by making a transitive
inference. Unless the child is able to justify his answer verbally, he is
not credited with having transitive reasoning for length fBeth and Piaget, .

1966) . The following four kinds of criticism have been made of this

procedure: -

{a) young children can make transitive inferences, but are compelled by
the visual illusion to give non-transitive answers;

{b) young children lack the verbal skills necessary to provide approp-
riate verbal justification for their answers;

(c} young children can make transitive inferences, but fail the task
because they forget the premises;

(d) young children who pass the task may use non-transitive strategies

(Brainerd, 1978).



o8

4,4.1 STUDIES CONTROLLING VISUAL ILLUSICN,

MEMORY CAPACTTY AND VERBAL SKILL, FACTORS.

Studieé which have not used visual illusions and have not required verbal
justifications have claimed that kindergarten children of about five years
of age can make transitive inferences (Brainerd,1973; 1974; Brainerd and
Vanden Heuvel, 1974). Similar findings have been reported from studies
which have not employed visual illusions, have not required verbal just-
ifications, and have nullified the memory factor by using either visual
or verbal feedback in a preliminary learning phase (Bryant, 1974; Bryant
and Trabasso, 1971; Riley and Trabasso, 1974; Siegel, 1971a; 1971b).
However, a recent study that employed the standard three fenn series
procedure found that 64% of the subjects who remembered the premises,
still could not make a transitive inference with respect to length (Hal-

ford and Galloway, 1977; Halford, 1979; Grieve and Nesdale, 1979).

All of these studies used an adequate sample size, appropriate stimulus
materials, and procedures which appeared to eliminate, or control, the
extraneous-factdrs. All of the studies, except that of Halford and Gall-
oway (1977), concluded that children can make transitive inferences two to
three years earlier than Piaget has claimed, In the case of Bryant’s
studies, it was found, using five term series problems, that three and

four year old children could make transitive inferences.

Methodological rigour, however, does not carry guarantees of conceptual
soundness. The resolution of the performance/competence issue rests on
discovering the form of internal representation used by young children in

solving Piagetian tasks.
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Many critics have argued that some children who pass the transitive infer—
ence task may not be using transitive reasoning priﬁciples,(De Boysson-~
Bardies and O"Regan, 1973; De Soto et. al., 1965; Flavell, 1977; Riley and
Trabasso, 1974; Youniss and Dennison, 1971; and Youniss and Murray, 1970).
However, it will be seen that these arguments can be applied either in
support of the Piagetian position, or in support of the critics of that
position. This is because they rest on assumptions concerning the form

of internal representation used by the child.

4.4.2 THE FOLE CF LINGUISTIC QDDING

IN TRANSITIVE INFERENCE,

Youniss and Dennison (1971) and Youniss and Murray (1970) suggested that
Piaget’s sfandard three term series problem could be solved by employing

a non-trancitive, linguistic coding strateqy. Their argument is that the
standard procedure enables subjects to code linguistically - A is coded as
“big” during the AB pairing, and C as “small” during the BC pairing, lead-
ing to the non-transitive judgement that, since A is “big” and C is “small”
A must be bigger than C. Their solution to this problem of false posit-
ives {correct answers reached by non-transitive processes) was to introd-
uce two additional objects X and Y, and to introduce them in such a manner
as to make both A and C both “big” and “small®. For example, in the foll-
owing set of pairings A is both bigger than B and smaller than X, while C
is both bigger than Y and smaller than B: A>B; B>C; X>A; COY; X?Y. The
same argument was applied by De Boysson-Bardies and O“Regan (1973) to

Bryant and Trabasso”s (1971) procedure.



ot

4.4.2 THE ROLE OF MENTAL IMAGERY

IN TRANGITIVE INFERENCE.

De Soto et.al. (1965}, and Riley and Trabasso (1974) advanced a similar
argument, suggesting that false positives might be produced by a strat-
egy involving mental imagery. They argued that a false positive solution
would be produced if the child imag{in)ed absolute values for each stim-
ulus item. However, differences between items in the stimalus pairings

in transitive reasoning tasks are usually small {e.g, .5cm in the case of
length). Furthermore, in general, people are not competent at estimating
length 7{SChiff and Saarni, 1976)}. It seems unlikely, therefore, that
young children would use a strategy requiring absclute coding of stimulus-

attribute values as mental images.

4.4.4 THE FORM OF INTERNAL REPRESENTATION,

These arquments concerning the form of internal representation used by
children have two curious aspects. Firstly, if the stimilus-attribute
values are sufficiently different to enable the child to adopt an absclute
linguistic or imaginal coding strategy, a false-positive solution could
be produced. However, it is also possible that a comparative linguistic
{e.g. bigger, smaller} or ordered imaginal (e.g. big on left, small on
right} coding strategy could be adepted. Each would produce a true
positive sclution. Short of asking the child which strategy he used, it

is impossible to resolve the issue.
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Secondly, suppose that objections to the standard procedure are raised on
the grounds that the child”s verbal skills are not sufficient to permit
him to justify his answer orally. Surely, an objection of equal force
could be raised against asking the child whether he used an absolute ling~
uistic or comparative linguistic, absolute imaginal or ordered imaginal,

form of internal representation.

Additionally, even if there were some way of ascertaining which of these
two forms of internal representation were used by the child, the value of
the argument could still be guestioned. Suppose that the absolute lingui-
stic or absolute imaginal form were used. It would be possible to solve
problems without using transitive inference if the child constructed a
linguistic or imaginal series, and “read off” the answer. In this case,
he would bé demonstrating a capacity to seriate, which is substage 1, not
substage 3, level of functionirg. In order to use transitive reasoning
the child would need to transform the problem to the canonical form ~ if
a.R.b. and b.R.c. then a,R.¢c. It may be that the production of a ling-
uistic or imaginal series is only the first step in the production of an
internal form of representation akin to the cancnical form. Wallace {1972)

argued that the findings of latency studies support this possibility.

4,5 SIMARY OF CRITICISM REGARDING TRANSITIVE REASONING TASKS.

In summary, a number of critics have insisted that at least some of the
subjects used in the Piagetian studies who failed to make transitive
inferences were limited, not by the absence of a transitivity rule, but

by memory capacity or some other factor. Such failures are instances of
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false negatives. In support of those contentions, methodologically rig-
orous studies were undertaken which, it was claimed, demonstrated that
children of four and five vears of age could make transitive inferences.
However , arguments based on the form of internal representation used
suggest that children in these studies could have produced correct ans-—
wers without employing transitive reasoning. Such passes are instances

of false positives.

However, it is also the case that arguments resting on the form of inter-
nal representation can be employed to either attack, or defend, the find-
ings of any transitive reasoning study which does not require the subject
to provide an appropriate verbal justification. Anderson (1978,1979)

has pointed out in another context that it is impossible to determine
what kind of internal representation a subject employs in problem solv-
ing. Furthermore, Miller (1976) has argued that: “The problem is that,
since it is inherently impossible to find a perfect operational definit-
ion of the concepts such as transitivity, inclusion (really disjunction),
and conservation on which the controversy turns, it cannot be resolved

by finding the perfect test (p.430)."

With these considerations in mind, it was decided that, when reviewing
evidence concerning the components of linear measurement, greater weight
would be given to those studies which adhered to the Piagetian approach,

with respect to tasks used and insistence upon verbal justifications.
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CHAPTER 5.

PARALLFL CEVELOPMENT: EMPIRICAL

EVIDENCE CONCERNING ORDER OF

EMERGENCE OF CONSERVATION AND

TRANSITIVE REASCNTNG,

5.1 PREDICTIONS.

It was arqued earlier that conservation of muwber and length, and transit-
ive reasoning involving number and length, are necessary components of
linear measurement. Therefore, the order of development of these compon-

ents might provide insight into the growth of linear measurement.

It was asserted in Chapter 3, that the parallel development hypothesis

yields the predictions that:-

{a} the ability to conserve number emerges at about the same time as the
ability to make transitive inferences with respect to discrete quant~
itys

{b) the ability to conserve length emerges at about the same time as the

ability to make transitive inferences with respect to length.

Empirical evidence concerning these predictions will now be discussed.
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5.2 ASSESSMENT CRITERIA.

If a study is to provide clear empirical evidence concerning these pre-
dictions, it should enploy the same group of subjects for all tasks. This
is because of the wide variation in the age at which children attain conm
ponents of the number and length concepts. For example, a particular
study using group A might conclude that the mean age for attainment of
length conservation is six years three months, and using group B that the
mean age for attainment of transitive reasoning involving length is five
years two months, Such findings provide only weak evidence of asynchron-
ous emergence of length conservation and transitive reasoning. This is
because such a study does not provide evidence that for each group the
compenent ot tested does not emerge in synchrony with the conponent tested.

This is a general limitation of between-group experimental designs.

In addition, Piagetian theory posits a lag in development between number
and length with respect to the acquisition of conservation and transitive
inference. It is necessary, therefore, that, in a study aimed at testing
the prediction of synchronous emergence of conservation and transitive
inference, the tasks should all test the same concept. For example, the
emergence of conservation of length should be located in relation to the
appearance of transitive inference reasoning with respect to length.

Unless this strateqy is adopted, difficulties will arise in interpreting
findings, For example, a finding that transitive reasoning involving
length emerged after conservation of number would be expected simply because

of the horizontal decalage between mumber and length.



These considerations, together with the factors already mentioned in Chap-
ter 4, specify the kind of study which could test the predictions present-

ly under review, Specifically, such a study should satisfy the following

criteris:—

{a) the tasks should be administered to all subjects;

{b) comparisons between emergence of conservation and transitive reason—
irg should be hased on the same concept - e.g. number or length or
weight but not mumber and length;

(c} The procedures employed should be essentially the same as those used
by Piaget, especially in connection with the insistence upon verbal

justification, and clinical style questioning of the subject.

5.3 EVIDENCE THAT ACOUTISITION OF QONSERVATION PRECEIES

ACCEIISITION OF TRANSITIVE INFERENCE.

5.3.1 LENGFH AND WEICTT,

In two studies, Smedslund {1961,1963) found evidence suggesting that cons-
ervation appears before transitive reasoning for each concept. In the
1961 study, five to seven year old children were given pre—-tests of con-
servation of quantity, conservation of weight, and transitive reasoning
involving weight. These pre-tests were followed by a training phase.
Smedslund found that, in the pre-tests, the correlation between conserv-
ation and transitive reasoning for weight was very low, after partialling
out age variances. He also found that transitive reasoning for weight was
more difficult to train than conservation of weight (this finding, way

simply reflect relative effectiveness of the training technigues). In the
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1963 study, Smedslund found that conservation of length appeared earlier
than transitive reasoning for length. His assessment procedures closely
followed those of Piaget, except for one aspect of the transitive reas-

oning task. After presenting the 2B and BC pairings, but before present~
ing the AC test camparison, Smedslund checked that the subject remembered
the cutcomes of the two earlier comparisons., If the subject ocouldn”t re-
member them, he re-presented the earlier pairings. This procedure in-

creases the potential for non-transitive solutions.

Mc.Mannis (1969) also studied the order of acquisition of conservation
and transitive reasoning, for both length and weight, using 90 normals

and 90 retardates, matched for mental age between 5 and 10. The results

are given in Table 5.1.

TABIE 5,1:

FELATIONSHIP BETWEEN (QONSERVATION AND TRANSITIVITY: WEIGHT AND LENGIH:

NUMBER OF SUBJECTS.

** P < 001

i WEIGHT
NCORMALS RETARDATES
CONSERVATION TRANSITIVE (TRANSITIVE | TRANSITIVE ; TRANSITIVE
REASONING | REASONING REASONING | REASONING
Absent Present Absent Present
Absent 30 4* 36 3**
Present 13* 43 34** 19
Length
Absent 33 1%* 37 O**
Present 22%* 34 45%* 8
* P o< 025




67

These findings appear to be strong evidence that conservation appears
before transitive reasoning in the development of each concept. Mc.Mann-
is” procedures closely followed Piaget”s, except in respect of one aspect
of the>transitive reasoning tasks. Like Smedslund (1963), he introduced a
learning factor by requiring the subject to recall correctly the ocutcomes
of the initial AB and BC pairings, before he moved on to oresent the AC
test comparison, His results are consistent with those of Smedslund

(1963).

The variations from Piaget”s procedures in these studies do not weaken
their findings. This is because the change in the standard transitive
reasoning procedure would decrease task difficulty. Theréfore, if con-
servation and transitive reasoning emerge synchronously, the predicted
outcome in the Smedslund and Mc.Mannis studies would be for transitive
reasoning to precede conservation. If, on the other hand, conservation
precedes transitive reasoning, the reduction in difficulty of the trans-
itive reasoning task should have masked that asynchrony. In other words
the effect of the change in the transitive reasoning test procedure made
by Smedslund and Mc.Mannis would be to reduce, not increase, the probab-
ility of finding a conservation followed by transitive reasoning sequence.
Their finding may, therefore, be construed as evidence that conservation

does emerge before transitive reasoning for each concept.
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5.3.2 NIMBER AND ILENGTH.

Achenbach and Weisz (1975) carried ocut a longitudinal study of develop-
mental synchrony between conceptual identity (which was equated with cons-
ervation), and transitive reasoning for colour, number and length, using a
sample of 102 pre-school age children. The children were tested on two
occasions, six months apart. Mean age at the first testing was 50 months.
Their results for identity and transitive reasoning, with respect to num-

ber and length, are given in Table 5.2.

TABIE 5.2:

PERCENTAGE (F SUBJECTS PASSING TDENTITY AND TRANSITIVE REASNING TESTS

FOR NUMBER AND IENGTH,

CONCEPT TEST
ICENTITY TRANSITIVE REASQNING
Number
Testing 1 | - 58 9
Testing 2 73 12
Length
Testing 1 35 6
Testing 2 70 6

Achenbach and Weisz (1975) interpreted these findings as evidence that,
for both number and length, conservation precedes transitive reasoning.
Even though this study is cited and accepted by influential scholars (e.q.
Brainerd, 1978), the conclusion reached is questionable, for the follow-

ing reasons:-
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{a) The identity tasks were concerned with the conservation of a quant-
itative attribute of a single stimulus. The standard Piagetian cons-
ervation task involves the gquantitative equivalenée of two stimuli.
The identity task should not be equated with a conservation task.

(b) The test for the presence of conservation was whether or not the
child was "surprised” on the second presentation of the stimulus.

(c) The transitive reasoning tasks were based on the five term present—
ations of Youniss and Murray {1970} and Roodin and Gruen (1970), and

not on the standard three term procedure.

Moreover, it is not unexéected that identity should have emerged before
transitive reasoning for number, This is because Gelman and Gallistel
{1972) found in a number of studies, that three and four year old child-
ren judged that an array of n items still contained n items after the
length, colour, identity and spatial arrangement of the array elements had
been surreptitiously altered. The same children, however, did not pass the
standard two—array conservation test. Gelman and Gallistel (1972) argue
that this is because pre—school children know that certain operations
change the numerosity of an array while others do not, but do not know
what effect the former group of operations have on the relations between
arrays of unspecified numerosity. Consequently, it would be expected that
identity would emerge before conservation. Because Piagetian theory pre—
dicts that conservation and transitive reasoning for each concept emerge
in synchrony, the Achenbach and Weisz {1975) finding that identity appears
before transitive reasoning is consistent with, and not in opposition to,

Piaget”s claims.
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5.4 EVIDENCE THAT ACQUISITICN (F TRANSITIVE

INFERENCE PRECEDES ACQUISITION OF QONSERVATICN,

5.4.1 WEIGHT.

Lovell and Ogilvie (1961) studied the order of acquisition of transitive
reasoning for weight and conservation of weight, and found that 53% of

those subjects who could not pass the conservation test did pass the

transitive inference test.

This study suffers from two major deficiencies which make interpretation
difficult., Pirstly, in the transitive inference task the third object in
the three object series was not presented physically, but described verb-
ally. Hence, the task required a transitive inference coﬁnecting a con-
crete object (A} with a verbal symbol (C), linked by a second concrete
object (B). The most likely effect of this mixed mode of presentation
would be to increase the difficulty of the task. Secondly, when scoring
the subject”s protocol for the transitive inference task, the experiment-
ers did not require the AB and BC pairings to be verbalised. This laxity

in scoring would tend to reduce task difficulty.

5.4.2 LENGTH &ND WEIGHT.

Brainerd (1973} studied the order of acquisition of transitive reasoning
and conservation, for both length and weight, in two experiments. In the
first experiment, two samples each of 60 subjects (mean ages of seven

years seven months and seven years and five months} were used. All sub-
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jects received all tests. In one sample, Brainerd found that transitive
reasoning emerged before conservation. In the other, Brainerd found that
they emerged synchronously, for both length and weight; Because of this
equivecal finding, Brainerd (1973) carried out a second experiment using
the same materials and procedure as for the first, but employing three
groups each of 60 subjects with mean ages of 5 years 4 months, 6 years

4 months, and 7 years 10 months. In the second experiment he found that,
for both length and weight, transitive reasoning emerged before conserv-
ation. Brainerd (1973) interpreted these results as being damaging to
Piaget”s parallel development argument. Brainerd”s conclusions may be
questioned on methodologiéal grounds because his transitive reasoning
tasks employed the A.EQ.B.NE.C. paradigm of Youniss and Mﬁrray (1970),

in lieu of_the standard procedure. Also, subject”s responses were not

scored on the basis of verbal justifications.

5.4,3 LENGTH.

In a later study, Brainerd (1974) examined the effects of training, and
transfer of training, on transitive reasoning and conservation, for
length. He found that transitive reasoning was easier to train than con—
servation. He intérpreted these results as infirming the parallel devel-
opment argument. However, again, his transitive reasoning tasks used one
of the non-standard paradigms developed by Youniss and Murray (1970).
Also, as with his earlier study, Brainerd did not require his subjects to
provide verbal justifications. In addition to these departures from
standard assessment procedures, interpretation is difficult because the
results may simply reflect the relative effectiveness of the training
technique used {verbal feedback) for transitive reasoning and conserv-

ation.
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As part of a series of experiments concerned with the relationship between
geometric imagery and operational thought in children, Brainerd and Vanden
Heuvel (1974) tested a group of 60 second grade school children (mean age
of eight years two months) for presence of transitive reasoning and con-
servation, for length. They found that 17 subjects passed the transitive
reasoning test and failed conservation, but only two passed conservation
and failed transitive reasoning. These findings are consistent with those
of Brainerd®s (1973) earlier study. However, as the assessment proceed-
ures used were the same in both studies, interpretation of the data suff-
ers from the same difficulties as those noted above in connection with the

1973 study.

5.5 SUMMARY.

In summary, none of the studies discussed above meet all of the assess-

ment criteria given at the beginning of this chapter.

The well known studies of Brainerd and his colleagues, which concluded
that transitive reasoning precedes conservation in the development of
each concepk, present two difficulties. Firstly, the task used to assess
the presence of transitive reaéoning'may offer subjects the opportunity
to pass the tasks without making transitive inferences. Secondly, the
studies did not score the subject”s protocols. Both of these factors
tend to reduce the difficulty of the transitive reasoning tasks. Hence,

the studies may have been biased in favour of the conclusions they reached.



The Smedslund and Mc.Mannis studies, which concluded that conmservation is
achieved before transitive reasoning for each concept, also departed from
standard assessment procedures. In particular, the tasks used to assess

the presence of transitive reasoning were easier than the standard form.

However, this did not bias those studies towerds their eventual con-

clusions,

In conclusion, the evidence does not favour the view of synchronous emerg-
gence of conservation and transitive reasoning. It is considered that the
evidence is more consistent with the opinion that, in each concept,

conservation appears in the child’s thinking before transitive reasoning.
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CHAPTER 6.

SEQUENTIAL DEVELOPMENT: EMPIRICAL

EVIDENCE CONCERNING ORDER CF

EMERGENCE CF CONSERVATION, ARTTHMETICAL

PROFICTENCY AND MEASUREMENT,

6.1 PREDICTIONS,

It was argued in Chapter 3 that the three sub-stage model yields the pre-

dictions that:-

(a)

(b)

{c)

(d)

(e}

the ability to conserve length emerges earlier than the ability
to measure length;
the ability to conserve distance emerges earlier than the ability

to measure distance;

the ability to perform the arithmetical operations of addition and
subtraction emerges earlier than the ability to measure length or
distance;

the ability to conserve mumber emerges at about the same time as the
ability to perform the arithmetical cperations of addition and sub-
traction;

the ability to seriate length emerges earlier than the ability to
make a transitive inference with respect to length;

the ability to order discrete quantity emerges earlier than the abil-

ity to make transitive inferences with respact to discrete quantity.
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Developmental sequences of the kind referred to in the first four of these
predictions should mot be confused with causal chains in concept acquis-
ition (Flavell (1971, and 1972) discusses this issue in detail). However,
they do provide indirect evidence concerning the composition of concepts.
Conseguently, these predictions, together with those linking transitive
reasoning and conservation, are central to the task of identifying the

camponents of linear measurement.

Considered together, the first four of these predictions link number occnserv-
ervation and arithmetical proficiency with the various conservations and
measurement, Diagrammatically, the linkages can be represented as in

Figure 6.1.

FIGURE 6.1:

SCHEMATIC REPRESENTATION CF PREDICTED ORDER (F EMERGENCE COF ARTTHMETICAL
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CONSERVATICN QINSERVATION MEASUREMENT
OF oF o
NUMBER LENGTH LENGTH
| I
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PROFICIENCY & &
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With this diagram in mind, the review of evidence concerning these pred-
ictions will commence with a discussion of the developmental relationship
 between number conservation and arithmetical proficiency., It will then
move onto length/distance conservation, length/distance measurement, and
arithmetical proficiency. Finally, the evidence regarding the lower order

abilities referred to in predictions (e) and (f) above, will be discussed.

6,2 THE CONSERVATICGN OF NUMBER AND

ARTTHMETICAL PROFICIENCY,

6.2.1 THE NUMBER CONCEPT AND ARTTHMETICAL OPERATICNS

It will be recalled that Piagetian theory states that the conservation of
number emerges in the child”s reascning as a consequence of the synthesis
of the cognitive structures concerned with the logic of classes and relat-
ions. Hence, conservation is seen as marking the integration of the ord-
inal and cardinal aspects of mumber. The theory also asserts that an
understanding of the arithmetical operations of addition and subtracticon
emerges as a consequence of that synthesis, and in concert with the con-
servation of number. Hence, understanding of arithmetic is based upon

a prior understanding of some aspects of Boolean logic.

6.2.2 DEFINING AN UNDERSTANDING OF ARTTHMETIC.

The principal difficulty in testing the prediction that the conservaticn
of number and an understanding of arithmetic emerge contemporaneously is
in deciding upon an acceptable definition of arithmetical understanding.

It could be said that possession of an algorithmic-like ability to per-
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form certain addition operations by bounting sets of objects constitutes
a level of understanding. It could also be argued that possession of the
knowledge that the natural numbers can be composed in a variety of ways
(e.g. (6)=(3+3)=(4+2)=(5+1) etc.) constitutes another, and, perhaps,
higher level of understanding. Yet another level of understanding would
require demonstration of the subject”s knowledge of the asscciative,

distributive, comutative, etc. laws of arithmetic.

6.2.3 EQUIVCCAL FINDINGS OF STUDIES

LINKING CONSERVATION CF NUMBER

AND ARTTHMETIC,

This problem of settling upon a widely acceptable definition of under-
standing of arithmetic is reflected in the results of studies that have
sought to identify the developmental relationship between the conserv-
ation of number and an understanding of arithmetic. Ameng the most
influential studies undertaken in the last decade are those of Brainerd
and his associates (Brainerd, 1973(a); 1973(b); 1974; Brainerd and
Fraser, 1975; and Siegel, 1971(a); 1971(b); 1974), and those of Gelman
and her colleagues. (Gelman, 1972; Gelman and Gallistel, 1972; and Gelman
and Tucker, 1975). 1In general, these studies coﬁcluded.that children
first develop an ability to count, then to perform addition and subtract-
ion on sets of small numerosity, and that this provides a basis for the
understanding of the cardinal aspects of number (including conservation
of number). 1In contrast, other less recent studies {Beard, 1963; Dodwell,
1960; 1961; and Hoéd, 1962) concluded that attainment of the conservation
of number is required for an operational grasp of number in the child’s
thinking, and it is only at this stage that the child can have an under-

standing of arithmetic.
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The more recent studies can be criticised on the grounds that the tasks
used do not tap the mental abilities for which they were designed.
Brainerd s studies, for instance, used a transitive reasoning task invol-
ving length relations to assess the child”s understanding of ordinal

nunber , and a one-to-one correspondence task to assess understanding of
cardinal number, His measures of arithmetical proficiency ranged from
knowledge of the first 16 number facts (i.e. =7 and n-m=? where n and m
range from 1 to 4) in his 1973{a) study, to the conservation of number
task in his 1975 study. Schaeffer (1980} found Brainerd’s methods to bes
"so sericusly flawed logically, psychologically and experimentally as to
be incapable of justifying his c¢laims...." (p.556), Of course, other

commentators would take issue with Schaeffer”s criticisms,

Gelman”s work has drawn less criticism. However, for reasons which need not be
examined here iIn detail, it is possible to argue that her findings do not
provide information on the developmental relationship between the conserv-
ation of number and an understanding of arithmetic. What her studies do
suggest is that very voung children have (at least for small rmumercsities)

the capacity to count, and to base number judgements of equivalence and

operations of addition and subtraction upon that counting procedure,

The older studies of Beard (1363), Dodwell (1960,1961), and Hood (1962)
found, in general, that children who conserved number performed at a high
level of proficiency on addition and subtraction tasks, The procedures
used in these studies closely resemble Piagetian methods, in respect of

both the tasks employed, and insistence upon verbal justifications.



6.2.4 STUDIES LINKING THE

IAWS OF ARTTHMETIC AND THE

LAWS OF BOOLEAN ALGEBRA,

A different approach to the order of development of the conservation of
number and an understanding of arithmetic, is to examine the development—
al relationship between the laws of Boolean algebra, and the laws of
arithlmetic. This approach has led same critics to enter the lists agai-
nst Piaget, on the grounds that class addition on the one hand, and nat-
ural mumber addition on the other, are so vastly dissimilar that psychol-
ogically, the latter could not possibily be built upon the former. Brain-
erd (1973a, 1978), Langford (1978, 1981), MacNamara (1975) and Osherson
(1974) are leading critics of this aspect of Piagetian theory. Since,

in respect of this issue, they endorse a common view, only MacNamara”s

(1975) criticism, and Langford’s (1981) evidence, will be discussed.

MacNamara (1975) made the point that, for purposes of counting, and/or of
applying arithmetic operations to the results of counting, any thing could
be grouped with any other thing to form the set of things counted. Such
things need share no common property, save the fact that the person doing
the counting could'discriminate one from the other. For example, the num-
ber of people living in town A, and the number of motor vehicles regist-
ered in town B, could be counted as one set., The only property that the
elements of that set would share would be that they were picked out to be
counted. Such a property is inherent of neither the ﬁeople in town A, nor
the motor vehicles in town B. In contrast, the members of a class - using
that word in the same sense as Piaget — do share properties; properties

inherent to the members of the class., It is this distinction between sets



and classes that gives rise to the radically different nature of the not-
ion of a unit in a set, and the idea of a unit in a c¢lass. That, in turn,

leads to the radically different outcomes of class and set operations.

MacNamara {1975) provided the following illustration of some of these

differences:~

"In scme sense, 5 includes 4 and 1, animals includes
dogs and cats, and animals includes dogs and animals
other than dogs. But in what sense of include? Four
and 1 together equal 5. There is nothing in 5 over
and above what is in 4 and 1 taken together. But dogs
and cats together do not ecqual animals. There are
other animals, such as horses and cows. So 5 does
not include 4 and 1 in the same sense that animals
includes dogs and cats. However, dogs and animals
other than dogs, taken together, do equal animals
in something like the sense that 4 plus 1 equals 5.
Notice, however, that the relationship between dogs
and animals other than dogs is quite different from
that betweén 4 and 1. The number "1" cannot be
expressed as "numbers other than 4" or as "numbers
less than 5 and other than 4", If the latter were
its meaning, it would be 1 plus 2 plus 3, which
equals 6, and when added to 4 would make 10, not 5.
It is clear that the relationship between 4 and 1 is

different from that between dogs and animals other
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than dogs. In short, the relationships among numbers
are quite unlike those among hierarchically

arranged classes." (MacNamara, 1975, p.427).

Langford {1581} supported that kind of theoretical argument with empirical
evidence fram a longitudinal study of the development of children”s under-
standing of logical laws in arithmetic and Boolean algebra., He tested
children”s knowledge of eight logical laws and 15 arithmetic laws, meas-
uring gains in knowledge over a two year period. Assessment procedures
tock acoount of the child”s verbal justifications. The tasks used were
appropriate behavioural equivalents of the operations beirxt investigatéd.
Analysis of the results included determination of statistical dependencies
between items: for example, pass/fail patterns rélating to the logical law

AB = BUA ard its arithmetical counterpart A+B = BHA.
In general terms, the results did not support the Plagetian view that laws
in arithmetic appear later in development than corresponding laws in Bool-

ean algebra.

6.2.5 SUMARY OF DISCUSSIMN: THE CONSERVATION (F

NUMBER AND UNDERSTANDING OF ARTTHMETIC,

Piagetian theory provides the prediction that the conservation of number
and an understanding of arithmetic emerge in the child”s thinking at
about the same time. Empirical verification of that prediction is diff-
icult, because of problems inherent in deriving a widely acceptable defin-
ition of what constitutes an understanding of arithmetic. Consequently,

the evidence is equivocal.
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Against this background, the most conservative policy would be to predict
that, for sets of small rnumercsity, the ability to count and carry out
operations of addition and subtraction based upon oounéinq, emerge in the
child’s thinking before the conservation of number: and, that the latter
emerges before more complex forms of addition and subtraction. The cues-
tion of whether these abilities imply an “understanding of arithmetic”

will be discussed in later Chapters.

6.3 THE ORNSERVATION (¥ LENGTH/DISTANCE, AND

MEASUREMENT CF LENGTH/DISTANCE,

6.3.1 EMPIRICAL STUDIES OF LENGI'H/DISTANCE,

CONSERVATICN AND MEASUREMENT,

There have been very few empirical studies concerned with the development-
al relationships between conservation of length or distance, and measure-
ment of length or distance, Most of the available empirical evidence is
still due to Piaget et.al. (1960). Most of the relevant studies that have
been conducted were concerned with assessing the role played by measure-
ment in the formation of conservation. In that context, measurement was
meant to include oﬁunting, and referred to an algorithmic kind of know-

ledge.

Beilin (1969} found that children with an appropriate measurement algor-
ithm did not conserve number or area. Wohlwill and Lowe (19562) found that
the ability to count did not ensure that the child would conserve number,
Same of their subjects placed greater weight on perceptual cues, such as
row length, than on the cardinal value given by counting, when the two

were in conflict,



On the other hand, Bearison (1969}, Gruen(1965), Lifschitz and Langford
(1977}, and Wallach, Wall and Anderson (1967} all foumd that training in
counting and measuring was effective in producing conserving responses,

and that the effect was durable.

6.3.2 TLENTITY, INVERSION AND COMPENSATION

ARGRENTS.

Wallach {196%) has argued that the three main wverbal justifications (id~
entity, inversion and compensation) given by conservers, and accepted by
Piagetians, as evidence of attaimment of conservation, could not be re-
sponsible for producing conservation. Langford’s (1978) arguments are

essentially the same as Wallach®s. In addition, he argued that counting
and measdément provide an important means by which children come to con-

Berve.

The identity operation preserves a particular property {e.g. length) of
an object, as distinct ﬁrm the object itself., The argument based on this
notion of gquantitative identity is that the property concerned must be the
same before and after transformation, because nothing has been added or
taken away. Wallach (1969) agreed that this is true of transformations
that & not change the property in guestion, but insisted that the iden
tity argument oould not possibly be a sufficient basis for attaimment of
conservation. This is because there is nothing in the child”s experience
to tell him that the guantity in question does not change on the first

transformation, or change back agzin on the second transformation,
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Similarly, with respect to inversion and compensation, Wallach (1969)
agreed that the conserving child may carry out these operations but, she
also argued, that they do not provide sufficient mechanisme for attain-
ment of conservation. For example, addition during the first transform-
ation can be reversed by subtraction during the second transformation,

but neither operation is quantity-conserving. Hence, sane reversible
operations are cuantity-conserving, others are not. Consequently, Wallach
{1969} argued that understandirg of reversibility cannot be a sufficient
mechanism for learning conservation. In connection with compensation,

she pointed out:-

"ees..This not only becomes fantastically complicated with
any but the simplest containers, but also exact compensation
by differences in width for differences in height cannot in

any case be directly perceived,® (Wallach,1969, p 192).

In addition to providing these theoretical arguments against guantitative
identity, inversion and compensation, she also sumarised evidence from
a number of studies dealing with different consggvations. A1l of those
studies demonstrated, that mere possession of these operations does not

ensure that children will conserve,

6.3.3 FIE CF MEASUREMENT IN ACCUISITION O (ORSERVATION.

Langford {1978) argues that, given that thése cperations cannot be com-
sidered sufficient mechanisms for acquisition of congervation, counting
and measurement must be implicated. He proposed that the accretion of
experience with counting beads and stones, and, measuring sticks and

blocks, etec., under different conditions, leads to the discovery of the
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conservation of nunber and length., This then leads, via generalization,

to other conservations such as guantity, weight and volume.

6.3.4 SUMMARY OF DISCUSSION AND CONUIUSION,

In summary, there is empirical evidence that the possession of guantit—
ative identity, inversion and compensation operations does rnot ensure
conservation; that the possession of counting and measurement skills does
not ensure conservation; but that training on counting and measurewent is
effective in promoting conservation responses. Additionally, there are
sound theoretical arguments against the proposal that quantitative identity,
inversion and compensation operations provide a sufficient mechanism for
explaining the acquisition of conservation. There are intuitively appeal~
ing arguments for explaining conservation acquisition in terms of counting

ard measurement skills.

On the other haryl, Piaget and Inhelder (1969) have insisted that conserv—
ation is a logical, rot an infralogical attainment. That is, conservation
is mot a matter of measurement, but a loxgical corwiction. In part, this
assertion refers to their beliefs that: (a) conservers do not, in reach-~
ing their answer, resort to infralogical operations; and, {b) that they
produce the identity and reversibility arguments only as after-the-event

justifications for their answers.
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The operational definition of linear measurement adopted in Chapter 2 was:
“a person may be said to have a mature understanding of linear measurement
if he demonstrates a capacity to use correctly arithmetical operations in-
stead éf carrying out physical measurement operations”. With that defin-

ition in mind, and having regard to the above discussion, there seem to be
insufficient grounds to warrant departing from the prediction that the de-
velopmental sequence is the conservation of length {(or distance) followed

by measurement of length (or distance).

6.4 SERIATION, ORDINATION AND

TRANSITIVE INFERENCE,

The last two éredictions drawn from the three sub-stage model to be dis-
cussed in this chapter are concerned with seriation, ordination and tran-
sitive reasoning. It was argued that all are necessary for linear meas—
urement. Specifically, the predictions are that: (a) the ability to ser-
iate length emerges earlier in the child”s thinking than the ability to

to make transitive inferences with respect to length; and, (b) the ability
to order discrete quantity emerges earlier than the ability to make tran-
sitive inferences with respect to discrete quantity. Hence, both predict-
ions refer to the same developmental sequence of seriation-then-transitive

reasoning, for the number and léngth concepts,

Because any transitive inference is, itself, a kind of ordering, it would
be illogical to assert that transitive reasoning emerges before seriation.
However, it may be that they emerge synchronously. Consideration of this

possibility again raises the performance/competence issue, because tran-
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sitive reasoning provided a major focus for that controversy. It will be
recalled from the discussion of that issue in Chapter 4, that it was con-
cluded that greater weight should be accorded those studies of transitive
reasoning which used standard Piagetian assessment methods. With that in
mind, a search of the literature failed to uncover any studies using stan-—
dard Piagetian procedures that found synchronous attainment of seriation
and transitive reasoning for either the number or length concepts.

Hence, it seems safe to agree with Klahr and Wallace (1976) and predict

that seriation emerges before transitivity.

6.5 SUMMARY,

The predictions listed at the beginning of this Chapter were examined
against the empirical evidence, and/or in the light of theoretical anal-~
ysis. 1In each case it was found that there were insufficient grounds to

justify modifying those predictions.



CHAPTER 7

HORIZCNTAL DECALAGE: EMPIRICAL EVIDENCE

CONCERNING CRDER OF EMERGENCE COF

CORRESPONDING COMPONENTS OF THE

NUMBER, LENGTH AND DISTANCE CONCEPTS.

7.1 PREDICTIONS,

88

It was arqued in Chapter 3 that the horizontal decalage model is the basis

for the predictions that, in the c¢hild”s thinking:-

(a)

(d)

the ability to conserve number emerges earlier than the ability
to conserve lengthy

the ability to conserve length emerges at about the same time
as the ability to conserve distance;

the ability to measure length emerges at about the same time

as the ability to measure distance;

the ability to seriate length emerges earlier than an ability

to numerate.
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7.2 EVIIENCE THAT ROCOUISITION

OF THE {ONSERVATION (F

RUMBER PRECECES ACQUISTTTION

OF THE CONSERVATION OF

LENGTH,

A search of the literature failed to find a study.that assessed number and
length conservation within the same child, using standard Piagetian pro-
cedures, ami containing a sufficiently large number of within—subject com-
parisons to enable statistical treatment of data. There are, however, a
nurber of studies that provide indirect evidence. Bearison™s {1969} study
is an example. His experiment was concerned with the effects of training
in certain counting-based measurement operations upon the child’s ability
to mn.serve continuous quantity, area, mass, number and length. On a
seven-month post-test, the percentage of subjects passing the number and/

or length conservation tests are given in Table 7.1,

TapiE 7.1:

PERCENTAGE OF SUBJECTS PASSING NUMBER AND LENGTH QNSERVATION TESTS,

EXPERTMENTAL GROUP CONTRO. GROUP
Number 75 _ 38
Length 63 19

Because of difficulties (relative effectiveness of training on different
tasks) in interpreting the effects of training on Piagetian tasks, even
when, as in this case, standard Piagetian procedures and assessment forms

are used, only the figures for the control group should be considered.
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Whilst those results indicate that the children found number conservation
easier than length, two inter-related points should be noted. Firstly,
only percentage pass/fail figures are provided, so that within-subject
develoﬁmental patterns have to be inferred, Secondly, the control group
contained only 16 subjects, too few to enable valid inferences to be drawn,
For example, 38% of 16 subjects is six subjects: 19% of 16 subjects is
three subjects; but the three subjects who passed length conservation may

not have been among the six subjects who passed number conservation.

Strauss and Ilan (1975) studied the effects of training or length conserv-
ation and speed concepts, and, in both pre-and post~testing of the control
group, assessed number and length conservation using the'standard Piagetian
approach. On pre-testing, of the 10 subjects in the control group, nine
conserved number while only three conserved length. On post-testing, all
10 conserved number, but only four conserved length. Although within-sub-
ject pass/fail patterns are not reported, the differences between the pro-
portions passing number and length, on the pretest {.9 to .3), and the
post-test (1.0 to .4), suggest a mnumber-then-length development pattern.
However, as the sample size was only 10 subjects, the results should be

treated with caution.

Goldsmidt (1967), in a correlation study linking 10 different types of
conservation with age, sex, IQ, MA and vocabulary, also provides some evid-
ence on number-length conservation development patterns. In addition to
using standard Piagetian procedures, this study has the merit of a large
sample size of 102 subjects. However, scome 20% of the subjects were

classified as emotionally disturbed: the effect of that disturbance on
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cognitive functioning is wnknown. The results provided the following
difficulty level-ranking {least to most) for the 10 conservations assess-
ed:: mass, number, continuous quantity, two-dimensional space, discontin-
uous qﬁantity, weight, area, length, three dimensional space and distance.
Unfortunately, insufficient information was reported on the data transform—
mations used in the ranking procedures to assess the statistical signif-
icance of the separation between number and length conservation ranks.
However, the data suggest that length conservation was much more difficult

than number conservation.

7.2,1 CCHNCLUSION.

The little empirical evidence available suggests that the conservation of

number is achieved before the conservation of length.

7.3 EVIDENCE THAT LENGTH AND

DISTANCE CONSERVATION EMERGE

SYNCHRONOUSLY,

A search of the literature did not uncover a comprehensive study of with-
in~subject develophental patterns of the emergence of length and distance
conservation. The best available evidence comes fram the Goldsmidt (1967)
study. In that study, it was found that distance conservation was more
difficult than length conservation. However, the cautionary comments made
above in connection with the Goldsmidt (1967) study extend with equal

force to this particular finding.



J2

The Piagetian finding of no horizontal decalage between length and dist—
ance conservation could seem counter—intuitive. It would seem harder to
acquire the conservation of distance than the conservation of length.
This is because length is an attribute of a single object, but distance
is a relation between at least two objects. Moreover, the distance rel-
ation changes, if the position of one of the objects changes, while

length is transportable,

A study by Schiff and Saarni (1976) replicated in most important re-
spects, an earlier study by Piaget and Taponier. The experiment

required adults and five and eight year old children to judge small diff-
erences in lengths of objects perceptually. The objects ﬁere parallel,
but their end points were offset., It was found that, when the differ—
ences in length were small, both adults and children were not very good
at judging relative lexéth. For example, when the difference was + or ~
1 mm, less tha 10% of adults made correct judgements. As the differences
in length increased, the five year old children became better at judging
relative length than the adults. For example, when the difference was

+ or - 5 mmz, less than 50% of the adults, but more than 70% of the five
year old children, made correct judgmeats. In contrast, 1008 of the
adults conserved length, whilsé most of the five year old children did
not. 8chiff and Saarni (1876) argued that these findings demonstrate
that conservation reflects the interplay of perceptual and conceptual
factors. These findings suggest that the conservation of length is not
based on perceptually given information., They are consistent with Piaget’s

views concerning length/distance synchrony.
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7.3.1 CONCLUSTN.

Against this background, it seems unnecessary to modify the prediction

of approximately synchronous emergence of length and distance conservation,

7.4 EVIDENCE THAT LENGIH AND

DISTANCE MEASUREMENT EMGRGE

SYNCHRONOUSLY,

The Piagetian c¢laim that length and distance measurement would emerge

synchronously has rot been tested empirically., However, if the claim of
a synchronous emergence of length and distance conservation is accepted,
then there would be no grounds for expecting asynchrony in the attainment L

of length and distance measurement,

7.5 EVIDENCE THAT ACQUISTTICN OF SERIATICN

PRECEDRES ACQUISITION OF NUMERATICN,

Piagetian theory claims that seriation of length is mastered before the
child can numerate {ie. co~ordinate ordinal position and cardinal wvalue),.
In the traditional Piagetian demonstration of this claim, the child is
asked to seriate sticks of varying lengths to buwild a staircase. Then
the child is asked to insert additional sticks into the series. A téy,
stich as a doll, is introduced, and the child asked to work out, starting
at different posititons, how many stairs the doll would have to climb to
reach a particular level. Piaget found that seriation was achieved
before numeration in this task. Elkind (1964) obtained a similar result

using eguivalent materials and procedure.
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7.5.1 CONCLUSTON,

There are no empirical grounds for departing from the Piagetian view that

seriation emerges before numeration.

7.6 SUMMARY OF CONCLUSIONS,

The little empirical evidence available supports the Plagetian claims,

however, 1t is evident that more work is necessary,
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PART III

THE EMPIRICAL STUDY:

DISCUSSION OF METHODOLOGY

AND PRESENTATION OF RESULTS,

A discussion of linear measurement was cresented in Part I. That dis~
cussion analyzed the components of linear measurement and raised several
questions which were examined empirically in the present research. The
questions were concerned with identifying the necessary components of
linear measurement, and describing its development in terms of the growth

of those components,

An examination in Part IT of relevant literature yielded several pre—

dictions regarding the growth of the components of linear measurement,

In Part ITI, the empirical study is reported. In Chapter 8, the strategy
represented in the design is discussed, and a mumber of hypotheses stat-
ed. In Chapter 9, subjects involved, tasks used, and procedures adopted
in the study are described. In Chapter 10, a statistical analysis of the

results is given,
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CHAPTER 8,

THE STRATEGY OF THE STUDY

AND STATEMENT OF

HYPOTHESES

8.1 mmwmm&*.

8.1.1 QUESTIONS ASKFED IN THE STUDY.

The analysis presented in Chapter 2 provided a list of components assumed
to be required for a full understanding of iterative linear measurement.
Chapter 2 also provided the following operational definition of linear
measurement: A child may be said to have a mature urderstanding of lin-
ear measurement, if he demonstrates a capacity to use correctly arithmet-
ical operations instead of carrying out physical measurement cperations.”
It would be possible for a child who does not possess all of the assumed
components to demonstrate linear measurement, according to this definit-
ion. 'This would be the case if the child simply resorted to previously
learned rules for substituting arithmetical operations for physical meas-
Liremnt operations. Such a child may be said to know how to “measure”
length but not know why arithmetical operations may be substituted for
physical measurement cperations. Indeed, it is possible that some adults
would not know why arithmetical operations may be used in deriving length
measurements, With these issues in mind, several empirical guestions
were then posed in Chapter 2. They may be summarised under three headirgs.
{(a) which of the components are necessary for mature linear measurement?
(b) Is there an order in which those components emerge in the child”s

thinking?



97

(¢} What is the relationship between the growth of linear measurement

and the growth of those components?
Piagetian theorv and associated empiriczl evidence were consulted in Part
11 as a source of information regarding these questions. This yielded

several predictions concerning the order of emergerce of the camponents,

B.1.2 TYPE OF DESIGH.

The nature of these guestions dictated the kind of study needed.

The first question - which components are necessary - could be explored
by two types of study: {a) a training study; and, (b) a cowparative study.
The other questicns - which are concerned with the order in which the
abilities emerge - can only be answered by a particular kind of comparat-

ive study: one that examines the development of component abilities.

2.1.2 TRAINING STUDY.

A& training study would atteapt to teach subjects who could not measure
length, those abilities deemed necessary. Pre-tests would identify missing
elements in each subject”s repertoire, and instruction would focus on dev-
eloping those elements. Post-tests would assess whether (presumably as a
consequence of training) linear measurement skills had emerged. A study
of that kind would present substantial problems of interpretation. In
particular, failure to meet the criterion of linear measurement could in-
dicate that the skills taught to the subject were not necessary components
of linear measurement. Alternatively, it could indicate only that the
methad of instruction used, whilst adequate for corveying skill in using
a particular algorithm, did not promote understanding of the conmponent
abilities.
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8,1.4 OOMPARATIVE STUDY.

In contrast, a comparative study would set down a list of abilities which
might be necessary for linear measurement. The study would then locate

two groups of subjects:

{a} those who oould measure: and

{b} those who could not.

Subjects in both groups would then he tested to assess the presence or
absence of the assumed underlying abilities. Comparisons between the two
groups would yield information on which abilities appear to be necessary

comoonents of linear measurement.

8,1.5 DEVELOPMENTAL STUDY.

‘A develommental study differs from the comparative approach mainly in that

subiects are tested at various ages.

8.1.6 PREFERRED APPROACH,

Because a developmental study has the potential to answer the two kinds
of question asked in the present research, it was decided that it would
be the most appropriate. Developmental studies can employ either cross-

sectional, longitudinal or scalcogram methods.
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8,1.7 CROB5-5ECTIGNAL METHOD,

The cross—-sectional method yields average ages at which particular tasks
are mastered. Although developmental progressions may be inferred, they
are based on age-related differences between groups not on age-related
changes within subjects, Moreover, when theoretical considerations sugg-
est that a number of different though related capacities will emerge asyn—
chronously, but within a comparatively brief interval of time, overlapping
distributions of scores between groups pose difficulties in interpretation,
Consequently, the cross-—sectional method can provide only indirect evid-

ence of developmental progressions,

8.1.8 LONGITUDINAL METHOD,

On the other hand, the longitudinal method has the potential to yield
direct evidence of developmental progressions because its basic datum is
within-subject change over time. Unfortunately, it also carries substant-
ial disadvantages with respect to time, cost, testing effects, selective

survival and drop-out rate, and So on.

8.1.9 SCALOGRAM METHOD,

A method that overcomes the disadvantages of the cross-sectional approach,
and does not incur the time and cost penalties of the longitudinal proc-
edure, is the scalogram technigue. This technique imvolves administering
a battery of tests to a group which includes subjects at varying develop—
mental levels. &ﬁalysis of the resultant data focuses on within—subject

patterns of passes and faills across the test battery, in order to deter-—
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mine whether the tasks form a scalable set, In this context, a scalable
set is one in which passing a particular task presupposes passing all
tasks of lower difficulty ranking. Provided that the tasks have const-
ruct validity, demonstrating that they form a scalable set is tantamount
to demonstrating that the capabilities being assessed emerge sequentially

in the course of development.

8,1.10 CONCLUSION,

Scalogram methods have been applied in a number of Plagetian~type

studies, especially noteworthy are those of Wohlwill (1860) and Rofsky
{1966) . As the logic of those two studies closely resembles that of the
present research, it was decided to adopt the scalcgram method. All
experimental designs, however, have inherent disadvantages., Wohlwill
(1960) identified the two main problems arising from use of scalogram
techniques for cognitive development research, They result from the fact
that the technigue scales both the subject and the tasks on the same
)basis, namely, the pattern of passes and fails across the test battery.
Firstly, inferences drawn from such an analysis can only be justified if
the researcher is assured that the tasks represent an wunderlying psychol-
ogical dimension. This recuirement has been met in the present study by
selecting tasks drawn from a body of theory that has an extensive empiric-
al base, and by formulating a set of specific and testable hypotheses re-
flecting the operation of a developmental process, Secondly, it is nec—
essary for the researcher to be able to demonstrate a correlation between
age {Oor some age-related factor, such as length of schocling) and
scale-type. In the present study, this desideratum was met by applying
multiple regression analysis to subjects” scores, using age and length of

schooling as predictors,
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8.2 STATEMENT OF BYPOTHESES,

8.2.1 CMPONENTS OF LINEAR MEASUREMENT,

The research cited in Part 11 has produced highly equivocal findings. In
addition, the empirical research reported in this thesis was carried out
essentially as a data gathering exercise. In view of this, the hypotheses
stated in the following paragraphs should be regarded as beirg only ten—

tative in nature rather than expressions of commitment.

An hypothesis concerning the composition of the linear measurement concept
could refer to a long list of shilities of varving levels of complexity,
or to a smaller list of higher-order abilities, An example of the former
would be that presented in Chapter 2 in association with an analysis of
linear measurement. It will be recalled that that list contained non-
independent entries, because it also referred to the growth of linear
measurement. A smaller list of higher-order abilites could be drawn up

in order to avoid, or reduce, redundancy of that kind.

When formilating an hypothesis for this study, it was decided to express
the camposition of linear measurement in terms of a list of higher-order
gbilities. The extent to which the entries on the list are independent
is an open question. The hypothesis which follows is drawn from the anal-
éfsis given in Chapter 2, and takes account of the views of Piaget et al.

(1960) on the development of linear measurement.

HYPOTHESIS 1.

A subject demonstrating a mature understanding of linear measurement

will alsc demonstrate the fellowing:—
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knowing that the mumerosity of an array of objects is invariant

under certain transformations (the conservation of nunber}

knowing that lergth is invariant under certain transformations

{the conssrvation of lergth);

. krowing that distance is invariant under certain transformations
{the conservation of distance};

. knowing how to make transitive inferences of equivalence and
non-equivalence with respect to discrete quan_tity;

. knowing how to make transitive inferences of equivalence and
non-equivalence with respect to length;
knowing how to carry out the arithmetical operations of addition
and subtraction;

. knowing how to cbtain a linear measurement by counting iterations of

a unit of length.

In this context, a mature understanding of linear measurement was operat-
ionally defined as: “a person will be said to have a mture understanding
of linear measurement, if he demonstrates a capacity to use correctly
arithmetical operations, instead of carrying out physical measurement
overations.,” The ability to use a unit of lergth was operationally defin-
ed as: “a person will be said to be able to use a unit of length, if he
can determine, by a process of iteration, how many of the given unit are
contajned in a given length, and (without resorting to further unit iter-
ation) can determine the effect of charging unit size”. The present study
has only considered the case where the given length contains a whole

nunber of units.
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8.2,2 ORER (F IEVELOPMENT CF COMPONENTS

OF LINEAR MEASUREMENT,

The lité;:atum reviewed in Part II only yields partial order predictions
for the total set of mmber and length components. However full order—
ings can be predicted for each domain separately. Therefore, the quest-
ion of whether there is an order in which the components of linear measur-—
ement emerge in the child’s thinking was examined by separating number
from length components. Each domain includes both late—emerging components
{e.g. arithmetical addition}, and early~emerging abilities (e.g. counting).
Piagetian theory and the assoclated empirical evidence suggest that, in
each domain, develogment is orderly and predictable: that is, that there
is a high probability that A will emerge before B; and that possession of
B implies, with a high degree of probability, possession of A. This is

the aspect of the study at which the scalogram analyses were directed.

‘These analyses were carried out to test the following specific hypotheses:-

Order in the Growth of the

Number Concegt.

HYPOTHESIS 2.

The collection of components of the number concept form a scalable set,

Order in the Growth of the

Length Concept,

Hypothesis 3.

The collection of components of the length concept form a scalable set,
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8.2.3 EXPECTED PATTERN (F [DEVELOPMENT,

Piagetian theory and the associated empirical evidence also suggest that
as well as a particular kind of order, there is a particular pattern of

development exhibited by the components of linear measurement.,

Predictable patterns of development are especially useful for gaining
insight into the growth of a concept, and of the emergence of linkages
between associated concepts., Since linear measurement involves knowledge
contained in the mmber, length and distance concepts, and the co-ordin-
ation of that knowledge, identification of particular development patt—
erns is relevant to gaining an understanding of its growth. The first

two of the hypotheses which follow are concerned with development patterns
for the number, length and distance concepts, The remainder are con-
gerned.with linkages between these concepts, All hyvpotheses are drawn

directly from the conclusions reached in Part II,

Growth of the

Number Concept.

Hypothesis 4.

For the mumber concept, the order of emergence of compeonent elements {(fram

earliest to latest) will be the Following:-
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Component

Knowing how to use a one-to-one
matching rule. -

Encwing the natural number order.
Knowing how to count arrays of small
numerosity, where to count implies the
co~ordination of ordingl position and
cardinal value {mumeration}.

Knowing how to add, when the obijects are
visible and small numbers are involved.
¥nowing how to subtract when the obijects are
visible and small numbers are involved.
Knowing that the numerosity of an array
of objects is invariant under certain
transformations {the conservation of
number’ ,

Knowing how to find the mmerical diff-
erence between two collections, when the
objects are visible,

Knowing how to make two collections
equal. in number, when the objects are
visible.

Knowing how to make transitive inferences of equ
alence with respect to discontinuous
gquantity.

Knowing how o make transitive infer-
erices of non-suivalence with respect

to discontinuous quantity.
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7. . Knowing how o add, when the objects are
are ot visible.
. Knowing how to subtract, when the objects
are not visible.
8. . Knowing how to co-ordinate addition and
subtraction operations, when the objects

are not visible,

This ordering was derived mainly from the
following partisal orderings referred to in
Part I1:~

Brainerd (1973a, 1973b) - [2->3; 3-»4];
Gelman and Gallistel {1978) - [1->2; 2->3;
3->4; 3~>5];

Siegel (1971a,1971b) [2-»3; 3->4];
Smedslund (1963) - [4-»6].

Growth of the

Length Concept.

Hypothesis 5.

For the length concept, the order of emergence of component elements {from

earliest to latest) will be the following:-

Rank Component
1. . Knowing that if length A is greater

than length B, then A may be oonsidered
as B concatenated with same other length.
2. . Knowing that the lergth of an object can
| be altered only if samething is added to,

or taken away from, it.
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Knowing that the length relation between
two objects only changes when something
is added to or taken away from one, or
other, or both, of the objects.

Knowing that the length relation between
two objects does not change when the spat—
ial relation is changed.

Knowing how to order obijects according

to their lengths (length seriation}.
Knowing that any length may be considered
as a concatenation of arbitrarily selec—
ted sub-lengths. |

Enowing that length is invariant under
certain transformations (the conservation
of length).

Knowing that the ordinal length relation
between two objects is the same as the
cardinal numerical relation between the
parts comprising those ohjects.

Knowing that length relations between
objects can be deduced Qy applying trans—
itive reasoning to the collections of
unit parts,

Knowirky that transitive reasoning can be
applied to relations of equivalence
between lengths of objects.

Rnowing that transitive rsasoning can be
applied to relations of non-equivalence

batween lengths of chjects,
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11.

12.

Knowing how to make quantitative estimates
of length, in terms of the nurber of
"unit" lengths.

Knowing how to iterate a unit part along
an object,

Knowing that if the length of the unit
part is changed, the number vielded by
unit iteration also changes.

Knowing that the length relation between
two chiects can be determined by carry-
ing out a linear measurement operation,
using unit iteration,

Enowing that arithmetical addition of
linear measurements may be used to
determine the length of concatenated
objects.

Rnowing how to add length relations (e.g.
given the ordered length series
a=-b=c~d, what is the relation
between lengths (at¢) and {bHl), where

the increment in length is constant).

This ordering was derived mainly from the
following partial orderings referred to in
Part IT:—

M Manis (1969} -~ [6->9];

Piaget et.al., {1960} =~ {1->2; 2->3; 3->4:
1->4; 1->5; 4->6; 6->10; 6->11; 6->123
10->11: 11->121;

Smedslund {1963} ~ [6~>9].
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Distance Concept.

Bypothesis 6.
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For the distance concept, the order of emergence of component elements

{from earliest to latest)

Rark

Linkages between

Concepts.

Hypothesis 7.

will be the following:-

Component
Knowing how to compare indirectly two distances
by a measurement operation not invelving
unit iteration.
Knowing that distance is invariant under
certain transformations (the conservation
of distance)
Knowing how to estimate distance betwe.en
two points in terms of the muber of
"unit" distances.
Knowing how to measure distance between

two points, using unit iteration.

This ordering was derived by analogy

with length,

Enowing how to seriate length emerges earlier than knowing how to num-

erate.

(Elkind, 1964;

Piaget, 1952).
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Hypothesis 8.

The conservation of number emerges earlier than the conserwvation of length.
{Bearison, 1969; Goldsmidt, 1967; Piaget et.al, 1960; Strauss and Ilan,

(1975} .

Hypothesis 9,

The conservation of length emerges at about the same time as the comr-

servation of distance. (Piaget et.al., 1960).

8.3 AGE, SEX AND TENGTH OF

SCHOULING FACTCORS,

Subjects differing in age and in length of schooling were used in the
study, Additionally, the male/female distribution in the sample was
about 50:50. It was possible, therefore, to analyse subjects” perform—

ances according to age, length of schooling, and sex,

vHawever, the age range {63 to 78 months) of the subjects was relatively
narrow. Given the magnitude of individual differences, it was unlikely
that differences in performances between younger and older subjects, after
removal of length of‘schaoling (kindergarten to grade one) effects, would
be significant, The situation with respect to the length of schooling
factor was a little different, because the older subjects were likely to
have had one more year of schooling., Conseguently, 1t seemed reasonable
to expect that, after remowal of any age effect, subjects with more school
experience would perform at a higher level than subjects with less. Re-
garding the sex factor, as discussed by Goldsmidt {1567), research

has not generally revealed sex differences.
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CHAPTER 9,

SUBJECTS, TASKS AND

PROCEDURE.

9.1 SUBJECTS.

9.1.1 AGE,

Because the research was aimed at identifying developmental sequences,
and because it is known that there are wide individual differences with
respect to age at which different capacities emerge (Goldsmidt, 1967),
it was necessary to choose an age range within which floor and ceiling
effects would be minimized. The evidence reported in Part II suggested
that 63 to 78 months (five years three months to six years six months)

would be appropriate.

Choosing that age range had certain consequences. Firstly, it was expected
that, if the subjects were to be evenly distributed in the 63-78 months
age range, then it would be almost certain that they would be spread over
two classes, namely kindergarten and grade one. This was because local
schools” admissions policies precluded the possibility that sufficient
numbers of the younger subjects would be found in grade one to permit all
subjects to be taken from that class. Additionally, if all subjects had
been drawn from kindergarten, then it is possible that a substantial num-

ber of the older subjects would have been repeating kindergarten, due to
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lack of progress the previous year. Lack of progress in early school vears
is not necessarily a reflection of 1.0. Moreover, tasks such as the var-
ious conservations correlate only moderately with IQ (Goldsmidt, 1967).
However, it was decided not to risk importing into the study factors aff-

ecting a perhaps small, but unknown, proportion of subjects.

Secondly, if the subjects were tc drawn from two classes, this would
present an opportunity to compare mean performance levels between classes
so as to evaluate the length of schooling effect. Althouch such matters
were not of concern in relation to testing the main hypotheses given in
Chapter 8, it was oonsidered that they might yield information relevant

to educational practice.

9.1.2 GEX,

An attempt was made to eguate numbers of males and females in each age by
length of schooling group., However, for practical reasons, it was not

possible to obtain exactly equal mmbers of each.

9.1.3 SCHOOL

CURRTCULUM,

If subjects had to be drawn from different schools, it was considered
important that there be no substantial difference between schools in
emphasis uwon use of materials such as cuisenaire rods, and Montessori
counting spindles, and that equal emphasis be given to traditional train-
ing in counting and memorising number facts, This was because a number of

the assessment tasks resemble classroom problems set by teachers.
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9.1.4 SAMPLING FACTORS.

Pilot testing of tasks and procedures suggested that assessment of the
capacities under investigation would require about two to three hours
testing for each subject. This requirement posed difficulties for the ACT
Schools Authority, as the ACT public primary schools are heav.ily utilized
for routine teacher training and research. Similar difficulties obtain
in gaining access to public primary schools in areas of New South Wales
adjoining the ACT. Practical considerations dictated that subjects be
drawn from private primary schools in the ACT. For statistical purposes,
a minimum of 100 subjects was required, They were drawn from a mumber of
different schools, because no single available school had sufficient en—

rolments in kindergarten and grade one.

A consequence of using subjects from private schools is that the sample
selected may not be representative of the general ACT population. How-
ever, as the research was not interded to e a normative study, this was
not considered to be an important factor. As the schiool population sam-
pled contained a substantial number of migrant and refugee children, it
was decided that teachers” rating of language understanding and perform—

ance would be sought before including children in the study.

9.1.5 SUMMARY,

100 subjects were drawn from four primary schools in the ACT. The schools
were: one ron-denominational private institution, the AME school at West-
on; and three Catholic convent schools, St.Thomas More”s at Campbell, St.,

Joseph”s at O“Connor, and St.Brigid’s at Dicksen. The three Catholic sch-
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0ols are located in affluent inmer—city suburbs, and draw their students
from local households. The AME school tends to attract students from all
all parts of the ACT and, in general, fram a highly affluent sector of the
population. All four schools followed the broad curriculum gquidelines of
the ACT Schools Authority for the early primary years, and all appeared
to give the same emphasis to memorisation of basic number facts, The dis—
tribution of subjects within age, sex and school grade categories across

the four schools is given in Table 9.1,

TABIE 9.1: SUBJECT SAMPLE: AGE, SEX AND LENGTH (F SCHOOLING DISTRIBUTION,

ALF, CATEGORY | TOTALS

SCHOOL YOUNGER* QLIERk*
| KINDERGARTEN KINDERGARTEN | GRAIE ONE

AVE 2 7 0 1 2 5 |17
CAMPBELL 2 5 4 2 3 1 |z
O CONNGR 14 9 5 9 3 5 {45
DICKSON 5 2 4 0 2 4 |17
TOTALS B3 | 27 13 | 12 10 | 15 100
TOTALS 50 25 25 fmo

Notes: * Subjects were in the eight month age range, 63 to 70 months.

** Subjects were in the eight mnth age range, 71 to 78 months,



9,2 TASKS,

Full descriptions of the 34 tasks used in the study are given in Appendix
1. The tasks were developed from the analysis given in Chapter 2, and
were designed to produce data for testing the hypotheses specified in
Chapter 8. Where standard Piagetian forms were available they were used.
Every attempt was made to keep the tasks as simple as possible. Addition-
ally, a number of variants of the tasks were pilot-tested in order to de-
termine the most effective forms of presentation. In all cases, simple
forms of questioning were employed. Subjects” evaluative responses and

verbal justifications were recorded.

A1l tasks were scored as “1” for a pass and "0” for a fail. Pass and fail
criteria for each task are specified in Appendix 1. Every affort was made
to ensure that subjects did not gquess their answers. Conservative pass/

fail criteria were adopted.

Brief statements of the assessment objectives of the tasks are given in
the following paragraphs. Number tasks are described first, then length,
and then distance, In the interests of brevity in the ensuing dis-
cussion, an acronym-is given for each task. The first letter of the
acronym identifies the task as relating to the number (N), length (L) or
distance (D) type. A second letter (R) before the hyphen indicates that
the task was concerned with the relations between at least two lengths
or distances, as distinct from an evaluation of the outcome of a trans-
formation upon one length or distance. Subsequent letters refer to the
cperations involved in the task. For example, task LR-TI-NE was concer-
ned with length; relations between length; transitive inferences; between

non—-equal lengths.



116

9,2.1 NIMBER TASKS,

N~ {(1-T0O~1) . This task assessed the child”s ability to determine the
numerical relation of equality between three collections of unspecified
cardinal value, wvia the operation of one-to~one correspondence,

[See Chapter 2, (B) {1)]

N-ORD, The subjects had to demonstrate that they could form an order—
ed series of collections of objects of unequal but unspecified numeros-
ities. That is, the subjects had to form a series of the following kind:
a,b,c,d,e, where the relation between an:y two elements could be determined

accurately, but not in terms of specific numerosity. [{A) (iiy]

R-CNT. This task assessed the subject”s ability to count small arrays.
The child had to demonstrate that he co-ordinated ordinal position and

cardinal value while counting nine objects. [{A) (1ii)]

N-TI-EQ. The subjects had to make transitive inferences of equality of
the following kind: a=b; b=c; a?c; where a,b and ¢ represent discontinuous

gquantities, [(&){iv}]

N-TI-NE. The subjects had to make transitive inferences of inequality
of the following kind: a.R.b; b.R.c; a?c; where R represents greater
than, and less than; and where a,b, and c represent discontinuous quant-

ities. [{AB) (iv)]
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N-CONS. This was the standard Piagetian number conservation task in-—
volving two rows of objects with various relative length and density patt-

erns. [{A) (V)]

N-ADD-V. This task assessed the subject”s ability to predict the results
of addition operations when the two collections to be added together were
visible. The subject was not permitted to put the collections together

and count the number of objects in the combined collection; and nor was

the subject permitted to use a pointer, such as z finger, to count one coll-
ection and then to move onto the other. The subject was allowed to count
out loud, or “in his head”. Collections of up to 12 objeqts were used.

[®) (vi)]

N-SUB-V. As for N-ADD-V, but in this task the operation involved was
subtraction {e.g. work out how many would be left if “n” were taken
away). The subject was required to predict the outcome. The collections

* were visible, {(A) (vi})]

N-SCL-V . In this task, the subject had to find the numerical difference
between two collections (a and b), and, by addition, or subtraction, make
the collections equal (this is usually called solving for a difference).
Collections a and b were visible, A third opllection was available to
draw objects from, or give objects to, in order to solve the problem,

The subjects had to solve the problem in one move, and were not allowed to
use pointers, such as fingers, during any counting operation. Collections

of up to 14 objects were used. [(A)(vi)}]
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N-BAL-V. The subjects had to solve problems having the foliowing form:
if a»b then [a~{a~b/2)]=[b+(a~b/2)]. (That is, balance the two collect-
ions by sharing the difference between them.) Collectiéns a and b were

visible. Subjects had to balance the two numerosities in one move.

Collections of up to 14 objects were used. [{A){vi)]

N-ADD-NV. This task assessed the subject”s ability to determine the
outcome of adding n obiects to a oollection of similar objects of known
numerosity, but where this latter collection is mot visible to the sub-
ject, Collections of up to 12 objects were used. The important differ-—
ence between this task and N-ADD-V is that, in the latter, the objects

were visible to the subject. [(A) (vi)]

N-SUB-NV, As for N-ADD-NV, but in this task the operation involved was

subtraction. [(A} {(vi)]

- N-CYCNV. This task assessed the subject”s ability to work concurren-—
tly on two collections, in a situation where adding to collection (a)
meant subtracting from collection (b) - that is, the objects cycled from
one collection to the other. The cbiects were not visible, except when in
transit between ocollections. As the first step in the task, the subjects
found, by counting, the total number of cbijects (12) in ocollections {(a)

and (b). [(A)(vi)]
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9.2.2 IENGIH TASKS,

LR-BirA. This task assessed the subject”s understanding that if length (a)
is greater than length (b) then {(a) may be considered as a concatenation of
(b} and scme other length (that is, a sense in which (b} is included in

(a)). [See Chapter 2, (B)({i)]

L-P/M. The subjects had to demonstrate an understanding that any length
may be considered as a concatenation of arbitrarily selected sublengths -

that is, an understanding of part-whole relations of length. {[(B}(ii}}

Note: The next three tasks are all concerned with aspects of the con—
servation of length. They differ, however, from the standard Piagetian
conservation of length task insofar as the materials used, and questions
asked, are directed at a particular explanation such as: “nothing was
added”s or “it only changed its place, that doesn”t make it bigger”.

- The ratiocnale for including them, in addition to the standard task, was
given in the discussion in Chapter 2 on the components of linear measure-

ment.,

L-INVAR-ADD, This task assessed the subject”s understanding that the
length of an object is invariant unless something is added to or subtract-

ed fram it — setting aside expansion and contraction processes. [(B) (1ii)]

LR-INVAR-ADD, This task assessed the subject”s understanding that the
length relation between two cbhiects is invariant unless something is add-
ed to, or subtracted from, one of the objects ~ setting aside expansion

and contraction processes. [(B} {(iv)]



120

LR~-INVAR-SP, The subjects were required to demonstrate an understanding
that the length relation between two objects is invariant under transform-

ationslinvolving only change of spatial position. {(B)(v)]

LR-ORD, This task assesgsed the subject”s ability to order objects accord-

ing to their lengths. [(B)}{vi)]

LR-TI-EQ. This task assessed the subject”s ability to make transitive in-

ferences of eciivalence with respect to length. [{B) (vii)]

LR~TI-NE. As for LR-TI-EQ, but with respect to objects of unequal

lengths, and, hence, relations of greater than and less than. [(B) (vii)]

LR~CARD. The subjects were required to demonstrate an understanding
that the ordinal length relation between two objects is the same as the
cardinal mumerical relation between the collection of parts comprising
" those objects (provided that the lengths of those parts are the same).

[ (B} (viii}]

LR~TI-CARD, The subijects had to deduce length relatio&é between obiects
by applying transitive inference reasoning to the cardinal number relat-

ions between the oollections of unit parts. [(B) {(ix)]

L~-CONS. This was the standard Piagetian conservation of length task,

using two pieces of string of equal length, [{B} (x)]

L~{NIT, This task required the subiect to iterate a unit part along the

length of an object. [(C)(i)]
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L-EST. This task assessed the subject”s ability to estimate length in
terms of: "how many of (a) would you nead to put together to made a stick

as long as this?® [(C) (i)}

L~UNIT-CH. This task assessed the subject”s ability to predict the direct-
tion in which the number given by unit iteretion would change, if the

length of the unit part were to change. [(C}{ii)]

LR-M-CARD, This task assessed the subject”s ability to determine the length
relation hetween two objects on the basis of a measurement operation
involying unit iteration, and comparison of cardinal numbers. (Notice

that the difference between this task and LR-CARD is that, in the latter,
the subject does not have to measure the length of each object using unit
iteration, because he is told which object has the greater number of parts.
Additionally, in LR-CARD the length relation is expressed in terms of

"more” or "fewer® parts, not in terms of specific numbers of unit parts.)

[(C) (1ii)]

L-M-ADD. This task assessed the subject”s understanding that mumbers rep-~
resenting lengths of objects may be added together, and that the resultant

number represents the length of the two objects joined together. [(C) (iv}]

L-AID, This task assessed the subject”s ability to add lengths in the
following (semi-algebraic) fashion: given an cordered series, a-b-c-d, where
the increment in length is constant, what is the relation between the com—

bined lengths {a+c) and (b+d)?2 [(C) (iv}]
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9.2.3 DISTANCE TASKS,

D-CONS.  This was the standard Piagetian conservation of distance task.
Two variants were used. The first involved the comparison of dist-

ances traversed along a path between two fixed points. The comparison was
between a journey from A to B, and one from B to A. On the B to A journey
a wall with a door was placed across the path, The second variant of the
task involved the comparison of distances traversed between fixed points
for: (a) a journey along a straight path; and (b} a journey along a non

straight path. [(D)(i)]

D-EST. This task assessed the subject”s ability to estimate distance be-
tween two objects in terms of : "how many of these small ones would you

need to build a path across there?” [(E) (i)]

DR-M. This task assessed the subject”s ability to compare indirectly
© two distances by carrying out a measurement operation, but not necessarily

using unit iteration. ([(E) (i)]

DM The subject had to demonstrate an ability to measure the

distance between two points using unit iteration. [(E)} (ii}]
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9.3 PROCEDURE,

9.3.1 CROER OF ADMINISTRATIQN,

Because there is some similarity between certain tasks - for example be-
tween L-EST (length estimation) and D-EST (distance estimation) — the ord-
er of administration was arranged so as to minimise carryover effects.

The following is a list of task sequences where carryover effects would be

most expected, but undesired:—

«  N-TI-EQ with N-TI-NE

« N-TI-NE with N-CRD

»  N-ORD- with N-OONS

“ L~INVAR-ADD with LR-INVAR-SP
. LR=INVAR~-SP with LR-TNVAR-ADD
. LR-ORD with L-~ADD

. L[=2DD with L-P/W

. L-L/W with LR-CARD

. LR-TI-EQ with LR-TI-NE

a LR-TI-EQ with N-TI-EQ

. LR-TI-EQ with H-TI-NE

. LR-IT-E with N-TI-EQ

. LR-TI-NE with N-TI-NE

. LR-TI-EQ with LR-TI-CARD

. LR-TI-NE with LR-TI~CARD

. LR-TI-CARD with N-TI-EQ

. LR-TT CARD with N-TI-NE

. L-BST with D-EST

. L~NIT-CH with LR-M-CARD

- (TR-M~ARD Aand T-M-2MN with (- and MR-
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The following is & list of sequences which should go together, because the
second task can be presented as an extension of the first:-
. L-WNIT and L~INIT-CH

. LR-M-CARD and L-M-ADD

The order of administration was arranged so that any two tasks which
should not be presented sequentially were separated by at least two other
tasks. Because of the large number of tasks in the battery the whole
sequence was divided into the following four sections, with the order of

administration within sections being as indicated below;-

Section 1
. N-CNT; N-ADD-V; N-SUB-V; N-SOL-V:; R-BAL-Y; N~ADD-NV; N-S5UB~NV:

N-CYC-V; N-1-TO-1.

Section 2,
" LR-M-CARD: L-M-ADD; LR-INVAR-ADD; N-TI-NE; L~-INVAR-ADD; LR-BinA;

N-ORD; LR-INVAR-SP; LR-ORD,

Section 3.
. I~ADD: LRTI-NE: [~-ON5: OS: I-p/W; LR-TI-CARD; D-M; DR-M;

LR—TI~E(.

Section 4.

. D-EST; L-UNIT; L~-UNIT-CH; N-TI-EQ; N-COS; L-EST; LR-CARD,
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9.3.2 TESTING SESSIONS,

The experience gained from pilot testing the tasks suggésted that each
subject would take from two to three hours to complete the whole battery.
With that in mind, it was decided to test each subiect {:ﬁ;ér four sessions,
each of 30 to 45 minutes in duration: one for each of the sections given

in the preceding paragraphs.

All subjects were tested individually in a quiet room, free from distract-
ions, at the subject’s school. Typically, the room contained a small low
table, two chairs and a cupboard where the experimental ﬁﬁterials were
stored, All subjects in a class were tested individually, on Section 1
tasks, then on Section 2 tasks, and so on. After all subjects in the
class had completed all sessions, the subjects in the next class were then
tested on Section 1 tasks, then Section 2 tasks, and so on, This approach
meant that no subject was tested twice on any one day, and that there was
- usually an interval of a few days between sessions for each subject.
Before commencing testing with subjects from each class, the experimenter
was introduced to the class by the teacher, and spent some time with thf:-
class, so that the subjects became familiar with the experimenter. The
same procedure was adopted at all schools. Testing commenced in early
April, 1980 and oontinued through to December, 1980. Subjects” ages were
recorded to the nearest month, as at date of testing on Session 1. The
longest period of elapsed time between commencement of testing on Session
1 and completion of testing on Session 4, for any one subject, was 14 days.

The same experimenter was used throughout the study.
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CHAPTER 10,

RESULTS OF THE STUDY,

10.1 SUMMARY DATA,

The responses (scored 1 or 0) of all subjects on all tagks are given in
Appendix 2. The distributions of total scores for all subjects, and of

the mmber of subjects passing each task, are given in Figures 10.1 and

10.2, respectively.

It is evident that both floor and ceiling effects have been avoided.
The distribution of total scores in Figure 10.1 shows only a minor floor
effect, This is confirmed by the pattern of task difficulty shown in

. Figure 10.2,

10.2 COMPONENTS OF LINEAR

MEASUREMENT,

Hypothesis 1 predicted that subjects who demonstrated an operationally
defined level of understanding of linear measurement weuld also demon—
strate that they possessed certain other knowledge assumed to underlie

linear measurement,

Table 10.1 shows the number of subjects passing the tasks designed to

assess level of understanding of linear measurement (LR-M-CARD and
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L-M-ADD), and the number passing the tasks assessing possession of the
assumed underlying knowledge. The McNemar test was used to compare the
proportions passing each of the linear measurement taské with the pro-
Qortioﬁs passing each of the component tasks. The chi-squared co—effic-

ients for each test are shown in Table 10.1.

211 of the component tasks, except N-SUB-NV, were significantly easier

than either LR-M-CARD or L-M-ADD, This finding is consistent with Hypoth—

esis 1.

However, since only a small proportion of the subjects passed the two lin-
ear m@asﬁrement tasks, it is possible that a substantial number of those
subjects could have failed the easier tasks. This would not be consis-
tent with Hypothesis 1. Table 10.2 shows the number of subjects who pass—

ed both the linsar measurement tasks and each of the easier tasks.

The data in Table 10.2 give general statistical support for the hypoth-
‘ esis that the components are pre-requisites for linear measurement. ALl
of the 13 subjects who passed L-M-ADD also passed LR-M-CARD. This con-
firms their validity as indices of linear measurement. There is a high
probability that a éubject who passed LR-M-CARD and L-M-ADD will also
have passed each of the easier tasks, in all but three cases. The except-
ions are D-CONS, LR-TI-NE and N-SUB-NV. The reasons for these except-
ions are discussed in the next Chapter. If they are excluded from con-
sideration, eight of the 14 subjects who passed LR-M-CARD also passed all

of the component tasks.
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It is concluded, that these findings are generally in agreement with Hypo-
thesis 1,

TABLE 10.1: NUMBER OF SUBJECTS PASSING LINEAR MEASUREMENT

TASKS AND HIGH ORDER COMPOWENT TASKS

TOGETHER WITH ASSOCIATED CHI-SCQUARED VALUES,

TASK | NO. OF SUBJECTS | MC,NEMAR (HI~ | MC.NEMAR CHI-SQUARED VALUES:
WHO PASSED SQUARED VALUES :| L~M-ADD AND TASKS LISTED
LR-M-CARD AND | IN COLUMY 1.
TASKS LISTED
IN COLUMN 1.
CHI- |P car- p
samen| | sqmem
N-TI-BQ 100 84.01 |<.001 | 85,01 | <.00%
LR-TT-EQ | 100 84.01 {<.001 | 85.01 | <.001
N-OONS 78 62,02 |<.001 | 63,02 | <.001
L-CONS 74 56,15 {<.001 | 57.14 | <.001
N-ADD-NV 58 38,52 |<.001 | 39.51 | <.001
L~UNTT 53 37.03 |<.001 | 38,02 | <.001
L-INIT-CH| 49 28.20 |<,001 | 29.17 | <.001
D-CONS 48 22,69 [<.001 | 24.60 | <.001
N-TT-NE 41 20.48 l<.001 | 21.44 | <.001
LR-TI-HE 29 5.94 {<.025 7.03 | <.01
N-SUB-V 21 1.89 [N.S. 2.72 | N.5.
LR-M-CARD| 14 - |- - -
L-M-ADD 13 - |- - -




TABLE 10,2: NUMBER (F SUBJECTS WHO PASSED BOTH THE LINEAR MEASUREMENT

TASKS AND EACH OF THE HIGH ORDER COMPONENT

TASKS,
TASK NIMBER OF SUBJECTS WHO NIMBER CF SUBJECTS | %

PASSED LR-M-CARD AND WHO PASSED L-M-ADD

TASKS LISTED IN AND TASKS LISTED IN

COLUMN 1 * OOLIBAY 1 **

N-TI-EQ 14 100 13 100
LR-TI-EQ 14 100 13 100
N-CONS 14 100 13 100
L-ONS 13 93 12 92
N-ADD-NV 12 86 12 92
L-UNIT 14 100 12 92
L~UNIT-CH 11 79 10 77
D-CONS 7 50 7 54
N-TI-KE 11 79 10 77
LR-TI~-NE 5 36 5 38
N-SUB-NV 8 57 8 62
LR-M-CARD - - 13 100
L-M-ADD 13 33 - -

129

Notes: * - Of the 14 subjects who passed LR-M-CARD the numbers who also

passed each of the component tasks are shown in Colum 2.

maximm mumber is 14.

** ~ Of the 13 subjects who passed [~M-~ADD the numbers who also

passed each of the component tasks are shown in Column 4.

maximesn neenber is 13,

Hence, the

Hence, the
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10.3 ORDER IN THE GROWIH (F THE

RIUMBER CONCEPT,

Hypothesis 2 predicted that the collection of mumber tasks would form
a scalable set, This hypothesis was tested by applying scalogram anal-
ysis technicues to the response matrix given in Table 1 of Appendix 2.
Guttman (Edwards, 1957) and Loevinger (1947) scaling indices were cal~

culated using a computer program written by the experimenter.

The Guttman analysis yielded a co—efficient of reproducibility of .81; a
minimye marginal reproducibility of ,7754; and a co-efficient of scalab-
ility of .58% (this last statistic is also known as Green”s index of

consistency).

The co-efficient of reproducibility is a measure of the extent to which
a subject’s scale score predicts that subject”s scale pattern. A co-eff-
icient of greater than .9 is usually considered to be necessary to indic—
ate a valid scale, The miniman marginal reproducibility is the minimum
co-efficient of reproducibility that could have occured given the pro-
portion of subjects passing and failing each item (in this case, task}.
The co-efficient of scalability takes account of the minimm marginal
reproducibility and the co-efficient of reproducibility., As a composite
measure it provides a more reliable guide to the scaling characteristics
of a set of items. A co-efficient of scalability of greater than .5 is

required to indicate a widimensional and cumulative set.

In the present case, the computed co-efficient of reproducibility exceeds
.9, and the co-efficient of scalability exceeds .5. Hence, the Guttman

analysis suggests that the collection of 13 mumber tasks is a scalable set,
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However, the Guttman technique has been criticised (Green, 1954;1956)

for relying too heavily on marginal row and column totals of passes and
fails. In contrast, the Loevinger technique takes account of individual
patterﬁs of pass/fail across the whole test battery. In situations where.
the test battery contains a large number of items with a high probability
of yielding tied scores - for both items and subjects - the Loevinger
technicque seems better suited (Kofsky, 1966; Wohlwill, 1960). For those
reasons it seemed prudent, in the present case, to place greater emphasis

on the Loevinger indices.

The Loevinger analysis vyielded an index of homogeneity of .570. The
interpretation of this index is the same as for Green’s iﬁdex of consis—
tency. It measures the extent to which the set is unidimensiocnal and
camulative. Again, an index of greater than .5 is required to indicate
a scalable set. It would appear, therefore, that, whether measured by

Guttman or Loevinger techniques, the collection of tasks is a scalable

. set,

Loevinger”s technique also requires that a matrix of indices be calcu-
lated. Each entry is a value of H{it), the "index of homogeneity of an
item (i) with a test (t)". H(it) measures the extent to which the item
contributes to overall test homogeneity. An item is regarded as perfect-
ly homogeneous with a test if all subjects passing the item have higher
scores on the test as a whole, than all of those failing the item, A
perfectly homogeneous item would have a H(it) of 1, but a H{it} of .7 is
regarded (Rofsky, 1966) as acceptable. Table 10.3 sets out the H(it) s

computed for the number tasks.
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TABLE 10,3: NUMBER TASKS: INIEX OF HOMDGENEITY OF AN TTEM WITH A TEST

TASK * INCEX OF HOMOGENEITY,
N-CNT ) 1.0
N-PI-EQ 1.0
N (1-T0-1) .88
N-ADD-V .95
N-ETBY .90
N~ORD .78
R-CCHS .85
N-S0L~V .90
N-BAL~-Y .93
N-ADD-NV .77
N=TT-1V ‘ .76
N-SUB-NV .99
N-CYC-V .98

Notes: * - Listed in order of increasing difficulty.

Table 10.3 shows that all 13 B(it) s have a discriminant efficiency of
greater than .7, and that 10 out of the 13 have a discriminant efficiency
of greater than .8, In comparison, Kofsky (1966) found that 2 out of her
11 classification tasks had H{it) values of less than .7. Hence, the
present H{it) values support the hypothesis that the collection of -
ber tasks is a scalable set.
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Loevinger”s third statistic, H(ii), called "homogeneity of two items",
deals with the relationship between two items in a perfectly homogeneous
test. In such a test all those who pass the harder alsé pass the easier
item. In contrast, the H{it) statistic only measures the extent to which
those passing an item have higher scores on the test overall, than those
failing the item. Hence, H(it) does not identify those who pass harder
but fail easier items. For example, H(it) does not discriminate the sub~
ject who passes the 10th ranked item and at least nine other items, but
fails one or more of the items ranked 1 to 9, from the subject who achiev-
es a score of 10 and passes only (but all of) the items ranked 1 to 10.

To complete the analysis of homcgeneity, therefore, it isrnecessary to
inspect the matrix of H{ii)”"s and find the proportion having values great-
er than .5, chance level of responding. Table 10.4 contains the matrix of

H(ii)“s for the number tasks.

- Inspection of the matrix of H(ii) values for the number tasks reveals

that all but 8 of the 78 indices exceed .5 (chance level). That is, only
10% of all item pairs show reversal or chance level responding. In comp—
arison, Kofsky (1966) found that 36 of her 55 inter-item comparisons were

less than .5.

Hence, the impression of scalability is supported by the Guttman co-effic—
ient of reproducibility, Green”s index of consistency, Loevinger”s index
of homogeneity of the test as a whole, Loevinger”s index of homogeneity of
an item with a test, and Loevinger”s index of homogeneity of an item with
an item. It is concluded, that technically the collection of number tasks

is a scalable set, This provides statistical support for Hypothesis 2.
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TABIF 10.4: NIMBER TASKS: INIEX OF HOMOGENETTY OF AN TTEM WITH AN ITEM.

N-TT-EQ | N~ (1-TO-1) |N-ADD-V | N-SUB~V] N-ORD | N-CONS
N—-CNT 1.00 | 1,00 .00 {1.00 [1.00 | 1.00
N-TT-EQ 1.00 .00 |1.00 !1.00 | 1.00
N~ (1-TO-1] .40 .38 .55 .91
N-ADD-V | .77 .38 .52
N-SBY | .34 .33
N-ORD .49

TABIF, 10.4 cont,

N~SOL-V | N-BAL-V | F-ADD-WV | N-TI-NE [N-SUB-NV| N-CYC-NV

N-CNT 1.00 1.00 1.00 1.00 1.00 1.00
N-TI-EQ | 1.00 1.00 |  1.00 1.00 1.00 1.00
N-{1-TO0-1} .77 .75 .63 .83 1.00 1.00
N-ADD-V | 1.00 1.00 .89 .85 1.00 1.00
N-SUB-V .91 1.00 .B2 74 1.00 1.00

N-ORD .67 .66 .66 .76 .76 .69
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TABLE 10.4 cont.

N-SOL~V | N-BAL-V | N-ADD-NV | N-TINE | N-SUBV | N-CYC-NV
N-CONS .70 .69 .53 .89 1.00 1,00
N-S0L-V .69 .43 .62 1.00 1.00
N-BAL-V .59 .65 1.00 1.00
N-ADD-NV | .36 1.00 1.00
N-TI-NE .68 .68
N-SUB-NV 1.00

Note: Tasks are arranged left to right and top to bottom in order of

increasing difficulty.

The fact that it is not perfectly scalable means that some subjects exhib-
ited reverse ordering. This could represent real heterogeneity in order

of emergence or it might reflect error of measurement due, for example, to

fluctuation in attention.

10.4 ORDER IN THE GROWIH OF THE LENGTH CONCEPT

Hypothesis 3 predicted that the collection of 17 length tasks would form
a scalable set. This prediction was also examined using scalcgram analys—
is. The following four statistics provide an indication that the collect-

icn is a scalable set.

. Guttman’s co—efficient of reproducibility = .89
. Guttman”s minimal marginal reproducibility = .78
. Green’s index of consistency = .48

Loevinger”s index of homcgeneity = .58
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It will be remembered from the discussion on the scalability of the number
tasks that the above Guttman values, and Green’s index, are very close to
the levels required for the collection to be oonsidereéva scaled set.
Also, the Loevinger index of homogeneity of .58 exceeds the .5 criterigﬁ
level. Bearing in mind the arguments favouring the Loevinger technigue,
it is reasonable to conclude that there is substantial order in the coll-

ection of length tasks.
Table 10.5 sets out the computed H{it) values for the length tasks.

It will be seen from Table 10.5 that all but 3 of the 17 H(it} values exceed
.7, and that 2 of those 3 are among the easiest of the tasks (the easier
the task the greater the effect on the computed H(it) value of a chance
fail by a subject). This result confirms the impression of order given

by the indices relating to overall test scalability.

- Table 10.6 sets out the matrix of computed H{ii) values for the length

tasks.

Examination of the matrix of inter-~item comparisons reinforces the imo-
ression of order, as all but 35 of the 136 pairings have H{il)"s exceed-
ing .3, chance level. Additionally, two items, L~P/W and LR-CARD, togeth-
er account for 15 of the 35 chance level or reversal type indices., It is
noteworthy that the H{it) values for these tasks were below .7 and that
these are among the easiest of the tasks in the length subset. These two
factors suggest that the reversal rates for these two tasks are unduly

affected by a small number of chance failures.
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TARBIE 10.5: LENGIH TASKS: INIEX OF HOMOGENEITY OF AN TTEM WITH A TEST,
TASKS  * INDEX OF HOMDGENEITY

LR~TI-EQ 1.00
LR-CARD ) N1
LR-BinA .79
L-p /W .65
iéwINV?&R*Aﬂ} .82
LR-ORD .76
L~INVAR-BDD 75
LR~INVAR-GP .B2
L~CONS .73
L-EST .83
L~UNIT .80
L~IT-CH 81
LR-TI-CARD N
LR-TI-NE .64
LR-4-{ARD .89
L-M-ADD .90

L~ADD .81

Note: * Listed in order of increasing difficulty.
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TABLE 10.6: LENGIH TASKS: - INIEX CF HOMOGENETTY (F AN TTEM WITH AN ITEM,

L. R-CARD |LR-BinA! L-P /W] LR-INVAR |LR-ORD | L~INVAR| LR~INVAR| L-CONS
~ALD ADD | -8P

LR-TI-EQ 1.00 | 1.00 |1.00 | 1.00 {1.00 {1.00 | 1.00 1.00
LR-CARD -.05 | .47 ! -.18 .39 |25  |-.35 .32
LR-BinA 36 0 .76 5L | .25 .46 .73
L~P/W : .22 19 117 .55 .32
LR-INVAR ' 51 .42 .55 .55
~ADD ;
LR-ORD .03 .40 .40
L~INVAR .86 .32
mATTY :
LR-INVAK .32
~SP
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TABLE 10.6 cont,
L-EST L~NIT | L-INIT-CH{ LR-TI~ LR~TT-NE | LR-M-CARD{ L-M-ADD me
o .
LR-TI-EQ;1.00 {1.00 [1.00 1.00 1.00 1.00 1,00 1.00
LR-CARD | .11 [1.00 |-,02 -.04 1.00 1.00 1.00 1.00
LR-BirA | .64 ;,62 1.60 1.00 .31 1.00 1.00 1.00
L-p/W .70 .69 .66 .31 1.00 1.00 1.00 1.00
L~INVAR | .52 ;.75 .73 .86 .54 1.00 1.00 1.00
~AID
LE-ORD .50 .78 .77 L7 .81 1.00 1.00 1.00
L~INVAR | .64 |.81 .80 .38 .83 .64 .62 .00
~-ADD
LR~INVAR; .66 :.85 .76 .60 .60 .73 .70 .23
~5P

L-CONS 52 .78 .53 .60 .60 .73 .70 .23
L~EST .61 .63 .48 .61 1.00 1.00 1.00

K L~UNIT .61 .47 .49 1.00 1.00 .79
L~INIT- .51 .46 .58 .53 .61
CH
LR-TI .67 .45 .56 1.00
~CARD
LR-TI-NE .09 13 .58
LR-M-CARD 1.00 .53
L-M-ADD .54
Note: Tasks are listed left to right and top to bottom in order of in-

creasing difficulty.
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On the basis of the Guttman, Green and Loevinger indices, it is concluded
that technically the oollection of length tasks is a scaled set., This
provides statistical support for Hypothesis 3. However; same subjects
did exhibit reverse ordering. As with the number tasks, this could re-
present real heterogeneity in order of emergence, or it might reflect

error of measurement,

10.5 EXPECTED PATTERN (F CEVELCOPMENT

OF THE NUMBER CONCEPT,

The predicted (Hypothesis 4) and the observed orders of difficulty of all

tasks in the number collection are given in Table 10.7.

Inspection of Table 10.7 indicates that there is substantial agreement
between the predicted and cbserved rankings. The degree of association
between the two rankings was assessed by computing the Spearman rank corr-
- elation statistic Rs, (corrected for ties), which is .72, This is signif-
icant at the .01 level (sample t = 3,4389, criterion t = 2.718 at alpha =

.01 and 11 d.f. for a 1 tailed test).

The three main differences between the rankings are the following:-

(a) It was expected that more subjects would pass N-(1-TO-1) {one-to-one
correspondence)and N-ORD (number name order) than the N-CNT (numeration)
task, but the latter is considerably easier.

{b) N-ORD was expected to be easier than N-ADD-V and N-SUB-V (addition
and subtraction when objects are visible), but they are of approximately

equal difficulty.
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** These are the rankings predicted by Hypothesis 4.

TABIE 10,7: NUMBER TASKES: PREDICTEDR AND OBSERVED ORIER CF DIFFICULTY
OF TASKS,
TASK No,of Ss.PASSING* | (BSERVED RANK PREDICTED RANEA*
N-CNT 100 1. 2.
N-TT-EQ 100 1 6
N-{1-T0~]) 86 2 1
N-ADD-V g4 3 3
N-S{B-V 81 4 3
N-ORD 80 5 1
N-CS 78 6 4
N-80L-V 61 7 5
N-BAL-N 58 8 5
N-ADD-NV 58 8 7
N-TI~-NE 41 2 6
N-SIB-NY 1 10 7
RN-CYC-NV 16 11 8
Notes: * Maximum of 100.
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(c) N-TI-EQ (transitive inferences concerning equivalence relations)
was expected to emerge synchronously with N-TI-NE, and to
be substantially more difficult than N-CONS (conservation), but it is

one of the two easiest tasks.

It is concluded that the data generally support the pattern of development

of the number concept predicted by Hypothesis 4.

10.6 EXPECTED PATTERN CF

DEVELCPMENT CF THE

LENGTH QOONCEPT.

Table 10.8 sets out the predicted (Hypothesis 5) and observed orders of

difficulty of all tasks in the length collection.

Table 10,8 shows that there is substantial agreement between the two
. orders of difficulty. The Spearman rank correlation statistic Rs (corr—
ected for ties) is .74, This is significant at the .0l level ({sample
t = 4,2686, criterion t = 2,602 at alpha = .0l and 15 d.f. for a 1 tailed

test,

The main differences between the observed and predicted orders of diff-

iculty are the following:-

{a) It was expected that attainment of LR-CARD {ordinal length relation
between objects is the same as the cardinal numerical relation between

the collections of unit parts comprising those cbjects would be delayed
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TABIE 10.8: IENGIH TASKS: PREDICIED AND (BSERVED ORIER (F DIFFIQULTY OF

TASKS,

TASK No.of SUBJECTS PASSING* (BSERVED RANK | PREDICTED RANK**
LR-TI-EQ 100 1 | 9
LE~CARD 98 2 7
LR-Bird 95 3 1
L-P/W 34 4 5
LR-TNVAR-ADD 85 5 3
LR-ORD 82 6 4
L~INVAR-ADD 80 7
LR~INVAR-SP 74 8 3
L-COONS 74 8 6
L-EST 56 9 10
L~UNIT 53 10 11
L-ONIT-CH 49 12 . 11
LR-TI~-CARD 48 13 8
LR-TI-NE 29 14 s
LR-M-CARD 14 15 12
L-M-ADD 13 16 12
L~ADD 10 17 13

Notes: * Maximan of 100.

** These are the rankings predicted by Hypothesis 5.
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until L-OONS (conservation of length) had emerged, yet the former is the
second easiest of all length tasks.

(b) L-TI-EQ (transitive inferences concerning equivalence relations)
was also expected to emerge after L-CONS, and synchronously with L-TI-NE
(transitive inferences involving non-equivalence relations), but it is

the easiest of all length tasks.

It is concluded that the data generally support the pattern of development
of the length concept predicted by Hypothesis 5.

10.7 EXPECTED PATTERN F

DEVELOPMENT OF THE

DISTANCE CQONCEPT.

Table 10.9 sets out the order of difficulty for the distance tasks

predicted by Hypothesis 6, and that observed in the study.

TABLE 10.9: DISTANCE TASKS - PREDICTED AND (BSERVED ORIER (F DIFFICULTY

OF TASKS.
TASK 1 No.of suBIECTS PASSING* | CBSERVED RANK | PREDICTED RANKY*
DR 53 1 1
D-OONS 48 2 2
D-EST 34 3 3
D-M 26 4 4

Notes: * Maximum of 100.

** These are the rankings predicted by Hypothesis &.
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It is apparent from Table 9 that the predicted and observed rankings are
the same at all four points in the sequence. Hence, it is concluded that
the data support the pattern of development of the distance concept pre-

dicted by Hypothesis 6.

10,8 LINKAGES BETWEEN

CONCEPTS,

10.8.1 IENGTH SERTATIN

AND NUMERATION, .

Hypothesis 7 predicted that knowing how to seriate lengths would emerge
earlier than knowing how to numerate. The former was tested by task LR~
ORD, and the latter by N-CNT. The number of subjects passing LR-ORD was
82, while all 100 subjects passed N=CNT. The McNemar chi-squared value
for the difference in proportions passing LR-ORD and N-CNT is 16.06,

which is significant at the .001 level and 1 4.f. Hence, N-CNT is signif-
icantly easier than LR-ORD., The data, therefore, do not support Hypoth-

esis 7, they show that numeration precedes seriation of length.

10.8.2 NUMBER AND LENGTH

CCHNSERVATICN,

Hypothesis 8 predicted that the conservation of number would emerge earl-
ier than the conservation of length. N-CONS was passed by 78 subjects,
and L-CONS by 74 subjects. The associated McNemar chi-squared co-effic-
of 0.50 is not significant (.05 level). Hence, the data do not support

Hypothesis 8.
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The low chi-squared coefficient means that there is no difference between
the proportions passing N-ONS and L-CONS, This could be interpreted as
indicating that N~OONS and L-OONS emerge synchronously. Alternatively,
it oould indicate that both emerge at a much younger age and, hence, that
the present data offer no evidence on their order of emergence. The

nunber of subjects passing and failing each task is shown in Table 10.10.

TABLE 10.10: NUMBER CF SUBJECTS PASSING AND FAILING NUMBER

AND LENGTH CONSERVATION TASKS.

NUMBER CONSERVATION

No. of SUTRJIECTS

PASS | FAIL TOTAL
LENGTH PASS 67 7 74
CONSERVATION '

FATT, 11 15 26
TOTAL 78 22 100

Table 10.10 shows that most of the subjects who passed one of the tasks
also passed the other, and that most of those who failed one task also
failed the other. Furthermore, of the 22 subjects who failed N—G‘.‘.!‘IS,
seven'passed L-CONS, and of the 26 who failed L-CONS, 11 passed N-COONS.
This is the pattern that would be expected for synchronous emergence.

It is concluded, therefore, that the data suggest that number and length

conservation emerge at about the same time.
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10.8.3 IENGTH AND

DISTANCE CONSERVATION,

Hypothesis 9 predicted that the conservation of length would emerge at

about the same time as the oonservation of distance. L~OOM5 was passed
by 74 subjects, but only 48 passed D-CONS. The associated McNemar chi-
squared coefficient of 15.63 is significant at alpha = ,001 and with 1

d.f. Therefore, the data do not support Hypothesis 9,

The nunber of subjects passing and failing each task is shown in Table
10.11.

TABIE 10.11: NIMBER (F SUBJECTS PASSING AND FATLING LENGTH AND

DISTANCE CONSERVATION TASKS,

LENGTH OONSERVATION
No. of SUBJECTS TOTAL
PASS FAIL
DISTANCE PASHE 42 6 48
CONSERVATION FAIL 32 20 52
TOTAL 74 26 10.0

T;sxble 10.11 shows that of the 74 subjects who passed I-ONS, 32 failed
D-ONS, and of the 48 who passed D-OXS, only six failed L-ONS. This

is the pattern that would be expected for a length-then-distance sequence.
It is concluded that the data show that the conservation of length emer-

ges before the conservation of distance.
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10.8 THE EFFECTS OF AGE, LENGIH OF SCHOOLING

AND SEX.

The age, length of schooling, and sex classifications of the sample of
100 schoolchildren used in the study are given in Table 10.12.

TABIE 10.12: GROUP CHARACTERISTICS ~ No,(F SURJECTS BY GROUP.

AGE SCHOOL, GRALE SEX TOLALS
MALE | FEMALE
Younger*! Kindergarten 23 27 50
Older** | Kindergarten 13 12 25
Year 1 10 15 25
TOTALS . 46 54 106

Notes: * &3 to 70 months.

% 71 to 78 months,

10.9.1 DIFFERENCES BETWEEN

GROUP MEANS,

Table 10.13 sets out the means and standard deviations of the total
scores {number of passes out of 34) for each of the six groups identified
in Table 10.12.



TABLE 10.13: TOTAL SCORES (N ALL TASKS - GROUP MEANS AND STANDARD

DEVIATIONS,
GROUP MEANS* | STANDARD No.of SIBJECTS
DEVIATICNS

No. Characteristics

1. Younger-Kinder-Male 18.00 7.02 23
2, Younger~Kinder-Female 16.70 6.36 27
3. Older-Kinder-Male 18.77 6.22 13
4. Older-Kinder-Female 22.17 3.87 12
3. Older~Year 1-Male 28.90 2.95 10
6. Older~Year 1-Female 27.67 4.14 15

Note: * Maximum score = 34.

10.9.2 MILTIPLE REGRESSION ANALYSIS,

ALI TASKS,

A multiple regression analysis was carried out using the heirarchical
method of decomposition. Age, then length of schooling, and then the
interaction term, age by length of schooling, were taken into the re-

gression equation. The results are summarised in Table 10.14.

Table 10.14 shows that the multiple correlation of performance on age

143

and length of schooling is .60289. This is highly significant (P<.001).

The table also shows that there is no significant age effect, but there

is a significant (P<.0l} length of schooling effect. There is no signif-

icant interaction between age and length of schooling.



TABIE 10.14: ALL TASKS - SUMMARY OF MILTIPLE REGRESSION ANALYSIS,
VARIABLE MILT.R. R-5(JJARED BETA F-RATIC P
CHANGE
AGE .54939 . 30183 .24311 | 3.571 ».05
LENGTH OF
SCHOOLING »60289 .06164 .39427 | 9.393 <.01
NMBER TASKS,
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The results of the multiple regression analysis carried out on the number

task scores are summarised in Table 10.15,

TABLE 10.15: NUMBER TASKS - SUMMARY OF MULTIPIE REGRESSION ANAIYSIS,
VARIABLE MILT. R Rﬁmﬁ. BETA P-RATIO P
CHANGE
AGE .485 .235 .27024 3,826 >.05
LENGIH &F
SCHOOLING .516 .030 .27670 4.011 <.05

The multiple correlation of performance on age and length of schooling
for the rmumber tasks is ,516.

Table 10.15 shows that there is a significant (P<.05) length of school-

ing effect, but no significant age effect,

This is highly significant (P<.001).

-
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IENGTH TASES.

Table 10.16 contains a summary of the multiple regression analysis carried

out on the length task scores,

TABLE 10.16: LENGIH TASES - SUMMARY OF MULTIPLE REGRESSION ANALYSIS,

VARTABLE MILT.R R-S5QUARED BETA F-RATIO p
CHANGE
AE .555 .309 .26779 4,329 <, 05
LENGTH (F
SCHOOLING .602 .054 .37030 8.279 <.01

The multiple correlation of performance on age and length of schooling
for the length tasks is .602. This is highly significant (P<.001).
Table 10.16 shows that both the age and length of schooling effects are

significant (P<.05 and <.0l1, respectively).

10.9.3 SUMMARY,

The preceding analyses show that length of schooling is a significant pre-
dictor of performance on all tasks, on the number tasks, and on the length
tasks. In contrast, age is a significant predictor of performance only
for the length tasks. This should be treated with caution, because age

is mot significant for all tasks - due to the added variance of total

scores, There is no evidence of a sex effect.
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The size of the length of schooling effect, as compared with the age
effect, is interesting. It implies that length of schooling is more
effective than age in promoting intellectual growth in the nunber and
length comcepts, within the age range used in the present study. This
finding is relevant to primary schools” admissions policies concerning
the minimum age at which children nay commence school. Under present
policies controlling entry to many Australian primary schools, a conside
erable runber of children are delayed for periods of up to six months in
commencing school, because their fifth birthday happens to fall after
certain cut-off dates. Although level of intellectual development and
capacity to learn are only two of the many factors that need to be con-
sidered vhen assessing a child”s readiness for school, the findings of
the present study suggest that there are many children who are being
delayed in commencing school but who are capable of making intellectual

progress through school experience.

10.10 THE FEFFECT OF SCORING CRITERIA ON THE FINDINGS.

The preceding analysis is based on data derived from a clinical-style of
assessment and scored using a strict pass/fail criterion, The criterion
is strict because correct answers were required to all guestions before
a child was credited with possessing the knowledge the task was designed

to tap.

Additionally, because a clinical-style of asseszment was used, there is
considerable variation between tasks in the nunber and type of gquestions
asked. It is possible, therefore, that the observed differences in task
difficulty might stem, to some extent, from the approach adcpted to

scoring subjects” regponses. This possibility is explored in Appendix 5.

o
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Firstly, in the case of the number tasks there is no correlation between
the number of questions asked and task difficulty {(Spearman Rs = ,37).
For the iength tasks there is a significant correlation (Spearman Rs =
-.42}, but in the opposite direction to that which might have been pre—
dicted. In other words, the lergth data analysis reveals that the fewer

the number of questions asked the greater the difficulty of the task.

Secondly, subjects” responses were reanalysed using moderate and weak
scoring criteria (defined at paragraphs AS.?.I. and A5,2,2 of Appendix 5).
The orders of difficulty obtained under each storing procedure were com—
pared using a Spearman rank correlation analysis. This indicated that

for all tasks taken as one collection, for the collection of number tasks,
and for the collection of length tasks the correlations obtained under the
strict, moderate and weak criteria are high. The orderings obtained under
the three scoring procedures are low, however, for the ccllection of
distance tasks. This finding reflects the fact that the distance collect-
ion contains only four tasks with similar pass rates, Hence the correl-

ations are very sensitive to small fluctuations in pass rates.

Thirdly, Guttman and loevinger scalogram analyses were also carried out
on the data derived from the moderate and weak scoring criteria. It

was found that the effect of adopting less stringent criteria is to
reduce marginally overall test homogeneity, and to increase marginally
the incidence of chance-level responding. However, the number and length
task collections form scaled sets, whether assessment is based upon a

strict, mderate or weak criterion.
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10.11 SUMMERRY OF FINDINGS.

The following is a summary of the main findings reported in this analysis.

10.11.1 COMPONENTS OF

LINEAR MEASITREMENT,

Subjects who demonstrated a mature understanding of linear measurement

alsc demonstrated the following:-

. Rrowirg that the numerosity of an array of obijects is invariant
urder certain transformations (the conservation of mmber).

+ Knowing that length is invariant under certain transformations
{the conservation of length).

« Knowing how to make transitive inferences of equivalence and non-
equivalence, with respect to discrete guantity.

. Knowing how to make transitive inferences of equivalence, with
respect to length,

. Enowing how to carry out numerical addition operations.

. Fnowing how to obtain a linear measurement by counting

iterations of a unit of length.

10.11.2 ORDER OF DEVELOPMENT

OF LINEAR MEASUREMENT,

For number and length the collections of component tasks form scalable
sets. That is, development in the number and lemgth concepts is orderly

and predictable,



154

10.11.3 EXFECTED PATTERN

OF DEVELOPMENT,

For nunber, length and distance the order of emergence of the components
is, in general, that predicted by Piagetian theory, and the emgirical
evidence reviewed in Part 11. There are exceptions, however. The most
notable is the emergence of the conservation of nunber before transitive
inference concerned with non-equivalent relations between discrete guant-
ities, This same lag in development between conservation and transitive
inference also cocurs with respect to lergth. Additionally, certain
comonents of the length concept emerge earlier than corresponding oom-

ponents {e.qg, conservation) of the distance concept.
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PART IV,

INTERPRETATION F RESULTS, DISCUSSION

AND OONCLUSICNS,

Chapter 11 interprets the results of the statistical analysis described

in Chapter 10, in the light of Piagetian theory and previous empirical
evidence., That interpretation raises questions regarding the role played
by short-termmemory-capacity limitations in forming the cbserved devel-
opmental patterns. These questions are examined in Chapter 12, using an
information processing analysis, and, in Chapter 13, by computer modelling.
Additionally, Chapter 13 argues that a detailed process model of linear
measurement needs to be developed. Chapter 13 also presents a number of
production systems that constitute a beginning of that project. The

conclusions reached in the study are then summarised in Chapter 14.
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CHAPTER 11

DISCUSSION OF RESULTS

11.1 THE COMPONENTS CF LINEAR MEASUREMENT.

The findings reported in Part III are generally consistent with both the

analysis of linear measurement presented in Chapter 2 and Piagetian

theory. However, some aspects of these findings need closer examination.

They are the results relating to the connections between linear measure-

ment and the following:—

(a)
(b)
(c)
(d)
(e)
(£)

arithmetical proficiency;

transitive inferences regarding length relations of non-equivalence;
the conservation of length and the conservation of distance;

the use of a “unit” of length;

the estimation of length;

the lag in development between length and distance.
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11.1.1 ARITHMETICAL PROFICIENCY

AND LINEAR MEASUREMENT,

The operational definition of linear measurement employed in this study
required the child to substitute arithmetical operations for measure-
ment operations. That definition immediately raised the problem of
defining arithmetical proficiency. 1In this study, arithmetical profic-
iency was indicated by the ability to carry out addition and subtraction
operations concerning objects that are not visible . These operations
were assessed by tasks N~ADD-NV and N-SUB-NV. The child could not pass
those tasks simply by rearranging objects and counting. In order to pass
them, he had to know an addition and a subtraction algorithm, and to be

able to apply them to an internal representation of the problem.

A reason for requiring that a child pass both tasks was that Piagetian
theory argues that arithmetical proficiency marks the synthesis of the
logical grouping structures and the elements of the numerical group struc-
tures. The result of that synthesis is said to be mumerical operations.
The hallmarks of mumerical operations are that they are reversible -~ im-
plying addition and subtraction ~ and that they c¢an be carried out on sym-
bgls - implying that the objects involved need not be visible to the

child.

It will be recalled that, in the present study, only 14 of the 100 sub-
jects passed LR-M-CARD, and only 13 passed L-M-ADD, the tasks assessing
mature linear measurement knowledge. Of the 14 who passed LR-M-CARD, 12

passed N-ADD-NV, but only eight passed N-SUB-NV. Of the 13 who passed
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I~-M~ADD, 12 passed N-ADD-NV, but only eight passed N-SUB-NV. On that
basis, it could not be said that arithmetical proficiency was a pre-regqu-~

izsite for linear measurement.

Moreover, 58 subjects passed N-ADD-NV, and 21 passed N-SUB-NV, yet only
14 passed LR~-M-CARD. A1l subjects who passed N-SUB-NV, also passed
N-ADD-NV. Hence, there were 21 subjects who passed N-ADD-NV and N-SUB-NV.
Of those 21, 13 failed LR-M~CARD. This would suggest that arithmetical
proficiency is mot sufficient for linear measurement. That, however,
would be consistent with the Piagetian view, because that theory argues
that linear measurement ability appears after the emergence of arithmet-

ical proficiency.

In short, the findings suggest that there are some subiects who can meas-
ure length but are mot proficient at arithmetic, and others who are pro—
ficient at arithmetic but cannot measure length. The explanation prob-
ably lies in the tasks used. Neither IR-M-CARD, ror L-M-ADD, require the
subject to carry out a subtraction operation. The former requires a num—
erical comparison to be performed, and the latter, an addition operation.
Hence, not knowing how to subtract would not constitute a barrier to pass-
ing either of the tasks used to assess linear measurement. This analysis,
however, is not consistent with the Piagetian view, because that theory
argues that nurber mastery — knowing how to add and subtract -~ shoald
precede attainment of linear measurement. The analysis would, though, be
consistent with Gagne“s {1968) componential theory, since that view of
human learning argues that what is important in determining whether a
child can solve a particular cognitive problem is whether or not it has
the components or rules required, as distinct from the concepts implicated

in the problem solution. It may be said, therefore, that from Gagne’s
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viewpoint a better study would have included a length subtraction task
analogous to L~M-ADD in the test battery. The operational definition
could then have been mede more stringent, by requiring that subjects pass

all three tasks to demonstrate possession of linear measurement ability.

11.1.2 TRANSTTIVE REASONING

AND TJINEAR MEASUTREMENT,

It was argued in Chapter 2, that transitive reasoning with respect to
number and length were involved in linear measurement. Piagetian theory

makes the same clain,

In the present study, five tasks were used to assess various Kinds of
transitive reasoning. Two were concerned with number, N-TI-83 and
N-TI~NE; and three with length, LR-TI-H}, LR-TI-NE and IR-TI-CARD.
Distinctions were made between transitive inferences concerning eguiv-
alence (BEQ) and non-equivalence relations (NE), because it was not krngmm
whether both forms were implicated in linear measurement. Piagetian
theory is silent on that matter. LR-TI-CARD is a composite task.

Tt requires subjects to make transitive inferences regarding length
relations. However, the premises are sxpressed in terms of the number

of unit parts contained in each object, not in terms of whole lergths.

It was found that all subjects passed N-TI-H} and LR-TI-E); 48 passed
IR-TI-CARD; 41 passed N-TI~NE; 29 passed LR~TI-NE; and 14 and 13 passed
the lipear measurement tasks, LR-M-CARD and L-M-BDD, respectively. Hence,
the transitive reasoning tasks were easier than the linear measurement
tasks. It might seem, therefore, that these data are consistent with the

predictions emanating from theoretical analyses.
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However, of the 13 subjects who passed L~M-ADD, 10 passed LR-TI-CARD and
10 passed N-TI-NE, but only 5 passed LR-TI-NE. These figures suggest that
transitive inferences concerning number relations of equivalence and non—
equivalence, and transitive inferences concerning lemgth relations of
equivalence, are implicated in linear measurement. They also suggest that
transitive inferences concerning length relations of non-equivalence are

not implicated.

A closer examination of the operations involved in linear measurement
indicates that this finding could have been anticipated, The transitive
reasoning implicated in unit iteration is concerned only with equivalence
relations, The transitive reasoning implicated in the comparison phase
{length A with length B) may be concerned with non-equivalent relations,
but with respect to number, not length., This is because at the stage that
the comparison is made the subject is working with numbers not lengths,

or, at mest, only indirectly with lengths,

11.1.3 CONSERVATION AND

LINEAR MEASUREMENT,

The conservation of number task (N-CONS) was passed by 78 subjects, and
the conservation of lergth task (I-OONS) by 74 subjects. Only 14 subjects
passed LR-M-CARD, and only 13 passed L-M-ADD. Moreover, of the 14 subjects
who passed LR-M~CARD, 14 passed N—CONS, and 13 passed I-CONS, Of the 13
subjects who passed L-M-ADD, 13 passed N-CONS, and 12 passed L-ONS.
Clearly, the linear measurement tasks were much harder than the conserv-
ation tasks. Similarly, 48 subjects passed distance conservation (D-CONS)

but only 26 passed distance mesasurement (D-M).
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These data provide strong support for the Piagetian view that number con—
servation and length conservation are pre-requisites for linear measure-
‘ment. BAlso, they are consistent with the findings of Beilin (1969) and

wbihwiil and Lewe {1962) , but inconsistent with the conclusions of Bear—

ison (1969) and Gruen {1965} regarding conservation - measurement asyn-

chromny.

11.1.4 UsE OF A UNIT

IN LINEAR MEASUREMENT,

Understanding éf the notion of a unit in linear measurement was assessed
using tasks, L-UNIT and L-UNIT-CH. They were passed by 53 and 49 subjects,
respectively., Of the 14 subjects who passed LR-M-CARD, 14 passed L-INIT,
and 11 passed L-UNIT-CH. Of the 13 subjects who passed I-M-ADD, 12 passed
L-UNIT, and 10 passed L-UNIT-CH. These data clearly indicate that the
ability to employ a unit, and understand its use, are pre-requisites for

linear measurement, Again, that is consistent with Piagetian theory.

Piagetian theory argues that a major difficulty confronting a child learn-
ing linear measurement is acquiring a grasp of a unit of length. This is
because, unlike with number, a unit of length is not perceptually given,
but decided arbitrarily, This argument is well illustrated by considering
the tasks, LR-CARD and L-WNIT. In the former, the child does not have

to invent a unit of length when either assembling or disassembling_the
rods — the unit of length is the length of the plastic block. In that
sense, it is analogous to a counting task, insofar as the unit is per-

ceptually given. In the latter, on the other hand, the child has to use



161

the amall 3cm strip to invent, in an abstract sense, a unit to be suce-
essively imposed along the length of the longer strip. Intuitively, it
seems that the latter ought to be more difficult. As 98 subjects passed

LR-CARD, and only 53 passed L-UNIT, the data support that view.

It is also noteworthy that the conservation of length was passed by a

significantly larger proportion of subjects than passed L-UNIT. This is
also consistent with the analysis presented in Chapter 2. That is, lin-
ear measurement implies the selection and use of a unit, and the use of a

unit implies the conservation of length,

11.1.5 ESTIMATICN AND

LINEAR MEASUREMENE,

Length estimation seems to be substantially easier than linear measure-
ment., All 14 of the subjects who passed LR-M-CARD, also passed the leng—

th estimation task (L~BEST), which was passed by 56 subdects.

This finding should not be surprising, as the requirements of L-EST clos~
ely resemble those of L-INIT, the major exception being that the answer
in the latter is precisely determined. The data also reveal this simil-
arity - 56 subjects passed L-EST, and 53 passed L~UNIT, This suggests
that the skill of estimating how many of “a” there are in “b” develops

hand~in-hand with the understanding of a unit of length.
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11.1.6 IENGTH AND

DISTANCE,

It was argued in Part IT that corresponding components in the length and
distance concepts, such as measurement by unit iteration, would emerge
synchronously. The findings of the present study do not support that

view,

In the length concept, 74 subjects passed L-CNS, 56 passed L-EST, and

53 passed L-UNIT. The numbers of subjects passing the corresponding
component tasks in the distance concept were: 48 passed D-0NS; 34 passed
D-EST; and 26 passed D-M (this is the distance task which most closely
resembles L-UNIT), Hence, the order of emergence is the same in both
concepts, but the length components emerge earlier than the corresponding
distance components. On that basis, developmental distinctions could ke
made between the acquisition of measurement of length, and the acquisit-

ion of the measux%ent of distance.

11.2 INTER-OONNECTION OF THE COMPONENTS

COF LINEAR MEASUREMENT,

bn the basis of the preceding discussion, the kind of proficiency in sub-
traction assessed by N-SUB-NV, and the ability to make transitive infer-
ences concerning length relations of non—equivalence and the ability to
conserve distance, are not needed for linear measurement (of length).
However, the other high order components set out in Bypothesis 1 should

be pre-requisites for linear measurement.
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The most difficult of those other components was found to be transitive
reasoning concerning non-equivalent numerical relations, which was ass-
essed by N~TI-NE. This was passed by 41 subjects, That is, even though
only 1;4 subjects passed LR-M-CARD, 41 subjects passed the most difficult
component task. Also, of the 100 subjects in the study, 13 passed all
high-order component tasks, but failed LR-M-CARD ‘Iand L-M~-ADD. Moreover,
all of those subjects were unable to commence LR-M-CARD and L-M-ADD,
Hence, for those subjects, the difficulty was not in executing correctly a
solution strategy, The evidence suggests that they didn”t have a strateqy

to invoke when confronted with the requirements of LR-4CARD and L~M-ADD.

It would appear, therefore, that a @rp;_x}rtign of subjects possessed all
the components, but could not measure length, That is, the components
may be necessary, but not sufficient, to ensure linear measurement.
There appears to be a delay between acquiring the underlying components,
and being able to demonstrate a mature understanding of linear measure-
ment. Given the differences in proportions passing the most difficult
component task and the linear measurement tasks, the delay appears to be

substantial, The question then arises: what is the cause of this delay?

Clearly, it would not be expected that mere possession of the listed com-
ponents would be sufficient for linear measurement, They would need to
be co-ordinated in some fashion, even if only in the same sense that an
algorithm orders operations in a computation. Hence, the delay might
occur because, even though all the components are present, same subjects
might not have been taught how to apply them to the task of linear measu—
rement. This supposition would be consistent with the finding that

length of schooling is a predictor of a subject”s overall soore,
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Alternatively, those subjects possessing the components, but not passing
the linear measurement tasks, might have been instructed in linear meas-
urement. However, those subjects might not have been able to co-ordinate
the components, because of a structural limitation., An obvicus structural

limitation would be insufficient short term memory (STM) capacity.

A linear measurement strategy might be permanently represented in long-
term-memory (LTM), or it might be generated by other LTM structures to
solve a particular problem. In the latter case, the strategy would be
simply a transient assembly of knowledge elements., In both cases, STM
would be involved in controlling the execution of the strategy. Hence,
it oould be expected that STM capacity limitations would be manifested
in breakdowns, or errors, in execution of the strategy. However, in the
present study, all 13 of the subjects who possessed all the components
but failed the linear measurement tasks, could not even commence those
tasks. This suggests lack of an appropriate strategy, not faulty execut-
ion. It also suggests that STM capacity limitations are not responsible
for the observed delay between acquisition of the components and mastery
of linear measurement. Moreover, since STM capacity increases with age,
this conclusion is consistent with the finding in the present study that

age is not a predictor of a subject”s overall performance.

Piagetian theory would account for the cobserved delay by asserting that
it corincides with a re-organisation of cognitive structures that results
in better co-ordination of underlying components. However, such an acc-
ount would not say why the assumed re-organisation should be a lengthy

process. In the present case, one explanation might be that the child
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needs to be exposed to a large number of experiences of the appropriate
kind before he can deduce the strategy that underlies linear measurement,
Moreover, the child ﬁzight not be able to benefit from these experiences
until he has acquired all of the underlying components., This implies
that the dhserved delay corresponds to an active period of learning.
This would be consistent with the present finding that length of school-

ing is a predictor of performance.

11.3 THE IMPLICATIONS OF THE

ORDER OF EMERGENCE OF

CMPONENTS OF THE

NUMHER AND LENGTH CONCEFPTS.

The finding that the nurber and length tasks form scaled sets is signif-
icant. It seems that many of the components of the concepts are acquired

sexquentially.

It would not be prudent, however, to claim that this sequential order is
the only pattern that mmber and length development could exhibit., The
earlier discussion of the possible causal links between conservation,
transitive reasoning, and measurement hints of the difficulty of maintain-

ing such a position.

Moreover, it should be borne in mind that most of the components assessed
in the present study are closely related to, if not symonomous with,

skills taught to children in school. Most of the teaching in schools,
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especially in arithmetic, is predicated on the assumption that such skills
are hierarchically organised. Hence, the cbserved pattern of development
in the number and length concepts may reflect nothing more than the curr-
iculum sequence used in the schcools the subjects were drawn from. The
finding that length of schooling is a predictor of overall performance

is consistent with that suggestion, and would be predicted by Gagne”s
{1968} theory of learning. Of course, the curriculum sequence may well

reflect the logical contingencies between the components tested in this

study.

The order of emergence of the components does not necessarily reflect the
order in which they began to develop. It may be that the development of
component B cammences before, or in synchrony with, the development of A,
However, if B takes longer to develop then it would emerge after A. 1In

that case, it would be inaccurate to claim a developmental dependency.

Flavell (1971, 1972) has pointed out the distinctions between developmental
sequences and developmental dependencies at considerable length, and has
proposed schemes for classifying dbserved developmental patterns. How-
ever, in the mmin, those schemes require identification of the time at
which each component started to develop, and the time at which its dev-
elopment was completed. Given the difficulty in assessing cognitive
skills, these requirements seem unrealistic. For example, determining

the time at which a subject gave his first behaviocural evidence of rud-

imentary counting skill, is probably, impossible.
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THE NUMBER OQNCEPT,

ated by the numbers of subjects passing each task.

icients is given in Appendix 3.

Table 11.1 shows
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The order of emergence of the components of the number concept is indic-

these tasks in rank order, together with the McNemar chi-squared ococeffic—

ients for adjacently ranked tasks. The full matrix of chi-squared coeff-

TABIE 11.1: NUMBER TASKS: HI-SQUARED VALUES FOR ADTACENTLY RANKED ITEM
PAIRS.
TASK NO.OF SUBJECTS MC ,NEMAR CHI-SQUARED P.
PASSING VALUES

N-CNT 100
0.00 NS

N-TI-EQ 100
12.07 <,001

N-{1-TO-1) 86
> 0.06 NS

N-ADD-V 84
> 0.44 NS

N-SUB-V 81
> 0.00 NS

N-CRD 80
> 0.06 NS

N-CONS 78
>10,24 <,005

N-SCL-V 61
> 0,24 =

N-BAL-V 58
> 0,05 NS

N-ADD-NV 58
> 6,56 <, 025

N-TI-NE 41
>12,.86 <, 001

N-5UB-NV 21
> 3,20 NS

N-CYC-NV 16
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The chi-squared values in Table 11.1 and Appendix 3 suggest a stepped
performance gradient ~ that is to say that there are abrupt changes to
the slope of this gradient. As indicated in Table 11.2 ard Figure 11.1,

that gradient can be divided into five levels.

TABLE 11.2: LEVELS ON THE PERFORMANCE GRADTENT FOR THE NUMBER TASKS,

LEVEL TASES

1. N-CNT

R-TI-EQ

2. N~ (1-T0O-1)
N-ADD-Y
N-8UB-V
N-CORD

N-CONS

3. N-SCL-V
N-BAL-V
N-ADD-NV

4. N-TI-NE

5, N-SUB-NV
N~ CYC-V

All tasks lying on one level on the gradient are signficantly easier than
those on the next higher level, and significantly more difficult than
those on the next lower level. However, all tasks on the same level &
not differ significantly fram each other. This does not necessarily mean

that those tasks do not differ in difficulty since significance tests for
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adjacent tasks In a sequence are of low power. Indeed, the conclusion
that the collection of number tasks is a scalable set implies that they
are ordered. The extent of that ordering may be gauged by inspecting the
reievaﬁt H(ii) indices. These indices for the number tasks were given in
Table 10.4 in Chapter 10, An inspection of Table 10.4 reveals that the
tasks on level 2 and on level 3 are poorly ordered, This confirms the
conclusion drawn fi:om the significance tests suggesting no gradient in
these regions of the curve. On the other hand, in spite of the results

of the significance tests, the tasks at level 5 are perfectly ordered.

It may appear that a conclusion of a stepped performance gradient for the
number task would contradict a conclusion that the collection of number tasks
is a scaled set {i.e. the components emerge sequentially). However,
abrupt changes in the slope of a performance gradient are not necessarily
incompatible with a sequential order of development, An abrupt change

in the slope of a performance gradient indicates a change in the rate of
increase of component difficulty. If the change is large, E';t may be
statistically significant. A sequential order of develomment is one in
which the components appear in a fixed order, with the easier components
emerging earlier than the more difficult, However, the Increase in 4iff-
iculty between adjacent components in a developmental sequence need not
be statistically significant, though it may be. In the present case, as
indicated in Figure 11.1, the levels on the performance gradient are r;c:t
perfectly flat, Similarly, the collection of number tasks is not a perf-
ectly scaled set. Hence, these two conclusions of a sequential order of

development and a stepped performance gradient are not incompatible.
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Assessing the developrental implications of a stepped performance grad-
ient can be complex. The form of the performance gradient for any set
of tagks is a joint function of two factors, namely, the distribution

of intellectual growth levels in the sample of subjects, and the distrib-
ution of task difficulty level {i.e. the level of intellectual growth
required to pass each task). An apparently stepped performance furction
could result from inhomwgeneities in the distribution of intellectual
growth levels in the subject sample, and/or from inhamogeneities in the

distribution of the difficulty levels of the tasks.

In the present study, there are two reasons for believing that it is un—
likely that the stepped performance gradient is due to the subject sample.
They are the narrow age range of the subjects, and the finding that

age is not a predictor of performance. Each of these factors suggest

homgeneity, not inhomogeneity, in the subiject sample.

Regarding the distribution of task difficulty levels, it is possible that
the stepped performance gradient results simply from taking a small ran—
dom sample of tasks from a larger population, The distribution of diffic-
ulty levels in this population could be continuous. The apparent discon-
tinuity could be a consequenée of sampling error. Alternatively, the
distribution might be discontinuous. Plaget”s stage theory of develop-

ment asserts that this is the case.

In any case it might be possible to explain the cbserved performance
gradient by analyzing the information-processing demands of the tasks.

This analysis is given in Chapters 12 and 13,
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The cbserved pattern of development for the number tasks contains certain

other features which need comment.

Transitive Reasoning. N-TI-BE) was significantly easier than N-TI-NE. It
is usvally assumed that the components assessed by these tasks emerge to-
gether. However, Langford {1981} also found that the transitive law for
the greater-than relation was more difficult than the transitive law for

the equal-to relation, with respect to number.

Conservation and Transitive Reasoning. N-TI-E) was significantly easier
than N-CONS, but N-CONS was significantly easier than N~TI-NE. Addition-
ally, the Ioevinger indices of homxjeneity of an item with an item for
N-CONS and N-TI-ED, and for N-CONS and N-TI-NE, are 1.00 ard .89, respect-
ively. That is, almost all subjects who passed N-TI~NE also passed N-CONS,
and very few of the subjects who failed N-CONS passed N-TI-NE. Thus,

there is a developmental asynchrony between the components assessed by

N-CONS and N-TI-NE.

This finding is not consistent with Piagetian theory, because the latter
claims that, in each concept domain, conservation and transitive reasoning
emerge in parallel. This finding is consistent, however, with Gagne’s
(1968) camponential theory, since the form of transitive reasoning implied
in the N-CONS task is N-TI-BQ, not N-TI-NE. Hence, lack of the ability
assessed by N~TI-NE would not be a barrier to a child passing N-CONS.

For the ability assessed by N~TI-NE to be implicated, the conservation of
number task would need to have included tests for the conservation of the
numer ical relations of greater-than and less-than., That comment aside,
however, the present finding of a development asynchrony between conserv-—
ation and transitive reasoning is consistent with the Smedslund (1963)

and Mc.Mannis (1969) data.
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Arithmetical Proficiency. The components assessed by the more difficult
arithmetical tasks (e.g. N-50L-V, N-BAL and N-ADD-NV) emerge after con-
servation, rather than at the same time, The most difficult of these
components (assessed by N-SUB-NV and N-CYC-NV) emerge much later than the
three which follow the appearance of conservation. Moreover, there are no
reversal-type responses in the data concerning these five arithmetical

tasks - that is, they are a perfectly ordered set.

The reason for the delay in achieving the kind of arithmetical profic-
iency assessed by N-SUB-NV is not apparent. It may be a reflection of
the additional time needed for reversibility of the numerical operations
implied in N-ADD-NV to be achieved. That kind of Piagetian argument,
however, is not consistent, because the emergence of the conservation of
number is also supposed to indicate that the property of reversibility
has heen achieved. The inconsistency stems from the finding that the
conservation of number emerges much earlier than arithmetical proficiency,
as assessed by N-SUB-NV. Hence, Piagetian theory does not offer a ready

explanation.

11,5 THE CRIER (F EMERGENCE

OF COMPONENTS OF THE

LENGTH ONCEPT.

The order of emergence of the camponents of the length concept is indie-
ated by the number of subjects passing each task. Table 11.3 shows
these tasks in rank order, together with the McNemar chi-squared coeffic-
ients for adjacently ranked tasks. The full matrix of chi-squared oo-

efficients is given in Appendix 3.
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LENGTH TASKS: CHI-SQUARED VALUES FOR ADJACENTLY RANKED ITEM

TABIE 11.3:
PAIRS.
TASK No.of SUBJECTS MC _NEMAR. (HHI-SQUARED P
PASSING VALUES
LR-TI-EQ 100
> 0,50 NS
LR-CARD a8
L-BinA 95
> 0,00 NS
I-P/W 94
> 3.76 NS
LR~-INVAR- 85
ADD > 0,27 N5
LE-ORD 82
> 0.03 NS
L~-INVAR~ 80
ADD > 2,50 NS
LR-TINVAR~ 74
Sp > 0.04 NS
L~ 74
> 9,03 <.005
L-EST 56
> 0.19 N5
I~UNIT 53
> 0.41 NS
L-INTT-CH 49
> 0.00 NS
LR-TT~ 48
CARD >11.17 <,001
LR~TI-NE 29
> 5,94 <, 025
LR-M-CARD 14
> 0.00 NS
IL~M-ADD 13
> 0.36 NS
L~ADD 10




The chi-sguared values in Table 11.3 and Appendix 3 suggest a stepped
performance gradient.

gradient can be divided into four levels.

TABLE 11.4:

LEVELS N THE PERFORMANCE GRADIENT FOR THE LENGIH TASKS,

As indicated in Table 11.4 and Figure 11.2, that

LEVELS

TASES

1A

LR-TI-EQ
LR-CARD
L-BinA

L-P/W

i b A e e B M SR e e e e e e S e

LR-INVAR-ADD
LR-ORD
L-TNVAR-ADD

LR-TNVAR-SP

L-EST
L-UNTT
L-INIT-CH

LR-TI-CARD

LR-TI-NE

LR-M-CARD
IM-ADD

L-ADD
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All tasks lying on one level on the gradient are significantly easier
than those on the next higher level, and significantly more difficult
than those on the next lower level, With the excaptiaﬁ of the level 1
tasks,u all tasks on the same level do not differ significantly from each
other. In the case of the level 1 tasks, there is no significant diff-
erence in difficulty between adjacent tasks (ranked in order of diff-
iculty as in Table 11,3}, but there are significant differences between
tasks more widely separated in difficulty ranking. 'The tasks on level 1
could be divided into two sub~-levels, namely, level 1A containing LR-TI-EQ,
LR~CARD, L-BimA, and L-P/W, and level 1B containing the remainder of the
level 1 tasks, With that division, most of the tasks on level 1B are
significantly (P<.05} more difficult mﬁ those on 1A, but all tasks on

the same sub-level do not differ significantly from each other.

It will be recalled from the earlier discussion of the stepped perform—
ance gradlent observed for the number tasks that a chi-squared analysis
of the proportions of subjects passing and failing tasks on the same
difficulty level does not provide information on whether those tasks
form a developmental sequence. The extent of any ordering of tasks on
the same I_iml can be assessed by inspecting the relevant H{ii) indices
in Table 10.6 (Chapter 10). Table 10.6 shows that tasks on the same
level are, in general, poorly ordered. This confirms the impression of

a stepped performance gradient for the length tasks.

There are other features of the stepped performance gradient for the

length tasks which need oomment.
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Transitive Reasoning. BAs for the corresponding number tasks, transitive
inferences corcerned with equivalent relations appear much earlier than

those concerned with non-equivalent relations,

Conservation and Transitive Reasoning. BAgain there is a similarity be-~
tween number and length with respect to the dbserved patterns concern-—
ing conservation and transitive reasoning. Specifically, the component
assessed by IR-TI-E; appears before that assessed by L-CONS, which app-

ears before that assessed by LR-TI-NE,

This finding is not consistent with Piagetian theory. However, as has
been noted previously in connection with the corresponding runber tasks,
this kind of asynchromny is consistent with Gagne”s (1968) theory. Clearly,
that theory, with its emphasis upon componential structure, is consistent
with this finding, because the form of transitive reasoning implied in

L-CNS is that assessed by LR-TI-ED, not that assessed by LR-TI-NE.

11.6 ORDERING ACROSS

NUMBER AND LEWNGTH TABKS,

There is a similarity between the cbserved patterns in the number and
length concepts., 1In general, the tasks located at abrupt charges of
slope on the performance gradient for the number tasks were of matjor
theoretical interest (e.g. N-CONS). That is also the case for the length
tasks {e.q. I~-CONS). It was seen in Chapter 10 (Hypothesis 8) that the
conservation of nunber appears at about the same time as the conservation
of length. It may be that these abrupt changes in slope of the perform-
ance gradients reflect a re-organisation of the child”s number and length

concepts.,
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This suggestion stems from two facts, Firstly, following the emergence
of H-CNS and L-OXS, there is a considerable delay before the emergence
of the next components in the length domain. Secondly, those components,
L-EST and L-INIT, implicate the numerical representation of length. It
may be that until that development cccurs the child”s reasoning about
length is restricted, because the length concept is unconnected (or only
loogely connected) to the number concept. However, the appearance of
conservation for each domain may enable a re-organisation which results
in the child’s reasoning about length being augmented by a mumber-based,

or number-connected form, of internal representation.

The next major discontinuity (i.e. abrupt change in slope of the length
performance gradient) in the length domain occurs after the development
of the capacity assessed by LR~TI-CARD. That task reguires the child

to reason transitively about non-equivalent relations between lengths on
the basis of the number of unit parts contained in each object”s length,
It is noteworthy that this capacity implicates numerical forms of reason-
ing about length relations, and that it emerges at about the same time
as the capacity to reason transitively about relations of nom-equivalence
concerning number (assessed by N-TI-NE), Indeed, the capacity assessed
‘by N-TINE is implied in the capacity assessed by LR-TI-CARD,. This
suggests that further enhancement of the lemgth concept by numerical

forms of reasoning has occurred.

Following the emergence of the capacity assessed by LR-TI-CARD, there is
another delay before the capacity assessed by LR-TI-NE emerges. The latter

does ot implicate mumerical forms of reasoning about length, However, it



180

may be that there is a developmental dependency between LR-TI~CARD and
LR-TI-NE, in that it is the possession of a capacity to reason numer-

ically about length (LR-TI-CARD) which provides the “pr'oof’ of the
inference required in LR-TI-NE. Once that has been established the child

no longer need depend upon numerical representations of length in order

to make transitive inferences concerning nom-equivalent length relations.

In more general terms, these speculations about the developmental
discontinuities in each concept domain, and the interconnection of those

domains, imply that an advance in one concept dmain prompts development

in another,

11.7 SUMMARY.

The findings of the study suggest that the necessary components of linear

measurement are the following:-

. Knowing that the numerosity of an array of cbjects is invariant
under certain transformations (the conservation of number) ,

. EKnowing that length is invariant under certain trans—
formations [(the conservation of length}.

. Knowing how to make transitive inferences of equivalence and
non—equivalence\, with respect to discrete quantity.

. Knowing how to make transitive inferences of equivalence, with
respect t© length.

. Krow how to carry out numerical addition operations.

. EKnowing how to obtain a linear measurement by counting iterations

of a unit of length.
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The data also imply a delay between acquisition of these camonents and the
emergence of an understanding of linear measurement. Piagetian theory
would suggest that the delay is associated with a re-organisation of cog-
nitive structures that results in better co-ordination between the com-

ponents,

Inspection of the development sequence in each concept domain reveals

that each is characterised by discontinuities. These discontinuities
coincide with the emergence of components of major thecretical interest,
such as the conservation of length. Additionally, there are concordances
between the discontinuities in the number and length domains. Examination
of these concordances suggests that the discontinuities occur during
periods of development when new forme of co-ordination are being estab-

lished between the number and length concepts.

Some elements of the cbserved sequences of development in the number and
length concept domains are rot predicted by Plagetian theory. In part-
icular, the asyrchronies between conservation and transitive inferences
of ron-equivalence are mot consistent with. the Piagetian view, though

they are consistent with Gagne”s (1968) model of development.
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CHAPTER 12,

AN INFORMATTON~-PROCESSING ANALYSIS OF CE;KEAW

NUMBER AND LENGTH TASKS, USING PASCUAL~

LECNE"S M-SPACE MOLEL,

12.1  INTRODUCTION,

It was seen iﬁgﬁhapter 11 that the number tasks could be organised into
five levels of difficulty, and the length tasks into four levels of diff-
iculty. It was argued that tasks at a similar level of difficulty should
make similar information-processing demands. Hence, it was thought that
an information-processing analysis of the tasks which fall on the bound-
aries of the levels might reveal the reascns for the sharp changes in
task difficulty tﬁat occur between levels. That analysis is given in

this Chapter.

The information~processing model used in the analysis was developed by
Pascual-Leone (1970). Firstlfg, his model is described. Secondly, the

application of his model to the present study is discussed.
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12.2 PASCUAL~LECNE"S M-SPACE MODEL,

12.2.1 MATURE OF THE MODEL,

Pascual-Leone (1970) constructed a functional or process model of devel-
opment., complementary to Piaget”s structural model, The model predicts
performance on a range of Piagetian and other cognitive tasks, given prior
estimates of the values of two structural variables ~ namely, "M-space”

and "field independence/dependence."

An informatien4§rocessing approach has been adopted by Pascual-Leone, and
his main collaborator, Case {1972). Unlike scme other information-pro-
cessing theorists, they don”t write computer programs, Their level of
analysis is that of "scheme". Their use of scheme is the same as that of
Piaget, Pascual-Leone identified three categories of scheme: "figurat-

ive”, "operative", and “executive”.

12.2.2 FIGIRATIVE SCHEMES,

Figurative schemes are the internal representations of "declarative—

type knowledge" {(e.g. properties of objects or relations between objects).
They are proposed as active, functional units, akin to Weisser®s (1967)
pattern recognition devices. Case (1974) gave the following example of a

figurative schemes:-
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"I1f, for example, a subject looked at a photograph and asserted
that it was a picture of his house, one would say that he did

so by transforming the raw sensory input into a network of per-
ceptuzl features which were readily associated in his mind with a
conceptual response of the order, “that is my house,” More
simply, one would say that he assimilated the sensory imput to

his (figurative) “house scheme”,"

12.2.3 OPERATIVE SCHEMES,

Operative schemes are the internal representations of "procedural-type
knowledge® (e.g. rules spplied to properties of objects, or relations
between objects). Both figurative schemes, and operative schemes are
assumed to be active processes. Hence, the internal distinction between
these two categories of scheme is blurred, they are distinguished by what
they are used for. Operative schemes act on figurative schemes to generate
new figurative schemes, but figurative schemes do not act on other fig-

urative schemes.

12,2.4 EXEQITIVE SCHEME,

Executive schemes are proposed as the internal representations of the
lists of rules and procedures to be assembled, sequenced and actioned

in order to reach some desired goal. They represent strategies to be
employed in solving a particular class of problem. They are also proposed
as active processes, but they differ from operative schemes insofar as
they dont directly act on figurative schemes to generate new figurative
schemes, Their function is to direct and control solution processes by

deciding upon and activating operative scheme sequences.
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ne argues that, in the course of problem solving, a person’s
thought is oconstituted hw the assebly of schemes that are currently act—
ivated. it follows, therefore, that for Pascual-Leone a principal limit-
ation on thought processes is the rumber of discrete schemes that may be
activated and co-ordinated at any given time, He refers to this limit-
ation as "M-space"”, which he defines as the set measure of Piaget”s field
of centration. Using the scheme construct as the fundamental unit of
analysis, Pascual-Lecne produced descriptions of various Piagetian tasks
in terms of schemes invoked and co—ordinated in the subject”s M~space.

The following two examples may help to illustrate the approachi~

"Conservation of identity. The age at which this task

is first passed is 5-6 years, In solving it, children
appear to activate the following schemes:

E{IS): An executive scheme representing the instructions
{"Does the ball still have the same amount of clay in it?”)
and directing an appropriate perceptual scan of the ball
as it is transformed;

F(l): A figurative scheme representing the fact that
”nbthing has been added or taken away”;

F(2): A figurative scheme representimng the rule a

“if nothing is added or taken away, then the amount

temaing the same”;
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If children do not co-ordinate the above schemes, they
fall the task, apparently because they activate another
scheme already present in their repertoires, which is
misleading in the congervation situation.

Call it

F(M): A figurative scheme representing the rule that

“things which look bigger, contain more”.

Conservation of equivalence. The age at which this
task is first passed is 7-8 vears. In solving it,

children appear to activate the following schemes:

E{IS): An executive scheme representing the instruct—
iong (*0o the balls still have the same amount of clay
in them?”) and directing an appropriate perceptual

scan of the ball as it is transformed:

F({l): A figurative scheme representing the fact that
*nothing has been added to or taken away from the
ball which was transformed;

F{2): A figurative scheme representing the rule that
if nothing is added or taken away, then the amount

remains the same:

F(3): A figurative scheme representing the information

that “the balls originally were equal in amount;”
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If children do not co-ordinate the above schemes, they
usually fail the task, apparently because they activate:
F{M): A figurative scheme representing the rule that
“things which lock bigger contain more. ™
{Case, 1972; pp340-341}.

(Note: To be consistent with Pascual-Leone”s own classif—
ication of schemes as figurative, operative and exec-

utive, schemes F{2) and F{M), in each of the above examples,

should have been classified as operative.)

12.3 TEVELOPMENTAL

PROGRESSIONS ,

These two examples illustrate an important feature of Pascual-Leone”s mod-
el which is that the number of schemes children co-ordinate in approaching
a task is related to the age at which they first succesd at the task.
Pascual-Leone argued that a different value of M {for M-space) is assoc

iated with each substage of intellectual development. The values he pro-

posed are as follows:—



DEVELOPMENTAL AGE MAYIMM VALUE GF M
SUBSTAGE {yrs} | a_+ k)
Barly Pre-operational 34 a+1
Late Pre~operational 56 a+ 2
Barly concrete 78 a+ 3
Late ooncrete 9-10 a+ 4
Farly formal 11-12 a+5
Middle formal 13~14 a+ 6
Late formal 15 ~16 a+ 7

{(Note: The constant (a) refers to the space required by the executive
scheme. The nureral represents the maximum number (k) of additional

schemes which can be co-ordinated.)

Acocording to Pascual-Leone, the M-space model provides a functional ex—
planation of developmental progressions. For example, children usually
fail conservation of amount until the age of 7-8 years, because their M-
space, until that age, can only co—ordinate the concurrent activation of
a + 2 schemes. However, the conservation task requires, under normal

conditions, the concurrent activation of {a + 3} schemes.

12.4 INDIVIDUAL DIFFERENCES.

Whilst Pascual-Leone sees M-space as a structural limitation on performance,
his model also makes provision for other variables, Bpecifically, he
argued that the following conditions must be met before a task can be

successfully handled: -
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(a) the child must possess the necessary schemes;

(b) if necessary, the full capacity of the available M-space must be used:

(c) the child must attend to other than only the perceptually dominant
ahd potentially misleading cues;

(d) if two incompatible schemes are activated by the perceptual features
of the problem, the child must resolve the conflict in favour of that
scheme which is compatible with the greatest number of other assoc-

iated schemes.

The first of these conditions can be satisfied only by learning. The
third is related to the perceptual/cognitive style variable known as field
independence/dependence (Witkin, 1959). The fourth is idéntified with a
component Qf Piaget”s equilibration model. It reflects the operation of
an individual differences variable, and is assumed to be highly correlated
with the third factor. Hence, Pascual-Leone”s model posits that perform—
ance is determined by M-space and learning, and is moderated by field

independence/dependence.

12.4,1 IFEARNING,

Learning is defined as the acquisition of new schemes. This is accompli-

shed in two ways:-

(a) by incorporation of new information into old schemes, in a manner
analogous to Piaget”s differentiation; and

{b) by combining formerly discrete schemes into a new compound or
superordinate scheme, in a manner analogous to Piaget”s reciprocal

assimilation.

Both processes have the effect of increasing performance, because they

lead to more efficient utilisation of M-space.
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12.4.2 FIELD~-INCEPENTENCE /DEPENIENCE,

The field-independence/dependence factor is said to explain much of the
variance attributable to individual differences. The field-independent
subject is less likely to focus on perceptual cues inherent in the task
situation,’more likely to attend to the task instructions, and will tend to
utilize available M-space fully. The field-dependent subject who is faced
with two incompatible schemes, one activated by perceptual cues and the
other by task instructions, is more likely to resolve the conflict by actf
ing on the former than the latter. He is also less likely to make full

use of available M-space.

12.5 EMPIRICAL EVIDENCE FCR THE M-SPACE MODEL,

12.5.1 FARLY STUDIES,

Pascual-Leone {1970} tested the model by teaching children a series of
novel responses to particular visual stimuli. He then measured their
capacity to activate these "S-R" connections concurrently when confronted
with a compound visual stimulus. The children”s capacity to produce the
appropriate compound response was taken as a measure of their M-space.

It was found that there was a high correlation between that measure, and
the M-space factor inferred from an analysis of Piagetian tasks previously
passed by the children. The findings were interpreted as a demonstration
that the M—-space model had construct and predictive validity. Pascual-
Leone and Smith (1969) reported another investigation of children’s class-
ification concepts, and presented findings consistent with the M-space

model.,
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12.5.2 METHODOLOGICAL CRITICISME,

Pascual-Leone”s (1970) experimental methods, and techniques of model eval-
uation, have been severely criticised by Trabasso and Follinger (1978} and
Trabasso (1978) on two main grounds. Firstly, in Pascual-Leone” s (1970}
study only some of the children were trained and tested on all the 5-R
associations; the number of associations used increased with increasing
group mean age; the S-R associations used varied in terms of inherent
difficulty; and the subject”s stage of development (eg. pre-operational)
was inferred trom the subject”s age and not directly assessed. Secondly,
Pascual-Leone did not use statistical goodness~of-fit tests to estimate
the predictive accuracy of his model, relying instead on visual inspection
of averaged probability distributions. Also, Pascual-Leone did not com-
pare his model”s predictive accuracy against that achieved by a variety of
other stochastic (eg. Monte Carlo) models. Pascual-Leone (1978) defended
his approach on the grounds that he was concerned with testing a “general”
not a “local” model, and that his critics” objections were appropriate

only in the context of verifying empirically local mxdels of limited scope.

12.5.3 IATER BTUDIES,

The studies by Case (1972, 1972a) appear to have overcome most of the
methodological objections raised against Pascual-Leone”s experimental
work, and have vielded findings consistent with the M-space model. In the
1972 study, a more carefully designed version of the Pascual-Leone and
Smith (1969) compound stimulus task was employved. Dale’s (1975) large-
scale investigation of performance on Piaget”s bending rods task also

produced findings consistent with the M-space model.
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Pascual-Leone”s approach has attracted the attention of educational psy-
chologists, because it offers a bridging construct between developmental

theory (i.e. Piaget”s) and human learning theory (i.e.‘Gagne’s}.

"There are clear parallels between Gagne”s model and
Pascual-Leone”s., Gagne”s model interprets cognitive
problems as requiring the application of certain
rules, Pascual-Leone”s model interprets these same
problems as requiring the co—ordination of certain
schemes (same of which are merely the internal
representation of such rules)..........Both theorists
agree that children will not be able to solve cognitive
prdblems if they do not have the appropriate inter-
nalized items of information in their repertoires.

Both theorists agree that children can often be enabled
to solve such problems if they are helped to acquire the
appropriate repertoires, ie. if they are instructed.
The difference lies in the role assigned to development.
For Gagne, the process of development is largely one
of cumulative learning, within the confines of what-
ever {(unspecified) limitations may be imposed by
“growth”.......For Pascual-Leone, the process of dev-
elopment is equally one of cumulative learning. How-
ever, one of the major limitations imposed by “growth”
is explicitly defined. It is a limitation in mental

space.” (Case, 1972, p356).
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12.6 M-SPACE ANALYSIS OF CERTAIN

NUMBER TASKS.

12.6.1 SELECTION (F NUMBER TASKS, .

Tasks fram each level of the performance gradient for the number coll-
ection were selected for analysis. The tasks chosen were those of least
and most difficulty, within a level. Hence, the most difficult task
from leveli n, was compared with the least difficult task fram level ml.
Tasks could have been randomly sampled from each level. However, the
sampling method used was more conservative because it selected pairs of
tasks adjacent in rank order of difficulty, and adjacént in ungrouped
order of difficulty. The tasks selected fram the number collection (see

Table 11.2 in Chapter 11) are shown in Table 12.1.

TABIE 12,1: NUMBER TASKS SELECTED FOR M-SPACE ANALYSIS.

1EVEL MOST DIFFICULT LEVEL LEAST DIFFICULT
N TASK AT LEVEL N N+l TASK AT LEVEL N+1
1 ~TNTIEQ 2 N-(1 TO 1)
2 N-CONS 3 N-5CL-V
3 N-ADD-NV 4 N-TI-NE
4 N-TI-NE* 5 * N-SUB-NV

Note: * - N-TI-NE is the only task at level 4.
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The selected tasks were analyzed into co-activated executive, figurative,
and operative schemes, in accordance with Pascual-Leone”s model. That
analysis is set out below. Entries for executive schemes are not given,
becausé all tasks must activate an executive scheme representing the
task instructions, and the solution strategy used., To show an executive
scheme entry against all tasks would be redundant., Figurative schemes

are prefixed by an “F”, and operative schemes by an “0”.

12.6.2 SPECIFICATICN CF THE

CO-ACTIVATED SCHEMES FOR THE

SELECTED NUMBER TASES,

N-TI-EQ,
Fl: A figurative scheme representing the fact that there
are as many blué blocks as there are red blocks,
F2: A figurative scheme representing the fact that there
are as many red blocks as there are green blocks.
0l: An operative scheme representing the canonical form
of the transitive law: if (a.R.b) and {b.R.c), then

(a.R.c).
N-(1-T0-1)
F3: Every bolt had a nut, or every bolt had a washer,

or every nut had a washer, depending on the question

being considered.



F4: Every nut had a bolt, or every washer had a bolt,
or every washer had a nut, depending on the question
being considered. |

02? If every "a” had a "b”, and every “b” had an "a“, then
the number of a”s equals the numbers of b’s; where
a and b refer to bolt and nut,
or bolt and washer, or mut and washer, depending on
the question being considered.

N-CONG .,
(Y Phases 1:

F5: Nothing has been added or taken away from the line
of blocks which was transformed,

03: If nothing has been added or taken away from the
line of blocks, then it contains the same number
of blocks that it did before transformation.

— The application of 03 to F5 leads to the creation of F6:-

On Phase 2,

F6: The line of blocks which was transformed contains the
same number_af blocks as it did before the transformation
occurred,

F7: The two lines of blocks originally contained the same
number of blocks.

Q4: The numerical relation between two collections of objects

is invariant unless the numerosity of one collection is

changed.

13805
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On Phase 1.

Fi:

The experimenter”s collection contains n blocks.

F9: The subject’s collection contains m blocks.

05: If two collections have a different number of blocks,
then the collection with more blocks is the one whose
number name appears later in the number name order.

- The application of 05 to F8 and F9 yields Fl0:-

On Phase 2.

F10: The experimenter’s collection has more blocks.

06: If one collection has more blocks than another,
then how many more can be found by subtraction.

— The ag:;;)},iéation of 06 to F10 initiates a subtraction
process carried ocut on F8 and F¢ and resulting in Fl11,

On Phase 3,

Fll: The experimenter”s collection has (n-m) more blocks
than the subject”s

07: If one collection has more bhlocks than the other,

then they can be made equal in number by taking the
difference (n~m) away from the collection with more.
Notice that the same phases would be involved in sclving

the problem by adding to the collection with fewer blocks.



197

The subtraction process would be common to both, and would
involve the co-activation of F8 and F9, together with a
subtraction rule, such as:

08: To subtract m from n, start counting at one more
than m, stop at n, and the number of number names

mentioned is the answer.

F12: The bottom jar contained “n” balls before more balls
were sent downl the tube,

F13: "m” balls were sent down the tube.

09: If more obijects are added to a collection of similar
obijects, the mumber of objects then in the coll-
ection is given by an addition operation.

— The addition operation (call it, 01O would apply
to F12 and F13. It mey be hased on a counting
method —- using fingers, for example, to represent

the balls ~ or on a “table-lock-up method,

N-TI-NE,

As for N-TI-EQ, except that the relations “greater-than” and “less~than”, are

substituted for “equal-to”,
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N-SUR-NV.

Fl4: The top jar contained “n” balls before more balls were

| sent down the tube.

F15: “m” balls were sent down the tube.

011: 1If some objects are taken away from a collection of
similar objects, then the number of objects left in the coll-
ection is given by a subtraction operation.

-— The subtraction operation (call it, 012) would
‘apply to Fl4 and F15. It may be based on a counting
method - using fingers, for example, to represent
the balls — or on a "table—-}eakwuy method, Notice
that 012 may be different fram 08, as in N-SCL-V the
objects were visible to the subject throughout the

task.

12.6.3 NOMBER (F (D-ACIIVATED SCHEMES RECUIRED FOR

THE SELECTED NUMBER TASKS,

For all of the tasks listed above, the maximm number of co-activated
schemes needed at any stage of the.solution process is three; two of
which are figurative, and one, operative, Hence, in terms of Pascual~
Leone”s model, all tasks are of the type that can be solved by children
at the early concrete sub-stage of development. Therefore, an M-space
analysis of the number tasks does not reveal any structural limitation

corresponding to the steps in the observed performance gradient,
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12.7 WM-BpACE ANALYSIS OF CERTAIN

TENCGTH TASKS. |

12.7.1 SEIECTION OF LENGTH TASKS.,

Tasks were selected for analysis from each of the levels in the perform-
ance gradient for the length collection. The basis for selection was
the same as that described earlier for the number collection. The tasks
selected from the length collection (see Table 11.4 in Chapter 11} are
shown in Table 12,2,

TABLE 12.2: LENGIH TASKS SEIFCTED FOR M-SPACE ARALYSIS,

LEVEL MXET DIFFICULT LEVEL LEAST DIFFICULT
N TASK AT LEVEL N N+l . TASK AT IEVEL N+l
1 L-CONS 2 LEST*
2 IR-TI-CARD 3 LR-TI-NE
3 LR-T IT-E* 4 LR-M-CARD

Note: * - Instead of giving an analysis of L-BST as the least difficult
task at level 2, an analysis is given of L-WNIT. This is bhecause L-EST
and L-INIT are of, essentially, the same difficulty, but the latter is of
greater theoretical importance and, hence, of more interest.

** ~ LR-TI-NE is the only task at level 3.

The tasks listed in Table 12.2 were analysed in accordance with the M~
space model. That analysis is set out below. Executive schemes are not
shown, because it is assumed that there is only one executive scheme act-

ivated for each task.
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12,7.2 SPECIFICATION (F THE

CO-ACTIVATED SCHEMES FOR THE

SELECTED IENGIH TASKS.

L-CONS.
On Phase 1.
Fl6: Nothing has been added or taken away from the
piece of string which was transformed.

013: If rothing has been added or taken away from
the piece of string, then it is the length it
was before the transformation,

-~  The application of Ol3 to Fl16 yields F17:
On Phase 2.
F17: The piece of string which was transformed is the
length it was before the transformation,
F18: The two pieces of string were originally the same
length,
014: The length relation between obyjects is invariant
unless the length of one object is changed.
L-UNTT

This task may be divided into three processes, Process 1 is responsible

for marking off equal units. Process 2 is responsible for counting the



units,
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Each cycle of process 1 is followed by a cycle of process 2.

Process 3 is responsible for producing the answer. It is initlated after

the last cycle of Process 2 has been executed,

Process 1.

Fl19:

¥20:

O15:

The location of the right hand border {assume left-to—
right movement)of the previous segment marked off is

known,

The left hand border of the wnit cwincides with

the right hand border of the previous segment marked off.
If the unit length equals the previous segment length,

and the unit length equals the current segment length, then

the previous segment length equals the current segment
length,

Process 2.

F2l:

Fa2:

(l16:

Number name mentioned when the previous segment length
was marked off,

List of number names.

When the current segment length has been marked off,

mention the next mumber name on the number name list.

Process 3.

¥23:

F24d:

Cl7:

The whole obiect has been divided into segments
of equal length. |
Last number name mentioned.

The number of equal segments represents the length
of the whole object.
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LR-TI-CARD

On Phase 1.

F25:
F26:

0Ol:

There are more red blocks than green,

There are more blue blocks than red,

The canonical form of the transitive law with respect
to number.,

The application of Ol to F25 and F26 vields F27:

On Phase 2

727
¥28:

018:

ILR-TI-NE,

There are more blue blocks than red,
All blocks are the same size,
A is longer than B, if A contains more parts than B,

and if the parts are the same length.

As for Phase 1 of LR-TI-CARD, except that the fiqurative and operative

schemes refer to length, not number.

LR-M-CARD,

There are two parts to this task. The first part is responsible for

unit iteration, The second part is responsible for

comparison of object lengths, and production of the answer,
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The first part is exactly the same as L-UNIT, described above. The sec-
ond part uses the same operative scheme {018) as that employed on phase
2 of LR-TI-CARD, Hence, the schemes co-activated on the second part of
"LR-¥-CARD are:-—

F29: Length A contains n unit parts,

F30: Length B contains m unit parts,

018: A is longer than B, if A contains more parts than B,

and if the parts are the sawe length,

12.7.3 HBER F (O-ACTIVATED

SCHEMES REQUIRED FOR THE

SELECIED LENGTH TASKS,

Inspection of the above analysis reveals that the maximum number of co—
activated achemes needed at any stage of the solution process is three:
two figurative and one operative. Hernce, the analysis does not reveal
any structural limitation corresponding to the steps in the observed

performance gradient. This conclusion is the same as that reached with

respect to the number tasks.

12.8 SUMMARY,

An M-space analysié of the steps in the number and length task pecfdmm
ance gradients does not support the suggestion that those steps represent
developmental discontinuities which stem from structural limitations, such
as mental processing capacity. However, the M-space analysis does not

explicitly provide for differences in complexity of control processes,



204

because all directive information is assumed to be stored in a single
executive scheme, Because it would seem likely that there are differ—
ences in complexity between control processes associated with these tasks
and, hence, differences between the demands these processes place on STM,
this assumption of a unitary executive structure limits the value of the

analysis.

Moreover, in Pascual-Leone”s model the level of analysis of component
processes and knowledge elements into operative and fiqurative schemes
is scmewhat arbitrary. In the present case, an attempt was made to con-
form with the examples of M-space analysis given by Pascual-Leone. How-
ever, there is no certainty that a different analyst would derive the
same list of co-activated schemes. Hence, this apparently arbitrary

aspect of Pascual~Leone”s model also limits the wvalue of the analysis.

If these two criticisms of Pascual-Leone”s model are set aside, a con-
clusion which could be drawn from this analysis is that the stepped per-—
formance gradients for the number and length tasks reflect, simply, de-
lays inherent in the accretion of a large number of rules, This conclus-
ion would be consistent with the finding of the present study that length

of schooling is a predictor of performance, whilst age is not.
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CHAPTER 13,

AN EXAMPLE OF A PRODUCTION-SYSTEM ANALYSIS

OF CERTAIN COMPOMENTS OF LINEAR MEASUREMENT,

13.1 THE NEED FOR A DETAILED PROCESS~

ANALYSTIS OF LINEAR MEASUREMENT,

The analysis of linear measurement given in Chapter 2 drew upon the act-

ions involved in linear measurement operations, and the logical structure
of linear measurement. The empirical work reported here has broadly supp-
orted this analysis. However, as a psychological theory it has two weak—

nesses,

The first is that the analysis was intuitive. It was not formally demon-
strated that the listed components are sufficient to enable a person to

substitute measurement operations for actual operations on objects.

The second is that the analysis did not concern itself with the psychol-

ogical processes at work in linear measurement.

The only psychologically-orientated theory that considers linear measure-
ment is Piaget”s. That theory offered general guidance to the analysis
in Chapter 2, but its usefulness was limited, because it is only concern-
ed with describing the gross psychological structures needed for linear
measurement. The Plagetian analysis is not made at a sufficient level

of detail for the present purposes.,
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A more satisfactory account of linear measurement would give a detailed
process—analysis of what is involved in each component, and of precisely

how the components are co-ordinated.

The objectives of that analysis would be, firstly, to express linear measure-
ment in terms of a minimum number of psycholegically primitive operations
and, secondly, to show that the account does, indeed, generate linear
measurement., An account of that kind eould be provided by constructing

a "production-system” model of linear measurement,

Production systems are opllections of condition-action rules, called
proeductions. The rules are expressed in the form: “if conditions A(l),
and A{2), and A{3}, ..... and A{n) hold, then take actions B({l), and B{(2},
and B(3), ..... and B{n)”. If the rules, or productions, are written in

a computer language, they may be “executed” (Newell and Simon, 1972),

Klahr and Wallace™s (1976) work provides an example of how the product-
ion-system approach can be used to construct a detailed account of as-
pects of cognition related to the present study, Their objective was to
develop a theory of cognitive development at a level of precision that
would enable the theory to be expressed as an executable computer model.

Kiahr and Wallace's (1976) strateqy was to construct, firstly, state

models, Each model depicted the performance of a child at a particular
stage of development on a range of Piagetian tasks. Secondly, they con-
structed transitional models accounting for changes between stages (i.e.
between state models). Their state models were expressed as executable

production systems.
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Klahr and Wallace (1976) present models of various quantification proc-
esses (subitization, counting, estimation, relative magnitude determin-
ation}, class inclusion, conservation of quantity, and transitive reason—
ing. Their models are constructed so that groups of productions used in
less complex tasks, such as ocounting, may be used in more complex tasks,
such as addition, This reflects the view that development stems from

the aceretion of experience, coupled with periodic re-organisation of the

internal representation of that experience.

An approach similar to Klahr and Wallace™s could be taken to the problem
of providing a satisfactory account of the composition and growth of
linear measurement. That approach would make explicit the theory implic-
it in the list of components of linear measurement given in Chapter 2.

A full production-system analysis of linear measurement will not be att-
empted here (2). Nevertheless, in order to illustrate the possibilities
offered by this approach, this Chapter presents an analysis of three of
the tasks used in the present study. The core productions concerning
counting, subitization, addition, contrcl processes, and so on, given

in these models, are all directly relevant to the longer-term objective

of providing a production-system model of mature linear measurement.

2. The original intention of the present research proiect was to devel-
op such an analysis. However, the lack of an appropriate and detailed
theoretical framework, and the paucity of directly relevant empirical
data, necessitated that, first, the empirical work reported here be under-
taken. The position has now been reached where a production-system model

of mature linear measurement could be developed, Development of such a
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model of linear measurement would, itself, be a substantial urdertaking,
and is beyond the scope of the present research. The production-system
model would provide a sufficient account of the data reported in the

present study, and would constitute a formal theory of what is involved
in linear measurement. A speculative ootline of a possible approach to

the development of such a model is given in Appendix 6.

Additionally, the three tasks selected for analysis were chosen because
they have the potential to yield further information on the guestion
examined in Chapter 12, It was suggested there that the discontinuities
in the cbserved performance gradients could be explained by changes in
5™ capacity. An analvsis of selected tasks, using Pascual-leone’s model,
failed to support this suggestion. However, it was argued in the conclud-
ing paragraphs of Chapter 12 that the assumption by the Pascual-leone
model of a unitary control structure had a significant drawback., It
implied that variations in the complexity of control information have no
effect on 8IM load. Production-system modelling does make explicit pro-
vision for representing control informetion in ST™M. Hence, a production-
gystem analysis of the selected tasks should complement the analysis
given in Chapter 12 of the information-processing demands of tasks drawn
from different reqgions of the performance gradient, and could yield diff-

erent conclusions.

Before describing the task models it will be necessary to amplify the
descriptions given above of production-system modelling. Section 13.2

prewides a brief owverview of a production—-system language.
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13.2 OVERVIEW OF A

PRODUCTICN-SYSTEM LANGUAGE.

In addition to Klahr and Wallace (1976}, Anzai and Simon (1879), Baylor

and Gascon (1974), Newell and Simon (1972), and 0”Shea and Young {1978)

provide examples of production-system models of aspects of cognition

relevant to the present topic, Hunt and Poltrock (1974), Klahr and Wallace

(1976) , Newell and Simon (1972) and Winston (1979) provide well document-

ed Introductions to the technicque. The following passage from Klahr and

Wallace {1976} introduces a production-system language, and its operating

"The models are posed in the form of a collection of
ordered condition-action links, called productions,

that together form a production system. The condition
side of a production refers to the symbols in short-term
memory (STM) that represent goals and knowledge elements
existing in the system”s momentary knowledge state;

the action consists of transformations on ST including
the geﬁeration, interruption, and satisfaction of goals,
modification of existing elements, and addition of new

ones. A production system cbheys simple operating rules:-

1. The condition of each production is matched against
the symbols in STM. If all of the elements in a condition
¢an be matched with elements (in any order) in 8TM, then

the condition is satisfied,
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2. If no conditions are satisfied, then the system halts.
If more than one condition is satisfied, then same conflict
- reselzztéon principle must select which pxoduciiion o
"fire." Typically, conflict is resolved by choosing

the earliest production in the production system. Other
resolutions are possible, but that is the one we will

use at first,

3. When a production "fires,” the actions associated
with it are taken. Actions can change the state of goals,
replace elements, apply operators, or

add elements to STM.

4. After a production has fired, the production s?stem

is ;‘euenterecl from the top; that is, the first production”s
condition is tested, then the second, and so on.

5. The STM is a stack in which new elements appear at the
top (or front), pushing all else in the stack down one
position. Since ST is limited in size, elements may be
lost.
6. When a condition is satisfied, all those STM elements
that were matched are moved to the front of STM, This

provides a form of autcomatic rehearsal.”

{(Klahr and Wallace, 1976, pp 6-7)
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The task models constructed in the present study contain productions that
make use of a small number of actions. In every instance, these actions

cause the contents of ST to change. The actions used are the following:-

INS (X) - Inserts the expression X into 5T,

DEL{X) - Deletes the expression X from STM.

REPL(X;Y) =~ Replaces the expression X in ST™ with the expression Y.

SAY (X} - Prints the expression X. This provides an interface
with the user.

USER{} - Asks the user if he has any information. The user’s
response is stored in STM.

DO (X} - Transfers control to the list of productions labelled

X, but only for a single cycle.
{Ohlsson, 1980)

Typically, the expression (X) would be a representation of information

- provided by the task, or information retrieved from LM, or information

needed to contrcl the solution process.

13.3 TASKS SELECTED FCR

NMODELLING,

The three tasks selected for modelling weres— N-ADD-NV; N-SUB-NV; and
N—CYC-NV The three tasks are closely related. Although 58 subjects

passed N-ADD-NV, only 21 passed N-SUB-NV, and only 16 passed N-CYC-Nv,
The proportion of subjects who passed N-ADD-NV was significantly higher

than the promortions who passed N-SUB-W and N-CYC-NV, However, N-SUBNV,
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and N-CYC-NV were of about the same difficulty. It will be apparent that
N-CYCW requires a co-ordination between two major components: namely,
those assessed by N-ADD-NV and N-SUBMv. The difficulty data suggest,
thereféxe, that the delay between acquisition of the N-ADD-NV and
N-CYC-NV components is due to a delay in acquisition of the N-SUB-NWW
component, and not to a delay in co-ordinating the N~ADD-NV and N-SUB-IW
components. It was thought that a comparison of models for these three
tasks would provide an appropriate example of the application of the
technicue, and it would enable a re—examination of the role of §1M

capacity limitations,

A factor that influenced the selection of these tasks for modelling was
the existence of a substantial empirical literature on the strategies
used by young children when subitizing, counting, adding and subtracting.
Most of that literature has been reviewed recently by Klahr and Wallace
{1976). Their conclusions are reflected in the subitization and count-

ing productions found in several of their models.

A broad outline of each of the models developed will be given, This will
be followed by annotated listings for the addition and subtraction models
which use a counting strategy. Finally, performance statistics for the

six models will be summarised, and conclusions drawn regarding the inform-

ation~processing demands of the three tasks.



13.4 OUTLINE OF THE MDDELS.

Alternative models were developed for two of the tasks. These were des—
igned to simulate various strategies children had been observed to use.
Six models were developed. Three were of N-ADD-NV, two of N-SUB-NV, and
one of N-CYC-NV, Listings of all models, and traces of their execution
showing the contents of STM on every cycle, are given in Appendix 4.
Descriptions of all models are also given in Appendix 4. Additionally,

to illustrate the technicque, listings and detailed descriptions of two

of the mcdels will be given in this Chapter. They are the counting models
for addition (simulating performance on N-ADD-NV) and subtraction (sim-

ulating performance on N-SUB-NV).

13.4.1 ADDITION MOCELS,

Three models constructed to simulate performance on the N-ADD-NV task
are provided in Appendix 4. Each carries out the addition operation in

a different manner.

-The first model (ADD6.PSS) is described in Appendix 4, and listed in full
in Addendum 1. It is based on a simple table-look~up procedure, The
number of balls in the bottom jar is used as a key for accessing the
appropriate entry. For example, if the bottom jar has two balls in it,
and the subject sends four more down the tube, the model uses “two™ to

access the (2+4=6) entry.
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The semné mxdel (ADDB.PSS) will be described in detail in Section 13.5
{z full listing and execution trace are pm';rided at Appendix 4, Addendum
2). It is based on a counting method. It simulates performance by a
subject who carries out addition by co-ordinating two counting operations.
Assume that memory contains an ordered list of mumber names (1", "2,
"3",....}. BSubjects count by placing names from this list into STM.

Two counts are maintained, Count A is a measure of the number of balls
counted to date in the bottam jar. Count B is a measure of the increment
in count A that has been made at a given point in the counting process,

The subject”s procedure is:—

Set coumt A to the number of balls initially

Step 1
in the bottom jar.

Step 2 - Set count B to zero.

~ Step 3 - Compare number in ¢ount B to number of balls

sent down the tube. If equal, then the answer

is given by the number in count A-->FINISH.

\f Otherwise, continue to Step 4.

Step 4 ~ Mowe count A forward one.

Step 5 -~ Move count B forward one.

.t Step & -~ Go back to Step 3.

The third model (ADD3.PSS) is described in Appendix 4, and listed in full
in Addendum 3, It is also based on a counting method. The first step in
this method, however, is finding out which of the two addends is the
larger. This becomes the initial value of commt A, This method reduces
the nutber of iterations of Steps 3 to 6, above. However, it also incurs

the overhead involved in first finding the larger addend.
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13.4.2 SUBTRACTION MODELS,

For the N-SUB-NV task, the first model (ADDS,PSS) is based on a table-look-
up procedure similar to that used for addition, The access key in this
case iz the muber of balls in the top jar. The model is described in
Appendix 4 and listed in full in Addendum 4.

The second method (ADD4,.PSS) will be described in detail in Section 13.5
{a full listing and execution trace are provided at Appendix 4, Addendum
5). It is based on the counting method illustrated schematically below:—

, Stepl - Set count A to the number of balls initially
in the top jar.

Step 2 — Set ocount B to zero,

Step 3 — Campare number in count B to number of balls
sent down the tube. If egqual, then the answer
is given by the number in count A—>FINISH.

\/ Otherwise, continue to Step 4.

S5tep 4 -— Move count A backward one,

, Step 5 - Mowe count B forward one.

i Step 6 — Go back to Step 3.

13.4.3 AIDITION AND SUBTRACTION MODEL.

For the N-CYC-NV task, the model (ADD7.PSS) is based on the table-look—
up procedures used in the addition and subtraction models. It is des~
cribed in Appendix 4, and listed in full in Addendum 6.
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13.5 ANNOTATED LISTINGS OF THE

COUNTING-BASED ADDITION

AND SUBTRACTION MDLIELS,

Listings of the counting-based addition (ADDS,.PSS) and subtraction
(ADD4.PSS) models and traces of their execution are given in Appendix 4,
Addenda 2 and 5, respectively. Sections 13.5.1 and 13.5.2 present annot-

ated listings of the productions constituting these models.

In many production—-system models goal manipulation procedures are group-
ed together in one or two common-servicing productions that are always
tested at the beginning of every cycle. In the present models, they have
been located separately in productions which trigger particular goal act-
ivation, re-activation, suspension and deletion operations. This approach
makes the production systems easier to follow, and has been adopted to
assist the reader who is not familiar with production-system languages.

It reduces the programming elegance of the models, but it does not result
in any greater demands being placedon STM, and does not increase the

total number of productions fired.

The models are writtern in PSS (Ohlsson, 1980), a variant of PSG.
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13.5,1 THE COUNTING-BASED MODEL

CF N-ADD-N

In the first phase, the subject is asked to send n bells to the bottcm
jar by pressing the button., After the balls have gone down the tube,
the subject is asked how many were in the bottom jar before, how many

more had he just sent down, and how many were now in the bottom jar.

The productions PO0CO, P00 and PO model the entry of task information into

8™, and initiate the run.

(POOD (GOAL * ATTEND) (OLD SEND C)

fomnae
REPL{(GOAL * ATTEND) ; (GOAL + ATTEND));
DEL{ (OLD SEND O)); 7

USER() )

{PO0 (GOAL * ATTEND) (GO)
Ecnin
REPL({GOAL * AITEND) :; (GOAL + ATTEND));

EL{(G0)) )

(PO (GOAL * ATTEND)
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When that information is entered, the model responds by simulating the
subjects button-pressing and counting behaviour, The productions respon—

sible are lahelled P1 to PB.

(P1 {GOAL <+ ATTEND) (TCP A) (BOTTOM B) (BEND ()

iy
FEPL((GOAL + ATTEND) ;  {(GOAL *5* ATTEND));
INS {(GOAL * SEND () );

Ns((¥ 1 2)) )

(P2 (COAL * SEND C)

E——3

HEPL{{GOARL * SEND C) : (GOAL *5* SEND () ):
INS { (GOAL * PIBH BUTTON)) )

(P3 (GOAL * PUSH BUITCN)

p——e ]

IEL{ (GOAL * PUBH BUTTQN) )
INS {{ELM A} )

ING ((GOARL * SIBITY) )

(P4 (GOAL * SUBTT) (EIM A)
T

LEL ( (GOAL * SUBIT)};

NS (B 1))

DEL ((ELM A} )¢

INS {{GORL * CXNT)) )
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(P5 {(GOAL * CONT) (B 1) (¥ <X Z)

S

FEPL((GOAL * COUNT) : (GOAL + COWNT));
CEL{((OB 1))

SRY (<X>) ;

REPL{({Y <X> Z) : (SAID <X>)):

INS ((GOBL * MARK)) )

{P6 (GOAL * MARK) (SAID 1)

=

FEPL((GOAL * MARK) ; (GUAL + MARK}):

INS((Y 2 2})) )

{(P6A (GOBL * MARK) (SAID 2)
"
FEPL{{GOAL * MARK) :{@L + MARK}}:

INS((Y 3 2}} )

(P6B (GOAL * MARK) (SAID 3)

Hapmmay

REPL({GOAL * MARK) : (GOAL + MARK));

INS((Y 4 2}) )

(P7 (GOAL + MARK) (GOAL + OOUNT) (GOAL *S* SEND C)
(SAID C)

e

DEL ( (GOAL *S* SEND C));

TEL((GOAL + MARK) );

DEL ( (GOAL + COUNT)) ;

DEL ((SAID ©));

REPL( (GORL *S* ATTEND) ; (GOBL * ATTEND}) )
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(P8 {GOAL + MARK) (GOAL + COUNT) (GOAL *5* SEND C) (SAID I

mmne S

FEPL ((GOAL *S* SEND C) : (GOAL * SEND C));
DEL{ (S0AL + MARK));
DEL { {GOAL + COUNT))

EEL ({(SAID D)) )

Pl inserts an active gacl of sending "n” balls down the tube. In the
service of that goal, P2 inserts the subordinate goal of Izugmg the
button., P3 notices the ball going down the tube and inserts the subit-
ization goal. P4 simulates subitization of the hall{s) noticed {(by P3)
going down the tube. PS5 carries out a counting operation by accessirg

and “saying” the next name on a number-name-list., P& marks the name
*said” by PS, and inserts the rext number name on the list into STM.

P6A to P6C simulate similar marking and moving operations, P7 similates
a checking operation. If the last name “said” by P5 iz the same as the
number-npame given in the instruction to send “n” balls down the tube (re-
presented in ST™ by (SEND C)), then the model “knows” that it has finished
that part of the task. 1In that event, it re-activates the goal “to attend”
and the next production to fire is PO. If not, the goal manipulation in
P8 ensures that P2 will be the next production to fire, and that a new
cycle of button pressing, subitiz irg, and counting will be entered.
This procedure can be followaed by reading the listing for the model con
currently with the trace of the model”s execution, given in Appendix 4,

Addendam 2.
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When control is passed back to PO, the user then asks: how many balls
were in the bottom jar before? This is represented by the STM elements
{(MANY BOTTOM BEFORE). P2 and P10 simulate the answering of this question,
after which control is passed back to PU. The user then asks: how many
were sent down the tube? This is represented in STM by the element

(MANY TUBE;. This question is answered by P11 and P12, after which cont-

rol is again passed back to PO.

(P9 (GOAL * ATTEND) (MANY BOT'TCM BEFORE)
===>

REPL((GOAL * ATTEND) ; (GOAL *5* ATTEND));
IEL ( (MANY BOTTOM BEFOFE) ) ;

INS ((GOAL * RECALL BOTT(CM)) )

(P10 (GOAL * RECALL BOI'TOM) (ROTTCM B)

——

SAY ( (BUITCM B) ) ;
LDEL { (GOAL * RECALL BOTTOM)):

FEPL( (GOAL *S* ATTEND) ; (GORL * ATTEND}) )

{P11 (GOAL * ATTEND) (MANY TUBE)

=

REPL((GOAL * ATTEND} ; (GOAL *5* ATTEND)};
LEL ((MANY TUBE) ) ¢

THS ({GOAL * FECALL TUBE)) )

(P12 (GOAL * RECALL TUBE) (SEND C)

===>

TEL{ (GOAL * RECALL TUBE));

HEPL{ {GOAL *S* ATTEND) ; (GOAL * ATTEND));

BRY((SEND C)) )
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By entering (MANY BOTTOM NOW) into §TM, the usSer causes control to be

given to P13 on the next cycle.

The direct oounting procedure involves the co-ordination of step-by-step
movement through two sequences, each of which is the number-name-list.

ITtems from the first sequence are represented in STM hy elements having

the form (¥ <P» 2Z), and those from the second sequence by (W <P> V).

The letters ¥,Z2,W, and V imbedded in these elements are of technical signif-
icance only. They constitute a method of marking locations in a list,

The symbol <P> assumes numerical values.

P13 activates the addition goal (GCAL * ADD). 1t sets the location in the
first sequence at the point corresponding to the number of balls in the
bottom jar before the last series of button presses., P13 also sets the
location in the second sequence, just before the first element in the
nunber-name~-list, Pl4 checks to see if the location in the second sequ-~
ence is the same as the value in the STM element representing the inst-
ruction to send "n” halls down the tube. That is, P14 asks: is the value of
<P> in the element (W <P> V), the same as the value of <P> in the element
(SEND <P>»)? 1If w; P14 fires, and the answer is extracted frcm_ the

(Y <> Z) element currently in S’m. If not, either P15 or P16 fires.

They control the movement through the two sequences., P17 to P17J carry
out the moves from place to place in the first sequence, P18 to P18C

perform the same function for the second sequence,



(P13 (GOAL * ATTEND) (MANY BOI'IKM NOW) (BOITOM B)

e

REPL{{GOAL * ATTEND) ; (GOAL *S* ATTEND}}:

DEL { (MBNY BOTTOM NOW) ) ;
INS ( (GOAL * ADD))3

INS (W 0 V)

INS((Y B 2)) )

(P14 {GOAL * ADD) (W <P> V) (SEND <I>) (Y <0 Z)

E
SAY (<%}
DEL( (GOAL * ADD));

INS((GOAL * PURGE}) )

(P15 {(GOAL * ADD) (W <P> V) (Y <X> 2)

sotmmE>

REPL((GOAL * ADD} ; (GOAL *S* ADD));
NS { (GOAL * NEXT ALING)};

DO(GET-NEXT) )

(P16 (GOAL * NEXT UP)

"

DO (STEPUP) )

(P17 (GOAL * NEXT ALCNG) (Y ZERO %)
S

FEPL{(Y ZERO Z) 1 (Y OF 2}):
TEL ((GOAL * NEXT ALONG)):

INS ({GOAL * NEXT UP)) )

NOTE: Productions P17A to P17J have the same form as P17.
inserts the next number~name symbol (e.g. (Y FOUR 2)) in STM,

223
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(P18 (GOAL * NEXT UP) (W 0 V)

A S

FEPL{(MW OV : W 1W);
LEL ( (GCAL * NEXT UP)):

REPL( (GOAL *S* ADD) ; (GOAL * ADD)) )

NOTE: Productions P18A to P18C have the same form as P18. Each
replaces the current number-name synbol (e.g. W 2 V)) with the
next mmber-name symbol (e.g. (W 3 V)).

An example may clarify the operation of P13 to P18C. Suppcse that the
bottom jar had two balls in it, and the subject sent down four more.

ST would contain the elements (BOI'TOM 2) and (SEND 4)., P13 would insert
the elements (Y 2 Z) and (W0 V). On the first cycle after the firing of
P13, P14 would rot fire because <B> would be set to 0 in WD V). PIS
would initiate ap entry to the P17 to P17J group of productions. Specif-
ically, P17B would fire and insert (Y 3 2} into 5T, and set a goal
causing P16 to fire on the next cycle. P16 would then initiate an entry
to the P18 to P18C group of productions., Specifically, P18 would fire
and insert (W 1 V) into STM, and set a goal causing P14"s conditions to
be examined on the next cycle. Again, P14 would not fire, because <P»
would be set. to 1 in W 1 V). Hence, P15 would fire again, and the P15
to P18C procedure would be re-entered. This pattern would continue until
on ane cycle P14 found <P> set to 4 in (W 4 V). At that time, the (¥ <> %)
element would contain (¥ 6 Z). P14 would then extract the answer (6} from

that element,

The remaining productions P24A to P27 perform housekeeping functions

needed to prepare the model to receive further input.
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13.5.2 THE COJNTING-BASED MODEL

OF N-SUB-NV,

A complete listing of this model (ADD4.PSS) is provided in Appendix 4,

Addendum 5. Productions PO00 to P12 are identical in form and function
to the same-numbered productions for the addition model. They similate
the subject”s behaviour up to the point where he is asked how many balls

are left in the top jar.

The productions P13 to P18C also carry cut functions analogous to the

same-numbered productions in the addition model. The differences are

that:-

. P13 sets <P> in (Y <P> Z) to egual the number of balls in the top jar,
initially.

. P17 to P17J moves down the number-name-list, mot up it, as in the case

of the addition model (ADD8.PSS).

13.6 PERFORMANCE STATISTICS.

Table 13.1 sets out the number of productions fired, and the maximum
nurber of elements held in SIM during the execution of each of the six
models, The entries in Table 13.1 relating to STM represent the max-
imum amount of STM used by the respective models - that is, if STM alloc-
ations of lesser capacity were to be made, the models would not execute

correctly.
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TABLE 13.1: FPERFORMANCE STATISTICS FOR EACH MODEL.

TASK MODELLED N-ADD-NV N SUB-NV N-CYC-NV
PROCESS MODFLLED ADDITION SUBTRACTION ADDITION
gf*grmmm
METHODS USED  [TABLE-IOOK| COUNTING [COUNTING [TABLE-LOOK| COINTING [TABLE-LOOK
-UP FROM | P -Up
(ADDE.PSS) (ADDS . PSS) LARGER |(ADDS.PSS){ADD4.PSS}| (ADD7,.PSS)
ADDEND
{ADD3,~
PSS)
No. of PRODUCT-
TONS.
FIRED 130 162 180 130 lez 174
MAX.No of ELE-
MENTS HELD IN
5™ 9 9 12 9 9 9 f

The “number of productions fired” is the mumber of steps reguired - at

this level of analysis ~ to simulate a successful subiject”s performance

on the modelled task. The table-lock-up procedure is the more efficient
for addition and subtraction. The straight-forward counting procedure

for addition (ADD8.P5S) is more efficient than the alternative {ADD3.PS55).
Subtraction, by table-look-up, or by counting, involves exactly the same
nunber of steps as the corresponding addition procedure, The small in-
crease in the number of productions fired for N-CYC-NV, over N~-ADD-RV and
N-SUB-NV (174 versus 130), suggests that the bulk of the effort is expended
on simuilating aspects of the tasks not directly concerned with addition

or subtraction.
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The more efficient, table-look-up models require no more STM space than
the counting-based models, All but one of the models required wp Eo 9
elements of ST to store the control information and data used during
execution, The exception is the counting~based addition model (ADD3.PSS),
which first finds the larger of the two addends. That model requires a

maximum of 12 elements of ST,

According to this analysis, the delay in development of STM capacity
could not be the factor causing the cbserved delay in acquisition of the
components assessed by N-SUB-NV and N-CYC-NV. Additionally, this analysis
reinforces the suggestion given in Section 13.3 that the delay in acquis-
ition of the component assessed by N-CYC-NV is due to delay in accquisit-
ion of the component assessed by N-SUB-NV, rather than a need to co-ord-

inate the components assessed by N-ADD-NV and N-SUB-WV.

13.7 CONCLUSIONS.

The performance similarities between the corresponding addition and sub-
traction models suggest that the observed development sequence is not a
function of 85TM capacity. It seems to reflect, simply, the order of
acquisition of certain ruleg. An inspection of the productions used in
the models of the table-look-up procedures (Appendix 4, Addenda 1 and 4)
supports this conclusion. For the table-look-up procedure, the only diff-
erence between the addition and subtraction models is in the data tables.
The addition model makes use of entries of the form: atb=c. The sub-
traction model makes use of entries of the form: a-b=c. For the child
using this procedure, the observed developmental segquence may simply

reflect the fact that the former are usually learned before the latter,
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In the case of the counting procedure, the addition model controls the
co~ordinated movement in the same direction of two pointers throuwgh a
single mumber name list. The subtraction model controls the co—ordinated
movement in opposite directions of two pointers through the same list,

The former procedure contains less potential for confusion because the two
pointers are rarely in close proximity in the list, The latter proced-
ure des contain potential for confusion when the two pointers co-incide
in the list, For example, in the N-SUB-NV task, at one time the bottom
jar holds six balls, and the top jar siy balls. Hence, one pointer would
be moving: "6 -> 7 - 8 ... etc". The other would be moving: "6 ->5 -> 4
atc". Cmseq&ently, in the case of subtraction, even if the child has the
approgriate counting~based rules, the probability of a breakdown during
execution of those rules would be greater than for the corresponding add-

ition operation.

It is moteworthy that these conclusions are consistent with the finding
that length of schooling is a better predictor, than age, of a subject”s
performance. That is, performance is a function of experience with the

appropriate rules, and not a function of $T capacity.

Finally, it is emphasized that the six models discussed in this Chapter
were developed for two parposes, Firstly, to examine in more detail the
guestions discussed in Chapter 12, and, secondly, to illustrate an app-
roach to the longer-term objective of deriving a detailed process account
of the composition and growth of linear measurement. The core productions
relating to subitization, counting, addition and subtraction contained

in the present models are all pertinent to that enterprise. However,

they constitute only a small fragment of the work that needs to be done

to realise the longer—-term olijective.
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CHAPTFR 14.

SUMMARY OF CONCLUSIONS,

The present study had two main objectives. The first was to identify
the “higher~level” knowledge necessary for a child to understand linear
measurement. The second was to chart the growth of linear measurement

in terms of the development of its components.

An analysis of measurement operations vielded a list of components which
it was argued would urderlie linear measurement, Piagetian theory and
related empirical literature were consulted as sources of information
on the emergence of these corrpoﬁents in the child”s thinking. This

led to the formulation of a number of predictions concerning the compon-

ents of linear mesaurement, and their order of development.

A battery of 34 number, length and distance tasks was developed to assess
the presence of these components. It was administered to 100 children

aged between 63 and 78 months, and drawn from kindergarten and grade one.
The results were analyzed using scalogram techniques. The mein contribution

of the thesis is in this empirical work.

The main conclusions are summarised in the following paragraphs.
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14,1 COMPONENTS OF LINFAR

MEASURFMENTS,

It was found that children who possessed a mature level of understanding

of linear measurement also possessed the following:-

. Rnowing how to make transitive inferences of equivalence,
with respect to discrete quantity, and length.

. Knowing that the mmercsity of an array of objects is
inwariant under certain transformations (the conservation
of mumber}.

. Knowing that length is invariant under certain transform-
ations (the conservation of length}. |

. EKnowing how to carry out numerical addition operations.

. Knowing how to obtain a linear measurement by counting
iterations of a unit of length.

. Knowing how to make transitive inferences of non-equiv-

alence, with respect to discrete quantity.

14.2 ORDER OF DEVELCPMENT

OF LINEAR MEASURFEMENT,

For linear measurement, the components emerge in the order in which they

are listed above,

The data imply a delay between acquisition of the components and emerg—
ence of an understanding Qf linear measurement, It was also noted that

those éhiléreﬁ who possessed all the necessary components, but could not
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demonstrate an understanding of linear measurement, could not commence
the linear measurement task. It was argued that this was evidence that
short~term-memory capacity limitations were not isplicai:ed in the delay,
becaﬂsé such limitations are expressed usually in breakdowns in perform—
ance of a strategy. The delay was interpreted as being associated with
the need for a re-organisation of the relevant cognitive structures,
resulting in better oo-ordination bhetween components. That is, the delay
was asscciated with the formation of new long-term-memory links between

components,

14.3 ORDER OF DEVELOPMENT

OF COMPONENTS IN THE

NIMBER, LENGTH AND

DISTANCE DOMATNS.

For the mmber and length domains, the collections of components form
scalable sets. That is, the components anerge Sequentially in each

domain.

In general, the order of emergence of the components is that predicted by
Piagetién theory, and the empirical evidence reviewed in Part II. The

most important exceptions to that pattern are noted below.

Conservation of rumber emerges significantly before transitive inference
concerned with non—equivalent relations between discrete quantities, The
same lag in development occurs in respect &f length, it was argued that
this finding could have heen expected, because the form of transitive

reascning involved in the conservation task is concerned with equivalent,

and not with non-equivalent, relations.
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The observed lag in development between the emergence of corresponding
components in the length and distance damains, such as the conservation

of length and the conservation of distance, was not predicted.

14.4_ DISCONTINUITIES IN NUMBER

AND TENGTH CONCEPT PEVELOPMENT,

It was found that the patterns of development in the number and length

concepts were marked by discontinuities.

It was suggested that these discontinuities might have been due to cap-
acity limitations of short term memory. However, an information-process—
ing analysis, using the M-space model, failed to £ind evidence supporting
that suggestion. "E‘urtharmre, a production-system analysis that explic—
itly accounted for strategy control information also failed to find

evidence of a short~term—memory barrier.

In general, the discontinuities co—incide with the emergence of compon—
ents of major theoretical interest, suwh as the conservation of length,
Additionally, there are concordances between discontinuities in the
nurber and length gﬁwth patterns. It was suggested that these concord-
ances co~incide with periods of development during which new forms of
co-ordination are being established between the two concept domains.,
New inter~connections of that kind would be represented by long-term

memory linkages.

In sumary, the general impression is that growth in one concept domain

prompts growth in the other.
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14.5 PRODUCTION~-SYSTEM

MODELS CF LINEAR

MEASUREMENT,

It was stated that the analysis of linear measurement given in Chapter 2
was largely intuitive and informal due to the lack of a detailed psychol—
ogical theory of linear measurement, and the paucity of directly relevant
empirical data. It was argued that a more satisfactory account of linear
measurement could be given in the form of an executable production—system
model. A model of that kind would be a formal theory, and would demon-
strate that the components listed in Chapter 2 are necessary for linear
measurement. It would also provide a sufficient account of the empirical
data reported in this study. Development of that model would be a sub-
stantial undertaking, and beyond the scope of the present research.
However, the six production systems constructed in this study provide

a small start on that larger, longer—-term project.

14,6 THE EFFECTS OF AGE AND LENGTH CF SCHOOLING,

It was found that length of schooling is a predictor of a subject”s
score, but age is not. This latter finding, though, must be due to the

narrow age range of the subjects used in the study.

These findings are consistent with the general pattern of development
observed in the study. This is because delays and discontinuities in
development during the pericd studied were thought to be associated not
with short-term-memory barriers - an age related factor - but with the

forging of new long-term—memory links - an experience related factor.
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For many children, experiences of the appropriate kind are provided most
frequently at school. Hence, length of schooling could be expected to
be a better predictor of performance, than age, on the tasks used, and

for the period of development covered, in this study.

14,7 SUGGESTIONS FOR

FURTHER RESEARCH,

It is considered that further research is needed in order to elaborate
upon the kinds of inter-connecticn between components that represent
solution strategies for linear measurement tasks. It is suggested that
such further research incorporate the construction of production-system
models depicting mature levels of performance in linear measurement.

Additionally, further research is needed to identify the reasons for the
lag in development between corresponding components in the length and

distance domains.

The findings of the present study, together with those from such further
research, could considerably inform early primary school curriculum

planning.





