
PARI' I. 

OBJECriVES OF THE STUDY, AND 

AN ANALYSIS OF LINEAR MEASUR!>IEN:r. 

This thesis comprises four parts. Part I presents the problem. Part 

II reviews relevant literature. Part III describes an empirical study 

and presents a statistical analysis of the results. Finally, Part IV 

presents an interpretation of these results. 



CllAPTER l. 

m:JEcriVES OF THE STUDY. 

Acquisition of the number concept, and attaining skill in using numerical 

operations, are considered important intellectual achievements of child-

hood, because they enable the child to use mental operations in lieu of 

physical actions. For example, when the child is able to perform addition 

operations, he no longer needs to count physically. Similarly, after the 

child has acquired an understanding of linear measurement, he no longer 

has to align two objects physically, in order to find out which is the 

longer. 

Psycholcgical research has contributed substantially to an understanding 

of how the number concept, and numerical operations, develop. In campar-

ison, however, much less research effort has been expended on finding out 

how numerical knowledge is linked with knowledge in other concept domains, 

such as length and distance. One way of examining such linkages between 

concepts is to study the development of an activity which draws upon 

knowledge associated with each concept. The development of linear meas-

urement provides an example. 



The present study had two na:n oojectives. The first was to identify the 

'higher-level' knowledge necessary for a child to understand linear meas

urement. The second was to chart the growth of linear measurement in 
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ternE of the development of its CO!IpO!lents. In this context, 'higher-level' 

krv;~ledge refers to skills such as coont:in:j an array of objects, as dist

inct from 'lower-level' skills such as attend:in:j to a"l d:>ject in a"l array. 

A major errpir ical study was carried oot to meet these oojectives. The nain 

contribution of the thesis is in this errpirical work. 



a!APTER 2.· 

AN ANALYSIS OF LINEAR MEl\S1JREMENT. 

2 .1 SELECI'IOO OF AN APPROACH. 

2.1.1 TWD POSSIBLE APPROACHES. 

One objective of the present research was to chart the develop

ment of linear measurement in young children. It was necessary 

to decide whether the investigation would focus on linear 

measurement at a 'concept level', or at a 'component level'. 

2.1.a a:NCEPT-LEVEL APPROACH. 

In a concept-level approach, the researcher would focus on the develop

ment of different levels of performance in the concept being studied. 

In the present case, he would define operationally a series of levels of 

achievement in linear measurement. For example: 

(a) an ability to determine by direct comparison which 

of two objects is the longer; 

(b) an ability to use correctly a measuring rule; 

{c) an ability to iterate a unit length; and, 

(d) an ability to predict the effect of changing the length of the 

of the unit. 
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The researcher would devise tests appropriate to each level. These would 

be administered to a selected population, and subjects categorised accord

ingly. The statistical analysis would involve correlating conceptual 

levels with develop:nental variables, such as age. 

2.1. 3 COM!'CNENI'-LEVEL 1\PPROA.a-I. 

The component-level approach extends the concept-level approach by also 

investigating the development of knowledge components of the concept 

being studied. In the present case, the researcher would devise tests 

for each component, as well as for different levels of performance, in 

linear measurement. An example of a component would be knowing how to 

count. In this approach, concept developnent would be described in terms 

of both levels of achievement in the concept, and the progressive 

acquisition of its components. 

. 2 .1. 4 ArNANrAQ:B AND DISAIJVANTAQ:B OF EAa-I APPROACH. 

Each approach has advantages and disadvantages. The chief advantage of 

the concept-level approach is that the levels of the concept may be de

fined operationally. The main disadvantage is that empirical evidence 

yielded by a study of that kind would provide little infoonation on how, 

in a step-by-step sense, the concept develops. 

The chief advantage of the component-level approach is that it has the 

potential to contribute ·to an understanding of how the concept develops. 

Moreover, this approach links m:lre readily with existing psychological 

theory, and its associated empirical data. The main disadvantage is that 

it involves making a number of a priori assumptions regarding the list 

of components. 
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2.1.5 CHOICE CF a:>MPCNENT LEVEL APPROli.CH. 

A motivation of the study was to find information useful in a practical 

sense in the field of education. In that regard, the canponent-level app

roach is the more useful, because it provides information on which compon

ents are necessary for linear measurement and, hence assists primary 

school curriculum development. It was decided to adopt the component

level approach. 

Additionally, with this practical purpose in mind, it was decided to re

strict the investigation to children in the first two years of primary 

school, because it is probable that it is during those years that most 

of the grooth in understanding of linear measurement occurs. Against 

this background, the identification of components of linear measure

ment will now be discussed. 

2. 2 IIJENriFICATICN CF THE COMPOOENI'S CF LINEAR MEI\SllREMBN'r. 

2.2.1 ME!THO!:B CF LINEAR MEI\SllREMBN'r. 

In general, a young" schoolchild w::>uld knoo of two ways of measuring the 

length of an object. The first w::>uld be to use a measuring rule and to 

read off numbers which in same way w::>uld represent the object's length. 

The second would be to select a shorter object for use as a unit length, 

and to iterate that unit along the longer object, counting the number of 

iterations. Oblriously, the notions underlying the first method corres

pond to those employed in the second. It w::>uld be J.DSsible, hooever, for 
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a child to use the first m:thcrl - because it had been trained to - withoot 

having an urrlerstanding of the urrlerlying principles. Similarly, it would 

be possible for another child to use the second m:thcrl - iteration of a 

unit length - withoot that child kJ"!CMing what effect substitution of a 

longer or shorter unit length would have on the number of iterations 

required to !l'easure the d:>ject. Yet another child might kl"lCM the effect 

of substituting a longer or shorter unit length but, when asked to work 

out the cc:m:>ined length of two previously m:asured d:>jects, tl-Jat child 

might need to join the two d:>jects together physically, and then !l'easure 

their combined length. It could be argued that such a child did not 

understand that nU!l'erical operations of addition and subtraction can be 

used instead of !l'easurel!Ent operations. 

Each of these three children could be said to have a different level of 

understanding of linear measurel!Ent. Intuitively, it would seem reason

able to conjecture that these different levels of urrlerstanding of linear 

measurement result from differences in, or co-ordination between, the 

number and length concepts of such children. 

2.2.2 UNIT ITERATION AND 'IHE LENGTH a:N:EP:r. 
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An examination of the operations involved in the act of l!Easuring the 

length of an d:>ject by unit iteration reveals m:my of the corrponents of 

linear l!Easurei~Ent. In the following discussion the word 'rreasurer' refers 

to a person who has a full understanding of iterative linear measurement. 

By llErking off sections of the object being !l'easured (A) into segi~Ents 

(Al, A2, A3, etc.) equal in length to the unit (B), the !l'easurer i:rrplies 

that he holds the following beliefs regarding length:-



(a) the length of B remains oonstant throughout the measure

ment operation, even though the orientation of B to the measurer 

might change; 

(b) because the length of Al is equal to the length of B, and 

the length of A2 is equal to the length of B, the length of Al 

must be the same as the length of A2; 

(c) the length of an object is the same as the length of its 

concatenated parts. 

2.2.3 THE CXJNSER\IATICN CF LENGI'H. 

The first of these beliefs (a), involves several CXllllpOnents. For example, 

the measurer must believe that the length of any object does not change 

when it is displaced in space. Similarly, the measurer must believe that 

the relation of equivalence of length that holds between B and Al when B 

is rromentarily aligned withAl, does not change when B is not longer so 

positioned. These beliefs =uld seem to rest on the belief that a relation 

between two lengths can only change when something is added to, or taken 

away from, one, or other, or both, of the two lengths involved. Beliefs 

of this kind are usually referred to as the oonservation of length. 

It seems plausible that, prior to achieving an understanding of linear 

measurement, the child must knoo that the length of an object, and length 

relations between objects, are oonserved under various kinds of transfonn

ation. Hooever, how can the child acquire the conservation of length 

without being able to empirically verify it by linear measurement? For 

example, the child might knoo that length P is equal to length Q in 
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JX>Sition R. How Cbes the child know that P is still equal to Q when P 

has been rroved to R'? Obviously, one answer would be that the child 

uses visual evidence that nothing has been added or subtracted from P 

and/or Q. But, how is this rule acquired without an understanding that 

length is measurable? Furthermore, P in its new JX>Sition R' may well 

look longer or shorter than Q. One way around the problem would be 

for the measurer to move Q to R' so that the kind of direct ccmparison 

of P and Q made at R can be repeated at R'. However, how Cbes the child 

know that Q does not change in length, to exactly the same extent as might 

have P, whilst being moved from R to R'? The knowledge that P equals Q 

at both R and R', does not necessarily ensure that P equals Q when Q is 

at R and P and R'. 

The situation becomes more complex when the transformation of the meas

uring instrument (or unit) involves changing its shape, as distinct from 

changing its JX>Sition. An example of such an instrument is a piece of 

string. How Cbes the child know that the length of the string is the 

same whether it is placed in the form of a straight line or, say, a 

circle? 

The preceding discussion suggests that there is an interdependence between 

conservation and measurement. However, for the moment, it will be taken 

as a working hypothesis that the child acquires the conservation of 

length before an understanding of linear measurement. 
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2.2.4 TRANSrTIVE REASONING. 

The second belief (b), is based upon what is usually known as'transitive 

inference'. The length relation between Aland A2 is inferred, rather 

than determined by direct comparison. The fact that this inference is 

made, means that the measurer also holds the conservation beliefs dis

cussed above. The measurer's argument is: (Al=B in position 1) and 
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(A2=B in position 2) implies (Al=A2). For this conclusion on the relative 

magnitude of Al and A2 to be drawn, the measurer must believe that the 

length of B has not changed following its change in position. If the 

measurer did not hold this belief, then the premises contained in the 

transitive inference would not apply. 

Equally, however, the conservation belief seems itself to imply a trans

itive inference. The argument is: (Al=B in position 1) and, 

(A2=B in position 2) implies (Al=A2), which implies (Al=B when B is in 

position 2) • 

2.2.5 PARI'/I'HOLE REI.ATICNS OF IENGI'H. 

The third belief (c), concerns the measurer's understanding of the dis

tinction between an object and one of its attributes - length. That is, 

a child may know that an object may be arbitrarily divided into parts, 

and those parts recombined to form the object. However, the child may 

not extend that knowledge to encompass the object's length. If that 

knowledge does extend to length, then it would find expression in such 

beliefs as: if length A is greater than length B then length A may be 

considered as length B concatenated with sane other length. 



2. 2. 6 UNIT ITERATION AND THE NUMBER CXJNCEPT. 

In addition to beliefs concerning length, the measurement operation also 

requires the measurer to hold certain beliefs concerning, and to have 

certain skills with number. Firstly, the measurer must to be able to 

'numerate': that is, to co-ordinate ordinal position and cardinal value. 

Secondly, the measurer must believe that the numerosity of a collection 

of objects remains unchanged when the spatial arrangement of the collect

ion is altered. For example, the measurer must believe that an object 

found by iteration to contain, say, six unit parts, will always contain 

six unit parts irrespective of the spatial location of the object. This 

belief is usually referred to as the conservation of number. 

2.2. 7 UNIT ITERATION AND INTER--a:JNNEcriCN OF LENGI'H AND NUMBER CXJNCEPTS. 
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In addition to having certain beliefs concerning length and number, the 

measurer must also have some degree of interconnection of those beliefs. 

For example, a child may conserve number and length, and may be able to 

numerate, but unless there is some connection between that child's number 

and length concepts it is unlikely that the child could understand linear 

measurement. Similarly, if the measurer has a mature understanding of 

linear measurement, then he would also have an ability to perform arith

metical operations of addition and subtraction in lieu of measurement 

operations. For example, the difference in length of two objects can be 

determined by subtracting one numerical length measurement from the other, 

and thereby obviating the need to align both objects and measure the 

difference directly. 



2.3 DEVELOPMENrAL PERIOD CJJVERED. 

In any developmental study it is necessary to establish a point at which 

to start - a lower boundary - and a point at which to finish - an upper 

boundary. These decisions determined the age range of the subjects used 

in the study, and the levels of task difficulty employed. 
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The lower boundary selected for the present study was: determination by 

direct comparison of ordinal length relations between two objects. This 

study, therefore, has excluded from consideration a host of perceptual skills 

and ocgnitive attainments achieved in the early years of life. Same of 

those attainments seem to be linked with estimation processes that appear 

to be perceptually-based. For example, very young children appear to 

have some idea of what constitutes a distance. They can determine whether 

an object within view can be grasped without having to IOCl\/e any part of 

their bodies other than arms or shoulders, or whether an object can be 

reached without using something to stand on. It is quite possible that 

processes of that kind could either inform, or confuse, the five or six 

year old child who is in the course of developing more precise, concept

ually-based skills for determining length and distance. However, the 

contributions made by such perceptual processes to the development of the 

linear measurement knowledge of young children are outside the scope of 

the present research. 

The upper boundary selected for the present study was measurement of 

straight line lengths of small magnitude (approximately 

30 ems.), and of distances between objects (of similar separation) 
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located on a plane, not a curved surface. This study, therefore, does 

not follow the developrrent of linear measurerrent through to its cO!tplet

ion. For exarrple, a child may be able to rreasure correctly a stick 20 ems 

in length, but not understand how to rreasure, or wnat it would rrean to 

measure, the length of a piece of curved plastic pipe. The former ability 

is within the scope of this study, the latter is not. Similarly, a child 

may be able to measure the separation between oojects located on his play

room table, but not urrlerstand wnat it would rrean to measure the distance 

between his horre arrl his school. This study is concerned with the forrrer, 

but not with the latter ability. 

2.4 LISI' OF CCMEONENTS OF LINEAR MEI\SJREMJ1NT. (1) 

The following is a list of the CO!tpOOents required for a full urrlerstanding 

of iterative linear measurement, as suggested 1:1'{ the furegoing discussion. 

It will be evident that the CO!tponents listed are not independent. This 

matter will be discussed in later paragraphs. 

1. There is a widely cited formal theory of neasurerrent due to Suppes and 

Zinnes (1963). The theory formally deronstrates that the enpirical 

relational system of neasurerrent of length or distance is an isororphic 

image of a particular nunerical relational system, the real ntmber system. 

It is this isororphism that is the formal basis of everyday activities 

of, for exarrple, apJ?lying arithrreti.cal operations such as addition arrl 

subtraction to length neasurenent. 



(A) NUMBER. The following assumes that the child has a number concept 

though it may be in the early stages of development. 

(i) Knowing how to use a 1-to-1 matching rule. This is 

necessary because such a rule is implicit in counting and 

in unit iteration. 

(ii) Knowing the natural number order. This is necessary because 

each 1-to-1 pairing during unit iteration must be identified 

separately, as the first, second, third, etc. 

(iii)Knowing how to count arrays of small numerosity, where 'count' 

implies the co-ordination of ordinal position and cardinal 

value. This is necessary because the number of unit iter

ations must be determined. 

(iv) Knowing how to make transitive inferences of equivalence 

and non-equivalence with respect to discrete quantity. This 

appears to be necessary for the conservation of number. 

(v) Knowing that the numerosity of an array of objects is 

invariant under certain transformations (the conservation 

of number). This is necessary to relate a collection of 

'n' non-contiguously arranged unit parts to a collection 

of 'n' contiguously arranged unit parts. 

(vi) Knowing how to perform the arithmetical operations of add

iton, subtraction, solving for a difference, and balancing 

numerosities. This is necessary if arithmetical operations 

are to be used in lieu of measurement operations. 

14 



{B)LENGTH. The following assumes that the child has a concept of length, 

as an attribute of an object. That concept may be incomplete, in that 

not all of the properties of length may be known to the child. 

{i) Kncwing that if length A is greater than length B 

then A may be considered as B concatenated with same 

other length. This is necessary for a unit length, 

{B, in this case) to be employed in measurement. 

{ii) Knowing that any length may be considered as a con

catenation of arbitrarily selected sub-lengths. 

This is necessary because a 

precise statement of any object's length, expresses 

that length in terms of a number of object parts of 

shorter length joined together. 

(iii)Knowing that the length of an object can be altered 

only by adding something to it or subtracting same

thing from it (setting aside, for present purposes, 

processes of expansion and contraction). This is 

necessary because the unit part changes position 

during measurement. However, as nothing is added 

to or taken 3!1/ay from it, its length remains constant. 

{iv) Knowing that the length relation between two objects 

can be changed only by adding to, or taking 3!1/ay from, 

one, or other, or both, of the objects {setting aside 

processes of expansion and contraction). This is 

necessary because the unit part changes position during 

measurement but, its length remains constant, and so 

also must the relation of equivalence between the 

lengths of the unit part and the object parts. 
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{v) Kncwing that the length relation between objects A 

and B does not change when the spatial relation between 

A and B changes. This is necessary because, during 

measurement, the unit part changes position, but the parts 

of the objects marked off as equal in length to that 

of the unit part do not. Hence, the length relations 

between them are constant. 

{vi) Knowing that objects may be ordered according to their 

lengths. This is necessary for transitive inference. 

{vii)Knowing that transitive inferences of equivalence and 

non-equivalence can be applied to length relations. 

This is necessary because it is implied in relating 

unit parts of an object to each other, so that an under-

standing is reached that those parts are equal in 

length. 

{viii)Kncwing that the ordinal length relation between two 

objects is the same as the cardinal numerical relation 

between the collection of parts comprising those objects 

{provided that the lengths of these parts are the same). 

This forms the basis of the isanorphisrn between counting 

and measurement that enables arithmetical operations 

to be used in lieu of measurement {Suppes and Zinnes 

1963). 

{ix) Knowing that length relations between objects can be 

deduced by applying transitive reasoning to the coll-

• ections of unit parts. This is necessary because it 
. 

is :implied in comparing the lengths of objects by 

comparing the number of unit parts contained in them. 



(x) Knowing that length is invariant under certain trans

fonnations (the conservation of length). This is 

necessary because the accuracy of unit iteration depends 

up:m the length relations between the unit part and 

the object parts remaining constant. 

(C) IENGI'H r-EASUREMENr • 

(i) Knowing how to iterate a unit part along an object. 

This is necessary for the operation to be accurate -

e.g. units must be marked off accurately and in a 

non-overlapping fashion. 

(ii) Knowing that if the length of the unit part is changed, 

the number yielded by unit iteration also changes. 

This is necessary because, although in linear measure

ment the measurer can arbitrarily choose a unit part, 

the answer given by unit iteration depends upon the 

length of that unit part. 

(iii)Knowing that the length relation between two objects 

can be determined by carrying out a linear measuerment 

operation, using unit iteration. (The difference 

between this requirement and B(viii) above is that the 

latter refers to unspecified numerosity: that is, the 

B(viii) relation is expressed in terms of 'more' or 

'less' or 'same', not in terms of precise numbers of parts, 

arithmetical comparison of which yields the answer.) 
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(iv) Knowing that arithmetical addition of linear measurements 

may be used to determine the length of ooncatenated 

objects. This is necessary because a main p..~rp::~se of 

linear measurement is the derivation of a number that 

may be used arithmetically in lieu of carrying out 

another measurement operation. 

(D) D!STJ\NCE. The follCMing assumes that the child has a ooncept of 

distance as a spatial relation between two points. 
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That ooncept may be incanplete, because all of the properties of distance 

may not be knCMn to the child. There is an isanorphism between the prop

erties of length and the properties of distance (Suppes and zinnes, 1963) • 

Hence, the properties previously listed for length will not be listed 

again for distance, except in the case of oonservation. This is mention

ed again, because of the imjX)rtance of oonservation in psychological 

theory ooncerning ooncept developnent. 

(i) KnCMing that distance is invariant under certain trans

formations (the oonservation of distance). See ccmnent 

against B (x) • 

(E) DISTANCE MEASURMENI'. 

(i) KnCMing heM to canpare indirectly two distances by a 

measurement operation not involving unit iteration. 

This is necessary because distances cannot be ccm

pared by aligning t._l-)eir end p::~ints and making direct 

comparisons. 



( ii l K:n<::Ming hc:fi.l to measure distance between two points, 

using unit iteration. This is necessary because 

distance cannot be subdivided directly, as can length. 

2. 5 NCN-INIEPENIENCE OF a:>MPCNENJ'S OF LINEAR f.EASUREMENI'. 

As previously mentioned, the cc:mponents listed above are not independent. 

There is an assumption of an hierarchical arrangement in each concept 

domain, and of cross linkages between concepts. For example, in the 

number concept, canponent (ii) implies component (i), and cc:mponent (iii) 

implies cc:mponents (i) and (ii), together with other 'rules' not mentioned 

here (Gelman and Gallistel, 1978). Similarly, there are several different 

levels of arithmetical ability listed, each presumably based upon prior 

acquisition of less a:mplex arithmetical abilities. All are included in 

the list because, at this stage, it is not kno.m which are necessary for 

the demonstration of different levels of understanding of linear measure

ment. Similarly, for ixlth number and length, distinctions are made 

between transitive inferences cnncerning relations of equivalence and 

transitive inferences concerning relations of non-equivalence 

(greater than, and less than) • This is because it is oot kno.m whether 

only the former are involved in linear measurement - which wculd be 

suggested by a theoretical analysis - or whether ixlth must be present. 

With respect to length concepts, distinctions are made between cc:mponents 

concerned with the length of an object, and cc:mponents concerned with the 

relations between lengths of objects. This is because it is oot IInam 

what influence each mnponent might exercise in the developnent of linear 

measurement. 



Further, transitive inferences regarding length imply the conservation 

of length, and the conservation of length implies transitive inference. 

If an attempt were made to draw up a non-redundant list of independent 

components of linear measurement, it is not at all clear whether conserv

ation and/or transitive inference should be included. 

It may be possible to set down a minimal list of independent components 

of linear measurement. However, for the present study, such a list may 

not be as useful as a list of the kind given here. This is because the 

present study is concerned with charting the course of develO};lllent of 

linear measurement in terms of the progressive emergence of its a:rnpon

ents. If cnly independent components -that is, components representing 

axioms in a linear measurement system - were studied, the emergence of 

other components derived logically, but not necessarily psychologically, 

fran those axioms would not be detected. 

2.6 NATURE CF THE EMPIRICAL (UESTICNS ASRED BY THE PRESENT STUDY. 

2.6.1 WHICH CXlMl:'rnENl'S ARE NECESSARY FOR LINEAR M':ASUREME:NI'? 

The ccrnponents given in the al:ove list provided the framework within 

which the empirical part of the study was conducted. Various empiri~ 

questions relevant to the general issue of the develO};lllent of linear 

measurement were framed in terms of those components. 
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The following cperational definition of linear ooasuremmt was used as 

a benchmark: 'a mild ooy be said to have a l!Bture understanding of 

linear Jreasureoont, if he derronstrates a capacity to use correctly arith

Jretical cperations instead of carrying out physical JreasurellEnt operations~. 

According tD the preceding analysis, this would only be possible if the 

child possessed the knowledge listed. Hence, the first question is: is 

that analysis correct? In other =rds: are these carponents necessary 

for linear rreasurement? 

2.6.2 IS mERE AN ORDER IN WHICH THE CCMIDNENTS EMERGE? 

Developrrental research snows that certain of these caipOnents ellErge at 

different times in the child~s thinking. Hence, other questions are: 

is there a specific order in which the ca:rponents eJrerge? Is the devel

op!lEnt of the carponents a continuous or discontinuous function? What 

is the relationship between levels of achieveJrent in linear l!Easure!lEnt 

and the progressive acquisition of the caipOnents? Does development in 

one concept pronpt development in the other? 

These empirical questions involve consideration of the difference between 

a child knowing that arithl!Etical operations lll3.Y be substituted fur 

physical l!Easure!lEnt cperations, and a child understanding why arithl!Etic

al cperations lll3.Y be so used. It seems quite possible that a mild could 

possess the furl!Er, but not the latter. On the other hand, the reverse 

would seem unlikely - that is, that a mild could possess the latter but 

not the furl!Er. This distinction is conveyed in the terms SOI!Etimes used 

in connection with these t= different kinds of knowledge. The furl!Er is 
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often referred to as algorithmic or rule-based (Gagne, 1968), While the 

latter is sometimes referred to as operational (Piaget, 1953). The present 

study is concerned with both kinds of knowledge. Some of the developmental 

precursors of operational knowledge - what might be called its components -

could be expressed as algorithms or rules. However, the present study 

does not assume that cperations are nothing rrore than a particular org

anisation of rules, or that rules 'grow' into operations. 



22 

PARr II. 

LITEFATURE REVIEW. 

On the basis af evidence fran a number of sources it is possible to make 

predictions concerning the course of development of oamponents of linear 

measurement. These sources are Piagetian theory, and a large body of emp

irical work carried out in that tradition. 

Developmental questions concerning the components of linear measurement 

have been of major and long term interest to Piaget and his followers 

(Brainerd, 19781 Flavell, 1963). Consequently, all af the predictions 

outlined in Part II were derived directly fran Piagetian theory, 

or frcm empirical research conducted within the Piagetian tradition. 

In this connection, it is noteworthy that, notwithstanding the vast 

amount of information emanating frcm Piagetian research and relevant to 

the questions posed in Part I, it is still entirely reasonable to ask those 

questions. This is so because of difficulties in interpreting the 

results of previous studies, and of collating the results of many diff

erent-studies, each concerned with perhaps only one or two aspects of the 

general issue of the development of linear measurement. 

As the work of Piaget and his followers provides the main theoretical 

framework for the present study, it is necessary to present briefly 

those aspects of Piagetian theory which are relevant to the present 

topic. Chapter 3 reviews this material and derives predictions. 

Following this, Chapters 4 to 7 review the empirical evidence for these 

predictions. 



CHAPTER 3. 

PIAGETIAN VIEW CN o:M?CNENTS 

OF LINEAR MEASUREMENT AND 

THEIR ORDER OF IEVELOPMENT. 

3 .1 PRE:DICl'ED ORDER OF IEVELOPMENT. 
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Piaget lists a number of abilities which he believes the child must poss

ess before demonstrating an understanding of linear measurement. 

They are:-

the ability to conserve number, length and distance; 

the ability to make transitive inference judgements with respect to 

number and length; 

the ability to use a unit of length for purposes of iteration; 

the ability to carry out arithmetical operations of addition and 

subtraction (Piaget, Inhelder and Szeminska, 1960). 

Piaget also believes that each of these abilities only emerges in the 

child's reasoning after he has mastered mere basic skills, such as numer

ation, seriation of length, and understanding of part/whole relations. 

(Piaget, 1968) • 

Additionally, Piaget argues that both the high-order abilities (e.g. the 

conservation of number), and the more basic skills (e.g. numeration) emerge 

in a predictable order in the development of intelligence (Piaget, 1968). 
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The following summarises those predictions. The headings refer to aspects 

of Piaget's theory which are roost directly res~nsible for the predictions 

which follow. 

The ability to conserve number emerges at about the same time as the 

ability to maKe transitive inferences with respect to discrete 

quantity; 

the ability to conserve length emerges at about the same time as the 

ability to make transitive inferences with respect to length. 

3.1.2 THREE SUB-6TAGE M:lDEL. 

The ability to conserve length emerges earlier than the ability to 

measure length; 

the ability to conserve distance emerges earlier than the ability to 

measure distance; 

the ability to perform the arithmetical operations of addition and 

subtraction emerges earlier than the ability to measure length or 

distance; 

the ability to conserve number emerges at about the same time as the 

ability to perform the arithmetical operations of addition and sub

traction; 

the ability to seriate length emerges earlier than the ability to 

make transitive inferences with respect to length; 

the ability to order discrete quantity emerges earlier than the ability 

to make transitive inferences with respect to discrete quantity. 



3.1.3 HORIZCNI'AL IECAIAGE. 

The ability to conserve number emerges earlier than the ability to 

conserve length; 

the ability to conserve length emerges at about the same time as the 

ability to conserve distance; 

the ability to measure length emerges at about the same time as the 

ability to measure distance; 

the ability to seriate length emerges earlier than the ability to 

numerate. 
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The abilities referred to in the above predictions cover nearly all the 

components of linear measurement listed in Chapter 2. It would seem, 

therefore, that Piagetian theory provides a framework which embraces 

virtually all of the empirical questions asked in this study. Consequ

ently, it is necessary to present that theory briefly. In doing so, an 

attempt will be made to link Piagetian theoretical statements with the 

empirical aspects of the present research, so as to make clear the origin 

and status of the predictions given above. 

As a preface, however, a caveat needs to be made explicit. The present 

research is not aimed at testing Piaget~s theory. It is emphasised that 

Piagetian theory is consulted because it provides the richest source of 

relevant theoretical statements and empirical data. 



3.2 OJERITIEW CF PlACET'S THEORY OF CXXNITIVE IEVELOPMEN.r. 

3.2.1 NATURE CF THE THEORY. 

Piaget's theory of cognitive development is structural, holistic, constr

uctionist, and descriptive. 

It is structural because it conceptualises "mental operations" as form

ing patterns that exhibit properties which change in the course of devel

opment. Development is seen primarily as a matter of change in cognitive 

structure. 

It is holistic because it asserts that, as every oognitive act is related 
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in same fashion to all other cognitive acts, an understanding of intelligence 

can only be gained by an understanding of its organisation as a total 

system. '.rhe total system and its comp::ment structural elements are said 

to change over time, and as a function of experience. Such change is bel

ieved to be directed by two broad principles, "organisation" and "adaptat

ion" • Because these principles do not change during development they are re

ferred to as "functional invariants". 

The theory is constructionist because it declares that, while experience 

permanently alters intelligence, intelligence modifies its own construct

ion of reality in the process of interpreting it. 



Finally, the theory is oore descriptive t.i1an explanatory. Its structural 

and functional elements provide a way of classifying and charting onto

genetic development, rather than a system of explanations. Thus, the 

theory provides a rich and detailed account of the state of intelligence 

at various stages of development. However, it provides only general and 

exceedingly abstract principles to aooount for the processes at work 
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in the formation of, and transition between, such states (Brainerd, 1978). 

The following aooount of the theory is highly condensed and selective. 

However, it is only intended as a context within which a oore detailed 

discussion can be presented of the period of ooncrete operations, because 

that is when the number, length and distance ooncepts under examination 

emerge. 

3. 2. 2 coc:NITIVE STRUCrURES. 

The existence of oognitive structures is inferred from the person's behav

iour. Thus, cognitive structure is an hypothetical construct. More spec

ifically, Piaget regards oognitive structures as being systems of operations. 

Piaget states:-

"Psychologically, operations are actions which are internal

izable, reversible and co-ordinated into systems characterized 

by laws which apply to the system as a whole. They are actions, 

since they are carried out on objects before being performed 

on symbols. They are internalizable, since they can also be 

carried out in thought without losing their original character 

of actions. They are reversible as against simple actions 



which are irreversible. In this way, the operation of ccrnbining 

can be inverted immediately into the operation of dissociating, 

whereas the act of writing from left to right cannot be inverted 

to one of writing from right to left without a new habit being 

acquired differing from the first. Finally, since operations 

do not exist in isolation they are connected in the form of 

structured wholes. Thus, the construction of a class implies 

a classificatory system and the construction of an asymmetrical 

transitive relation, a system of serial relations, 

(Piaget, 1953 b, p.S). 

3.2.3 CONCE:PT CF SCHEME. 

II 

Piaget's concept of "scheme" related to these notions of structure. 

Schemes consist of sequences of actions. Structures consist of systems 

of operations. 

28 

Schemes are defined in terms of overt behaviour (Piaget & Inhelder, 1969;p4) 

Thus, Piaget talks of sensory-motor schemes of grasping, reaching, seeing, 

tasting, and so on. Schemes are said to change as a consequence of cog

nitive functioning. 

3.2.4 COGNITIVE FUNCTIONS. 

Development is seen mainly in terms of changes in cognitive structures. 

Changes occur as a result of experience, and are said to be always under 

the control of the two functional invariants, organisation and adaptation. 
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Organisation is the cognitive function Piaget holds responsible for the 

similarities that exist in intellectual behaviour at all levels of devel

opment. Adaptation provides the mechanisms responsible for the changes 

within cognitive structures. Hence, organisation and adaptation are 

complementary. The former ensures that the reorganisation of cognitive 

structures produces an ordered totality. The latter ensures that cognitive 

structures grow internally as elements of the total system, and that new 

and different kinds of relationships grow between these elements. Brain

erd said:-

"The organization principle presumably is responsible for the 

organism~s cognitive continuity across short or long periods 

of time. That is, cognitive organization accounts for the 

fact that there is same degree of sameness in intelligence 

across time. In contrast, the adaptive side of intelligence 

presumably is the chief instrument of discontinuity." 

(Brainerd, 1978, pp.23). 

The mechanisms LlSed by adaptation to guide cognitive growth are assim

ilation and accommodation. Assimilation is the taking in of experience, 

and its interpretation by existing cognitive structures. Accomodation 

is the changing of those cognitive structures in such a manner as to make 

subsequent interpretations reflect reality more accurately. Hence, assim

ilation and accomodation are complementary. For Piaget, every cognitive 

act implies roth mechanisms:-



"~ation of m=ntal structures to reality implies the 

existence of assimilatory (schemes) apart from Which any 

structure would be irnp::Jssible. Inversely, the formation 

of (schemes) tr~ough assimilation entails the utilization 

of external realities to Which the former must ac~te ••• " 

(Piaget, 1954, pp.352-353}. 

Piaget has described these and other aspects of structural adjustm=nt in 
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terms of an equilibrium model. Expressed !lOSt sinply, the model refers to 

a balance between assimilation and ac~tion, t..hat leads to a state of 

"equilibrium" - one in which the cognitive structures are said to be equil-

ibrated. This process of equilibration has been defined by Piaget (1972} 

as: "a CXli'llj)ensation for an external disturbance" (p.l20). When the sys

tem is oot in equilibrium, it has a tendency to adjust itself continuously 

to nove toward a state of equilibrium. Thus, it is a dynamic process lead

ing to successively higher and higher levels of equilibration. Inhelder 

(1962) described it as:-

"a constant progression from a less to a more canplete 

equilibrium and manifest therein the organism's steady 

tendency t:<:Mard a dynamic integration. This equilibrium 

is not a static state, but an active system of canpen

sations - not a final conclusion, but a new starting 

point to higher forms of m=ntal developnent." 
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Equilibrium is central to Piaget~s stage ronc:epts. It accounts for the 

structural characteristics of invariant order, of acquisition, hiGO.rarchical 

inclusion, and O<Jerall integration that define a stage. It also accounts 

for the transition between stages as periods when intelligence is in a 

state of disequilibrium: that is, when its rognitive structures are poorly 

equilibrated. It also accounts for the changes that occur within a stage. 

In other words, it represents the organisational and adaptational princi

ples which acoount for the continuity and discontinuity aspects of Piaget's 

stage theory {Brainerd, 1978) • 

3. 3 STAGE'S CF IEVELOPMEN.r. 

An i.rnj::x::>rtant aspect of intellectual behaviour is that the nature of rea

soning changes with age. Piaget uses behavioural data as evidence that 

intellectual development involves a progression through four distinct 

and major stages. Each stage is characterized by different reasoning. 

Piaget has argued that there are:-

"four great stages, or four great periods, in the 

development of intelligence: first, the sensory-

rotor period before the appearance of language; 

second, the period fran about two to seven years 

of age, the pre-operational period which precedes 

real operations; third, the period frc:m seven to 

twelve years of age, the period of concrete operations 

(which refer to concrete objects); and finally 

after twelve years of age, the period of formal 

operations, or propositional operations. • 

(Piaget,l968 p356). 



3.3.1 SENSORY-MJI'OR STAGE. 

During the sensory-motor stage, the child learns that the world is a 

permanent place, which may be explored by his senses, and by physical 

movement. Physical !IDVements are oo-ordinated, and are internal-

ized into rudimentary cognitive structures. As these structures 
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develop, the child's behaviour becomes more p.~rposive and goal directed. 

From about lB months onwards, language develop:nent is apparent, and simple 

symbolic behaviour appears. These two develop:nents herald the emergence 

of the next stage. 

3. 3. 2 PRE-0PERATICNAL STAGE. 

When compared with its precursor, the pre-operational stage is one of 

vast gra~th in the child's capacity to reason. Consequently, it is 

difficult to summarise the pre-operational stage without conveying the 

impression that it is 'simply' a :p?riod during which the foundations are 

laid for the development of concrete operational thought. 

The pre-operational stage is marked by the develop:nent of the "semiotic 

function":-

"At the end of the sensori-rrotor :p?riod, at about one and 

a half to two years, there ap:p?ars a function that is 

fundamental to the develop:nent of later behavior patterns. 

It consists in the ability to represent something (a sig

nified something: object, event, conceptual scheme, etc.) 

by means of a "signifier" which is differentiated and which 



serves ooly a representative purp:>.se: language, mental 

image, symbolic gesture, and so on. Follaving H. Head and 

the specialists in aj±lasia, we generally refer to this 

function that gives rise to representation as "symbolic." 

However, since linguists distinguish between "symbols" and 

"signs," we ~d d:> better to adopt their term "semiotic 

function" to designate those activities having to d:> with 

the differentiated signifiers as a whole." (Piaget and 

Inhelder, 1969, p.51) 

During this stage the child's symbolic behaviour encompasses complex 

activities such as drawing, reading and writing:-

"In spite of the astonishing diversity of its manifestations, 

the semiotic function presents a remarkable unity. '1'\'hether 

it is a question of deferred imitation, symbolic play, draw

ing, mental images and image-l!e!Ories or language, this 

function allows the representative evocation of objects and 

events not perceived at that particular m:ment. The semiotic 

function makes thought possible by providing it with an un

limited field of application, in contrast to the restricted 

boundaries of sensori-l!Otor action and perception." 

(Piaget and Inhelder, 1969, p.91) 
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3.3.3 a:NCRETE a>ERATIOAAL 

The concrete operational stage is characterized by the child's ability 

to reason lcgically, provided that the task makes reference to concrete 

objects - though such objects need not be present. It is also necessary 

that any hypothesis testing involve only simple extrapolations or interpol

ations. It is during this stage that the child acquires his ordinal and 

cardinal concepts of number; develops his ability to argue transitively; 

exhibits a capacity to classify objects simultaneously on two or more 

dimensions; is able to handle class inclusion problems in lcgic; 

displays an understanding that spatial transformations of objects, or 

collections of objects, leaves certain properties of the objects, or coll

ections, unaffected; demonstrates an understanding of projective and 

Euclidean geometry; and learns to apply mathematical concepts to a range 

of concretely-based problems, such as distance and length measurement. 

The child's thinking, however, is still limited by a dependence on 

concretely based information; by an inability to carry out concurrently 

the two reversibility operations of negation and reciprocation - although 

they can be applied independently; and by severe limitations in his abil

ity to control for the effects of variables in multi-variable situations. 

3.3.4 FORMAL a>ERATIOAAL STAGE. 

The formal operational stage represents the highest level of intellectual 

developnent, and marks the emergence of the ability to think about think

ing. Thought is no longer confined to concretely-based information, no 



longer restricted cy the force of reality, but is free to generate 

possibilities and hypotheses whose only immediate referents are prior 

elements of cognition. Piaget said:-

"It is the J;C~~Ver of forming operations of operations 

which enables k.nOW'ledge to transcend reality." 

(Piaget, 1972) • 

It is during this stage that the power of hypothetico-deductive reason

ing can be used to gain full understanding of =nplex ooncepts in math-

ematics and science, and where proof of a proposition involves oonsider-

ation of all possibilities, in isolation and in combination. 

3.4 aNCRE'IE ClPERATICNS. 

3.4.1 LOOICAL AND INFRI\LCX;ICAL ClPERATICNS. 

A more detailed presentation of the stage of ooncrete operations is needed 

because I!OSt of the canponents of linear measurement listed in Chapter 2 

appear in the child's reasoning during that stage. For example, it is 

then that the child demonstrates an ability to make transitive inferences, 

and to conserve mnber, length and distance. 

Most of the abilities which emerge during the concrete operational stage 

fall into two broad categories. They are tb::>se concerned with: (a) rel

ations between objects; and, (b) with relations within objects (Piaget 

and Inhelder, 1969) • The former involve logical cperations, and the latter, 

infralogical cperations. The distinction is based upon the kinds of in-



formation each provide. Logical cparations are concerned with informat

ion alxlut oollections of objects, and are independent of spetio-temp::>ral 

location. Infralogical operations bear up:>n objects, and their perts. 

The logical operation of dividing a class of objects into a number of 

sub-classes is, analogous to the infralogical operation of sub-dividing 

a length into o::rnponent elements. HCMever, they are different in import

ant respects. The former d:les not require that the elements of the class 

or of the sub-classes be in spetial or temporal proximity and, so, is 

called a logical cparation. The latter d:les require that the elements 

of the whole (the length) be in spetial proximity, and, hence, is termed 

an infralogical cparation. 

3. 4 • 2 GROUPING AND CKlllP STRtX:)l'lJRES. 

Logical and infralogical operations form ccrnponents of the oognitive 

structures of the ooncrete operational stage. The principles under which 

operations in the logical and infralogical domains combine may be stated 

in the form of axians. Those axians bear a close resanblance to the log

ical laws that define two particular mathematical stru~es: grOOI_:S and 

lattices. Consequently, Piaget has employed logico-mathematical m:X!els 

to describe the organisation of ooncrete operational thought. 

Piaget called his st,uctures "groupings", if they modelled systems which 

ernb:rlied laws of mathematical groups and lattices. The structures were 

called "grOOI_:S", if the systems they modelled reflected only the laws of 

mathematical groups. 
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3.4.3 TYPES CF GRouPING STRUCrURE. 

Piaget posited eight major groupings:-

"This grouping structure is found in eight distinct 

systems, all represented at different degrees of 

completion in the behaviour of children of 7-8 to 

10-12 years of age, and differentiated according 

to whether it is a question of classes or relations, 

additive or multiplicative classifications, and 

symmetrical (or hi-univocal) or asymmetrical 

(co-univocal) correspondences: 

Classes Relations 

Additives 
Asymmetrical 

Symmetrical 

Co-univocal 
Multiplicatives 

Bi-univocal 

l 

ll 

lll 

lV 

(Beth and Piaget, 1966, p.l74). 

v 

Vl 

Vll 

Vlll" 

Examples of the behaviours associated with these groupings are given 

below:-

3'( 



GROUPING 

1 Primary addition of classes 
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BEHAVIOOR. 

Addition and subtraction of classes; 

class inclusion. 

11 Secondary addition of classes Ability to classify a set of objects 

111 Bi-univocal nultiplication 

of classes 

lV Co-univocal llllltiplication 

classes. 

v Addition of asymmetrical 

relations 

Vl Addition of symmetrical 

relations. 

VllBi-univocal llllltiplication 

of relations. 

Vlll Co-univocal multiplication 

of relations. 

in several different ways. 

Ability to find the intersect 

of two or rrore classes. 

Ability to set two series of classes 

in one-to-many correspondence. 

Ability to construct a transitive 

asymmetrical series. 

Ability to deduce symmetrical 

relationships from a genealogical 

hiharchy. 

Ability to set in 1-to-1 corres

pondence elements of two asymmet

rical series. 

Ability to find the result of 

multiplying a symmetrical relation 

and an asymmetrical relation of the 

kind found in genealogical hier

archies. 

Flavell (1963) succinctly expressed the connection between these groupings 

and behaviour: 



ftthus, if Piaget says that the classificatory behaviour 

of the eight year old indicates that he possesses the 

grouping of logical class addition, he means the child's 

thought organisation in the classificatory area has 

formal properties (reversibility, associativity, composition, 

tautology, etc.) very like those which define this logico

algebraic structure. The latter has certain specific 

and definable eystem properties1 we infer fran his behav

iour that the child's oognitive structure has similar 

properties." (Flavell, 1963, p.l69). 

Reflecting the distinction between logical and infralogical operations, 

Piaget has argued that each of the groupings of logical operations has 

3:1 

its infralogical counterpart. Thus, there is a grouping of infralogical 

operations corresponding to grouping 1 for logical operations. However, 

in the case of the former, the operations relate not to the act of canbin

ing and dissociating classes, but to the act of dividing a whole (say, 

a length) into its oonstituent parts, and canbining those parts to recon

stitute the whole. 

3. 4. 4 TYPES CF GROJP STRJ::Ct't.lRE. 

In addition to these grouping structures, Piaget posits two further struct

ures, called groups. The two groups are: (a) the additive group of posit

ive and negative whole.numbers; and, (b) the multiplicative group of whole 

or fractional positive numbers. Just as there are groupings in the domain 

of logical qJerations, and in the domain of infralogical qJerations, there 

are groups in each O::main. 
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Moreover, these groups are said to o::rne out of a synthesis of grouping 

structures: the additive group from a synthesis of class addition and 

addition of asymmetrical relations; and, the multiplicative group from a 

synthesis of class multiplication and multiplication of symmetrical 

relations. In other words, understanding of number implies an understand

ing of the cardinal (haw many) , and ordinal (ordered series) , aspects of tt'e 

concept. Piaget (1952) asserted, in respect of the additive group of 

numbers, that:-

" ••••• class, asymmetrical relation and number are three 

complementary manifestations of the same operational 

construction applied either to equivalences, differences 

or to roth together. It is, in fact, when the child~s 

intuitive evaluations have become mobile and he has there

fore reached the level of the reversible operation, that 

he beo::rnes capable of inclusions, sedations and counting. 

• ••••• class and number are mutually dependent, in that 

while number involves class, class in its turn relies 

implicitly on number. 

• ••••• number is at the same time a class and an asymmetrical 

relation." (Piaget, 1952, p. 184). 



3.4.5 QUANTIFI~TION. 

The grouping structures in the domains of logical and infralogical 

operations permit what Piaget calls "intensive" quantification to te 

performed. The group structures permit "extensive" quantification 

to te carried out. Intensive quantification enables judgements such as 

bigger than, more than, longer than, etc. to te made. Extensive 

quantification enables such judgements to te IIDre precise, by expressing 

how much bigger, how many more, how much longer, etc. Piaget also argues 

that, when the elements of the logical grouping structures (that is, log

ical operations) become connected to the elements of the numerical group 

structures (that is, numters), the result is numerical operations. 

At that time, the child tecomes capable of understanding arithmetic. 

Similarly,·when the elements of the infralogical grouping structures 

(that is, infralogical operations) become connected to the elements of 

the numerical group structures, the result is measurement operations. 

At that time, the child tecomes capable of understanding the nature 

of rreasurement. Diagramatically, the argument may be summarised as 

follows: 
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(a) ! r.Ogica1 I 

I Operations I 
Numerical Understanding oi 

r- Operations Ari thlletic 

I Numbers !--
(b) Infralogical Measurement Understanding of -

Operations 

r 
Operations Measurement 

Numbers 1-

3.5 PARALLEL IEVELCPME:NT HYPOTHESIS. 

The structures of the calCrete operational stage are linked developnent

ally, as well as logically. It is argued that all of these structures 

develop contemporaneously, and emerge in parallel, as distinct fran 

emerging sequentially. This is scmetimes termed the "parallel develop

ment hypothesis". (Brainerd, 1978: p.86). 

The parallel develq;rnent hypothesis is important in the oontext of the 

present research. It predicts that the ability to use transitive 

reasoning with respect to discrete quantity - which marks the ca:npletion 
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of grouping V (addition of asymmetrical relations) - appears in the child's 

behaviour at about the same time as the ability to oonserve number - which 

marks the synthesis of groupings 1 (primary addition of classes) and v. 

Similarly, in the d:lmain of infralogical operations, the parallel devel

Oflllent hypothesis predicts that the ability to make transitive inferences 

with respect to length emerges at about the same time as the ability to 



ronserve length. It will be recalled from Chapter 2 that kna-ling how to 

make transitive inferences with respect to number and length, and knowing 

of the conservation of number and length, were assumed to be necessary 

for a child to be able to measure length. Consequently, the above 

two statements of developmental synchrony form the first two predictions 

of the order of emergence of components of linear measurement. 

3.6 THREE SUB-5TAGE MJDEL. 
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Piaget also maintains that the structures do not emerge all of a sudden, 

when the child enters the ccncrete operational stage. Instead, he ident

ifies, generally, three sub-stages in the development of each structure. 

As with his stage roncept, he maintains that all children must pass through 

each sub-stage in a fixed invariant order. Moreover, Piaget also maintains 

that children move synchronously through these sub-stages. Thus, a child 

at sub-stage 1 in class roncept development should also be at sub-stage 

1 with respect to relations and number. 

The three sub-stage model of development is relevant to the present 

research, because Piaget is most explicit regarding the necessary compon

ents of linear measurement when discussing sub-stage growth. Also the 

model yields predictions roncerning the order of emergence of some of the 

higher-order abilities assumed to be necessary for linear measurement. 

For example, the model posits developmental asynchronies between the 

conservation and the measurement of length, and also between the emerg

ence of proficiency in numerical operations and the demonstration of an 

understanding of measurement operations. Additionally, it posits dev-



elopmental dependencies between certain of the more basic skills, such 

as length seriation, and higher order skills such as transitive infer

ence reasoning. In order that predictions of that kind may be seen in an 

appropriate theoretical context, a brief account of the three sub-stage 

model follCMs. 

3.6.1 CIASSES. 

The growth of class logic is relevant because, in Piagetian theory, the 

emergence of an operational grasp of number marks the synthesis of log

ical groupings 1 and V. 

Piaget uses three kinds of task to assess a child's progress through the 

posited three substages of development. They are, in increasing order 

of compexity: (a) classification; (b) multiple classification; and, 

(c) class inclusion. 
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In the classification task, the child is asked to sort collections of 

objects on one dimension only- e.g. to sort a collection of beads of 

differing size and colour on colour only. In the multiple classification 

task, the child is asked to sort the collection on two dimensions simultan

eously - e.g. to sort on size and colour. In the class inclusion task, 

the child is presented with the information that class A, say green 

plastic buttons, is contained in class B, say green and blue plastic 

buttons, and asked if there are IOCJre green buttons (assume there are IOCJre 

greens than blues) than plastic buttons. Correct performance on the class 

inclusion task represents achievement of L~e class concept, and attainment 

of the related grouping structures. Progression through these tasks is 

summarised in the follCMing:-



TEST SUB-sTAGE 1 SUB-STAGE 2 SUB-STAGE 3 

Fails. Groups Passes. Will sort 

Classificat objects into spat- objects into two 

ion. ial configurations or more mutually 

Called graphic exclusive categor-

collections. ies. 

Multiple Fails. Produces Partial success. 

Classificat- graphic collections.Will sort on two 

ion. dimensions succ

essively but not 

simultaneously. 

Class 

Inclusion 

Fails. If A is con- Fails. Any success 

tained in B, child 

asserts A is > B. 

is matter of trial 

and error discovery, 

not axiomatic assert-

ion. 

(Inhelder & Piaget, 1964) (Piaget, 1952). 

3.6.2 RELATIONS. 

Passes 

Passes 

Passes 

Piaget uses three kinds of task to assess a child's progress 

through the j:X)Sited three substages of developnent. They are, in 

increasing order of difficulty: (a) seriation; (b) multiple seriation; 

(c) transitive inference. 
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In the seriation task, t.l-Je child is asked to arrange a number of objects 

in order along a p:u:ticular dimension- e.g. arrange a set of five lengths 

of wooden Cbwel in order of increasing length. In the Tll.lltiple seriation 

task, the child is asked to arrange the objects in order along two dimensions 

simultaneously- e.g. to order on length and diameter. In the transitive 

inference task, the child is presented with the information that A is 

greater than B, and that B is greater than C, but not directly with inform

ation en the quantitative relationship between A and C. The child 

is then asked: what is the relationship between A and C. Correct perform

ance on the transitive inference task indicates achievement of the relat

ions concept, and attainment of the relations grouping structures. Pro

gression through these tasks is summarised in the following:-

TEST SUB-sTAGE 1 SUB-STAGE 2 

Seriation Fails. Can 1113.ke pair- Passes. Can oonstruct 

wise comparisons only. series with 5 to 10 

elements. 

Multiple Fails. As for seriat- Achieves p:u:tial success 

Seriation ion. Will order on two 

dimensions successively 

not siTlLil taneousl y. 

Transitive Fails. Usually Fails. As for sub-

Inference asserts Al=C because stage 1. 

they look alike. 

(Inhelder & Piaget, 1964) (Piaget, Inhelder, & Szeminska, 1960). 

sm-sTAGE 3 

Passes. 

Passes 

Passes 
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The three sub-stage model predicts that an ability to seriate length will 

emerge earlier, in the child's reasoning, than an ability to make tran

sitive inferences with respect to length. The model also predicts that an 

ability to order discrete quantity will emerge earlier than an ability 

to make transitive inferences with respect to discrete quantity. 

3.6.3 NUMBER OJNSERiTATICN. 

Piaget's (1952) classical test of number is termed conservation of number. 

Typically, it involves showing a child two rows of objects set in one--to

one correspondence; having the child agree that each row contains the same 

number of objects; transforming one row so that it is either, shorter and 

more dense, or longer and less dense, with the child watching; then asking 

the child if the rows still contain the same number of objects. Again, 

Piaget sees three sub-stages:-

Sub-Stage 1 - the child's judgements are dominated by relative 

lengths, hence, he asserts that the longer row is 

more numerous. 

Sub-Stage 2 - the child considers roth relative length and relative 

, density, but cannot co--ordinate the two; hence, if 

a correct judgement requires that roth cues be taken into 

into account, the child fails. 

Sub-Stage 3 - the conservation of number is achieved. 

At a theoretical level, Piaget sees the child's acquisition of the conserv

ation of number as marking t-he ccmpletion, and synthesis, of logical group

ings 1 and V - in other words, as reflecting the co-ordination of the 
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cardinal and ordinal as:pects, respectively, of number. Piaget also sees 

the growth in those areas of class logic as being linked with growth in the 

understanding of conservation. Consequently, the three sub-stage rrodel 

predicts that the ability to form one-to-one correspondences, and the 

ability to construct ordinal series, appear earlier in the child's reason

ing than the conservation of number. Additionally, the rrodel predicts 

that the conservation of number emerges at about the same time as an 

understanding of addition and subtraction operations. 

3. 6. 4 a:NSERITATIO'l, MEASUREMEN:r AND ARITHI>ETICAL CPEFATIO'lS. 

The three sub-stage rrodel also p::>si ts a developnental sequence between 

the conservation of length and linear measurement, and between linear 

measurement and arithmetical operations. 

Tasks, analogous to that used to assess number conservation, have been 

designed for conservation of length, distance, weight, volume, and quan

tity. In all cases, Piaget sees three sub-stages:-

Sub-Stage 1 - no conservation, child maintains that the quantitative 

relationship has changed. 

Sub-Stage 2 - intermediate reactions, child gives conserving response 

if deformation is small, or will predict conservation 

before deformation. However, if the subsequent deformation 

is large child, the child will reverse its judgement 

and assert that the relationship has changed. 

Sub-Stage 3 - conservation response. 



Piaget also sees three sub-stages of development in the measurement of 

length and distance. It is the last sub-stage which is lll:lSt relev-

ant to the empirical work of this thesis. Piaget divides the last sub

stage into two parts:-

Sub-Stage lllA-- refers to the emergence of conservation of length 

and distance; while 

Sub-Stage lllB-- refers to the emergence of measurement of length 

and distance, via the process of unit iteration. 

(Piaget, Inhelder & Szeminksa, 1960) • 

In addition to positing a developmental dependency between conservation 

and measurement, Piaget sees a parallel between the development of 

number and arithmetical operations in the domain of logical groupings 
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and groups, and the development of measurement operations in the domain of 

infralogical groupings and groups:-

"It is perfectly clear that, by Stage lllB the subjects 

•••••••• have finally achieved the construction of measure

ment by fusing or synthesizing the operations of subdivision 

and change of position. Both operations were required at 

level lllA for the notion of conservation, but there they 

were still complementary to one another instead of being 

fused into a single operation. There is a parallel to 

this elal:xlration of measurement out of two qualitative 

operations which are at first distinct but which must be 

synthesized to yield one integral operation. The parallel 



is in the elaboration of number. This cannot surprise 

us since there are isanorphic relations between the iter

ation of metrical units and the series of whole numbers 

(as also between the fractioning of metrical units and 

fractional numbers), likewise between subdivision and 

composition of parts on the one hand, and nesting class 

hierarchies on the other, and finally, between change of 

position and seriation of asymmetrical relations. Thus, 

measurement, in the field of sublogical operations is the 

exact equivalent to number in that of logical operations, 

since number is a synthesis involving the logical group

ing of nesting classes and the seriation of asymmetrical 

relations. The only difference is that the whole number 

series is constructed at level lllA and so follows immed

iately on these two logical groupings, while measurement 

is delayed for same while after notions of conservation 

have been mastered - although these are similarly dep

endent on its constituent operations: subdivision and 

change of position. We have tried to shcM lxM that delay 

is not unexpected, since numerical unity is sanething 

which may be perceived intuitively because any collection 

of discontinuous items consists of such unique elements, 

while choosing a unit of length is to make an arbitrary 

fragmentation of a whole which is continuous." (Piaget 

Inhelder & Szeminska, 1960, p400). 

5U 



It will be evident from the above that Piaget's views on the develop

mental dependencies between conservation, arithmetical operations, and 

linear measurement are of central importance to the present research. 

Specifically, the three sub-stage model asserts that the following are 

necessary components of linear measurement:-

the ability to conserve number, length and distance; 

the ability to make transitive inference judgements with respect to 

number and length; 

the ability to use a unit of length for purposes of iteration; 

the ability to carry out arithmetical operations of addition and 

subtraction. 

Additionally, the three sub-stage model predicts that:-

the ability to conserve length emerges earlier than the ability to 

measure length; 

the ability to conserve distance emerges earlier than the ability to 

measure distance; 

the ability to perform arithmetical operations of addition and sub

traction emerges earlier than the ability to measure length or 

distance. 
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3. 7 HORIZCNTAL IECALAGE. 

It has been noted in connection with the parallel development hypothesis, 

and the three sub-stage rrodel, that Piaget claims that the final sub

stages in classes and relations emerge at al:out the same time. Similar

ly, attainment of sub-stage 3 in conservation marks the synthesis of the 

logical (or infralogical, depending upon concept type) groupings and 

number groups. Since it is these structures which determine the nature of 

the child's reasoning, it might be supposed that, for example, conservation 

of number would appear at al:out the same time as conservation of weight. 

This is because the logic of the argument is the same in l:oth cases. 

HCMever, Piaget says not. Instead, he argues that logical and infra

logical operations emerge synchronously within any given concept. 

Thus, while transitivity of number and conservation of number emerge in 

parallel, and transitivity of weight and conservation of weight are 

attained at al:out the same time, there is a developmental lag between 

number and weight. More specifically, Piaget found that sub-stage 3 of 

classes, relations, conservation and measurement is reached in the 

follCMing order: number, length, quantity, weight and volume. Piaget 

refers to this phenomenon as horizontal decalage, 

HCMever, Piaget has also found that length and distance concepts emerge 

in parallel. His explanation reflects his conception of space. 

When a child is presented with two lengths of dowel in the course of a 

conservation experiment, he o::mpares two extents of occupied space. In a 

distance conservation experiment he compares two extents of unoccupied 

space. Piaget regards space as a network of sub-spaces linked together 



in a one, two, or three dimensional =-ordinate system. He argues that, 

so far as conservation and measurement are concerned, considerations 

of whether such sub-spaces are occupied by concrete objects or not, are 

irrelevant. 

In summary, Piaget claims that; 

the ability to conserve number emerges earlier than the ability to 

conserve length; 

the ability to conserve length emerges at about the same time as the 

ability to conserve distance; 

the ability to measure length emerges at about the same time as the 

ability to measure distance. 
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Finally, Piaget also found that an ability to seriate length emerged earlier 

than an ability to numerate. Since an ability to seriate length, and an 

ability to numerate, are assumed to be low-order o::mponents of linear 

measurement, that finding should also constitute a prediction of the 

present study. 

3. e s!M1ARY. 

Piaget#s theory provides a structural account of cognitive development. 

Cognitive structures are defined as systems of operations. Intellectual 

growth is directed by the functional invariants of organisation and 

adaptation, and the mechanisms of structural change are described in 

terms of an equilibrium model. 
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Four stages of development are identified. The third of these stages, 

that of concrete operations, marks the emergence of behaviour and cognitive 

structures concerned with logic, number, and certain physical properties 

of objects and events in the world. Consequently, it is the stage of 

development most relevant to this thesis. 

The theory, and the empirical base of the theory, provide general 

predictions regarding the composition, and the order of development, of 

the aspects of linear measurement examined empirically in this thesis. 

Moreover, the theory provides a descriptive rationale for that predicted 

order of development. These contributions of Piagetian theory to the 

derivation of specific hypotheses will be returned to in Part III. 



CHAPTER 4. 

MET!ICJroLCGICAL CO>JSIIJERATICNS. 

4.1 PIACEr~S MJDIFIED CLINICAL METHOD. 

The predictions made in Chapter 3 concerning the order of emergence of 

components of linear !IEasurement stem from Piagetian theory. MO£t of the 

empirical studies discussed in the following review were undertaken with 
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a view to testing various aspects of that theory. Diffioulties arise in 

interpreting much of this research, however, because many of the studies 

did not use precisely the same tasks as did Piaget. Also, many did not 

use Piagees "modified clinical" style of questioning to draw out fran the 

subject verbal justifications for his answer. In the modified clinical 

method the experimenter explores the subject~s reasoning processes by ask

ing the subject to justify his answers verbally. The experimenter tbes 

not adhere to a p;~rticular form, or to a fixed sequence, of questioning. 

4.2 PERFORMANCE/CDMPEI'ENCE ISSUE 

A major advantage of the modified clinical rrethod is that it provides evid

dence of the p;~rticular form of reasoning used by the child. Critics of 

that approach, however, claim that it is too dependent on the child's ver

bal skills. This issue is p;~rt of a long and continuing debate known as 

the "performance/competence" distinction. More specifically, "competence" 

refers to the subject having the p;~rticular ability in question. "Perfor-
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mance refers to the subject's capacity to apply and demonstrate that abil

ity in a particular situation. 

This methodological issue needs to be be considered before assessing emp

irical evidence, and in relation to the design of the tasks and administ

ration procedures employed in this study. 

4. 3 PERFORMANCE/CDMPEI'ENCE CRITICISM OF 

PIAGETIAN CDNCRETE OPERATICNAL TASKS. 

Bryant(l974) has criticised some of Piaget's concrete operational tasks on 

the grounds that they do not sufficiently control performance variables. 

These variables might either mask the concept being explored, or they 

might falsely give the impression that the child has acquired that concept. 

That kind of criticism has most frequently been made of the transitive re

asoning and class inclusion tasks. (Ahr and Youniss, 1970; Braine, 1959; 

Brainerd, 1973,1974; Brainerd and Kaszor, 1974; Brainerd and VandenHeuvel 

1974; Bryant and Trabasso, 1971; De Boysson-Bardies and O'Regan, 1973; 

DeSoto, London and Handel, 1965; Flavell, 1977; Jennings, 1970; Klahr and 

Wallace, 1972; Miller, 1976; Riley and Trabasso, 1974; Roodin and Gruen, 

1970; Siegel, 197la;l97lb; Winer, 1974; Winer and Kronberg, 1974; Wohlwill, 

1968; Youniss and Dennison, 1971; Youniss and Murray, 1970). 

It was argued in the earlier analysis that transitive reasoning is a nec

essary component of linear measurement. Hence it was decided that studies 

of transitive inference would be used to convey the important features of 

the argument. 
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4. 4 CRITICISM OF THE PIAGETIAN TRI\NSITIVE REASCNING TASKS 

The Piagetian test for transitive inferences concerning length relations 

involves presenting objects A and B, then objects B and C, and then obj

ects A and C. The AB and BC pairings are presented in such a manner as to 

permit the child to determine perceptually which is the longer or shorter. 

Objects A and C are usually presented in such a manner as to create a 

misleading perception, the intention being to force the child to use prin

ciples of transitive reasoning. Finally, the experimenter questions the 

child to ensure that the given answer •~as derived by making a transitive 

inference. Unless the child is able to justify his answer verbally, he is 

not credited with having transitive reasoning for length (Beth and Piaget,. 

1966). The following four kinds of criticism have been made of this 

procedure:-

(a) young children can make transitive inferences, but are compelled by 

the visual illusion to give non-transitive answers; 

(b) young children lack the verbal skills necessary to provide approp

riate verbal justification for their answers; 

(c) young children can make transitive inferences, but fail the task 

because they forget the premises; 

(d) young children who pass the task may use non-transitive strategies 

(Brainerd, 1978). 



4.4.1 STUDIES OJNTOOLLING VISUAL ILLUSICN, 

MEMJRY CAPACITY AND VERBAL SKILL FAcrORS. 
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Studies which have not used visual illusions and have not required verbal 

justifications have claimed that kindergarten children of about five years 

of age can make transitive inferences (Brainerd,l973; 1974; Brainerd and 

VandenHeuvel, 1974). Similar findings have been repxted fran studies 

which have not employed visual illusions, have not required verbal just

ifications, and have nullified the memory factor by using either visual 

or verbal feedback in a preliminary learning J:hase (Bryant, 1974; Bryant 

and Trabasso, 1971; Riley and Trabasso, 1974; Siegel, l97la; l97lb). 

However, a recent study that employed the standard three term series 

procedure found that 64% of the subjects who remembered the premises, 

still could not make a transitive inference with respect to length (Hal

ford and Galloway, 1977; Halford, 1979; Grieve and Nesdale, 1979). 

All of these studies used an adequate sample size, appropriate stimulus 

materials, and procedures which appeared to eliminate, or control, the 

extraneous factors. All of the studies, except that of Halford and Gall

oway (1977), concluded that children can make transitive inferences two to 

three years earlier than Piaget has claimed. In the case of Bryant~s 

studies, it was found, using five term series problems, that three and 

four year old children could make transitive inferences. 

Methodological rigour, however, does not carry guarantees of =nceptual 

soundness. The resolution of the performance/oanpetence issue rests on 

dis=vering Lhe form of internal representation used by young children in 

solving Piagetian tasks. 
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Many critics have argued that same children who pass the transitive infer

ence task may not be using transitive reasoning principles (De Boysson

Bardies and O'Regan, 1973; DeSoto et. al., 1965; Flavell, 1977; Riley and 

Trabasso, 1974; Youniss and Dennison, 1971; and Youniss and Murray, 1970). 

However, it will be seen that these arguments can be applied either in 

support of the Piagetian position, or in support of the critics of that 

position. This is because they rest on assumptions concerning the form 

of internal representation used by the child. 

4.4.2 THE ROLE OF LINGUISTIC CODING 

IN TRANSITIVE INFERENCE. 

Youniss and Dennison (1971) and Youniss and Murray (1970) suggested that 

Piaget's standard three term series problem could be solved by employing 

a non-transitive, linguistic coding strategy. Their argument is that the 

standard procedure enables subjects to code linguistically - A is coded as 

'big' during ~~e AB pairing, and C as 'small' during the BC pairing, lead

ing to the non-transitive judgement that, since A is 'big' and C is 'small' 

A must be bigger than C. Their solution to this problem of false posit

ives (correct answers reached by non-transitive processes) was to introd

uce two additional objects X and Y, and to introduce them in such a manner 

as to make both A and C both 'big' and 'small'. For example, in the foll

owing set of pairings A is both bigger than B and smaller than X, while C 

is both bigger than Y and smaller than B: A>B; B>C; X>A; C>Y; X?Y. The 

same argument was applied by De Boysson-Bardies and O'Regan (1973) to 

Bryant and Trabasso's (1971) procedure. 



4. 4. 3 THE ROLE OF MFNl'AL IMl\GERY 

IN TRANSITIVE INFEREN:::E. 
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DeSoto et.al. {1965), and Riley and Trabasso {1974) advanced a similar 

argllliEnt, suggesting that false positives might be proouced by a strat

egy involving rrental imagery. They argued that a false positive solution 

would be pr<rluced if the child imag{in)ed absolute values for each stim

ulus item. However, differences between items in the stimulus pairings 

in transitive rearoning tasks are usually small (e.g •• Scm in the case of 

length). Further:rrcre, in general, people are rot carpetent at estimating 

length (Schiff and 5aarni, 1976). It seems unlikely, therefore, that 

young children would use a strategy requiring abrolute coding of stimulus

attribute values as rrental images. 

4.4.4 THE FDR-1 OF INTERNAL REl'RESE!>.'TATION. 

These argurrents concerning tl1e fbrm of internal representation used by 

children have two curious aspects. Firstly, if the stimulus-attribute 

values are sufficiently different to enable the child to adept an absolute 

linguistic or imagLT"lal cooing strategy, a false-positive solution could 

be proouced. However, it is also possible that a carparative linguistic 

(e.g. bigger, smaller) or ordered imaginal (e.g. big on left, small on 

right) c<rling strategy could be adcpted. Each would proouce a true 

positive solution. Short of asking the child which strategy he used, it 

is inpossible to resolve the issue. 
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Secondly, suppose that objections to the standard procedure are raised on 

the grounds that the child's verbal skills are not sufficient to permit 

him to justify his answer orally. Surely, an objection of equal force 

could be raised against asking the child whether he used an absolute ling

uistic or comparative linguistic, absolute imaginal or ordered imaginal, 

form of internal representation. 

Additionally, even if there were same way of ascertaining which of these 

two forma of internal representation were used by the child, the value of 

the argument could still be questioned. SUIPQSe that the absolute lingui

stic or absolute imaginal form were used. It would be possible to solve 

problems without using transitive inference if the child constructed a 

linguistic or imaginal series, and 'read off' the answer. In this case, 

he would be demonstrating a capacity to seriate, which is substage 1, not 

substage 3, level of functionir,g. In order to use transitive reasoning 

the child would need to transform the problem to the canonical form - if 

a.R.b. and b.R.c. then a.R.c. It may be that the production of a ling-

uistic or imaginal series is only the first step in the production of an 

internal form of representation akin to the canonical form. Wallace (1972) 

argued that the findings of latency studies support this possibility. 

4.5 StM1ARY OF OUTICISM REGI\.RDING TRANSrriVE REAS(NING TASFS. 

In summary, a number of critics have insisted that at least some of the 

subjects used in the Piagetian studies who failed to make transitive 

inferences were limited, not by the absence of a transitivity rule, but 

by memory capacity or san!'! other factor. Such failures are instances of 



false negatives. In support of those contentions, methodologically rig

orous studies were undertaken which, it was claimed, demonstrated that 

children of four and five years of age could make transitive inferences. 

However, arguments based on the form of internal representation used 

suggest that children in these studies could have produced correct ans

wers without employing transitive reasoning. Such passes are instances 

of false positives. 
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However, it is also the case that arguments resting on the form of inter

nal representation can be employed to either attack, or defend, the find

ings of any transitive reasoning study which does not require the subject 

to provide an appropriate verbal justification. Anderson (1978,1979) 

has pointed out in another context that it is impossible to determine 

what kind of internal representation a subject employs in problem solv

ing. Furthermore, Miller (1976) has argued that: "The problem is that, 

since it is inherently impossible to find a perfect operational definit

ion of the concepts such as transitivity, inclusion (really disjunction), 

and conservation on which the controversy turns, it cannot be resolved 

by finding the perfect test (p.430)." 

With these considerations in mind, it was decided that, when reviewing 

evidence concerning the components of linear measurement, greater weight 

would be given to those studies which adhered to the Piagetian approach, 

with respect to tasks used and insistence upon verbal justifications. 



CHAPTER 5. 

PARALLEL IEVELOPMFNI': EMPIRICAL 

EVIIENCE <n<CERNING ORDER CF 

&'1ERGENCE CF CCINSERVATICN AND 

TRI\NSITIVE REASCNING. 

5.1 PREDICriCNS. 
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It was argued earlier that conservation of number and length, and transit

ive reasoning involving number and length, are necessary components of 

linear measurement. Therefore, the order of development of these compon

ents might provide insight into the growth of linear measurement. 

It was asserted in Chapter 3, that the parallel development hypothesis 

yields the predictions that:-

(a) the ability to conserve number emerges at about the same time as the 

ability to make transitive inferences with respect to discrete quant

ity; 

(b) the ability to conserve length emerges at about the same time as the 

ability to make transitive inferences with respect to length. 

Empirical evidence concerning these predictions will now be discussed. 
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5. 2 ASSESSMI!NT CRITERIA. 

If a study is to provide clear empirical evidence concerning these pre

dictions, it shoold employ the sa100 group of subjects for all tasks. This 

is because of t.'le wide variation in the age at W>ich children attain ccm

pcnents of the nunber and length concepts. For exarrple, a particular 

study using group A might conclude that the Irean age for attainll'ent of 

length conservation is six years three mnths, and using group B that the 

mean age for attainll'ent of transitive reasoning involving length is five 

years two rronths. Such findings provide only weak e11idence of asyochron

ous errergence of length conservation and transitive reasoning. This is 

because such a study does rot provide evideoce that for each group the 

crnponent rot tested does rot errerge in synchrony with the crnponent tested. 

This is a general limitation of between-group experill'ental designs. 

In addition, Piagetian theory posits a lag in developitent between nU!lber 

and length with respect to the acquisition of conservation and transitive 

inference. It is necessary, therefore, that, in a study aimed at testing 

the prediction of synchronous errergence of conservation and transitive 

inference, the tasks shoold all test the sarre concept. For exarrple, the 

errergence of conservation of length should be located in relation to the 

appearance of transitive inference reasoning with respect to length. 

Unless this strategy is adcpted, difficulties will arise in interpreting 

findings. For exarrple, a finding that transitive reasoning involving 

length errerged after conservation of nunber 'WOUld be expected siltply because 

of the horizontal decalage between nU!lber and length. 
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These oonsiderations, together with the factors already mentioned in Chap

ter 4, specify the kind of study which could test the predictions present

ly under review. Specifically, such a study should satisfy the following 

criteria:-

(a) the tasks should be administered to all subjects; 

(b) canparisons between emergence of oonservation and transitive reason

ing should be l:::esed on the same concept- e.g. number or length or 

weight but not number and length; 

(c) The procedures employed should be essentially the same as those used 

by Piaget, especially in connection with the insistence upon verbal 

justification, and clinical style questioning of the subject. 

5.3 EIJIDI!:NCE THAT AO;JJISITICN CF OJNSERITATICN PRECE!FS 

ACQJISITICN CF TRANSITIVE lNFERENCE. 

5. 3 .1 lENGTH AND W::IGn'. 

In two studies, Smedslund (1961,1963) found evidence suggesting that cons-

ervation appears before transitive reasoning for each ooncept. In the 

1961 study, five to seven year old children were given pr~tests of con--

servation of quantity, oonservation of weight, and transitive reasoning 

involving weight. These pr~tests were followed by a training phase. 

Smedslund found that, in the pr~tests, the correlation between conserv

ation and transitive reasoning for weight was very low, after partialling 

out age variances. He also found that transitive reasoning for weight was 

more difficult to train than conservation of weight (this finding, may 

sirrq:>ly reflect relative effectiveness of the training techniques). In the 
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1963 study, Srredslund found that =nservation of length appeared earlier 

than transitive reasoning for length. His assessment procedures closely 

followed those of Piaget, except for one aspect of the transitive reas

oning task. After presenting the AB and BC pairings, but before present

ing the AC test ccrnparison, Srredslund checked that the subject remembered 

the outCXlllles of the two earlier cx:rnparisons. If the subject couldn't re

member them, he re-presented the earlier pairings. This proced:.Jre in

creases the potential for non-transitive solutions. 

Mc.Mannis (1969) also studied the order of acquisition of conservation 

and transitive reasoning, for bot.l-J length and weight, using 90 normals 

and 90 retardates, matched for mental age between 5 and 10. The results 

are given in Table 5.1. 

TABlE 5.1: 

REIATICNSHIP BEI'IIEEN CO*lERITATICN AND TRANSITIVITY: 'iiEIG'IT AND L.~: 

NtM3ER OF SUBJECI'S . 
WEIG'IT 

NCJRMlllS I RE:TAR!lli.TES 

CCNSERVATICN TRA."5ITIVE TRANSITIVE TRANSITIVE TRANSITIVE 

REASCNING REASCNING RE:I'.SCNING RE.l\SCNING 

Absent Present Absent Present 

Absent 30 4* 36 3** 

Present 13* 43 34** 19 

Lengtb 

Absent 33 1** 37 0** 

Present 22** 34 45** 8 

* p < .025 

** p < .001 
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These findings appear to be strong evidence that conservation appears 

before transitive reasoning in the development of each concept. Mc.Mann

is' procedures closely followed Piaget's, except in respect of one aspect 

of the transitive reasoning tasks. Like Srnedslund (1963), he introduced a 

learning factor by requiring the subject to recall correctly the outcomes 

of the initial AB and BC pairings, before he moved on to present the AC 

test comparison. His results are consistent with those of Srnedslund 

(1963). 

The variations from Piaget's procedures in these studies do not weaken 

their findings. This is because the change in the standard transitive 

reasoning procedure would decrease task difficulty. Therefore, if con

servation and transitive reasoning emerge synchronously, the predicted 

outcome in the Smedslund and Mc.Mannis studies would be for transitive 

reasoning to precede conservation. If, on the other hand, conservation 

precedes transitive reasoning, the reduction in difficulty of the trans

itive reasoning task should have masked that asynchrony. In other words 

the effect of the change in the transitive reasoning test procedure made 

by Srnedslund and Mc.Mannis would be to reduce, not increase, the probab

ility of finding a conservation followed by transitive reasoning sequence. 

Their finding may, therefore, be construed as evidence that conservation 

does emerge before transitive reasoning for each concept. 
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5. 3. 2 N'JMBER AND I.ENG1'H. 

Achenbach and Weisz (1975) carried out a longitudinal study of develop

mental synchrony between conceptual identity (which was equated with cons

ervation), and transitive reasoning for colour, number and length, using a 

sample of 102 pre-school age children. The children were tested on two 

occasions, six months apart. Mean age at the first testing was 50 months. 

Their results for identity and transitive reasoning, with respect to nl.llll

ber and length, are given in Table 5.2. 

TABIE 5.2: 

PERCENI'ACB CF SUBJECI'S PASSING !!ENTITY AND TRIINSITIVE REASCNING TESTS 

FOR N'JMBER AND I.ENG1'H . 
rolCEPT 'lEST 

I !ENTITY TRIINSITIVE REASCNING 

Number 

Testing 1 58 9 

Testing 2 73 12 

Length 

Testing 1 35 6 

Testing 2 70 6 

Achenbach and Weisz (1975) interpreted these findings as evidence that, 

for l:oth number and length, =nservation precedes transitive reasoning. 

Even though this study is cited and accepted by influential scholars (e.g. 

Brainerd, 1978) , the conclusion reached is questionable, for the follow

ing reasons:-
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(a) The identity tasks were concerned with the conservation of a quant

itative attribute of a single stimulus. The standard Piagetian cons

ervation task involves the quantitative equivalence of two stimuli. 

The identity task should not be equated with a'conservation task. 

(b) The test for the presence of conservation was whether or not the 

child was "surprised" on the second presentation of the stimulus. 

(c) The transitive reasoning tasks were based on the five term present

ations of Youniss and Murray (1970) and Roodin and Gruen (1970) , and 

not on the standard three term procedure. 

Moreover, it is not unexpected that identity should have emerged before 

transitive reasoning for number. This is because Gelman and Gallistel 

(1972) found in a number of studies, that three and four year old child

ren judged that an array of n items still contained n items after the 

length, colour, identity and spatial arrangement of the array elements had 

been surreptitiously altered. The same children, however, did not pass the 

standard two-array conservation test. Gelman and Gallistel (1972) argue 

that this is because pre-school children know that certain operations 

change the numerosity of an array while others do not, but do not know 

what effect the former group of operations have on the relations between 

arrays of unspecified numerosity. Consequently, it would be expected that 

identity would emerge before conservation. Because Piagetian theory pre

dicts that conservation and transitive reasoning for each concept emerge 

in synchrony, the Achenbach and Weisz (1975) finding that identity appears 

before transitive reasoning is consistent with, and not in opposition to, 

Piaget's claims. 



5.4.1 WEIGHr. 

5.4 EVIDENCE THAT ACQJISITICN CF TRANSITIVE 

INFERENCE PRECEDES ACCUIS ITICN CF CCNSERVATICN. 

Lovell and Ogilvie (1961) studied the order of acquisition of transitive 

reasoning for weight and conservation of weight, and found that 53% of 

those subjects who could not pass the conservation test did pass the 

transitive inference test. 

This study suffers from two major deficiencies which make interpretation 

difficult. Firstly, in the transitive inference task the third object in 

the three object series was not presented physically, but described verb

ally. Hence, the task required a transitive inference connecting a con

crete object (A) with a verbal symbol (C), linked by a second concrete 

object (B). The most likely effect of this mixed mode of presentation 

would be to increase the difficulty of the task. Secondly, when scoring 

the subject's protocol for the transitive inference task, the experiment

ers did not require the AB and BC pairings to be verbalised. This laxity 

in scoring would tend to reduce task difficulty. 

5. 4. 2 LENGI'H AND W':IGHr. 

Brainerd (1973) studied the order of acquisition of transitive reasoning 

and conservation, for toth length and weight, in two experiments. In the 

first experiment, two samples each of 60 subjects (mean ages of seven 

years seven months and seven years and five months) were used. All sub-
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jects received all tests. In one sample, Brainerd found that transitive 

reasoning emerged before conservation. In the other, Brainerd found that 

they emerged synchronously, for both length and weight. Because of this 

equivocal finding, Brainerd (1973) carried out a second experiment using 

the same materials and procedure as for the first, but employing three 

groups each of 60 subjects with mean ages of 5 years 4 months, 6 years 

4 months, and 7 years 10 months. In the second experiment he found that, 

for both length and weight, transitive reasoning emerged before conserv

ation. Brainerd (1973) interpreted these results as being damaging to 

Piaget's parallel development argument. Brainerd's conclusions may be 

questioned on methodological grounds because his transitive reasoning 

tasks employed the A.EQ.B.NE.C. paradigm of Youniss and Murray (1970) , 

in lieu of the standard procedure. Also, subject's responses were not 

scored on the basis of verbal justifications. 

5.4.3 LENGTH. 

In a later study, Brainerd (1974) examined the effects of training, and 

transfer of training, on transitive reasoning and conservation, for 

length. He found that transitive reasoning was easier to train than con

servation. He interpreted these results as infirrning the parallel devel

opment argument. However, again, his transitive reasoning tasks used one 

of the non-standard paradigms developed by Youniss and Murray (1970). 

Also, as with his earlier study, Brainerd did not require his subjects to 

provide verbal justifications. In addition to these departures from 

standard assessment procedures, interpretation is difficult because the 

results may simply reflect L~e relative effectiveness of the training 

technique used (verbal feedback) for transitive reasoning and conserv

ation. 
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As part of a series of experiments concerned with the relationship between 

geometric imagery and operational thought in children, Brainerd and Vanden 

Heuvel {1974) tested a group of 60 second grade schocl children {mean age 

of eight years two months) for presence of transitive reasoning and con

servation, for length. They found that 17 subjects passed the transitive 

reasoning test and failed conservation, but only two passed conservation · 

and failed transitive reasoning. These findings are consistent with those 

of Brainerd's {1973) earlier study. However, as the assessment proceed

ures used were the same in both studies, interpretation of the data suff

ers from the same difficulties as those noted above in connection with the 

1973 study. 

5.5 STJMMARY. 

In summary, none of the studies discussed above meet all of the assess

ment criteria given at the beginning of this chapter. 

The well known studies of Brainerd and his colleagues, which concluded 

that transitive reasoning precedes conservation in the development of 

each concept, present two difficulties. Firstly, the task used to assess 

the presence of transitive reasoning may offer subjects the opportunity 

to pass the tasks without making transitive inferences. Secondly, the 

studies did not score the subject's protocols. Both of these factors 

tend to reduce the difficulty of the transitive reasoning tasks. Hence, 

the studies may have been biased in favour of the conclusions they reached. 



The Smedslund and Mc.Mannis studies, which ooncluded that ronservation is 

achieved before transitive reasoning for each ooncept, also departed frcm 

standard assessment procedures. In particular, the tasks used to assess 

the presence of transitive reasoning were easier than the standard form. 

However, this did not bias those studies towards their eventual con

clusions. 

In oonclusion, the evidence does not favour the view of synchronous anerg

gence of oonservation and transitive reasoning. It is oonsidered that the 

evidence is mre oonsistent with the opinion that, in each ooncept, 

oonservation appears in the child;s thinking before transitive reasoning. 



CHAPTER 6. 

SEQUENTIAL IEVELOPMENT: EMPIRICAL 

EVIDENCE CONCERNING ORDER OF 

EMERGENCE OF CONSERVATION, ARITHMETICAL 

PROFICIENCY AND MEASUREMENT. 

6.1 PREDICTIONS. 

It was argued in Chapter 3 that the three sub-stage model yields the pre

dictions that:-

(a) the ability to conserve length emerges earlier than the ability 

to measure length; 

(b) the ability to conserve distance emerges earlier than the ability 

to measure distance; 

(c) the ability to perform the arithmetical operations of addition and 

subtraction emerges earlier than the ability to measure length or 

distance; 

(d) the ability to conserve number emerges at about the same time as the 

ability to perform the arithmetical operations of addition and sub

traction; 

(e) the ability to seriate length emerges earlier than the ability to 

make a transitive inference with respect to length; 
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(f) the ability to order discrete quantity emerges earlier than the abil

ity to make transitive inferences with respect to discrete quantity. 
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Developnental sequences of the kind referred to in the first four of these 

predictions should not be confused with causal chains in concept acquis

ition (Flavell (1971, and 1972) discusses this issue in detail). However, 

they do provide indirect evidence concerning the composition of concepts. 

Consequently, these predictions, together with those linking transitive 

reasoning and conservation, are central to the task of identifying the 

components of linear measurement. 

Considered together, the first four of these predictions link number conserv-

ervation and arithmetical proficiency with the various conservations and 

measurement. Diagrammatically, the linkages can be represented as in 

Figure 6.1. 

FIQJRE 6.1: 

SCHEMATIC REPRESENI'ATICN CF PREDICI'ED ORDER CF EMERGENCE CF ARITHMETICAL 

PROFICIENCY AND C!l'lSERilATICN CF NUMBER, LENGI'H AND DISTANCE. 

C!l'lSER'lATICN a:NSER'lATICN l>EASUREMENI' 

OF CF CF 

NUMBER LENGI'H IENGI'H 

I I I 
ARITHMETICAL C!l'lSERilATICN ~UREMENI' 

PROFICIENCY CF CF 

DISTANCE DISTANCE 

ORDER CF EMERGENCE. > 
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With this diagram in mind, the review of evidence concerning these pred

ictions will commence with a discussion of the developmental relationship 

between number conservation and arithmetical proficiency. It will then 

mdve onto length/distance conservation, length/distance measurement, and 

arithmetical proficiency. Finally, the evidence regarding the lower order 

abilities referred to in predictions (e) and (f) above, will be discussed. 

6. 2 THE OJNSERVATICN OF NUMBER AND 

ARITHMETICAL PROFICIENCY. 

6. 2 .l THE NUMBER OJNCEPT AND ARITHMETICAL OPERATIONS 

It will be recalled that Piagetian theory states that the conservation of 

number emerges in the child's reasoning as a consequence of the synthesis 

of the cognitive structures concerned with the logic of classes and relat

ions. Hence, conservation is seen as marking the integration of the ord

inal and cardinal aspects of number. The theory also asserts that an 

understanding of the arithmetical operations of addition and subtraction 

emerges as a consequence of that synthesis, and in concert with the con

servation of number. Hence, understanding of arithmetic is based upon 

a prior understanding of sane aspects of Boolean logic. 

6.2.2 DEFINING AN UNDERSTANDING OF ARITHMETIC. 

The principal difficulty in testing the prediction that the conservation 

of number and an understanding of arithmetic emerge contemporaneously is 

in deciding upon an acceptable definition of arithmetical understanding. 

It could be said that possession of an algorithmic-like ability to per-



form certain addition operations by counting sets of objects constitutes 

a level of understanding. It could also be argued that possession of the 

knowledge that the natural numbers can be composed in a variety of ways 

(e.g. (6)=(3+3)=(4+2)=(5+1) etc.) constitutes another, and, perhaps, 

higher level of understanding. Yet another level of understanding would 

require demonstration of the subject's knowledge of the associative, 

distributive, oommutative, etc. laws of arithmetic. 

6. 2. 3 E(]JIVOCAL FINDINGS OF STUDIES 

LINKING ClJNSERITATICN OF NUMBER 

AND ARITHMETIC. 
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This problem of settling upon a widely acceptable definition of under

standing of arithmetic is reflected in the results of studies that have 

sought to identify the developmental relationship between the conserv

ation of number and an understanding of arithmetic. Arrong the rrost 

influential studies undertaken in the last decade are those of Brainerd 

and his associates (Brainerd, 1973(a); 1973(b); 1974; Brainerd and 

Fraser, 1975; and Siegel, 197l(a); 197l(b); 1974), and those of Gelman 

and her colleagues (Gelman, 1972; Gelman and Gallistel, 1972; and Gelman 

and Tucker, 1975). In general, these studies concluded that children 

first develop an ability to count, then to perform addition and subtract

ion on sets of small numerosity, and that this provides a basis for the 

understanding of the cardinal aspects of number (including conservation 

of number). In contrast, other less recent studies (Beard, 1963; Dodwell, 

1960; 1961; and Hood, 1962) concluded that attainment of the conservation 

of number is required for an operational grasp of number in the child's 

thinking, and it is only at this stage that the child can have an under

standing of arithmetic. 
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The more recent studies can be criticised on the grounds that the tasks 

used do not tap the mental abilities for which they were designed. 

Brainerd's studies, for instance, used a transitive reasoning task invol

ving length relations to assess the child's understanding of ordinal 

number, and a one-to-one correspondence task to assess understanding of 

cardinal number. His measures of arithmetical proficiency ranged from 

kno.vledge of the first 16 number facts (i.e. n+=? and n-=? where n and m 

range from 1 to 4) in his 1973(a) study, to the conservation of number 

task in his 1975 study. Schaeffer (1980) found Brainerd's methods to be: 

"so seriously flawed logically, psychologically and experimentally as to 

be incapable of justifying his claims ••.. " (p.556). Of course, other 

commentators would take issue with Schaeffer's criticisms. 

Gelman's work has drawn less criticism. However, for reasons which need not be 

examined here in detail, it is possible to argue that her findings do not 

provide information on the developmental relationship between the conserv

ation of number and an understanding of arithmetic. What her studies do 

suggest is that very young children have (at least for small numerosities) 

the capacity to count, and to base number judgements of equivalence and 

operations of addition and subtraction upon that counting procedure. 

The older studies of Beard (1963), Dodwell (1960,1961), and Hood (1962) 

found, in general, that children who conserved number performed at a high 

level of proficiency on addition and subtraction tasks. The procedures 

used in these studies closely resemble Piagetian methods, in respect of 

both the tasks employed, and insistence upon verbal justifications. 



6.2.4 STUDIES LINKING THE 

IAI\S OF ARITHMETIC AND THE 

IAI\S OF BOOLEAN ALGEBRA.. 
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A different approach to the order of development of the conservation of 

number and an understanding of arithmetic, is to examine the development

al relationship between the laws of Boolean algebra, and the laws of 

arithmetic. This approach has led some critics to enter the lists agai

nst Piaget, on the grounds that class addition on the one hand, and nat

ural number addition on the other, are so vastly dissimilar that psychol

ogically, the latter could not possibily be built upon the former. Brain

erd (1973a, 1978), Langford (1978, 1981), MacNamara (1975) and Osherson 

(1974) are leading critics of this aspect of Piagetian theory. Since, 

in respect of this issue, they endorse a common view, only MacNamara's 

(1975) criticism, and Langford's (1981) evidence, will be discussed. 

MacNamara (1975) made the point that, for purposes of counting, and/or of 

applying arithmetic operations to the results of counting, any thing could 

be grouped with any other thing to form the set of things counted. Such 

things need share no common property, save the fact that the person doing 

the counting could discriminate one from the other. For example, the num

ber of people living in town A, and the number of motor vehicles regist

ered in town B, could be counted as one set. The only property that the 

elements of that set would share would be that they were picked out to be 

counted. Such a property is inherent of neither the people in town A, nor 

the motor vehicles in town B. In contrast, the members of a class - using 

that word in the same sense as Piaget - do share properties; properties 

inherent to the members of the class. It is Lhis distinction between sets 



and classes that gives rise to the radically different nature of the not

ion of a unit in a set, and the idea of a unit in a class. That, in turn, 

leads to the radically different outcomes of class and set operations. 

MacNamara (1975) provided the following illustration of some of these 

differences:-

"In some sense, 5 includes 4 and 1, animals includes 

dogs and cats, and animals includes dogs and animals 

other than dogs. But in what sense of include? Four 

and 1 together equal 5. There is nothing in 5 over 

and al:cve what is in 4 and 1 taken together. But dogs 

and cats together do not equal animals. There are 

other animals, such as horses and cows. So 5 does 

not include 4 and 1 in the same sense that animals 

includes dogs and cats. However, dogs and animals 

other than dogs, taken together, do equal animals 

in something like the sense that 4 plus 1 equals 5. 

Notice, however, that the relationship between dogs 

and animals other than dogs is quite different from 

that between 4 and l. The number "1" cannot be 

expressed as "numbers other than 4" or as "numbers 

less than 5 and other than 4". If the latter were 

its meaning, it would be 1 plus 2 plus 3, which 

equals 6, and when added to 4 would make 10, not 5. 

It is clear that the relationship between 4 and 1 is 

different from that between dogs and animals other 
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than d::Jgs. In short, the relationships among numbers 

are quite unlike those among hierarchically 

arranged classes." (MacNamara, 1975, p.427). 
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Langford (1981) supported that kind of theo~etical argument with empirical 

evidence from a longitudinal study of the development of children's under

standing of logical laws in arithmetic and Boolean algebra. He tested 

children's knowledge of eight logical laws and 15 arithmetic laws, meas

uring gains in knowledge over a two year period. Assessment procedures 

took account of the child's verbal justifications. The tasks used were 

appropriate behavioural equivalents of the operations being investigated. 

Analysis of the results included determination of statistical dependencies 

between items: for example, pass/fail patterns relating to the logical law 

AUB = BUA and its arithmetical counterpart A+B = B+A. 

In general terms, the results did not support the Piagetian view that laws 

in arithmetic appear later in development than corresponding laws in Bool

ean algebra. 

6. 2. 5 Sl.Mil1\RY CF DISOJSSICN: TilE CXNSERI!ATICN CF 

Nl:lmER AND l.I\1I.ER3TANDING CF ARITHMETIC. 

Piagetian theory prOITides the prediction that the ronservation of number 

and an understanding of arithmetic emerge in the child's thinking at 

about the same time. Empirical verification of that prediction is diff

icult, because of problems inherent in deriving a widely acceptable defin

ition of what ronstitutes an understanding of arithmetic. Consequently, 

the evidence is equivocal. 



Against this background, the most conservative policy would be to predict 

that, for sets of snall numerosity, the ability to count and carry out 

operations of addition and subtraction based upon counting, emerge in the 

child's thinking before the conservation of number; and, that the latter 

emerges before more complex forms of addition and subtraction. The ques

tion of whether these abilities imply an 'understanding of arithmetic' 

will be discussed in later Chapters. 

6. 3 THE Cl:liSERI!ATIQi! (F LENGI'H/DISTANCE, AND 

ME'J\SUREMENI' (F IENGrH/DISTANCE. 

6. 3.1 EMPIRICAL STUDIES OF LENGI'H/DISTANCE, 

CQi!SERI!ATICN AND ME'J\SUREMENI'. 
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There have been very few empirical studies concerned with the development

al relationships between conservation of length or distance, and measure

ment of length or distance. Most of the available empirical evidence is 

still due to Piaget et.al. (1960) • Most of the relevant studies that have 

been conducted were concerned with assessing the role played by measure

ment in the formation of conservation. In that context, measurement was 

meant to include counting, and referred to an algorithmic kind of knCM

ledge. 

Beilin (1969) found that children with an appropriate measurement algor

ithm did oot conserve number or area. Wohlwill and LCMe (1962) found that 

the ability to count did not ensure that the child would conserve number. 

Some of their subjects placed greater weight on perceptual cues, such as 

reM length, than on the cardinal value given by counting, when the two 

were in conflict. 
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On the other hand, Bearison (1969), Gruen(l965), Lifschitz and Langford 

(1977), and Wallach, Wall and Anderson (1967) all fotmd that training in 

counting and measuring was effective in producing conserving responses, 

and that the effect was durable. 

6. 3. 2 IIE!\'TITY, INVERS ICN AND mMPl".N>ATICN 

Wallach (1969) has argued that the three main verbal justifications (id-

entity, inversion and ccmpensation) given b¥ conservers, and accepted by 

Piagetians, as evidence of attainment of conservation, could not be re-

sponsible for producing conservation. Langford's (1978) arguments are 

essentially the same as Wallach's. In addition, he argued that oounting 

and rneas&nent provide an important means b¥ which children cone to con-

serve. 

The identity operation preserves a particular property (e.g. length) of 

an object, as distinct fra:n the object itself. The argument based on this 

notion of quantitative identity is that the property ooncerned must be the 

same before and after transformation, because nothing has been added or 

taken away. Wallach (1969) agreed that this is true of transformations 

that do not change the property in question, but insisted that the iden

tity argument oould not possibly be a sufficient basis for attainment of 

conservation. This is because there is nothing in the child's experience 

to tell him that the quantity in question does not change on the first 

transformation, or change back again on the second transformation. 



Similarly, with respect to inversion and compensation, Wallach (1969) 

agreed that the conserving child may carry out these operations but, she 

also argued, that they do not pr011ide sufficient mechanisms for attain-

ment of conservation. For eKample, addition during the first transfonn-

ation can be reversed by subtraction during the second transformation, 

but neither operation is quantity-conserving. Hence, sane reversible 
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operations are quantity-conserving, others are not. Consequently, Wallach 

(1969) argued that understanding of reversibility cannot be a sufficient 

mechanism for learning conservation. In connection with compensation, 

she pointed out:-

" ••••• This not only becomes fantastically complicated with 

any but the simplest containers, but also exact compensation 

by differences in width for differences in height cannot in 

any case be directly perceived." (Wallach,l969, p 192) • 

In addition to pr011iding these theoretical arguments against quantitative 

identity, inversion and compensation, she also summarised evidence from 

a number of studies dealing with different cons~rvations. All of those 

studies demonstrated, that mere possession of these operations does not 

ensure that children will conserve. 

6.3.3 ROLE CF MFAS\.lREMEN!' IN AC(:mSITICN CF <XJNSERI!ATICN. 
--------------------------~------· -

Langford (1978) argues that, given that these operations cannot be con-

sidered sufficient mechanisms for aoguisition of conservation, counting 

and measurement must be implicated. He proposed that the accretion of 

experience with counting beads and stones, and, measuring sticks and 

blocks, etc., under different ocnditions, leads to the disocvery of the 
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conservation of nurrber and length. This then leads, via generalization, 

to other conservations such as quantity, ~..eight and velum::. 

6.3 .4 SUMMA:RY OF DIS:USSION AND CON:::WSION. 

In sumnary, there is enpirical evidence that the possession of quantit

ative identity, inversion and conpensation operations does rot ensure 

conservation1 that the possession of coonting and rreasurement skills does 

not ensure conservation; but that training on coonting and rreasurel!Ent is 

effective in pronoting conservation responses. Additionally, there are 

sourrl theoretical argurrents against the proposal that quantitative identity, 

inversion and conpensation q:>erations pr01ride a sufficient mechanism for 

explaining the acquisition of conservation. There are intuitively appeal

ing argurrents for explaining conservation acquisition in terms of coonting 

and rreasurel!Ent skills. 

On the other hand, Piaget and Inhelder (1969) have insisted that conserv

ation is a logical, rot an infralogical attainrrent. That is, conservation 

is rot a rretter of ~~Easurement, but a logical conviction. In part, this 

assertion refers to their beliefs that: (a) conservers do rot, in reach

ing their answer, resort to infralogical operations: and, (b) that they 

produce the identity and reversibility argurrents only as after-the-event 

justifications for their answers. 
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The operational definition of linear measurement adopted in Chapter 2 was: 

'a person may be said to have a mature understanding of linear measurement 

if he demonstrates a capacity to use correctly arithmetical operations in

stead of carrying out physical measurement operations'. With that defin

ition in mind, and having regard to the above discussion, there seem to be 

insufficient grounds to warrant departing from the prediction that the de

velopnental sequence is the conservation of length (or distance) followed 

by measurement of length (or distance). 

6. 4 SERIATICN, ORDINATICN AND 

TRANSITIVE INFERENCE. 

The last two predictions drawn from the three sub-stage model to be dis

cussed in this chapter are concerned with seriation, ordination and tran

sitive reasoning. It was argued that all are necessary for linear meas

urement. Specifically, the predictions are that: (a) the ability to ser

iate length emerges earlier in the child's thinking than the ability to 

to make transitive inferences with respect to length; and, (b) the ability 

to order discrete quantity emerges earlier than the ability to make tran

sitive inferences with respect to discrete quantity. Hence, both predict

ions refer to __ the same developnental sequence of seriation-then-transitive 

reasoning, for the number and length concepts. 

Because any transitive inference is, itself, a kind of ordering, it would 

be illogical to assert that transitive reasoning emerges before seriation. 

However, it may be that they emerge synchronously. Consideration of this 

possibility again raises the performance/competence issue, because tran-
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sitive reasoning provided a major focus for that controversy. It will be 

recalled from the discussion of that issue in Chapter 4, that it was con

cluded that greater weight should be accorded those studies of transitive 

reasoning which used standard Piagetian assessment methods. With that in 

mind, a search of the literature failed to uncover any studies using stan

dard Piagetian procedures that found synchronous attainment of seriation 

and transitive reasoning for either the number or length concepts. 

Hence, it seems safe to agree with Klahr and Wallace (1976) and predict 

that seriation emerges before transitivity. 

6.5 SUMMARY. 

The predictions listed at the beginning of this Chapter were examined 

against the empirical evidence, and/or in the light of theoretical anal

ysis. In each case it was found that there were insufficient grounds to 

justify modifying those predictions. 



CHAPTER 7 

HORIZCNJ'AL IECALAGE: EMPIRICAL EVIDENCE 

CONCERNING ORDER CF EMERGENCE OF 

CORRESPOODING o::MPOOENTS OF THE 

NUMBER, LENGI'H AND DISTANCE CONCEPTS. 

7.1 PREDICTIONS. 
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It was argued in Chapter 3 that the horizontal decalage model is the basis 

for the predictions that, in the child's thinking:-

(a) the ability to conserve number emerges earlier than the ability 

to conserve length; 

(b) the ability to conserve length emerges at about the same time 

as the ability to conserve distance; 

(c) the ability to measure length emerges at about the same time 

as the ability to measure distance; 

(d) the ability to seriate length emerges earlier than an ability 

to nLnTierate. 



7. 2 EVIIENCE: THAT ACQJISITICN 

CF THE o::NSERilATICN CF 

NtM>ER PRECEIES ACQJISITICN 

CF THE o::NSERVATICN CF 

I..EN3l'H. 

A search of the literature failed to find a study that assessed number and 

length conservation within the same child, using standard Piagetian pro-

cedures, and containing a sufficiently large number of within-subject com

parisons to enable statistical treatment of data. There are, hc:Mever, a 

number of studies that provide indirect evidence. Bearison's (1969} study 

is an eKalllple. His experiment was concerned with the effects of training 

in certain counting-based measurement operations upon the child's ability 

to conserve continuous quantity, area, mass, number and length. On a 

seven-l!Dnth post-test, the percentage of subjects passing the number and/ 

or length conservation tests are given in Table 7 .1. 

TABLE 7.1: 

PERCEN'l'AGE CF StlBJECI'S PASSING NtM>ER AND IENGl'Fl aH;ERVATICN 'reSTS . 
EXPERIME:Nl'AL GRO:JP a:l'lTroL GRO:JP 

Number 75 38 

Length 63 19 

Because of difficulties (relative effectiveness of training on different 

tasks) in interpreting the effects of training on Piagetian tasks, even 

when, as in this case, standard Piagetian procedures and assessment forms 

are used, only tha figures for the control group should be considered. 
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Whilst those results indicate that the children found number conservation 

easier than length, two inter-related points should be noted. Firstly, 

only percentage pass/fail figures are provided, so that within-subject 

developmental patterns have to be inferred. Secondly, the control group 

contained only 16 subjects, too few to enable valid inferences to be drawn. 

For example, 38% of 16 subjects is six subjects: 19% of 16 subjects is 

three subjects; but the three subjects who passed length conservation may 

not have been among the six subjects who passed number conservation. 

Strauss and Ilan (1975) studied the effects of training ori length conserv

ation and speed concepts, and, in both pre-and post-testing of the control 

group, assessed number and length conservation using the standard Piagetian 

approach. On pre-testing, of the 10 subjects in the control group, nine 

conserved number while only three conserved length. On post-testing, all 

10 conserved number, but only four conserved length. Although within-sub

ject pass/fail patterns are not reported, the differences between the pro

portions passing number and length, on the pretest (.9 to .3), and the 

post-test (1.0 to .4), suggest a number-then-length development pattern. 

However, as the sample size was only 10 subjects, the results should be 

treated with caution. 

Goldsmidt (1967), in a correlation study linking 10 different types of 

conservation with age, sex, IQ, MA and vocabulary, also provides some evid

ence on number-length conservation development patterns. In addition to 

using standard Piagetian procedures, this study has the merit of a large 

sample size of 102 subjects. However, some 20% of the subjects were 

classified as emotionally disturbed: the effect of that disturbance on 
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cognitive functioning is unknown. The results provided the following 

difficulty level-ranking (least to most) for the 10 conservations assess

ed:: mass, number, continucus quantity, two-dimensional space, discontin

uous quantity, weight, area, length, three dimensional space and distance. 

Unfortunately, insufficient information was reported on the data transfonn

mations used in the ranking procedures to assess the statistical signif

icance of the separation between number and length conservation ranks. 

However, the data suggest that length conservation was much more difficult 

than number conservation. 

7.2.1 CONCLUSION. 

The little empirical evidence available suggests that the conservation of 

number is achieved before the conservation of length. 

7. 3 EVIDENCE THAT ill'lGI'H AND 

DISTANCE CONSERVATION EMERGE 

SYNOffiCNOUSLY. 

A search of the literature did not uncover a comprehensive study of with

in-subject developmental patterns of the emergence of length and distance 

conservation. The best available evidence comes fran the Goldsmidt (1967) 

study. In that study, it was found that distance conservation was more 

difficult than length conservation. However, the cautionary comments made 

above in connection with the Goldsmidt (1967) study extend with equal 

force to this particular finding. 



The Piagetian finding of no horizontal decalage between length and dist

ance conservation could seem counter-intuitive. It w::>uld seem harder to 

acquire the conservation of distance than the conservation of length. 

This is because length is an attribute of a single object, but distance 

is a relation between at least two objects. Moreover, the distance rel

ation changes, if the position of one of the objects changes, while 

length is transportable. 

A study by Schiff and Saarni (1976) replicated in most important re

spects, an earlier study by P iaget and Taponier. The experiment 

required adults and five and eight year old children to judge small diff

erences in lengths of objects perceptually. The objects were parallel, 

but their end points were offset. It was found that, when the differ

ences in length were small, both adults and children were not very good 

at judging relative length. For example, when the difference was + or -

1 rnm, less tha 10% of adults made correct judgements. As the differences 

in length increased, the five year old children became better at judging 

relative length than the adults. For example, when the difference was 

+ or - 5 rnms, less than 50% of the adults, but more than 70% of the five 

year old children, made correct judgments. In contrast, 100% of the 

adults conserved length, whilst !lOSt of the five year old children did 

not. Schiff and Saarni (1976) argued that these findings demonstrate 

that conservation reflects the interplay of perceptual and conceptual 

factors. These findings suggest that the conservation of length is not 

based on perceptually given information. They are consistent with Piaget's 

views concerning length/distance synchrony. 
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7.3.1 CONCLUSION. 

Against this background, it seems unnecessary to modify the prediction 

of approximately synchronous emergence of length and distance conservation. 

7 EVIIENCE TBAT LENGrH 

DISTANCE MEASUREMENI' EMERGE: 

SYNCHRONOIELY. 

The Piagetian claim that length and distance measurement would emerge 

synchronously has rot been tested empirically. However, if the claim of 

a synchronous emergence of length and distance conservation is accepted, 

then there would be no grounds for expecting asynchrony in the attainment 

of length and distance measurement. 

7.5 EVIDENCE TBAT ACCPISITION CF SERIATION 

PRECEDES AgpiSITION CF NUMERATION. 

Piagetian theory claims that seriation of length is mastered before the 

child can numerate. (ie. co-ordinate ordinal position and cardinal value). 

In the traditional Piagetian demonstration of this claim, the child is 

asked to seriate sticks of varying lengths to build a staircase. Then 

the child is asked to insert additional sticks into the series. A toy, 

such as a doll, is introduced, and the child asked to work out, starting 

at different posititons, how many stairs the doll v.nuld have to climb to 

reach a particular level. Piaget found that seriation was achieved 

before numeration in this task. Elkind (1964) obtained a similar result 

using equivalent materials and procedure. 
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7.5.1 CONCLUSION. 

There are no empirical grounds for departing frcm the Piagetian view that 

seriation emerges before numeration. 

7. 6 SUMMI>.RY OF CONCLUSIONS. 

The little empirical evidence available supports the Piagetian claims, 

however, it is evident that more work is necessary. 



PARI' III 

THE EMPIRICAL STUDY: 

DISCUSSIOO OF METHOOOLOGY 

M1J PRESENTATIOO OF RESULTS. 

A discussion of linear m2asurement was presented in Part I. That dis

cussion _analyzed the components of linear measurement and raised several 

questions which were examined empirically in the present research. The 

questions were concerned with identifying the necessary components of 

linear measurement, and describing its development in terms of the growth 

of those components. 

An examination in Part II of relevant literature yielded several pre

dictions regarding the growth of the components of linear measurement. 

In Part III, the empirical study is reported. In Chapter 8, the strategy 

represented in the design is discussed, and a number of hypotheses stat

ed. In Chapter 9, subjects involved, tasks used, and procedures adopted 

in the study are described. In Chapter 10, a statistical analysis of the 

results is given. 

~) 5 



CHAPTER a. 

THE STRATEGY OF THE S'I't1DY 

AND srATEMENT OF 

HYPOTHESES. 

8 .1 THE Sl'RATEl:;Y OF THE SIUDY. 

8 .1.1 QUESTIONS ASKED IN THE S'I't1DY. 
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The analysis presented in Chapter 2 pr017ided a list of corrponents assurred 

to be required fur a full understanding of iterative linear rreasurenent. 

Chapter 2 also provided the following operational definition of linear 

measurerrent: 'A child nay be said to have a nature understanding of lin

ear rreasurement, if he dem::>nstrates a capacity to use correctly arithrret

ical operations instead of carrying oot physical neasurerrent operations.' 

It would be possible fur a child who does not possess all of the assurred 

conponents to dem::>nstrate linear neasurenent, according to this definit

ion. This would be the case if the child sirlply resorted to previously 

learned rules for substituting arithmetical operations for physical rreas

ure~~ent operations. Such a child nay be said to kn::M heM to 'neasure' 

lergth but not kn::M why arithrretical operations may be substituted for 

physical rreasurerrent operations. Indeed, it is possible that some adults 

would not kn::M why arithmetical operations may be used in deriving lergth 

measure~~ents. With these issues in mind, several enpirical questions 

were then posed in Chapter 2. They may be SUI'IIllarised under three headings. 

(a) lltlich of the carponents are necessary for mature linear ~~easurement? 

(b) Is there an order in which those corrponents energe in the child's 

thinking? 
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(c) !mat is the relationship between the growth of linear measure~rent 

and the growth of those carponents'? 

Piagetian theory and associated empirical evidence were consulted in Part 

11 as a source of infcrrration regarding these questions. This yielded 

several predictions concerning the order of errergence of the carponents. 

8.1.2 TYPE OF DESIGN. 

The nature of these questions dictated the kind of study needed. 

The first question - which carponents are necessary - could be explored 

by two types of study: (a) a training study; and, (b) a carparative study. 

The other questions - which are concerned with the order in 'ftlich the 

abilities errerge - can only be answered by a particular kind of CCIJParat

ive study: one that examines the develop!rent of carponent abilities. 

8.1.3 TRAINING STUDY. 

A training study ~ld attempt to teach subjects 'ftlo could not ~reasure 

length, those abilities deemed necessary. Pre-tests ~ld identify missing 

ele~rents in each subject's repertoire, and instruction would fccus on dev

eklping those ele~rents. Post-tests would assess whether (presumably as a 

consequence of training) linear ~reasure~rent skills had e~rerged. A study 

of that kind ...ot.~ld present substantial problems of interpretation. In 

particular, failure to meet the criterion of linear ~reasurement could in

dicate that the skills taught to the subject were oot necessary carponents 

of linear ~reasurement. Alternatively, it could indicate only that the 

method of instruction used, 'itlilst adequate for conveying skill in using 

a particular algorithm, did not prOI!Dte understanding of the carponent 

abilities. 



8.1.4 COMPARATIVE STUDY. 

In contrast, a comparative study would set down a list of abilities ~lhich 

might be necessary for linear measurement. The study would then locate 

two groups of subjects: 

(a) those who oould measure; and 

(b) those ~o oould not. 

Subjects in both groups would then be tested to assess the presence or 

absence of the assumed underlying abilities. Comparisons between the two 

groups would yield information on which abilities appear to be necessary 

components of linear measurement. 

8 .1. 5 IEIIELOPMENTAL STUDY. 

'A developmental study differs from the comparative approach mainly in that 

subjects are tested at various ages. 

8.1.6 PREFERRED APPROACH. 

Because a developmental study has the potential to answer the two kinds 

of question asked in the present research, it was decided that it would 

be the most appropriate. Developmental studies can employ either cross

sectional, longitudinal or scalogram methods. 
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8.1.7 CROSS-SECTIONAL METHOD. 

The cross-sectional method yields average ages at which particular tasks 

are mastered. Although developmental progressions may be inferred, they 

are based on age-related differences between groups not on age-related 

changes within subjects. Moreover, when theoretical considerations sugg

est that a number of different though related capacities will emerge asyn

chronously, but within a comparatively brief interval of time, overlapping 

distributions of scores between groups pose difficulties in interpretation. 

Consequently, the cross-sectional rrethod can provide only indirect evid

ence of developmental progressions. 

8.1.8 LONGITUDINAL METHOD. 

On the other hand, the longitudinal rrethod has the potential to yield 

direct evidence of developmental progressions because its basic datum is 

within-subject change over time. Unfortunately, it also carries substant

.ial disadvantages >.-ith respect to time, cost, testing effects, selective 

survival and drop-out rate, and so on. 

8 .1. 9 SCALOORAM METl.lDD. 

A method that overcomes the disadvantages of the cross-sectional approach, 

and does not incur the time and cost penalties of the longitudinal proc

edure, is the scalogram technique. This technique involves administering 

a battery of tests to a group which includes subjects at varying develop

mental levels. Analysis of the resultant data focuses on within-subject 

patterns of passes and fails across the test battery, in order to deter-



mine whether the tasks form a scalable set. In this context, a scalable 

set is one in which passing a particular task presupposes passing all 

tasks of lower difficulty ranking. Provided that the tasks have const

ruct validity, dem::mstrating that t.f:ley form a scalable set is tantanount 

to demonstrating that the capabilities being assessed emerge sequentially 

in the course of developnent. 

s.1.10 crncr,usroo. 

Scalngram methods have been applied in a number of Piagetian-type 

100 

studies, especially noteworthy are those of Wohlwill (1960) and Kofsky 

(1966). As the lngic of those two studies closely resembles that of the 

present research, it was decided to adopt the scalcgram method. All 

experimental designs, however, have inherent disadvantages. Wohlwill 

(1960) identified the two main problems arising from use of scalngram 

techniques for cognitive development research. They result from the fact 

that the technique scales both the subject and the tasks on the same 

basis, namely, the pattern of passes and fails across the test battery. 

Firstly, inferences drawn from such an analysis can only be justified if 

the researcher is assured that the tasks represent an underlying psychol

ogical dimension. This requirement has been met in the present study by 

selecting tasks drawn from a body of theory that has an extensive empiric

al base, and by formulating a set of specific and testable hypotheses re

flecting the operation of a developmental process. Secondly, it is nec

essary for the researcher to be able to demonstrate a correlation between 

age (or some age-related factor, such as length of schooling) and 

scale-type. In the present study, this desideratum was met by applying 

multiple regression analysis to subjects' scores, using age and length of 

schooling as predictors. 
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8. 2 STATEMl'NT OF HYFOWESES. 

8.2.1 CCMroNENTS OF LINEAR MEI\SUREMENT. 

The research cited in Part ll has prcrluced highly equivocal findings. In 

addition, the errpirical research reported in this thesis was carried out 

essentially as a data gathering exerciae. In view of this, the hypotheses 

stated in the fbllowing paragraphs should be regarded as being only ten

tative in nature rather t-I-tan expressions of corrmitrnent. 

An hypothesis concerning the CO!!position of the linear n:easurement concept 

could refer to a long list of abilities of varying levels of corrplexity, 

or to a smaller list of higher-order abilities. An exanple of the lbrmer 

would be that presented in Olapter 2 in association with an analysis of 

linear n:easurement. It will be recalled that that list contained non

independent entries, because it also referred to the growth of linear 

measuren:ent. A smaller list of higher-order abilites ca.~ld be drawn up 

in order to avoid, or reduce, redurrlancy of that kind. 

\\hen fbrllUlsting an hypothesis for this study, it was decided to express 

the corrposition of linear n:easurement in terms of a list of higher-order 

abilities. The extent to which the entries on the list are independent 

is an open question. The hypothesis which follows is drawn from the anal

ysis given in Olapter 2, and takes account of the views of Piaget et al. 

(1960) on the developn:ent of linear measuren:ent. 

A subject dem:::mstrating a meture urrlerstanding of linear measurement 

will also dem::mstrate the lbllowing :-
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krowing t\"lat the nurrerosity of an array of objects is invariant 

urrler certain transformations (t11e conservation of nUllber) 1 

krowing that length is invariant urrler certain transformations 

(the conservation of lengt'l) ; 

krowing that distance is invariant urrler certain transformations 

(the conservation of distance) ; 

k!'DW'ing heM to make transitive inferences of ~uivalence and 

non-equivalence with respe:::t to discrete quantity; 

k!'DW'ing heM to make transitive inferences of ~ivalence and 

non-equivalence with respect to length; 

kmwing heM to carry out the arithlretical operations of addition 

and subtraction; 

krDWing heM to obtain a linear !!Easurement by counting iterations of 

a unit of length. 

In this context, a mature urrlerstanding of linear :n:easure:n:ent was cperat

ionally defined as: 'a person will be said to have a mature understanding 

of linear !!Easure:n:ent, if he deronstrates a capacity to use correctly 

arithlretical operations, instead of carrying out physical measure:n:ent 

operations. • 'nle ability to use a unit of length was operationally defin

ed as: 'a person will be said to be able to use a unit of length, if he 

can determine, hy a process of iteration, heM many of the given unit are 

contained in a given length, and (without reoorting to further unit iter

ation) can determine the effect of changing unit size'. The present study 

has only considered the case where the given length contains a whole 

nUllber of units. 



8. 2. 2 ORDER CF IEVELOPMENI' CF CDMPCNE:m'S 

CF LINEAR M8ASUREMENI'. 
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The literature reviewed in Part II only yields partial order predictions 

for the total set of number and length components. However full order

ings can be predicted for each domain separately. Therefore, the quest

ion of whether there is an order in which the components of linear measur

ement emerge in the child's thinking was examined by separating number 

from length components. Each domain includes both late-emerging components 

(e.g. arithmetical addition), and early-emerging abilities (e.g. counting). 

Piagetian theory and the associated empirical evidence suggest that, in 

each domain, development is orderly and predictable: that is, that there 

is a high probability that A will emerge before B; and that possession of 

B implies, with a high degree of probability, possession of A. This is 

the aspect of the study at which the scalogram analyses were directed. 

These analyses were carried out to test the following specific hypotheses:-

Order in the Growth of the 

Number Concept. 

HYPO'I'HBS IS 2 , 

The collection of components of the number concept form a scalable set. 

Order in the Growth of the 

Length Concept. 

Hypothesis 3. 

The collection of components of the length concept form a scalable set. 



8. 2. 3 EXPECI'ED PATTERN CF !EVELOPMENr. 

Piagetian theory and the associated empirical evidence also suggest that 

as well as a particular kind of order, there is a particular pattern of 

development exhibited by the oamponents of linear measurement. 

Predictable patterns of development are especially useful for gaining 

insight into the growth of a concept, and of the emergence of linkages 

between associated concepts. Since linear measurement involves knowledge 

contained in the number, length and distance concepts, and the co-ordin

ation of that knowledge, identification of particular development patt

erns is relevant to gaining an understanding of its growth. The first 
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two of the hypotheses which follow are concerned with development patterns 

for the number, length and distance concepts. The remainder are con

cerned with linkages l::etween these concepts. All hypotheses are drawn 

directly fran the conclusions reached in Part II. 

Growth of the 

Number Concept. 

Hypothesis 4. 

For the number concept, the order of emergence of component elements (from 

earliest to latest) will be the following:-



Rank 

1. 

2. 

3. 

4. 

5. 

6. 

• 

• 

Canrx:>nent 

Knowing how to use a one-to-one 

matching rule. 

Knowing the natural number order. 

Knowing how to count arrays of small 

numerosity, where to count implies the 

co-ordination of ordinal position and 

cardinal value {numeration). 
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Knowing how to add, when the objects are 

visible and small numbers are involved. 

Knowing how to subtract when the objects are 

visible and small numbers are involved. 

Knowing that the numerosity of an array 

of objects is invariant under certain 

transformations {the conservation of 

number). 

Knowing how to find the numerical diff

erence between two collections, when the 

objects are visible. 

Knowing how to make two collections 

equal in number, when the objects are 

visible. 

Knowing how to make transitive inferences of eqt. 

alence with respect to discontinuous 

quantity. 

Knowing how to make transitive infer

ences of non-equivalence with respect 

to discontinuous quantity. 



7. 

8. 

Gr<:Mth of the 

Length Concept. 

Hypothesis 5. 

lOll 

Knc:Ming how to add, when the objects are 

are not visible. 

Knc:Ming how to subtract, when the objects 

are not visible. 

Knowing how to co-ordinate addition and 

subtraction operations, when the objects 

are not visible. 

This ordering was derived mainly frcm the 
foll<:Ming p:~rtial orderings referred to in 
Part II:-
Brainerd (1973a, 1973b)- [2->3; 3->4]; 
Gelman and Gallistel (1978) - [1->2; 2->3; 
3->4; 3->5]; 
Siegel (197la,l97lb) [2->3; 3->4]; 
Smedslund (1963) - [4->6). 

For the length concept, the order of anergence of a:Jill!Xlflent elanents (fran 

earliest to latest) will be the foll<:Ming:-

Rank 

1. 

2. 

canponent 

Kn<:Ming that if length A is greater 

than length B, then A may be oonsidered 

as B concatenated with sane other length. 

Kn<:Ming that the length of an object can 

be altered only if scmething is added to, 

or taken away fran, it. 



3. 

4. 

5. 

6. 

7. 

8. 

9. 

Knowing that the length relation between 

two objects only changes when something 

is added to or taken ~ay from one, or 

other, or both, of the objects. 
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Knowing that the length relation between 

two objects does not change when the spat

ial relation is ~1anged. 

Knowing how to order objects according 

to their lengths (length seriation). 

Knowing that any length may be considered 

as a concatenation of arbitrarily selec

ted sub-lengths. 

Knowing that length is invariant ~mder 

certain transformations (the conservation 

of length). 

Knowing that the ordinal length relation 

between two objects is the same as the 

cardinal numerical relation between the 

parts comprising those objects. 

Knowing that length relations between 

objects can be deduced by applying trans

itive reasoning to the collections of 

unit parts. 

Knowing that transitive reasoning can be 

applied to relations of equivalence 

between lengths of objects. 

Knowing that transitive reasoning can be 

applied to relations of non-equivalence 

between lengths of objects. 



10. 

11. 

12. 
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Knowing haw to make quantitative estimates 

of length, in terms of the number of 

"unit" lengths. 

Knowing hew to iterate a unit part along 

an object. 

Knowing that if the length of the unit 

part is changed, the number yielded by 

unit iteration also changes. 

Knowing that the length relation between 

two objects can be determined by carry-

ing out a linear measurement operation, 

using unit iteration. 

Knowing that arithmetical addition of 

linear measurements may be used to 

determine the length of concatenated 

objects. 

Knowing how to add length relations (e.g. 

given the ordered length series 

a - b - c - d, what is the relation 

between lengths (a+c) and (b-K:l), where 

the increment in length is constant). 

This ordering was derived mainly frcro the 
following partial orderings referred to in 
Part II:-
Mc.Manis (1969)- [6->9]; 
Piaget et.al. (1960) - [1->2; 2->3; 3->4; 
1->4; 1->5; 4->6; 6->10; 6->11; 6->12; 
10->11; 11->12]; 
Smedslund (1963) - [6->9]. 



Growth of the 

Distance Concept. 

Hypot.l1esis 6. 
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For t.l1e distance concept, the order of emergence of component elements 

(from earliest to latest) will be the following:-

Rank 

1. 

2. 

3. 

4. 

Linkages between 

Concepts. 

Hypothesis 7. 

Corrponent 

Knowing how to compare indirectly two distances 

by a rreasurement operation not involving 

unit iteration. 

Knowing that distance is invariant urrler 

certain transformations (the conservation 

of distance) 

Knowing how to estimate distance between 

two points in tenns of the mmber of 

"unit" distances. 

Knowing how to measure distance between 

two points, using unit iteration. 

This ordering was derived by analogy 

with length. 

Knowing heM to seriate length emerges earlier than koowing how to n~ 

erate. (Elkind, 1964; Piaget, 1952). 
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Hypothesis 8. 

The conservation of number emerges earlier than the conservation of length. 

(Bearison, 1969; Goldsmidt, 1967; Piaget et.al, 1960; Strauss and Ilan, 

(1975) • 

Hypothesis 9. 

The conservation of length emerges at about the same time as the con

servation of distance. (Piaget et.al., 1960). 

8. 3 AGE, SEX AND LENGrH CF 

SalOJLING FACI'ORS. 

Subjects differing in age and in length of schooling were used in the 

study. Additionally, the male/female distribution in the sample was 

about 50:50. It was p::>ssible, therefore, to analyse subjects~ perform

ances according to age, length of schooling, and sex. 

However, the age range (63 to 78 months) of the subjects was relatively 

narrow. Given the magnitude of individual differences, it was unlikely 

that differences in performances between younger and older subjects, after 

removal of length of schooling (kindergarten to grade one) effects, would 

be significant. The situation with respect to the length of schooling 

factor was a little different, because the older subjects were likely to 

have had one rrore year of schooling. Consequently, it seemed reasonable 

to expect that, after removal of any age effect, subjects with more school 

experience would perform at a higher level than subjects with less. Re

garding the sex factor, as discussed by Goldsmidt (1967) , research 

has not generally revealed sex differences. 



9.1.1 AGE. 

CHAPTER 9. 

SUBJEcrs, TASKS AND 

PROCEOORE. 

9.1 sUBJEcrs. 

Because the research was aimed at identifying developmental sequences, 

and because it is known that there are wide individual differences with 

respect to age at which different capacities emerge (Goldsmidt, 1967), 

it was necessary to choose an age range within which floor and ceiling 

effects would be minimized. The evidence rep::>rted in Part II suggested 

that 63 to 78 months (five years three months to six years six months) 

would be appropriate. 
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Choosing that age range had certain ronsequences. Firstly, it was expected 

that, if the subjects were to be evenly distributed in the 63-78 months 

age range, then it would be almost certain that they would be spread over 

two classes, namely kindergarten and grade one. This was because local 

schools' admissions policies precluded the possibility that sufficient 

numbers of the younger subjects would be found in grade one to permit all 

subjects to be taken fran that class. Additionally, if all subjects had 

been drawn fran kindergarten, then it is possible that a substantial num

ber of the older subjects would have been repeating kindergarten, due to 
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lack of progress the previous year. Lack of progress in early school years 

is not necessarily a reflection of I .Q. Morecver, tasks such as the var

ious conservations correlate only moderately with IQ (Goldsmidt, 1967). 

However, it was decided not to risk importing into the study factors aff

ecting a perhaps small, rut unkna-m, proportion of subjects. 

Secondly, if the subjects were to drawn from two classes, this would 

present an opportunity to compare mean performance levels between classes 

so as to evaluate the length of schooling effect. Aithoucjh such matters 

were not of concern in relation to testing the main hypotheses given in 

Chapter B, it was considered that they might yield information relevant 

to educational practice. 

9 .l. 2 SEX. 

An attempt was made to equate numbers of males and females in each age by 

length of schooling group. Ho.vever, for practical reasons, it was not 

possible to obtain exactly equal numbers of each. 

9 .l. 3 SCHOOL 

OJRRICllLUM. 

If subjects had to be drawn fran different schools, it was considered 

important that there be no substantial difference between schools in 

emphasis upon use of materials such as cuisenaire rods, and Montessori 

counting spindles, and that equal emphasis given to traditional train-

ing in counting and memorising number facts. This was because a number of 

the assessment tasks resemble classroom problems set by teachers. 
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9.1.4 SA.~LING FACTORS. 

Pilot testing of tasks and procedures suggested that assessment of the 

capacities under investigation would require about two to three hours 

testing for each subject. This requirement posed difficulties for the Acr 

Schools Authority, as the ACT public primary schools are heavily utilized 

for routine teacher training and research. Similar difficulties obtain 

in gaining access to public primary schools in areas of New South Wales 

adjoining the ACT. Practical ccnsiderations dictated that subjects be 

drawn frcm private primary schools in the ACT. For statistical purposes, 

a minimum of 100 subjects was required. They were drawn frcm a number of 

different schools, because no single available school had sufficient en

rolments in kindergarten and grade one. 

A ccnsequence of using subjects fran private schools- is that the sample 

selected may not be representative of the general ACT population. How

ever, as the research was not intended to be a normative study, this was 

not ccnsidered to be an important factor. As the school population sam

pled contained a substantial number of migrant and refugee children, it 

was decided that teachers' rating of language understanding and perforrnr 

ance would be sought before including children in the study. 

9 .1. 5 S\M>li\.RY, 

100 subjects were drawn frcm four primary schools in the ACT. The schools 

were: one non-dencminational private institution, the AME school at West

on; and three Catholic convent schools, St.Thcmas More's at Campbell, St. 

Joseph's at O'Connor, and St.Brigid's at Dickson. The three Catholic sch-
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ools are located in affluent inner-city suburbs, and draw their students 

fran local households. The Am school tends to attract students fran all 

all parts of the ACI' and, in general, fran a highly affluent sector of the 

IX't:W-ation. All four schools follCMed the broad curricullll11 guidelines of 

the ACI' Schools Authority for the early primary years, and all appeared 

to give the same el'!llilasis to memorisation of basic number facts. The dis

trib.Jtion of subjects within age, sex and school grade categories across 

the four schools is given in Table 9.1. 

TABLE 9.1: SU3JECI' SAMPLE: Am, SEX AND LENGl'H CF SClfiXlLING OISTR!BlJI'ICN. 

AG; CATE!DRY !TOrAI.S 

SOIOOL IDUNCER* CLIER** 

KINIERG\Rl'EN KINIERG\Rl'EN GRAlE CNE 

WilE FEMArE WIIE FEMArE WIIE FEMArE 

IN£ 2 7 0 1 2 5 17 

10\MPBELL 2 9 4 2 3 1 21 

O~a:NNOR 14 9 5 9 3 5 45 

·nr~CN 5 2 4 0 2 4 17 

TOrAI.S 23 27 13 12 10 15 100 

TOrAI.S 50 25 25 00 

Notes: * Subjects were in the eight month age range, 63 to 70 months. 

** Subjects were in the eight month age range, 71 to 78 months. 
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9.2 TASKS. 

Full descriptions of the 34 tasks used in the study are given in Appendix 

1. The tasks were developed from the analysis given in Chapter 2, and 

were designed to produce data for testing the hypotheses specified in 

Chapter B. Where standard Piagetian forms were available they were used. 

Every attempt was made to keep the tasks as simple as possible. Addition

ally, a number of variants of the tasks were pilot-tested in order to de

termine the most effective forms of presentation. In all cases, simple 

forms of questioning were employed. Subjects' evaluative responses and 

verbal justifications were recorded. 

All tasks were scored as '1' for a pass and '0' for a fail. Pass and fail 

criteria for each task are specified in Appendix 1. Every affort was made 

to ensure that subjects did not guess their answers. Conservative pass/ 

fail criteria were adopted. 

Brief statements of the assessment objectives of the tasks are given in 

the following paragraphs. Number tasks are described first, then length, 

and then distance. In the interests of brevity in the ensuing dis

cussion, an acronym is given for each task. The first letter of the 

acronym identifies the task as relating to the number (N) , length (L) or 

distance (D) type. A second letter (R) before the hyphen indicates that 

the task was concerned with the relations between at least two lengths 

or distances, as distinct from an evaluation of the outcome of a trans

formation upon one length or distance. Subsequent letters refer to the 

operations involved in the task. For example, task LR--TI-NE was concer

ned with length; relations between length; transitive inferences; between 

non-equal lengths. 



9.2.1 NtMlER TASKS. 

N-(1--T0-1). This task assessed the child's ability to determine the 

numerical relation of equality between three collections of unspecified 

cardinal value, via the operation of one-to-one correspondence. 

[See Chapter 2, (A) (i)] 

N-QRD. The subjects had to de!ronstrate that they could form an order-

llb 

ed series of collections of objects of unequal but unspecified numeros

ities. That is, the subjects had to form a series of the following kind: 

a,b,c,d,e, where the relation between any two elements could be determined 

acc"..Jrately, but not in terms of specific numerosity. [(A) (ii)] 

N-cNr. This task assessed the subject's ability to count small arrays. 

The child had to demonstrate that he co-ordinated ordinal position and 

cardinal value while counting nine objects. [(A) (iii)] 

N-TI-EQ. The subjects had to make transitive inferences of equality of 

the following kind: a--b; b=c; a?c; where a,b and c represent disoontinuous 

quanti ties. [ (A) ( i v)] 

N-TI-NE. The subjects had to make transitive inferences of inequality 

of the following kind: a.R.b; b.R.c; a?c; where R represents greater 

than, and less than; and where a,b, and c represent discontinuous quant

i ties. [(A) ( iv)J 
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N-<XNS. This was the standard Piagetian number conservation task in-

volving two rows of objects with various relative length and density patt

erns. [(A) (v)] 

N-ADD-V. This task assessed the subject's ability to predict the results 

of addition operations when the two collections to be added together were 

visible. The subject was not permitted to put the collections together 

and count the number of objects in the combined collection; and nor was 

the subject permitted to use a pointer, such as 2 finger, to count one coll

ection and then to move onto the other. The subject was allowed to count 

out loud, or 'in his head'. Collections of up to 12 objects were used. 

[(A) (vi)] 

N-SUB-V. As for N-ADD-V, but in this task the operation involved was 

subtraction (e.g. work out haw many would be left if 'n' were taken 

away) • The subject was required to predict the outccrne. The collections 

were visible. [(A) (vi)] 

N-SOL-V. In this task, the subject had to find the numerical difference 

between two collections (a and b), and, by addition, or subtraction, make 

the collections equal (this is usually called solving for a difference). 

Collections a and b were visible. A third collection was available to 

draw objects from, or give objects to, in order to solve the problem. 

The subjects had to solve the problem in one rrove, and were not allowed to 

use pointers, such as fingers, during any counting operation. Collections 

of up to 14 objects were used. [(A) (vi)] 



N-BAL-V. The subjects had to solve problems having the follCMing form: 

if a>b then [a-(a-b/2)]=[b+(a-b/2)]. (That is, balance the two collect

ions by sharing the difference between them.) Collections a and b were 

visible. Subjects had to balance the two numerosities in one nove. 

Collections of up to 14 objects were used. [(A) (vi)] 

N-ADD-NV. This task assessed the subject's ability to determine the 

outcome of adding n objects to a collection of similar objects of kn=n 

numerosity, but where this latter collection is not visible to the sub

ject. Collections of up to 12 objects were used. The important differ

ence between this task and N-ADD-V is that, in the latter, the objects 

were visible to the subject. [(A) (vi)] 
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N-SUB-NV. As for N-ADD-NV, but in this task the operation involved was 

subtraction. [(A) (vi)] 

N-cYC-NV. This task assessed the subject's ability to work concurren-

tly on two collections, in a situation where adding to collection (a) 

meant subtracting from collection (b) - that is, the objects cycled from 

one collection to the other. The objects were not visible, except when in 

transit between collections. As the first step in the task, the subjects 

found, by counting, the total number of objects (12) in collections (a) 

and (b). [(A) (vi)] 
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9 • 2 • 2 IENGJ.'H TAS liS. 

LR-'BinA. This task assessed the subjece s tmderstanding that if length (a) 

is greater than length (b) then (a) may be considered as a concatenation of 

(b) and some other length (that is, a sense in which (b) is included in 

(a)). [See Chapter 2, (B) (i)] 

L-P/W. The subjects had to demonstrate an understanding that any length 

may be considered as a concatenation of arbitrarily selected sublengths -

that is, an understanding of part-whole relations of length. [(B) (ii)] 

Note: The next three tasks are all concerned with aspects of the con

servation of length. They differ, however, from the standard Piagetian 

conservation of length task insofar as the materials used, and questions 

asked, are directed at a particular explanation such as: 'nothing was 

added~; or 'it only changed its place, that doesn~t make it bigger~. 

The rationale for including them, in addition to the standard task, was 

given in the discussion in Chapter 2 on the components of linear measure

ment. 

L-INVAR-AOO. This task assessed the subject's ooderstanding that the 

length of an object is invariant unless scmething is added to or subtract

ed from it- setting aside expansion and contraction processes. [(B) (iii)] 

LR-INVAR-AOO. This taqk assessed the subject~s understanding that the 

length relation between two objects is invariant unless scmething is add

ed to, or subtracted fran, one of the objects - setting aside expansion 

and contraction processes. [(B) (iv)] 
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LR-INVAR-SP. The subjects were required to demonstrate an understanding 

that the length relation between two objects is invariant under transform

ations involving only change of spatial position. [(B) (v) J 

LR-QRD. This task assessed the subject's ability to order objects accord

ing to their lengths. [(B) (vi)] 

LR~I-EQ. This task assessed the subject's ability to make transitive in

ferences of e<;:'Jivalenoe with respect to length. [(B) (vii)] 

LR~I--NE. As for LR~I-EQ, but with respect to objects of unequal 

lengths, and, hence, relations of greater than and less than. [(B) (vii)] 

LR-c'ARD. The subjects were required to demonstrate an understanding 

that the ordinal length relation between two objects is the same as the 

cardinal numerical relation between the collection of parts comprising 

these objects (provided that the lengths of those parts are the same). 

[(B) (viii} l 

LR~I-c'ARD. The subjects had to deduce length relations between objects 

by applying transitive inference reasoning to the cardinal number relat

ions between the collections of unit parts. [(B) (ix)] 

L~S. This was the standard Piagetian conservation of length task, 

using two pieces of string of equal length. [(B) (x)) 

L-UNIT. This task required the subject to iterate a unit part along the 

length of an object. [(C) (i) l 
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L-EST. This task assessed the subject's ability to estimate length in 

terms of: "how many of (a) would you need to p.1t together to made a stick 

as long as this?" [(C) (i)] 

L-UNIT-cH. This task assessed the subject's ability to predict the direct

tion in which the number given by unit iteration would change, if the 

length of the unit IErt were to change. [(C) (ii)] 

LR-M-CARD. This task assessed the subject's ability to determine the length 

relation between two objects on the basis of a measurement operation 

involving unit iteration, and oomparisoo of cardinal numbers. (Notice 

that the difference between this task and LR~ is that, in the latter, 

the subject Cbes not have to measure the length of each object using unit 

iteration, because he is told which object has the greater number of lEI:ts. 

Additionally, in LR~ the length relatioo is expressed in terms of 

"=re" or "fewer" parts, not in terms of specific numbers of unit parts.) 

[(C) (iii)] 

L~ADD. This task assessed the subject's understanding that numbers rep

resenting lengths of objects may be added together, and that the resultant 

number represents the length of the two objects joined together. [(C) (iv) J 

L~. This task assessed the subject's ability to add lengths in the 

following (semi-algebraic) fashion: given an ordered series, a-b-e-d, where 

the increment in length is constant, what is the relation between the o:::m

bined lengths (a+c) and (b+d)? [ (C)(iv)] 
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9.2.3 DISTANCE TASKS. 

D--aJNS. This was the standard Piagetian conservation of distance task. 

TwJ variants were used. The first involved the c:nmparison of dist-

ances traversed along a path between two fixed points. The comparison was 

between a journey fran A to B, and one fran B to A. On the B to A journey 

a wall with a door was placed across the path. The second variant of the 

task involved the comparison of distances traversed between fixed points 

for: (a) a journey along a straight path; and (b) a journey along a non 

straight path. [(D) (i)] 

D-EST. This task assessed the subject~s ability to estimate distance be-

tween two objects in terms of : "how many of these small ones would you . . 

need to build a path across there?" [(E) (i)] 

DR-M. This task assessed the subject's ability to compare indirectly 

two distances by carrying out a measurement operation, but not necessarily 

using unit iteration. [(E) (i)] 

D-M The subject had to demonstrate an ability to measure the 

distance between two points using unit iteration. [(E) (ii)] 
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9.3 PROCEDURE. 

9. 3.1 ORDER CF ADI-liNISTPATICN. 

Because there is some similarity between certain tasks - for example be

tween L-EST (length estimation) and D-EST (distance estimation) - the ord

er of administration was arranged so as to minimise carryover effects. 

The following is a list of task sequences where carryover effects would be 

most expected, but undesired:-

• 

• 

• 

• 

N-T I -EQ with N-'l'I -NE 

N-'l'I -NE with N-QRD 

N-0RD- with N--a:JNS 

L-INVAR-AOO with LR-INVAR-SP 

LR-INVAR-SP with LR-IN'iTAR-:1\DD 

LR-0RD with L-AOO 

L-:1\DD with L-P /W 

L-L/W with LR-cARD 

LR-'l'I -EQ with LR-'l'I -NE 

LR-'l'I -EQ with N-'l'I -EQ 

LR-'l'I -EQ with N-'l'I -NE 

LR-'l'I-NE with N-'ri-EQ 

LR-'l'I -NE with N-'l'I -NE 

LR-'l'I -EQ with LR-'l'I -cARD 

LR-'l'I -NE with LR-'l'I -cARD 

LR-'l'I -cARD with N-'l'I-EQ 

LR-'l'I CARD with N-'ri-NE 

L-EST with D-FST 

L-DNIT-cH with LR-M-CARD 

IT,R--IVr-C'JIRn "nil T,-M-MlO\ with rn-M "nil nR-M\ 
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The follcwing is a list of sequences t.ffiich should go together, because the 

second task can be presented as an extension of the first:-

L-UNIT and L-UNIT-cH 

LR-M-CARD and L-M-ADD 

The order of administration was arranged so that any two tasks which 

should not be presented sequentially were separated by at least two other 

tasks. Because of the large number of tasks in the battery the whole 

sequence was divided into the follCMing four sections, with the order 0f 

administration within sections being as indicated below;-

Section 1 

N-cNT; N-ADD-V; N-SUB-V; N-BQL-V; N-!31\I.-V; N-AJXHiiV; N-BUB-NV: 

N-C'l.'C-NV; N-1-'1'0--l. 

Section 2. 

LR-M-CARD; L-M-ADD; LR-INV'AA-ADD; N-TI-NE; L-INV'AA-ADD; LR-Binl'.; 

N-0RD; LR-INVAR-BP; LR-0RD. 

Section 3. 

L-1\DD; LR-TI-NE; L-<XNS; D-O:JNS; L-P/W; LR-TI-cARD; D-M; DR-M; 

LR-TI-EQ. 

Section 4. 

D-EST; L-UNIT; L-UNIT-cH; N-TI-EQ; N-cx:NS; L-EST; LR-cARD. 
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9,3.2 TESTING SESSIONS. 

The experience gained from pilot testing the tasks suggested that each 

subject would take from two to three hours to complete the whole battery. 

With that in mind, it was decided to test each subject over four sessions, 

each of 30 to 45 minutes in duration: one for each of the sections given 

in the preceding paragraphs. 

All subjects were tested individually in a quiet ream, free from distract

ions, at the subject's school. Typically, the ream contained a small lo.v 

table, two chairs and a cupboard where the experimental materials were 

stored. All subjects in a class were tested individually, on Section 1 

tasks, then on Section 2 tasks, and so on. After all subjects in the 

class had completed all sessions, the subjects in the next class were then 

tested on Section 1 tasks, then Section 2 tasks, and so on. This approach 

meant that no subject was tested twice on any one day, and that there was 

usually an interval of a few days between sessions for each subject. 

Before commencing testing with subjects from each class, the experimenter 

was introduced to the class by the teacher, and spent sane time with the 

class, so that the subjects became familiar with the experimenter. The 

same procedure was adopted at all schools. Testing commenced in early 

April, 1980 and oontinued through to December, 1980. Subjects' ages were 

recorded to the nearest n:onth, as at date of testing on Session l. The 

longest period of elapsed time between commencement of testing on Session 

1 and completion of testing on Session 4, for any one subject, was 14 days. 

The same experimenter was used throughout the study. 



CHAPTER 10. 

RESULTS OF THE STUDY. 

10.1 SUMMARY ~TA. 

The responses (scored 1 or 0) of all subjects on all tasks are given in 

Appendix 2. The distributions of total scores for all subjects, and of 

the number of subjects passing each task, are given in Figures 10.1 and 

10.2, respectively. 

It is evident that both floor and ceiling effects have been avoided. 
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The distribution of total scores in Figure 10.1 shows only a minor floor 

effect. This is oonfirmed by the pattern of task difficulty shown in 

Figure 10.2. 

10.2 <:n-IPCNENTS OF LINEAR 

ME.!\SUREMENI'. 

Hypothesis 1 predicted that subjects who demonstrated an operationally 

defined level of understanding of linear measurement would also demon

strate that they possessed certain o~her knowledge assumed to underlie 

linear measurement. 

Table 10.1 shows the number of subjects passing the tasks designed to 

assess level of understanding of linear measurement (LR-M-CARD and 
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L-M-ADD), and the number passing the tasks assessing possession of the 

assumed underlying knowledge. The MCNemar test was used to compare the 

proportions passing each of the linear measurement tasks with the pro

portions passing each of the component tasks. The chi-squared co-effic

ients for each test are shown in Table 10.1. 

12? 

All of the component tasks, except N-SUB-NV, were significantly easier 

than either LR-M-cARD or L-M-ADD. This finding is consistent with Hypoth

esis 1. 

However, since only a small proportion of the subjects passed the twc lin

ear measurement tasks, it is possible that a substantial number of those 

subjects could have failed the easier tasks. This would not be consis

tent with Hypothesis 1. Table 10.2 shows the number of subjects who pass

ed both the linear measurement tasks and each of the easier tasks. 

The data in Table 10.2 give general statistical support for the hypoth

esis that the components are pre-requisites for linear measurement. All 

of the 13 subjects who passed L-M-ADD also passed LR-M-cARD. This con

firms their validity as indices of linear measurement. There is a high 

probability that a subject who passed LR-M-cARD and L-M-ADD will also 

have passed each of the easier tasks, in all but three cases. The except

ions are D--CCNS, LR-TI-'NE and N-SUB-NV. The reasons for these except

ions are discussed in the next Chapter. If they are excluded fran con

sideration, eight of the 14 subjects who passed LR-M-cARD also passed all 

of the component tasks. 
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It is ooncluded, that these findings are generally in agreement with Hypo

thesis 1. 

TABLE 10.1: NUMBER CF SUBJECTS PJ\SSING LINEAR M::ASUREM:Nr 

T<XETHER WITH 1\SSOC!ATED aU-BCPARED VALUES. 

TASK NO. CF SUBJECTS M::.NEMAR au- M::.NEMAR OU-BCPARED VALUES: 

WHO PA'>SED SCPARED VALUES: L-M-AilD AND TA'>KS LISTED -
LR-M-CARD AND IN <DLI:lMN 1. 

TA'>KS LISTED 

i I IN (l)L'[Ml' 1. 

I 
~ au- p au-

SCPARED n 

N-TI-EQ 100 84.01 <.001 85.01 <.001 

LR-TI-EQ 100 84.01 <.001 85.01 <.001 

N-a:NS 78 62.02 <.001 63.02 <.001 

L-a:NS 74 56.15 <.001 57.14 <.001 

N-AID-NIT 58 38.52 <.001 39.51 <.001 

L-uNIT 53 37.03 <.001 38.02 <.001 

L-UNIT-Q! 49 28.20 <.001 29.17 <.001 

I>-<niS 48 22.69 <.001 24.60 <.001 

N-TI-NE 41 20.48 <.001 2L44 <.001 

LR-TI-NE 29 5.94 <.025 7.03 <.01 

N-BllB-NV 21 1.89 N.S. 2.72 N.S. 

LR-M-CARD 14 - - - -
L-+1-AID 13 - - - -



TABIE 10.2: NlMlER CF stBJECl'S WIO PASSED B0'1'H THE LINEAR M1:AS~'r 

TASKS AND EACH CF THE HIG:l ORDER m!PCNENI' 

TASKS. 

TASK CF stBJECl'S mo % NlM3ER CF SUBJECI'S % 

PASSED LR-M-Cl>JID AND \lBO PASSED L-M-ADD 

rASKS LISTED IN AND TASKS LISTED IN 

....,.,. ........ , 1 * OJLtJ!IN 1 ** 

N-'l'I-EQ 14 100 13 100 

LR-'l'I-EQ 14 100 13 100 

N-aNS 14 100 13 100 

L-eiNS 13 93 12 92 

N-ArD-NIT 12 86 12 92 

L-tlNIT 14 100 12 92 

L-tlNIT-Ol 11 79 10 77 

D-aNS 7 50 7 54 

N-'l'I-NE 11 79 10 77 

LR-TI-NE 5 36 5 38 

N-BUB-NV 8 57 8 62 

LR u ]'"""' - - 13 100 

L-M-l\DD 13 93 - -
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Notes: * - Of the 14 subjects who passed LR-M-0\.RD the nttnbers who also 

passed each of the cnnp::>nent tasks are shown in Column 2. Hence, the 

maximum nttnber is 14. 

** - Of the 13 subjects who passed L-M-AilD the nttnbers who also 

passed each of the C:UIIfX>Bent tasks are shcl.m in Column 4. Hence, the 

maximum nttnber is 13. 



10. 3 ORIER IN T"rlE GROWl'H CF THE 

N!H3ER CDICEPT. 

Hypot.hesis 2 predicted that the =llection of number tasks would form 

a scalable set. This hjpothesis was tested by applying scalogram anal

ysis techniques to the response matrix given in Table 1 of Appendix 2. 

Guttman (Edwards, 1957) and Loevinger (1947) scaling indioes were cal

culated using a computer program written by the experimenter. 
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The Guttman analysis yielded a co-efficient of reproducibility of .91; a 

minimum marginal reproducibility of .7754; and a co-efficient of scalab

ility of .569 (this last statistic is also known as Green's index of 

consistency) • 

The co-efficient of reproducibility is a measure of the extent to which 

a subject's scale sCDre predicts that subject's scale pattern. A co-eff

icient of greater than .9 is usually considered to be neoessary to indic

ate a valid scale. The minimum marginal reproducibility is the minimum 

co-efficient of reproducibility that could have occured given the pro

portion of subjects passing and failing each item (in this case, task). 

The co-efficient of scalability takes account of the minimum marginal 

reproducibility and the co-efficient of reproducibility. As a composite 

measure it provides a !TOre reliable guide to the scaling characteristics 

of a set of iterns. A co-efficient of scalability of greater than .5 is 

required to indicate a unidimensional and cumulative set. 

In the present case, the computed co-efficient of reproducibility exceeds 

.9, and the co-efficient of scalability exceeds .5. Henoe, the Guttman 

analysis suggests that the collection of 13 number tasks is a scalable set. 
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However, the Guttman technique has been criticised (Green, 1954;1956) 

for relying too heavily on marginal row and column totals of passes and 

fails. In contrast, the Loevinger technique takes account of individual 

patterns of pass/fail across the whole test battery. In situations where 

the test battery contains a large number of items with a high probability 

of yielding tied scores - for both items and subjects - the Loevinger 

technique seems better suited (Kofsky, 1966; WOhlwill, 1960). For those 

reasons it seemed prudent, in the present case, to place greater emphasis 

on the Loevinger indices. 

The Loevinger analysis yielded an index of homogeneity of .570. The 

interpretation of this index is the same as for Green's index of consis

tency. It measures the extent to which the set is unidimensional and 

cumulative. Again, an index of greater than .5 is required to indicate 

a scalable set. It would appear, therefore, that, whether measured by 

Guttman or Loevinger techniques, the collection of tasks is a scalable 

set. 

Loevinger's technique also requires that a matrix of indices be calcu

lated. Each entry is a value of H(it), the "index of homogeneity of an 

item (i) with a test (t)". H(it) measures the extent to which the item 

contributes to overall test homogeneity. An item is regarded as perfect

ly homogeneous with a test if all subjects passing the item have higher 

scores on the test as a whole, than all of those failing the item. A 

perfectly homogeneous item would have a H(it) of l, but a H(it) of .7 is 

regarded (Kofsky, 1966) as acceptable. Table 10.3 sets out the H(it)'s 

computed for the number tasks. 
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TABLE 10.3: NtM3ER TASI<S: INIEX OF IJ:M:l(ENEITY OF AN ITEM WITH A 'lEST 

TASK * INI:EX OF HCMJGBNEITY. 

I N-Q\IT 1.0 

N-TI-EQ 1.0 

N(l-T0-1) .88 

' I N-ADD-V .95 

N-6UB-V .90 

N-oRD .78 

I 
N-aNS .85 

N-60L-V .90 

N-BAL-V .93 

N-l\.l)])-N\r .77 

N-TI-NV' .76 

N-6UB-NV' .99 

N-CYC-NV' .98 

Notes: * - Listed in order of increasing difficulty. 

Table 10.3 shows that all 13 H(it)#s have a discriminant efficiency of 

greater than • 7, and that 10 out of the 13 have a discriminant efficiency 

of greater than .B. In a::lllparison, Kofsky {1966) found that 2 out of her 

11 classification tasks had H(i t) values of less than • 7. Hence, the 

present H(it) values support the hypothesis that the rollection of num

ber tasks is a scalable set. 
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Loevinger's third statistic, H(ii), called "homogeneity of two items", 

deals with the relationship between two items in a perfectly homogeneous 

test. In such a test all those who pass the harder also pass the easier 

item. In contrast, the H(it) statistic only measures the extent to which 

those passing an item have higher scores on the test overall, than those 

failing the item. Hence, H(it) does not identify those who pass harder 

but fail easier items. For example, H(it) does not discriminate the sub

ject who passes the lOth ranked item and at least nine other items, but 

fails one or more of the items ranked 1 to 9, from the subject who achiev

es a score of 10 and passes only (but all of) the items ranked 1 to 10. 

To complete the analysis of homogeneity, therefore, it is necessary to 

inspect the matrix of H(ii)'s and find the proportion having values great

er than • 5, chance level of responding. Table 10.4 contains the 1113.trix of 

H(ii)'s for the number tasks. 

- Inspection of the 1113.trix of H (ii) values for the number tasks reveals 

that all but 8 of the 78 indices exceed .5 (chance level). That is, only 

10% of all item pairs show reversal or chance level responding. In ccmp

arison, Kofsky (1966) found that 36 of her 55 inter-item comparisons were 

less than .5. 

Hence, the impression of scalability is supported by the Guttman co-effic-

ient of reproducibility, Green's index of consistency, Loevinger's index 

of homogeneity of the test as a whole, Loevinger's index of homogeneity of 

an item with a test, and Loevinger's index of homogeneity of an item with 

an item. It is concluded, that technically the collection of number tasks 

is a scalable set. This provides statistical support for Hypothesis 2. 
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TABlE 10.4: NlMlER TASKS: INrEX OF H:M:lGENErrY OF AN ITEM WITH AN ITEM. 

N-TI-'EQ N-(1-T0-1) N-ADD-V N-Sl.i!-'li N-ORD N-rolS 

N-<NT 1.00 1.00 1.00 1.00 1.00 1.00 

N-TI-EQ 1.00 1.00 1.00 1.00 1.00 

N-(1-T0-1 .40 .38 .55 .91 

N-AID-V .77 .38 .52 

N-Srn-v 
' 

.34 .33 

N-oRD .49 

TABlE 10.4 cont. 

~-£CL-'IJ N'"'l3AI.t-'IJ N-AID-NV N-TI-NE N-£()3-NI/ N-Cl'C-NV' 

N-<NI' 1.00 1.00 1.00 1.00 1.00 1.00 

. N-TI-EQ 
i 

1.00 1.00 1.00 1.00 1.00 1.00 

N-(1-TO-l) .77 .75 .63 .83 1.00 1.00 

N-ADD-V 1.00 1.00 .89 .85 1.00 1.00 

N-£U3-V .91 1.00 .82 .74 1.00 1.00 

N-oRD .67 .66 .66 .76 .76 .69 



TABLE 10.4 cont. 

N-80L-V N-BAL-V N-ADD-NV N-TI--NE N-SUB--NV N-<::YC--NV 

N--<XNS .70 .69 .53 .89 1.00 1.00 

N-SOL-V .69 .43 .62 1.00 1.00 

N-BAL-V .59 .65 1.00 1.00 

N-'~ >W .36 1.00 1.00 

N-TI--NE .68 .68 

N-SUB-N\i I 1.00 

Note: Tasks are arranged left to right and top to tottan in order of 

increasing difficulty. 
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The fact that it is not perfectly scalable means that sane subjects exhib

ited reverse ordering. This could represent real heterogeneity in order 

of emergence or it might reflect error of measurement due, for example, to 

fluctuation in attention. 

10. 4 ORDER IN THE GROWrH CF THE LENGI'H o::NCEPT 

Hypothesis 3 predicted that the collection of 17 length tasks would form 

a scalable set. This prediction was also examined using scalogram analys

is. The following four statistics provide an indication that the collect

ion is a scalable set. 

Guttman's co-efficient of reproducibility= .89 

Guttman's minimal marginal reproducibility= .78 

Green's index of consistency = .48 

Loevinger's index of homogeneity= .58 
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It will be remembered from the discussion on the scalability of the number 

tasks that the above Guttman values, and Green's index, are very close to 

the levels required for the collection to be considered a scaled set. 

Also, the Loevinger index of homogeneity of .58 exceeds the .5 criterion 

level. Bearing in mind the arguments favouring the Loevinger technique, 

it is reasonable to conclude that there is substantial order in the coll

ection of length tasks. 

Table 10.5 sets out the computed H(it) values for the length tasks. 

It will be seen from Table 10.5 that all but 3 of the 17 H(it) values 'exceed 

.7, and that 2 of those 3 are among the easiest of the tasks (the easier 

the task the greater the effect on the computed H(it) value of a chance 

fail by a subject). This result confirms the impression of order given 

by the indices relating to overall test scalability. 

Table 10.6 sets out the matrix of computed H(ii) values for the length 

tasks. 

Examination of the matrix of inter-item comparisons reinforces the imp

ression of order, as all but 35 of the 136 pairings have H(ii)'s exceed

ing .5, chance level. Additionally, two items, L-P/W and LR--cARD, togeth

er account for 15 of the 35 chance level or reversal type indices. It is 

noteworthy that the H (it) values for these tasks were belcm • 7 and that 

these are among t..he easiest of the tasks in the length subset. These two 

factors suggest that the reversal rates for these two tasks are unduly 

affected by a small number of chance failures. 
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TABLE 10.5: IENGl'H TASKS: INIEX OF :BCM:X?ll:NEITY OF AN ITEM WITH A TEST. 

TASKS * INIEX OF :BCM:X?ll:NEITY 

LR-'l'I-EQ I 1.00 

' LR-<:ARD I .49 
' I 

LR-Bim ! .79 

L..P/W 
l 

.65 ' ! I 
I LR-!NIJAR-AID l .82 I ; 

LR-QRD 

I 
.76 

L-INVAR-AID .75 

I LR-INVAR-sP .82 

I L-a:NS .73 

L-EST I .83 

L-ONIT 

I 
.90 

L-ONIT-QI .81 I 

LR-'l'I -cARD .77 

LR-'l'I-NE .64 

LR-M:-CIUID .89 

L-M--AID .90 

L-AID • 81 

Note: * Listed in order of increasing difficulty. 
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TABIE 10.6: IENGI'H TASKS: - IN!EX OF e::M'JQ!:NEITY OF AN ITEM WITH AN ITEM. 

LR-<:ARD LR-fliJ L-P/W LR-IN\11\R LR-oRD L-IN\11\R LR-IN\11\R L-<XNS 
-Am -ADD --sP 

LR-TI-EC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

LR-<:ARD -.05 .47 I -.18 .39 -.25 -.35 .32 

LR-£inl'l. .36 .76 .51 .25 .46 .73 

L-P/W .22 .19 .17 .55 .32 

LR- .. .51 .42 .55 .55 
-AID 

LR-oRD .03 .40 .40 

L-INVAR .86 .32 
-AID 

LR-~~-~ .32 
-SP 
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TABIE 10.6 cont • 

. L-ffii L-UUT <.-ONIT-<l< :I-UMI T:;;::;;;;.,l ,..,..., . I.-MD 

LR-TI-EQ,l.OO I'·'' 1.00 1.00 1.00 I 1.00 I ,;;;--I 1.00 

ILR-cARD .11 11.00 -.02 ,-.04 1.00 1.00 1.00 11.00 < 

LR-Binl\ .64,.62 1.00 ILOO .31 1.00 1.00 ! 1.00 I 
L-P/W • 70 .69 .66 .31 1.00 1.00 1.00 1.00 

IL-INVAR I .52! .75 .73 .86 .54 1.00 1.00 l.OOi 

. I I -AID 

l 
1LR-QRD I 
I ' I ! 

1
L-INVAR 

1 
I-ADD I 

LR-INVARI 

j 
. 50 i . 79 

.64 1 .81 

I .66 i .85 

-SP Ill 

L-<::XH> • 52 I· 78 I L-EST 

IL-UNIT 
[ 

jL-UNIT
QI 

LR-TI 
-cARD 

LR-TI-NE 

I LR:-M-i:"ARI'l 

!L-M-ADD 

I .61 

.77 

.so 

.76 

.53 

.63 

.61 

.77 .81 1.00 

.58 .83 .64 

.60 .60 .73 

.60 .60 .73 

.48 .61 1.00 

.47 .49 1.00 

.51 .46 .58 

.67 .45 

.09 

I 

1.00 

.62 

.70 

.70 

1.00 

1.00 

.55 

.56 

.13 

1.00 

1.00 

.oo 

.23 

.23 

1.00 I 

.79 

1.00 

I 
.581 

.53 

.54 

Note: Tasks are listed left to right and top to J::ottan in order of in-

creasing difficulty. 
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On the basis of the Guttman, Green and Loevinger indices, it is roncluded 

that technically the collection of length tasks is a scaled set. This 

provides statistical support for Hypothesis 3. HCMever, sane subjects 

did exhibit reverse ordering. As with the number tasks, this rould re

present real heterogeneity in order of emergence, or it might reflect 

error of measurement. 

10. 5 EXPECI'ED PATTERN CF IEVELOPMENI' 

OF THE NUMBER OJNCEPT. 

The predicted (Hypothesis 4) and the observed orders of difficulty of all 

tasks in the number collection are given in Table 10.7. 

Inspection of Table 10.7 indicates that there is substantial agreement 

between the predicted and observed rankings. The degree of association 

between the two rankings was assessed by computing the Spearman rank corr

elation statistic Rs. (corrected for ties), which is .72. This is signif

icant at the .01 level (sample t = 3.4389, criterion t = 2.718 at alpha= 

.01 and 11 d.f. for a 1 tailed test). 

The three main differences between the rankings are the follCMing:-

(a) It was expected that llDre subjects would pass N-(1-To-1) (one-to-one 

correspondence) and N-QRD (number name order) than the N-<Nr (numeration) 

task, but the latter is ronsiderably easier. 

(b) N-QRD was expected to be easier than N-ADD-V and N-SUB-V (addition 

and subtraction when objects are visible), but they are of approximately 

equal difficulty. 
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TABlE 10.7: NUM3ER T1\SI'S: PREDICl'ED AND CBSERiiED OOJ::lE:R CF DIFFIOJLTY 

OF TASI'S. 

TASK No.of Ss.PASSING* CBSERiiED RANK PREDICl'ED RANK** 

N-<NI' 100 1. 2. 

N-TI-£Q 100 1 6 

N-(1-'1'0-1) 86 2 1 

N-AID-V 84 3 3 

N-sua-v l 81 4 3 

N-oRD 80 5 1 

N-a:NS 78 6 4 

N-8CL47 61 7 5 

N-BAL47 58 8 5 

N-MD-N\1 58 8 7 

N-TI-NE 41 9 6 

N-BtlB-NV 21 10 7 

N-cYC-NV 16 11 8 

Notes: * Maximum of 100. 

** These are the rankings predicted 1:¥ Hypothesis 4. 



(c) N-TI-EQ (transitive inferences concerning equivalence relations) 

was expected to E!!lerge synchronously with N-TI-NE, and to 

be substantially more difficult than N-ooNS (conservation), but it is 

one of the two easiest tasks. 
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It is concluded that the data generally support the pattern of development 

of the number concept predicted by Hypothesis 4. 

10.6 EXPECI'ED PA'ITER>l OF 

J:JEVELa>MENI' OF THE 

LENGI'H OJNCEPT. 

Table 10.8 sets out the predicted (Hypothesis 5) and observed orders of 

difficulty of all tasks in the length collection. 

Table 10.8 shows that there is substantial agreement between the two 

orders of difficulty. The Spearman rank correlation statistic Rs (corr

ected for ties) is .74. This is significant at the .01 level (sample 

t = 4.2686, criterion t = 2.602 at alpha = .01 and 15 d.f. for a 1 tailed 

test. 

The main differences between the observed and predicted orders of diff

iculty are the following:-

(a) It was expected that attainment of LR-cARD (ordinal length relation 

between objects is the same as the cardinal numerical relation between 

the collections of unit parts comprising those objects would be delayed 
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TABIE 10. 8: IENGm TASKS: PRE:DIC!'ED AI';"D CBSEJMID ORIER CF DIFFIClJLTY CF 

TASKS. 
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TASK No.of S!BJECI'S PASSING* CBSERVEO RANK PREDI Cl'ED RliN'K** 

LR-'rl-£Q 100 1 9 

LR-cARD 98 2 7 

LR..:Sinl\ 95 3 1 

L-P/W 94 4 5 

LR-IN\lAR...,l'\ll: 85 5 3 

LR-oRD 82 6 4 

L-IN\lAR-AID ao 7 2 

LR-IN\lAR-sP 74 8 3 

L-a:NS 74 8 6 

L-EST 56 9 10 

L-UNIT 53 10 11 

L-rniT-aJ 49 12 11 

LR-'ri-cARD 46 13 8 

LR-'ri-NE: 29 14 9 

LR-M-CARD 14 15 12 

L-M-ADD 13 16 12 

L-AID 10 17 13 

Notes: * Maximllll of 100. 

** These are the rankings predicted by Hypothesis 5. 
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until L-aNS (conservation of length) had emerged, yet the former is the 

second easiest of all length tasks. 

(b) L-TI-EQ (transitive inferences concerning equivalence relations) 

was also expected to emerge after L-aNS, and synchronously with L-TI-NE 

(transitive inferences involving non-equivalence relations), rot it is 

the easiest of all length tasks. 

It is conclt.rled that the data generally SUFPOrt the pattern of developnent 

of the length concept predicted cy- Hypothesis s. 

10. 7 EXPECI'ED PATI'ER'! CF 

J:EII'EL(l>ME:NT CF THE 

DISTANCE CCNCE:PT. 

Table 10.9 sets rut the order of difficulty for the distance tasks 

predicted 1::¥ Hypothesis 6, and that c:bserved in the stt.rly. 

TABlE 10.9: DISTANCE TASK'S - PREDICI'ED AND CBSERIJED CIRIER CF DIFFIClJLTY 

OF TASK'S. 

TASK No.of SU3JECI'S PASSING* CBSERIJED RANK PREDICI'ED RANK** 

DR-M 53 1 1 

D-aNS 48 2 2 

D-EST 34 3 3 

D-M 26 4 4 

Notes: * Maximum of 100. 

** These are the rankings predicted cy- Hypothesis 6. 
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It is apparent fran Table 9 that the predicted and observed rankings are 

the same at all four points in the sequence. Hence, it is concluded that 

the data support the pattern of development of the distance concept pre

dicted by Hypothesis 6. 

10.8.1 LENGrH SERIATION 

AND NUMERATION. 

10.8 LINKAffiS BETWEEN 

CnlCEPT3. 

Hypothesis 7 predicted that knowing how to seriate lengths would emerge 

earlier than knowing how to numerate. The former was tested by task LR

ORD, and the latter by N--rnr. The number of subjects passing LR-QRD was 

82, while all 100 subjects passed N-cNI'. The McNemar chi-squared value 

for the difference in proportions passing LR-QRD and N--{NI' is 16.06, 

which is significant at the .001 level and 1 d.f. Hence, N--{NI' is signif

icantly easier than LR-GRD. The data, therefore, do not support Hypoth

esis 7, they show that numeration precedes seriation of length. 

10.8.2 NUMBER AND LENGrH 

CnlSER\TATION. 

Hypothesis 8 predicted that the conservation of number would emerge earl

ier than the conservation of length. N-crns was passed by 78 subjects, 

and L-<XJNS by 74 subjects. The associated McNemar chi-squared oo-effic

of 0.50 is not significant (.05 level). Hence, the data do not support 

Hypothesis B. 
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The l<=M chi-squared cnefficient means that there is no difference between 

the proportions passing N-<XNS and L-<XNS. This rould be interpreted as 

indicating that N-<XNS and L-<XNS anerge synchronously. Alternatively, 

it rould indicate that both anerge at a much younger age and, hence, that 

the present data offer no evidence on their order of emergence. The 

number of subjects passing and failing each task is shown in Table 10.10. 

TABIE 10 .10: NUMBER CF SUBJECI.'S PASSING AND FAILING NlM3ER 

AND LENGrH a:NSERVATICN TASKS. 

NUMBER a:NSERVATICN 

No. of SUBJECTS 

PASS FAIL '!Ol'AL 

LENGI'H PASS 67 7 74 

a:NSER'JATICN 

FAIL 11 15 26 

'!Ol'AL 78 22 100 

Table 10.10 sha.ols that IIDSt of the subjects who passed one of the tasks 

also passed the other, and that IIDSt of those who failed one task also 

failed the other. Furthermore, of the 22 subjects who failed N-<XNS, 

seven passed L-<XNS, and of the 26 who failed L-<XNS, 11 passed N-<XNS. 

This is the pattern that would be expected for synchronous emergence. 

It is roncluded, therefore, that the data suggest that number and length 

ronservation emerge at about the same time. 



I 

10.8.3 IENGrH AND 

DISTANCE a:NSERVATICN. 

Hyp:>thesis 9 predicted that the conservation of length would anerge at 

aoout the same time as the conservation of distance. L-CCNS was passed 

by 74 subjects, but only 48 passed D-<XNS. The associated Mcflenar chi

squared coefficient of 15.63 is significant at alP'!a = ,001 and with 1 

d.f. Therefore, the data do not sur:p::>rt Hypothesis 9. 

The number of subjects passing and failing each task. is sllo.m in Table 

10.11. 

TABIE 10.11: Nl.M3ER CF SUlJECI'S PASSING AND FAILING I.ENGl'H AND 

DISTANCE a::NSERII'ATICN TASRS. 

LENGI'H a::NSER\TATICN 

No. of StllJECl'S 'rol'AL 

PASS FAIL 

DISTANCE PASS 42 6 48 

a:NSER\TATICN FAIL 32 20 52 

'rol'AL 74 26 100 

Table 10.11 st.:lws that of the 74 subjects who passed L~, 32 failed 

o-a::NS, and of the 48 who passed D-<I:N>, only six failed L-a:NS. This 
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is the pattern that would be expected for a length-then-distance sequence. 

It is =eluded that the data show that the conservation of length aner

ges before the conservation of distance. 



10. 9 THE EFFECI'S CF AG: 1 LENGl'H CF SOiOCUNG 

AND SEX. 

The age, length of s:::h:x:lling, and sex classifications of the sample of 

100 schoolchildren used in the study are given in Table 10.12. 

TABIE 10.12: GROUP O!ARACI'ERISTICS - No.CF St!lJECI'S BY GBOOP. 

AGE SOiOOL GRAlE 

Younger* Kindergarten 

Older** Kindergarten 

Year 1 

1Ql'AlS 

Notes: * 63 to 70 months. 

** 71 to 78 months. 

10.9.1 DIF.FERE:NCES ~ 

GP.OUP M'!'ANS • 

SEX 1m'AlS 

MrliE FE'.M!\LE 

23 27 50 

13 12 25 

10 15 25 

46 54 100 
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Table 10.13 sets out the m:ans and standard deviations of the total 

soores (nlmlber of p;.sses out of 34) for each of the six groups identified 

in Table 10.12. 



TABIE 10 .13: TOI'AL SCDRES CN ALL TASKS - ffiOUP l-EAN') AND STANJ:NID 

DEVIATICNS. 

GROUP l-EAN')* STANJ:NID No.of StBJECI'S 
DEVIATICNS 

No. Character~st~cs 

1. Younger-Kinder-Male 18.00 7.02 23 

2. Younger-Kinder-Female 16.70 6.36 27 

3. Older-Kinder-Male 18.77 6.22 13 

4. Older-Kinder-Female 22.17 3.87 12 

5. Older-Year !-Male 28.90 2.95 10 

6. Older-Year !-Female 27.67 4.14 15 

Note: * Maximum score = 34. 

10. 9.2 MULTIPIE REGRFSSICN ANALYSIS. 

ALL TASKS. 

A multiple regression analysis was carried out using the heirarchical 

met:OOd of deocmposi tion. Age, then length of scb:Joling, and then the 

interaction term, age 1::!f length of sclxloling, were taken into the re

gression equation. The results are summarised in Table 10.14. 
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Table 10.14 shows that the multiple correlation of performance on age 

and length of sclxloling is .60289. This is highly significant (P<.OOl). 

The table also shows that there is no significant age effect, but there 

is a significant (P<.Ol) length of sclxloling effect. There is no signif

icant interaction between age and length of sclxloling. 
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TAmE 10.14: ALL TASI'S - SlJM.Itl\RY CF MJLTIPJ:E REGRESSICN ANI\.LYSIS. 

VARIABlE MJLT.R. JH;Q:.:!MED BEI'A F-RATIO p 

~ 

ACE .54939 .30183 .24311 3.571 >.05 

IENIJI'H CF 

SOlOOLING .60289 .06164 • 39427 9.393 <.01 

Nl.M3ER m5KS. 

The results of the multiple regression analysis carried out on the number 

task scores are surmnarised in Table 10.15. 

TABlE 10 15• Nl.M3ER TASI'S SlJM.Itl\RY CF MJLTIPIE REGRESSICN ANI\.LYSIS. . . -
VARIABlE MJLT. R R-BQ:.:!MED BETA F-RATIO p 

CW'!N<E 

ACE .485 .235 .27024 3.826 >.05 

IENIJl'H CF 

SOlOOLING .516 .030 .27670 4.011 <.05 

The multiple correlation of perfonnanoe an age and length of schooling 

for the number tasks is .516. This is highly significant (P<.OOl). 

Table 10.15 shows that there is a significant (P<.05) length of school

ing effect, but ro significant age effect. 
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IENGI'H TASFS. 

Table 10.16 =ntains a sl.llliiTI&y of the multiple regression analysis carried 

out on the length task s=res. 

TABlE 10.16: IENGI'H TASFS - ST.M1!\RY OF m:LTIPIE ffiGRESSICN ANALYSIS. 

VARIABlE MJLT.R R-5CPARED BETA F-RATIO p 

CHANG: 

Affi .sss .309 .26779 4.329 <.OS 

IENGI'H CF 

SO!OOLING .602 .054 .37030 8.279 <.01 

The multiple =rrelation of performance on age and length of schooling 

for the length tasks is .602. This is highly significant (P<.OOl). 

Table 10.16 shows that both the age and length of sclDoling effects are 

significant (P<.OS and <.01, respectively). 

10.9.3 s~. 

The preceding analyses show that length of sci:Doling is a significant pre

dictor of performance on all tasks, on the nl.lllber tasks, and on the length 

tasks. In =ntrast, age is a significant predictor of performance only 

for the length tasks. This should be treated with caution, because age 

is not significant for all tasks - due to the added variance of total 

s=res. There is no evidence of a sex effect. 
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The size of the length of schooling effect, as COllPared with the age 

effect, is interesting. It irrplies that length of schooling is mre 

effective than age in prOilDting intellectual growth in the nunber and 

length ooncepts, within the age range used in the present study. This 

finding is releva'1t to pri.rrary schools' admissions policies concerning 

the rnini.rrum age at Which children llBY ccmnence school. Under present 

policies controlling entry to llBny Australian pri.rrary schools, a consid

erable nunber of children are delayed for periods of up to six 110nths in 

ccmrencing school, because their fifth birthday happens to fall after 

certain cut-off dates. Althoogh level of intellectual development and 

capacity to learn are only two of the llany factors that need to be con

sidered "When assessing a child's readiness for school, the findings of 

the present study suggest that there are llBny children Who are being 

delayed in ccmnencing school but Who are capable of making intellectual 

pr<J1ress through school experience. 

10.10 THE EFFEJ:T OF OCOROO CRITERIA ON THE FINDOOS. 

The preceding analysis is based on data derived from a clinical-style of 

assessment and scored using a strict pass/fail criterion. The criterion 

is strict because correct answers were required to all questions before 

a child was credited with possessing the krowledge the task was designed 

to tap. 

Additionally, because a clinical-style of assessment was used, there is 

considerable variation between tasks in the nunber and type of questions 

asked. It is possible, therefore, that the reserved differences in task 

difficulty might stem, to some extent, from the approach adcpted to 

scoring subjects' responses. This possibility is explored in A{:pendix 5. 
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Firstly, in the case of the nunt:>er tasks there is oo correlation between 

the number of questions asked and task difficulty (Spearman Rs = .37). 

For the len:;th tasks there is .a significant correlation (Spearman Rs = 

-.42), but in the q:>posite direction to that which might have been pre

dicted. In other words, the length data analysis reveals that tile fewer 

the nu!lber of questions asked the greater the difficulty of the task. 

Secondly, subjects~ responses were reanalysed using m:rlerate and weak 

scoring criteria (defined at paragraphs AS.2.1 and AS.2.2 of Appendix 5). 

The orders of difficulty ootained under each scoring procedure were com

pared using a Spearman rank correlation analysis. This indicated that 

for all tasks taken as one collection, for the collection gf nu!lber tasks, 

and for the collection of length tasks the correlations ootained under the 

strict, I!Dderate and weak criteria are high. The orderings ootained under 

the three scoring procedures are low, however, for the collection of 

distance tasks. This finding reflects the fact that the distance collect

ion contains only four tasks with similar pass rates. Hence the correl

ations are very sensitive to small fluctuations in pass rates. 

Thirdly, QJttman and loevinger scalogram analyses were also carried out 

on the data derived from the I!Dderate and weak scoring criteria. It 

was found that the effect of adopting less stringent criteria is to 

reduce marginally werall test hcm:Jgeneity, and to increase marginally 

the incidence of chance-level responding. However, the nu!lber and length 

task collections form scaled sets, whether assessment is based upon a 

strict, moderate or weak criterion. 
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10 .11 S'tMWl'i OF FINDIN:;S. 

'Ihe following is a sunrnary of the nain findings reported in this analysis. 

10.11.1 COMPONENTS OF 

LINEAR ME!\STJREMmT. 

Subjects who denonstrated a nature understanding of linear measurement 

also denonstrated the following:-

• Knowing that the numerosity of an array of objects is invariant 

under certain transfornations (the conservation of I'IUI!ber). 

Knowing that length is invariant under certain transfornations 

(the conservation of length). 

Knowing heM to nake transitive infererees of equivaleree and non

equivaleree, with respect to dis;:rete quantity. 

Kna.;ing heM to rrake transitive infererees of equivaleree, with 

respect to length. 

Knowing how to carry out numerical addition q;~erations. 

Knowing heM to obtain a linear measurement by counting 

iterations of a unit of length. 

10.11.2 ORDEn OF DEVEIDPMENT 

OF LINEAR MFASUREMENT. 

For I'IUI!ber and length the collections of C<JI!IlOI'Ient tasks form scalable 

sets. That is, devel.opment in the nullber and length concepts is orderly 

and predictable. 



10 .11. 3 E:XPEI:TED PATI'ERN 

OF OEI/ELOJ:MENT. 
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For nunt:Jer, lergth al'ld distance the order of errergence of the corrponents 

is, in general, that predicted by Piagetian theory, and the empirical 

evi(jence revie-wed in Part 11. There are exceptions, however. The nost 

notable is the emergence of the conservation of nunt:Jer before transitive 

inference concerned with non-equivalent relations between discrete quant

ities. This same lag in development between conservation and transitive 

inference also occurs with respect to length. Additionally, certain 

COil'pOflents of tlle lergth concept emerge earlier tllan corresponding com

ponents (e.g. conservation) of t'1e distance concept. 



PA."{[' IV. 

INTERPRETATICN CF RESULTS, DISaJSSICN 

AND CXNCLUSICNS. 
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Chapter 11 interprets the results of the statistical analysis described 

in Chapter 10, in the light of Piagetian theory and previous empirical 

evidence. That interpretation raises questions regarding the role played 

by short-term-memory-capacity limitations in forming the observed devel

opmental patterns. These questions are examined in Chapter 12, using an 

information processing analysis, and, in Chapter 13, by computer modelling. 

Additionally, Chapter 13 argues that a detailed process model of linear 

measurement needs to be developed. Chapter 13 also presents a number of 

production systems that constitute a beginning of that project. The 

conclusions reached in the study are then summarised in Chapter 14. 
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CHAPTER 11 

DISCUSSIOO CF RESULTS 

11.1 THE CCMPONENTS OF LINEAR MEASUREMENI'. 

The findings reported in Part III are generally consistent with toth the 

analysis of linear measurement presented in Chapter 2 and Piagetian 

theory. However, some aspects of these findings need closer examination. 

They are the results relating to the connections between linear measure

ment and the following:-

(a) arithmetical proficiency; 

(b) transitive inferences regarding length relations of non-equivalence; 

(c) the conservation of length and the conservation of distance; 

(d) the use of a 'unit' of length; 

(e) the estimation of length; 

(f) the lag in developnent between length and distance. 



11.1.1 ARITHMETICAL PROFICIENCY 

AND LINEAR MEASUREMEN:r. 

15b 

The operational definition of linear measurement employed in this study 

required the child to substitute arithmetical operations for measure

ment operations. That definition immediately raised the problem of 

defining arithmetical proficiency. In this study, arithmetical profic

iency was indicated by the ability to carry out addition and subtraction 

operations concerning objects that are not visible • These operations 

were assessed by tasks N-ADirNV and N-SUB-NV. The child could not pass 

those tasks simply by rearranging objects and counting. In order to pass 

them, he had to know an addition and a subtraction algorithm, and to be 

able to apply them to an internal representation of the problem. 

A reason for requiring that a child pass both tasks was that Piagetian 

theory argues that arithmetical proficiency marks the synthesis of the 

logical grouping structures and the elements of the numerical group struc

tures. The result of that synthesis is said to be numerical operations. 

The hallmarks of numerical operations are that they are reversible - im

plying addition and subtraction - and that they can be carried out on sym

bols - implying that the objects involved need not be visible to the 

child. 

It will be recalled that, in the present study, only 14 of the 100 sub

jects passed LR-M-CARD, and only 13 passed L-M-ADD, the tasks assessing 

mature linear measurement knowledge. Of the 14 who passed LR-M-CARD, 12 

passed N-ADD-NV, but only eight passed N-5UB-NV. Of the 13 who passed 
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I.r-M-ADD, 12 passed N-ADD-NV, but only eight passed N-SUB-NV. On that 

basis, it could not be said that arithmetical proficiency was a pre-requ

isite for linear measurement. 

~reover, 58 subjects passed N-ADD-NV, and 21 passed N-SUB-NV, yet only 

14 passed LR-M-cARD. All subjects who passed N-SUB-NV, also passed 

N-ADD-NV. Hence, there were 21 subjects who passed N-ADD-NV and N-SUB-NV. 

Of those 21, 13 failed Ll<-M-cARD. This \oK)!lld suggest that arithrretical 

proficiency is rot sufficient for linear rreasurerrent. That, ~ver, 

would be consistent with the Piagetian view, because that theory argues 

that linear measurement ability appears after the emergence of ari~~t

ical proficiency. 

In short, the findings suggest that there are sorre subjects who can neas

ure length but are oot proficient at arithmetic, and others who are pro

ficient at arith!retic but cannot rreasure length. The explanation prob

ably lies in the tasks used. Neither LR-M-cARD, nor I.r-M-ADD, require the 

subject to carry out a s..tbtraction operation. The forrrer requires a num

erical corrparison to be perforrred, and the latter, an addition operation. 

Hence, rot krowing ho.r to subtract \oK)!lld not constitute a barrier to pass

ing either of the tasks used to assess linear rreas..trerrent. This analysis, 

ho.rever, is not consistent with the Piagetian view, because that theory 

argues that llU!lber nastery - krowing ho.r to add and subtract - should 

precede attain!rent of linear rreasurerrent. The analysis would, though, be 

consistent with Gagne's (1968) corrponential theory, since that view of 

hunan learning argues that what is inpor~t in determining '1\f!ether a 

child can solve a particular cognitive problem is whether or not it has 

the corrponents or rules required, as distinct fran the concepts inplicated 

in the problem solution. It may be said, therefore, that fran Gagne's 
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viewpoint a better study would have included a length subtraction task 

analogous to L-M-ADD in the test battery. The cperational definition 

could then have been rrade l!Dre stringent, ~ requiring that subjects pass 

all three tasks to demonstrate possession of linear measurement ability. 

11.1.2 TRANSITIVE REhSONING 

AND LINEliR MEI-\SOREMENT. 

It was argued in Otapter 2, that transitive reasoning with respect to 

ntmber and length were involved in linear llli!asurement. Piagetian theory 

makes the 5al1li! cla :im. 

In the present study, five tasks were used to assess various kinds of 

transitive reasoning. Two were concerned with ntmber, N-TI-EO and 

N-TI-NE; and three with length, LR-TI-EO, LR-TI-NE and LR-TI-cARD. 

Distinctions were nade between transitive inferences con::erning equiv

alence (EQ) and ron-equivalence relations (NE), because it was oot ki'ICMJl 

'Whether both forms were inplicated in linear measurellli!nt. Piagetian 

theory is silent on that matter. LR-TI-cARD is a c:onposite task. 

It requires subjects to make transitive inferences regarding length 

relations. However, the premises are expressed in terms of the ntmber 

of unit parts contained in each cbject, oot in terms of whole lengths. 

It was fourrl that all subjects passed N-TI-EO and LR-TI-EO; 48 passed 

LR-TI-cARD; 41 passed N-TI-NE; 29 passed LR-TI-NE; and 14 and 13 passed 

the linear measurement tasks, LR-M-CARD and L-M-ADD, respectively. Hence, 

the transitive reasoning tasks were easier than the linear llli!asurement 

tasks. It might seem, therefore, that these data are consistent with the 

predictions emanating from theoretical analyses. 
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Ho.>~ever, of the 13 subjects who passed L-M-ADD, 10 passed LR-'l'I-c.ARD and 

10 passed N-'l'I--NE, but only 5 passed LR-'l'I--NE. These figures suggest that 

transitive inferences concerning number relations of equivalence and non

equivalence, and transitive inferences concerning length relations of 

equivalence, are implicated in linear measurement. They also suggest that 

transitive inferences concerning length relations of non-equivalence are 

not implicated. 

A closer examination of the operations involved in linear measurement 

indicates that this finding could have been anticipated. The transitive 

reasoning implicated in unit iteration is roncerned only with equivalence 

relations. The transitive reasoning implicated in the cxrnparison j:hase 

(length A with length B) may be concerned with non-equivalent relations, 

but with respect to number, not length. This is because at the stage that 

the cxrnparison is made the subject is working with numbers not lengths, 

or, at IroSt, only indirectly with lengths. 

11.1. 3 CCNSERilATICN AND 

LINEAR MEASUREMENl'. 

The conservation of number task (N--a::NS) was passed by 78 subjects, and 

the conservation of length task (L--a::NS) by 74 subjects. Only 14 subjects 

passed LR-M-CARD, and only 13 passed L-M-ADD. Moreover, of the 14 subjects 

who passed LR-M-CARD, 14 passed N--a::NS, and 13 passed L--<X:NS. Of the 13 

subjects who passed L-M-ADD, 13 passed N--a::NS, and 12 passed L--a::NS. 

Clearly, the linear measurement tasks were much harder than the ronserv

ation tasks. Similarly, 48 subjects passed distance ronservation (D--a::NS) 

but only 26 passed distance measurement (D-M). 
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These data provide strong support for the Piagetian view that number con

servation and length conservation are pre-requisites for linear measure

ment. Also, they are consistent with the findings of Beilin (1969) and 

Wolhwill and Lowe (1962), but inconsistent with the conclusions of Bear

ison (1969) and Gruen (1965) regarding conservation - measurement asyn

chrony. 

11.1.4 USE OF A UNIT 

IN LINEAR M!'J\SUREMENI'. 

Understanding of the notion of a unit in linear measurement was assessed 

using tasks, L-UNIT and L-UNIT--ai. They were passed by 53 and 49 subjects, 

respectively. Of the 14 subjects who passed LR-M-CARD, 14 passed L-UNIT, 

and 11 passed L-UNIT--ai. Of the 13 subjects who po.ssed L-M-ADD, 12 passed 

L-UNIT, and 10 passed L-UNIT--ai. These data clearly indicate that the 

ability to employ a unit, and understand its use, are pre-requisites for 

linear measurement. Again, that is consistent with Piagetian theory. 

Piagetian theory argues that a major difficulty confronting a child learn

ing linear measurement is acquiring a grasp of a unit of length. This is 

because, unlike with number, a unit of length is not perceptually given, 

but decided arbitrarily. This argument is well illustrated by considering 

the tasks, LR-cARD and L-UNIT. In the former, the child does not have 

to invent a unit of length when either assembling or disassembling the 

rods - the unit of length is the length of the plastic block. In that 

sense, it is analogous to a counting task, insofar as the unit is per

ceptually given. In the latter, on the other hand, the child has to use 
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the small 3crn strip .to invent, in an abstract sense, a unit to be su=-

essively imposed along the length of the longer strip. Intuitively, it 

seems that the latter ought to be rore difficult. As 98 subjects passed 

LR-c'ARD, and only 53 passed L-UNIT, the data support that view. 

It is also noteworthy that the conservation of length was passed by a 

significantly larger propxtion of subjects than passed L-UNIT. This is 

also oonsistent with the analysis presented in Chapter 2. That is, lin

ear measurement implies the selection and use of a unit, and the use of a 

unit implies the oonservation of length. 

11.1. 5 ESTIW>.TIO:I AND 

LINEAR MEASUREMENr. 
----~~---------

Length estimation seems to be substantially easier than linear measure-

ment. All 14 of the subjects who passed LR-M-CARD, also passed the leng

th estimation task (L-EST) , which was passed by 56 subjects. 

This finding should not be surprising, as the requirements of L-EST clos

ely resemble those of L-UNIT, the major exception being that the answer 

in the latter is precisely determined. The data also reveal this simil-

arity- 56 subjects passed L-EST, and 53 passed L-ONIT. This suggests 

that the skill of estimating how many of 'a~ there are in 'b~ develops 

hand-in-hand with the understanding of a unit of length. 



11.1.6 LENGTH AND 

DISTANCE. 

lb2 

It was argued in Part II that rorresp:mding corrq:x:ments in the length and 

distance roncepts, such as measurement by unit iteration, would emerge 

synchronously. The findings of the present study do not support that 

view. 

In the length roncept, 74 subjects passed L-<Xl'JS, 56 passed L--EST, and 

53 passed L-UNIT. The numbers of subjects passing the rorresponding 

component tasks in the distance roncept were: 48 passed D-<XNS; 34 passed 

D-EST; and 26 passed D-M (this is the distance task which rrost closely 

resembles L-UNIT) • Hence, the order of emergence is the same in t:oth 

concepts, but the length components emerge earlier than the rorresponding 

distance components. On that basis, developnental distinctions rould te 

made tetween the aCXJUisi tion of measurement of length, and the aCXJUisi t

ion of the measu~ent of distance. 

11. 2 INI'ER--<:nmE:criCN CF THE CXlMPCNENI'S 

OF LINEAR MEASUREMENr. 

On the basis of the preceding discussion, the kind of proficiency in sub

traction assessed by N-5UB-NV, and the ability to make transitive infer

ences roncerning length relations of non-equivalence and the ability to 

conserve distance, are not needed for linear measurement (of length) • 

However, the other high order components set out in Hypothesis 1 should 

be pre-requisites for linear measurement. 



163 

The most difficult of those other components was found to be transitive 

reasoning concerning non-equivalent numerical relations, which was ass

essed by N-TI-NE. This was passed by 41 subjects. That is, even though 

only 14 subjects passed LR-M-CARD, 41 subjects passed the most difficult 

corrp:ment task. Also, of the 100 subjects in the study, 13 passed all 

high-order camp::ment tasks, but failed LR-M-cARD and L-M-ADD. Moreover, 

all of those subjects were unable to commence LR-M-cARD and L-M-ADD. 

Hence, for those subjects, the difficulty was not in executing correctly a 

solution strategy. The evidence suggests that they didn't have a strategy 

to invoke when confronted with the requirements of LR-M-CARD and L-M-ADD. 

It would appear, therefore, that a prop:Jrtion of subjects possessed all 

the caupJuents, but could not measure length. That is, the OJ!lljX)nents 

may be necessary, but not sufficient, to ensure linear measurement. 

There appears to be a delay between acquiring the underlying components, 

and being able to demonstrate a mature understanding of linear measure

ment. Given the differences in propJrtions passing the most difficult 

corrpJnent task and the linear measurement tasks, the delay appears to be 

substantial. The question then arises: what is the cause of this delay? 

Clearly, it would not be expected that mere PJSSession of the listed cx:m

PJnents would be sufficient for linear measurement. They would need to 

be a::o-ordinated in sane fashion, even if only in the same sense that an 

algorithm orders operations in a CO!llpJtation. Hence, the delay might 

occur because, even though all the components are present, sane subjects 

might not have been taught how to apply them to the task of linear measu

rement. This supposition would be consistent with the finding that 

length of schooling is a predictor of a subject's overall score. 
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Alternatively, those subjects possessing the components, but not passing 

the linear measurement tasks, might have been instructed in linear meas

urement. However, those subjects might not have been able to co-ordinate 

the components, because of a structural limitation. An obvious structural 

limitation would be insufficient short term memory (STM) capacity. 

A linear measurement strategy might be permanently represented in long

term-memory (LTM), or it might be generated by other LTM structures to 

solve a particular problem. In the latter case, the strategy would be 

simply a transient assembly of knCMledge elements. In toth cases, S'IM 

would be involved in controlling the execution of the strategy. Hence, 

it could be expected that S'IM capacity limitations would be manifested 

in breakdCMns, or errors, in execution of the strategy. HCMever, in the 

present study, all 13 of the subjects who possessed all the components 

but failed the linear measurement tasks, could not even a:mmence those 

tasks. This suggests lack of an appropriate strategy, not faulty execut

ion. It also suggests that S'IM capacity limitations are not responsible 

for the observed delay between acquisition of the components and mastery 

of linear measurement. Moreover, since STM capacity increases with age, 

this conclusion is consistent with the finding in the present study that 

age is not a predictor of a subject~s overall performance. 

Piagetian theory would account for the observed delay by asserting that 

it OQ(incides with a re-organisation of cognitive structures that results 

in better co-ordination of underlying components. HCMever, such an a=

ount would not say why the assumed re-organisation should be a lengthy 

process. In the present case, one explanation might be that the child 
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needs to be exposed to a large nunber of, experiences of the appropriate 

kind before he can deduce the strategy that urilerlies linear I!Easurel!r2nt. 

l'brE!Oifer, the child might rot be able to benefit from these experiences 

until he has acquired all of the urilerlying catpOnents. This :Urplies 

that the <:bserved delay corresponds to an active period of learning. 

This would be consistent with the present finding that length of school

ing is a predictor of performance. 

11.3 THE IMPLICATIONS OF 'IRE 

OI:<DER OF~OF 

CCMI'ONENTS OF 'IRE 

NUMBER Nm LEN:>'IH CCN:El?TS. 

The finding that the nunber aril length tasks form scaled sets is signif

icant. It seems that maey of the catpOnents of the concepts are acquired 

sequentially. 

It would not be prudent, however, to claim that this sequential order is 

the only pattern that nunber aril length developi!Ent could exhibit. The 

earlier discussion of the possible causal links between oonservation, 

transitive reasoning, aril neasurenent hints of the difficulty of maintain

ing such a position. 

!obrE!Oifer, it should be borne in mind that nost of the CCilpOnents assessed 

in the present study are closely related to, if rot synonorrous with, 

skills taught to children in school. Jobst of the teaching in schools, 
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especially in arithmetic, is predicated on the assumption that such skills 

are hierarchically organised. Hence, the observed pattern of development 

in the nurrber and length ocncepts nay reflect oothing nnre than the curr

iculum sequence used in the schools the subjects were drawn from. The 

finding that length of schooling is a predictcr of overall performance 

is consistent with that suggestion, and would be predicted by Gagne's 

(1968) theory of learning. Of course, the curriculum sequence ITBY well 

reflect the logical contingencies between the catponents tested in this 

study. 

The order of errergence of the conponents does oot necessarily reflect the 

order in which t.hey began tc develop. It nay be that the development of 

carponent B ccmnences before, or in syn:::hrony with, the development of A. 

However, if B takes longer tc develop then it would emerge after A. In 

that case, it would be inaccurate tc claim a developmental dependency. 

Flavell (1971, 1972) has pointed out the distinctions between developmental 

sequences and developrrental dependencies at considerable length, and has 

proposed schemes for classifying observed deve1opmental patterns. How

ever, in the nain, those schemes require identification of the time at 

which each carponent started tc develop, and the time at which its dev

e1opment was coopleted. Given the difficulty in assessing cognitive 

skills, these requirements seem unrealistic. For exarrple, determining 

the time at which a subject gave his first behavioural evidence of rud

imentary counting skill, is prooably, :inpossible. 
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THE NUM3ER OJNCEPT. 
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The order of energence of the cx::mponents of the m.miber ooncept is indic-

ated by the numbers of subjects passing each task. Table 11.1 sl:laws 

these tasks in rank order, together with the Mdlemar chi-squared ooeffic.-

ients for adjacently ranked tasks. The full matrix of chi-squared ooeff

icients is given in Appendix 3. 

TABlE 11.1: NUM3ER TASKS: CEI-5~0 VALUES FOR ADJACENI'LY RANKED ITEM 

PAiffi. 

TASK NO.CF SUBJECI'S M:.NEW'.R Oii-5CPARED P. 

PASSING VALUES 

N~ 100 
0.00 NO 

N-TI-EQ 100 
12.07 <.001 

N-(1-T0-1) 86 
> 0.06 m 

N-ADD-V 84 
> 0.44 NO 

N-5UB-V 81 
> o.oo NO 

N-{)RJ) 80 
> 0.06 NO 

N-OJNS 78 
>10.24 <.005 

N-5CL-v 61 
> 0.24 m 

N-BAL-v 58 
> o.os NO 

N-ADD-NV 58 
> 6.56 <.025 

N-TI-NE 41 
>12.86 <.001 

N-5UB-NV 21 
> 3.20 NO 

N-cyc-NV 16 
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The chi-squared values in Table 11.1 and Appendix 3 suggest a stepped 

performance gradient - that is to say that there are abrupt changes to 

the slope of this gradient. As indicated in Table 11.2 and Figure 11.1, 

that gradient can be divided into five levels. 

TABLE 11.2: rEVErS CN THE P~ GRADIENI' FOR THE N\H!ER TASRS. 

LEVEL TASRS 

L 
I 

N-<:m' ' ' I 
N-TI--EQ 

2. N-(1-T0-1) 

N-i>JJD-'11 

N-sUB-v 

N-oRD I 
I 

I 
N-a:NS 

3. N-sCL-v 

N-ML-'17 

N-AJD-.N\1 

4. N-TI-NE 

5. N-BUB-N\1' 

N-cyc-N\1' 

All tasks lying on one level on the gradient are signficantly easier than 

those on the next higher level, and significantly rore difficult than 

those en the next lower level. However, all tasks en the same level Cb 

not differ significantly fran each other. This roes not necessarily mean 

that those tasks Cb not differ in difficulty since significance tests for 
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adjacent tasks in a sequence are of loo p::::wer. Indeed, the =nclusion 

that the =llection af number tasks is a scalable set implies that they 

are ordered. The extent of that ordering may be gauged by inspecting the 

relevant H(ii) indices. These indices for the number tasks were given in 

Table 10.4 in Chapter 10. An inspection of Table 10.4 reveals that the 

tasks on level 2 and on level 3 are poorly ordered. This confirms the 

conclusion drawn from the significance tests suggesting no gradient in 

these regions af the curve. On the other hand, in spite of the results 

of the significance tests, the tasks at level 5 are r:x=rfectly ordered. 

It may appear that a conclusion of a stepped performance gradient for the 

number task would contradict a conclusion that the collection af number tasks 

is a scaled set (i.e. the components emerge sequentially). However, 

abrupt changes in the slope of a performance gradient are not necessarily 

incompatible with a sequential order of development. An abrupt change 

in the slope of a performance gradient indicates a change in the rate of 

increase of component difficulty. If the change is large, it may be 

statistically significant. A sequential order of development is one in 

which the components appear in a fixed order, with the easier components 

emerging earlier than the more difficult. However, the increase in diff

iculty between adjacent components in a developmental sequence need not 

be statistically significant, though it may be. In the present case, as 

indicated in Figure 11.1, the levels on the performance gradient are not 

perfectly flat. Similarly, the collection of number tasks is not a perf

ectly scaled set. Hence, these two conclusions af a sequential order of 

development and a stepped r:x=rformance gradient are not incompatible. 
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Assessing the developmental implications of a stepped performance grad

ient can be COlplex. 'lhe form of the performance gradient for any set 

of tasks is a joint function of two factors, namely, t.he distribution 

of intellectual growth levels in the sa:rrple of subjects, and the distr ib

ution of task difficulty level (i.e. the level of intellectual growt.h 

required to pass each task). An apparently stepped performance function 

coold result from inhcm::geneities in the distribution of intellectual 

grCMth levels in the subject sanple, and/or from in.'lcm::geneities in the 

distribution of the difficulty levels of the tasks. 

In the present stud:{, there are two reasons for believing that it is un

likely that the stepped performance gradient is due to the subject sanple. 

They are the narrow age range of the subjects, and the finding that 

age is mt a predictor of performance. Each of these factors suggest 

hcm::geneity, mt inhcm::geneity, in the subject sarrple. 

Regarding the distribution of task difficulty levels, it is possible that 

the stepped perforrnence gradient results sinply from taking a small ran

dom sarrple of tasks from a larger pcpulation. The distribution of diffic

ulty levels in this pcpulation coold be continuoos. The apparent discon

tinuity coold be a consequence of sarrpling error. Alternatively, the 

distribution might be discontinuous. Piaget's stage theory of develop

ment asserts that this is the case. 

In any case it might be possible to explain the cbserved performance 

gradient by analyzing the information-processing dernends of the tasks. 

This analysis is given in O"lapters 12 and 13. 
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The d:Jserved pattern of development for the nurrber tasks contains certain 

other features which need comrrent. 

Transitive Reasoning. N-TI-El;) was significantly easier than N-TI-NE. It 

is usually assumed that t~e components assessed by these tasks emerge to

gether. However, Langford (1981) also found that the transitive law for 

the greater-than relation was l!Dre difficult than the transitive law for 

the equal-to relation, with respect to nurrber. 

Conservation and Transitive Reasoning. N-TI-El;l was significantly easier 

than N-CONS, but N-CONS was significantly easier than N-TI-NE. Addition

ally, the Ioevinger indices of horrcgeneity of an item with an item for 

N-crns and N-TI-El;), and for N-CrnS and N-TI-NE, are 1.00 and .89, respect

ively. That is, almost all subjects who passed N-TI-NE also passed N-CONS, 

and very few of the subjects who failed N-CONS passed N-TI-NE. Thus, 

there is a developmental asyn:::hrony between the carrponents assessed by 

N-crns and N-TI-NE. 

This finding is rot consistent with Piagetian theory, because the latter 

claims that, in each con:::ept d0!!13.in, conservation and transitive reasoning 

emerge in parallel. This finding is consistent, hoNever, with Gagne's 

(1968) crnponential theory, since the form of transitive reasoning i.nplied 

in theN-CONS task is N-TI-El;), rot N-TI-NE. Hence, lack of the ability 

assessed by N-TI-NE would rot be a barrier to a child passing N-CrnB. 

For the ability assessed by N-TI-NE to be i.nplicated, the conservation of 

nu!lber task would need to have included tests for the conservation of the 

numerical relations of greater-than and less-than. That CO!lltent aside, 

ha.rever, the present finding of a development asyn:::hrony between conserv

ation and transitive reasoning is consistent with the Smedslund (1963) 

and M::.Mannis (1969) data. 
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Arithmetical Proficiency. The components assessed by the more difficult 

arithmetical tasks (e.g. N-BOL-V, N-£AL and N-ADD-N\1') emerge after con

servation, rather than at the same time. The most difficult of these 

components (assessed by N-SUB-NV and N-cYC-NV) emerge much later than the 

three which follow the appearance of conservation. Moreover, there are no 

reversal-type responses in the data concerning Lhese five arithmetical 

tasks - that is, they are a perfectly ordered set. 

The reason for the delay in achieving the kind of arithmetical profic

iency assessed by N-BUB-NV is not apparent. It may be a reflection of 

the additional time needed for reversibility of the numerical operations 

implied in N-AJ:ll)-NV to be achieved. That kind of Piagetian argument, 

however, is not oonsistent, because the emergence of the conservation of 

number is also supposed to indicate that the property of reversibility 

has been achieved. The inconsistency stems from the finding that the 

conservation of number emerges much earlier than arithmetical proficiency, 

as assessed by N-BUB-NV. Hence, Piagetian theory does not offer a ready 

explanation. 

11. 5 THE ORIER CF EMERrnNCE 

CF CDMPCNENI'S CF THE 

LENGl'H CXNCEPT. 

The order of emergence of the components of the length ronoept is indic

ated by the number of subjects passing each task. Table 11.3 shows 

these tasks in rank order, together with the McNemar chi-squared ooeffic

ients for adjacently ranked tasks. The full IIBtrix of chi-squared ro-

efficients is given in Appendix 3. 
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TABLE 11.3: IENGl'H TASKS: OU-BCPARE;D VALUES FOR ADJACENI'LY RANKED ITEM 

PAIRS. 

TASK No.of SUBJECI'S M:.NEMI\R OII-BCPARE;D p 

PASSING VALUES 

I 
LR-'1'1-EQ 100 

> o.so NS 

LR-cARD 98 
> 0.57 m 

L-Bint; 95 
> o.oo m 

L-P/W 94 
> 3.76 m 

I 
LR-INVAR- 85 

ADD > 0.27 m 
LR-QRD 82 

> 0.03 NS 

L-INVAR- 80 
ADD > 2.50 NS 

LR-INVAR- 74 
SP > 0.04 m 

L-O:NS 74 
> 9.03 <.ODS 

~T 56 
> 0.19 m 

L-UNIT 53 
> 0.41 m 

L-UNIT-Ol: 49 
> o.oo m 

LR-'I'I- 48 
CARD >11.17 <.001 

LR-TI-NE 29 
> 5.94 <.025 

LR-M-CARD 14 
> o.oo m 

L-M-ADD 13 
> 0.36 m 

L-ADD 1n 



The chi-squared values in Table 11.3 and Appendix 3 suggest a stepped 

performance gradient. As indicated in Table 11.4 and Figure 11.2, that 

gradient can be divided into four levels. 

TABlE 11.4: lEVELS CN THE PERFORM.l\NC!: GRADIENI' FOR THE IENGil'H TASFS. 

lEVELS TASKS 

lA LR-TI-EQ 

LR-cARD 

L-Bin'> 

L-P/W 
- -- - - - - - -- ----- --

lB LR-INIIAR-Aro 

LR-QRD 

L-INITAR-Aro 

LR-INITAR-5P 

L-<XNS 

2. L-EST 

L-t:NIT 

L-t:NIT-QI 

LR-TI-cARD 

3. LR-TI-NE 

4. LR-M-CARD 

L-M-ADD 

L-AID 
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All tasks lying on one level on the gradient are significantly easier 

than those on the next higher level, and significantly more difficult 

than those on the next lower level. With the exception of the level 1 

tasks, all tasks on the same level do not differ significantly fran each 

other. In the case of the level 1 tasks, there is no significant diff

erence in difficulty between adjacent tasks (ranked in order of diff

iculty as in Table 11.3), but there are significant differences between 

tasks more widely separated in difficulty ranking. The tasks on level 1 

could be divided into two sul:rlevels, namely, level lA containing LR-TI-EQ, 

LR-cARD, L-:sinA, and L-P/W, and level 1B containing the remainder of the 

level 1 tasks. With that division, most of the tasks on level 1B are 

significantly (P<.05) more difficult than those on lA, but all tasks on 

the same sutrlevel do not differ significantly from each other. 

It will be recalled from the earlier discussion of the stepped perform

ance gradient observed for the number tasks that a chi-squared analysis 

of the prop::lrtions of subjects passing and failing tasks on the same 

difficulty level does not provide information on whether those tasks 

form a developmental sequence. The extent of any ordering of tasks on 

the same level can be assessed try inspecting the relevant H(ii) indices 

in Table 10.6 (Chapter 10). Table 10.6 shows that tasks on the same 

level are, in general, poorly ordered. This confirms the impression of 

a stepped performance gradient for the length tasks. 

There are other features of the stepped performance gradient for the 

length tasks which need oomment. 
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Transitive Reasoning. As for the corresponding nunber tasks, transitive 

inferences concerned wit..'1 e;~uivalent relations appear lll.lch earlier than 

those concerned with oon-€qllivalent relations. 

Conservation and Transitive Reasoning. Again there is a s:L'llilarity be

tween nunber and length with respect to the d:Jserved patterns concern

ing conservation and transitive reasoning. Specifically, the CCilpOnent 

assessed by LR-TI-EQ appears before that assessed by L-CONS, which app

ears before that assessed by LR-TI-NE. 

This finding is not consistent with Piagetian theory. However, as has 

been ooted previously in connection with the corresponding nunber tasks, 

this kind of asynchrony is consistent with Gagne~s (1968) theory. Clearly, 

that theory, with its enphasis upon c:a!pO!lential structure, is consistent 

with this finding, because the form of transitive reasoning inplied in 

L-COOS is that assessed by LR-TI-EQ, not that assessed by LR-TI-NE. 

11. 6 ORDERING !ICROSS 

NUMBER AND UN:;TH TASKS. 

There is a similarity between the d:Jserved patterns in the nunber and 

length concepts. In general, the tasks klcated at abrupt changes of 

slDpe on the performance gradient for the nurri:>er tasks were of major 

theoretical interest (e.g. N-CONS). That is also the case for the length 

tasks (e.g. L-CONS). It was seen in Chapter 10 (Hypothesis 8) that the 

conservation of nunber appears at aba:lt the same time as the conservation 

of length. It may be that these abrupt changes in slope of the perform

ance gradients reflect a re-organisation of the child's nunber and length 

concepts. 
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This suggestion stems fran two facts. Firstly, following the emergence 

of N-o::NS and L-o::NS, there is a considerable delay before the anergence 

of the next o:lll1p0nents in the length Cbnain. Secondly, those mnponents, 

L-EST and L-UNIT, implicate the numerical representation of lengt.ll. It 

may be that until that development occurs t.~e child's reasoning about 

length is restricted, because t.lle length concept is unconnected (or only 

lcosely connected) to the number concept. HCMever, the appearance of 

conservation for each Cbnain may enable a re-organisation which results 

in t.lte child's reasoning about length being augmented by a number-based, 

or number-connected form, of internal representation. 

The next major discontinuity (i.e. abrupt change in slope of the lengt.ll 

performance gradient) in the length danain occurs after the development 

of the capacity assessed by LR-TI-cARD. That task requires the child 

to reason transitively about non-equivalent relations between lengths on 

the basis of the number of unit parts contained in each object's length. 

It is noteworthy that this capacity implicates numerical forms of reason

ing about length relations, and that it emerges at about t.lle same ti~ 

as the capacity to reason transitively about relations of non-equivalence 

concerning number (assessed by N-TI-NE). Indeed, tha capacity assessed 

by N-TI-NE is implied in the capacity assessed by LR-TI-cARD. This 

suggests that further enhancement of the length concept by numerical 

forms of reasoning has occurred. 

Follc:Ming the emergence of the capacity assessed by LR-TI-cARD, there is 

another delay before the capacity assessed by LR-TI -NE emerges. The latter 

does not implicate numerical forms of reasoning about length. However, it 
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may be that there is a developmental dependency between LR-TI -cARD and 

LR-TI--NE, in that it is the possession of a capacity to reason ntnner

ically about length (LR-TI-cARD) which provides the 'proof' of the 

inference required in LR-TI--NE. Once that has been established the child 

no longer need depend upon numerical representations of length in order 

to make transitive inferences concerning non-equivalent length relations. 

In rrore general terms, these speculations about the developnental 

discontinuities in each concept domain, and the interconnection of those 

domains, imply that an advance in one concept domain prompts development 

in another. 

11.1 s~. 

The findings of the study suggest that the necessary oamponents of linear 

measurement are the following:-

• 

• 

• 

Knowing that the ntnnerosity of an array of objects is invariant 

under certain transformations (the conservation of number). 

Knowing that length is invariant under certain trans

formations (the conservation of length). 

Knowing how to make transitive inferences of equivalence and 

non-equivalence, with respect to discrete quantity. 

Knowing how to make transitive inferences of equivalence, with 

respect to length. 

Know how to carry out ntnnerical addition operations. 

Knowing how to obtain a linear measurement by counting iterations 

of a unit of length. 
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The data also :i.llply a delay between acquisition of these catp0!1ents and the 

emergence of an urrlerstanding of linear measurement. Piagetian theory 

would suggest that the delay is associated with a re-organisation of co::~

nitive structures that results in better ~rdination between the earn-

ponents .. 

Inspection of the development sequence in each concept danain reveals 

that each is characterised by discontinuities. These discontinuities 

coincide with the emergence of conponents of major theoretical interest, 

such as the conservation of length. Additionally, there are concordances 

between the discontinuities in the mmber and length dareins. Examination 

of these concordan::es suggests that the discontinuities occur during 

periods of developrrent when new forme of co-ordination are being estab

lished between the nurrber and length concepts. 

Some elements of the cbserved sequences of developltent in the nurrber and 

length concept danains are mt predicted by Piagetian theory. In part

icular, the asynchronies between conservation and transitive inferences 

of mn-equivalence are rot consistent with. the Piagetian view, though 

they are consistent with Gagne~s (1968) nodel of development. 



CHAPTER 12. 

AN INFORMI\.TICN-PROCESSING ANALYSIS OF CERl'AIN 

Nl.ffiER AND IENGI'H TASKS 1 USING PASCUAL

LECNE'S M-SPACE MJDEL. 

12.1 INTRDDOCTICN. 

182. 

It was seen in Chapter 11 that the number tasks could be organised into 

five levels of difficulty, and the length tasks into four levels of diff

iculty. It was argued that tasks at a similar level of difficulty should 

make similar information-processing demands. Hence, it was thought that 

an information-processing analysis of the tasks which fall on the bound

aries of the levels might reveal the reasons for the sharp changes in 

task difficulty that occur between levels. That analysis is given in 

this Chapter. 

The information-processing model used in the analysis was developed by 

Pascual-Leone (1970). Firstly, his model is described. Secondly, the 

application of his model to the present study is discussed. 
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12.2 PASOJAL-LEO':'ffi'S M-SPACE MJDEL. 

12. 2 .1 NATURE CF THE IDDEL. 

Pascual-Leone (1970) constructed a functional or process model of devel

opment, complementary to Piaget's structural model. The model predicts 

performance on a range of Piagetian and other cognitive tasks, given prior 

estimates of the values of two structural variables - namely, "M-space" 

and "field independence/dependence." 

An information-processing approach has been adopted by Pascual-Leone, and 

his main collaborator, Case (1972). Unlike sane other information-pro

cessing theorists, they don't write computer programs. Their level of 

analysis is that of "scheme". Their use of scheme is the same as that of 

Piaget. Pascual-Leone identified three categories of scheme: "figurat

ive", "operative", and "executive". 

12.2.2 FIGURATIVE SCHEMES, 

Figurative schemes are the internal representations of "declarative-

type knowledge" (e.g. properties of objects or relations between objects). 

They are proposed as active, functional units, akin toNeisser's (1967) 

pattern recognition devices. Case (1974) gave the following example of a 

figurative scheme:-



"If, for example, a subject looked at a photograph and asserted 

that it was a picture of his house, one would say that he did 

so by transfot:ming the raw sensory input into a network of per

ceptual features which were readily associated in his mind with a 

conceptual response of the order, 'that is my house.' More 

simply, one would say that he assimilated the sensory inp.tt to 

his (figurative) 'house scheme'.• 

12.2.3 CPERATIVE SOlEMES. 

Operative schemes are the internal representations af "procedural-type 

knowledge" (e.g. rules applied to properties of objects, or relations 

between objects). Both figurative schemes, and operative schemes are 

assumed to be active processes. Hence, the internal distinction between 

these two categories of scheme is blurred, they are distinguished by what 

they are used for. Operative schemes act on figurative schemes to generate 

new figurative schemes, but figurative schemes do not act on other fig

urative schemes. 

12.2.4 EXEOJTIVE SO!EME:. 

Executive schemes are proposed as the internal representations of the 

lists af rules and procedures to be assembled, sequenced and actioned 

in order to reach scrne desired goal. They represent strategies to be 

employed in solving a particular class of problem. They are also proposed 

as active processes, but they differ frCill operative schemes insofar as 

they dont directly act on figurative schemes to generate new figurative 

schemes. Their function is to direct and control solution processes UJ 

deciding upon and activating operative sch<>..me sequences. 
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ne argues that, in the course of problem solving, a per:son's 

thought is constituted by the assembly of schemes that are cur:rently act

ivated. It follows, therefore, that for: Pascual-Leone a principal limit

ation on thought processes is the number: of discrete schemes that may be 

activated and co-ordinated at any given time. He refers to this limit

ation as "M-space", which he defines as the set measure of Piaget's field 

of centration. Using the scheme construct as the fundamental unit of 

analysis, Pascual-Leone produced descriptions of various Piagetian tasks 

in terms of schemes invoked and a:rordinated in the subject's M-space. 

The following two examples may help to illustrate the approach:-

"Conservation of identity. The age at which this task 

is first passed is 5-6 years. In solving it, children 

appear to activate the following schemes: 

E(IS): An executive scheme representing the instructions 

('Does the ball still have the same amount of clay in it?') 

and directing an appropriate perceptual scan of the ball 

as it is transformed; 

F(l): A figurative scheme representing the fact that 

'nothing has been added or taken i!May'; 

F(2): A figurative scheme representing the rule a 

'if oothing is added or taken eMay, then the amount 

remains the same': 



If children do not co-ordinate the above schemes, they 

fail the task, apparently because they activate another 

scheme already present in their repertoires, which is 

misleading in the conservation situation. 

Call it 

F(M): A figurative scheme representing the rule that 

'things which lex>k bigger, contain more~. 

Conservation of equivalence. The age at which this 

task is first passed is 7-8 years. In solving it, 

children appear to activate the following schemes: 

E(IS): An executive scheme representing the instruct

ions ('Do the balls still have the same aJOOUnt of clay 

in them?~) and directing an appropriate perceptual 

scan of the ball as it is transform;.>d; 

F(l): A figurative scheme representing the fact that 

'nothing has been added to or taken OJHay from the 

ball which was transformed; 

F(2): A figurative scheme representing the rule that 

if rothing is added or taken OJHay, then the aJOOUnt 

remains the same; 

F(3): A figurative scheme representing the information 

that 'the balls originally were equal in aJOOUnt; ~ 

lHG 



If children do not co-ordinate the above schemes, they 

usually fail the task, apparently because they activate: 

F(M): A figurative scheme representing the rule that 

'things which look bigger contain 110re. '" 

(Case, 1972; pp340-341). 

(Note: To be consistent with Pascual-Leone's own classif

ication of schemes as figurative, operative and exec-

utive, schemes F(2) and F(M), in each of the above examples, 

should have been classified as operative.) 

12. 3 IEVELOPMENJ'AL 

PllOGRESSICNS. 
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These twc examples illustrate an important feature of Pascual-Leone's mod

el which is that the number of schemes children co-ordinate in approaching 

a task is related to the age at which they first succeed at the task. 

Pascual-Leone argued that a different value of M (for M-space) is assoc

iated with each substage of intellectual develoiJOOnt. The values he pro

posed are as follCMs:-



DEVELOPMENI'AL 

SUBSTACE 

Early Pre-operational 

Late Pre-operational 

Early concrete 

Late concrete 

Early formal 

Middle formal 

Late formal 

3-4 

5-6 

7-8 

9-10 

11-12 

13-14 

15 -16 

M1\.XIMUM VALUE CF M 

Ia + kl 

a+ 1 

a+ 2 

a+ 3 

a + 4 

a+ 5 

a+ 6 

a+7 

(Note: The constant (a} refers to the space required by the executive 

scheme. The numeral represents the maximum number (k) of additional 

schemes which can be co-ordinated.) 

lob 

According to Pascual-Leone, the M-space model provides a functional ex

planation of developnental progressions. For example, children usually 

fail conservation of amount until the age of 7-8 years, because their M

space, until that age, can only co-ordinate the concurrent activation of 

a + 2 schemes. However, the conservation task requires, under normal 

conditions, the concurrent activation of (a+ 3) schemes. 

12.4 INDIVIOOAL DIFFERENCES. 

Whilst Pascual-Leone sees M-space as a structural limitation on performance, 

his IOCldel also makes pr011ision for other variables. Specifically, he 

argued that the following conditions JmJSt be met before a task can be 

successfully handled:-
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(a) the child must possess the necessary schemes; 

(b) if necessary, the full capacity of the available M-space must be used; 

(c) the child must attend to other than only the perceptually dominant 

and potentially misleading cues; 

(d) if two ina:mpatible schemes are activated by the perceptual features 

of the problem, the child must resolve the conflict in favour of that 

scheme which is compatible with the greatest number of other assoc

iated schemes. 

The first of these conditions can be satisfied only by learning. The 

third is related to the perceptual/cognitive style variable known as field 

independence/dependence 0Nitkin, 1959). The fourth is identified with a 

component of Piaget's equilibration model. It reflects the operation of 

an individual differences variable, and is assumed to be highly correlated 

with the third factor. Hence, Pascual-Leone's model posits that perfonn

ance is determined by M-space and learning, and is moderated by field 

independence/dependence. 

12.4.1 LEARNING. 

Learning is defined as the acquisition of new schemes. This is accompli

shed in two ways:-

(a) by incorporation of new information into old schemes, in a manner 

analogous to Piaget's differentiation; and 

(b) by combining formerly discrete schemes into a new compound or 

superordinate scheme, in a manner analogous to Piaget's reciprocal 

assimilation. 

Both processes have the effect of increasing performance, because they 

lead to more efficient utilisation of M-space. 
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12.4.2 FIELD-INDEPENDENCE/DEPENDENCE. 

The field-independence/dependence factor is said to explain much of the 

variance attributable to individual differences. The field-independent 

subject is less likely to focus on perceptual cues inherent in the task 

situation, more likely to attend to the task instructions, and will tend to 

utilize available M-space fully. The field-dependent subject who is faced 

with two in=npatible schemes, one activated by perceptual cues and the 

other by task instructions, is more likely to resolve the conflict by act

ing on the former than the latter. He is also less likely to make full 

use of available M-space. 

12.5 EMPIRICAL E\TIDENCE FGR THE M-SPACE MJDEL. 

12.5.1 EARLY STUDIES. 

Pascual-Leone (1970) tested the model by teaching children a series of 

novel responses to particular visual stimuli. He then measured their 

capacity to activate these "S-R" connections concurrently when confronted 

with a CXllllpOund visual stimulus. The children's capacity to produce the 

appropriate compound response was taken as a measure of their M-space. 

It was found that there was a high correlation between that measure, and 

the M-space factor inferred from an analysis of Piagetian tasks previously 

passed by the children. The findings were interpreted as a demonstration 

that the M-space model had construct and predictive validity. Pascual

Leone and Smith (1969) reported another investigation of children's class

ification concepts, and presented findings consistent with the M-space 

model. 
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12.5.2 METHO!XlLo:::rCAL CRITICISM':. 

Pascual-Leone;s (1970) experimental methods, and techniques of ll'Odel eval

uation, have been severely criticised by Trabasso and Fellinger (1978) and 

Trabasso (1978) on two main grounds. Firstly, in Pascual-Leone;s (1970) 

study only same of the children were trained and tested on all the S-R 

associations1 the number of associations used increased with increasing 

group mean age; the S-R associations used varied in terms of inherent 

difficulty1 and the subject's stage of developnent (eg. pre-operational) 

was inferred tran the subject's age and not directly assessed. Secondly, 

Pascual-Leone did not use statistical goodness-of-fit tests to estimate 

the predictive accuracy of his ll'Odel, relying instead on visual inspection 

of averaged probability distributions. Also, Pascual-Leone did not corn

pare his model;s predictive accuracy against that achieved by a variety of 

other stochastic (eg. Monte Carlo) models. Pascual-Leone (1978) defended 

his approach on the grounds that he was concerned with testing a 'general' 

not a 'local' model, and that his critics' objections were appropriate 

only in the context of verifying empirically local models of limited scope. 

12.5.3 ~R STUDIES. 

The studies by Case {1972, 1972a) appear to have overcame most of the 

methodological objections raised against Pascual-Leone;s experimental 

work, and have yielded findings consistent with the M-space ll'Odel. In the 

1972 study, a more carefully designed version of the Pascual-Leone and 

Smith (1969) compound stimulus task was employed. Dale;s {1975) large

scale investigation of performance on Piaget;s bending rods task also 

produced findings consistent with the M-space model. 



Pascual-Leone's approach has attracted the attention of educational psy

chologists, because it offers a bridging construct between developnental 

theory (i.e. Piaget's) and human learning theory (i.e. Gagne's). 

"There are clear parallels between Gagne's rrodel and 

Pascual-Leone's. Gagne's model interprets cognitive 

problems as requiring the application of certain 

rules. Pascual-Leone's rrodel interprets these same 

problems as requiring the co-ordination of certain 

schemes (sane of which are merely the internal 

representation of such rules) •••••••••• Both theorists 

agree that children will not be able to sclve cognitive 

problems if they do not have the appropriate inter

nalized items of information in their repertoires. 

Both theorists agree that children can often be enabled 

to sclve such problems if they are helped to acquire the 

appropriate repertoires, ie. if they are instructed. 

The difference lies in the role assigned to development. 

For Gagne, the process of development is largely one 

of cumulative learning, within the confines of what

ever (unspecified) limitations may be imposed by 

'growth' ••••••• For Pascual-Leone, the process of dev

elopment is equally one of cumulative learning. H~ 

ever, one of the major limitations imposed by 'growth' 

is explicitly defined. It is a limitation in mental 

space." (Case, 1972, p356). 



12.6 M-SPACE ANALYSIS CF CERTAIN 

NlM!ER TASFS. 

12.6.1 SELEcriCN CF NlM!ER TASFS •• 
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Tasks fran each level of the performance gradient for the nunber =11-

ection were selected for analysis. The tasks chosen were those of least 

and IIOSt difficulty, within a level. Hence, the IIOSt difficult task 

fran level n, was o:mpared with the least difficult task fran level nH. 

Tasks =u1d have been randomly sampled fran each level. HCMever, the 

sampling method used was lllJre =nservative because it selected pairs of 

tasks adjacent in rank order of difficulty, and adjacent in ungrouped 

order of difficulty. The tasks selected fran the nunber =1lection (see 

Table ll. 2 in Chapter ll) are shown in Table 12.1. 

TABLE 12.1: NUMBER TASFS SELECI'ED FORM-SPACE ANALYSIS. 

lEVEL MET DIFFICULT lEVEL !EAST DIFFICULT 

N TASK AT lEVEL N N+l TASK AT lEVEL N+ 1 

1 ~I-£Q 2 N-(1 TO 1) 

2 N-<XNS 3 ~OL-V 

3 N-ADD-NV 4 ~I-NE 

4 N-TI-NE* 5 · N-6lB-NV 

Note: * - N-TI-NE is the only task at level 4. 
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The selected tasks were analyzed into co-activated executive, figurative, 

and operative schemes, in aco:>rdance with Pascual-Leone~ s !OCJdel. That 

analysis is set out below. Entries for executive schemes are not given, 

because all tasks must activate an executive scheme representing the 

task instructions, and the solution strategy used. To show an executive 

scheme entry against all tasks would be redundant. Figurative schemes 

are prefixed by an 'F', and operative schemes by an '0'. 

12.6.2 SPECIFI~ICN CF THE 

OH\.Cl'IVATED SamMES FOR THE 

SELECI'ED NUMBER TASRS. 

N-TI-EQ~ 

Fl: A figurative scheme representing the fact that there 

are as many blue blocks as there are red blocks. 

F2: A figurative scheme representing the fact that there 

are as many red blocks as there are green blocks. 

01: An operative scheme representing the canonical form 

of the transitive law: if (a.R.b) and (b.R.c), then 

(a.R.c) • 

N-(1-'¥'--ll 

F3: Every l::ol t had a nut, or every l::ol t had a washer , 

or e<~ery nut had a washer, depending on the question 

being considered. 



F4: Every nut had a b:>lt, or every washer had a b:>lt, 

or every washer had a nut, depending on the question 

being considered. 

02: If every 'a~ had a 'b~, and every 'b' had an 'a', then 

the number of a~s equals the numbers of b's: where 

N-<X!'IS, 

a and b refer to l::ol t and nut, 

or l::ol t and washer, or nut and washer, depending on 

the question being considered. 

CN Phase 1: 

FS: Nothing has been added or taken away frcm the line 

of blocks which was transformed. 

03: If nothing has been added or taken away fran the 

line of blocks, then it contains the same number 

of blocks that it did before transformation. 

The application of 03 to FS leads to the creation of F6:-

On Phase 2. 

F6: The line of blocks which was transformed contains the 

same number of blocks as it did before the transformation 

occurred. 

F7: The two lines of blocks originally contained the same 

number of blocks. 

04: The numerical relation between two collections of objects 

is invariant unless the numerosity of one rollection is 

changed. 
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N-BOL-V 

On Phase 1. 

F8: The experimenter's collection contains n blocks. 

F9: The subject's collection contains m blocks. 

05: If two rollections have a different number of blocks, 

then the rollection with more blocks is the one whose 

number name appears later in the number name order. 

The application of 05 toFB and F9 yields FlO:-

On Phase 2. 

FlO: The experimenter-s collection has more blocks. 

06: If one rollection has more blocks than another, 

then how many more can be found by subtraction. 

The application of 06 to FlO initiates a subtraction 

process carried out on F8 and F9 and resulting in Fll. 

On Phase 3. 

Fll: The experimenter-s collection has (n-m) more blocks 

than the subject's 

07: If one collection has more blocks than the other, 

then they can be made equal in number by taking the 

difference (n-m) away from the collection with more. 

Notice that the same phases would be involved in solving 

the problem by adding to the collection with fewer blocks. 

1SC 



The subtraction process would be a:::llllrocm to b:lth, and would 

involve the ro-activation of F8 and F9, together with a 

subtraction rule, such as: 

08: To subtract rn fran n, start counting at one more 

than rn, step at n, and the number of number names 

mentioned is the answer. 

N-ADD-NV. 

Fl2: The b:lttcm jar contained 'n' balls before more balls 

were sent down the tube. 

Fl3: 'rn' balls were sent down the tube. 

09: If more objects are added to a =llection of sirnilaz: 

objects, tbe number of objects then in the coll

ection is given by an addition operation. 

N-'I'I-NE. 

The addition operation (call it, 010) would apply 

to Fl2 and Fl3. It may be based on a counting 

method - using fingers, for example, to represent 

the balls - or on a 'table-look-up'rnethod. 

As for N-'I'I-EQ, except that the relations 'greater-than' and 'less-than', are 

substituted for 'equal-to'. 



N-SUB-Nil. 

Fl4: The top jar contained 'n~ balls before !!Dre balls were 

sent Cbwn the tube. 

Fl5: 'm~ balls were sent Cbwn the tube. 

Oll: If scrne objects are taken away from a oollection of 
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similar objects, then the number of objects left in the coll

ection is given by a subtraction operation. 

-- The subtraction operation (call it, 012) would 

apply to Fl4 and Fl5. It IIBY be based on a oounting 

method - using fingers, for example, to represent 

the balls - or on a 'table-look-up method. Notice 

that 012 may be different fran 08, as in N--50L-V the 

objects were visible to the subject throughout the 

task. 

12.6.3 NUMBER CF CD-AcriVATED SamMES REQJIRED FOR 

THE SEIECI'ED NUMBER TASRS. 

For all of the tasks listed above, the maximum number of co-activated 

schemes needed at any stage of the solution process is three; two of 

which are figurative, and one, operative. Hence, in terms of Pascual

Leone~s rrodel, all tasks are of the type that can be solved by children 

at the early ooncrete sub-stage of development. Therefore, an M-spaoe 

analysis of the number tasks does not reveal any structural limitation 

corresponding to the steps in the observed performance gradient. 



12.7 M-SPACE AN!\Ll'SIS CF CERI'AIN 

LENGl'H TAS l<S • , 

12. 7.1 SELEcriCN CF IENGm TASI<S. 
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Tasks were selected for analysis fran each of the levels in the perform

ance gradient for the length collection. The basis for selection was 

the same as that described earlier for the number collection. The tasks 

selected fran the length collection (see Table ll.4 in Chapter ll) ar:e 

s~ in Table 12.2. 

TABlE 12.2: IENGl'H TASI<S SEIECI'ED FORM-SPACE: AN!\Ll'SIS. 

Ll'NEL l'mT DIFFiaJLT Ll'NEL !:EAST DIFFIClJLT 

N TASK AT LEVEL N NH TASK AT Ll'NEL N+ 1 

1 L-CDiiS 2 Ir£ST* 

2 LR-'I'I -cARD 3 LR-'I'I-NE 

3 LR-'1' I -NE* 4 LR-M-CARD 

Note: * - Instead of giving an analysis of L-EST as the least difficult 

task at level 2, an analysis is given of L-<NIT. This is because L-EST 

and L-rniT ar:e of, essentially, the same difficulty, b.lt the latter is of 

greater theoretical i.np::lrtance and, hence, of oore interest. 

** - LR-'I'I-NE is the only task at level 3. 

The tasks listed in Table 12.2 were analysed in accx:>rdance with theM

space I!Ddel. That analysis is set out below. Executive schemes ar:e n:>t 

s~, because it is assi.Jlled that there is only one executive scheme act

ivated for each task. 



12.7.2 SPECIFICATION CF THE 

OJ-AcrJ:VMED SOl:EJ'.1ES FOR THE 

SEIECI'ED IENGm: TA'3RS. 

L-a:NS 

On Phase 1. 

Fl6: Nothing has been added or taken away from the 

piece of string which was transformed. 

013: If nothing has been added or taken away from 

the piece of string, then it is the length it 

was before the transformation. 

The application of 013 to Fl6 yields Fl7: 

On Phase 2. 

Fl7: The piece of string which was transformed is the 

length it was before the transformation. 

FlS: The two pieces of string were originally the same 

length. 

014: The length relation between objects is invariant 

unless the length of one object is changed. 

L-UNIT 

:wu 

This task may be divided into three processes. Process 1 is responsible 

for marking off equal units. Process 2 is responsible for counting the 
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units. Each cycle of process 1 is follooed by a cycle of process 2. 

Process 3 is responsible for producing the answer. It is initiated after 

the last cycle of Process 2 has been executed. 

Process 1. 

Fl9: The location of the right hand border (assume left-to

right movement)of the previous segment marked off is 

knoon. 

F20: The left hand border of the unit coincides with 

the right hand border of the previous segment marked off. 

015: If the unit length equals the previous segment length, 

Process 2. 

and the unit length equals the current segment length, then 

the previous segment length equals the current segment 

length. 

F21: Number name mentioned when the previous segment length 

was marked off. 

F22: List of number names. 

016: When the current segment length has been marked off, 

mention the next number name on the number name list. 

Process 3. 

F23: The whole object has been divided into segments 

of equal length. 

F24: Last number name mentioned. 

017: The number of equal segments represents the length 

of the whole object. 



LR-'I'I -<:1\RD 

On Phase 1. 

F25: There are !lOre red blocks than green. 

F26: There are !lOre blue blocks than red. 

01: The canonical form of the transitive law with respect 

to number. 

The application of 01 to F25 and F26 yields F27: 

On Phase 2 

F27: There are !lOre blue blocks than red. 

F28: All blocks are the same size. 

018: A is longer than B, if A ccntains !lOre parts than B, 

and if the parts are the same length. 

LR-'I'I -NE. 

As for Phase 1 of LR-'I'I-QlJID, except that the figurative and operative 

schemes refer to length, not number. 

LR-M-CI\.RD • 

There are two parts to this task. The first part is respcnsible for 

unit iteration. The seccnd part is respcnsible for 

comparison of object lengths, and production of the answer. 

202. 
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The first p3.rt is exactly the same as L-UNIT, described ab:Ne. The sec

ond p3.rt uses the same operative scheme {018) as that employed on phase 

2 of LR..!['I-cARD. Hence, the schemes co-activated on the second p3.rt of 

-LR-M-CARD are:-

F29: Length A contains n unit p3.rts. 

F30: Length B contains m unit p3.rts. 

018: A is longer than B, if A contains oore p3.rts than B, 

and if the p3.rts are the same length. 

12. 7. 3 NtM3ER <F CD-ACJ'IVATED 

SCHEME'S RECPIRED FOR THE 

SELECJ'ED LENGI'H TASKS. 

Inspectioo of the a:t:ove analysis reveals that the maximum number of co

activated achemes needed at any stage of the solution process is three: 

two figurative and one operative. Hence, the analysis does not reveal 

any structural limitation corresponding to the steps in the observed 

performance gradient. This conclusioo is the same as that reached with 

respect to the number tasks. 

12.8 SllMWIRY. 

An M-space analysis of the steps in the number and length task perform

ance gradients does not support the suggestion that those steps represent 

develq:rnental discontinuities which stem fran structural limitations, such 

as mental processing capacity. Hc:Mever, the M-space analysis does not 

explicitly provide for differences in complexity of control processes, 
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because all directive information is assumed to be stored in a single 

executive scheme. Because it would seem likely that there are differ

ences in complexity between control processes associated with these tasks 

and, hence, differences between the demands these processes place on STM, 

this assumption of a unitary executive structure limits the value of the 

analysis. 

Moreover, in Pascual-Leone~s model the level of analysis of component 

processes and knowledge elements into operative and figurative schemes 

is scmewhat arbitrary. In the present case, an attempt was made to con

form with the examples of M-space analysis given by Pascual-Leone. How

ever, there is no certainty that a different analyst would derive the 

same list of co-activated schemes. Hence, this apparently arbitrary 

aspect of Pascual-Leone~s m::ldel also limits the value of the analysis. 

If these two criticisms of Pascual-Leone' s model are set aside, a con

clusion which could be drawn from this analysis is that the stepped rer

formance gradients for the number and length tasks reflect, simply, de

lays inherent in the accretion of a large number of rules. This conclus

ion would be consistent with the finding of the present study that length 

of schooling is a predictor of rerformance, whilst age is not. 



AN EXAMPLE OF A PR.OD!JCI'ICN-SYSTEM ANALYSIS 

OF CERrAIN O:::MPCNENTS OF LINEAR ME'ASUREMENT, 

13 .l THE NEED FDR A DETAILED PROCESS

ANALYSIS OF LINEAR ME'ASUREMENT. 
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The analysis of linear measurement given in Chapter 2 drew upon the act

ions involved in linear measurement operations, and the logical structure 

of linear measurement. The empirical work reported here has broadly supp

orted this analysis. However, as a psychological theory it has two weak

nesses. 

The first is that the analysis was intuitive. It was not formally dem::>n

strated that the listed components are sufficient to enable a person to 

substitute measurement operations for actual operations on objects. 

The second is that the analysis did not concern itself with the psychol

ogical processes at work in linear measurement. 

The only psychologically-orientated theory that considers linear measure

ment is Piaget's. That theory offered general guidance to the analysis 

in Chapter 2, but its usefulness was limited, because it is only concern

ed with describing the gross psychological structures needed for linear 

measurement. The Piagetian analysis is not made at a sufficient level 

of detail for the present purposes. 
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A more satisfactory account of linear measurement would give a detailed 

process-analysis of what is involved in each component, and of precisely 

how the components are co-ordinated. 

The objectives of that analysis would be, firstly, to express linear measure

ment in terms of a minimum number of psychologically primitive operations 

and, secondly, to show that the account does, indeed, generate linear 

measurement. An account of that kind could be provided by constructing 

a "production-system" m:x'!el of linear measurement. 

Production systems are collections of condition-action rules, called 

productions. The rules are expressed in the form: 'if conditions A(l), 

and A(2), and A(3), ••••• and A(n) hold, then take actions B(l), and B(2), 

and B(3), ••••• and B(n)'. If the rules, or productions, are written in 

a o::J!lq:lUter language, they may be 'executed' (Newell and Simon, 1972) • 

Klahr and Wallace's (1976) work provides an example of how the product

ion-system approach can be used to construct a detailed account of as

pects of cognition related to the present study. Their objective was to 

~evelop a theory of cognitive development at a level of precision that 

would enable the theory to be expressed as an executable CCI!IJ?Uter m:x'!el. 

Klahr and Wallace's (1976) strategy was to construct, firstly, state 

models. Each model depicted the performance of a child at a particular 

stage of development on a range of Piagetian tasks. Secondly, they con

structed transitional m::Xlels accounting for changes between stages (i.e. 

between state models). Their state models were expressed as executable 

production systems. 
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Klahr and Wallace (1976) present models of various quantification proc

esses (subitization, counting, estimation, relative magnitude determin

ation), class inclusion, conservation of quantity, and transitive reason

ing. Their nodels are constructed so that groups of productions used in 

less ccrnplex tasks, such as counting, may be used in more ccrnplex tasks, 

such as addition. This refl.ects the view that develop11ent stems fram 

the accretion of experience, coupled with periodic re-organisation of the 

internal representation of that experience. 

An approach similar to Klahr and Wallace's could be taken to the problem 

of providing a satisfactory account of the ccrnposition and grCMth of 

linear IOOasurement. That approach would make explicit the theory implic

it in the list of ccrnpcnents of linear IOOasurem;,nt given in Chapter 2. 

A full production-system analysis of linear m;,asurem;,nt will not be att

empted here (2). Nevertheless, in order to illustrate the possibilities 

offered by this approach, this Chapter presents an analysis of three of 

the tasks used in the present study. The core productions concerning 

counting, subitization, addition, control processes, and so on, given 

in these models, are all directly relevant to the longer-term objective 

of providing a production-system model of mture linear IOOasureiOOnt. 

2. The original intention of the present research project was to devel

op such an analysis. However, the lack of an appropriate and detailed 

theoretical framework, and the paucity of directly relevant anpirical 

data, necessitated that, first, the anpirical work reported here be under

taken. The p:>si tion has n= been reached where a production-system model 

of mture linear IOOasureiOOnt could be developed. Developnent of such a 
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m:Xlel of linear rreasurerrent would, itself, be a substantial urrlertaking, 

arrl is beyond the s:::ope of the present research. The proouction-system 

m:Xlel would prooide a sufficient accoont of the data reported in the 

present study, aTJd would constitute a fornal theory of what is involved 

in linear rreasurement. A speculative ootline of a possible approach to 

t.l'!e developrrent of such a m:Xlel is given in A!;pendix 6. 

Additionally, the three tasks selected for analysis were chosen because 

they have the potential to yield further infornation on the question 

examined in 0:\apter 12. It was suggested there that the discontinuities 

in the c:bserved performance gradients could be explained try changes in 

S'IM capacity. An analysis of selected tasks, using Pascual-Leone's m:Xlel, 

failed to supp::lrt this suggestion. However, it was argued in the conclud

ing paragraphs of 0:\apter 12 that the assu!!ption try the Pascual-Leone 

m:Xlel of a unitary control structure had a significant draloback. It 

inplied that variations in the conplexity of control infornation have no 

effect on STM load. Production-system modelling does make explicit pro

vision for representing control inforn:ation in STM. Hence, a proouction

system analysis of the selected tasks should conplerrent the analysis 

given in 0:\apter 12 of the inforn:ation-processing demands of tasks drawn 

from different regions of the performance gradient, and could yield diff

erent conclusions. 

Before describing the task models it will be necessary to a!!plify the 

descriptions given abooe of proouction-system modelling. Section 13.2 

prooides a brief ooerview of a proouction-system langua:Je. 
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13. 2 CNERVIEW OF A 

PRODUCTICN-SYSTEM LANGUAGE. 

In addition to Klahr and Wallace (1976) , Anzai and Siro:m (1979) 1 Baylor 

and Gascon (1974) 1 Newell and Simon (1972), and O'Shea and Young (1978) 

provide examples of production-system models of aspects of cognition 

relevant to the present topic. Hunt and Poltrock (1974), Klahr and Wallace 

(1976) , Newell and Simon (1972) and Winston (1979) provide well document

ed introductions to the technique. The following passage frcm Klahr and 

Wallace (1976) introduces a production-system language, and its operating 

rules. 

"The models are posed in the form of a collection of 

ordered condition-action links, called productions 1 

that together form a production system. The condition 

side of a production refers to the symbols in short-term 

memory (S!M) that represent goals and knowledge elements 

existing in the system's m::mentary knowledge state; 

the action consists of transformations on STM including 

the generation, interruption, and satisfaction of goals, 

modification of existing elements, and addition of new 

ones. A production system obeys simple operating rules:-

1. The condition of each production is matched against 

the symbols in STM. If all of the elements in a condition 

can be matched with elements (in any order) in S!M, then 

the condition is satisfied. 



2. If no oonditions are satisfied, then the system halts. 

If more than one condition is satisfied, then same oonflict 

- resolution principle must select which production to 

"fire." Typically, conflict is resolved by choosing 

the earliest production in the production system. Other 

resolutions are possible, but that is the one we will 

use at first. 

3. When a production "fires," the actions associated 

with it are taken. Actions can change the state of goals, 

replace elements, apply operators, or 

add elements to STM. 

4. After a production has fired, the production system 

is re-entered from the top1 that is, the first production~s 

condition is tested, then the seoond, and so on. 

5. The STM is a stack in which new elements appear at the 

top (or front) , pushing all else in the stack doon one 

position. Since STM is limited in size, elements may be 

lost. 

6. When a oondition is satisfied, all those STM elements 

that were matched are moved to the front of STM, This 

provides a form of automatic rehearsal." 

(Klahr and Wallace, 1976, pp 6-7) 

210 
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The task models constructed in the present study contain productions that 

make use of a small number of actions. In every instance, these actions 

cause the contents of S'IM to change. The actions used are the foll<Ming:-

INS(X) 

DEL(X) 

REPL (X;Y) 

SAY(X) 

USER() 

OO(X) 

Inserts the expression X into STM. 

Deletes the expression X fran S'IM. 

Replaces the expression X in S'IM with the expression Y. 

Prints the expression X. This provides an interface 

with the user. 

Asks the user if he has any information. The user~s 

response is stored in S'IM. 

Transfers oontrol to the list of productions labelled 

X, but only for a single cycle. 

(Ohlsson, 1980) 

Typically, the expression (X) would be a representation of information 

provided by the task, or information retrieved fran LTM, or information 

needed to control the solution process. 

13 TASllS SEI.ECl'ED FOR 

MJDELLING. 

The three tasks selected for nodelling were:- N-ADD-NV; N-5UB-NV; and 

N-cyc-NV. The three tasks are closely related. Although 58 subjects 

passed N-ADD-NV, only 21 passed N-5UB-NV, and only 16 passed N-cyc-NV. 

The proportion of subjects who passed N-ADD-NV was significantly higher 

than the prop:>rtions who passed N-SUB-NV and N-cyc-NV. H<Mever, N-5UB--NV, 
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and N-cYC-NV were of about the same difficulty. It will be apparent t..'iat 

N-cYC-NV requires a co-ordination between two major oamponents: namely, 

those assessed by N-AID-NV and N-5UB-NV. The difficulty data suggest, 

therefore, that the delay between acquisition of theN~ and 

N-cYC-NV components is due to a delay in acquisition of the N-5UB-NV 

comp:ment, and not to a delay in co-ordinating the N-ADIJ--NV and N-5UB-NV 

components. It was thought that a comparison of rrodels for these three 

tasks would provide an appropriate example of the application of the 

technique, and it would enable a re-examination of the role of STM 

capacity limitations. 

A factor that influenced the selection of these tasks for modelling was 

the existence of a substantial empirical literature on the strategies 

used by young children when subitizing, counting, adding and subtracting. 

Most of that literature has been reviewed recently by Klahr and Wallace 

(1976). Their conclusions are reflected in the subitization and count

ing productions found in several of their models. 

A broad outline of each of the models developed will be given. This will 

be followed by annotated listings for the addition and subtraction models 

which use a counting strategy. Finally, performance statistics for the 

six models will be summarised, and conclusions drawn regarding the inform

ation-processing demands of the three tasks. 
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13. 4 OUI'LINE CF THE IDIJEIS. 

Alternative models were developed for two of the tasks. These were des

igned to simulate various strategies children had been observed to use. 

Six models were developed. Three were of N-ADD-NV, two of N-5UB-NV, and 

one of N-cYC-NV. Listings of all models, and traces of their execution 

showing the contents of STM on every cycle, are given in Appendix 4. 

Descriptions of all models are also given in Appendix 4. Additionally, 

to illustrate the technique, listings and detailed descriptions of two 

of the models will be given in this Chapter. They are the counting models 

for addition (simulating performance· on N-ADD-N\1) and subtraction (sim

ulating performance on N-5UB-NV). 

13.4.1 ADDITION MDIJELS. 

Three models constructed to simulate performance on the N-ADD-NV task 

are provided in Appendix 4. Each carries out the addition operation in 

a different manner. 

The first model (AOOG.PSS) is described in Appendix 4, and listed in full 

in Addendum l. It is based on a s:in;Jle table-look-up procedure. The 

number of balls in the l::ottan jar is used as a key for accessing the 

appropriate entry. For example, if the l::ottan jar has two balls in it, 

and the subject sends four 110re down the tube, the model uses 'two' to 

access the (2+4=6) entry. 
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The second m::rlel (AOila.PSS) will be described in detail in Section 13.5 

(a full listing and execution trace are provided at Appendix 4, Addendum 

2). It is based on a rounting method. It s:inulates performance cy a 

subject who carries out addition cy ro--ordinating two rounting operations. 

Assume that memory rontains an ordered list of number names ("1", "2", 

11 311
, •••• ) • Subjects rount by placing names fran this list into STM. 

Tl.lo rounts are maintained. Count A is a measure of the number of balls 

counted to date in the t:ottan jar:. Count B is a measure of the increment 

in oount A that has been made at a given p::>int in the rounting process, 

The subject's procedure is:-

Step 1 - Set oount A to the number of balls initially 

in the b:>ttan jar:, 

Step 2 - Set oount B to zero. 

Step 3 - Ccrnpare number in oount B to number of balls 

sent Cbwn the tube. If equal, then the answer 

is given cy the number in rount A-FINISH. 

Otherwise, continue to Step 4. 

Step 4 - lobve oount A forward one, 

Step 5 - lobve rount B forward one. 

Step 6 - Go back to Step 3. 

The third m::XIel (At'03.PSS) is described in Appendix 4, and listed in full 

in Addendum 3. It is also based on a rounting method. The first step in 

this method, however, is finding out which of the two addends is the 

larger. This beo:lnes the initial value of rount A. This method reduces 

the number of iterations of Steps 3 to 6, above. Hc::Mever, it also incurs 

the overhead involved in first finding the larger addend. 
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13.4.2 SUBTRACTION MODELS. 

For the N-GUB-NV task, the first l!Odel (AOOS.PSS) is based on a table-look

up procedure similar to that used for addition. The access key in this 

case is the n\Jllber of balls in the top jar. The l!Odel is described in 

Appendix 4 and listed in full in Addendum 4. 

The second rooth.od (Aro4.PSS) will be described in detail in Section 13.5 

(a full listing and execution trace are provided at Appendix 4, Addendum 

5). It is based on the counting rneth.od illustrated schematically belCM:-

Step 1 - Set count A to the n\Jllber of balls initially 

in the top jar. 

Step 2 -- Set count B to zero. 

Step 3 - Canpare n\ll!lber in count B to n\ll!lber of balls 

sent dawn the tube. If equal, then the answer 

is given by the n\ll!lber in count A--!>FINISH. 

Otherwise, continue to Step 4. 

Step 4 - Molle count A backward one. 

Step 5 - Molle count B forward one. 

Step 6 - Go back to Step 3. 

13.4.3 AIDITION AND SUBTRACTION M)JEL. 

For the N-cyc-N\1 task, the model (AID7.PSS) is based on the table-look

up procedures used in the addition and subtraction l!Odels. It is des

cribed in Appendix 4, and listed in full in Addendum 6. 



13.5 ANNGrATED LISTING3 OF THE 

ffiUNTING-BASED ADDITICN 

AND SUBTRACI'ICN IDIELS. 
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Listings of the rounting-based addition (ADDS.PSS) and subtraction 

(ADD4.PSS) models and traces of their execution are given in Appendix 4, 

Addenda 2 and 5, respectively. Sections 13.5.1 and 13.5.2 present annot

ated listings of L~e productions ronstituting these models. 

In many production-system models goal manipulation procedures are group

ed together in one or two common-servicing productions that are always 

tested at the beginning of every cycle. In the present models, they have 

been located separately in productions which trigger particular goal act

ivation, re-activation, suspension and deletion operations. This approach 

makes the production systens easier to follav, and has been adopted to 

assist the reader who is not familiar with production-system languages. 

It reduces the programming elegance of the models, but it does not result 

in any greater demands being placed.on STM, and does not increase the 

total number of productions fired. 

The models are writtern in PSS (Ohlsson, 1980), a variant of PSG. 



13. 5.1 THE CXXJNTING-£1\SED M)IEL 

OF N-:1\.IX:!-NV. 

In the first Jilase, the subject is asked to send n balls to the l::ottan 

jar by pressing the button. After the balls have gone Cbwn the tube, 

the subject is asked hc::M many were in the l::ottan jar before, how :many 

more had he just sent Cbwn, and hc::M :many were now in the l::ottan jar. 
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The productions POOO, POO and PO model the entry of task information into 

S'IM, and initiate the run. 

(POOO (OOA.L * ATTEND) (OLD SEND C) 

=> 

mFL ((OOA.L * ATTEND) ; (OOA.L + ATTEND) ) ; 

DEL((OLD SEND C)): 

lEER() ) 

(POO (OOA.L * ATTEND) (00) 

=> 

mFL( (OOA.L * ATTEND) (OOA.L + ATl'END) ) I 

DEL( (00)) ) 

(PO (OOA.L * ATTEND) 

=> 

l.EER() 
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w'hen that information is entered, the I!Odel resp::>nds by simulating the 

subjects button-pressing and rounting behaviour. The productions res;::on

sible are labelled Pl to PB. 

( Pl (GQ'I\L + ATlEND) ('IDP A) (BCJ.rl'CM B) (SEND C) 

=> 

REPL ( (<DAL + MTEND) 

INS ( (GQ'I\L * SEND C) ) ; 

INS((Y 1 Z)) ) 

(P2 (<DAL * SEND C) 

-> 

REPL ( (<DAL * SEND C) 

. 
' 

. 
' 

INS ( (00!\.L * PUSH BUI'TCN) ) 

(P3 (00!\.L * PLEH BUl'TCN) 

=> 

(<DAL *S* M'l'END)) 1 

(<n\1 *S* SEND C) )I 

lEL ( (<DAL * PUSH BUI'TCN) ) 1 

INS ( (ELM A) ) ; 

INS ( (GaM. * SWIT) ) ) 

(P4 (GaM. * SWIT) (ELM A) 

=> 

lEL ( (GaM. * SUB IT)) ; 

INS ( (g:i 1)) ; 

!EL( (ELM A)); 

INS ( (GaM. * rntNI') ) ) 



(PS (OO!'IL * CXltNI') (03 1) (Y <X> Z) 

-> 

REPL ( (G:Y\.1 * OXNI') 

IEL ( (03 1)) l 

SAY(<X>); 

(G:l!\L + OJtNI') ) ; 

REPL( (Y <X> Z) . 
' (SAID <X>)); 

INS ( (G:l!\L * MI\.RK) ) 

(P6 (QJI\.L * MI\.RK) (SAID 1) 

> 

REPL ( (OO!'IL * MI\.RK) 

INS((Y 2 Z)) ) 

(OO!U. + MARK} ) ; 

(P6A (G:Y\.1 * MI\.RK) (SAID 2) 

=> 

REPL ( (OO!U. * MARK) ; (OO!'IL + MARK)); 

INS( (Y 3 Z)} ) 

(P6B (OO!'IL * MARK) (SAID 3) 

=> 

REPL ( (OO!'IL * MARK) (OO!U. + MARK)) I 

INS ( (Y 4 Z)) ) 

(P7 (OO!'IL + MARK) (OO!'IL + CDt.Nl'} (OO!U. *S* SEND C) 

(SAID C) 

=> 

IEL ( (OO!'IL *S* SEND C) ) 1 

IEL ( (OO!'IL + MARK) } ; 

IEL ( (OO!'IL + CDt.Nl')} ; 

IEL ( (SAID C) ) ; 

REPL ( (QJI\.L *S* ATTEND) I (OO!U. * A'l'l'END) ) ) 
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(PB (OOAL + ~l (G:JAL + CDUNT) (G:JAL *S* SEND C) (SAID D) 

=> 

REPL ( (OOAL *S* SEND C) (G:lAL * SEND C) ) ; 

DEL( (GCN:, + ~)); 

DEL ( (OOAL + CDlli'T) ) ; 

IEL ( (SAID D) ) 

Pl inserts an active gaol of sending 'n' balls down the tube. In the 

service of that goal, P2 inserts the Sl.ll::xJrdinate goal of p.1~ng the 

button. P3 notices the ball going down the tube and inserts the subit

ization goal. P4 simulates subitization of the ball(s) noticed (by P3) 

going down the tube. P5 carries out a counting operation by accessing 

and 'saying' the next name on a nl.lllber-na:rne-list. P6 marks the name 

'said' by P5, and inserts the next number name on the list into STM. 
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P6A to P6C simulate similar marking and moving operations. P7 simulates 

a checking operation. If the last name 'said' by P5 is the same as the 

number-name given in t."le instruction to send 'n' balls down the tube (re-

presented in STM by (SEND C) ) , then the JIDdel 'knows' that it has finished 

that part of the task. In that event, it re-activates the goal 'to attend' 

and the next production to fire is PO. If not, the goal rnanip.1lation in 

P8 ensures that P2 will be the next production to fire, and that a new 

cycle of button pressing, subitiz <ing, and counting will be entered. 

This procedure can be followed by reading the listing for the model con

currently with the trace of the model's execution, given in Appendix 4, 

Addendum 2. 
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When o:mtrol is passed back to PO, the user then asks: haw many balls 

were in the bottan jar l:efore? This is represented by the STM elements 

(M!\NY BOl'I'CM BEFORE). P9 and ?10 si.mulate the answering of this question, 

after which control is passed back to PO. The user then asks: haw many 

were sent cbwn the tube? This is represented in STM by the element 

(WINY TUBE). This question is answered by Pll and Pl2, after which cont

rol is again passed back to PO. 

(P9 ( G:Y\L * A'I'I'END) (M1\NY BO:I'1'Q>l BEFORE) 

=> 

Rt:PL ( (G:YIL * A'I'I'END) ; (GJAL *S* A'I'I'END) ) ; 

lEL ( (M!\NY BOl'I'CM BEFU'!E1) ) ; 

INS ( (G:Y\L * :REC1ILL BO:I'l'Q>l) ) 

(PlO (G:Y\L * PECALL BC1I'l:'G'l) (BC1I'l:'G'l B) 

> 

SAY ( (BC1I'l:'G'l B) ) ; 

lEL ( (G:YIL * :REC1ILL BC1I'l:'G'l) ) ; 

Rt:PL ( (G:Y\L *S* ATTEND) ; ( <Dl'.L * ATTEND) ) 

(Pll (G:Y\L * ATIEND) (M1\NY TUBE) 

=> 

:REPL ( ( G:Y\L * ATTEND) ; (<Dl'.L *S* A'I'I'END) ) ; 

lEL ( (M!\NY TUBE) ) ; 

INS ( (G:YIL * :REC1ILL TUBE) ) ) 

(Pl2 (G:Y\L * PECALL TUBE) (SEND C) 

=> 

lEL ( (G:YIL * :REC1ILL TUBE) ) ; 

REPL ( (G:Y\L *S* ATTEND) ; (<Dl'.L * ATTEND) ) I 

SAY ( (SEND C) ) 



By entering (MANY BOl'I'CM Ncm) into STM, the user causes control to be 

given to Pl3 on the next cycle. 
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The direct counting procedure involves the co-ordination of step-by-step 

movement through two sequences, each of which is the number-name-list. 

Items from the first sequence are represented in STM by elements having 

the form (Y <P> Z) , and those from the second sequence by (W <P> V) • 

The letters Y,Z,W, and V imbedded in these elements are of technical signif

icance only. They constitute a method of marking locations in a list. 

The symbol <P> assumes numerical values. 

Pl3 activates the addition goal (GOAL * ADD). It sets the location in the 

first sequence at the point corresponding to the number of balls in the 

bottom jar before the last series of button presses. Pl3 also sets the 

location in the second sequence, just before the first element in the 

number-name-list. Pl4 checks to see if the location in the second sequ

ence is the same as the value in the STM element representing the inst

ruction to send 'n; balls d:Jwn the tube. That is, Pl4 asks: is the value of 

<P> in the element (W <P> V) , the same as the value of <P> in the element 

(SEND <P>)? If so, Pl4 fires, and the answer is extracted fran the 

(Y <P> Z) element currently in STM. If not, either Pl5 or Pl6 fires. 

They control the movement through the two sequences. Pl7 to Pl7J carry 

out the moves from place to place in the first sequence. Pl8 to Pl8C 

perform the same function for the second sequence. 



(Pl3 (Ql.?\L * A'l"JEND) (MANY BOI'TCM NCM) (BCll:'IX:M B) 

=> 

REPL ( (Gl.?\L * A'l"JEND) (Gl.?\L *S* A'l"JEND) ) ; 

lEL ( (MANY 'ElCll'In1 NCW) ) ; 

INS ( (Ql.?\L * ADD)); 

INS((WOV)); 

INS ( (Y B Z)) 

(Pl4 (Ql.?\L * ADD) (W <P> V) (SEND <P>) (Y <X> Z) 

=> 

SAY(<X>); 

lEL ( (Ql.?\L * ADD) ) ; 

INS ( (Ql.?\L * P!.JRQ:j ) 

(PlS (Ql.?\L * ADD) (W <P> V) (Y <X> Z) 

> 

REPL ( (Gl.?IL * AOO) ; (Gl.?IL *S* AOO) ) ; 

INS ( (Ql.?\L * NEXT ALCNG) ) ; 

ro (GET-NEXT) 1 

(Pl6 (Ql.?\L * NEXI' UP) 

=> 

ro (STEP UP 1 

(Pl7 (Gl.?\L * NEXI' ALCNG) (Y ZEro Z) 

=> 

REPL( (Y ZEro Z) ; (Y CNE Z)); 

!EL( (Gl\L * NEXI' ALCNG)); 

INS ((Gl.?\L * NEXI' UP) ) ) 

NOI'E: Productions Pl7A to Pl7J have the same form as Pl7. Each 

inserts the J'le){t; nlllllber-name symlx>l (e.g. (Y FOUR Z)) in S'IM. 
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(Pl8 (001\L * NEXT UP) (W 0 V) 

=> 

llEPL ( (W 0 V) (WlV)); 

IlEL ( (001\L * NEXT UP) ) ; 

llEPL( (001\L *S* ADD) . 
' (001\L * ADD) ) 

NCJI'E: Productions Pl8A to PlBC have the same foil!l as PlB. Each 

replaces the current nunber-name symbol (e.g. (W 2 V)) with the 

next mrnber-name symbol (e.g. (W 3 V)). 

An example may clarify the operation of Pl3 to PlBC. Suppose that the 

bottan jar had two balls in it, and the subject sent Cbm four m::>re. 
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S'lM would o:mtain the elements (BOrl'(}ll 2) and (SEND 4) • Pl3 would insert 

the elements (Y 2 Z) and (W 0 V) • On the first cycle after the firing of 

Pl3, Pl4 would not fire because <P> would be set to 0 in (W 0 V) • Pl5 

would initiate an entry to the Pl7 to Pl7J group of productions. Specif

ically, Pl7B would fire and insert (Y 3 Z) into S'lM, and set a goal 

causing Pl6 to fire on the next cycle. Pl6 would then initiate an entry 

to the Pl8 to PlBC group of productions. Specifically, PlB would fire 

and insert (W 1 V) into S'lM, and set a goal causing Pl4's ronditions to 

be e)l:alllined on the next cycle. Again, Pl4 would not fire, because <P> 

would be set to 1 in (W 1 V). Hence, Pl5 would fire again, and the Pl5 

to PlBC procedure would be re-entered. This pattern would oontinue until 

on one cycle Pl4 found <P> set to 4 in (W 4 V). At that time, the (Y <P> Z) 

element !oiOuld oontain (Y 6 Z) • Pl4 would then extract the answer (6) frcm 

that element. 

The remaining productions P24A to P27 perfoilll J:ousekeeping functions 

needed to prepare the IIDdel to receive further input. 



13.5 .2 THE C~-BASED M)[)EL 

OF N-SUB-NV. 
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A corrplete listing of this rrodel (ADD4 .PSS) is provided in Appendix 4, 

Addendum 5. Productions FOOD to Pl2 are identical in furrn and function 

to the sarre-nunbered productions for the addition rrodel. They s:im.Jlate 

the subject's behaviour up to the point where he is asked hOtl many balls 

are left in the top jar. 

The productions P13 to PlBC also carry rut functions analogous to the 

sarre-nunbered productions in the addition rrodel. The differences are 

that:-

P13 sets <P> in (Y <P> Z) to equal the nunber of balls in the top jar, 

initially. 

Pl7 to Pl7J !OCJ\les dCM!l the nunber-narre-list, rot up it, as in the case 

of the addition rrodel (ADDB.PSS). 

13.6 PERFORMAN2E SI'ATISI'ICS. 

Table 13.1 sets rut the nunber of productions fired, and the !IBX:im.Jrn 

nunber of elements held in S'IM during the execution of each of the six 

rrodels. The entries in Table 13.1 relati03 to S'IM represent the IIBX

irrurn arrount of S'IM used by the respective rrodels - that is, if S'IM alloc

ations of lesser capacity were to be I!Bde, the rrodels lo'OUld not execute 

correctly. 
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TABLE 13 .1: PERFDR-IA.l'\CE STATISTICS FOR El\CH MOOEI:.. 

TASK MOOELLED N-ADD-NV N-SUB-NV N-CYC-NV 
• 

PROCESS MOJ:lELLEl: ADDITION SUBi'RI\CTION ADDITION 
lL>ID 

I I SUBTRACTION 

MEJ'l'l)DS USED I.OOK CXXJN'1'IN3 CXXJN'1'IN3 TABLE-I.OOK COJNTIN:; '11\BLE-I.OOK 
-UP FRCM -tJP -tJP 

{ADD6.PSS) ADD8.PSS LAroER (ADD5.PSS) ADD4,PSS) {ADD7 .PSS) 

ADDmD 

(ADD3.-

PSS) 

No. of PRODUCT- I 

IONS. 

FIRED 130 162 190 130 162 174 

MAX. No of ELE-

MENTS HELD IN 

S'1M 9 9 12 9 9 9 

The 'l'lUJ!ber of productions fired' is the nu:ni:ler of steps required - at 

this level of analysis - to s:iJrulate a successful subject's performance 

on the modelled task. The table-look-up procedure is the more efficient 

for addition and subtraction. The straight-forward counting procedure 

for addition (ADD8.PSS) is more efficient than the alternative (ADD3.PSS). 

Subtraction, by table-look-up, or by counting, involves excctly the same 

nu:ni:ler of steps as the corresponding addition procedure. The small in

crease in the nl.lllber of productions fired for N-CYC-NV, ~er N-ADD-NV and 

N-SUB-NV (174 versus 130), suggests that the bulk of the effort is expended 

on s:iJrulating aspects of the tasks oot directly concerned with addition 

or subtraction. 
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The rrore efficient, table-look-up models require no rrore STM space than 

the counting-based m:ldels. All but one of the m:ldels required up to 9 

elements of STM to store the control information and data used during 

execution. The exception is the counting-based addition m:ldel (ADD3.PSS), 

which first finds the larger of the two addends. That m:ldel requires a 

maximum of 12 elements of STM. 

According to this analysis, the delay in develq:ment of STM capacity 

could not be the factor causing the observed delay in acquisition of the 

components assessed by N-sUB-NV and N-cYC-NV. Additionally, this analysis 

reinforces the suggestion given in Section 13.3 that the delay in acquis

ition of the C:UiifXJHent assessed by N-cYC-NV is due to delay in acquisi t

ion of the component assessed by N-8UB-NV, rather than a need to oo--ord

inate the components assessed by N-ADD-NV and N-8UB-NV. 

13.7 CONCLUSIONS. 

The performance similarities between the corresponding addition and sub

traction rrodels suggest that the observed development sequence is not a 

function of STM capacity. It seems to reflect, simply, the order of 

acquisition of certain rules. An inspection of the productions used in 

the rrodels of the table-lcok-up procedures (Appendix 4, Addenda 1 and 4) 

supports this conclusion. For the table-look-up prooedure, the only diff

erence between the addition and subtraction rrodels is in the data tables. 

The addition rrodel makes use of entries of the form: a+b=c. The sub

traction rrodel makes use of entries of the form: a-b=c. For the child 

using this prooedure, the observed developmental sequence may simply 

reflect the fact that the former are usually learned before the latter. 
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In the case of the counting procedure, the addition model controls the 

co-ordinated movement in the same direction of two pointers through a 

single number name list. The subtraction model controls the co-ordinated 

movement in opposite directions of two pointers through the same list. 

The former procedure contains less potential for confusion because the two 

pointers are rarely in close proximity in the list. The latter proced

ure does contain potential for confusion when the two pointers co-incide 

in the list. For example, in the N-SUB..W task, at one time the bottcm 

jar holds six balls, and the top jar six balls. Hence, one pointer would 

be rroving: "6 -> 7 -> 8 ••• etc". The other would be rroving: "6 ->5 -> 4 

etc". Consequently, in the case of subtraction, even if the child has the 

appropriate counting-based rules, the probability of a breakdown during 

execution of those rules would be greater than for the corresponding add

ition operation. 

It is noteworthy that these conclusions are consistent with the finding 

that length of schooling is a better predictor, than age, of a subject~s 

performance. That is, performance is a function of experience with the 

appropriate rules, and not a function of STM capacity. 

Finally, it is emphasized that the six models discussed in this Chapter 

were developed for two purposes. Firstly, to examine in more detail the 

questions discussed in Chapter 12, and, secondly, to illustrate an app

roach to the longer-term objective of deriving a detailed process acoount 

of the canposition and growth of linear I~Easurement. The oore productions 

relating to subitization, counting, addition and subtraction oontained 

in the present models are all pertinent to that enterprise. However, 

they constitute only a small fragment of the work that needs to be done 

to realise the longer-term objective. 



229 
CHAPI'ER 14 • 

SUMMARY OF CON:IIJSIONS. 

The present study had two nain objectives. The first was to identify 

the 'higher-level' knowledge necessary for a child to urrlerstand linear 

measurerrent. The second was to chart the growth of linear measurement 

in terms of the development of its components. 

An analysis of measurement cperations yielded a list of components which 

it was argued would underlie linear measurement. Piagetian theory and 

related empirical literature were consulted as sources of information 

on the emergence of these components in the child's thinking. This 

led to the fOrmulation of a nurrber of predictions concerning the compon

ents of linear mesaurerrent, and their order of developrrent. 

A battery of 34 nurrber, length and distance tasks was developed to assess 

the presence of these components. It was administered to 100 children 

aged between 63 and 78 I!Dnths, and drawn fr0111 kindergarten and grade one. 

The results were analyzed using scalogram techniques. The rrain =ntribution 

of the thesis is in this empirical work. 

The rrain =nclusions are surnnarised in the fOllowing paragraphs. 



14.1 CCM>CNENrS CF LINEAR 

MEl\SUREMENI'S. 

It was found that children who possessed a mature level of understanding 

of linear measurement also possessed the following:-

Knowing how to make transitive inferences of equivalence, 

with respect to discrete quantity, and length. 

Knowing that the numerosity of an array of objects is 

invariant under certain transformations (the conservation 

of number). 

Knowing that length is invariant under certain transferror 

ations (the conservation of length). 

Knowing how to carry out numerical addition operations. 

Knowing how to obtain a linear measurement by counting 

iterations of a unit of length. 

Knowing how to make transitive inferences of non-equiv

alence, with respect to discrete quantity. 

14.2 ORDER CF IEVELOJ?MENT 

OF LINEAR MEASUREMENT. 
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For linear measurement, the components emerge in the order in which they 

are listed above. 

The data imply a delay between acquisition of the components and emerg

ence of an understanding of linear measurement. It was also noted that 

those children who possessed all the necessary components, ~Jt could not 
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demonstrate an understanding of linear measurement, could not commence 

the linear measurement task. It was argued that this was evidence that 

short-term-mem:n:y capacity limitations were not implicated in the delay, 

because such limitations are expressed usually in breakdowns in perform

ance of a strategy. The delay was interpreted as being associated with 

the need for a re-organisation of the relevant cognitive structures, 

resulting in better co-ordination between components. That is, the delay 

was associated with the formation of new long-term-memory links between 

components. 

14.3 ORDER CF DEVELOPMENT 

CF CDMPCNENI'S IN THE 

NUMBER, LENGI'H AND 

DISTANCE DOMAINS. 

For the number and length domains, the collections of components form 

scalable sets. That is, the components emerge sequentially in each 

domain. 

In general, the order of emergence of the components is that predicted by 

Piagetian theory, and the empirical evidence reviewed in Part II. The 

mcst important exceptions to that pattern are noted below. 

Conservation of number emerges significantly before transitive inference 

concerned with non-equivalent relations between discrete quantities. The 

same lag in developnent cccurs in respect of length. it was argued that 

this finding could have been expected, because the form of transitive 

reasoning involved in the conservation task is concerned with equivalent, 

and not with non-equivalent, relations. 
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The observed lag in development between the emergence of corresponding 

canponents in the length and distance domains, such as the conservation 

of length and the conservation of distance, was not predicted. 

14. 4 DISCXNI'INUITIES IN NUM8ER 

AND LENGI'H OJNQJ?T IEVELOJ?MENI'. 

It was found that the patterns of developnent in the number and length 

concepts were marked by discontinuities. 

It was suggested that these discontinuities might have been due to cap

acity limitations of short term memory. However, an information-process

ing analysis, using the M-space II'Odel, failed to find evidence supporting 

that suggestion. Furthermore, a production-system analysis that explic

itly accounted for strategy control information also failed to find 

evidence of a short-term-memory barrier. 

In general, the discontinuities co-incide with the emergence of campon

ents of major theoretical interest, such as the conservation of length. 

Additionally, there are concordances between discontinuities in the 

number and length growth patterns. It was suggested that these concord

ances co-incide with periods of development during which new forms of 

co-ordination are being established between the two concept domains. 

New inter-connections of that kind would be represented by long-term 

memory linkages. 

In summary, the general impression is that grc:Mth in one concept domain 

prompts growth in the other. 



14.5 PRODUCTION-SYSTEM 

MJDEIS OF LINEAR 

MEASUREMENT. 
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It was stated that the analysis of linear measurement given in Chapter 2 

was largely intuitive and informal due to the lack of a detailed psychol

ogical theory of linear measurement, and the paucity of directly relevant 

empirical data. It was argued that a more satisfactory account of linear 

measurement could be given in the form of an executable production-system 

model. A m:xlel of that kind would be a formal theory, and would demon

strate that the components listed in Chapter 2 are necessary for linear 

measurement. It would also provide a sufficient a=unt of the empirical 

data reported in this study. Development of that model would be a sub

stantial undertaking, and beyond the scope of the present research. 

However, the six production systems constructed in this study provide 

a small start on that larger, longer-term project. 

14.6 THE EFFECTS OF AGE AND LENGI'H OF srnOOLING. 

It was found that length of schocling is a predictor of a subject's 

score, but age is not. This latter finding, though, must be due to the 

narrow age range of the subjects used in the study. 

These findings are consistent with the general pattern of development 

observed in the study. This is because delays and discontinuities in 

development during the period studied were thought to be associated not 

with short-term-memory barriers - an age related factor - but with the 

forging of new long-term-memory links - an experience related factor. 
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For many children, experiences of the appropriate kind are provided most 

frequently at school. Hence, length of schooling could be expected to 

be a better predictor of performance, than age, on the tasks used, and 

for the period of development covered, in this study. 

14.7 SUGGESTIONS FOR 

FURI'HER RESEARCH. 

It is considered that further research is needed in order to elaborate 

upon the kinds of inter-connection between components that represent 

solution strategies for linear measurement tasks. It is suggested that 

such further research incorporate the construction of production-system 

models depicting mature levels of performance in linear measurement. 

Additionally, further research is needed to identify the reasons for the 

lag in development between corresponding oamponents in the length and 

distance domains. 

The findings of the present study, together with those from such further 

research, could considerably inform early primary school curriculum 

planning. 




