THESES SIS/LIBRARY
R.G. MENZIES LIBRARY BUILDING NO:2

THE AUSTRALIAN NATIONAL UNIVERSITY
CANBERRA ACT 0200 AUSTRALIA

TELEPHONE: +61 261254631 FACSIMILE: +61 261254063
EMAIL: library.theses@anu.edu.au

USE OF THESES

This copy is supplied for purposes of private study and research only.
Passages from the thesis may not be copied or closely paraphrased without the written consent of the author.

WORD DISCRTMINATION : A STUDY OF THE ROLE OF PRTOR EXPERTENCE IN THE PROCESSING OF BRTEFLY AVATLABLE VISUAL TNFORMATION

A Thesis submitted for the Degree of Doctor of Philosophy in the Australian National University

> William A Phillips
> (B.Sc. Manchester

Austxalian National University
February 1967

This thesis describes original research carried out by the authon during the tenure of an Australian National University Scholarship in the Department of Psychology of the Australian National University from December 1963 to February 1967
W.A. Phillifs

ACKNOWLEDGEMENTS

The help that I have received while engaged in this study has contributed much to the research here described. This help I acknowledge with gratitude.

Professor G.N. Seagrim, my supervisor, with great patience and understanding, provided guidance, restraint, criticism and support, that was of the greatest value throughout the whole of the research. Mr Michael Cook was a constant source of thoughtful analyses, suggestions, and criticisms. For his willing aid, which has benefited the study at many points, I arm most grateful.

My thanks are also given to all those other members of the Psychology Department at the Australian National University, whose comments and criticisms have contributed to the study. Professor C. A. Gibb has been a particular source of encouragement. The help given by Dr J.R. Trotter in designing the switching unit used in most of the experiments was invaluable, for without the flexibility of display sequence control produced by his design the experiments would not have been possible.

Mr J. Shadlow, one time member of the Department of Statistics, in the School of General Studies at the Australian National University, was also of great assistance, as he was largely responsible for the proof given on pages $85-88$.

The thesis was typed and produced by the typists of the University Thesis Typing Scheme, and I am grateful
for their patience in the final stages. All the figures and illustrations were prepared by the Visual Aids Unit of the Australian National University.

Finally, my thanks axe due most of all to my wife. She not only typed the draft, but with good humour and sympathetic patience made life during the final stages bearable.

TABLE OF CONTENTS

Page
AOKNOWLEDGEMENTS i
ABSTRACT ix
CHAPTER 1 THE PROBLEM 1
1.1 The dependence of word recognition on prior experience 6
1.1.1 Reaction time 7
1.1.2 The span of apprehension 9
1.1.3 Reading efficiency 10
1.1.4 Word recognition thresholas 11
1.1.5 Summary 13
1.2 Some proposed explanations 13
1.2.1 Explanations in terms of input processing: 15
1.2.2 Explanations in terms of supplementation 19
1.3 The separation of stimulus and supplementary components 30
1.3.1 Partmeire control 31
1.3.2 Phenomenal reports 34
1.3.3 Theoretical development and test 37
1.3.4 Measures of response characteristics 38
1.3.5 Forced-choice techniques 40
CHAPTER 2 EXPERTMENT 1: RECOGNITTON THRESHOLDS, REJECTION THRESHOLDS, AND USAGE FREQUENCY 43
2.1 Method 46
2.1.1 The words used 48
2.1.2 Design 49
2.1.3 Subjects 50
2.1.4 Apparatus 50
2.2 Results 50
2.2.1 Recognition thresholds 51
2.2.2 Overt intrusions and rejection thresholds 54
2.2.3 The dependence of recognition on intrusion and rejection 56
2.2.4 Summary of results 57
2.3 Discussion 57
CHAPTER 3 SOME POINTS CONCERNING WORD RECOGNITION AND WORD RECOGNITION EXPERIMENTS 61
3.1 An elementary analysis of the processes involved in word recognition 62
3.2 Scores of word recognition 67
3.3 The elements of analysis 69
3.4 An analysis of word identification experiments 71
3.4.1 The formative system 71
3.4.2 Definition of symbols 76
3.4.3 Some basic relations 77
3.4.4 Dictionary 1 complete 81
3.4.4.1 Ordered transfer 81
3.4.4.2 Noneordered transfer 84
3.4.4.3 Mixed transfer 89
3.4.4.4 Complete dictionaries and the separation of stimulus and supplementary components 90
3.4.4.5 Optimum readiness 91
3. 5 Word discrimination and random changes 92
3.5.1 The method of word discrimination 92
3.5.2 The method of random changes 93
3.5.3 Calculation of the number of letters discriminated 94
3.5.4 The relation of letter discrimination and identification scores 99
3.6 Summary 101
CHAPTER 4 GENERAL METHODS 103
4.1 Apparatus 103
4.2 Display sequences 105
4.3 The stimulus words 107
4.4 Response and scoring procedures 108
4.5 Practice procedures and instructions 110
4.6 The statistical analysis of results 111
CHAPTER 5 EXPERTMENT 2: THE EFFECT OF PRTOR
EXPERTENCE ON THE STIMULUS COMPONENT OF WORD RECOGNITION 114
5.1 Introduction 114
5.2 Method 121
5.2.1 Outline 121
5.2 .2 Design 122
5.2.3 Procedure and instructions 123
5.2.4 The random changes 125
5.2.5 The prior experience in the HFD condition 126
5.2.6 Knowledge of results 127
5.2 .7 Subjects 127
5.3 Results 127
5.4 Discussion 134
5.4.1 Prior experience and the stimulus component 134
5.4.2 Prior experience and read-out 137
5.4.3 Prior experience and storage 143
5.4.4 The effect of the task on performance 144
5.5 Summary 145
CHAPTER 6 EXPERTMENT 3: THE DEPENDENCE OF WORD DTSCRTMTNATION ON THE DURATION OF PRTOR EXPERTENCE AND ON THE KNOWLEDGE OF THE VARTANT WORDS 147
6.1 Introduction 147
6.1.1 The duration of prior experience 148
6.1 .2 Knowledge of the variant words 150
6.2 Method 151
6.2.1 outiline 151
6.2.2 Design 153
6.2.3 Procedure and instructions 153
6.2 .4 Subjects 154
6.3 Fesults 154
6.3.1 Letter discrimination scores 155
6.3.2 Numbers and proportions of correct and incorrect responses 158
6.4 Discussion
CHAPTER 7 EXPERTMENT 4: THE DEPENDENCE OF WORD
DISCRIMINATION ON THE NUMBER OF
ALTERNATTVE WORDS AND ON THE KNOWLEDGE OF THE VARIANT WORDS 164
7.1 Introduction 164
7.1.1 The number of alternative comparator words 164
7.1.2 Knowledge of the variant words 165
7.2 Method 166
7.2.1 Outline 166
7.2 .2 Design 167
7.2.3 Procedure and instructions 167
7.2 .4 Subjects 169
7.3 Results 169
7.3.1 Lettex discrimination performance 169
7.3.2 Numbers and proportions of correct and incorrect responses 172
7.3.3 Some comparisons between experiments 3 and 4 174
7.4 Discussion 175
CHAPTER 8 THE WHOLE-WORD THEORY AND THE LETTER POSITION EFFECT 179
8.1 A review of research on the effects of letter position 180
8.2 Re-analysis of the data of experiment 2 187
8.3 Discussion 193
8.3.1 The wholemword theory 193
8.3.2 Read-out and the letter position effect 195
CHAPTER 9 EXPERTMENT 5: THE RECOGNITION OF WORDSPRESENTED IN RAPID SUCCESSION199
9.1 Introduction 199
9.2 Methods 202
9.2.1 Outiine 202
9.2.2 Design 203
9.2.3 Procedure 204
9.3 Results 205
9.4 Discussion 215
9.4.1 High input loads and the whole-word theory 215
9.4 .2 The theory of special storage and erasure 216
9.4.3 Read-out and letter position effects for words 1 and 2 217
9.5 Summary 219
CHAPTER 10 SUMMARY AND SPECULATIONS 220
10.1 The distribution of familiarity effects over the stimulus and supplementary components 220
10.2 Some aspects of input processing and its facilitation by prior experience 221
10.3 Some major remaining problems 230
APPENDIX 1 Experiment 1 231
APPENDIX 2 Experiment 2 237
APPENDIX 3 Experiment 3 247
APPENDIX 4 Experiment 4 251
APPENDTX 5 Experiment 2 (Letter position effects) 255
APPENDIX 6 Experiment 5 258
BIBLTOGRAPHY 261

Abstract

Briefly displayed words are far more accurately recognized if the words displayed are familiar. Aithough well established, this phenomenon has not yet been adequately explained. Word recogrition performance combines two components: the stimulus component, comprising information received from the stimulus and transmitted into the response; and the supplementary component, comprising additional information suppiied by the subject. Techniques currently available do not enable these two components to be separated. It has therefore not been possible to determine how the effects of familiarity are distributed aoross the two components. This thesis describes techniques which do prowlde such a separation.

Employing these techniques it is clearly shown that the effects of familianity include changes in the stimulus component. Investigations of the mechamism of these changes in the etimulus component then show that the input is identified as a single particular word within the reception systems. The improvement in recogrition pexformance results from the ensuing reduction in readwout and storage load. These findings constitute a confirmation of Woodworth's whole-word theory.

CHAPTER 1

THE PROBLEM

Human action proceeds in highly efficient comordination with many aspects of a rich and changing environment. The information about the environment Which this achievement demands must be extracted from the input of some three million sensory fibres. Few of the nearly infinite number of input properties which could be extracted have any functional value, and selection of those that are useful is essential for efficient behaviour. This selection must be largely genetically determined, but a system which enabled new properties of the input to be extracted, on the basis of individual experience, would have great advantages over one that did not. Individual adaptation is of course a general phenomenon, but it has been widely assumed to result only from leaming new relations between old properties, rather than from changing the properties used. This latter possibility is also important with respect to the nature of the processes extracting the properties from the input. In a system developed by individual experience, these processes would differ markedly from those in a system determined by genetics alone.

Important though this issue is, the technical difficulties are such that neither the nature nor the extent of the dependence of input processing on
individual experience have been at all clearly determined. The basic difficulty is that the only evidence available and relevant is behavioural, whereas the issue is concerned with processes that are central Furthexmoxe, neither physiological nor psychological experiments with animals can provide conclusive evidence of the importance of perceptual learning in man. Man makes use of environmental. properties which are particularly subtle, complex and idiosyncratics it may well be that pexeeptual. development through individual experience is fax more important in man than in other animals. Extensive experimental control of the environment in which humans develop is not feasible, however, and the amount of experimentally controlied experience will often be negligible in comparison with the background of everyday experience Everyday expexience is itself difficult to treat as an experimental. varlable, and so the experimentex is left with experimental effects which axe often small and unceliable.

Even if experimental changes in performance are produced we are faced with a fundamental difficulty of interpretation. Is the change in pexformance due to the extraction of new properties from the input. or to the occurrence of new responses to the old properties? Considex, for example, the results obtained by Leeper (1935), He reports that exposure to incomplete figures, supplemented by a verbal description of the associated complete figure, inoreases the probability that a person will 'see' the complete
figure in the incomplete one. Is this because the person learns to put the inpat together in a new way, or is it only because he learns a new verbal response to the input analyzed as before? Similarly, Von Senden (1960) reports that adults who have had congenital cataracts removed are unable to recognize simple shapes and objects. Is this because they have not learned to extract the relevant visual properties, or because they have not learned to call these properties 'round' or 'square'?

In spite of these difficulties of interpretation, considerable advance has been made in discovering the relation between prior experience and performance in perceptual tasks. A wide variety of prior experiences have been used, and their effects have been studied on many perceptual phenomena: e,g, the recognition of words presented visually or acoustically, the perception of form, the perceptual constancies, the visual illusions, depth perception, and the appearance of stabilized retinal images. Extensive reviews of the findings of such research are given by Ammons (1954) and by Wohlwil1 (1960). The recent discussions by Fantz (1965) and by postman (1963) provide particularly close analyses of the methodological and interpretive problems.

Word recognition differs from the other phenomena in a number of important respects, and these differences give word recognition a particular significance in the study of perceptual Learning:
(a) Words, being culturally determined, have just the kind of regularity which can be utilized only by post-embryonio development.
(b) Language is unique to man, and may well be due in paxt to a partioular capacity for post-embryonic perceptual development.
(c) Since J. Mckeen Cattell's experiments in 1885, performance in word recagnition has been kaown to be highly dependent on individual learning. With this phenomenon at least, experimental effects are large and reliable.
(d) The interpretive issue is particularly clear, and the inconclusiveness of performance change in word recognition as evidence of perceptual leamning is at the centre of much recent debate. The difficulty is generally believed to result from the fact that some recognition responses are more likely to occur than othexs, quite independently of information from the stimulus. Therefore it is referred to as the pxoblem of response blas.
(e) Presenting a set of items, and then noting the accuracy of the subject's reproduction, is a procedure common to experiments on word recognition and to experiments on verbal learning. When in addition prior training is given on the word to be
> recognized, the methodological continuity between the word recognition situation and traditional learning situations is particularly clear.

In addition, the restricted viewing conditions used in most studies of word recognition are of significance in that individual experience may function primarily to make reactions to particular environmental characteristics quicker, easier, or more efficient. If this is the case, and in word recognition at least there is good evidence that it is, then the effects of individual experience will be seen, not in the perceptions attained, but in the rate of attaining them. It is this point which gives importance to procedures such as tachistoscopic presentation, but it is one that is rarely noticed.

The research reported in this thesis is concemed with the way in which prior experience of the displayed word affects information processing in word recognition tasks. In word recognition we have a task in which success appears to depend on events of reception, and which is known to be highly dependent on the prior experience of the subject. But this does not justify the conclusion that input processing is developed by experience because it is possible that the responses change while the input properties to which they are given stay the same. The primary aim of the present research is to investigate the processes anderlying the effects of prior experience in word recognition by the use of techniques that overcome this basic
interpretive difficulty. In onder to fuxther clarify the nature of the facts, theories, and difficulties involved, the remainder of this chapter deals with three topics:

1. The scope of the effect of prior experience on word xecognition.
2. The nature of the explanations which haye been offered for these phenomena.
3. The nature of the problem of xesponse bias in word recognition situations, and the attempts that have been made to overcome it.

The literature on each of these topics is very extensive, and the following sections do not attempt a comprehensive review, Instead they attempt to illustrate the major empirical findings and to show the various ways in which they have been interpreted.

1.1 The dependence of woxd recognition on priox experience

In the study of word recognition four areas of research have been predominant: these are the investigation of reaction time, the span of apprehenston, reading efficiency, and recognition thresholds. In all four axeas the priox experiences most relevant to performance are those in which the person met the words to be recognised. Many aspects of these prior experiences have been studied for their effect on word recognition: for example, their frequency, their recency, the modality through which
the words were presented, their association with reinforcing events, and the emotional, motivational, and other meanings they develop for the words. Throughout this thesis the primary concern is with those aspects of prior experience that develop word identity. That is, with those aspects directly concerned with the presentation of the word itiself, rather than those concerned with associated events, such as might develop meaning for the word. The effects due to these aspects of prior experience are normally called the effects of word familiarity. There are two main reasons for this emphasis. First, word identity must be established before meaning can be given to the word. Second, large performance changes have been shown to result from the prior experience of words, even if no meaning is given to them (Solomon and postman, 1952).

Reaction time and reading efficiency are not of central concern to this thesis. They are therefore discussed only to the extent necessary to show their relation to the areas that are of more central concexn and to show how general are the effects of familiaxity。

1.1.1. Reaction time

Discrimination of verbal material was among the cerebral operations whose durations were estimated by the reaction-time method initiated by Donders in 1868. The methods and results are well illustrated by the expeximents of J. McKeen Cattell (1886b).

His form of the method was to present a word, selected from a specified set of words, and to require the subject to make a reaction only if it was a particulax one. Cattell determined the 'pexception time" for this particular word by fixst subtracting from the average reaction time the simple reaction time, and then dividing the result by two. The division by two arose from the view that both perception and the subsequent preparation of the motor impulse were added to the simple reaotion. and that these wexe of about equal duration. By such methods, Cattell detexmined his own 'perception time' to be 116 milliseconds for single letters, 141 miliseconds for short English words, and 150 milliseconds for short German words. (Cattell. as an assistant to Wurdt, was probably well acquainted with the German language,) The calculation of 'perception time' may not be valid, but the fact remains that discximinative reaction time for a familiar word is little more than for a single letter, and for a familiax word in a native language shortex than for a familiax woxd in a foreign language.

Although discriminative, or choice, reaction time remained for some yeaxs a major tool in the study of word recognition and other pexceptual processes (Woodworth, 1938) it is Little used as a tool in contemporary woxd recognition seseareh. The recent revival of interest in discriminative xeaction time has been concerned with topics such as the relation of reaction time to the number of bits of information
per stimulus presentation (Adams, 1964), rathex than with the relation of reaction time to processes of word recognition.

1.1.2 The span of apprehension

Experiments on the span of apprehension are all characterized by the presentation of a visual display for a brief duration, and the subsequent calculation of the accuracy of the subject's reproduction. The xesulting performance is variously known as the span of apprehension, the span of attention, and the span of perception. Many variations of the displayed material, the manner of reproduction, and the type of calculation have been used. Most have been examined for their dependence on prior experience, and the dependence is typically large. The span for randomly chosen letters is rarely above 7 letters; Zeitler and Hecher in independent experiments, found that for familiax words 25 ox 26 letters could be reproduced after a single brief exposure. Their experiments, and others showing similar results, are described by Tinker (1929).

If a sequence of words, syllables, or lettexs, is presented acoustically, rathex than visually, the span calculated is known as the span of immediate memory. This too is known to be highly dependant on the familiaxity of the presented material (Miller, 1956). At first sight it appears that this procedure is not related to word recognition. Nevertheless, both the span of apprehension and the span of immediate memory are related to word recognition in essentially
the same way. In both cases the task of reproducing the word 'Bewegungsemfindungen', for instance, may be eithex one of immediate memory or one of ward recognition. Which it is will, in this case, depend on the person's familiarity with Gexman.

1.1.3 Reading efficiency

The familiarity of the material being read will clearly affect many aspects of reading efficiency. Some of the earliest measurements axe reported by Cattell, He says:

I find it takes about twice as long to read (aloud, as fast as possible) words which have no connexion as words which make sentences, and letters which have no connexion as letters which make words. When the words make sentences and the lettexs words, not only do the processes of seeing and naming overlap, but by one mental effort the subject can recognise a whole group of worde or letters, and by one willmact choose the motions to be made in naming them, so that the rate at which the words and letters are read is really only limited by the maximum rapidity at wich the speech-organs can be moved. . When a passage is read aloud at a normal rate, about the same time is taken for each word as when words having no connexion are read as fast as possible. The rate at which a person reads a foreign language is propoxtional to his familiaxity with the language, For example, when reading as fast as possible the writer s rate was, English 138, French 167, Gexman 250, Italian 327, Latin 434, and Greek 484; the figures giving the thousandths of a second taken to read each word. Experiments made on others strikingly confirm these results. (Catte11, 1886a, p.64-65.)

Morton (1964) shows that as the order of approximation to English of the material increases, reading speed increases, the eye-voice span increases, the mean number of fixations and regressions decrease and the number of errors decreases. The degree of approximation to English, however, did not affect the mean fixation time Similar results were obtained by Sumby and Pollack (1954).

1.1.4 Word recognition threshold

In all the variety of recognition threshold measures there are two common elements. These are the systematic variation of a stimulus parameter affecting accuracy of recognition, in accordance with the ascending method of limits, and the definition of the threshold as that value of the stimulus parameter at which reproduction of a specified degree of accuracy occurs. In nearly all experiments the words are presented either visually or acoustically. Numerous parameters of the visual stimulus have been used; duration, brightness, distance, the amount of blurring, the number of onion skin papers through which the subject sees the word, and many others. The parameters of the acoustic stimuli on which research has concentrated are intensity, and the relative amount of background noise. The aspects of prior experience whose effects on the recognition thresholds have been studied are also numerous, including: the frequency of experimental presentation of the word, the modality of presentation, the relative frequency with which the word occurs in
popular magazines, and the emotional, motivational, or neutral meanings that have been associated with the word. Most combinations of type of threshold measure and type of prion experience have been studied, Brown (1961) gives a thorough account of the results. The expeximent of Solomon and Postman (1.952) has served as a paxadigm for many later experiments. They showed that the visual duration threshold fox word recognition is a sharply negatively acoelerated decay function of experimentally controlled rehearsal frequency. This was proved to be a reliable phenomenon by the replication of King-Eldison and Jenkins (1954) Similax results were obtained for the visual brightness thxeshold by Baker and Feldman (1956) and for auditory masking thresholds by Postman and Rosenzweig (1956).

The general outcome of this research is that any priox experience with initially unfamiliax woxds will affect the recognition thresholds for those wonds, no matter which of the methods fox measuring the recognition threshold is used. There are two repoxted exceptions to this genexalization Fixst, Postman and Congex (1954) repoxt that frequency of exposure when uncorrelated with response frequency does not influence the visual duration thresholds. Sprague (1959), however, xeports that it does. The difference is very probably due to the fact that in Postman and Congex's experiment, the priox presentation of the words was as parts of other words, whereas in Sprague"s expeximent they were presented as words in theix own right. If so, this increases the importance of woxd
identity as an aspect mediating rehearsal effects. Second, Postman and Rosenzweig (1956) find no effect of acoustic presentation on the visual duration threshold. However, Forrest (1957) and Weissman and Crockett (1957) do repoxt such an effect. Whether there are exceptions or not, the effect of prior experience on recognition thresholds is clearly a phenomenon of very great generality.

1.1.5 Summary

Four different performance measures have been considexed, reaction time, span of apprehension, reading speed, and recognition thxeshold, In ald four the subject's basio task is to determine the nature of the word or words in the visual display, and in all four the performance depends on the speed with which he does this. In all four, also, it has been found that pexformance is better if the words are familiar to the subject. These common effects need not all be due to the same cause. Indeed the phenomena in the four areas are most often investigated and explained independently. Nevertheless, it seems unwise to reject the search fox a common explanation, until there are good grounds for doing so.

1.2 Some proposed explanations

Explanations of the effect of prior experience on word recognition are commonly divided into two groups. In simple terms, the finst group states that the effect occurs because, with familiax woxds, the
subject sees moxe of the presented stimulus; and the second group states that it pccuxs because, with familiar words, the subject's guesses are more likely to be right. The issue between the two groups is widely debated, but it is described in a most informal way. It is variously stated, for example, as perception vexsus response, seelng versus saying, and stimulus discriminability vexsus response bias. Unfortunately the use of terms of this kind confuses two issues. First, there is the issue regarding the amount of stimulus information that controls wad recognition performance. That is, does a greater amount of the stimulus control performance when the word is familiar, or does the amount of stimulus information used remain unchanged but become more accurately supplemented by the subject? Second, there is the issue regarding the yisual pexceptions of which the subject is aware. That is, is the subject aware of different visual perceptions when the word is familiax, or are unchanged visual perceptions reported by the subject in a different way? Although very commonly confused, these issues are clearly distinct. The second can only be resolved when techniques axe discovered that will allow the investigation of a subject's awareness other than through his verbal report, No such techniques are available at present, and it is therefore with the first issue that this thesis is pximaxily concerned.

To avoid the ambiguity inherent in the terms commonly used, and to make it clear that only the first issue is being referred to, explanations will be divided according as to whether they offer explanations in terms of input processing or in terms of supplementation. Explanations in terms of input processing postulate that, as a result of changes in the way the imput is processed when words are familiar, more information from the stimulus is transmitted into the word recognition response. Explanations in terms of supplementation postulate that performance changes are due only to the increased accuracy of that component of word recognition performance which is determined by variables extraneous to the presented stimulus. In this thesis that part of word recognition performance which is due to the stimulus will be called the stimulus component, and the remainder, which must therefore be supplied by the subject himself, will be called the supplementary component. Thus, explanations in terms of input processing olaim that familiarity affects the stimulus component, and explanations in terms of supplementation claim that it affects the supplementary component. An attempt to clarify fuxther the meanings of these terms will be made in Chapter 3.

1.2.1 Explanations in terms of input processing

The early workers took it for granted that the phenomena were due to a change in input processing. Cattell's explanation was in terms of the person seeing the word as a whole. He said:

Abstract

We now come to consider the time it takes to see a word, a process with which the brain is constantly occupied. Twenty-six words were taken, and when the expected one was seen the observer Lifted his hand. The perception-time so determined is the time needed to distinguish the word from the othex twenty-five; the time is slightly longer when it is necessary to distinguish words from others very similar in form for example, hand from band. Indeed we must remember that perception is not a sharply defined process. As I have shown, we see a letter before we see what letter it is; in like manner a further time passes before we see the letter in all its details, that it is not perfectly printed, for example....It will be noticed that the perceptionmtime is only slightly longer for a word than for a single letters we do not therefore perceive separately the letters of which a word is composed, but the word as a whole. (Cattel1, $1886 \mathrm{~b}, \mathrm{p} .387$.)

Cattell gives a similar view in the statement quoted in Section 1.1.3. He seems not to have noticed the possibility that the letters could be perceived concurrently but separately. Nor does Woodworth, who endorsed Cattell's view and expanded on it:

One curious fact noted by several investigators... is that even when 0 can report but a few, he believes he has seen all the letters distinctly during the actual exposure. Unless they f ormed a familiar word, he forgot them before reaching them in his report, Nothing is more likely; unless some word suggested itself at once, brute memory would not hold all the disconnected letters. But if 0 is not mistaken in this impression, he gets for an instant perfectly adequate cues of a correctly presented word. If for an instant he sees the whole word clearly, as he thinks he does, he has all the cues he could desire....The most effective cue for
reading a long word consists of a large share of the lettexs in the word, seen with fair distinctness for an instant,

This oonclusion does not mean in the least that the word is read by spelling it out, evidence previously oited is enough to exclude that supposition. What the conclusion means is that an adequate simultaneous view of the entire word is the cue for recalling the word. (Woodworth, 1938. $p .742-743$.)

Most of the early work on word recognition was concerned with the detemination of those aspects of the word which served as cues for its recognition. Erdmann and Dodge (Tinkex, 1929) agreed with Cattell that familiarity caused a change in the cues used, but proposed that it was not the whole of the word which served as the oue for familiar words, but only its general or external outline. Goldscheider and Mullex (Tinker, 1929) emphasised the importance of particular letters, which they called 'detexmining letters*, in forming this general outline. It was assumed that whole word form or general outline cues could not be used with unfamiliar words, the subject having then to revert to the moxe laborious procedure of identifying the word letter by letter. Tinker accepts the view that familiarity changes input processing. He suggests this may take the form of a inatural tendency to combine the different elements of a visual impresston into highex perceptual units whenever grouping is possible'. (Tinker, 1929, p.227). These explanations were pximarily concerned with reaction time, the span of attention, and
reading, but were applied to some thresholds, e. 8 , distance thresholds, and could easily be extended to most of the others. Wi.th respect to reading the general view was that the subject read by letter, word, or phrase, according to his purposes and his familiarity with the material.

The idea that the phenomena might not involve improved input processing, but be due only to improved efficiency of supplementation, either did not occur to most of these investigators or did not strike them as a critical difficulty, The explanations they offer are suggestive, but lack crucial details. For instance, it is difficult to determine what 'perceiving the word as a whole' means. It might mean perceiving each of the letters concurrently, although Cattell's statement seems to imply that he means something else. What this i.s, and what processes may achieve the perception of words as wholes, neither he nor Woodworth suggest :

Few modern writers offer explanation emphasizing input processes, and those that do give little detail. Portnoy, Portnoy, and Salzinger (1964) suggest it is a matter of 'heightened stimulus discriminability', but give no more detail of what this entails. Neissex (1954) reports an ingenious demonstration which indicated that prior experience may exert its influence through a 'perceptual process' or seeing, rathex than through 'verbal response' or saying; but no further analysis of this distinction is offexed.

1.2.2 Explanations in texms of supplementation

Although ignored by many workers the importance of supplementary processes was pointed out from the time of the earliest experiments. Zeitler in 1900 and winch in 1925, as described by Tinker (1929), were claiming that only part of the word served as a cue to recognitiong the rest being filled out by association The parts thought most likely to serve as cues were the "dominant letters', that is, the ascenders, descendexs, and capitals.

Since about 1950 explanations in texms of supplementation have been given a great deal of attention, and are now widely accepted. These explanations take many forms which diffex amongst themselves in important ways: firstly, in the nature of the supplementary processes that they postulate, and secondly, in the way stimulus and supplementary components are presumed to combine to produce the overall recognition performances

Supplementation explanations are often said to be of two types: those claiming that stimulus and supplementary componeats combine to form paxticular recognitions, and those claiming that they do not. Kempler and Wiener (1963) call the first type part-cue responsemcharacteristic theories, because they claim that experimentally or motivationally induced differences in recognition performance result from differential response characteristies to the seen part-oues, The second type of supplementation explanation is one which denies partmoues and claims
that the stimulus component is either all or nothing. If this claim were true supplementation would ocour only in the complete absence of any stimulus component. Supplementation explanations of this type can thus be described as no-cue responsem characteristic theories, or simply as nowcue theories.

Contrary to common belief the nomoue theories which are at best false and at worst absurd - have no supporters. The explanations to be reviewed in this section are thexefore all part-cue theories, As, however, it is the nowoue theories which are the most commonly attacked, an attempt to show that they have no supporters must first be made.

Two different forms of the nomodie theory have been discussed in the literature. The first form is that which denies the stimulus any role in xecognition performance Kemplex and Wiener, for instance, suggest that Goldstein may suppoxt this view. They say:

It is not clear from the various expositions of the response explanations whether any or how much variance in threshold behaviour can be attributed to stimulus input occasionally the impression is even given that response probabilities remain constant despite changes in stimulus information For example, Goldstein (1962) states: The results indicate that the subject does enter the perceptual situation with clearly defined response habits which axe not under the control of the perceptual. stimulus and which can influence the subject's recognition score' ($p, 27$). (Kempler and Wiener, $1963, \mathrm{p} .350^{\circ}$)

However, if Goldstein is quoted at greatex length it is clear that he does not claim recognition scores to be independent of stimulus information:

> The present study represents an attempt to isolate two sources of variance in perceptual recognition scores: variance related to highly overlearned response habits and variance related to the presence of a visual stimulus. The results indicated that S does enter the perceptual situation with clearly defined response habits which are not under the control of the perceptual stimulus and which can influence Sts recognition score. With regard to the perceptual defense effect words classified as anxiety arousing have less probability of being used as recognition guesses and this negative response bias makes a correct signal detection less likely when a discriminative stimulus is presented. (Goldstein, $1962, ~ p, 27$)

The second form of no-cue theory admits that there are both stimulus and supplementary components of recognition performance, but supposes that they occur only on different trials. Although not explicit on this matter, Brown and Rubenstein (1961) seem to take this to be the most general form of response bias theory, and they suggest, as do many other writers, that Goldiamond and Hawkins support such a theory. Goldiamond and Hawkins (1958) demonstrated that a logarithmic relation between word frequency and pseudomrecognition thresholds could be obtained without stimulus words and thus without a stimulus component of recognition perfommance. It is clear, however, that they do not propose a no-cue theory of any kind to account for performance when
stimulus words are presented. They make the assumption that when words are perceptible then they are all equally perceptible regardless of the frequency with which they have been previously met. This implies that partial stimulus control of word recognition may ocour. Goldiamond, in another axticle, is more explicit. He says:

The arganism enters the perception situation with built-in response biases, that is, he has been shaped by preceding conditionings. Certain of these biases are so regular as to enable us to recognize him by them; presumably personality relates to such biases....

The effect of the interaction of this factor with partial identification of a discriminated stimulus needs little elaboration. A couple of letters discriminated may provide the occasion for a response which has been previously reinforced under similar conditions. If this response has a higher probability than othexs, and this bias will lead to quick congruence, 5 will display sensitization effects. (Goldiamond, 1958, p. 397-398.)

This account shows all the basic characteristics of a partmoue theory.
(Primarily, the experiment of Goldiamond and Hawkins should be seen as demonstrating a weakness in the traditional methods of threshold measurement. Initial presentation must be below threshold. Jf the steps by which the presentation energy is raised are small, pseudo-recognition thresholds will resulte whereas if they are large, threshold measures will be crude. The existence of an acceptable size of step
will depend upon specific conditions, particularly upon the subject:s knowledge of which words are to be presented, and on the degree to which these are restricted by the partwoues available at shoxt durations.)

A11 explanations in texms of supplementation are therefore partwoue theories. Those described here have been chosen either because they are widely influential, or because they demonstrate key features clearly. No attempt is made to give a comprehensive review of all supplementation explanations.

The statement by Howes (1954) of one well known explanation is sufficiently detailed and olear to deserve full quotation:

The interpretation to be considered here can be characterized as a responsememission theory. We may think of the momentary probability of a word (defined as the strength of $S^{\prime} s$ tendency to emit that word in preference to any other) as a quantity that fluctuates widely from moment to moment in accordance with changes in inmumerable environmental and organismic conditions that affect the emissions of words. Over a time period of considerable length the average of these momentary probabilities will be a relatively stable statistic, which we shall call the base probebility of the woxd.

Vistal exposure of a word to s for a brief length of time Δt is assumed to represent an envixonmental event tending to cause emission of the exposed word. The momentary probability of a word following its exposure may therefore be analyzed into two components: a component due to the ordinary impulses to emission of the word,
whose average value is the base probability; and a component due to the additional impulse of the word's visual exposure. Consequently, the average probability of a word following each of a number of exposures of given duration must be greater than the corresponding average base probability of the word. A given level of probability following exposure can result either from a relatively large component due to base probability plus a small additional component due to exposure or from a relatively small component due to base probability plus a large additional component due to exposure. It follows that the duration threshold of a word, which is defined as the duration of exposure for which 50% of Sis reports following exposure are correct, will be lower for a word with high base probability than for a word with low base probability. (Howes 1954, p.106.)

There are grave weaknesses in the notion of base probability suggested by Howes. As the base probability is estimated over all situations, it already includes emission probability in situations where words are viewed briefly, The two probabilities are thexefore not independent. Another difficulty is that base probabilities are extremely small; as estimated by the Thorndike-Lorge word count most words have a base probability of less than oool. On the formulation of Howes, therefore, accurate word recognition would be so largely controlled by the component dependent on visual exposure that variations in threshold due to varying word frequency would be extremely small. They are in fact very large. Finally, the gravest weakness is that the base probability is a false estimate of prior frequency
of emission when appiied to any particulan sitation or limited class of situations, such as threshold measurement experiments. Changes in emission probabilities across different situations are large and discontinuous. In experiments like those of Solomon and Postman (1952) and Goldiamond and Hawkins (1958), for example, no English words axe emitted at all.

The conception of word recognttion as determined by diverse factors, implies that these factors may often be in competition, and there are explanations of the effects of prion experience on recognition which emphasize this aspect. One of the fixst was the hypothesesmetheory of Bruner and Postman (Allport, 1.955). They talk of the strength of perceptualhypotheses instead of the strengths of tendencies to emit a word. Hypothesis strength is said to be dependent on the frequency of past confirmation, the number of altexnative hypotheses available, motivetional support, and cognitive support. If the strength of a perceptual hypothesis is increased, Less information is required to confirm it, and more information is required to infirm it. Which of a numbex of competing hypotheses is confirmed will depend upon their relative stxengths and upon the stimulus infomation available.

Solomon and Postman take a similar line, They state the position elearly:

Given a population of associations, the one which has been exercised most frequently will have the greatest probability of being elicited relative to other, like associations. How will this fact influence S^{\prime} s responses in a tachistoscopic situation? When a stimulus pattern is presented at short durations or at low illumination intensities, only fragments of the total word stimulus are 'effective'. Such a stimulus fragment may be considered to represent a point on the generalization dimension of stimulus patterns capable of eliciting the coxrect verbal. response. A given stimulus fragment may, of course, be located on several generalization dimensions, each involving a different word. Which verbal response will be given depends on the relative strengths of association which have been established, through generalization, between the particular stimulus fragment and the different response words. If the visually presented stimulus word has had a greater frequency of prior usage than any of the competing response words, a correct response is highly probable.

Words of lower prior exercise frequency will be interfered with by words of higher exercise frequency. This interference will manifest itself in the tendency of $S^{\prime} s$ 'guesses' to be high frequency words. If the actual stimulus word is a low frequency word, effective stimulus fragments will elicit erroneous 'guesses' until the amount of effective stimulation becomes great enough on successive exposures to reduce the number of competing word responses. One may describe the increase in effective stimulation as limiting the range of competing 'hypotheses' (I, 10) or one may speak of a restriction of stimulus generalization. In this connection it is interesting to point to the parallel between overt intrusions in retroaction and proaction experiments and wrong pre-recognition responses in the tachistoscopic situation. In

> both cases, a strong competing response tempoxaxily replaces the correct response. (Solomon and postman, 1952, p. 597.)

This reasoning has been developed by Havens and Foote (1963): They report that the thxesholds for short English words are determined by the number of English words having a similat structure, and a high frequency, but not by the freguency of the word itself. They conolude that it is only competition whioh determines thxesholds, and that the low thresholds for high frequenoy words is to be explained on the basis of their having low frequency competitors. High frequency mords, they suggest, will have low frequency competitoxs as they themselves alxeady ocoupy the high frequency slot fox words of that configuration The weakness in this axemment is that word configurations are not found wandomy distributed throughout the frequency range; on the contraxy, configuration is highty related to frequency. High frequeney words, for instance, tend to be short words. A. high frequency word is thus more likely to have a high frequency than a low frequency competitox. If this argument is correct. then a word's own frequency must be important in determining its interaction with competitors, otherwise high frequency words would have the highest thresholds, as it is they which face the strongest competition.

Lastly, a few weaknesses common to all. supplementation explanations will be mentioned:

1. They are limited to span of apprehension and to threshold phenomena. They have been formulated to explain the increased accuracy with which a subject reproduces familiar words. Reaction-time and reading speed depend upon the rate at which the person recognizes words without making errors. Accuracy is not a variable. As supplementation explanations say nothing about the rate at which supplementation occurs, and as they usually imply the occurrence of errors, they are not relevant to measures of either reaction time or reading speed.
2. Explanations in terms of the responsecharacteristios to partmenes should state what the part-cues are, but they rarely do. This has the result of making them haxd to test, as will be seen more clearly in the next chapter.
3. Recognition is often seen as response emission, or as tendencies to response emission, where the response olosely corxeeponds to the stimulus (e,g. Howes, 1954): On the face of it, this is a surpxisingly perverse assumption. If it wexe coxrect, xeoognition of the sound of a jet engine, or of a painting would be hardy possible. In any case, reoognition seems to be necessary for the

> person to know which xesponse to tend to emit. In wew of such difficulties, adoption of this assumption would be expected to result only from very strong evidence in its support. No such evidence seems to exist. It is worth noting that there is no necessity for supplementation explanations to be in response texms, and a few axe not: hypothesis theory fox example.
4. Working with the span of attention, Goldscheidex and Mullex, as reported by Tinker (1929), discovered that for straight and curyed lines in unxelated arrangements, about four strokes could be described and reproduced. But letters are made out of such strokes, and a long word could certainly not be reconstructed from just fous of them. (It may be that more strokes are recognized if they form letters, but to claim that this is so is to admit the effect of prior experience on the stimulus component.) Consequentiy, the extent to which accuracy is increased by prior experience, appears fax too large to be due to supplemextation.

It can be seen that input processing and supplementation explanations are very different. If it is the case (as claimed later in this thesis) that some effects of priox experience axe mediated
by the stimulus component, and some by the supplementaxy component, then any attempt to explain ovexall performance changes in texms of eithex input processing or supplementation is bound to arrive at a false account. Separation of the stimulus and supplementary components of performance is thus essential if oux understanding of the effects of pxiox experience on word recognition is to advance.

1.3 The separation of stimulus and supplementary components

This section will give an account of the attempts that have been made to detexmine how the effects of prior experience axe distributed between the stimulus and supplementary components. In view of the importance of the problem it is not surprising that many attempts at resolution have been made. However. no generally accepted solution has yet been offered, as is attested by frequent statements to that effect (e.g. Gibson, 1963: Postman, 1963), and by the fact that new attempts are continually appearing.

It is genexally believed that separation of stimulus and supplementaxy components will result from resolution of the problem of response bias. That is, from control for the different a priori probabilities associated with diffexent recognition responses. It is thexefore the problem of response bias that most workers have tried to solve. However, it will become apparent that the problem is essentially not one of response bias but one of stimulus bias,

Experiments designed to test response bias explanations by showing that either correct or false recognitions depend upon the stimulus presented test only no-cue theories. They therefore test the weakest kind of supplementation explanation, which no one appears to hold. In any case, demonstration of the obvious fact that there is stimulus control of reoognition in no way solves the issue as to whether stimulus control varies with prior experience.

The remaining attempts to decide between input processing and supplementation explanations fall into five groups: those presenting stimuli in such a fashion that the part-cues available to the subject are known; those using phenomenal reports; those testing hypotheses derived from explanations in terms of eithex response biases or other forms of supplementation; those measuring response biases and thresholds concurrently, and finallys those using indicator responses other than reproduction of the words being recognized.

1.3.1 Part cue control

The rationale of this approach is given in the following argument, Reproduction has two components, the stimulus and the supplementary, which are not separable under marginal conditions of presentation. It is therefore impossible to know how changes in reproduction accuracy are divided between them. If presentation is not marginal, howevex, separation will be possible as the stimulus component will be
known. Thus, when partial cues axe pxesented above threshold, the way in which the subject supplements them can be studied. An approach of this kind is sugesested by Kemplex and Wiener (1963). The experiment of Goldiamond and Hawkins (1958), already mentioned, can be seen as an early form of this approach. If no stimulus is presented, there is no stimulus component, and any change in pexformanee must be due to a change in the supplementary component

The first difficulty with this procedure is that response charactexistios in the total absence of cues wil1 not be the same as those in the presence of partmeues, and partwoues are normally available in tachistoscopic situations (Bricker and Chapanis, 1953). Spence (1963), therefore, sought to demonstrate that the response biases to partmoues were also such as oould account for the effect of prior experjence on thresholds. Her experiment shows the major characteristios of this approach. English words of four letters were presented to subjects according to normal threshold measurement procedures. Three lettexs of each word were heavily typed, so that they would sexve as part-oues. To make the fourth letter effectively absent, it was eithex typed lightiy, so that it was baxely visible under normal. viewing conditions, on xeplaced by a smudge. The words wexe chosen so that the fourth letter could be filled in with eithex of two, and only two, lettexs; one forming a high fxequency word and the other a low frequency woxd. The results showed that guesses of the fourth letter were much moxe likely to make high
familiarity than low familiarity completions. othex expeximents in a similax vein are those of Kempler and Wiener (1964), Goldstein (1962), and Smock and Kanfer (1961) ,

These experiments make a useful contribution, for they show the variables on which the supplementation of part-cues depends. They leave little doubt that in cases where a person can only use part-cues, performance will depend on response biases. Such cases undoubtedly arise, and so the dependence of word recognition on prior experience is at least in part a matter of supplementation. But this is no resolution of the problem, for the issue is whether performance change under maxginal conditions is due to changes in input processing, in supplementation, or in both. In essence, these experiments show that performance change is a matter of response bias in cases where it could not possibly be a matter of perception, but leave untouched the question of whether it is perception in cases where it could be. In other words, it is impossible to show that a person fails to see a Ietter when it is present by showing that he can guess it when it is not.

One othex aspect of Spence's experiment must be mentioned. It is that 'thresholds" were measured by treating the fourth letter as present. This procedure faces the obstacle that it is not possible to tell to what extent the thresholds were pseudo-thresholds. Spence does not say whether the lightly typed letters were at all visible under conditions of brief presentation. Even if they were, interpretation of
the thresholds would be difficult, for with only two possible completions, accurate responses can easily occur independently of information from the input. (This is the weakness of traditional threshold measures noted in Section 1.2.2.) The combination of olear partmoxes with unclear parts was probably used to avoid the subject reporting three letters and a gap. Unfortunately, it complicates interpretation of the results, Any variation in recognition of the unclear parts, as a function of the available part-cues, is just another demonstration of the dependence of recognition on context; it still suffers from the familiar ambiguity. That is, if the fourth letters in Spence's experiment were at all visible under tachistoscopio presentation, it cannot be known whether they were recognized better in highly familiax words because of better input processing, or because of better supplementation.

1.3.2 Phenomenal reports

The most natural and straightforward way to state the issue is by using the words 'seeing' and 'saying', and this is how it is commonly put. Some workers suggest that, if this is the issue, it might be resolved by simply asking the subject to report only what he sees. This technique for response bias control is used by Haber (1965) and by Morton (1964). Haber concludes that word frequency effects are mediated by response processes (although the stimulus controls more basic perceptual processes). Morton
concludes that context and frequency effects are mediated by perceptual changes.

Assessment of the role of phenomenal reports will centre on two main aspects; the relation of perceptual awareness to input processing and supplementation, and the relation of report to awareness. Perceptual awareness is commonly identified with the information the person in fact received from the stimulus, so that if a person 'sees' more of a familiar stimulus, then input processing must be more efficient. This is the view Haber seems to favour. Morton, on the other hand, holds the view that awareness is of the combined result of input processing and supplementation. In this, he agrees with the hypothesis theory of Bruner and Postman. It is reasonably clear that awareness is not a faithful representation of the information received from the stimulus. Firstly, the subject claims awareness of elements not in the stimulus, as indicated by the errors of subjects who claim not to be guessing. Secondly, experiments carried out in association with the research reported in this thesis indicate that the reproduced letters said by the subject to be guessed and not seen, are in some conditions more accurate than is possible by chance.

As an attempt to separate stimulus and supplementary components, therefore, the introspective method proceeds by asking the subject to make the separation himself, but fails because with marginal presentations he does not know which is which.

Furthermore, even if the subject could make the separation this would not solve the problem, for the only way to determine whether he could would be to compare his separation with the stimulus and supplementary components. If this was possible the problem would already be solved.

As an attempt to determine whether perceptual awareness changes with prior experience independently of the input versus supplementation issue, this approach faces the old but real problem of the relation of awareness and report. This problem is particularly important where the perceptual awareness being considered exists only briefly. An experiment of Glanville and Dallenbach (1929) is of importance here. They report that the span of apprehension is not the number of items to which a person is awaxe of attending, but the number he does not forget. Their evidence for this is that items are reported as all appearing equally clear during presentation, although only a small proportion of them can be accurately reported. This wide field of distinct vision is well documented, and consequently it does not appear possible to accept the view that what is reported is what is 'seen'. The report certainly does have some relation to portions of the stream of consciousness, but present techniques allow no clear decision as to what these portions and relations are.

1.3.3 Theoretical development and test

In this approach, theories are developed on the basis of either an input processing or supplementation finterpretation, and their consequences tested. For instance, Zajonc and Nieuwenhuyse (1964), assumed that the frequency effect was due to response bias, and noted that the $S m R$ drive theory developed by Spence (1956) states that an incxease in drive raises the probability of responses governed by strong habits, and lowers the probability of responses governed by weak habits. On this basis an increase in drive should heighten the effect of frequency on recognition thresholds. The results obtained by Zajonc and Nietwenhusye showed no significant frequency-drive interaction, so they concluded that response bias plays a negligible role in threshold effects. A minor objection to such a conclusion is that, statistically, little weight can be placed on a failure to find an effect, particularly in instances where the theory being tested makes no prediction about the size of the effect, A more important objection is that, as innumerable theories involving the notion of supplementation could be developed, tests of particular ones do not necessarily test the others. The value of any particular test depends on the degree to which the prediction concerned is common to supplementation explanations in general. For instance, prediotion of an interaction between drive and the frequency effeot, may be common to some supplementation explanations, but it certainly is not common to all. The premise, basio to all
supplementation explanations, is the statement that the prior experience changes only the supplementary component. It is this statement, or those it implies, which must be tested; not the theories which may be built around it.

1.3.4 Measures of response characteristics

If variations in thresholds are due to the different probabilities associated with the different indicator responses, then simultaneous measures of thresholds and of response probability should show them to comvary, e.g. response probability should depend on frequency in the same way as thresholds. This technique has been used most in studies of perceptual defence (Mathews and Wertheimer, 1958; Minard, 1965). Neisser's attempt to determine whether set affects 'perceptual process' or 'verbal response' is a form of this technique (Neisser, 1954). He showed subjects a list of 10 English words and told them these would be included in the words to be displayed briefly in the tachistoscope. Thresholds for the set words were found to be lower than those for control words. Thresholds for homophones of the set words were not different from those of the control words. Neisser concludes that as homophones are reproduced by identical responses, the effect of set could not have been mediated by changes in response frequency. In the experiments of Mathews and Wertheimer, and of Minard, the bias for or against responding with emotional words was estimated by the frequency with which emotional words were given as
erroneous responses, to blanks or to other words. Both experiments produced results indicating that the bias against responding in error with emotional words was not large enough to account for the difference in the recognition of emotional and neutral words.

The basic weakness of this approach is that it only tests the no-cue theory, which is clearly invalid as a general explanation anyway. A part-cue theory, can easily explain the results of these experiments. In Neisser's experiment, for instance, one pair of homophones was 'COLONEL' and 'KERNEL'. The set established by the instructions could increase the probability of correctly completing the part-cue 'COL-m--' without affecting the manner in which the part-cue 'KER-a-' is completed. The effect of set in Neisser's experiment could therefore be explained as mediated solely by the supplementary component without this explanation predicting any changes in the thresholds for homophones. On the other hand, the effect could equally well be explained as mediated solely by the stimulus component, and so the ambiguity remains.

In view of these considerations it can be seen that the response-characteristics which must be measured are those to the part-cues the subject uses. But to determine what part-cues are used is the very problem with which we began. This difficulty is increased by the fact that experiments using the above approach are typically based on some notion of
response probability in the abstract, and display blanks or haphazardly chosen words to measure it. If the stimuli used to measure response bias were similar to those for which thresholds were measured, the partwcues used in both instances would be more likely to be similar, Even then, however, results would be suggestive rather than conclusive.

1.3.5 Forced-choice techniques

This is the solution in which perhaps most hope has been placed. It is developed from the study of psychophysical methods made by Blackwe11 (1953). The proposal made is that as different indicator responses have different probabilities of emission, quite apart from recognition, the problem might be resolved by using the same indicator responses for all acts of recognition. The most common procedure is for the subject to indicate in which of four quadrants a selected stimulus is located. Experiments using techniques of this kind to control response bias are those of Goldstein and Ratleff (1961), Portnoy, Portnoy, and Salzinger (1964), and Taylor, Rosenfeldt, and Schulz (1961). The basic inadequacy of the method, however, is clearly seen by Taylor, et al.; their discussion is sufficiently clear and pertinant to warrant quotation:

The forced-choice technique would appear to overcome Goldiamond's methodological criticisms of the method of limits. In the present investigation evidence was obtained that findicated that word frequency is related to verbal report even when response bias is controlled.

The survival of the empirical relationship between performance and prior frequency of usage with still another source of extraneous variance reduced or eliminated may give added confidence to the perceptual interpretation. But even in the forcedmchoice situation S is still percelving partial cues and guessing as to the spatial location of the designated stimulus. Thus the question remains unanswered as to whether perception is influenced by frequency of prior usage or whether fewer partial cues are needed to identify more familiar materials.

Whatever the psychophysical method, partial perception would seem to be inevitable if complex patterns are to be employed. The search for a 'pure' measure of perception would thus appear to be a futile one. The latter conclusion is hardly novel. (Taylor, Rosenfeldt and Schulz, 1961, p.494-495.)

From this discussion it can be seen why attempts to decide between input processing and supplementation explanations have not succeeded. The problem is not primarily one of response probabilities at all. If a person's prior experience changes the efficiency with which he can replace lost or absent information, then this changed efficiency can affect recognition performance no matter what the particular indicator response may be, The difficulty is due, not to the presence of response biases, but to the presence of conditional dependencies between the letters of the words presented. That is, to the presence of what could be called stimulus biases. A person's prior experience can only affect his ability to replace lost information if there are biases in the selection of stimulus words. If the stimali are selected in an unbiased fashion, supplementary and stimulus
components can be separated, independently of whether there are response biases ox not. Exactly how this can be done will be shown in Chapter 3. First, an experiment is reported which tests some predictions of the supplementation explanations reviewed in Section 1.2.

CHAPTER 2

EXPERTMENT 1: RECOGNITION THRESHOLDS, REJECTION THRESHOLDS. AND USAGE FREQUENCY

When a distinction is excessively difficult to make empirically, the suspicion must arise that it is an empirically meaningless one generated solely by the vagaries of language. The distinction between perceptual and response processes in word recognition may warrant this suspicion, particularly while stated in such terms. Later chapters attempt to show that so unproductive an end to the affair can be avoided. An indication of how this may be done is provided by the results of the investigation reported in this chapter.

Input processing and supplementation explanations differ most in their predictions regarding the occurrence of the learned word as an incorrect response, but research has concentrated on the occurrence of the learned word as a correct response. Both explanations predict that the subject is more likely to give a correct response when familiar words are presented. Where their predictions differ is with respect to what will happen when other words are presented. Explanations in terms of supplementation predict that, in addition to being given more often correctly, the familiar words will be given more often incorrectly, when the words presented are similar to the familiar words. They also predict that although learning makes the recognition of the familiar words
easier, it will make the recognition of similar words harder. These implications can be clearly seen in the explanation of Solomon and Postman quoted in section 1.2.2. In contrast, explanations in terms of input processing carry neither of these implications.

The above considerations indicate the need for a direct investigation of the effects of prior learning on recognition when the words presented are not the learned words but are similar to them. This chapter reports such an investigation. Subjects rehearsed Turkish words, to various frequencies. Rehearsal frequencies were then related to the recognition response given to similar words as well as to the learned words themselves. Rejection thresholds were measured in addition to the usual recognition thresholds. The rejection threshold is defined as the longest exposure duration at which the word is given as an incorrect response to the presentation of another word. Three predictions were tested:

1. The recognition thresholds for unrehearsed words increase with the rehearsal frequency of their competitors. (Competitors are words of similar structure to those presented.) This prediction is made explicitly by Havens and Foote (1963), but appears to be an implication of all currently held supplementation explanations.
2. The probability that a word will occur as an incorrect response to similar words increases with its rehearsal frequency. This is clearly
an implication of all currently held supplementation expianations.
3. Rejection thresholds, for words occuring as Incorrect responses, increase with the rebearsal frequencies of those words. Although rejection thresholas bave not been previausly measured, they are clearly relevant to theories in which ease of confirmation and resistance to infimmation are olaimed to depend on a common propexty. In the formulation of Brumer (1951), which is supported by Allport (1955) and also by Blake and Vanderplaas (1950-1951) , this common property is "bypotheses strength". In the fommulation of Solomon and Postman (1952), as developed by Havens and Foote (1963); the common property is the icompetitive staength of responses'. Both foxmulations imply that refection thresholds mixror xecognition thresholds. If this is the case rejection threshokds will be a sharply negatioely accelerated jncteestng furiction of rehearsal frequency"

None of these predictions appear to have been directly tested by the use of expertmentally controlled rehearsal frequency.

The experiment was designed to allow investigation of two furthex aspects?

1. The effert of rehearsal frequancy on the recognition thresholds for the rehearsed woxds
themselves. This was expected to replicate the effect found by Solomon and Postman, and to provide a basis against which to compare rejection thresholds.
2. The numbex of presentations intervening between rejection of the leamed competitor and correct recognition. Theories in terms of competition predict that, as correct recognition depends upon overcoming competition, it will occur at the same time as the strongest competing response is rejeoted (see, for example, the quotation from Solomon and Postman, given in Section 1.2.2.).

2.1 Method

The experiment consisted of two phases: the rehearsal phase, in which the subject rehearsed words to selected frequencies; and the measurement phase, in which thresholds were measured. In the rehearsal phase, Turkish words of seven letters were presented in a tachistoscope each word remained on the screen for four seconds, with an interval of eight seconds between words. During each interval the subject spelt the preceeding word letter by letter, and then pronounced it as though it were a word in English. In this series, words recurred at varying frequencies, such that two words occurred at each of the five frequencies: $1,2,5,10,25$. These will be called the rehearsed words. Fourteen other words occurred once each and were not used again. The 100
presentations so required were given a random ordex. with a new randomization for each subjeot.

After a break of about ten minutes, thresholds were measured for three groups of words: the ten rehearsed words; ten matched words not previousiy seen by the subject (these were constructed by changing two lettexs of each rehearsed word) and ten control. words not previously seen by the subjects and having no particular similarity to the rehearsed or matched words. The ordex in which the thresholds for these 30 words were measuxed was randomized except that exactiy half of the rehearsed woxds ocourred before theim corresponding matched word. A new randomization was made for each subject.

At the commencement of the measurement phase the subjects were informed that some of the words they were to see were words they had previously rehearsed. and that some of them would be words they had never seen before. Threshold measurement began with a display duration of 40 milliseconds. This duration was increased by ten milliseonds steps to 200 miliiseconds, and thereafter by steps of 20 and 30 milliseconds. The subject was encouraged to repart as much as possible of the word after each presentation, and all recognition responses were tapew recorded. The sequence was ended after the subject had given three correct responses in succession. Two recognition threshold measures wexe recordedi the duration at which the first correct response occurred. and the duration at which the first of three successive correct responses occurred. On the oceasions when
matcbed words were presented, the experimenter also recorded the ocourrence and nature of any overt intmisions from the rehearsed competitor Overt intrusions were defined as recognition xesponses containing either of those letters in the rebearsed word that had been changed to make the matched word. When they occurred, rejection thresholds for the overt intrusions were recorded.

2.1.1 The words used.

Over the whole experiment 40 words were used. Of these, 20 were the Turkish words of seren letters used by Solomon and Postman (1952). The remeining 20 were obtaned by constructing one matohed word for each of the initial 20. The construction was performed by xandomly selecting two of the three middle letters and rephacing them by other letters chosen from the alphabet randomly, except for the restriction that the word remain pronounceable. This procedure was based, on the requirement that the matched words should, at short durations, provide the same partmeues as are used in recognition of the leamed words themselves. As it is a long established fact that letters at fhe ends of briefly displayed words are recognised better than those in the middle (Woodworth, 1938), it appears that the requirement can be met by leaving the outside lettexs the same and changing those in the middle. The words were typed in capicals onto cards by an IBM electric typewriter. None of the subjects bad met any of the words prior to the experiment. All the words used are shown in Appendix i.

2.1.2 Design

The main tasks of the design were to allow each subject to be tested under each treatment combination, and to separate the experimental effects of frequency and competition from differences due to the words themselves. Frequency and word effects were separated by a 5 x 5 , subjects x frequency, latin squaxe design. Each word therefore occurred exactly once at every frequency. This design was repeated four times to allow separation of competition and word effects. Four groups of subjects were required. Each word occurred for one group of subjects as a core word, for another as a matched word, for another as a control word, and for the last, not at all. Exactly how this was done is shown in Table 1 (Table and Figure numbers begin at 1 within each chaptex).

TABLE 1 THE DISTRIBUTION OF WORD SETS ACROSS THE FOUR GROUPS OE SUBJECTS

	GROUP			
	A	B	C	D
Rehearsed	1	1'	2	21
Matched	$1{ }^{1}$	1	2^{\prime}	2
Control	2	$2{ }^{*}$	1	$1{ }^{3}$

The words in each set are Iisted in Appendix 1.

2.1.3 Subiects

The design required 20 subjeots. These were the first 20 undergraduates attending first year psychology lectures who volunteered to act as paid subjects. Their ages ranged from 17 to 25 years; 12 were female. eight were male. Each subject was bested individually.

2.1.4 Apparatus

A 3 - Cbannel tachistoscope supplied by Taket and Company Ltd, was used. The optical arrangement was that to be described in more detail in Section 4.1. The timer used electrically driven cans operating micromswitches. The reliabllity of the cam rotation gave display durations to within an exror of about five milliseconds. Contact bounce on the microwswitches effectively increased this error to a value of approximately ten milliseconds.

Pre-stimulus and postmstimulus fields were of equal bxightness, and slightly brightex than the stimulus field. They showed a blank white card with a lightly drawn fixation point located orer the centre of the word.

2.2 Results

Recognition thresbolds measured by the duration at which the first of three successive correct Jodgements occurred, differed wery Inttle from those measured by the duration at which the first cotreat judgement ocourred. Once a correct judgement was given.
the subject oniy rarely reverted to an incorrect judgement, It is, therefore, only necessary to consider thresholds measured at the first coxrect yudgement. No significant differences were associated with the order in which thresholds were measured (that is, with whether the rehearsed word occurred before ox after its matched word). These thresholds were therefore combined in all later analyses.

2.2.1 Becosntion Thresbolds

A11 the threshold measures obtained are given in Tables 1,2 , and 3 of Appendix 1. These show the thresholds for the rehearsed, matched and control wards respectively, Recognition thresholds averaged over a11 20 subjects, for the rehearsed, matohed and control words are given in Tables 2 and 3. Thresholds for the control words are given in both tables as having a rehearsal frequency of zero. This is alao hew they are given in Figure 1, where the results are sbown graphically.

TABLE 2 RECOGNTTION THRESHOLDS FOR REHEABSED AND CONTROL WORDS RELATED TO THETR REHEARSAL FREQUENCY

TABLE 3 RECOGNITION THRESHOLDS FOR UNREHEARSED
WORDS AS RELATED TO THE REHEARSAL FREQUENCY OF THEIR COMPETITORS

	REHEARSAL FREQUENCY					
	0	1	2	5	10	25
$\begin{aligned} & \text { THRESHOLD } \\ & \text { IN } \\ & \text { MILLISECS } \end{aligned}$	314	298	271	311	244	243

The effect of rehearsal frequency on thresholds for the core words is large, and closely replicates that found by Solomon and Postman (1.952). As such it is simply another demonstration of the size and reliability of the phenomenon to be explained. An analysis of variance performed on the thresholds for the core words showed both the frequency and subject effects to be highly significant. The interaction term was insignificant. As a result of the latinsquare design, this term includes variance due to subjects x frequency interaction, and variance due to word differences. The implication is, therefore, that both variances are small. It can be seen that the relation between thresholds and rehearsal frequency is not a logarithmic function, as is sometimes claimed, but is more sharply negatively accelerated.

The predicted increase in thresholds for the matched words, as compared with the control words, plainly did not occur. Instead, thresholds were lowered by the rehearsal of a competitor. The
significance of this effect was tested by an analysis of variance comparing control word thresholds with matched word thresholds combined over all frequencies from 1 to 25. A log transformation of the threshold scores was needed to reduce hetexogeneity of variance. The results of this analysis are given in Table 4.

TABLE 4: ANALYSIS OF VARTANCE OF CONTROL AND MATCHED WORD RECOGVITIOY THRESHOLDS

Source af Variation	Sum of Squares	Degrees of Freedom	Mean Squate	F	P
Subjects	180,414	19	9,494	23.5	\&.01
Competitor Rehearsal	4,823	1	4,823	11.9	\$.01
Subjects x Rehearsal	16,985	19	894	2.2	<.01
Error	145,339	360	404		
Total.	347,561	399			

The competitor rehearsal effect is clearly significant, The estimate of exror yariance, provided by this analysis, was used in t.- tests compaxing the control. word thresholds wi th matchedword thresholds at each of the rehearsal frequencies separately. These tests gave values of t having the following probabilities: \&.05 at frequencies 1 and $2,>.3$ at frequency 5 , and <.01 at frequencies 10 and 25. This suggests that the positive transfer from competitor rehearsal may be
reduced at intemmediate rebearsal frequencias. The significant interaction term suggests the possibility that thresholds for the matched words may hate been raised above those of the control words by compethtox rehearsal for at least some subjects.

2.2.2 Ovext Intrusinns and Rejection Thresholds

The number of oceasions on which the whole of the rehearsed word was given as a response to its matched word, were rare. Overt intrustons were therefore taken to have occurred when the subject incorrectly named at least one of the three middle lettexs of the displayed word as one of the letters ocourring in its fehearsed competitor and not in itself. Rejection thresholds were measured for intrusions so defined. All the xejection thresholds obtained axe given in Table 4 , Appendix L. In this table a blank indicates that no oyett intrasion occured. The associated thresholds for correct recognition following rejection are also given in this table. The total numbers of intrusions summed oper all subjeots are given in Table 5. As there axe two words at each requency, tor gach of 20 subjects, the maximum number of intrusions possible is lo. Tabie 5 also gives the rejection thresholds on intrusion averaged over all subjects, and these xesults are presented graphically in Figure 2.

TABLE 5: TOTAL NUMBER OF OVERT INTRUSIONS AND MEAN REJECTION THRESHOLDS

REFEARSAL FREQUENCY OF INTRUDTNG WORD				
NUMBER OF OVERT INTRUSIONS MAX $=40)$	1	2	5	10

A chimsquare test of the differences in the number of owert intrusions at each frequency shows that the differences do not approach significance (X^{2} $=1.5$, degrees of freedom $=4, P\rangle .8$). This is not the result expected on the view that an inctease in Tehearsal frequency 1 eads to an increase in guessing frequency. (The overt intrusion rate was close to 50 per cent, and of these less than 20 per cent were of the whole word)

It is difficult to test efficientiy the significance of the differenoes in mean rejection thresholds. This is because rejection thresholds can be measured miy wher overt intrusions oceur, and they often did not. Significance tests are not necessary, however; as the prediction that rejection thresholds incxease with rehearsal frequency is clearly not supported. Any significant differences that there are will include the decrease in rejection thesholds with the increase

In rehearsal frequency from 5 to 10. From a
comparison of the results given in Tables 2 and 5 it can be seen that a rehearsed response is rejected as incorrect at durations that are just as short as those at which it is first given correctly. This would be difficult to explain if coxrect recognition of rehearsed words at these short durations occurred only as a guess. The difficulty is Puxther increased by the fact that once a subject has given a correct response, he rarely revexts to an incorrect one.

2.2.3 The donendence of recognition stintrusion and rejection

The recognition thresholds for the matched words were divided according to whether overt intrusion occurred or not. For these two sets of thresholds means at each competitor rehearsal frequency wexe calculated and are given in Table 6, and shown in Figume 2.

TABLE 6: RECOGNITION THRESHOLDS, IN MILLISECONDS, OF THE MATCHED WORDS, WITH AND WITHOUT INTRUSION

	COMPETTTOR REHEARSAL FREQUENCY				
	1	2	5	10	25
WITH TNTRUSION	340	263	314	225	280
WITHOUT INTRUSION	266	284	308	264	187

As indicated by t wests, the differences in threshold ate not signixicant at any frequency, not over all frequencies combined.

The interval between rejection and recognition, averaged over all subjects and all frequencies, was 107 miliseconds, or about five presentations. There was no indication that the size of this interval varied with rehearsal frequenoy. This finding weakens theories of recogrition in texms of competition as they imply that there should be no interyal between rejection and recognition.

2.2 .4 Summary of Results

The recognition thresholds fox nonsense words were found to decrease with rehearsal in the usual manner. The recognition thresholds for unrehearsed nonsense words were affected by the rehearsal of similar words, but the thresholds were decreased, not increased. There was some evidence that this positive transfex was less with intemediate rehearsal frequencies. The probability of a rehearsed word ocourring as an incorrect response to a similar word did not increase with rehearsal trequency, and neither did rejection thresholds. The ocourrence of an overt intrusion did not affect the threshold of subsequent recognition. Between rejection and recognition there Was a relatively large interval of about 100 milliseconds , or five presentations.

2.3 Discussion

This discussion is concerned with three things: the doubt these results throw on current explanations of the effect of prior experience on recognttion the
fallure of the experiment to decide between supplemertation and input explanatione in general. and the equdence, in the results, of discriminative processes.

The predictions devived from explanations of the type proposed by Solomon and Postman (1952), wexe not supported. These authors might axgue that the first prediotion (that rehearsal of a competiton raises the recognition thresholds) is intended to apply only when the displayed word has itself been rehearsed. Such a restriction cowld be claimed on the grounds thet competition only affects supplementation and that unxeheaxsed words have no supplementation to be interfered with by competitian This modified view however predicts that competitor rehearsal wijl not affect recognition thresholds for unxebearsed words. In fact, the thresholds for matohed words were Lowered by competitor rehearsal. Such a xesult cannot be accownted for by any of the currently held supplementation theories. Doubt is also thrown on these theories by the failure of overt intrustons and wejection thresholds to increase with rehearsal frequency.

Although experiment 1 shows weaknesses in current explanations, it is inconclusive It does not differentiate between input processing and supplementation explanations in general because it is still possible to explain the results of experiment 1. While claiming that rehearsal does not alter the partm cues the subject uses. This can be done by pointing
out that the middle lettexs may be among the partmenes extracted from the display, and not in the section the subject supplies himself. Although middle letters may not normally be amongst partwones at short durations, they could have been in experiment 1 if subjects realized that midde letters were being changed. (Ooe subject did indeed report such a realization.) The predictions were all tested on the basis of the assumption that the supplementary component includes the middle letters. If this assumption is false ther the results do not provide a general disconfirmation of supplementation explanations. Thus the present experiment fails to solve what is commonly known as the problem of response bias, because it is based on a priori assumptions regarding which letters serve as part-cue.

Many aspects of the present results suggest the occurrence of discriminative processes. In other words, they suggest that subjects were at times processing the input in texms of the question is it X?', rather than in terms of the question, 'What is it?'. Three main aspects will be mentioned. Firstly, frive presentations intervened, on average, between rejection of a rehearsed competitor and correct recognition of the matched word. This indicates that the subjects were able to determine that the displayed word was not the rehearsed word far sooner than they could determine what word it was. Secondly, nearly all the overt intrusions wexe of one of the two changed letters only. It is probably safe to assume that in
most of these cases the subject knew what the other letter of the rehearsed word was. If this is so, it is possible that he did not give it because he knew it was the wrong lettex, even though he was often unable to say which was the right letter lastlyg the thresholds fox the matched words were affected by rehearsal. of the competiner rehearsed words, but they were independent of overt intrusions from the rehearsed words. The implication of this is that the tehearsed word may affect recognition on trials whexe it does not occur itself as a xecognition response. This would be expected iff the input were processed in such a way as to show that the displayed word was similas to, but different from, the rehearsed word.
hoxd discrimination, if it does ocout could explain the effect of prior experience on reaction time, reading efficiency, and on the span of apprebension, in addition to explainine the effects found in experiment 1. To offex an explanation in terms of word discrimination however, is to offer an account of how input processing may change, before it has been shown that it does change. Experinental evidence that falle to demonstrate that a obange in input processing occurs, as the evidence of experiment 1. does, cannot possibly show what fonm the change takes. The next chapter, therefore, retumas to tho pobblem of separating the stimulus and supplementary components.

CHAPTER 3

SOME POINTS CONCERNING WORD RECOGNITION AND WORD RECOGNITION EXPERIMENTS

This chapter attempts to make two things more explicit: the questions being asked, and the conditions for an answex. The first requires consideration of the background notions conceming the way in which people process information in word recognition tasks, and these notions are discussed in Section 3.1. The remainder of the chapter is concemed with the methodological problems involved in answering these questions. Section 3.2 points out the inadequacy of traditional scoring procedures and the need for an explicit analysis of the word recognition situation. Section 3.3 provides some relevant terminology, and Section 3.4 offexs an analysis of word identification experiments. Section 3.5 describes the techmique of word discrimination and random changes, offers an analysis of woxd discrimination experiments, and shows how this technique provides an unbiased measure of the number of letters in the stimulus component.

In this chapter, and in the following experiments, word recognition is analysed in tems of the subject's performance on each trial, where a trial is a single presentation and the subjectis report of it. There are three main reasons for this, First, such performance is most amenable to analysis. Second, such performance,
beine relatively simple, as a momonent of many other aotivities - inoludins renogntion threshold performanoe Any findings regarding wt whll thexefore have a moxe general significance than findings xegarding performanc* that is moxe elaborate. Third, Af the pertommane studied is simple there is a ereater chanca that the processes making it can somebow be teased apart.

3.1 An elementary analysis of the processes inyolyed in word recognttion

Consider the situstion in which a pergon reproduces some aspect or aspects of a brief visual display. From our everyday knowledge of people's performance at such tasks it can be seen that the transmission of information trom the display and into the report must involve the following systems:
l. Visual receptor systems.
2. Storage systems, in which the information received from the display is stoxed for durations longer than is passible in the receptor aysteme.
3. Readmout systems, whioh transfer intormation from the receptor to the storage systems.
4. Retrieval systems, wheceby the stored information is used to cortrol report.
5. Supplementation systems. throngh which information othex than that transmitted from the displey is added to the report and which may be in pant controlled by whaterex information is eransmitted from the display into the report.

The division of the sequence of events suggested can be more clearly seen in the block diagram of Figure 1 . In this diagram arrows are used to represent those processes that are of a relatively transitory nature, and which serve predominantly to transfer information between states that are more stable. It is not proposed that any of the systems mentioned are simple or unitary; each will be a complex system in itself. It is proposed, however, that the distinctions drawn are crucial ones which cannot be ignored. It is also proposed that the basic task of research is to further analyze the component systems, and that behavioural phenomena are relevant to this analysis, but only when it can be determined in which system or group of systems they arise.

It is necessary to begin by examining more closely the nature of the systems distinguished, and the following paragraphs consider each in turn.

The visual receptor systems are defined as those whose state continually depends upon the pattern of light falling on the retinae. In other words, the information in these systems is information regarding present stimulation. Anatomically, they involve at least the retinae, the optic nerve, area 17 and probably area 18 of the striate cortex.

It is because the receptor systems are continually dependent on retinal input that storage systems must be involved in the transmission of information from presentation to reproduction in word recognition experiments. The reproduction usually ocours some
seconds after the display has been removed, and it een be delayed for 30 seconds without performance loss (Sperling 1963). During khis time the states of the receptor systems follow whatever new displays ocour, and cannot therefore remain in the state into which they were put by the present word. The necessity of the distinction between receptor and storage systems bas often been pointed out - Freud (1900), frox example. presents the argument clearly But it is interesting to note that the distinction has also frequently been demied (Gomulicki 1953). Baing fox instance, denies that, the impressions ot sense...lie stored up in a chamber quite apart from the recipient apparatusy to be manifested again when the occasion calls. He goes on to suggest that lustead, The renewed teeling ocenpies the very same parts, and in the wery same manner, as the original feeling, and no other parts, nox in any other assignable manner. (Bain $1855, \mathrm{PP} .355-356$). The grounds on which such dendals sexm do be made are that the retained event has the same efferts as the original event, and that retention of an event must involve repetition of that event. Neither of these arguments is vexy convincing。 What Bain tails to notice is that if the original feeling is to be renewed t must somehow be maintained in the meantime.

The processes transfexing information from reception to storage will be called 'read-out' processes in accordance with the usage of Averbach and Coritetit (1961), and of Sperting (1963). This term is used because it indicates what the processes do, while
carrying few confusing connotations as to how they do it, Nevextheless, the idea of 'read-out" differs Iftife from the long established idea of "attention. Attention was well described, for instance, by stewaxt in 1802 as a fact of common knowledge:

Fox my own part, I am inclined to suppose, (though I would by no means be understood to speak with confidence) that it is essential to memory that the perception or idea that we would wish to remember, should remain in the mind for a certain space of time, and should be contemplated by it exolusively of evexy thing else; and that attention consists partly (perhaps entirely) in the effort of the mind to detain the idea or the perception and to exolude the other objects that solicit its notice. Notwithstanding; however, the difficulty of ascertaining in what this act of mind consists. every person must be satisfied of its reality from his own consciousness; and of its essential connexion with the power of memoxy. (Stewart, 1802, p.108).
In this statement Stewart even implies, as do the modern writers, that the process is sequential and cannot handle moxe than one 'pexception' or 'idea' at a time.

Recent word has brought to light much important evidence regarding the stages of filterings capacity limits, and principles of seleotion, involyed in attention (Treisman 1964). From many axpeximents it is clear that readmout is highly selective, and is controlled by a wide variety of influences. The basic properties of readmout processes, however, are still far from clear. In this thesis, concem is limited to the read-out processes dealing with briefly presented words, and particularly with those aspects of read-out which may be modified by word familiaxity。

In tachistoscopic studies of word recognition, it is generally assumed that the retrieval and use of stored informarion are of littie or no convern This is presumably because both the amount of matertal and the storage tume are, typically, so small that althoush retrieval and use are little moderstood we can be reasonably sure that they are operating at near perfect efficiexcy. Evidence on this mattex codald be gained by asking for two reproductions, one some littie while after the firet. If no increase in accuracy occurxed or the second reproduction, the assumption a pax perfect setrieval on the first reproduction would be strenglhened.

The supplementary systems are ali those which add information to that provided by the display. Often they will serve to make up for information bost guring input processing. The outhine offexed so fax way give the impression that supplementation occurs only very late in the sequence of exeats. This is not intended; supplementation most prohably ocours at all stages. Supplementation is not distinguished by the time at which it occurs, but by the fact that it supplies infomation mhoh does not oome from the stimulus. Thus in the block diagram glven in Figure Is reanmout storage and xetrieral, mean readmout, storage, and retrieval of information from the digplay.

The question with which this research is conctrned can now be stated as. In when at the above systems does the effect of prior experience an word recogntiton arise? If this questan is to be answered
the first step must be to separate those effects arising in the systems producing the stimulus component from those arising in the systems producing the supplementary component. The remainder of the present chapter attempts to show how this can be done.

3.2 Scores of word recomition

The basic data of word recognition experiments are scores relating to the degree of accuracy with which the subject reproduces the letter sequence presented to him. These are the scomes which Goldiamond (1958) calls accuracy scores. But if we are studying the reception and transmission of stimulus informationg these are not the scores we want. On most pocasions, the accuracy of reproduction will be in part due to the reception and transmission of stimulus infoxmation, and in part due to efficient supplementation. To obtain the score that is required we must correct the accuracy score for that amount which is due to supplementation. When we are concerned with the reproduction of complen stimulus patterns, and when in addition some ox all of these are familiar to the subject, it is very difficult to determine the form these corrections should take, and no adequate procedures have yet been devised.

The difficulty of devising suitable corrections is further increased by the existence of many different forms of scoring procedure, all designed according to principles that are arbitrary or unstated. Woodworth clearly recognised and described part of the problem. Disoussing the method of retaining members he said:

> It is easy to score, if we are satisfied with a simple count of the correctly reproduced items. When two o's reproduce correctly the same number of items, but one 0 gives the correct order and the other not, the first o clearly shows the greater memory of the presented list; but as soon as we try to devise a scoring system which shall allow partial oredits, we find any system arbitrary. (Woodworth, 1938, p.8).

> Scoring systems remain arbitrary, and are in addition often far from simple. The following is a typical example:

The recall score was obtained as follows: each correct letter in the response was given one point. Letters were scored as correct if the correct letter was in the correct position. Double and triple reversals were given one point each. In addition, a single omission or intrusion was discounted from the array in marking the rest of the letters, but one point was subtracted each time this was done. A letter was considered an omission or intrusion if, after correcting for its position, the response resumed correctly for two or more consecutive letters. Thus if the stimulus was RPITCQET and the response was RPTCOETC the score was $6-1$ or 5 letters. (Pylyshym, 1965, p.284).

As long as theoretical concern is limited to a consideration of whether particular variables do or do not affect reproduction accuracy, such scoring procedures are adequate. But when an attempt is made to discovex how these variables affect accuracy, the procedures are plainly inadequate, because such accuracy scores combine, in unknown proportions, the accuracy resulting from the stimulus and supplementary components. While the basic data remain so equivocal, no amount of theoretical juggiting can remove the ambiguity in experimental results.

The development of adequate correction procedures is possible only if the relations between the data that we can collect and the data that we need, are analyzed explicitiy and in detail. This, the remainder of the present chapter attempts to do.

3.3 The elements of analysis

The analysis can be made in texms of two primitive elements, from which are obtained three important, but derivative, components. The primitive elements are 'Letters' and 'operations'; where the operations are any defined procedures for selecting and grouping letters. The derivative components are 'alphabets' "terms', and 'dictionaries'. The meanings of these words are similar to their common meanings, the main difference being that here they are more general. An 'alohobet' fox instance, is any defined set of letters, not just those sets occurring in natural languages. They could therefore contain any number of letters from zexo to infinity. If these words are intended in their normal, more restricted sense, confusion will be ayoided by use of phrases such as 'the English dictionary', and 'the English alphabet'.

The only property of letters required by the analysis is mutual exclusiveness. That is, if anything is a letter, then it is one particulax letter and not any other. The analysis is not itself concerned with deciding letter identity. It can only be applied to situations where it has already been decided what things are letters, and what letters they are.

An alphabet is any exhaustive set of letters. It determines the number and identity of different lettexs available for the construotion of terms, and therefore also the maximum number of different terms of any given size. A term is any selection of letters, qsually, but not necessarily, in a particular ordex. Both ordered, and non - ordered terms may contain repetitions of letters. Finally, dictionaries are sets of terms. They are not ordered, and do not contain repetitions. (Alphabets could be called dictionarles of all possibies single letter terms, but as a case of particular significance they merit their own title.)

Operations are, therefore, any defined proceduxes whereby alphabets, terms, or dictionaries axe formed either from letters, or from othew alphabets, terms, or dictionaries. The variety of different operations which are possible is unilmited. An example that shows the form such operations can take is, iselect from dictionary D any term that has no letters in comuon with term B. ' Any defined system of letters, alphabets, terms, dictionaries, and operations is called a formative system. An infinite variety of formatiwe systems is clearly possible, xanging from those with a single alphabet and a single operation, to those with many alphabets, terms, dictionaries, and operations. The formative system of word identification experiments is just one of these, and it is with this one that the next section is concerned.

3.4 An analysis of woxd identifieation experiments

3.4.1 The formative system

The focal point of word identification experiments is the subjeot's reproduction, which is a sequence of Letterg fomed from the letters and words available to the experimenter and from the letters and words available to the subject. By describing the expeximental situation as a fommative system it jis possible ta show cleaxly the major steps involved in the formation of this reproduction. Once this is done the formal properties of the system can be detemmed. This will show whethex the separation of stimulus and supplementary components is possible, and if so how it must be performed. It is essential to the purpose of the analysis that it dravolve no unlikely assumptions regarding woxd recognition and word recognition experiments. The experimental situation must thexefore be axalysed only into steps of whose existence and interraiation there is inttie doubt.

The fomative system proposed is outlined in the diagram of Figure 2. For all texms, except texms Z and G, the suffix in the symbol K_{i}, j indicates thet the symbol stands for the i th letter in the i therm K . For the terms Z and G the suffix indicates the position that the letter occupies in term R. For example, $Z_{i}=j$ stands for that letter in the 1 th term Z which when transfexred to term R occupies the j th position. The reasonsfor desoxibing word identification experiments as a formative system of this panticulax kind will first be given briefly, and then various points will be discussed in more detail.

Temm X is the texm which is selected from some set of terms called dictionary 1 , and presented to the subject. The rules goveraing the selection of texm X are called operation 3 . AJphabet 1 is the set of letters from which diotionary I is formed, and the rules according to which this is done are called operation 1. Temm is the supplementary component of reprodictionf it is formed by operation 5 from diotionary 2. Dictionary 2 is the whole set of terms which are available to supplement term Z. The procedures by which it is constructed are called operation 2 . Einally, term R is the reproduction, which is formed by stmply adding together terms \mathbb{Z} and $\boldsymbol{q}_{\mathrm{G}}$. The score resultirg from the experiment is always some function defined on temms X and R 。

Vaxious points require further elaborations

1. In the fomative system given here dictionaries 1. and 2 are constructed from the same alphebet. This corresponds to experiments in which experimenter and subject can be reasonably described as agreeing upon an alphabet. This will most often be the caseg but it is possible to imagine situations where it is not: fox mary of the latter situations ${ }_{3}$ bowerexg the results derived from the present analysis will still be ralid. This will be so, providing only that the subject's alphabet is a sub-set of the experimenter's alphabet.
2. The contents of the dietionaries will be most easily specifieds sametimes in terms of the
operations by which they are formed, and sometimes by explicit denotation.
3. In some experiments the contents of dictionary 1. are known, but in many they are not. In experiments using English words, for instance, the set of words from which the words presented are chosen is often not definitely known, either to the experimenter or to the subject. Nevertheless, no great difficulty exists here for the experimenter is always able to choose dictionaries that he can spectify whonever he needs to.
4. The case is similar with respect to dictionary 2. If the subject is instructed to use only English words, the contents of dietionary 2 cannot be exactly specified. It, on the other hand he is instructed to use a particulax set of words, then there is a better chance that the contents of dictionary 2 can be specified. In cases where the subject is unable to obey the instructions an adequate description of the experimental situation might not be given by a formatiye system of the type proposed but by some other formative system. In many experiments this difficulty will not axise. however, as it will be a simple matter for the subject to act in the instructed fashion and produce only the terms specified as term R. In any case, most of the difficulties assoclated with specifying the contents of dictionary 2 can
be awoided. It will be shown in the next section that the properties with whtoh we are most concerned can be determined without the use of any detailed assumptions regarding the oontents of dietionary z^{2}
5. The rules governing selection of terma from diotionary I. fox presentation, ane of great importance. Tf terms are salected in some orderly tashion, it is possible that this order could be used to select texms from dictionary 2 so that term R is always accurate but independent of tera Z. It is relatiwely common to avoid this difficaity by randomly selecting the temes for presentation. Accordingly only that case will be seudied in which opexation 3 $1 s$ detined as the random seleotion of terms from dietionary 1. An important distruction is that between selection with replacement and selecthon withoot replacement. Random selection without medacement is by far the most common procedure. but it has the defect that it involvas a continual decrease in the size of dimtionaty I. This continual decrease might be used to increase the efficienoy of supplemeatations particularly when the number of terms in dietionary 1 is relatively small and the subject knows what terms these are Random selection with replacement is easily achueved experimentallys greatiy simplifies the analysts, and does not
require the dubious assumption that subjects are unable to use the knowletge of which words have already been presented to increase efficiency。 It is therefoxe the procedure examined in the present chapter, and used in all latex expeximents.
6. Operation 4 is defined as the selection of none. some, or all of the letters of term X fo from term Z. Every letter in tern Z an therefore be paired with a letter in term X. Operation 4 corresponds to the sum of those pwents that were divided in section 3.1 into the phases of reception, readwout, stoxages and use. Texm Z is that group of letters, which is transmitted through all of these phases. The properties of the formative system will greatly depend on whether or not operation 4 maintains the $1 e t t e x s$ of term Z in thetr correct positiono Three different cases will be stadiede ordered transfer, in which $Z_{i}, j=X_{i}$. for all y in Z. normordered transter, in which the position of Ietters in temm Z is independent of their position in term X and mixed transferg in which some lettexs are transferred as in ordered transfer, and some as in non ordered transter*
7. Operation 5 is defined as the selection of lettexs from dietionary 2 according to any rules whatsoever, providing they are independent of all lettexs in temm X that fall to be transferred into term Z. In the diagrammatio outhine, the
axrow from texm Z to operation 5 . indicates that the rules of opexation 5 can inolude the use of term Z, not that they must.
8. Operation 6 is defined as the summation af terms $\%$ and G to foxm term R according to the male $Z_{i}, j=R_{i} \cdot j$ for all jin term Z and $G_{i}, k=R_{i}, k$ for all k in term Z It is clear from the definition of operation 6 just given that there cannot be both a letter z_{i}. f and a lettex G_{i}, j, for if there were two different letters R_{i}, j would result.
3.4 .2 Definition of symbols

Let the number of:
lettexs in alphabet $1=n$
terms in dictionary $1=d_{1}$
texms in dictionary $2=d_{2}$
selections made by operation $3=N$
1ettexs in term $X_{i}=x_{i}$
letters in term $Z_{i}=z_{i}$
letters in texm $G_{1}=g_{1}$
Letters in term $R_{i}=r_{1}$
Also let:
the permutation score $=S p$ and
the combination scoxe $=$ So
The permutation score, $S \mathrm{p}_{\mathrm{B}, \mathrm{C}^{\prime}}$ on texms B and C say, is defined as the number of letters in the two texms which are identical and in the same position The combination
score, $\mathrm{Se}_{\mathrm{B}, \mathrm{C}}$, on two texms B and C , is defined as the number af letters in temm B wheh can be paired with a letter in texm C. Lettexs can be paired only if they ane identical, and lettexs in either term can be used for pairing onty once. In the following the scores on the texms X and R will be written without sub-seripts, that is, simply as Sp and se ,

In many experimental situations the values of the variables z, g, $S p$, and $S e$ will vary from trial to trial. In these cases the values of the variables will be best described by their probability distributions and by theix expected values. (The expected value of a vaxiable, x, that takes only discrete values, is defined as $\sum_{i=0}^{\infty} f\left(x_{i}\right), x_{i}$, where $f\left(x_{i}\right)$ is the probability that x takes the value x_{i}.)

3.4 .3 Some basio relations

The task of separating the stimnlus and supplementary components af reproduction can now be restated. It is the task of determining the relations between $\mathrm{E}(\mathrm{z}), \mathrm{E}(\mathrm{g})$, and either $\mathrm{E}(\mathrm{Sp})$, or $\mathrm{E}\left(\mathrm{Se}_{\mathrm{g}}\right)$, or both, whexe these foux values axe the expected values of $z, g^{\prime}, S p$, and So respectively, Conditions must then be found under whim $E(z)$ an be calculated from only those othex variables of the system whose values are known or can be detemmined.

To simplify the analysis only those cases will be considered whexe

$$
\begin{aligned}
x_{i} & =x \text { for all i } \\
\text { and } x_{1} & =x_{i}=x \text { for all i. }
\end{aligned}
$$

That is, where all texms in dictionary 1 and heace every term X are of the same size, and where the subject's reproduction is also of this size. Both of these conditions are easy to meet expeximentally.

The first problem is to detemme $E(S p)-1 . e$. the expected value of Sp .

From the definition of opexation 6

$$
\begin{gather*}
S_{p}=S p_{X, Z}+S p_{X, G} \\
\cdot \quad E(S p)=E\left(S_{p_{X, Z}}\right)+E\left(S p_{X, G}\right) \tag{1}
\end{gather*}
$$

The value of $E\left(S P_{X, Z}\right)$ will depend upon the nature of the transfer. If the transfex is ardered this value will be $E(z)$, if the transfer is nonwordered it will be a relatively simple function of $E(z)$. [It is worth noting that iff the transfer is nonmordexed then $\left.\mathrm{E}\left(\mathrm{Sa}_{\mathrm{X}, \mathrm{Z}}\right)=\mathrm{E}(\mathrm{z})\right]$

To detemmine the value of $\mathrm{E}\left(\mathrm{Sp}_{\mathrm{X}, \mathrm{G}}\right)$, donsider any pain of 1 ettexs $G_{i} . j$ and $X_{1} . j$, when term 2 is a specific term Z_{h} and term X is a specifio term X_{i}. The probability that the two letters axe the same, is given by

$$
\sum_{k=1}^{n} p\left[\left(X_{k} \cdot j=k\right) \cdot\left(G_{j}, j=k\right)\right]
$$

That is, the probability that $X_{1} . f$ and a, both equal, some particular letter k, summed orex all o different letters in the alphabet.

The probabilitios may be different for different terms \mathbb{Z}_{h}, and in actual situations they nearly always will be. The maximum number of different terms Z_{h} possible is $2^{(x-1)}$, as each Letter in term X, except for X_{i}. J, may or may not be in term Z. The probability that the two lettexs are identheal must be averaged over all these different texms Z, and must therefore be stated as

$$
\sum_{i=1}^{\sum_{i=1}^{x-1}} \sum_{k=1}^{n} P\left[Z=Z_{n}\right] \cdot \quad P\left[\left(x_{i} * j=k\right) \cdot\left(G_{i} \cdot j=k\right) \quad Z_{n}\right]
$$

Now the average value of $S p_{X, G}$ when term X equals X_{i}, will be this value summed over all g letters in term G, that is
 Finally, this ralue may vary well differ fram one texp in diotionary 1 to another, so that $E\left(S_{X, C}\right)$ must be expressed as the average value of this expession ovet all d_{1} terms.

$$
\begin{equation*}
E\left(S_{X, G}\right)=\frac{1}{d} \sum_{i=1}^{d_{1}} \sum_{j=1}^{g^{\prime}} \sum_{h=1}^{2^{X}} \sum_{k=1}^{1} P\left[Z_{1}=Z_{h}\right] P\left[\left(X_{i} \cdot j=k\right) \cdot\left(G_{1} \cdot j=k\right)\left[Z_{h}\right]\right. \tag{2}
\end{equation*}
$$

A similar expression can be derived for the value of $\mathrm{E}\left(\mathrm{Sc}_{\mathrm{X}, \mathrm{G}}\right)$ 。

Equations 1 and 2 are quite genexal, and state the basic relations in the relatively simple type of word recognition experiment we are here considexing. They state explicitly the problems that must be solved by any experiment endeavouring to separate the stimulus and supplementary components of word recognition performance. To achieve this separation the value of $\mathrm{E}\left(\mathrm{Sp}_{\mathrm{X}, \mathrm{G}}\right)$ must be determined, and equation 2 shows that this is impossible if the distributions of the Z_{h}, X_{i}, j, and G_{i}, j are uriknown. In nearly all traditional experiments on word recognition (and in all that use words chosen from an existing language) all three distributions are unknown, and so division of the accuracy scores obtained in these expeximents into stimulus and supplementaxy components is impossible. Thus the above considerations provide a general proof of the conclusion arrived at in Section 1.3 , where particular experimental designs were examined in detail.

The most difficult problem, as can be seen from equation 2 , is that the value of $\mathrm{Sp}_{\mathrm{X}, \mathrm{G}}$ depends on the exact contents of texm Z. In other words, the amount of accuracy due to guessing usually depends on exactly what information from the stimulus is used. In most actual situations this would indeed be the case. Therefore a correction for guessing is only possible if we already know what information from the stimulus
is used. But it is because we do not know this that we need the correction.

Fortunately, there are some specific situations in which it is possible to determine the value of $E(z)$ without prior knowledge of exactly how the Z_{h} are distributed. One is where the value of $E\left(S p_{X_{,} G}\right)$ is the same for all Z_{h} of any given size This situation is analyzed in detail in Section 3.4.4. Another, is where, for a11 Z_{h} of any given size, the value of $E\left(S p_{X, G}\right)$ is the same within each of a number of classes of Z_{h}, and where it is known with what probability a Z_{h} is in each of these classes. This is the situation made use of by the method of random changes, and is analyzed in detail in Section 3.5.

3.4.4 Dictionaxy 1 complete

Let $x_{a}, x_{b}, x_{c} \ldots x_{n}$ be the different sizes of terms in a dictionary, The dictionary is called complete if it contains all the terms of size $x_{a}, x_{b}{ }^{\prime} x_{c}, \ldots x_{n}$ that it is possible to construct from its associated alphabet. The case considered first is that in which dictionary 1 is complete.

3.4.4.1 Ordered transfer

Ordered transfer is that in which $\mathbb{Z}_{i,}, j=X_{i} \cdot j$ for all i and all j. This corresponds to the case in which all letters transferred from the display to the reproduction maintain their correct position. First consider the case where z is constant over all N repetitions of operation 3 .

We begin with equation 1

$$
\mathrm{E}\left(\mathrm{Sp}_{\mathrm{p}}\right)=\mathrm{E}\left(\mathrm{Sp}_{\mathrm{X}, \mathrm{Z}}\right)+\mathrm{E}\left(\mathrm{Sp}_{X_{,}, G}\right)
$$

From the definition of operation 3 for ordered transfer

$$
E\left(S p_{x, z}\right)=z
$$

To determine $E\left(S_{P_{X, G}}\right)$ considez a single letter X_{i}, j. Because all possible terms are in dictlonary 1 and selection is random, the probability that $X_{i} \cdot j$ is any particular letter is $\frac{1}{n}$, for all possible texms X, and hence for all possible tarms Z. Thexefoxe

$$
\begin{aligned}
& \sum_{h=1}^{2^{x-1}} \sum_{k=1}^{n} P\left[Z=Z_{h}\right] p\left[\left(X_{i}, j=k\right)\left(G_{i}, j=X k\right) \mid Z_{h}\right] \\
= & \sum_{h=1}^{2^{x-1}} \sum_{k=1}^{n} p\left[Z=z_{h}\right] \frac{1}{n} p\left[\left(G_{i}, j=k\right) \mid Z_{h}\right] \\
= & \frac{1}{n}
\end{aligned}
$$

This is so, no matter how the G_{i}, j and Z_{h} axe distributed, because the summations ovex both h and k are exhaustive. But this is true for all g letters in texm G and for all texms in dictionary i. therefore from equation 2

$$
\begin{align*}
\mathrm{E}\left(\mathrm{Sp}_{\mathrm{X}, \mathrm{G}}\right) & =\frac{1}{d_{1}} \cdot d_{1} \cdot \frac{g}{n} \\
\therefore \quad E\left(S_{\mathrm{X}_{\mathrm{G}}, \mathrm{G}}\right) & =\frac{g}{\mathrm{n}} \tag{3}
\end{align*}
$$

As $r=g+z$ and $x=r$

$$
\begin{gathered}
G=x-z \\
\% \\
E\left(S p_{X, G}\right)=\frac{x-z}{n}
\end{gathered}
$$

Substituting in equation 1

$$
\begin{equation*}
E(S p)=z+\frac{x-z}{n} \tag{4}
\end{equation*}
$$

and thus $z=\frac{n E(S p)-x}{n}$
All values on the R.H.S. of this expression are values that are known of can be determined,

Now consider the case where z is not constant over the N repetitions of operation Ss Let the probability that term Z has qi letters be giver the value of $f\left(z_{i}\right)$. Then, as before.

$$
E(S p)=E\left(S p_{X, Z}\right)+E\left(S_{P_{X, G}}\right)
$$

But now

$$
\mathrm{E}\left(\mathrm{sp}_{\mathrm{X}, \mathrm{z}}\right)=\sum_{\mathrm{i}=0}^{x} \&\left(z_{i}\right) \quad z_{1} \mathrm{E}(z)
$$

$$
=\frac{x}{n} \sum_{y=0}^{x} f\left(z_{i}\right)=\frac{1}{n} \frac{\sum_{i=0}^{x}}{x}\left(z_{i}\right) z_{i}
$$

$$
=\frac{x}{n} \cdot \frac{E(z)}{n}
$$

$$
\therefore E(S p)=E(z)+\frac{\mathrm{S}-E(z)}{n}
$$

and

$$
\begin{equation*}
E(z) \quad=\frac{n E(S p)=\frac{x}{n}-\frac{1}{1}}{x} \tag{5}
\end{equation*}
$$

$E(z)$ can thus be determined independently of whether or not z vaxies from trial to txial.

This dexivation carries a most important implication. In the preceding analysis it has been assumed that the transfex of letters is an all-ox-none affair. Empirioally this may not always be the case; but even if transfer is not all-ormone equation 5 remains appropriate. Any transfer from term X to term Z, for instance, that involved parts of letters rather than whole lettexs, would be equivalent to some probability function $f(z)$, and equation 5 was derived for all $f(z)$. It seems reasonabie, therefore, to view $\mathrm{E}(z)$ as giving the avexage number of lettexs transferred from term X to texm Z independently of whether or not the transfer is all-ormone.

3.4.4.2 Non-ordered transfex

In this case z letters are taken from term X to form term Z but their position in term Z is independent of their position in term X. The problem is to determine the relation between $E(S c)$ and $E(z)$.

First, considex the case where z is constant. From the definition of operation 6 and So

$$
S c=S c_{X, Z}+S c_{(X-Z), G}
$$

and $\quad . \mathrm{E}(\mathrm{Sc})=\mathrm{E}\left(\mathrm{Sc}_{\mathrm{X}, \mathrm{Z}}\right)+\mathrm{E}\left(\mathrm{Sc}_{(\mathrm{X}-\mathrm{Z}), \mathrm{G}}\right)$
The last term is Sc $\left(X_{\alpha}, Z\right), G$ and $n o t S S_{X, G}$ because, by the definition of Sc, letters are only available for pairing once. Each letter from term Z will pair with
one letter in term X leaving only the remainder of term X for pairing with term G From the definition of operation 3

$$
E\left(\operatorname{Sec}_{X, Z}\right)=z
$$

The problem is to determine the value of $E(S c(X, Z), C)$. That is, to detemine the average number of letter pairings that can be made, xegardless of position, between two fndependently selected texms of g letters. As in the case of ordered transfex, the texms can be assumed to be independent because operation 3 is random selection from a complete dictionaxy, It might be expeoted that $\mathrm{E}(\mathrm{Sc}(\mathrm{X}-\mathrm{Z}), G)$ would be as easy to determine as $E\left(S P_{X, G}{ }^{\prime}\right)$ but it appears to be extremely difficult. The following dexivation is the most simple it has been possible to find.

Let La,j be the number of times that the j th letter of alphabet 1 occurs in term (X-Z). Let $L_{b, j}$ be the numbex of times the f th letter of alphabet 1 occurs in term G. The number of pairings involving j th letter of alphabet 1 will be whichever of $L_{a, j}$ and $L_{b, j}$ is the smaller. Call this value L_{j}. $\mathrm{Se}_{(\mathrm{X}-\mathrm{Z}), \mathrm{G}}=\sum_{j=1}^{n} \mathrm{~L}_{j}$
and

$$
\mathrm{E}\left(\mathrm{Sc}_{(X-Z), G}\right)=\sum_{j=1}^{n} \mathrm{E}\left(\mathrm{~L}_{j}\right)
$$

The distribution of the $L_{a, j}$ and $L_{b, j}$ is given by:

$$
P\left[L_{a, j}=w\right]=P\left[L_{b, j}=w\right]=\binom{C}{w}\left(\frac{1}{n}\right)^{w}\left(\frac{n-1}{n}\right)^{g w w}
$$

As the terms ($X-Z$) and G are independent, the $L_{a, j}$ and $L_{b, j}$ are independent, and their joint distribution is given by

$$
\begin{aligned}
P\left[L_{a, j}=w ; \text { and } L_{b, j}=v\right] & =\binom{g}{w}\left(\frac{1}{n}\right)^{w}\left(\frac{n-1}{n}\right)^{g-w}\binom{g}{v}\left(\frac{1}{n}\right)^{v}\left(\frac{n-1}{n}\right)^{g-v} \\
& =\binom{g}{w}\binom{g}{w}\left(\frac{1}{n}\right)^{w+v}\left(\frac{n-1}{n}\right)^{2 g-w-w}
\end{aligned}
$$

Call the R.H.S. of this equation $f(w, v, g, n)$

$$
\therefore E\left(L_{j}\right)=\sum_{w=0}^{g} \sum_{v=0}^{g} L_{j} f(w, v, g, n)
$$

By summing separately the cases in which w>v, $w=v$, and $w<y$ this expression may be rewritten as

$$
\begin{align*}
& E\left(L_{j}\right)=\sum_{W=1}^{E} \sum_{v=0}^{W-1}+\sum_{w=0}^{g} \sum_{V=W}+\sum_{w=0}^{g-1} \sum_{v=w+1}^{E} L_{j} f(w, v, g, n) \tag{6}\\
& \text { But } \sum_{w=1}^{E} \sum_{v=0}^{w-1} L_{j} f(w, v, g, n)=\sum_{w=1}^{g} \sum_{v=0}^{w-1} w f(w, v, g, n) \tag{7}\\
& \text { as in every term } \mathrm{v}<\mathrm{w} \text {, and } L_{j}=\text { whichever is the smaller } \\
& \text { of } v \text { and } w \text {. The third team in the expression on the } \\
& \text { R.H.S. of equation } 6 \text { is also equal to the R.H.S. of } \\
& \text { 7, since }
\end{align*}
$$

$$
\begin{aligned}
\sum_{w=0}^{g-1} \sum_{v=w+1}^{g} L \\
j
\end{aligned} f(w, v, g, n)=\sum_{w=0}^{g-1} \sum_{v=w+1}^{g} w(w, v, g, n)
$$

by simply interchanging v and w, which are only variables of summation.

$$
=\sum_{V=0}^{g-1} \sum_{w=v+1}^{g} v\binom{g}{w}\left(\frac{E}{n}\right)^{1} \frac{1}{w+v}\left(\frac{n-1}{n}\right)^{2 g-w-v}
$$

Which is most easily evaluated when written as

$$
\sum_{w=0}^{g-1} \sum_{v=w+1}^{g} L_{j} f(w, v, g, n)=\sum_{v=0}^{g-1} v, b\left(v ; g, \frac{1}{n}\right) k\left(v ; g, \frac{1}{n}\right)
$$

Where: $b\left(v: g, \frac{1}{n}\right)$ is the probability that the binomial variable takes the value v in g trials when the probability of success is $\frac{1}{n}$, and $k\left(v ; g, \frac{1}{n}\right)$ is the probability that the binomial vaxiable takes a value greatex than r in g trials when the probability of success is $\frac{1}{n}$. The values of these functions for different values of v, g, and $\frac{1}{n}$ are widely tabulated. The second term in the expression in the R.H.S. of equation 6 , can also be expressed in texms of the binomial function.

$$
\sum_{w=0}^{E} \sum_{v=W} L_{j} f(w, v, g, n)=\sum_{V=0}^{E} \quad v\left[b\left(v ; g, \frac{1}{n}\right)\right]^{2}
$$

Substituting these values in equation 6

$$
\mathrm{E}\left(L_{j}\right)=2 \sum_{V=0}^{g-1} v, b\left(v ; g, \frac{1}{n}\right) k\left(v, g, \frac{1}{n}\right)+\sum_{V=0}^{g} v\left[b\left(v ; g ; \frac{1}{n}\right)\right]^{2}
$$

As

$$
\begin{aligned}
& E\left(\operatorname{So}_{(X-Z), G}\right)=\sum_{j=1}^{n} E\left(L_{j}\right) \\
& E\left(\operatorname{Sc}_{(X-Z), G}\right)=n E\left(L_{j}\right)
\end{aligned}
$$

because the value of L is identical for all, the n letters.

$$
E(S C)=z+2 n \sum_{W=0}^{\frac{X-z-1}{}} \mathrm{~V} \cdot \mathrm{~b}\left(\mathrm{~F}, \mathrm{X}-\mathrm{Z}, \frac{1}{n}\right) \mathrm{k}\left(\mathrm{~V} ; \mathrm{x}-\mathrm{Z}, \frac{1}{n}\right)
$$

$$
\begin{equation*}
+\sum_{v=0}^{x-z} v\left[b\left(v ; x-z, \frac{1}{n}\right)\right]^{2} \tag{8}
\end{equation*}
$$

To check the validity of this xesult all possible outcomes in some simple cases, where x and n are small, wexe enumerated, The values of $\mathrm{E}(\mathrm{So})$ detexmined from these enumerations were fond to be the same as those given by equation 8 for the same values of x and n.

In expeximents all values of the vaxiables in equation 8 wisl be knomm except for zo Because af its complexity the onIy way to solve equation 8 for z is to tabulate the values of $\mathrm{E}(\mathrm{Se})$ xesulting from each integral value of z. With words of normal. length this is an easy task.

$$
\begin{aligned}
& \therefore E(S c(X-Z), C)=2 n \sum_{V=0}^{g-1} v, b\left(v, g, \frac{1}{n}\right) k\left(v, g, \frac{1}{n}\right)+\sum_{V=0}^{g} v\left(v, g \sum_{n}^{\frac{1}{2}}\right)^{2} \\
& \therefore \text {. As } E(S C)=E\left(S_{X, Z}\right)+E\left(S_{(X-Z), G}\right) \\
& \text { and } g=x-z
\end{aligned}
$$

The case where z is not constant is even more complicated. However, providing the vaxiance of z is not laxeger than one ox two letters the value sf $E(z)$ coxxesponding to any given value of $E(S C)$ oan be estimated by graphical intexpolation. For this intexpolation the tables of corresponding values of Z and $E(S c)$ calculated from equation 8 can be used.

It is possible to make an exact detexmination of the value of $E(z)$ fox the case in which z varies, but it involves a moxe detailed analysis of the experimental results. It requires the determination not of $\mathrm{E}(\mathrm{Sc})$ but of $f(\mathrm{Sc})$ whexe $f(\mathrm{So})$ gives the probability that Sc takes each possible value from zero to x. The increase in acouracy gained by the exact solution does not seem laxge enough to warsant the large amount of extra work entailed. Therefote the approximate method is used in ail expeximents reported below.

3.4.4.3 Mixed transfex

It is important to consider the case of mixed transfer as it is probably one that often ocours empirically. In mixed transfer opexation 3 is such that the position of letters in term Z is, for some letters, the sane as theix posttion in texm X_{9} and for other letters, independent of their position in term X. The proportions of the two kinds of transfex can always be calculated, whexe necessary, bacause these proportions detexmine a particular pair of values fox the two scores $\mathrm{E}(\mathrm{Sp})$ and $\mathrm{E}(\mathrm{So})$ 。 The value
of $E(2)$ caloulated from $E(S c)$ Eives the avexage number of letters in term z irrespective af the correctness of their position. The value of E(z) calculated from $\mathrm{E}(\mathrm{Sp})$ gives the average number of lettexs oomrect with respect to both identity and position. The average number of dettexs in term Z whose transfex is independent of position is thexefore related to the difference between the two values af $E(z)$ calculated from $E(S c)$ and $E(S p)$ Detexminatiok of the exact nature of this xelationship is not necessary fox oux present purposes.

3.4 .4 .4 Complete dietionaries and the separation of stimulus and supplementaxy components

The coxrections of the accuracy scones given by equations 5 and 8 , provide estimates of the oumbex of lettexs received from the stimulus and tramsmitted into the reproduction which are unbiased by any form of supplementation. In additton they provide a means fox diffexentiathng between the txansfex of informathon regarding letter identity and that megarding lettex position.

Applied to the pxoblem of detexmining whether priar experience affects the stimulus omponent, a possible solution is seen in the case with which the accuracy scores can be comreoted for greasing when dictionary I is complete. These concections are valud no matter whether the subject has had prion experience of the woxds in dictionary 1 os not. It wound therefore be passible to investigate the efrect af
prior experience on the stimulus component by using complete dictionaries and varying the subjects experience with them. No such investigation has yet been made. An immediately appaxent difficulty is that complete dictionaries will usually be very large For instance, in a complete dictionary of three letter terms made from the English alphabet, there are 26^{3} different terms. Adequate xehearsal of the whole dictionary, or even a significant portion of it, would clearly be very difficult to achieve. This difficulty could be overcome, however, by the use of smalles alphabets.

3.4.4.5 Optimum readiness

It is reasonable to assume that the subject is in a state of optimum readiness when he is xeady for just one particular, highly overlearned, word. The separation of stimulus and supplementaxy components by use of a complete dietionaxy as just suggested has the great weakness that it is not appiicable to such conditions of optimum readiness. A study of performance undex these conditions is essential., because, if prior experience does affect the stimulus component, then it is under conditions of optimum readiness that it is most likely to do so. If, on the other hand, there is no effect of priox experience on the stimulus component, then it is under conditions of optimum readiness that this must be demonstrated. For to demonstrate the absence of the effect under less optimum conditions, is not to exclude its
possibility under more optimum conditions. The basio theoretical issue is therefoxe most likely to be settled by the use of techniques able to measure the degree of stimulus control of woxd recognition under conditions of optimum readiness. Techniques that meet this need are developed in the next section.

3.5 Word discximination and random changes

3.5.1 The method of word disorimination

Word discrimination ass a method is simply a matter of asking the subjoct the question Was this word displayed.', rathex than, as in word identification, "What word was displayed?' Postman (1963) notes that the crucial diffewence between psychomphysical and word zecognition pxocedures is that the formex use a very xestricted range of responses (e.g. yes or no), whereas the latter use a very wide range of responses. It is now generally agreed that the use of a wide xange of xesponses raises very great difficulties of interpretation (see, for example, Hake and Rowan, 1966). It i.s a most important feature of the word discrimination method that it removes this difference between psychomphysical and word recognition poocedures, and thexeby all of the problems associated with the use of a wide range of responses. In spite of this virtue practically no use has been made of the method to study word recognition. The most probabie reason for this is thet word discrimination seems to require so little stimulus infomation that it can provide no
detailed evidence regarding the perception of complex stimulus pattems. In addition, the method of word discrimination seems to necessitate preparing the subject for one particular word. It will be shown. however, that both of these deficiencies can be remedied: the fixst by the method of fandom ohanges described in the next section, and the secand by procedures described in Chaptex 40

3.5 .2 The method of random changes

In the method of random changes the subjeet must discximinate a briefly displayed wod from a specified woxd. On trials selected at random, the briefly displayed word is the same as the sperifled word. and on the other trials it is different. When it is difierent only one letrex is changed, and this letter is selected at random and changed to another lettex selected at random.

To understand the method of random changes consider the situation in which subject fs briefly shown a familiar word, say TABLE, and he coxrectly says what it is. The expeximenters problem is to discover how much of the stimulus the subjeet actually determined to have the stated identity: that is, he must discover whether the subject actually detemined thet the first lettex was T and not some othex lettex, that the second was an A and not some othex letter, and so ono The most simple and perhaps the anly possible way to find this out is to change paxts of the stimulus and see whether the change is detected. To estimate
detection rates acourately, howevex, change and nowehenge trials mast occur at random. It is anly undex these conditions that the subject must detect the change in arder to respond diffexentially to change and nowhange trials, The way in which the stimulus is ohanged, on change trials, is also cxucial. If the letters changed are selected in a biased or axdexly mannex, then performance will depend, not upon the number of letters the subject discximinates, but upon which he discriminates. For this reason it is nesessary that the $1 e t$ ters changed be selected at random. Only then is it impossible for the subject to blas discximination in favoux of letters that are more likely to be mangedo

The most important feature of the method of random changes is that it enables the experimenter to calculate the mubex of lettexs disoriminated. The subject's ability to detect the change will depent on two things: the number of lettaxs changed. and the number of lettexs discriminated. The experinentex knows the fixst, and therefore in the right conditions can calculate the second. Exactly how this is done de shown in the next section.

3.5 .3 Calculation of the number of letters aiscximinated

The formative system which can be used to analyse word diserimination expeximents is very similar to that used fox word identifioation expeximents. The main diffexence is in the nature of texm R and opexation 6. Texm R will have muy
two states: one coxresponding to the response indicating identity, and the other to the response indicating difference. Operation 6 will form term R by comparing terms Z and G with some other tem. This other term will be called term C. Operation 6 is such that if the letters of terms Z and G do not match the letters of term C then term R takes the state indicating difference. The scores collected from the experiment will be some function of terns X, R, and C. Matters are greatly simplified by the fact that the only aspect of term G that is xelevant to the scores is the probability that it contains a non-matching lettex on occasions when texm Z contains no nonmatching letters.

The following analysis shows how the mubex of letters in term Z can be calculated from performance when the method of random changes is used.

Let the number of letters:
in the word $=x$
changed, when the word is different, $=y$ discriminated $=z$.

Also, let the probability that the subject
says 'Different' when the words are different $=u$
says 'Same' when the words are
different $=\pi$
says 'Same' when the words ame

$$
\text { the same }=\mathrm{q}
$$

$$
\begin{aligned}
& \text { says 'Different' when no change is } \\
& \text { detected }=p \\
& \text { detects the difference }=\varnothing
\end{aligned}
$$

The basic outcome of any experiment will be estimates of u, and q, which together describe the subject's performance. The letters discriminated axe those letters of the stimulus whose identity determines response. The subject detects the difference if the letters discriminated include at least one changed letter.

To determine the relation between the number of letters discriminated and the observed scores, first consider the trials on which the word is different. The probability that the subject detects the difference is ϕ. The probability that he does not detect the difference is therefore ($1-\varnothing$). When he detects a difference he says 'Different'. When he does not he may nevertheless still say 'Different'; the probability that he does so is p. Therefore, the probability, u, that the subject says different when the word is different is given by the equation

$$
\begin{align*}
u & =\emptyset \cdot 1+(1-\emptyset) p \\
\therefore \phi & =\frac{u m p}{1-p} \tag{9}
\end{align*}
$$

Now \emptyset can also be expressed in terms of : z, the number of letters discriminated; x, the number of letters in the word; and y, the number of letters changed, \emptyset is the probability that y letters, selected at random from x lettexs, will include at least one of z particular letters. Thus

$$
\begin{align*}
& \phi=1-\frac{\text { the number of ways of choostng }}{\text { the number of ways of choosing } y} \frac{\text { letters from }(x-z) \text { letters }}{\text { letters from } x \text { letters }} \\
&=1-\frac{\left(\begin{array}{c}
y-z \\
\left(\frac{y}{y}\right)
\end{array}\right.}{} \\
&=1-\frac{(x-z)!}{(x-z-y)!y!} \cdot \frac{y!(x-y)!}{x!} \\
&=1-\frac{(x-z)!(x-y)!}{(x-z-y)!x!} \tag{10}
\end{align*}
$$

It is important to note that as the letters to be changed are selected at random this expression could be dexived without any assumptions regarding which letters the subject discriminates.

The value of p may be determined by considering all the trials on which no change is detected, On some of these trials the words will in fact be the same and on othexs they will be different. As change occurs at xandom, the trials on which the words are the same will be a random selection of all trials. If, therefore, the subject says 'Different' when no difference is detected, he will be just as likely to do so when the words are the same as when they are different. Thus the probability p is also the probability that he says 'Diffexent', when the words are the same. This probability is $(1-q)$, and therefore

$$
\begin{equation*}
p=1-q \tag{11}
\end{equation*}
$$

Substituting in equation 9 the values given by equations 10 and 11, we get

$$
\begin{aligned}
& 1-\frac{(x-z)!(x-y)!}{(x-z-y)!x!}=\frac{u-1+q}{q} \\
& \therefore \frac{(x-z)!(x-y)!}{(x-z-y)!x!}=\frac{1-u}{q}
\end{aligned}
$$

But

$$
I-u=s
$$

$$
\begin{equation*}
\cdot \frac{(x-z)!(x-y)!}{(x-z-y)!x!}=\frac{s}{q} \tag{12}
\end{equation*}
$$

In experiments the values of all the variables in this equation, except for z, are known ox can be estimated. and z can thus be calculated.

In the particular case where $y-1$ equation 12 simplifies and is easily solved for z o When $y=1$

$$
\begin{aligned}
\frac{(x-z)!(x-y)!}{(x-z-y)!x!} & =\frac{(x-z)!(x-1)!}{(x-z-1)!x!} \\
& =\frac{(x-z)(x-z-1)!(x-1)!}{(x-z-1)!x} \\
& =\frac{x-z}{x}
\end{aligned}
$$

- From equation 12

$$
\frac{x-z}{x}=\frac{s}{q}
$$

$$
\begin{equation*}
\because \quad z=x\left(I-\frac{s}{q}\right) \tag{13}
\end{equation*}
$$

This equation elso holds if z is not constant. but varies from trial to trial.

Fox then from $12 \quad \frac{3}{q}=\frac{\sum_{i=0}\left(x-z_{i}\right)!(x-y)!}{\left(x-z_{i}-y\right)!x!} \cdot f\left(z_{i}\right)$

Where $f(z)$ is the probability function of z.
When $y-1$ this simplifies to

$$
\begin{align*}
\frac{s}{q} & =\frac{x-1}{i n 0} \frac{x-z_{i}}{x} \cdot f\left(z_{i}\right) \\
& =1-\frac{1}{x} \frac{x}{i=0} z_{i} f\left(z_{i}\right) \\
& =1-\frac{E(z)}{x} \\
& =x\left(1-\frac{s}{q}\right) \tag{14}
\end{align*}
$$

The method of random changes and eguation 14 provide a measure which has long been needed. They allow an estimate of the number of lettexs of a presented word which are used to detemmine word recognition, that iss the number of letters in the stimulus component. Most importantly, this estimate cannot be kiased by any form of supplementation, and oan be used to assess the effect of any kind of pxior expexience including optimum readiness.
3.5 .4 The xelation of lettex discriminetion and identification scores

The values calculated from identification experiments by the equations developed in Section 3.4, and those calculated from discrimination experiments by equation 14, are estimates of the same thing. Both are estimates of the number of letters in the stimulus whose identity is used to determine response. Perhaps one of the most useful functions
of the cormections developed in the aboye sections is that they make possible the comparison of performance across experiments with different tasks and scoring procedures Without these coxrections no compaxison would be possibleg for the raw seores from the two kinds of experiments are in no way compaxable.

Although the two kinds of experinents both allow calculation of the number of lettexs in stimulus component, thexe axe no a priori grounds for assuming that the type of task has no effect on the stimulus component. Whethex it does or not is purely an empixical matter. The important point is that investigation of the mattex is made possible by our ability to caloulate $\mathrm{E}(z)$ from the raw scozes. Before comparisons between values of $E(z)$ calculated in the two different ways can be made, it is fixst. necessaxy to determine how the values calculated from discrimination scoxes depend on position informetiono Does correct discrimination depend on the identity and position of letters, or on letter identity alone? In most cases this question is easily answexed. When the changed letter is changed to a letter that exists nowhere else in the word, then ondy the identity of the letter is relevant to diffexence detection. The value of $\mathrm{E}(\mathrm{z})$ calculated from these twials is therefore the mumber of letters displayed whose identity determines recognition. However, when the changed lettex is changed to a letter that already exists somewhexe else in the word the question cannot
so easily be answered. In these cases diffexence detection may involve either the identity and position of the changed letter, or only its identity, but together with the identity of the alxeady existing lettex. Because of this the meaning of $\mathrm{E}(\mathrm{z})$ caloulated from such cases is difficult to detexmine All values of $E(z)$ calculated from discrimination experiments are therefore based only on cases whexe the change is to letters not already in the word. This value is then comparable with the value of $E(z)$ calculated from $E(S c)$ in identification experiments.

It is worth noting the basic property which makes separation of the stimulus and supplementary components possible if a complete diotionaxy ox the method of random changes is used. This property is in both cases the absence of stimulus bias. That is, in both cases the aspects of the stimulus on which pexformance depends (1ettex identity in one case, and letter change in the other) vary xandomy, It is not through the control of response bias that the problem is to be solved, but through the removal of stimulus bias.

3.6 Summary

The first section of this chapter attempted to make clear what questions wexe being asked regarding the processing of information in word recognition. An elementary analysis of the processes involved claimed to show a numbex of distinct systems. and
the problem was stated to be that of finding out through which of these systems prior experience modifies word wecognition performance.

As a first step towards solving this problem, the remaining sections developed procedures fox calculating the number of lettexs in the stimulus component. These calculations wexe developed for word ldentification performance when a complete dictionary is used, and for word discrimination performance when the method of random changes is used. The method of random changes was described as one in which, on randomly selected trials, randomly selected parts of the word are changed, The subjeots ability to diffexentiate between change and nowhange trials was shown to depend on the amount of the stimulus discriminated, and to allow that amount to be calculated.

CHAPTER 4

GENERAL METHODS

In the following experiments the degree of stimulus control over word identification and word discrimination was studied and compared. For word identification a complete dictionary 1 was used, and no variations in prior experience were induced, the subject being given no experience of the word prior to its brief display. For word discrimination the method of random changes was employed, and a variety of prior experiences were induced. This chapter describes the methods and procedures that were common to these experiments.

4.1 Apparatus

The optical system from a Takei 3-channe1 . tachistoscope, Model 202, ${ }^{1}$ was used, with the mechanical timer replaced by a more accurate and flexible electronic timer. The whole apparatus is shown in Figures 1 and 2. In two channels material was seen in normal orientation, and in the third - the background field - in mirror reversal. Viewing was binocular, and through partially silvered glass. The stimulus material in each of the three ohannels was at the centre of an illuminated white screen ($8^{\prime \prime} \times 8^{\prime \prime}$), and at a distance of 31.5 inches, from the viewing aperture. The stimulus words were fed into the

[^0]tachistoscope on rolls of photographic paper, and passed close behind a narrow window cut in the screen. An alignment indicator allowed rapid and exact positioning of the word in the centre of the window.

Each channel was lit by two five watt fluorescent tubes. It was found that the rise and decay characteristics of light output varies widely across individual fluorescent tubes. Those used had rise and decay times of about two ox three milliseconds. An oscilloscope, linked to phototubes, enabled the duration and intensity of background and stimulus field illumination to be monitered during expeximents. Fields could be monitered separately ox concurrently. Typical traces for a 100 militsecond display are shown in Figure 3. Monitering led to the detection and correction of a number of gross acofdental changes in display characteristics. For the background field and stimulus field 2, illumination, as measured by a Weston Photometer, Model 585, was 44 lumens/sq. it. For stimulus field 1 , in which the target word was shown, it was 22 lumens/sq.ft. The degree of dark adaptation was kept approximately constant by maintaining the room and stimulus field illumination at about the same level. To produce the required display sequences, current to the fluorescent tubes was switched on and off by impulses from an Iconix Waveform Generator, Model 5656. ${ }^{1}$ This was achieved by coupling the Waveform Generatox to the Taked tachistosoope through a switching

1 Iconix, 945 Industrial Avenue, Palo Alto, California, U.S.A.
unit designed by Dr $J_{n} R$. Trotter of the Phychology Department, at the Australian National University. The resulting arrangement allowed great accuracy and flexibility in the setting of display sequences.

4.2 Display sequences

In order to study the rate at which word displays of nomal intensity, contrast, and size are processed, it is essential to have control over the duration for which the wisual display is effectively available. Because of the persistance of vision little control is obtainable when the normal blank pre-stimulus and post-stimulus fields are used. Far greater control is achieved by the use of visual noise fields. A visual noise field is one which makes illegible either a visual display or a persisting image. One form of noise field is a very bright flash which follows the stimulus display after a short interval (Lindsley and Emmons, 1958) , but Sperling (1963) notes that this noise field may fail in its task by evoking negative aftermimages of the stimulus field. He used, instead, haphazardly patterned noise fields designed to make any persisting image illegible. Patterned noise fields of this kind were used throughout the experiments to be reported. The two noise fields used are shown in Figure 4. A small red dot in the centre of each field served as the fixation point. Noise field one was used in experiment 2, and the other in all remaining experiments. The change was made only in an attempt to increase the 'noisiness' of the field. The importance of using noise fields will be further discussed in the next chapter.

For convenience the briefly displayed word will be called the target word, and that with which it was compared on discrimination trials will be called the comparatox word. Trials on which the target and comparator words were the same will be called 'same' trials, and those on which they were different will be called 'different'trials.

In word identification trials the display sequence was a brief display of the target word preceeded and followed by the noise field. In word discrimination txials the brief display of the target word was followed by a display of the comparator word. This procedure has two advantages: first, the subject can be told the comparator word priox to the brief display, but he need not be; and second, the subject can make his judgement while looking at the comparator word, thereby avoiding the exroxs that could be caused by a faulty memory of it. The comparator word was displayed for four seconds, this value being chosen on the basis of preliminary experiments which showed that most judgements were made within this time. The noise field was shown during the interval between target and comparator word displays. Preliminary experiments indicated that variations in this inter-stimulus interval had surprisingly little effect on performance, at least within the range from 0.1 to 3.0 soconds. The intermstimulus interval used for all later experiments was 400 milliseconds. This probably allows the intervening noise field to achieve maximum exasuxe, but
also keeps the interval relatively short. The display sequence in word diserimination trials was therefore as shown in Figure 5.

In all experiments the subject initiated the onset of the brief display by pressing a button on the response box. The rest of the presentation sequence then proceeded automatically. At the beginning of experiments, subjects were given practice in the comordination of fixation and triggering.

4.3 The stimulus words

The effect of word familiarity on recognition thresholds is known to increase with word length (MoGinnies, Comer, and Lacey, 1952); the effect is therefore most easily studied by using relatively long words. For this reason only words containing seven letters were used. It is also the case that nearly a11. investigations of the familiarity effects have used pronounceable words. Apart from the findings of Beuchet (reported by Wohlwill (1966) and judged by him to be equivocal), familiarity effects with umpronounceable words have not yet been clearly shown. For this xeason it was thought best to use pronounceable words. It was also necessary, however, to use words that allowed accurate corrections for guessing. If the words were randomly selected from all possible sequences of seven letters few would be pronounceable. To satisfy both requirements, the words used were constructed so that the letters $1,3,5$ and 7 were always consonants, and
so that the lettexs 2,4 and 6 were always vowels: that is, all woxds had the form CVCVCVC. As the consonants and vowels wexe selected randomly and independently, the corrections derived in Chapter 3 could be used but they had to be applied to the consonants and vowels separately. Use of this standard word structure has the added advantage of reducing any variability in performance that may arise from dufferences in word structure. To further increase standardization of structure, and to ease calculations, the letter y was omitted from the alphabets used. The total mumber of words avallable was thus $20^{4} \times 5^{3}\left(=2 x \cdot 10^{7}\right)$. of these, more than 1,000 were used. Random number tables were employed to construct all words.

The words - all in capitals - were photographed directily onto the rolls of photographic paper, by a Varityper Headliner, Model 840. 1 A typemaster ML m V1250 was used, which gives 12 point print. Letters so produced are about $1 / 8^{\text {th }}$ high. The resulting stimulus materials are shown in Figure 6 , which gives an example of the two strips of words required for word discrimination.

4.4 Response and scoring procedures

In word discrimination trials, the subject was required to scy either 'Same" or "Different", on every trial. He could do so whenever he wished aftex the onset of the comparator word. The experimenter recorded

I Varityper Corporation, 720 Frelighuysen Avemue, Newark 14, New Jersey, U.S.A.
the subject's response on a score sheet, which also showed whether the words were in fact the same ox different, and if different, which letter had been changed. From these records the average number of letters discriminated was caloulated by Equation 14 of Chapter 3.

In word identification trials the subject wrote the letters on a roll of paper maxked with a matrix seven cells wide After each trial, the subject wound the paper on, making another blank grid available, and removing the last from view Subjects were required to place a letter in each of the seven cells on every trial. They were required to place only consonants in cells $1,3,5$, and. 7 , and only vowels in cells 2,4 , and 6: To remind them of this the letters cVCVCVC were placed in pemment view at the head of the relevant columns.

To score these reproductions the average values of Sp and Sc were determined, and corrected for guessing by Equations 5 and 8 respectively. It will be remembered that the value of z calculated from $S p$ is the number of lettexs identified where position is taken into account, and that calculated from So is the number of letters identified where position is not taken into account. As already mentioned, these corrections were performed on the consonants and vowels separately. The correction of Sp for consonants is given by the equation

$$
E(z)=\frac{20 E(S p)-4}{19}
$$

where $E(S p)$ is estimated by the average value of $S p$ for consonants. Similarly, $E(z)$ for vowels is calculated by

$$
E(z)_{v}=\frac{5 E(S p)-3}{4}
$$

The estimated value of $\mathrm{E}(\mathrm{z})$ for the whole word was obtained by summing these two values. For the correction of Sc the two eraphs shown in Figure 7 were drawn. Points on those graphs were plotted by determining the value of $\mathrm{E}(\mathrm{Sc})$, as given by Equation 8 , fox each possible integral value of $\mathrm{E}(z)$. The value of $\mathrm{E}(z)$ for each value of $E(S c)$ was read from these graphs. The estimated value of $\mathrm{E}(\mathrm{z})$ for the whole woxd was again the sum of the separate values for consonants and vowels.

4.5 Practice procedures and instructions

All experimental sessions were preceded by a minimum of 15 minutes practice, except when the subjects were already highly familiar with the situation. In the practice sessions the subjects were acquainted with the particular experimental conditions to be used. In experiment 2 the first session was a practice session only. Some of the subjects of experiment 2 were used again in experiment 5. In experiments 3 and 4, subjects were used for a single session only.

Verbatim instructions were not thought to be either feasable or necessary. Instead, they were given in accordance with an instruction protocol, which outlined, as clearly as possible, what the subject had to be told. Instructions were given at the start of practice and repeated whenever necessary.

4.6 The statistical analysis of results

Most of the effects of particular theoretical importance were large. In many cases, therefore, a relatively simple analysis of the data was sufficient. The principal means of handling the data was provided by the analysis of variance. This technique was chosen for three main reasons. (1) Subject effects are large in word recognition experiments, and therefore best removed from the error term against which treatment effects are tested. (2) Treatments were easily combined, thus permitting full factorial designs. (3) In some cases interactions between treatments were of special interest. The most suitable designs were thought to be treatment (A) x subject (S), and treatment (A) x treatment (B) x subject (S) designs. The treatments were fixed effects, and the subjects were random effects, so a mixed model was appropriate. These designs are discussed by Lindquist (1953, Chapter 6, and p.237), and by MeNemar (1962, p.333). Both authors recommend them as useful and efficient designs. In these designs each subject undergoes all combinations of the experimental treatments. In the treatment (A) x treatment (B) x subject (S) design, the main effect A is tested against the $A \times S$ interaction term, and the main effect B against the $B \times S$ interaction term. The A x B interaction is tested against the three way interaction $A \times B \times S$.

Lindquist (1953, p.157) discusses the assumptions made in using the F-test with such designs. In addition
to the hypothesis being tested, there are three assumptions:

1. The experimental subjects are a simple random sample from a specified population. In order to consider this assumption satisfied statistical inferences must be limited to a hypothetical population of subjects like those used in the experiment'. As treatment x subjects interaotions are negligible in the results to be reported, this population is unlikely to be severely restricted.
2. The treatment x subjects interaction effects are nomally and independently distributed in each treatment population. Lindquist (1953, p.159) states that this condition *. seems very likely to be approximately satisfied in most psychological and educational experiments. In any case Scheffé (1959) concludes that non-noxmality has little effect on inferences about means.
3. The distribution of intexaction effects has the same variance in each treatment population. (This assumption is equivalent to the assumption of homogeneous within-treatments variance in simple randomized designs): With regard to this assumption scheffe (1959 p.345) says 'Inequality of tariances in the cells of a layout has Iftte effect on inferences about means if the cell numbers are equal, sexious effects with unequal cell numbers.' Equal cell
numbers were used in all expeximents, so tests for homogeneity of gariance wexe unnecessary. The way in which individual means should be compared, following an analysis of variance. is still a mater of controversy (Ryan. 1962. Wilson; 1962). The traditional procedure as given by Lindquist (1953, pp.164w166) is still widely used, and where necessary is the one adopted here.

CHAPTER 5

EXPERTMENT 2: THE EFFECT OF PRTOR EXPERTENCE
 ON THE STTMULUS COMPONENT
 OF WORD RECOGNITION PERTORMANCE

5.1 Introduction

In this experiment word discrimination was studied under two conditions of prior experience: low familiarity, and high familiarity,

1. In the low familiarity condition the subject was given no experience of the target or comparator words prior to their display for discrimination. The comparator word was randomly selected from the complete dictionary of CVCVCV's, and the target word constructed according to the method of random changes. Thus under this condition all the subject knew of the target woxd prior to its brief display was that it was going to be a. CVCVCVC. For convenience, this condition will be referred to as low familiaxity discrimination, ox LFD.
2. In the high familiarity condition the subject was made well acquainted with the target and comparator words prior to their display for discrimination. Thus in this condition the subject was ready for a particular, highly overlearned,

> comparator word, but did not know whether the target woxd would be identioal to it or a random variation ofit. This is the condition of optimum readiness, whose importance has already been discussed (section 3.5) This condition will be referred to as high familiarity discrimination, or HFD.

It has already been shown how from performance undex these conditions the number of lettexs discriminated can be calculated.

Pxeliminary experiments indicated large effects of priox experience on the stimulus component undex these conditions. Experiment 2 was thexefore designed, not only to demonstrate those effects clearly, but also to provide evidence of whereabouts in the transmission sequence they arise. The techniques developed in Chaptex 3 are only capable of separatinp the stimulus and supplementary components. Once prion experience is shown to affect the stimulus component, it becomes necessaxy to develop procedures for determining whe thex it does so by affecting reception, readwout, storage, or use. The form such proceduxes may take is suggested by the following considerations.

Consider the task of reproducing a visual display that is a variant of a known display. A great reduction in infoxmational load can be achieved if the display is recoded in terms of the known display, or, in Woodworth's texms, if it is seen as 'schema
with correction* But recoding is only useful if it occurs before the information loss, and this is only possible if a schema of the known display functions in the recoding of input priox to the loss. Thus, if we have a situation in which performance is limited by information loss occurring at known loci in the transmission sequence, we can determine whether or not recoding occurs before those loci, by showing displays which are variants of displays known to the subject,

A situation in which performance is limited by information loss ocourring at known loci is provided by Sperling's method involving noise fields. When noise fields axe used to erase persisting images, the duration of effective display availability is made very nearly equal to the duration of display presentation, Under such conditions the relation between performance and the duration of effective display availability can be investigated. Reporting such an investigation, Sperling says:

The point of all the se experiments is that, undex a variety of conditions, random letters of good contrast are scanned at the same rate; typically, about one letter per 10 msec . However this holds true only for the first three or four letters to be scanned. Fig. 5 (shown here as Figure 1) shows data obtained with the same two subjects viewing a dark premexposure field and a noise post-exposure field. One subject reported three, the othex four letters in the fixst 50 msec of exposure. Additional stimulus exposure from 50 msec to 100 msec accounted for about one or two additional letters. Beyond 100 msec the wate of acquiring additional letters
is so low as to be virtually indistinguishable from zero on this time scale Additional data points would have shown the critical break in the curve to occur well before 100 msec .

This kind of experiment perhaps more clearly than any other defines an immediatememory span for visual materials. Letters up to the immediatememory span can be scanned at a rate of one letter per 10 or 15 msec , This is so rapid that the rate of acquiring additi onal letters beyond the immediate-memory span is negligible by comparison. (Speriing, 1963, p.25-26.)

Performance at durations below the 'critical point' will be called durationmsensitive performance. Performance at durations above the 'critical point' will be called duration-insensitive performance. The critical point was at about 100 milliseconds in Sperling's experiment, but the value will vary with display conditions. Sperling takes it for granted that durationmsensitive performance shows limitations due to readmout rate, and that durationinsensitive performance shows limitations due to post readmout storage mechanisms. In this thesis much weight is placed on these claims, so an attempt is made to give them a more explicit justification.

There are three main reasons for believing duration-sensitive performance to show limitations set at readmout.

1. Durationwsensitive performance is affected by variables unlikely to have any influence after readmout. Display duration itself is the best documented example. Results to
be reported later show that this performance is sensitive to changes in display duration of as little as 5 milliseconds. Now if this performance results from Iimitations set aftex read-out, then display duration must be represented in the systems beyond readmout to within an accuracy of at least 5 milliseconds. In other words, display duration must itself be read out and transmitted into the later sys tems with at least this accuracy. Although possible, such an occuxrence seems unlikely. (If durationmsensitive performance was shown to depend on other aspects of the display that axe unlikely to be accurately read-out, such as size, shape; brightness, or contrast, this argument would be greatly strengthened.)
2. Duration-sensitive performance is highly dependent on the brightness, pattexnings and contrast of both the premstimulus and the postostimulus fields. For instance, unless the post-stimulus field is sufficiently inotsy' there is no rapid decrease in perfoxmance with duration It is unlikely that all these chaxacteristics of the postmstimulus field are read out. If they are not, then they cannot affect infomation alxeady in store. If they affect
performance, therefore, they must do so by changing the amount of information that gets into store. That is, by reducing the number of letters read out.
3. At some durations only 1 or 2 letters are reproduced. We know that the storage and retrieval mechanisms can handle more than this without loss. The implication is, therefore, that under these conditions no more than 1 or 2 letters get into storage.

The reasons for believing that durationinsensitive performance shows storage limitations are nearly as strong. There are three main reasons,

1. Such performance is little affected by specifically visual characteristics, and therefore seems to be limited by events outside the visual receptor systems.
2. Post read-out limitations can be shown to be of the right order of magnitude, for performance is very little improved when read-out is ensured by sufficiently long display durations (Baddeley, 1964).
3. The post stimulus sampling experiments of Averbach and Coriel1 (1961) and of Sperling (1960), show that the span of apprehension is not due to limitations in the receptor systems. In experiments of Averbach and Coriell the subject was shown an array of sixteen letters, and soon
after the offset of the display a letter was selected at random for the subject to identify The results show that, fow a short time at least, the receptor systems make available information far in excess of the apprehension span.

If the above interpretations are correct, comparisons of the functions relating performance to duration under high familiaxity and low familiarity conditions will show whether information loss is reduced by recoding in readmout, in storage, or in both.

An identification condition was also included in the present experiment. As previous studies have always related duration to performance on identification tasks, it is important to discover whether word disorimination and word identification are similaxly related to duration. Fox this reason a Word identification condition was included, Randomly selected words were briefly displayed and the subject was requested to identify each lettex. As in the LFD condition the subject was given no experience of the word prior to its display. This condition is therefore called low familiaxity identification, ox LFI, It was expeoted that performance undex the LFI and LFD conditions would either show that the two tasks are equivalent ar that discrimination is easier. Reasons for this expectation axe given in Section 5.4.4.

To summarize, experiment 2 asked four questions:

1. Does the number of letters in the stimulus component depend on prior experience?
2. Does the number of letters read out depend on prior experience?
3. Does the number of letters stored depend on prior experience?
4. Can more letters of low familiarity words be discriminated than identified?

5.2 Method

5.2.1 Outline

The experiment was required to measure and compare performance under three conditions over a selected range of display durations. The three conditions were: high familiarity discrimination (HFD), low familiarity discrimination (LFD), and low familiarity identification (LFI). The display sequences for both discrimination conditions was that shown in Figure 5 of Chapter 4. For the LFI condition it was simply the brief display of the target word preceded and followed by noise fields. Six brief durations were selected on the basis of preliminary experiments: 50,55, and 60 milliseconds were selected to show duration-sensitive performance, and 70, 90, and 200 milliseconds were selected to show duration-insensitive performance. The performance
of six subjects was studied under all three conditions and at all six durations. Six experimental sessions per subject were requixed, each lasting about 2 hours.

5.2.2 Design

The experimental design which followed naturally from the requirements was a $3 \times 6 \times 6$ factorial design, With such a design it is important to controj. serial and order effects, and in this case particularly so, because generalized practice effects are typical of tachistoscopic perfoxmance. The control of serial. and order effects proceededin three ways. First, to avoid the larger effects, as much practice as possible was given prior to the experimental conditions. Second, a counter-balanced design across subjects was used; that is, for each session all possible orders of the three conditions wexe used, one order per subject. Third, fox each subject, conditions were given in a balanced order (ABCCBA), both within and across sessions. The full design is shown in Table I, Appendix 2 .

Complete control of serial effects would be provided by this design if serial effeots were Iinear within sessions, or Iinear across sessions, or uniform across subjects. It is reasonable to assume that at least some of these conditions are well approximated, Order effects were not thought likely to influence the results. In any case, they were well controlled, as each condition followed each other condition exactly foux times per subject.

5.2.3 Procedure and instructions

Fox each subject there was one practice session followed by six experimental sessions. In the practice session the subject was familiarized with the general situation and with the specifio tasks to be performed. Full instructions were given in the practice session in accordance with the following protocol.

Instruction Protocol

1. Outline the purpose of the experiment in genexal terms as a study of how people use briefly available information. Do not allow the specific aims of the experiment to become known to the subject.
2. Seat subject comfortably and describe the required head position and fixation point. Show the subject how he is to trigger the display sequence, and request a minimum of eye movements during that sequence.
3. Describe the words to be used, theix length, CVCVCVC form, and random construction. Note the omission of the letter Y. Show an example in the tachistoscope for about ten seconds.
4. Describe the discximination task. Emphasize the randomess of identity and difference, and the random nature of the difference. Request the subject to say either 'Same'
or 'Different' on every trial, and to do so only after the onset of the comparator word Give ten trial runs.
5. Describe the identification task. Show the seven columns in which the letters are to be written. Point out the C or V headings of the columns serving as reminders of the appropriate type of lettex Request subject to fill in all seven cells on evexy trial. Give five trial runs.
6. Give trial runs of 20 discriminations and 20 identifications. Tell subject how many of each were correct. Show the subject how the identifications are marked to produce the two scores $S p$ and $S c$.

The practice session was ended by giving the subject the set of words to be used in the HFD condition of the first experimental session, with the request that he leaxn them. None of the words used in the practice sessions were used again.

The experimental sessions began with a five minute practice period. The experimental conditions were then given in theix assigned ordex. A 15 minute rest was taken halfway through. The display durations within conditions were in either ascending or descending order, altexnating between conditions. Under each of the HFD and LFD conditions, every subject made a total of 720 discriminations, 120 at each duration, For the LFD condition this required

720 randomly selected comparator words, because a minimum and constant state of unfamiliaxity can only be maintained by presenting a word no more than onee to any one subject. The same 720 words wexe used fox all subjects For the HFD condition repeated use of the same word is of course possible. This is fortunate, as subjeots could not be experted to overleam 720 random words. One compaxator word was used per subject per session. With six subjects and six sessions, 36 randomly constructed comparator words were required, Under the LFI condition evexy subject made 360 identifications, 60 at each duxation. For this condition 360 words were randomly constructed and each subject saw each word once.

5.2.4 The random changes

For the HFD and LFD conditions the taxget words were constructed from the comparator wras according to the method of random changes. Two decisions were necessary concerning the way in which the changes wexe made. First, it is a consequence of random seleotion that changes will not occux at each letter position with exaetly equal frequencies acxoss duxations and across conditions. Nevertheless, it was decided not to put a restriction on the randomness, as any such restriction might allow the subject to axtificially raise performance Second, it was necessary to decide whether changes to letters alxeady in the comparator word should be allowed. As noted in Section 3.5.3, only changes to letters not elsewhere
in the word are used for the calculation of z, This is because under such conditions the position of the letters need not be used for discrimination, and z is then strictly comparable to the value of z calculated from Sc. But it is just conceivable that if the position of the letter were never relevant, changes might occur in the way in which the subject processed the input. The compromise chosen was, therefore, to allow changes to letters elsewhere in the word, but to exclude them from the calculations.
5.2.5 The prior experience in the HFD condition

If the subject learned only the comparator word, then on 'different' trials, the target word would be similar to a known word but would not itself have been seen before. It is not known how the effects of learning a word transfer to similar words under these conditions, so it is preferable that the subjects learn the variant words also. To achieve this a set of variations were constructed for every comparator word used in the HFD condition. Each variant word differed from the comparator word by just one letter. One variant word was constructed for each position at which a change could occur. As the comparator word contained seven letters this required seven variant words. In this way, change could occur at random, but still produce a word known to the subject. The 36 comparator wards were randomly selected, and the sets of variations on them constructed by randomly selecting a letter for each position in turn. At least one day before the
experimental session the subjects were given the comparator and seven variant words to learn. They were then required to reach a learning aritexion in the practice pexiod of the experimental session. The words were presented in the tachistoscope in a set ordex and this series learned acoording to the method of anticipation.

5.2 .6 Knowledge of results

Knowledge of results were given to sustain interest and motivation. At the end of each block of ten discriminations the subject was told the number correct. He was not told on which trials errors had occurred. At the start of most sessions the subject was shown the scored identifications of the previous session.

5.2 .7 Subjects

The subjects wexe the first six psychology undexgraduates who volunteered to act as paid subjects. Theix ages ranged fxom 18 to 26 years. Two were male (R.K.M. and A.J.P.) and four were female (M.Gar A.S., E.E. and T.V.). Tbree wore glasses (R,K,M, A.S., and T.V.).

5.3 Results

The total number of carrect and incorreat responses for LFD and HFD conditions, for each subject and duxation are given in Tables 2 and 3 of Appendix 2 .

The pexcentage of correct responses averaged ofer subjects are given in Table 1 , and shown in Figure 2.

TABLE $\frac{\text { PERCENTAGE OF CORREOT RESPONSES }}{\text { FOR THE HFD AND LFD CONDTTTONS }}$ FOR THE HFD AND LED CONDTTTONS (AVERAGED OVER SUBTECTS)

	DURATION (MILLISECONDS)					
	50	55	60	70	90	200
L.F.D.	58	64	66	62	71	81
H,F.D.	67	73	75	82	86	93

The probability of success cleariy depends upon both display duration and pxior experience. However, differences in the probability of suceess do not necessarily imply differences in the number of letters discriminated. This is because an increase in the probability of success will xesult from a decrease in the probability that the subject says idifferents when no difference is detected, even if z remains unchanged. Fox the calculation of: z the number of correct and incorxect responses for 'same' and 'diffexent' trials separately are necessary. These numbers are also given in Tables 2 and 3 of Appendix 2,

The total number of letters reproduced coxrectly and in the right position under the LEI condition is given \ln Table 4, Appendix 2, fox each subject and each duration Table 5, Appendix 2, gives the totals
when position is not taken into account. From these totals the average values of Sp and Sc for each duration were obtained, and corrected for guessing. Comparison of the two values of z so obtained for each duration shows that there is a consistent difference between them of about 0.5 or 0.6 of a lettex. This means that most lettexs identified are also correctly located. The mean number of letters identified but incorrectly located is about half a letter.

The values of z fox the LFD, HFD, and LFI conditions were obtained from the data in Tables 2 , 3 and 5 of Appendix 2 respectively. These values are given in Tables 2, 3 and 4 , together with the mean values over all subjects. The mean values for the three conditions axe plotted in Figure 3. All. the main outcomes of the experiment can be seen in this graph.

TABLE 2 THE VALUES OF 2 FOR THE LFD CONDITION, BY SUBJECT AND DURATION

SUBJECT	duration in milliseconds					
	50	55	60	70	90	200
1. (R.M.K.)	2.3	1.7	3.8	1.8	3.9	5.1
2. (M, Go)	3.1	3.1	3.5	3.0	4.3	5.8
3.(A.J.P.)	2.4	2.7	2.6	1.5	4.2	5.3
4, (A, S.)	- 3	. 8	2.0	1.6	2.3	4.5
5.(E.P.)	. 4	2.8	1.3	1.7	3.6	3.8
6. (T.V.)	1.0	2.7	. 1.	1.8	2.1	4.8
MEAN	1.6	2.3	2.2	1.9	3.4	4.9

TABLE 3 THE VALUES OF 2 FOR THE LFI CONDITION, BY SUBJECT AND DURATTON

SUBJECT	DURATION IN MILLISECONDS					
	50	55	60	70	90	200
1. (RoM, K,)	2.5	3.6	3.7	4.8	5.2	6.1
2. (M.G.)	3.3	3.9	3.4	4.2	4.6	5.6
3.(A.J.P.)	3.7	4.5	4.8	4.8	5.4	6.4
4. (A.S.)	1.4	2.0	3.0	3.8	4.4	5.6
5. (E.P.)	2.4	2.9	3.4	3.9	4.7	5.5
6. (T, V.)	. 7	2.0	3.0	3.5	4.7	5.8
MEAN	2.3	3.2	3.6	4.2	4.8	5.8

TABLE 4 THE VALUES OF Z FOR THE HFD CONDTTLON 2 BY SUBJECT AND DURATION

	DURATMON IN MLLLISECONDS					
SUBJEGT	50	55	60	70	90	200
$1 .(R . M . K)$.	4.0	4.8	5.5	6.8	6.4	6.7
$2 .(M . G)$.	4.3	5.6	5.8	6.4	6.3	6.6
$3 .(A . J . P)$.						
$4 .(A . S)$.	5.4	5.5	5.9	6.4	6.9	7.0
$5 .(E . P)$.	2.3	2.2	5.1	4.9	5.3	6.9
$6 .(T . V)$.	2.1	4.1	3.6	5.1	5.8	6.2
$M E A N$	3.1	3.7	4.0	5.7	4.9	6.5

The relation of performance to duration was similax to that found by Sperling (see Figuxe 1 of this chaptex). The main difference was that pexfoxmance with the unfamiliax words contimued to improve with incteases in duxation beyond 100 milliseconds, although at a markedly reduced rate. The most likely reason for this is that here the words were pronounceable whereas in Sperling's expeximent they were not. As the relation of syllabic to lettex coding is of intexest in itself, an attempt to confirm this by a dixect comparison of pronounceable and unpronounceable woxds would be worthwile.

The analysis of vaniance performed on the z scores is summarized in Table 5.

TABLE 5 SUMMARY OF ANALYSIS OF VARIANCE OE Z SCORES
(A11 Conditions, Subjeots and Durations)

SOURCE OF VARTATION	SUMS OF SQUARES	$\begin{aligned} & \text { DEGREES } \\ & \text { OF } \\ & \text { FREEDOM } \end{aligned}$	$\begin{aligned} & \text { MEAN } \\ & \text { SQUARE } \end{aligned}$	F	P
Condition (c)	11.2 .75	2	56.38	117	<001
Duration (D)	121.40	5	24,28	43	$<.001$
Subjects (S)	41.20	5	8,24		
C X D	10.78	10	1.07	4.3	$<.001$
S X C	4.82	10	. 48	1.9	NS
S X D	14.29	25	.57	2.3	$<.01$
	12.39	50	. 25		
TOTAL	317.63	107			

Both condition and duration effects are highly significant, The critical diffexence for significance at the 05 level (twomtail) fox individual pairs of condition means is .37. The means over all subjects and durations wexe for LFD 2.7 letters, for LFI 4.0 letters, and for HFD 5.2 letters. All differences are therefoxe significant The significance of the $C \times D$ term means that the size of the differences due to conditions changes with durations As the value of z under all conditions must approach seven letters as duration increases, and zero letters as duration decreases, this result is to be expected. It can be seen from the nonsignificance of the $S X X$ term that the effects of the conditions did not vary across subjects.

The HFD and LFD conditions differ significantly at each of the six durations separately. This is shown by the sign test for correlated vaxiables ($\mathrm{P}<.02$ at each duration) . The sign test also shows that the HFD and LFI conditions differ significantly at all durations except 50 milliseconds. However, an analysis of variance performed on performance dudex the HFD and LFI conditions at the three shortest durations, indicates that the two conditions differ at the 50 milliseconds duration also. This analysis is summarized in Table 6.

TABLE 6 SUMMARY OF ANALYSIS OE VARTANCE OF z SCORES
50.55 AND 60 MTLLISECONDS

SOURCE OF VARIATION	SUM OF SQUARES	$\begin{gathered} \text { DEGREES } \\ \text { OF } \\ \text { FREEDOM } \end{gathered}$	MEAN SQUARE	F	P
Condition (C)	14.44	1	14.44	38	$<.01$
Duration (0)	10.81	2	5.41	1.6	<01
Subjects (S)	27.02	5	5.40		
C X D	.13	2	.07	- 3	NS
$S \mathrm{XC}$	1.92	5	.38	1. 5	NS
$5 \times \mathrm{D}$	3.28	10	. 33	1.3	NS
S X C X D	2.39	10	.26		
TOTAL	60.19	35			

The sifgnificance of the condition effect and the lack of a significant condition X duxation interaction indicates that the conditions diftex at all three durations (50, 55 and 60 m 11 isecond). The effect of duration is also highly significont. The critical difference for significance at the .05 level for individual pairs of means at the different durations is .52. As the means are 2,9 letters for 50 milliseconds, 3.75 lettexs for 55 milliseconds, and 4.3 letters fox 60 milliseconds, all differences axe significant. This result gives substance to the description of performance as durationsensitive.

5.4 Discussion

Each of the four questions with whlch the experiment was concexned will be discussed in tuxn. 5.4 .1 Prior experience and the stimulus component

The mean number of letters discriminated in the LFD condition ovex all subjects and durations was 2.7 letters, but in the HFD condition it was 5.2 letters - nearly twice as much. It has alxeady been shown that no form of supplementation can affect these scores. The LFD and HFD conditions differed only in the subject's priox experience of the words. There can therefore be no doubt that in this experiment the number of stimulus letters controlling word reoognition was greatiy affected by the subjects prior expexience with the presented words,

The conditions of this experiment differ in important ways from those of pxevious experiments in this area. Before attempting to use the present results in explanation of the commonly observed effects of priox experience, it is necessaxy to consider whethex the phenomena obsexved axe likely to have been affected by these differences. The three most obvious differences concern the display sequence, the type of response, and the priox experience.
I. The display sequence was diffexent in that two displays were involved. instead of one.

- Preliminary expeximents have showx, however,
that the second word can be omitted in the HFD condition with little effect on performance. All that is necessaxy is for the subject to know with which word he must compare the bxief display. It is therefore unlikely that stimulus component facilitation is Iimited to double display situations.

2. The type of response differed in that the subject had to say 'Same' or 'Diffexent', and was never requixed to say the displayed word. But as the subject knew the comparatox woxd he could easily have been asked to name it instead of saying 'Same: and to attempt reproduction of the vaxiant word instead of saying 'Different', It seems unlikely that so minor a change in procedure would remove the increased degree of stimulus control. over performance. This is confimmed in experiment 5 where HFD and LFI pexfoxmances axe compared under conditions involving identioal forme of response.
3. The differences in the priox experiences seem to be the only ones likely to affect the results. Conditions of optimum readiness have not been used in most previous experiments. It is therefore important to know to what extent the results of this expeximent depend upon it. This
is the problem with which the next two experiments are concexned.

In addition to the task of detexmining the range of conditions under which priox experience affects the stimulus component, there is the equally important task of detexmining the mechanism of the effect when it does gcoux. The only way in which the transmission sequence can be made moxe efficient is by the reduetion of information $1.0 s s$, and the reduction of loss, due to word familiaxity, must result from some kind of interaction between the input and a stored representation (or trace) of the familiax worde Intenaction between trace and input is of course common knowledge. What these xesults show, in addition, is that this interaction can lead to a decxease in infomation loss. The important point is not simply that an increase in transmission efficiency due to an input-trace interaction can occur. This is obyious in cases involving laxge imput Ioads, For instance, considex a person llstening to a long poem with which he is highly familiaxo He could easily reproduce the whole of what was said. If a randomly selected word wexe changed he would usually notice it and oould withhold reproducion. This would demonstrate that when the poem is read coxrectly he reproduees what he heard, and not what (at the time of reproduction) he guesses himself to have heard. His pexformane would be vexy diffexent if the poem was unknown to fim, fox then he would never give a correot reprodurtion from a single
presentation. The important point made by the results of the present experiment is that inputetrace Intexaction can also produce an incxease in transmission efficiency when the input is only one word, and the storage time only a few seconds.

The vaxious phases in which infoxmation loss might be reduced axe readmout, storage, and use. The next three sections consider each passibility in turn. Two preliminary considexations sugeest that reduction in loss at read-out might be the more important. In the fixst place, thexe seems to be no information loss during storage in the LFD condition. If there was, pexformance would be expected to improve with deoreases in the interval between target and comparator words. Evidence that this is not the case has alxeady been mentioned (Section 4.2), In the second place, infomation loss during use, at least in the LFI ondition, seems unlikely. Reasons for this view were given earliex.

5.4.2 Priox experience and readmout

It was axgued at the begimaing of thes chapter that durationmsensitive performance shows the number of letters xead out. This performance has now been shown to vary tith the subjeots priox expexience of the displayed words. Good grounds therefore exist for concluding that readmout varies with word familiaxity Before it can be assumed that this conclusion is established, however, an important objection must be considered. The objection is that
there are two aspects of the results that weaken the claim that LFD performance at the short durations shows the number of letters read out. First, the claim was, in part, based on the sensitivity of performance to display duration, and LFD performance was far less sensitive to duration changes than either HFD or LFI performance. Second, LFD
performance was worse than LFI performance. This finding will be discussed moxe fully in Section 5,4.4. Its relevance here is that it strongly indicates, contrary to earlier assumptions, that some information lose in the LFD condition occurs during utilization. The LFI and LFD conditions diffex only in the way in which the information is used, and this difference involves a longer storage time in the LFI conditions recognition responses were completed within about 9 seconds in the LFI condition, but within about 3 seconds in the LFD condition. The difference in performance thus indicates that some information loss in the LFD condition occurs during comparison with the comparator word. If this is so then the superiority of HFD over LFD performance might result from a reduction of this loss and not from a reduction of loss during readmout.

The above objection is sound, but it can be met by the comparison of HFD with LFI performance. LFI performance was shown to be highly sensitive to duration and there is no evidence in this case of information loss during utilization. As scoxing differs in LFI and HFD conditions it is necessary to
considex whether the observed diffexence between them is merely a scoring artifact. It can be shown mathematically that if whole letters axe read out then the two scores are equivalent, but that if only parts of letters are read out the discrimination score will be greater. It might therefore be claimed that readm out in HFD and LFI conditions is the same, but is only of parts of letters, thus pxoducing an apparent difference. There are three good reasons for rejecting this claim:

1. If it were true then LFD performance would be bettex than LFI performance, but in fact it is worse.
2. There is good evidence that read-out is predominantly in letters, not letter pats. For instance, there is much evidence that read-out involves txansformation of the letters into their acoustio equipalents (Comxad, 1964; Sperling, 1963). This conld hardly be so if read-out was of lettex parts.
3. If the superiority of HFD oyer LFD performance was due to the differences in scoring it would be independent of letter position, because the scoring differences do not depend upon letter position. It will be shown in Chapter 8 that HFD superiority is in fact highly dependent upon letter position.

The outcome of the aboye arguments is that experiment 2 provides very strong evidence that the amount read out from a briefly available visual display depends upon the familiaxity of the displayed material.

This conclusion, if correct, carries important implications for the nature of information processing in word recognition. It might seem to caxxy the paradoxical implication that the subject must first 'see' the word in order to know how much of it to 'see'. A similar problem, known as the problem of the pre-perceiver, has of course been much discussed in comection with the phenomena of perceptual defence. Here, the paradox xests upon the widely held assumption that the imput is categorized as a particulax word only after readmout (see, for instance, Broadbent, 1963). If the word is classified as familiar only aftex readmouts then how can readout be affected by word familiaritys The following arguments show that the only possible answer to this question is inadequate to account for the results of the present experiment.

If it is anly by the lettexs read out that the word is categorized as familiax, then familiarity can affect read-out in only one way; and that is by changing the readmout rate of Latex letters on the basis of the identity of letters read out earliex. For example, readmout rate could increase if lettexs already read out wexe part of a familiax woxd. Now it can be seen that an effect of this kind cannot
account fox the results of experiment 2. In the first place, HFD read-out is four letters at durations at which LFI read-out is only two letters. If the effect of familiarity were based on the identity of just two letters it would generalize to nearly all words, and thus leave little or no difference between familiar and unfamiliar words. In the second place, with an effect of this kind the diffexence in perfomance between familiax and unfamiljar words would incxease with the number of letters read out (because this would increase the probability of differentiation between familiar and unfamiliax words). If this were the case the difference between HFD and LFI conditions would increase with duration. But it was seen in the analysis of variance summarized in Table 6 that the condition X duration intexaction term did not even approach significance.

On the assumption that word classifieation occurs only after readmout, therefore, the observed effects of familiarity on read-out are not possibles Thus, if these arguments are correct, the assumption must be wrong, and classification occurs before readmout.

It is important to note that this classification camot be a matter of differentiatine between familiax and unfamiliar words on the basis of limited properties of the input. The familiar and unfamiliar words in this experiment were of homogenous structure, as all were CVCVCVC's. Furthermores the familiax and unfamiliax words wexe formed by random sampling from
this population of homogeneously structuxed roxds. The input must therefore be classified as a particular word, before it can be treated as familiar or not. As all words wexe printed in capitals this classification cannot be based upon "genexal word outline' (see Section 1.2.1), but must involve the use of lettex identity.

These considerations show the importance of the distinction between the task of classifying the sensory juput and the task of staring information tellixg which classifications have been madea If readmout is associated with the task of stoxage and not with the task of classifying, the problem of the premperceiver disappears. For sufficiently familiax words the sensory input is classified as a particular woxd, and that single classification is then read out. For unfamiliar words no readymade classification is available. Each part of the stimulus is separately classified as a partioular letter, and each of these classifications are then read out. Thus, if the amount read out in a given time is limited to a cextain numbex of classifications the information loss due to these limitations will. be reduced if readmout is of classifications at the word level.

This interpretation of the dependence of durationmsensitive performance on familiarity has arrived at what is essentially the "wholewwed" theory of Woodworth and James Mokeen Cattell (see Section
1.2.1). If the interpxetation is valid, the results of experiment 2 show this the ory to be correct.

5.4 .3 Prior experience and storage

The longest presentation durations in this experiment were included on the grounds that performance at such durations shows storage limitations. Pexformance at these durations was much better under high than under low familiarity conditions. As stated in the previous section there are grounds for suspecting that some information loss in the LFD condition might occur during utilization. But again the difficulty oan be met by comparing $H F D$ and LFI performance; and again this comparison shows performance with highly familiax material to be superior. Experiment 2 therefore indicates that the information loss during storage is less for familiar than for untamiliax matexial. This conclusion is in agreement with that of Lachman and Tuttle (1965), who studied the memory of paragraphs approximating English to varying degrees, using a method of 'successive binary recognition'.

If this conclusion is correct it is easily explained by the wholeword theory. The avoidance of storage limitations is a natural consequence of having only one classification to remembex, A possible objection to this explanation is that if it wexe correct HFD performance should rise rapidly to seven letters, which it did not. There are two replies to this objection. First, the levellingmoff
of HFD performance at less than 7 letters could easily be a cejling effect, second it is possible that thexe are other limitations, perhaps in resolution or in read-out processes, which are obsexvable only when storage limitations axe removed. Some evidence relevant to these problems is provided by experiment 5, in which HFD performance with higher input loads is stadied.

5.4.4 The effect of the task on pexformance

In both LFI and LED conditions the subject must see and remember as many lettexs as possible of an unfamiliax word The conditions differ in that in one case hewrites the lettexs down and in the other he uses them for comparison with another word. LFI performance was superior to LiFD performance. Fox two reasons this is a surprising result:

1. The duration for which infoxmation needs to be stoxed is much less in the LFD condition. The LFD response required, on average, about 3 seconds; the LFI responses requixed, on average, about 9 seconds.
2. The methods of identification and discrimination used hexe axe very similar to the traditional methods of recall and recognition respectively. Experiments comparing retention using the latter two measures have consistently shown recognition scores to be higher than recall scores (Luh, 1922; Postman and Rau, 1957).

As the LFI and LFD conditions diffex predominantly in the way in which the information obtained about the stimulus is used, it seems mosk likely that the additional loss of information in the LFD condition occurs during the comparison process. It is not easy to see why comparison should oause information loss. However what this result does show is that the perceptual systems cannot be assumed to provide a kind of general purpose information which can be used equally well for any task. The degree to which the task itself. causes infoxmation loss in addition to that occurring in other ways probably varles greatiy from task to task, and might often be negligible. Nevertheless, the LFI=IFD difference certainly urges caution in the intexpretation of tachistoscopie experiments.

5.5 Summaty

The two most important conclusions of experiment 2. were:

1. The number of letters in the stimulus component of word recogntition pexformanee depends upon the subject's priox experience of the displayed words. The evidence fox this conclusion was the superiortty of the HFD performance over LFD performance.
2. The number of letters read out depends upon the subject's prion experience of the displayed words. The evidence for this conclustion was the superioxity of duration-
sensitive HFD pexformance over both LFD and LFI performance. It was argued that this result confirms the 'whole-word' theory of Woodworth and Cattell.

Two subsidiary conclusions were:

1. The number of letters which can be effectively stored until utilization depends upon the subject's prior experience of the displayed words. This conclusion was based on the superiority of HFD performance over both LFI and LFD performance at the longest display durations used. It was noted that this result is easily explained in terms of the 'whole-word' theory .
2. More letters of low familiarity words can be written down than can be used for comparison with anothex word. It was argued that this probably indicates a loss of stored information during the comparison process, but no fuxther explanation was offered.

CHAPTER 6

EXPERTMENT 3: THE DEPENDENCE OF FORD DISCRTMTNATION ON THE DURATION OF PRTOR EXPERTENCE
AND ON THE KNOWLEDGE OF THE VARTANT WCRDS

6.1 Introduction

Experiments such as those of Goldiamond and Hawkins (1958) and of Spence (1963), have shown that prior experience affects the supplementary component. Experiment 2 has shown that prior experience affects the stimulus component. However the generality of the two kinds of effects is unknown, and it is still possible that the many phenomena described in Section 1.1 are predominantly due to one kind of effect rather than the othex. What is now required is a closer examination of the conditions on which the effects depend.

It was argued earlier that the potentially important differences between experiment 2 and the common types of word recognition situations concern the nature of the prior experience. The optimun readiness established in experiment 2 does occur in other situations but probably not often. The present experiment and the next, therefore, attempt to determine whether effects like those found in experiment 2 can occur with less optimum but more general types of readiness. The present experiment is concerned with two aspects of the prior experience;
its duration, and its content (i.e, the words of which it gives the subject knowledge),

6.1.1 The duration of prior experience

The amount of prior experience is clearly of great importance. Besearch has often shown this to be so, but, surpxisingly, the aspect of prior experience whose amount is important has not yet been identified. The amount of prior experience is usually measuxed in terms of frequency, of which the two major forms are the Thorndike Lorge frequency, and the experimentally controlled presentation frequency. The relative frequencies with which words occur in populax publications - estimated by Thorndike and Lorge (1944) - is one of the most all-mbracing independent varzables in psychology. It must be correlated with mearly every aspect of prior experience, Use of the Thorndike-Lorge frequency can show performance to depend on the amount of something, but it cannot show what that something is, Experimentally controlled presentation frequency greatly reduces but does not remove the difficulty. In the first place it is hard to determine what a presentation is, and in the second place no cogent arguments axe anywhexe presented to support the claim that frequency is the crucial charactexistic, rather than the variables with which it tends to be associated, Ammons (1954) has noted that one such variable is
total exposure duration This tends to be associated with frequency, and might a priori be the more important.

If the critical quantitative aspects of prior experdence were known, determination of their relation to effects on the stimulus component would completely resolve this part of the generality issue. This is not possible, and the present experiment attempts only to determine whether priox experience can affect the stimulus component when pxesentation frequency is reduced to 1 , and exposure duration to just a few seconds.

The method involved a simple modification of the LFD condition of expeximent 2. The required amount of prior experience was achieved by displaying the comparator woxd before, as well as after, the target word. There were three conditions: the 11 second condition, in which the comparator word was shown for 11 seconds before the brief display; the 1 second condition in which it was shown for 1 second; and the 0 second condition in which it was not shown at all before the brief display,

In the last chapter it was argued that the priox experience given in the HFD condition enabled the input to be recoded in terms of the familiar words before readmout, If this is so it is of great interest to discover the conditions on which this recoding depends. It is of particular importance to determine how familiar the words must be before
such recoding is possible, and the present experiment contributes some evidence relevant to this question. It is possible that sufficient familiarity is established once the word is accurately known to the subject. If this were the case, then performance under the 11 second condition would be as good as that under the HFD condition, but performance under the 1 second condition would be worse. This is because 11 seconds is sufficient to establish accurate knowledge but 1 second is not,

6.1.2 Knowledre of the variant words

In experiment 2 the subjects learned the variant words in addition to the comparatox words. In the present expeximent the subjects were given no prior knowledge of the variant words, and it therefore provides a test of the necessity of such knowledge to the effeot of priox experience.

This aspect of prior experience is important both with respect to the mechanisms of transmission facilitation, and with respect to their generality. It is relevant to the mechanisms of transmission facilitation because we do not yet know what relations between the input and the familiar word are computed and used. It might be that the imput is related to the representation of the familiar word in such a way as to extract only the relation of identity and not the relation of difference. On the other hand it might be that both the relation of identity and the relation of difference are extracted. In other words,
it could be that only identity relations axe computed and used, or it could be that both identity and difference relations are computed and used. The first possibility implies that prior experience will not affect performance when, as in the present expeximent; it provides familiarity only with the comparator words. When both the variant and the comparator words are known, as in the HFD condition, all read-out can be of identity relations; but when, as in the present experiment, only the comparator words are known, read-out must also be of difference relations. Thus, if only fdentity relations can be computed the effects of prior experience in the present experiment will either be small or absent.

Knowledge of the variant words is relevant to the problem of generality, because knowledge of all the woxds shown is common but not univexsai. In addition, knowledge of variants has the consequence that the subject knows that one of the only two letters is possible at each letter position. If this wexe a necessary condition fox the effect of priox expexience to occur it would clearly be an important restriction。

6.2 Method

6.2.1 Outiine

Word discrimination under three conditions of prior experience was studied using the method of random changes. In all three conditions the basic display sequence was that used in the LPD condition of
experiment 2, and shown diagrammatically in Figure 5, Chapter 4. In the 11 second condition the comparator word was first displayed in the tachistoscope for 11 seconds. At the end of the 11 seconds it was replaced by the noise field. The subject then prepared himself to receive the target word and triggered its display when he was ready. The comparator word returned to the soreen 400 milliseconds after the offset of the target word. It remained on the soreen for four seconds, during which time the subject said either 'Same or 'Different' Five seconds after the offset of the comparator word, the next comparator word appeared on the screen 1 or 11 seconds, and the whole sequence was repeated 10 times. For each discrimination a new comparator word was used. The subjects were requested to learn the comparator word as well as they could during its 11 second presentation but without writing or saying it. In the 1 second condition the comparator word was shown prior to the target word for 1 second, instead of for 11 seconds. In all other respects the display sequence was the same as for the 11 second condition. The O second condition differed from the other two only in the omission of any prior presentation of the comparator word. This condition was therefore very much the same as the LFD condition of experiment 2 .

To display duration of the target words was always 100 milliseconds. This value was chosen as being the most likely to provide a task of moderate difficulty for all subjects.

6.2 .2 Design

The performance of 12 subjects was measured under each of the three conditions. The design was therefore a, 3 X 12, factorial design. The control for serial and order effects was very similar to that of experiment 2. Firstly, practice was given prior to the experimental measurements. Secondly, the treatments were given in a counter-balanced order across subjects; each possible order ocourred for exactly two subjects. And thirdly, the order in which conditions were presented to each subject, was a triple replication of a balanced design (that is ABCCBA, ABCOBA, ABCCBA).

6.2.3 Procedure and instructions

Each subject was tested in a single session. The session began with about 10 minutes practice, in which the subject became acquainted with each of the experimental conditions. Full instructions were given during this pxactice period. The instruction protocol used was the same as that of experiment 2 , except that Sections 5 and 6 wexe replaced by the following:

Describe the 0 second, 1 second, and 11 seconds conditions. Ask the subject to learn the comparator words as well as possible during theix 1 ox 11 seconds presentations. Give at least five trial rans under each condition.

For the experimental measurements, 1.0 trials were given under the first condition, 10 under the second, and 10 under the third. The order of the conditions was
then reversed and another three blocks of 10 discriminations made. This whole procedure was repeated theee times, providing 60 discriminations under each condition for each subject. Each subject therefore saw 180 different pairs of words. The same 180 pairs of words were used for all subjects, each word occurring under each condition for exactly four subjects. After each set of 30 discriminations the subject was told how many were correct out of the 30 , but was not told on which trials the errors had ocourred.

6.2 .4 Subjects

The subjects were 12 psychology undergraduates acting as unpaid subjects to fulfil part of their course requirements. Their ages ranged from 16 to 28 years. Seven were female and five were male. None had been used in the previous experiments.

6.3 Results

The total numbers of correct and incorrect responses for each subject and condition are given in Table I Appendix 3. The separate totals for 'same' and 'different' trials are given in Tables 2 and 3 of Appendix 3. These results are analyzed in terms of the z scores and in terms of the proportions of correct responses.

6.3.1 Letter discrimination scoxes

The numbers of letters discriminated by each subject under each condition were calculated from the results given in Tables 2 and 3 of Appendix 3. These are shown in Table 1.

TABLE 1: LETTER DISCRIMTNATION PEREORMANCE

	PRIOR EXPERTENCE OF COMPARATOR WORD (in seconds)		
	0	1	1.1
Subject			
1.	3.4	4.7	5.5
2.	3.2	3.2	2.4
3.	2.8	3.2	3.1
4.	1.7	4.4	. 8
5.	3.6	4.1	4.5
6.	. 6	3.6	4.0
7.	6.2	7.0	6.1
8.	3.3	4.1	3.9
9.	4.0	5.0	4.1
10.	2.9	3.9	2.1
11.	2.7	2.2	0.0
12.	3.2	5.1	4.4
MEANS	3.1	4.2	3.4

Letter discrimination scores averaged over all subjects and conditions was 3.6 letters, which is about half of the word. No subject scored 0 or 7 under all conditions. Together these results indicate that a 100 milliseconds
duration for the brief display is an acceptable value for the testing of groups of individuals at a single duration*

A two way analysis of variance was performed on the letter discrimination scores. The results of this analysis are summaxized in Table 2.

TABLE 2: SUMMARY OF ANALYSIS OF VARIANCE PERFORMED ON LETTER DISCRTMINATION SCORES

SOURCE OF VARIATION	SUM OE SQUARES	DEGREES OF FREEDOM	MEAN SQUARE	F	P
Learning Time	7.49	2	3.75	4.4	$<.05$
Subjects	52.82	1.1	4.80		
Learning Time X Subjects	18,64	22	.85		
Total	78.95	35			

The significance of the conditions effect justifies a more detailed analysis. The critical difference for comparisons between individual means, calculated in the manner described by Lindquist (1935, p.164-166), is. 78 letters. Using this value it can be seen from the mean z scores given in Table l that the number of letters discriminated is significantly raised by 1 second of priar experience, but not by 11 seconds of prior experience, and that it is significantly greater under the 1 second than under the 11 second condition.

As only a single brlef duration was used, these results do not show directly how the improvement undex the 1 second condition was divided between durationsensitive and duration-insensitive performance. However, an indication may be obtained by comparing the results of the subjects scoring least under the 0 second condition with those scoring most. For those scoring least, perfomance is more likely to be at the duration-sensitive stage, and for those scoring most it is more likely to be at the durationminsensitive stage, The subjects were therefore divided into two groups according to whether they scored above or below the mean on the 0 second condition. The means for those two groups under the O second and 1 second condition are shown in Table 3. Dividing the results in this fashion confounds poorer subjects with duration -sensitive performance. The difference between the two groups may thus be due to a greater effect of prior experience with poorer subjects. This, howevex, is unlikely in riew of the fact that experiment 2 found subject x condition intexaction to be small and insignificant.

TABLE 3: MEAN LETTER DISCRTMINATION PERFORMANCE

	PRIOR EXPERIENCE IN SECONDS	
	0	1
Subjects scoring below mean on 0 second condition	2.1	3.5
Subjeots scoring aboye mean on 0 second condition	3.8	4.7

These results thexefore suggest that the effect of 1 seconds priox experience is at least as great on duration-sensitive performance as it is on durationinsensitive perfoxmance.
6.3 .2 Numbers and proportions of correct and incorrect responses

Table 4 shows the numbers of correct and incorrect responses summed orex 12 subjects for each condition, and Table 5 the proportion of correct xesponses.

TABLE 4: NUMBERS OF CORRECT AND INCORRECT RESPONSES (SUMMED OVER ALL SUBJECTS)

	PRIOR EXPERIENCE OF BASIC DISPLAY IN SECONDS		
	0	1	11
	Coxrect $\begin{aligned} & \text { In } \\ & \text { correct }\end{aligned}$	Coxrect In-	Correct $\begin{aligned} & \text { In }= \\ & \text { correct }\end{aligned}$
$\begin{aligned} & \text { 'different } \\ & \text { trials } \end{aligned}$	18611.8	202102	171
$\begin{aligned} & \text { same: } \\ & \text { trials } \end{aligned}$	$240 \quad 104$	$294 \quad 50$	$296 \quad 48$
Total	426222	$496 \quad 352$	$467 \quad 181$

TABLE 5: PROPORTIONS OF CORRECT RESPONSE
(ALL SUBJECTS COMBINED)

The values in brackets in Table 5 are the probabilities that the indicated diffexences would occux by chance (calculated using the Noxmal approximation to the Binomial distribution) This analysis confirms the conclusion that 1 second or prior experience increased the number of letters discximinated. In addition, it shows that although 11 seconds of pxior experience may not have increased the number of letters discriminated it did affect pexfomance by raising q (the probability that the subject says 'Same" on 'same' trials)。 This did not lead to a significant increase in the value of z, however, because the probability s also increased.

6.4 Discussion

This expeximent was concerned with the generality of the effect of prior experience on the stimulus component. The primaxy aim was to discover whether a great deal of leaming, and a knowledge of the variant woxds, are essential to the effect. The results show that neither are necessary, However; as the effect did not occux in the 11 second condition the xesults are most equivocal with regard to its generality. Together, the results of experiment 2 and 3, suggest the possibility that prior expexience will not affect the stimulus component if it makes the subject hughly familiax with the comparator words but not with the variants. As prior experienee of this kind is very common, this possibility was investigated by experiment 4, which is xeported in
the next chapter. Fuxther discussion of the generality issue is therefore postponed until the results of this investigation have been described.

The remainder of this discussion deals with a number of subsidiary issues arising from the results of the present experiment.

Better performance after 1 second than aftex 11 seconds of prior experience is a surprising result. Unless it is replicated, no extensive theoretical inference should be drawn from it. The surprising nature of this result may be reduced, however, when it is noticed that performance under the two conditions would give rise to nearly equal thresholds scores. Threshold measurements depend only upon q (i.e. upon the probability that the subject says the leamed word when the learned word is displayed). These two probabilities were very nearly equal - . 855 aftex 1 second and "860 after 11 seconds - so threshold measures would also be very nearly equal, The difference in the z scores tells us that the equality thresholds would show is only apparent, and results from higher guessing xates in the 11 second condition, and higher letter discrimination rates in the 1 second condition.

This result emphasizes the difficulty of interpreting experiments which do not separate stimulus and supplementaxy components. For instance, Mooney (1958) studied the recognition of complex novel visual configurations after varying amounts of priox experience. Recognition scores obtained
after 10 seconds of prior visual exposure to the shape wexe found to be the same as those obtained after less than 1 second of prior exposure.

Mooney assumed that the equality indicated equality of stimulus discrimination. He concluded that the perceptual learning concerned with novel visual configurations was independent of exposure duration. This conclusion is unjustified, however, because the recognition scores used allowed no adequate correction for guessing. Mooney's experiment and the present one are similar in that both find equality of uncorrected recognition scores after short and long periods of prior exposure. The results of the present experiment, howevex, show that this camot be assumed to indicate equality of stimulus discrimination.

It is not known why the 11 second condition failed to increase letter discrimination performance. Of the many possible explanations only three will be mentioned, First, there is the possibility that the result was an artifact of the experimental procedure. It might be that looking at a word for 11 seconds results in some temporary fatigue which reduces performance in the following few seconds. But as all conditions were well interspersed this possibility seems unlikely. It is also unlikely in view of the fact that, in all conditions, the subjects themselves triggered the bxief display when they felt that they were ready. Second, because the frequency of the response 'Same', on 'different' trials, increased with learning duration the resuit might be described
as due to an incoease in the competitive properties of the comparatox word. This explanation pxedicts that an increase in leaming durations beyond 11 seconds would either worsen performance or not affect it, A test of this prediction is provided by experiment 4. Finally, there is a possibility arising out of the claim, made by some subjects, that the 1 second condition is easiex than the 11 second condition, becamse, being of shoxt duration, the priox exposure is more like the brief display, and thus is easier to discriminate from it. This suggests that some visual processing, changing the appearance of the display in subtle ways, may take longer than a second. The possibility that practice with brief displays is bettex fox the discrimination of brief displays is therefore an interesting one, and merits fuxther investigation.

The results also suggest that the crucial quantitative aspect of prior experience is neither presentation frequency nor exposure duration, If frequency wexe the crucial aspect, the 1 second and 11 second conditions should produce the same performanee, as in both cases the presentation frequency is t If duration were the crucial aspect an increase in duration would not be expected to produce a dectease in perfoxmance.

One thing is made clear by the failure of 11 seconds of prior experience to raise performance above the 0 second condition; knowing the comparator
word, and being ready to use it, are not sufficient to reduce information loss during transmission. This is an important result. It shows that the superior pexformance in the HFD condition of experiment 2 is not simply due to the subject knowing the comparator word and being ready to use it, but to processes of development by prior experience that extend beyond the formation of accurate representations.

CHAPTER 7

EXPERIMENT 4: THE DEPENDENCE OF WORD DISCRIMINATION ON THE NUMBER OF ALTERNATIVE COMPARATOR WORDS AND ON THE KNOWLEDGE OF THE VARTANT WORDS

7.1 Introduction

This experiment continues the attempt to detemine how general the effect of prior experience on the stimulus component is likely to be. Again the interest centers on the nature of the prior experience. Two aspects were studied: the number of alternative comparator words, and the knowledge of the variant words.

7.1.1 The number of altemative comparator words

The prior experience given in experiments 2 and 3 prepared the subject for a single comparator word. There are some experimental and everyday situations in which the subject is prepared for a single word, but there are many more in which he is prepared for one of a number of alternatives. In view of this it is important to know whether or not the effect of prior experience on the stimulus component depends upon the subject being prepared for a single comparator word.

Performance of many kinds has of course been shown to vary with the number of alternative stimuli. For word recognition such an effect was shown by Postman and Bruner (1949). They found that recognition thresholds were higher when subjects were told that
the displayed word would be either a colour name or a food name, than when they were told it would be a colour name. However, a similar experiment by Freeman and Engler (1955) failed to show any difference between these dual and single sets. Brown and Skinner (1964) provide evidence that these different outcomes were due to Postman and Bruner displaying two words on each trial and Freeman and Engler only one. In the present experiment only one word per display was used. Independence between performance and the number of alternatives may therefore be expected on the basis of Brown and Skinner's finding, This expectation cannot be strong, however, as the separation of stimulus and supplementary components may well show effects that were previously concealed.

7.1.2 Knowledge of the variant words

The relevance of this aspect of prior experience to the problem of generality was noted in the introduction to experiment 3. As the results of that experiment were equivocal, it is important to know whether knowledge of the variant words is essential to the effect of prior experience on the stimulus component when the comparator word is highly familiar.

In experiment 3 the stimulus component was found to decrease with an increase in the amount of prior experience of the comparator word, due to an increase in s (the probability of the subject saying 'Same' on 'different trials). As already mentioned, this result suggests the occurrence of competitive
processes, and is to some extent in keeping with the theories based on competition. These theories predict that the value of s will not decxease when greater amounts of prior experience axe given, and may even increase.

7.2 Method

7.2 .1 outline

Word discrimination was studied under three conditions. In the first the subject was ready for a single highly familiar comparator word. In the second he was ready for any one of four highly familiar comparator words. In the thixd condition he knew only that the comparator word would be a CVCVCVC. In all three conditions the display sequence was exactly the same as in the LFD condition of experiment 2. The the e conditions may best be designated by the number of altemative comparator words which were possible on each trial; that is, as the 1 condition, the 4 condition, and the 2×10^{7} condition. The 1 condition was very similar to the HFD condition of experiment 2. The subject always knew which word was to be the comparator word, and all were highly familiar to him. This condition differs from the HFD condition in that the subject was given no prion experience of the variant words. The words displayed on 'different' trials were therefore words never seen before. In the 4 condition the comparator word on each trial was randomly selected from 4 different, highly familiar, words. The subject always knew what these 4 words
were. Apart from the number of alternative comparator words possible, condition 4 was the same as condition 1. The 2×10^{7} condition was the LFD condition of experiment 1 again. The comparator words were randomly selected from all possible CVCVCVC's, and none were familiar to the subject.

Twelve subjects were tested under each of these conditions. A single display duration was used for the target word; as in the last experiment this was 100 milliseconds.

7.2 .2 Design

The experimental design was again a, 3×12, design. Sexial and order effects were controlled as in the previous experiments, except that a balanced design within subjects was not used. In partial compensation for this, a longer practice period was given. Again, conditions were given in a countex balanced order across subjects. Each possible arder of the three conditions occurred for exactly two subjects.

7.2 .3 Procedures and instructions

One session, lasting about $1 \frac{1}{2}$ hours, was requixed per subject. The sessions began with at least 15 minutes practice, in which the displayed words were selected as in the 2×10^{7} condition.

The experimental trials for each condition were given in a single block, with 40 discriminations per condition. These were divided into four sets of 10
discriminations. Every set of 10 discriminations was preceded by four brief displays which, in the 1 and 4 conditions, reminded subjects of the comparator words to be prepared for. In the 1 condition a different comparator word was used for each set. In the 4 condition the same 4 words were used in each set, selection from these being random.

For each subject the comparator words used in the 1 condition were also those used in the 4 condition. A new set of words was used for each subject. Each subjeot was given his four comparator words at least a day before the experiment and requested to learn them. For the 2×10^{7} condition 40 comparator words were required per subject, and for each subject a new set of 40 was used.

Instructions were given during the practice session according to the protocol given in Section 5.2.3, except that sections 5 and 6 were omitted and the following added:

At the start of the 1 condition tell subject that one comparator word will be used in each set of 10 discriminations, and that the one to be used will be shown to him four times at the beginning of each set.

At the start of the 4 condition tell subject that on every trial the comparator word will be randomly selected from the four he has Learned, and that to remind him of this the four words will be shown once each at the beginning of each set.

> At the start of the $2 X 10^{7}$ condition tell subject that the comparator words will be randomly selected from all possible CVCVCVC's. Tell him that the word shown briefly four times at the beginming of each set is irrelevant to the experiment and is included only for control purposes.

7.2.4 Subjects

The subjects were 12 psychology undergraduates, acting as unpaid subjects in partial fulfilment of their course requirements. Their ages ranged from 18 to about 36 years. Six were male, and six were female. None had been used in previous experiments.

7.3 Results

The number of correct and incorrect responses for each subject and condition are given in Table 1 of Appendix 4. The separate totals for 'same' and 'different' trials are given in Tables 2 and 3 of Appendix 4. These results are analyzed in terms of letter discrimination performance and in texms of the proportions of correct responses.

7.3.1 Letter discrimination performance

The number of letters discriminated by each subject under each condition were calculated from the results given in Tables 2 and 3 of Appendix 4 and are given in Table 1.

TABLE 1: LETTER DISCRTMINATION PEREORMANCE

	NUMBER OF ALTERNATIVE COMPARATOR WORDS		
SUBTECT	2×10^{7}	4	1
1.	2.9	5.4	4.8
2	0.0	6.0	6.5
3	5.3	3.9	6.2
4	2.9	6.2	5.2
5	4.3	6.1	6.6
6	0.3	0.0	2.6
7	5.0	6.0	5.4
8	1.6	3.2	4.0
9	6.5	4.7	6.2
10	3.4	5.7	6.6
11	4.5	5.5	3.5
12	4.1	4.9	6.2
MEANS		4.4	4.8

Again the use of a single display duration of 100 milliseconds (with prewstimulus and postmstimulus noise fields) is seen to be reasonably satisfactory. No subject always saw all of the word, and no subject always saw none of the word.

To determine whether the differences in letter discrimination scoxes under the different onditions were significant an analysis of variance was performed. The results of this analysis are given in Table 2.

TABLE 2: SUMMARY OF ANALYSIS OF VARTANCE PERFORMED ON LETTER DISCRTMINATION SCORES

| SOURCE OF
 VARTATION | SUM
 OF
 SQUARES | DEGREES
 OF
 FREEDOM | MEAN
 SQUARE | F | P |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Prior knowledge | 23.6 | 2 | 11.8 | 6.9 | $<.01$ |
| Subjects
 Prion knowledge
 X subjects
 Total | 61.2 | 11 | 5.6 | | |

The significance of the conditions effect justifies a more detailed analysis. The critical difference between any pair of means required for significance at the .05 level on a two way t-test is 1.1. Comparison of the means of Table 1 on the basis of this value shows that performance under both the 4 and 1 conditions was superior to that under the 2×10^{7} condition. Letter discrimination performance is thus raised by prior experience of the comparator words alone. Readiness for a single comparator word is also seen to be unnecessary. When the subject was prepared fox any one of four comparator words his performance was still significantly raised by prion knowledge of those words. It is also important to determine whether performance is worsened if the subject is prepared for four comparator words rather than just one. On this test the difference between the 1 and 4 conditions does not approach significance. However, a further examination of this question will be reported in the next section.

Is the increased performance more likely to be due to changes in duration-sensitive or in durationinsensitive performance? An indication is given by the means of Table 3. These means are again produced by dividing the 12 subjects into two groups: all. those scoring above the mean on the 2×10^{7} condition, and all those scoring below the mean. Table 3 gives the means for those two groups under each condition.

TABLE 3: MEAN LETTER DISCRIMLNATLON PERFORMANCE

	NUMBER OF ALTERNATIVE COMPARATOR		
	2×10^{7}	4	1
Subjects scoring above			
mean on 2.10^{7} condition Subjects scoring below mean on 2.10^{7} condition	5.0	5.2	5.7

These results indicate that knowledge of the comparator words improves the performance of subjects discriminating 2 letters on the 2×10^{7} condition more than that of subjects discriminating 5 letters on the 2×10^{7} condition.
7.3 .2 Numbers and Proportions of correct and incorcect responses

Table 4 shows the numbers of correct and incorrect responses, summed over all subjects, for each condition. The proportions of correct responses are given in Table 5, together with the probability that the difference between individual pairs of means would
ocowr by chance (estimated by the Nomal approximation to the Binomial distribution). The dangers in making inference from multiple comparisons are assumed to be mitigated by the small probabilities obtajned, and by the analysis of variance performed on the lettex discrimination scores.
TABLE 4: NUMBERS OF CORRECT AND INCORRECT RESPONSES

	NUMBERS OF ALTERNATIVE COMPARATOR WORDS		
	2×10^{7}	4	1
	Correct $\frac{\text { In- }}{\text { correct }}$	Correct $\begin{aligned} & \text { In- } \\ & \text { correct }\end{aligned}$	Correct $\begin{aligned} & \text { In- } \\ & \text { correct }\end{aligned}$
$\begin{aligned} & \text { DLfferent' } \\ & \text { trials } \end{aligned}$	$144 \quad 76$	$160 \quad 54$	18050
'Same' trials	1.4765	203 37	20620
Total	291141	$363 \quad 91$	386

TABLE 5: PROPORTIONS OF CORRECT RESPONSES

	NUMBERS OF ALTERNATIVE COMPARATOR WORDS
	$2 \times 10^{7} 14$
Different' trials	
'Same' trials	

With respect to the comparison between the 2×10^{7} condition and the other two conditions these results are in keeping with the conclusions drawn from the analysis of variance. These tests make more efficient use of the
data, however, and unlike the analysis of variance they indicate a difference between the 4 and 1 conditions. The significant difference between the values of q under these two conditions indicates a difference in letter discrimination, and not simply a change in guessing strategy. If the difference in the values of q were due to a difference in guessing rates, the probability of a correct response on 'different' trials would be less under the 1 than under the 4 condition. It can be seen from Table 5 that this was not the case.

7.3.3 Some comparisons between experiments 3 and 4

Experiments 3 and 4 were performed under very similar conditions. The procedural differences that there were, such as the slightly greater number of discriminations in experiment 3, and the differences in the form of control for serial effects, are unlikely to account for the observed differences in performance. Comparison between the experiments therefore seems reasonable. The question of interest is whether the greater amount of experience of the comparator word in experiment 4 produced any greater increase in performance than the few seconds of experience in experiment 3. The relevant comparison is between the 1 second condition of experiment 3 and condition 1 of experiment 4. The proportion of correct responses on 'different't trials after mach learning is significantly greater than the proportion after 1 second prior experience ($P<.01$). The proportion on 'same' trials i.s significantly greater
at the .05 level. That this difference is performance is not due to subject and procedural difference, can be seen by comparing the conditions of no prior experience in the two experiments; that is, condition 0 of experiment 3 and condition 2×10^{7} of experiment 4 . The differences in the proportions of correct response between these two conditions are small and do not approach significance. Letter discrimination performance was therefore better when the comparator word was highly familiar than when it was seen for either 1 or 11 seconds.

7.4 Discussion

A rough estimate of the generality of stimulus component facilitation is now possible. The effect of prior experience on the stimulus component does not depend upon the subject being prepared for only one comparator word. It still occurs when the subject must be ready to discriminate the display against any one of a number of possibilities. In addition the effect does not require that the variant words be known. Situations in which the subject is prepared for one of a few highly familiar words are relatively common. In normal reading, for instance, most words are highly familiar, and both context and peripheral vision often limit the number of possible words. Such situations also arise in expeximental work. Consider, for instance, experiments studying the effect of built-in rehearsal frequency on thresholds, such as that of Solomon and Postman (1952) or experiment 1. In these experiments some
words become highly familiar, and partial information from premecognition presentations, together with the rehearsal itself; will of ten limit the number of possible words. It $1 . s$ therefore reasonable to suppose that in a substantial number of situations the stimulus component of word recognition will depend upon prior experience. No more precise statement of the degree of genexality is possible because only a few values of leaming duration and number of alternative words have been studied.

In addjtion to the implications with respect to generality a few other points emerge from experiments 3 and 4 . These will be discussed in the remainder of this chaptex.

Experiments 3 and 4 indicate that thexe may be a range of exposure durations over which prior experience has little or no effect on the stimulus component, and that large effects may occur only with large amounts of prior experience. These indications suggest a type of functioning which is not unreasonable in view of the large proportion of stimuli that are met only once or twice during a person's lifetime. It would be of little use to process the input in terms of whether it was on was not one of these. Recoding early in the transmission sequence will only be useful if performed in terms of stimuli that occur frequently, What amount is actually required before such recoding occurs would be shown by a more extensive study of the dependence of the stimulus component on the amount of prior experience.

The dependenee of the stimulus component on the number of alternative comparator words is a most important result, because it provides a possible mechanism for the effects of context and other variables of 'peroeptual set'. It is most likely that these variables, on some occasions, altex the number of siternatives fon which the subject sets himself: If this is the case, then they also altex the stimulus component. The results of experiment 4 therefore provide evidence that at least some of the many known effects of such wariables involve changes In the stimulus component.

The mechanism of the effect of number of alternatives is unknown. It might involve effects on readwout processes, or effects on readwin processes (i.e. the transfomation of the input into the form in which it is xead-out). No techniques capable of settling this issue are at present available. One experiment which is possible, howevex; is that of determining how long it takes for the input processing systems to get into the state of readiness for a single word, That some length of time is required is demonstrated by the difference in performance between condttions 1 and 4 . A brief display could wam subjects of the relevant comparator word shortly before presentation of the target word. Dy varying the interval between the waxning and target displays the required warning time could be detemined.

The prediction of competition theories that, with no knowledge of the variant words, the probability s is greater for highly familiar than for unfamiliar words was clearly not confirmed. The probability s was instead much smaller for highly familiar words.

The final point is that prior experience affects the stimulus component even when the variant words are unknown. It appears, therefore, that both difference and identity relations between input and familiax words are computed and used in the processing of the input. Whether the identity of the difference is computed, or only the fact of difference, cannot be known from this experiment.

CHAPTER 8

THE WHOLE-WORD THEORY AND THE LETTER POSITION EFFECT

Experiments 3 and 4 have shown that the effect of prior experience on the stimulus component of word recognition is likely to be of considerable generality. Attention now returns to the mechanism of this effect. From the results of experiment 2 it was concluded that prior experience of the displayed words affects the stimulus component by allowing the input to be classified as a particular word prior to readmout. With all relevant aspects of the input thus given in a single classification limitations in the readwout and storage systems are avoided. If prior experience does modify input processing in this way, then ali the other behavioural phenomena that result from the readmout and storage of a number of separate classifications will be affected by prior experience. A test of this prediction, for some phenomena at least, is an important step in the confirmation and development of the theory.

The best documented phenomenon believed to result from the readmout of a number of separate classifications is the letter position effect. The letter position effect is the relationship between the relative position of letters in a word and the proportion of trials on which they are correctly recognized. The wholewword theory predicts that this effect will depend upon word familiarity. However, no such dependence has as yet been reported. Fortunately, the prediction can be tested
using the data of experiment 2. Although this experiment was not designed for such a purpose, it provides data that can be re-analyzed to show the relation between letter position and performance. This chapter therefore reviews the research on the letter position effect and gives the reasons for believing it to result from read out of a number of separate classifications. It then re-analyzes the results of experiment 2 to see if the relation between letter position and performance depends upon word familiarity. Finally it discusses the implications of the results for the whole-word theory, and for current explanations of the letter position effect.

8.1 A review of research on the effects of letter position

The relation between letter position and recognition accuracy has been discovered and forgotten at least twice. Pillsbury (1897), reporting a very extensive study of the recognition of misprinted words, noted a marked decrease in recognition accuracy proceeding from the first letter to the last throughout the word. This, he suggested, indicated a general tendency for the subject to read through the word from left to right, thus giving the first letters a more prominent part in the recognition of the word as a whole.

A few years later, workers in the German laboratories discovered that accuracy tended to rise again for the last one or two letters, producing an asymmetrical bow-shaped relation. Their results were reported by Woodworth (1938), who explained them in terms of mutual masking effects. He supposed that letters close together would come to overlap at some stage in the visual receptor systems, thereby
reducing legibility; end letters, being overlapped only from one side, would suffer less masking, and would therefore be better recognized. He gives convincing demonstrations of such mutual masking effects Resolution deficiencies of a similar kind have been suggested recently by Averbach and Coriell (1961). The implications of these notions seem not to have been explored, but they are of great interest as no transformations maintaining the topologioal relations of the stimulus display could achieve such masking.

In 1927 Crosiand, using centrally fixated nonsense words, remdiscovered the phenomenon. An examination of the dependence of the letter pasition effect on word length gave him the results shown in Figure \mathcal{L} Crosiand offered no explanation of his resuits, but Anderson and Dearborn suggested that:

Crosland's results may be related to the direction of the English Language Learning to read, write, and spell are all accomplished from left to right in English. Leftmtowright eye movements were not a factor' in Crosland's experiments, in as much as the fixation point was controlled at the centre of the word, and 100 ms . of exposure time does not permit a change of fixation. Crosland's result may be said rather to express a leftmta-ragt mindedness, which the practioe of leftotom right eye movements serves to bring about. (Anderson and Dearborn, 1952, p.225-227).

A different line of thinking was begun by Mishkin and Forgays (1952) who, apparently unawane of the earlier work. discovered a new positional effect. Their study had its oxigins in Hebb's debate with the Gestalt theoxists over the problem of stimulus equivalences Its aim was to show that ${ }^{\text {'reading does not train all parts of bhe refina in the same }}$
way, even when acuity does not enter the picture: (Hebb, 1949, p.49). They displayed English words of eight letters either wholly to the left, or wholly to the right, of fixation. Recognition accuracy was found to be substantially higher for the words shown to the right of fixation. To demonstrate the dependence of this effect on the directional characteristics of the language they used the fact that Yiddish (if in Hebrew script) is written from right to left. Subjects familiar with both languages were shown English and Yiddish words in random order, and, as before, either to the left or right of fixation. Right field superiority occurred only for the English words. Recognition scores for the Yiddish words were higher in the left field than in the right, but not significantly. The conclusions drawn by Mishkin and Forgays were thats

The results support the hypothesis that reading trains limited regions of the left hemiretina selectively. They are inconsistent with the theory of a general equipotentiality in vision since the learning involved in word recognition is not subject to complete transfer. Since there is an indication that English and Yiddish words are more accurately perceived in different visual fields, it appears that a more effective neural organization is developed in the corresponding cerebral hemispheres (left for English, right for Yiddish) as a result of training processes that are specific to the reading of those languages. It is suggested that a factor in the training may be the neural equivalent of a selective visual attention. although the data have indicated that when learning is complete this factor may no longer be operative. (Mishkin and Forgays, 1952, p.47).

The relationship of hemifield superiority to language training was further investigated by orbach and by Forgays. Orbach (1952) showed that left field superiority for Yiddish words could be obtaineds but only if this was the first learned language. Forgays (1953) showed that right field superiority in English speaking children does not normally develop until they reach Grade VII.

The contradiction between the classical work on the effects of letter position and the conclusions regarding lateral dominance went unnoticed, until pointed out by Heron (1957). He showed that when letters are exposed in Left and right fields simultaneously more are recognized in the left field; but that when letters are exposed in the left field or the right field more are recognized in the right field. He showed also that when nonalphabetical material is used there is no difference between recognition scores in the right and left fields: These phenomena camot be due to the selective training of limited retinal xegions (nor can they be due to mutual masking effects). Heron therefore proposed, in effect, that the selective visual attention derived from eye movements has its effect, not through the selective training of retinal regions, but through a post-exposure process. Heron"s explanation clearly relates the lettex position effect to read-out and is therefoxe quoted at length. He says:

It is obvious that the nemral activity involved in perception must persist for some time after the stimulus has been presented. During this period it would be possible for the 'postmexposure' attentional process to operate.
The most noticeable feature of this process, as the s's report and their objective results
indicate, is that the exposed letters are attended to in the order that they would normally be read: letters which would tend to be fixated first under normal reading conditions have their traces 'scanned' first. Thus, there appears to be a close relationship between the eye-movements, or tendencies towards them, established by reading and the post-exposure process.
If tendencies toward eye-movements are important in determining how the post-exposural process operates it is possible to see how the apparently contradictory results obtained under conditions of successive and simultaneous presentation can be reconciled. We know that in reading English there are two main types of eyemovement. The first is a series of short movements from left to right along the line of print, the second consists of movements from right to left at the end of each line. Thus the fluent English reader presumably has two tendencies established; faced with a line of print there is one tendency to fixate neax the beginning of the line and another to move the eyes along it from left to right.
When alphabetical material is exposed in the right field alone, the two tendencies would be acting together. When, however, it is exposed in the left field alone, the tendency to move the eyes to the beginning of the line (presumably the dominant one) would be in conflict with the tendency to move the eyes from left to right. Under conditions of successive presentation we should therefore expect that more letters would be recognized in the right field. When exposure occurs simultaneously in both fields, on the other hand, the dominant tendency to move the eyes to the beginning of the line would result in more letters being recognized in the left field. (Heron, 1957, p.46-47).

Heron's resolution of the contradiction has received wide acceptance and experimental confimation (Terrace, 1959; Harcum and Jones, 1962; Harcum and Filion, 1963; Winnick and Dornbush, 1965). The experiments of Harcum
and his colleagues show that letter position effects vary in accordance with the directional attributes of the stimuli. In one experiment, English words and mixror images of English words wexe presented to the left or to the xight in random order (Harcum and Finkel, 1963). For the normal words, accuxaoy was higher when they were presented in the right field; but for the mirror images accuracy was higher when they were presented in the left field. From such results Haroum concluded that the soan sequence is controlled by an earlier discrimination of the specific characteristics of the stimulus after the exposure has been initiated. This conclusion is in accord with the view that the input is olassified as partioular word prior to read-out.

Recently, Kimura (1961) has suggested that there might be a left-right difference in tachistoscopic word recognition as a result of the cerebral dominance associated with speech representation. ${ }^{1}$ Bryden (1965) pointed out that such an effect might occur but be largely obscured by the positional effects deriving from learned reading habits. To remove the obscuring effects Bryden displayed single letters only; and Bartong Goodglass, and Shai (1965) displayed vertically printed words. The results of both experiments suggest that there may be a slightly highex recognition accuracy for non-directional verbal material arriwing in the dominant hemisphere.

1

This suggestion is not related to the lateral dominanoe proposed by Mishkin and Forgays; it prediots a left field superiority for most subjects, irrespective of the directional characteristios of the language.

Although Heron's interpretation of the letter position effect is widely accepted there are some problems that it does not resolve. First, it is not clear why the position of a letter in the scan sequence should be related to recognition acouraoy. Is it because the scan sometimes fails to reach the later letters, or is it because the later letters, although scanned, are more Iikely to be lost in storage? Harcum and Jones (1962) choose the latter alternative but do not say why. Second, no reasons are affered for supposing that the scanning ordex is derived from eye movements rather than from the order required fox visualacoustic correspondence. In English; the visual-acoustio cormespondence is such that the initial sounds of a word correspond to the left parts of the printed word. It is therefore only by learning to process the printed word from left to right that this correspondence can be utilized. There is no obvious reason why such leftotomright processing must be associated with left-toright saocadideye movements. In view of the welght of evidence involving the acoustic system in tachistoscopic word recognition, the seaming order seems just as likely to derive from the nommal requirements for visualmacoustic corxespondence as from eye movements. Third, a recent axperiment by Bower (1965) throws doubt on the notion that raadmout involves a scannex constrained to moye actoss the display in an ordexly fashion. Bower s experiment showed that subjects, if given a great deal of practice, can be trained to attend to the different letter positions in any order without loss of efficiency. He suggests that readmout involves not a scanner but a large number of filters, which can open fin any oxder aictated by environmental
contingencies, and which feed into a funnel (i.e. which can open only one at a time). Bower's finding can perhaps be reconciled with scanning theories by noting that environmental contingencies would normally require the filters to open in an orderly fashion from left to right. Lastly, another recent experiment provides evidence that read-out is not constrained to take one item at a time, but can, to a limited extent at least, take a number of items simultaneously (Weisstein, 1966).

Notwithstanding these difficulties the conclusion that letter position effects are related to read-out appears sound. It seems most likely that the letter position effects originate, in large part, at or after read-out. There may be in addition a small effect due to cerebral dominance, favouring, for most subjects, letters in the right hemimfield, and originating, presumably, prior to read-out.

If the above conclusions and the whole-word theory are correct, then the letter position effect will largely disappear under conditions of whole-word processing; far read-out of the displayed word as a single unit will remove those differences between letters that originate at or after readmout, and leave only whatever differences originate earlier.

8.2 Re-analysis of the data of experiment 2

The conclusion that familiar words are read out as single units was drawn from the superiority of the HFD over LFD and LFI performance at the three shortest durations of exposure (i.e. 50,55 , and 60 milliseconds). The prediction drawn from this conclusion was therefore tested by examining performance at these durations.

Pexformances at the three durations were combined and the values of z for each letter position and subject were calculated. Fox the HFD and LFD conditions this calculation required, for each position, the proportion of trials on which the subsect saia 'Same' when a change occurred at that position. These proportions fox both conditions, and for each subject separately, are given in Tables 1 and 2, Appendix 5. The values of z were caloulated from these propontions by equation 14 (Chaptex 3), which in this case becomes:

$$
E\left(z_{1}\right)=1\left(1-\frac{s_{1}}{q}\right)
$$

where $E\left(z_{1}\right)$ is the z score for the ith position, and $s i$ is the probability that the subject says "Same" when a change occurs at that position. It is assumed that q takes the same value for all letter positions. In other words, it is assumed that the probability that the subject says "Different' when no difference is detected is independent of the position of any undected difference There seems to be no reason to doubt this assumption.

To calculate the values of z for each position in the LFI condition it is necessary to use the position score Sp. The values of z were calculated acoraing to equation 5 (Chapter 3), which in this case becomes:

$$
\mathrm{E}\left(\mathrm{z}_{\mathrm{i}}\right)_{\mathrm{C}}=\frac{20 \mathrm{E}\left(S p_{\mathrm{i}}\right)-1}{19}
$$

for consonants and

$$
\mathrm{E}\left(z_{i}\right)_{V}=\frac{5 \mathrm{E}\left(S \mathrm{p}_{\mathrm{i}}\right)-1}{4}
$$

for vowels. $E\left(z_{1}\right)$ is the z score for the ith position,
and $E\left(S p_{i}\right)$ is estimated by the average value of S_{p} for the 靘 position. The average values of Sp for each position were obtained from Table 4 , Appendix 2 , by taking the average value for each subject oyer the durations 50,55 , and 60 milliseconds.

The values of z thus obtained for the LED, LFI, and HFD conditions are given in Tables 1,2 and 3, togethex with the mean values over all subjects.

TABLE 1: THE VALUE OF Z FOR THE LFD CONDTTTON FOR EACH SUBJECT AND LETTER POSTTTON

SUbJECT	LETTER POSITION						
	1.	2	3	4	5	6	7
1. (R.M.K.)	.70	. 50	. 62	.17	.16	. 00	.33
2. $M_{5} G_{0}$)	1.00	1.00	. 81	. 04	. 28	. 14	. 07
3. (A.S.P.)	.84	.71	.30	. 40	.28	. 00	.12
4. (A.S.)	. 53	- 34	. 14	. 00	. 04	.17	$=00$
5. (E.P.)	. 68	.36	. 28	.00	. 00	.16	.12
6. (t.v.)	.34	. 55	. 25	.12	. 37	.00	.02
MEAN	.68	.57	- 40	. 12	.19	. 08	. 11.

TABLE 2: THE VALUES OF Z FOR THE LFI CONDTTION, FOR EAOH SUBJECT AND LETTER POSITION

SUBJECT	LETTER POSITION						
	1	2	3	4	5	6	7
1. (R.M.K.)	.60	. 51	. 38	.31	.16	.19	.18
2. (M, G*)	. 80	. 75	. 50	.28	. 29	.13	. 25
3. (A.J.P.)	.79	.77	.49	.39	.21	.30	.39
4. (A.S.)	. 40	.45	. 32	. 20	.15	. 11	.09
5. (E.P.)	-75	.49	.23	.24	.20	.16	.35
6. (T.V.)	. 33	.35	. 24	.26	.15	.14	.03
MEAN	.61	.55	.36	. 28	.19	.17	.22

TABLE 3: THE VALUES OF 2 FOR THE HFD CONDITION, FOR EACH SUBJECT AND LETTER POSITION

SUBJECT	LETTER POSTTION						
	I	2	3	4	5	6	7
1. (R.M.R.)	.91.	.48	. 59	.70	. 77	.68	. 57
2. (M.G.)	.83	.95	.93	.78	.82	.55	. 50
3. (A.J.P.)	.95	.90	. 09	.91	. 74	.88	.78
4. (A.S.)	.45	.75	.63	.61	.14	.26	. 30
5. (E.P.)	.73	.09	.72	. 30	.35	.23	.57
6: (T.V:)	. 30	.12	.59	. 67	.36	.94	. 57
MEAN	.70	.55	.59	.66	. 53	.59	. 55

These values of z are estimates of the probabilities that letters in each position are discriminated or identified, where all probabilities are corrected for guessings The mean values of z over all subjects are plotted in Figure 2. It can be seen that recognition performance at letter positions 1 and 2 is very similar under all three conditions. It is with respect to recognition of the letters in the remaining positions that the conditions differ.

Table 4 summarizes an analysis of variance performed on the z scores.

TABLE 4: SUMMARY OF ANALYSIS OF VARIANCE PERFORMED ON Z SCORES

SOURCE OF VARIATION	SUMS OF SQUARES	$\begin{gathered} \text { DEGREES } \\ \text { OF } \\ \text { FREEDOM } \end{gathered}$	MEAN SQUARES	F	P
Condition(c)	2.0726	2	1.0363	49	<01
Position(P)	2.3959	6	.3993	8.4	<.OI
Subject(S)	1.4204	5	. 2840		
C X P	1. 0427	12	.0869	3.71	Q. 01
5 X C	.2100	10	.0210	.90	NS
$\mathrm{S} \times \mathrm{P}$	1.4217	30	.0473	2.0	$<.05$
$S X \mathrm{CXP}$	1. 4069	60	.0234		
TOTAL	9.9702	125			

As expected, both condition and lettex position effects are highly significant. It is apparent from Figure 2 that the position effect obtained under high familiarity conditions differs from that obtained under low familiaxity conditions. The analysis of variance
shows that this interaction between condition and position is highly significant. It can also be seen from Table 4 that the effect of conditions does not vary significantly across subjects, but that the effect of position does.

Performance at the three shortest durations was combined because there were insufficient obsexvations in the HFD and LFD conditions to allow examination of the Letter position effect at each duration separately. It might be argued, howevar, that combining performance in this manner could give a distorted picture of the effect of letter position. As the LFT condition provides a sufficient number of observations, the interaction of the letter position effect with display duration was examined for this condition. The mean z scores over all subjects for each duration and letter position were calculated from the results given in Table 4, Appendix 2. These scores are given in Table 5 and are plotted in Figure 3.

TABLE 5: THE VALUE OF 2 FOR EACH LETTER POSITION AND DISPLAY DURATTON, LEI CONDTTTON, AVERAGED OVER ALL SUBJECTS

| DISPLAY
 DURATION | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | .97 | .93 | .82 | .77 | .68 | .54 | .70 |
| 90 | .88 | .83 | .64 | .55 | .43 | .40 | .45 |
| 70 | .82 | .74 | .53 | .46 | .33 | .25 | .35 |
| 60 | .72 | .65 | .42 | .32 | .29 | .17 | .30 |
| 55 | .62 | .59 | .40 | .33 | .16 | .21 | .21 |
| 50 | .50 | .43 | .25 | .22 | .14 | .14 | .15 |

It is clear from Figure 3 that ovex the range of durations studied there is no substantial interaction
between the letter position effect and display duration. This is a result of great intexest which will be discussed in more detail in Section 8.3.2.

In summary, the main findings regarding the letter position effect are as follows:

1. There were large effects of letter position in the LFD and LFT conditions. These effects were very similax under the two conditions, and similar to those reported by Crosland (see Figure 1)。
2. There was little ox no effect of letter position in the HFD condition.
3. Recognition of the letters in positions 1 and 2 was no better for familiar than for unfamiliar words.
4. The effect of letter position in the LFI condition was largely independent of display duration.

8.3 Discussion

These results carry important implications for the wholemword theory, and for contemporary theories regarding readmout and the letter position effect. These fmplications will be discussed in turn.

8.3.1 The whole-word theory

The prediction derived from the wholemwrd theory was clearly confirmed. The letter posftion effect was not only reduced but wexy laxgely removed by prior experience of the displayed words. As the absence of a

Letter posstion effect in ward recognition has not before been either reported or predicted and was a priori uniikely, this result provides strong support for the wholewword theary.

Interesting implicetions arise regarding the origins of information loss in the HFD condition. Information is unilikely to be lost during on after readmout if oniy a single classification is read out. Performance in the HFD condition may therefore be assumed to show what information loss occurs in the receptor systems. It can be seen from Figure 2 that at letter positions 1 and 2 performance under LFD and LFT conditions differs little from that under HFD condttions. This suggests that, under low familiarity conditions also, all information Loss at positions 1 and z ocours in the receptor systems. It further suggests that information loss at the remaining positions under Low familiarity conditions is divided into two parts: loss ocourring prion to readaout (shown by performance on the HFD condition); and loss occurring at ar after read-out (shown by the difference in performance under high and low familiarity conditions).

The extent to which performance was independent of letter position in the HFD condition indicates that the processes classifying the imput as a partheular word operate on all letters simultancously. The relation between simultaneous of successive processing of the Letters and classification of the input as a whole word can now be clarified. Clas,ification of the input as a single word simply requires that a single classification, and hence a single signat, can specify the whole of the relevant input. It does not require that the processes olassifyine the input as a particular word operate on all
letters simultaneously. The relation between performance and letter position in the HFD condition suggests that this processing is concurrent nevertheless.

The effect of priox experience on word recognition can now be explained as being due (in part) to the removal of the letter position efrect by classification of the input as a single whole word prior to read-out. If this explanation is correot further undexstanding of the role of prior experience in the word recognition process will result from a better undexstanding of read-out and the letter position effect. It is with these that the next section is concerned.
8.3.2 Read-aut and the letter posjition effect

The view that the letter position effect is associated with read-out gains further support from the present results. Firstiy, the disappearance of the effect in the HFD condition is fuxther evidence that the effeot is not due to limitations in relatively peripheral input processes (e.g. resolution limitations, or mutual masking ; If the effect was due to limitations operating prior to the classifioation of the input as a particular word it would be reasonable to assume that it would be observed with both familiaz and unfamiliar words. Secondly, the similarity of the letter position effect in the LFI and LFD conditions shows that the effect is not due to the processes of reproduction. In word identification tasks reproduction is always sequential. and usually from left to right. The possibility that this might account for the letter position effect is a difficulty that has frequently been noted (e.g. Crosland, 1931; Haroum and Finkel. 1963). This difficulty is
clearly removed by the ocourrence of the letter position effect in the LFD condition, because in this condition no oxder of meproduction is involved.

Not all aspects af Heron's explanation of the letter position effect are confirmed by the present results. The first aspect on which doubt is throw is the view that the effect arises from a post-exposure process which scans a persisting image (Heron, 1957\% Terraces 1959. Harcum and Jones, 1962). The present results show that the lettex position effect occurs even though the display ia wery brief and immediately followed by a noise field. Any theory oleiming that scannine is across a persisting image must, therefore, emplain why this image is not masked by the immediately following noise field. Heron's explanation does not do this. One that does will be suggested Later:

Another aspeet of Heron's explanation that requires revision is the view thet the letter position effect results from the eyemovements involved in reading verbal material. This explanation predicts that the lettex position effect will increase with word familiarity; or at least be independent of it. It certainly does not predict that the effect will be greater for unfamiliar words.

The most interesting problem is that raised by the independence of the lettem position effect and the duration for which the display is available. Assume that read-out does involve a process scanning across a visual display, and consider the effect of erasing this display, after various durations, by a noise field. As the display duration decreases there will come a times dependent on the scan rate, when the display will be
erased just before the scanning process reaches the last letters. At this duration recognition of the letters scamed last would deteriorate, but reproduction of the letters scanned first would be unaffected. Decreases in display duration would, therefore, accentuate the effect of letter position by further reducing the probability of successful transmission of the letters scanned last. It can be seen from Figure 3 that this was not the effect observed; decreases in display duration affected all letter positions approximately equally.

It might appear that this result could be explained by assuming that the scan rate is such that the whole word is covered in less than 50 milliseconds. If this were the case, however, an increase in exposure duration beyond 50 milliseconds would not improve performance, which it did. What the results indicate, therefore, is that decreases in display duration affect recognition accuracy but do not interrupt any scanning or sequential process. This seems to imply that if there is a scanning process (and the regular decrease in accuracy from left to right suggests that there is) then it must operate after the word has been presented as Heron suggests. This can only be the case, however, if the display scanned is not erased by noise fields, and the erasing action of nolse fields is well established (Averbach and Coriell, 1961, Sperling, 1963).

It is possible to resolve this paradox by distinguishing between general visual storage and erasure, and special visual storage and erasure Assume that there is a hieqarchical sequence of transformations in visual information processing such that at the lower levels the properties represented are relatively simple
and general, such as lines, edges, and angles, and that at the higher levels the properties represented are more complex and particular, such as letter identity. For the lower levels such a sequence of transformations is of course well established (Hubel. 1963). If each level has its own storage properties, and if information at any level is erased only by new input to that level, it can be seen how the apparently paradoxical results could arise, The noise field used in experiment 2 would give rise to input to the lower levels only. It would erase any information stored at those levels, and thereby reduce the length of time available for the readmin of information to the level of letter identity. This would account for the effect of display duration on durationsensitive performance. Any information already stored at the level of letter identity would not be erased by the noise fields, however; and scanning of the information stored at this level could therefore be post-exposural. Thus, in a system of this kind, it would be possible for noise fields to affect recognition accuracy even though they do not erase the display that is scamed. In relation to swoh a system the whole-word theory proposes that experience with words adds a fuxther level, and that the experience of new words simply adds new units to that level. Further implications of this theory will be discussed in the following chapters.

CHAPTER 9

EXPERIMENT 5: THE RECOGNITION OF WORDS PRESENTED IN RAPID SUCCESSION

9.1 Introduction

The experiment reported in this chapter extends the investigation to conditions of higher input load, In all earlier experiments one seven-letter word was presented on each trial. In this experiment two seyen-letter words were presented and performance was studied under both high and low familiarity conditions. Such an extension is important for two main reasons. First, every-day word recognition tasks usually involve the recognition of more than a single word. The present experiment therefore provides evidence relevant to the issue regarding the generality of stimulus component facilitation. Second, as the wholeword theory states that under high familiarity conditions words are read out as single units, it predicts that storage limitations should not be met until at least three or four words are read out. But it was observed in experiment 2 that HFD performance levelled-off at about 6.5 letters. It was suggested in Section 5.4 .3 that this might be a ceiling effect. The present experiment provides a test of this explanation by giving performance the opportunity to rise above seven letters as the whole-word theory predicts.

Each trial consisted of two brief displays, wi th one seven-letter word in the first display and another in the second display. Subjects attempted to reproduce both words. Between the two displays there was a brief interval during which the noise field was shown. This interval will be called the interstimulus interval, or ISI. Four different ISI durations were used. A display sequence of this kind was chosen for three reasons:

1. Problems of resolution and peripheral acuity are likely to arise if a large number of letters are shown in a single display; the display will either be such that the letters are small and crowded together, or such that many letters are seen peripherally.
2. The continuous extraction of information from displays that rapidly succeed one another is the task that is most common outside of the psychological laboratory.
3. A prediction derived from the theory of special storage and erasure can be tested by a study of recognition when two word displays are separated by an interval during which a noise field is shown. This prediction is derived in the next paragraph.

The theory of special storage and erasure outlined in Section 8.3.2 proposes that the persisting image of
a display that contains letters will be more effectively erased by a display that also contains letters than by a display that does not contain letters. This theory predicts, therefore, that if two displays containing letters are separated by an interval in which a noise field is shown, performance will improve as the inter-stimulus interval is increased.

The theory of backward visual masking proposed by Averbach and Coriell (1961), however, leads to a different prediction. These authors suggest that there are two ways in which a later stimulus may interfere with a preceding one: 1) With a short interval between the stimuli the later stimulus is superposed over the stored image of the preceding stimulus; 2) With a longer interval between the stimuli in the later stimulus is substituted for the preceding stimulus. Averbach and Coriell proposed that both of these masking processes are highly dependent upon the retinal locations of the two stimuli: the later stimulus masks only those preceding stimuli that were projected onto the same retinal region. They do not propose, however, that these processes are dependent upon stimulus identity: any stimulus is superposed over, or substituted for, any other stimulus, A similar account is given by Sperling (1963). The noise field used in the present experiment was noise field 2 shown in Figure 4 of Chapter 4. It can be seen that if masking was due to superposition then this noise field would mask the preceding display at least as effectively, and probably
more effectively, than would another word. If, on the other hand, masking was due to substitution it could be assumed that the masking effects of noise displays would be the same as those of word displays. The theory proposed by Ayerbach and Coriell, and by Sperling, predicts therefore that performance will either worsen as the intex-stimulus interval increases or will be independent of it.

9.2 Method

9.2 .1 Outline

The experiment studied the recognition of two words presented in rapid succession, under both high and low familiarity conditions. For both conditions, the subjects were requested to reproduce as accurately as possible the two words displayed. (It would also have been of interest to use the word discrimination method but this requires the presentation of four words in fairly rapid succession. This is difficult with a three-channel tachistoscope).

In the low familiaxity identification (LFI)
condition the two words were selected randomly and independently from the 2×10^{7} possible CVCVCVC's. In the high familiarity identification (HFI) condition, the method of random changes was used as there appears to be no other way of separating stimulus and supplementary components undex such conditions. The same comparator word was used for both fixst and second words and the random changes were produced for fixst and second words independently.

Four different ISI durations were chosen on the basis of preliminary experiments: $0,40,100$, and 300 milliseconds. A display duration of 100 milliseconds was used for the target words. The display sequences used were therefore as indicated in Figure 1. The word displayed first will be called word 1 , and the word displayed second will be called word 2, The illumination of all three fields was 22 lumens/sq. ft. It was necessary to make all field illuminations equal because it is probable that the masking properties of fields varies with illumination. Trials were also included on which a single word was displayed for 100 milliseconds (single word trials). As usual this display was preceded and followed by noise fields. Performance under this condition provided a basis against which performance with two words could be compared.

9.2.2 Design

Four subjects were used, and each performed under all combinations of ISI durations and familiarity conditions. This required four experimental sessions per subject. Each session was divided into four phases and the conditions were distributed across these phases as shown in Tables 1 and 2 .

Within each phase performance was studied under each of the four ISI's, and with a single word only. These five different tasks were performed within each phase in a randomly selected ordex, a new random

TABLE 1 THE ORDER IN WHICH CONDITIONS WERE GIVEN SUBJECTS 1 AND 3

	PHASE			
	SESSION	1	2	3
1	LFI	HFI	HFI	LFT
2	HFI	LFI	LFI	HFI
3	LFI	HFI	LFI	HEI
4		HFI	LFT	

TABLE 2 THE ORDER IN WHICH CONDITIONS WERE GIVEN SUBJECTS 2 AND 4

| | PHASE | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 |
| 1 | SESSION | LFI | LFI | HFI |
| 2 | LFI | HFI | HFI | LFI |
| 3 | LFI | HFI | HFI | LFI |
| 4 | HFI | LFI | LFI | HFI |

selection being made for each phase, session, and subject. Subjects were told which of the five tasks was to be performed next.

9.2.3 Procedure

The four subjects used were subjects 1, 2, 3 and 4 of Experiment 2. They were therefore well acquainted with the basic experimental situation. Nevertheless
to familiarize them with the task of writing down wo words, the first experimental session for each subject began with about 15 minutes practice. It was suggeated that they write down as much of the first word as they could remember, then as much of the second as they could remember, and then go back and fill in any gaps. The manner in which the words were selected for the high and low familiarity conditions was explained to them. During the practice period the subjects performed under both conditions and at all four ISI's.

Under the LEI condition there were 15 trials within each phase; three at each ISI and three with a single word. This gave a total over all subjects of 96 trials at each ISI, and 96 trials with a single word, and required 240 randomly constructed CVCVCVO's. Each subject saw each word once. Under the HFI condition there were 35 trials in each phase: seven at each of the four ISI's and seven with a single word. This gave a total over all subjects of 224 trials at each ; ISI, and 224 trials with a single word, One comparator word was used per session per subject. With four sessions and four subjects this required 1.6 comparator words and their associated sets of variations. The subjects were familarized with the comparator and variant words exactly as in experiment 2 .

9.3 Results

For the HFI condition, over all four ISI's and over all four subjeots, there were 866 reproductions of both words I and 2 . Word 1 was correctly
reproduced 552 times (i.e, on 64 per cent of trials), and word 2 was correctily reproduced 510 times (i.e. on 59 per cent of trials). For the LFI condition, over all four ISI's and over all four subjects, there were 384 reproductions of words 1 and 2 . Word I was correctly reproduced 11 times (i.e. on three per cent of trials), and word 2 was never correctly reproduced. Any other direct comparison of HFI and LFI performance will show similarly large differences. To determine whether these differences result only from the different probabilities of being correct by chance under HFI and LFI conditions it is necessary to calculate the z score obtained under the two conditions.

The numbers of correct and incorrect responses for 'same' and 'different' trials separately in the HFI condition are given in Table 1, Appendix 6, for each subject and ISI. These numbers were obtained by scoring the subjects reproductions as in word discrimination experiments. Any variant word was taken as equivalent to the response 'Different', and the comparator word was taken as equivalent to the response 'Same'. The numbers of letters correctly reproduced, irrespective of position (Sc), in the LFI condition are given in Table 2, Appendix 6, for each subject and ISI. From the data in these two tables the z scores for the two conditions were calculated. As in experiment 2, equation 14 was used for the HFI condition, and the graphical solution of equation 8
for the LFI condition. The reproductions of words 1 and 2 were scored separately, and the resulting z scores are given in Tables 3 and 4 respectively.

TABLE 3 THE Z SCORES OBTATNED FOR WORD 1.

TABLE 4
THE 2 SCORES OBTATNED FOR WORD 2

SubJECT		ISI (Milliseconds)			
		0	40	100	200
LFI	1	2.0	2.7	1.1	1.5
	2	1.3	1.9	1.0	1.3
	3	3.9	2.6	2.2	2.4
	4	1.3	2.1	1.6	2.5
	MEANS	2.1	2.3	1.5	1.9
HFI	SUBJECT				
	1	6.6	4.5	4.4	6.0
	2	4.8	5.4	3.1	5.6
	3	5.1	2.4	5.0	5.6
	4	3.3	4.2	2.5	3.8
	MEANS	5.0	4.1	3.8	$5 \cdot 3$

The z scoxes were also calculated for those trials on which a single word only was presented and the scoxes are given in Table 5.

TABLE 5
THE Z SCORES OBTAINED FOR THE SINGLE WORD TRIALS

	LFI	HFI
SUBJECT	5.0	6.6
1	5.0	6.7
2	5.8	6.7
3	4.5	4.7
4	5.1	6.2
MEANS		

Figure 2 shows the z score for each condition and ISI, averaged over all subjects.

An analysis of variance was performed on the z scores for word 1 and is summarized in Table 6. The effect of both familiarity and ISI are highly significant, but none of the interactions approaches significance. A similar analysis performed on the z scores for word 2 is sumarized in Table 7. The effect of familiarity is significant, but not that of ISI, None of the interactions is significant.

The numbers of correct and incorrect responses for word 2 of the HEI condition (scored as for word discrimination) are given in Table 8. A chi-square test of independence failed to show any relation between ISI and the probability of a correct response $X^{2}=4.6$, degrees of freedom $=3 ; P y$,20). Similar tests carried out for 'same' and 'different' trials separately also failed to show any significant relation between performance and ISI for word 2.

The relation between letter position and performance for the LFI condition is shown in Tables 9 and 10. These tables give, for each ISI and for each letter position, the z scores calculated from the mean value of Sp for that letter position. These results are presented in Figures 3 and 4 and will be discussed in the next section. Figuxes 3 and 4 also show the effect of letter position for those LFI trials on which a single word was shown.

TABLE 6
SUMMARY OF THE ANALYSIS OF VARTANCE PERFORMED ON THE Z SCORES - WORD 1

SOURCE OF VARTATION	SUM OF SQUARES	DEGREE OF FREEDOM	MEAN SQUARE	F	P	
Familiarity (F)	26.46	1	26.46	82.69	$<.01$	
Inter-Stimuius		18.70	3	6.23	23.07	$<.01$
Interval (I)	8.27	3	2.91			
Subjects (S)	.41	3	.14	.18	NS	
FXI	.96	3	.32	.42	NS	
SX.F	2.41	9	.27	.35	NS	
SXI	6.97	9	.77			
FXIXS	64.63	31				
TOTAL						

SOURCE OF VARIATION	SUM OF SQUARES	DEGREE OF FREEDOM	MEAN SQUARE	F	p
Familiarity (F)	52.28	1	52.28	24.32	<. 05
Intermstimulus Interval (I)	4.83	3	1.61	2.06	NS
Subjects (S)	5.34	3	1.78		
F X I	2.62	3	. 87	1.45	NS
S X F	6.45	3	2.15	3.58	NS
S X I	6.98	9	.78	1.30	NS
F X I X S	5.36	9	. 60		
Total	83.86	31			

TABLE 8 THP NUMBER OF CORRECT AND INCORRECT RESPONSES POR WORD 2 OF THE HFL CONDTTTON (SUMMED OVER ALL SUBJECTS)

	ISI (MILLISECONDS)			
CORRECT	163	40	100	300

TABLE 9 THE Z SCORES FOR EACH LETTER POSITTON - LFI CONDITION, WORD 1

	LETTER POSITION						
ISI	1	2	3	4	5	6	7
0	.54	.49	.20	.15	.14	.18	.16
40	.83	.64	.40	.15	.16	.11	.20
100	.92	.79	.49	.31	.19	.19	.28
300	.91	.83	.63	.36	.21	.26	.33

TABLE 10 THE Z SCORES FOR EACH LETTER POSTTION - LFI CONDITION, WORD

ISI	LETTER POSITION						
	1	2	3	4	5	6	7
0	.48	.36	. 22	. 08	. 09	.09	.14
40	.72	.49	. 27	. 15	. 11	. 1.1	. 11.
100	. 54	- 38	.20	.00	.00	.13	.02
300	. 59	. 59	.26	.06	.05	.03	.05

In the preceding experiments performance under high familiarity conditions was studied in terms of the subject's ability to determine whether there was a difference between target and comparator words. In other words, the function studied was that of difference detection. The present experiment provides, in addition, evidence regarding the subject's ability to determine the nature of any difference between target and comparator words. Evidence regarding such difference identification was available because subjects attempted to reproduce the target word as accurately as possible on all trials.

For word 1, and over all subjects and ISI's, there were 464 'different' trials. The target word was correctly reproduced on 272 , or .586 , of these trials. For word 2, and over all subjects and ISI's, there were 427 'different' trials. The target word was correctly reproduced on 219, ox .513, of these trials. Both of these values are far higher than could occur by chance if no differences were actually identified. Even if difference detection occurred on every trial, the proportion of correct reproductions in the absence of difference identification would be only $1 / 7$, or .143. On the other hand both values are smaller than would be possible if difference identification occurred as frequently as difference detection. If it did, the probability of a correct reproduction on 'different' trials would be \emptyset (the probability of difference
detection), plus a small amount due to guessirig. ${ }^{1 .}$ From equations 9 and 11 , Section 3.5 .3

$$
\begin{align*}
\phi & =\frac{u-p}{1-p} \\
& =1-\frac{s}{q} \tag{15}
\end{align*}
$$

For word 1, and ovex all subjects and ISI:S combined, \varnothing, calculated acoording to equation 15 , was .714 . With a population proportion of .714 the probability of obtaining only 272 coxrect reproductions out of 464 trials (i.e. a proportion of .586) is very sma11 (the standardized noxmal variable $\mathbb{Z}=6.1$; P《,001). For word 2, over all subjects and IST's the value calculated for \oint was .647 . With a population proportion of .647 the probability of obtaining only 219 correct reproductions in 427 trials (i.e. a proportion of .513) is also very $\operatorname{small}(Z=5.8$; $P \ll .001)$. In making these tests, estimates of \varnothing were used and sampling exrors were not taken into acoount. These estimates wexe however based on very large samples. Furthermore, because does not include the successes due to chance, it is an undorestimate of the proportion of correct reproductions expected if difference detection and difference identification are equally frequent. It is thexefore safe to conclude that on many trials the difference was detected but not identified.

1 Compare this statement with equation 9, section 3.5 .3.

9.4 Discussion

9.4.1 High input loads and the whole-word theory

The prediction of the wholewword theory that performance with highly familiar words will rise above seven letters was clearly confirmed. With an ISI of 0 milliseconds subjects discriminated, on average, 8.9 of the 14 letters. With an ISI of 900 milliseconds subjects discriminated 11.3 of the 14 letters. In contrast only 4.3 of the 14 letters were identified in the LFI condition when the ISI was 0 milliseconds, and only 5.9 when it was 300 milliseconds. This shows clearly that in tasks involving continuous input the amount of stimulus information lost during processing depends predominantly upon the subject's prior experience with the stimulus material. The greater accuracy with which subjects reproduce familiar words is not predominantly due to the greater accuracy with which lost information is replaced when words are familiar. The results show also that the continuous and rapid extraction of information in normal reading requires the reduction of information loss by some form of trace-input matching. The subject would otherwise have available at most only 5.9 letters out of every 14. It can therefore be concluded that the effect of prior experience on the stimulus component of word recognition is a phenomenon of wide generality.

It must be noted that performance under the HFT condition was less efficient than might have been expected on the basis of earlier results. In experiment

2 performance in the HFD condition rose more-or-less linearly from 3.5 letters at 50 milliseconds to 5.9 letters at 70 milliseconds. If performance continued to rise at this rate far more than 8.9 letters would be extracted from two displays each lasting 100 milliseconds. This discrepancy might be due to the use of double presentations. On the other hand, it might be that no matter how 14 letters are presented HFD performance rises rapidly only for the first six letters. Both possibilities carry important implications and a study of HFD performance with higher input loads in a single presentation would therefore be of great interest.

9.4.2 The theory of special storage and erasure

The theory of special storage and erasure, which was proposed to explain how noise fields can reduce recognition accuracy without altering the letter position effect, was clearly confirmed. The amount of backward masking caused by a display containing letters was greater than that caused by a noise field. There are two main reasons for believing that this is the correct intexpretation of the relation between the accuracy with which word 1 was reproduced and the TSI. 1 The first is that delaying the onset of word 2 by only 100 milliseconds largely removed the additional interference caused by its presentation. The second, is that the relation between performance and IST was the same for both HFI and LFI conditions. This would

[^1]be expected if the interference caused by word 2 was due to masking, but not if it was due to changes in storage processes. Neither the superposition nor the substitution accounts of backward visual masking can explain the results. They appear to be explicable only in terms of a masking process that depends upon the identity of the masked and masking stimuli.

9.4.3 Read-out and letter position effects within words 1 and 2

The effect of lettex position for word 1 in the LFI condition (shown in Figure 3) does not accord well with the notion that read-out involves scaming. If read-out does involve a sequential scanning process (scanning across letters in the LFI condition), and if a later display containing letters does mask the display that is scanned, then there will be some ISI's such that the masking interfers with recognition of the letters at the end of the word but not with those at the beginning: Accentuation of the letter position effect should therefore be observed for these ISI's. No such accentuation is apparent in the results reported above. It is possible that that accentuation was not obseryed because the rate of scanning is so high that there is only a narrow range of ISI's over which accentuation oceurs. To test this explanation It would be necessary to make a more thorough investigation of the relation between ISI and the letter position effect for word I.

The effect of letter position within word 2 also fails to accord well with the notion that readmout is a soanning process. If readmout involves a scanning process with a centre of focus constrained to moye in an ordexly mannex across the visual display, then there will be some ISI's such that word 2 is present while the scan is at, or near, the end of word 1 . In the present experiment word 2 was presented symmetrically across the same fixation point as word l. Therefore, when word 2 is presented while the scon is near the end of word 1 , the scan will be in the same position relative to word 2 as it is relative to a single word presented to the left of fixation. Hareum and Jones (1962) have shown that the letter position effect for words of eight letters presented to the left of fixation differs from that for words presented symmetrically across fixation. The letter position effect that they obtained was bow shaped, but more nearly symmetrical, with perfomance worst at positions three and four, rather than at position seven as it is for words of eight letters presented symmetrically across fixation This was elearly not the effect observed for word 2. It is possible, bat perhaps unlikely, that eyemovements during the ISI could account for this failure to find any equivalence between the letter position effect for word 2 and that for words presented to the left of fixation, It seems more likely, particularly in wiew of the results of Bower (1965) mentioned in Chapter 8 , that read-out does not involve a soanner constrained to move across the visual display.

9.5 Summary

The main conclusions drawn from experiment 5 are therefore as follows:

1. With high input loads HFI performance, as measured using the method of random changes, rises to at least eleven letters; LFI performance does not rise beyond six letters. This result supports the wholemword theory.
2. Letter displays are more effectively masked by letter displays than by noise fields. This result is a confirmation of the theory of special storage and erasure.
3. The effect of lettex position within the first of two consecutively displayed words was not accentuated for any of the ISI's studied. This weakens, but does not disconfirm, the riew that read-out is sequential.
4. On some 'different' trials the subject detects the difference but fails to identify it.

CHAPTER 10

SUMMARY AND SPECULATIONS

This thesis has demonstrated the possibility of obtaining unbiased measures of the information transmitted through the input processing systems. It has shown that even under conditions of optimum readiness the stimulus and supplementary components of word recognition performance can be separated. In addition it has tried to show how behavioural data can be used to determine where in the transmission sequence variables affecting the stimulus component operate. Pessimism concerning the possibility of obtaining 'pure' measures of 'perception' is therefore unwarranted. These measures have been difficult to obtain only because there has been a widespread reluctance to state the problem explicitly in terms of the information processing systems producing the observed performance.

10.1 The distribution of familiarity effects over

the stimulus and supplementary components
The experiments of Spence (1963) and others (see p.32) have shown that the effects of word familiarity involve changes in the supplementary component.

Experiments $2,3,4$, and 5 have shown that the effects of word familiarity also involve changes in the stimulus component. This demonstration is the basic contribution offered by this thesis. Whether all familiarity effects are due to changes in input processing or to changes in supplementation is therefore no longer at issue. What
is now at issue is the relative importance of the two kinds of change in any given class of situations. It appears likely that, in some situations, familiarity effects are predominantly due to changes in supplementation and, in others, to changes in input processing.

From the results of experiments 3, 4, and 5 it is reasonable to conclude that change in the stimulus component of word recognition as a result of prior experience is a common occurrence. Experiment 3 showed that the stimulus component can be increased by giving the subject only a few seconds experience of the displayed word. This increase however is small and unstable. It is clear from the results of experiment 4 that optimum readiness is not a necessary condition for prior experience to facilitate input processing. Performance with a comparator word chosen randomly from one of four was little different from that with a single comparator word. Thus, it is not necessary for the facilitation of input processing that the subject be prepared for a single word. Experiment 5 showed that in tasks involving high input loads prior experience of the displayed words produces a large reduction in infomation loss. The size of this reduction makes it reasonable to conclude that facilitation of input processing plays a major role in normal reading.

10. 2 Some aspects of input processing and its
 facilitation by prior experience

Demonstration of the effect of prior experience on the stimulus component leads directly to the task of determining the mechanism of this effect. This section
briefly summarizes the explanation offered in the preceeding chapters and then considers the various aspects of input processing in a little more detail.

Put most simply, the experiments reported above have shown that prior experience of the displayed words facilitates input processing by increasing the number of letters read out and by decreasing information loss during storage. These conclusions were drawn, in the first place, from the finding that both durationsensitive and duration*insensitive performance are improved when highly familiar words are displayed. The view that durationmsensitive performance shows the number of letters read out is widely accepted, and the grounds for this view are, briefly, that such performance is controlled by variables unlikely to operate beyond the receptor systems, and that, as the storage and retrieval systems can handle four letters without loss, the loss must occur earliex when only one or two letters are recognized. If duration sensitive performance does show the number of lettexs read out there is little doubt that more lettexs are read out if the displayed words are highly familiar. This conclusion carries far reaching implications. Some have already been mentioned, others will be mentioned in the discussion that follows.

The first and most important implication is that if the word displayed is sufficiently familiar word identity is computed within the receptor systems. This implication was shown by noting that only if the input is classified as a single particular word prior to read-out could familiarity affect readmout in the
manner observed. It was further argued that, for the words used in the above experiments at least, this classification could not be a schematic one, differentiating between familiar and unfamiliar words on the basis of limited properties of the words, because there were no such differentiating limited properties.

It is important to make clear exactly what is implied by the claim that the input is classified as a particular word within the receptor systems. It will be remembered that the receptor systems are those whose states continually depend upon the sensory inpat. The above claim is therefore equivalent to the claim that, for each famillar word, there is a physiological unit whose activity continually depends upon retinal input, and which takes a particular state only if the input contains that particular word. In other words, there are units which signal the presence of particular words in the current sensory input.

As already mentioned, this general picture of the way in which prior experience changes input processing to improve word recognition performance is essentially the wholemword theory of Woodworth and J. Mckeen Cattell, which was described in Section 1.2.1. Further evidence in support of this theory was reported in Chapter 8. It was noted that if familiar words are read out as the result of a single classification then this will remove those differences between individual letters that arise after read-out. Using the data provided by experiment 2 the effects of letter position under high familiarity and under low familiarity
conditions were compared. As predicted by the whole word theory the effects of letter position largely disappeared under high familiarity conditions.

If the above account lis correet then there will olearly be classifying units for many othex properties. some innate and some learned. Subjects have had, for example, far more experience of letters than of words. It is, therefore, reasonable to assume that units classifying letters exist within the receptor systems. To develop these classifying units independently of each other would be most inefficient, and it is therefore likely that the outputs of units reacting to relatively simple properties will serve as the inputs for units reacting to properties that are more complex. For the early stages of sensory processing involving the relatively simple innately computed properties this is already known to be the case (Hubel, 1963). A clear description of the kind of organization proposed is given by Attneave:

```
1. The basic idea of 'levels' or of a
    'perceptual hieraxchy's is simply that a
    potentially definable sequence of
    classifications of incoming information
    occurs. It is presumed that the output of
    one stage of this sequence constitutes the
    input of the next, but the possibility of
    feedback from higher to lower levels is by
    no means to be excluded.
    For example, activity of a partioular
element on one level might imply (i.e.
result from) a pattern of activity of
elements on the next lower level
desoribable as follows: 'A and C but not
B and not D, or E and G but not F and not
H, or ...: etc. The conjunctive terms
Involve grouping of elements (receptors,
at the lowest level); the disjunctive terms
grouping of states.
```

On this basis it is evident that a
higher-level element may represent a relation
between lower-level elements, if the latter
are ordered.
2. It will be true, at least in a
statistical sense, that highermlevel
classifications will represent, or depend
upon, the states of larger subsets of
receptors than lowermevel classifications.
Such an increase in extensity of
representation is obvious in the case of a
hierarchy like aotive receptoralinemletter-
word-phrase, Likewise, higher-level
categrories will tend to have lower individual
probabilities $i . e .$, to be more specific to the
total receptor-state and accordingly to carry
more information. (Attneave, 1962, p.639).

It is important to note that it is probable that there are units of classification intermediate between letters and words, such as units classifying syllables. A test of this could easily be made. The number of lettexs read out (as shown by duration-sensitive performance) under LFI conditions, could be studied, using the correction procedures developed in Chapter 3 , for words having the structure CVCVCVC, and for words having the structure CCCCVVV. If more letters were read out from words of the first kind it would indicate that syllabic coding occurs before readmout.

One important property that has not yet been mentioned is the relative positions of any letters identified. It was seen in experiment 2 that nearly all Ietters correctly identified were also reproduced in their correct relative positions. Many theories of pattern recognition are unable to account for this simple fact. If, for instance, letter recognition occurred as the result of some kind of 'resonance'
between trace and input, the subject could say that such-and-such letters were in the visual field, but would have no way of knowing their relative positions. In oxder to provide information regarding position in combination with that regarding identity a hierarchical classifying system must reduplicate its classifying units for each of a number of tetinal regions'. The activity of particular letter classifying undts would therefore depend not only upon the presence of a particular pattern but also upon its positions

If these speculations are correct then it is possible that the mutual masking observed by Woodworth (1938), and the resolution limitations observed by Averbach and Coriell (1961), are due to limitations in the number of such regions available within any given area.

The system thus far proposed is one in which current stimulation is represented by the activity of large numbers of hierarchically oxganized olassifying units, each signalling the presence of a particular property. In Chapter 8 it was furthex suggested that these units have short term storage capacities but are inhibited by new input of the appropriate type. This theory of special storage and erasure was proposed to explain how, even in the presence of post-stimulus 'noise' fields, readmout could occur after stimulation. It was confirmed by the results of experiment 5 , which showed that a display containing letters was more effectively erased by a display containing lettexs than by a 'noise' field. It is important to note that both hierarchical processing and the occurrence of learned
transformations prior to readoout are essential aspects of the theory of special storage and erasure erasure within the receptor systems can be dependent only on the properties computed within those systems. The results of experiment 5 are also, therefore, further evidence that processing in the receptor systems is both hierarchical and developed by experience.

Exactly what prior experience is necessary for the development of sensory classifying units is still not known. It appears that the prion experience given in the high familiarity conditions of experiments 2 , 4, and 5 was sufficient, and that the 11 seconds given in experiment 3 was not. If this outcome is replicated it will lend further force to the view that familiarity effects on the stimulus component are due to the development of sensory classifying units. What is now required to pin down the crucial aspects of prior experience is repetition of experiment 2 using many variations in the famillarization procedures. of particular interest is the modality, duration, and temporal patterning of the priox experience. It is also of interest to know whether prior experience of words printed in one way will effect the stimulus component of recognition when those words are displayed printed in a quite different way. The results of such research might well denand revision of the views offered in this thesis.

If processing within the receptor systems is hierarchical, then the amourt of learning necessary to develop a classifying unit for a particular stimalus will depend upon the subject's prior experience with
parts of the stimulus. This prediction could be tested by comparing the amounts of learning required to increase the readmout rates for stimuli which vary according to the subject's experience of the parts from which they are constructed.

It is clear that if the receptor systems are organized as described above then read-out must be possible from many diffecent levels, and not just from the most complex. If this is so then read-out must be much more than a process selecting items according to their position within a two dimensional spatial array, for it must also be able to switoh from one level to another. How this is achieved and how long switching from one level to another takes is still uncertain. Other unsolved problems concerning read-out were mentioned in Chapters 8 and 9.

A particularly interesting problem not yet mentioned is that of timing. It is reasonable to assume that the probability of a correct classification of the input at the letter level will increase with the time from the onset of the display. If readmout is initiated too early the benefit of any continuing input will be lost. Tf; on the other hand, read-out is initiated too late any information stored in the Letter, or word, classifiers may have deoayed or have been erased by later inpat. It is possible that in normal reading tasks this dilemma is resolved by keeping fixation time, and thus the time between displays, relatively constant. Fixation time in normal reading is about 200 miliiseconds, and sacoad time about 20 milliseconds (Woodworth. 1938). Tf
readmout could be performed within 20 milliseconds, therefore, it could be initiated consistently 200 miliseconds after the onset of each display. This possibility is particularly attractive because it was found in experiment 5 that word 2 interfered with the recognition of word 1 only if it was displayed within 200 miliiseconds of the onset of word 1 .

In the model for visual memory tasks proposed by Sperling (1963), the store into which information is read-out is an acoustic store to which is coupled a rehearsal process which can restore fading acoustic images. This view is in keeping with the acoustic confusions in visual immediate memory tasks observed by Conrad (1964). The whole-word theory implies that errors under high familiarity conditions occur only during readmin to the word classification levels in the visual receptor systems. These errors should therefore not show signs of deterioration during storage in an acoustic form. A test of this prediction could easily be made by comparing the confusion matrices obtained under high and under low familiarity conditions. Casual observations made during the course of the experiments reported above suggest that the two confusion matrices do indeed differ in the predicted manner. A more thorough investigation would clearly be both simple and important.

10.3 Some major remaining problems

This thesis has ignored many crucial aspects of word recognition. Any explanation of the effects of prior experience must be weak, unless it is given as part of a more complete account of information processing in word recognition than that here offered.

Information processing in the reception systems, fox example, must be described more fully. Thus it is necessary to discovex exactly what information is extracted at each stage of processing The account of this aspeot of the processing would perhaps best be given as sets of rules showing how the many isolated events initiated directly by stimulation are combined to produce single events isomorphic with stimulus identity. Furthermore, it is necessary to discover, for each level of processing, the quantitative aspects of the storage, erasure, and read-in functions. Only then will it be possible to know what processing will occur undex particular conditions. It will also be necessary to determine whether any of the quantitative aspeets of the storage, erasure, and read-in functions within the reception systems, are centrally contralled in accordance with context, meaning, or motivation. The account of this aspect of the processing would perhaps best be given as statements of the conditions of activation of those units whose patterns of activity potentially fulfill the rules of information extraction.

The methods developed in this thesis suggest how such an account of reception, and similax acoounts of read-out and storage, could be achieved. It is probable that in any such account the explanation that has been offered for the effects of prior experience on the stimulus component would be extensirely modified. That prior experience does affect the stimulus component of word recognition performance can, howevex; no longer be reasonably doubted.

APPENDIX 1

EXPERTMENT 1

The words used in Experiment 1

	SET		
1	1^{\prime}	2	2^{\prime}
JANDARA	JAMPARA	KADIRGA	KADESGA
AFWORBU	AFCARBU	ADAFNAW	ADIFPAW
BIWOJNI	BIWASNI	BORULCE	BODILCE
NANSOMA	NASTOMA	NIJARON	NIJIMON
OLMADIK	OLDABIK	ENSHIMI	ENSTAMI
AKLIYAT	AKTOYAT	INKULAM	INDURAM
SARICIK	SASIMIK	TAVHANE	TANSANE
SABULON	ZABETON	UDIBNON	UDOBRON
CIVADRA	CIVBURA	DILLKLI	DILEGLI
LOKANTA	LORASTA	MECBURI	MELBORI

The words in sets 1 and 2 were words used by Solomon and Postman (1952). The words in sets I^{\prime} and 2^{\prime} were fomed from these by changing two of the three midale letters.

TABLE 1: RECOGNITTON THRESHOLDS FOR THE REHEARSED WORDS (IN MILLISECONDS

Each subject recognized two words at each rehearsal frequency.

SUBJECT	REHEARSAL FREQUENCY									
	25		10		5		2		1	
	1	2	1	2	1.	2	1	2	1	2
1	40	60	70	60	80	50	60	70	50	100
2	230	300	180	350	350	100	250	750	600	700
3	120	130	80	140	140	110	110	90	300	200
4	80	70	90	160	70	160	220	100	200	160
5	90	70	80	110	350	90	90	250	200	160
6	110	160	100	130	180	120	120	140	100	160
7	80	350	80	500	90	50	60	180	1000	150
8	250	90	100	150	80	80	100	90	280	900
9	230	230	230	230	300	250	300	330	400	280
10	100	50	70	1.00	190	80	50	110	100	70
11	60	130	60	60	60	160	100	170	90	200
12	170	280	300	250	550	280	450	330	1.000	330
13	90	80	110	350	130	60	140	480	280	110
14	60	50	80	70	80	60	70	90	90	80
15	160	380	180	480	230	160	300	190	900	280
16	170	50	80	90	120	130	160	80	130	180
17	70	50	50	50	60	50	60	70	100	110
18	100	90	100	150	90	60	100	100	130	130
19	50	60	50	130	90	200	150	60	90	200
20	60	11.0	50	80	130	230	190	380	1.50	100

TABLE 2: RECOGNITION THRESHOLDS FOR THE MATCHED WORDS (IN MTLLISECONDS

Each subject recognized two words at each rehearsal frequency,

SUBJECT	COMPETITOR REHEARSAL FREQUENCY									
	25		10		5		2		1	
	1	2	1	2	1	2	1	2	1	2
1	110	90	70	80	90	130	60	80	100	70
2	150	800	700	400	300	400	500	180	350	100
3	500	400	150	150	480	400	230	180	250	230
4	140	120	160	180	180	300	300	140	160	260
5	650	380	500	230	140	200	450	380	430	280
6	190	140	100	180	180	170	130	1.40	120	120
7	130	1000	800	100	850	230	400	130	200	150
8	450	170	120	110	170	210	675	170	190	380
9	330	600	450	330	480	350	400	550	800	480
10	110	90	700	50	180	120	130	150	160	100
11	50	220	230	150	160	50	120	150	150	130
12	800	1000	600	750	1000	900	550	550	750	850
13	150	150	350	170	150	150	380	170	180	160
14	200	140	140	110	500	130	100	130	110	110
15	250	450	430	250	600	800	190	170	380	300
16	230	160	140	230	450	190	250	400	140	280
17	130	70	150	120	180	130	110	90	120	70
18	100	130	1.70	170	650	80	120	100	110	170
19	130	120	180	200	350	160	190	380	250	200
20	330	550	480	250	120	150	110	150	150	190

TABLE 3: RECOGNITION THRESHOLDS FOR THE CONTROL WORDS (IN MILLTSECONDS)

Each subject recognized ten control words.

		0	CONTROL	WORD	THRESHOLDS						
	SUBJECT	1	2	3	4	5	6	7	8	9	10
1	120	90	90	130	70	240	80	250	150	170	
2	300	850	280	700	350	550	650	500	850	700	
3	190	430	400	380	350	400	500	350	420	350	
4	260	480	220	340	360	520	180	480	480	300	
5	430	450	230	450	140	190	480	280	430	280	
6	230	150	180	190	170	140	530	350	180	450	
7	280	650	990	900	300	550	850	330	450	990	
8	200	330	350	100	150	230	300	430	380	300	
9	430	450	400	600	230	330	600	480	450	600	
10	300	110	140	110	140	130	90	250	180	150	
11	190	80	90	150	250	150	170	80	130	950	
12	800	450	280	550	850	500	200	800	800	900	
13	120	100	100	150	230	140	180	330	330	990	
14	100	140	130	150	120	130	120	160	160	170	
15	650	450	400	400	550	750	430	550	380	990	
16	150	200	230	280	120	120	150	700	190	120	
17	70	170	130	180	180	110	400	230	110	160	
18	140	160	330	170	160	110	150	200	150	150	
19	140	170	130	150	100	90	100	200	120	230	
20	100	170	230	160	120	160	190	190	180	330	

TABLE 4: RESECTION THRESHOLDS AND THE ASSOCIATED RECOGNITION THRESHOLDS FOR THE MATCHED WORDS (ALL IN MILLISECONDS)
Rej $=$ Rejection threshold. A blank in this column indicates that no overt-intrusion occurred.
Rec $=$ Recognition threshold for the matched word.

TABLE 1: THE ORUERS IN WHTOH SUGIECTS PERFORMED UNDER THE THREE CONDITIONS
$H=H i g h$ familiartity discriminations.
$L=$ Low familiarity disoximmations.
$I=$ Low familiarity identifications.

SUBJECT	SESSION	ORDER	SUBJECT	sEsston	ORDER
1	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	HLIILH LTHHIL IHLLHI IHLLHE LIHHIL HLITLH	2	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	LTHHTL thllha HLITLH HLITLH THLLHI LIHHIL
3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	THLLHI HLIILH LIHHIL LIHFTL HLITLH IHLLHI	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	ILHHLI LHIIHL HILLIH HILLIH LHIIHL ILHHLI
5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$	LHIIHL HILLIH ILHHLI ILHEEI HILLTH LHTIHL	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	HILLIH ILHHLI LHIIHL LHITHL ILHHLI HILLIH

(Appendix 2)

TABLE 2: TOTALS AND SUB-TOTALS OF CORRECT AND INCORRECT RESPONSES

LFD CONDITTON

```
Same = 'same' trials.
Total = ald trials.
C =eorrect.
Diff = 'diffexent' trials.
I =incorxeet.
```

SUBJECT	$\begin{aligned} & \text { DURATION } \\ & \text { (MILLISECS) } \end{aligned}$	Same		Diff		Total	
		C	1	C	1	C	1
1	50	31	23	34	21	65	44
	55	39	21	26	25	65	46
	60	41	19	31	14	72	33
	70	44	31	18	14	62	45
	90	44	19	29	13	73	32
	200	50	8	37	11	87	19
2	50			30	20	61	32
	55	44	1.8	28	18	72	36
	60	49	19	25	14	74	33
	70	46	21	23	15	69	36
	90	46	15	32	13	78	28
	200	50	9	45	8	95	17
3	50	46	10	22	26	68	36
	55	55	10	19	21	74	31.
	60	63	13	15	16	78	29
	70	46	13	18	28	64	41
	90	52	6	33	18	85	24
	200	54	2	41	13	95	15

(continued on next page)
(Appendix 2)

TABLE 2 (continued)

SUBJECT	$\begin{aligned} & \text { DURATION } \\ & \text { (MILLISECS) } \end{aligned}$	Same		Diff		Total	
		C	1	C	1	C	1
4	50	37	23	17	32	54	55
	55	46	15	15	30	61	45
	60	62	13	14	20	76	33
	70	48	12	17	27	65	39
	90	52	10	20	26	72	36
	200	51	7	37	17	88	24
5	50			21	30	57	52
	55	44	18	27	20	71	38
	60	47	17	17	25	64	42
	70	54	17	15	20	69	37
	90	54	7	25	19	79	26
	200	49	7	31	21	80	28
6	50	36	22	25	28	61	50
	55	42	20	27	19	69	39
	60	37	23	17	26	54	49
	70	50	25	17	17	67	42
	90	43	18	23	22	66	40
	200	49	5	35	14	84	19

(Appendix 2)

TABLE 3: TOTALS AND SUB-TOTALS OF CORRECT AND INCORREOT RESPONSES

HFD CONDITION

Same $=$ 'same' trials.
Diff $=$ 'different trials.
Total =A11 trials.
$\mathrm{C}=$ correct.
1 = incorrect.

SUBJECT	$\begin{aligned} & \text { DURATION } \\ & \text { (MILLISECS) } \end{aligned}$	Same		Diff		Total	
		C	1	C	1	C	1
1	50	36	21	37	14	73	35
	55	40	20	41	11	81	31
	60	47	13	44	9	91	22
	70	52	14	47	1	99	15
	90	45	12	53	4	98	16
	200	50	7	53	2	103	9
2	50	44	16	41	16		
	55	41	11	55	10	96	21
	60	45	15	47	7	92	22
	70	49	14	53	4	102	18
	90	48	15	48	4	96	19
	200	55	4	54	3	109	7
3					8	82	30
	55	37	23	46	7	83	30
	60	35	30	43	4	78	34
	70	42	22	48	3	90	25
	90	50	4	61.	1	111	5
	200	51	5	54	0	105	5

(continued on next page)
(Appendix 2)

TABLE 3 (continued)

SUBJECT	$\begin{aligned} & \text { DURATION } \\ & \text { (MILLISECS) } \end{aligned}$	Same		Diff		Total	
		C	1.	C	1	c	1
4	50	51	17	23	23	74	40
	55	45		25	28	70	41
	60	59		32	10	91	19
	70	47	9	44	15	91	24
	90	50	10	44	11	94	21
	200	51	6	56	1	107	7
5	50	37	18	30	27	67	45
	55	54	14	31	15	85	29
	60	49	16	31	18	80	34
	70	58	9	36	11	94	20
	90	62	2	44	9	106	11
	200	46	4	58	7	104	11
6	50	37	18	36	22	73	40
	55	40	15	38	20	78	35
	60	38	19	38	15	76	34
	70	47	11	47	9	94	20
	90	51	10	39	13	90	23
	200	55	2	55	4	110	6

LFI CONDITION

Number of trials per cell $=60$.
The average value of Sp for each cell $=\frac{\text { Number correct }}{60}$
60

	DURATION IN MILLISECONDS																						
	50								55								60						
	LETTER POSITION								LETTER POSITION								LETTER POSITIION						
SUbJECT	1	1	2	3	4	5	6	7	1	2	3	3	4	5	6	7	1	2	3	4	5	6	7
1	28	2	81	161	178	820	20	8	39	42	31	13	321	122	251			40	27	32	18	18	
2	48	84	22	283	3220	2016	16		46	53	36	62	261	172	241		51	49	31	19	21	15	19
3	38	4	52	272	25	72	29			51	31	13	351	102	23		56	52	35	33	29	23	34
4		30	301	171	17	61	16			27	23	32	281	122	21			45	24	26	18	18	
5	38	3	32	82	251	218	18			35	16	62	261	131	182			40	24	20	19	23	
6		418	8	91	191	31			21	34	19	92		917	17	5	31	34	22	35	12		

(continued on next page)

TABLE 4 (continued)

	70	N IN M I L L S E O OND C	
		90	200
	LETTER POSITION	LETTER POSITION	LETTER POSITION
SUBJECT	$1 \begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$	$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$	1 2 3 4 5 6 7
1		$\begin{array}{llllllllll}54 & 53 & 45 & 28 & 27 & 36 & 35\end{array}$	
2		$\begin{array}{lllllllll}55 & 5 & 45 & 34 & 27 & 23 & 24\end{array}$	
3	$\begin{array}{llllllllll}55 & 54 & 36 & 43 & 22 & 28 & 26\end{array}$	$\begin{array}{llllllllll}58 & 56 & 44 & 50 & 31 & 38 & 32\end{array}$	$60 \quad 59 \quad 54544651.46$
4	$\begin{array}{llllllllll}42 & 4 & 38 & 32 & 25 & 26 & 17\end{array}$		
5	$\begin{array}{lllllllll}52 & 38 & 24 & 30 & 19 & 18 & 31\end{array}$		
6	$\begin{array}{lllllllll}44 & 44 & 24 & 37 & 17 & 26 & 12\end{array}$		$58 \cdot 58 \cdot 52 \quad 54 \cdot 3244 \quad 30$

[^2]
LFI CONDITION

Number of trials per cell $=60$.
The average value of Sc for each cell $=\frac{\mathrm{Number} \text { correct }}{}$
Correct reproductions are entered according to the position in which they were written by the subject.

	50 D URA T	N IN M I L L I SECOND S	
		55	60
	LETTER POSTTION	LETTER POSITION	LETTER POSITION
SUBJECT	$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$	$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$	$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
1		$\begin{array}{lllllllll}42 & 48 & 40 & 39 & 24 & 32 & 21\end{array}$	
2	$\begin{array}{llllllllll}51 & 45 & 35 & 39 & 30 & 21 & 19\end{array}$	$\begin{array}{llllllllll}48 & 55 & 43 & 33 & 25 & 32 & 25\end{array}$	$\begin{array}{lllllllll}52 & 53 & 39 & 29 & 30 & 23 & 23\end{array}$
3			$\begin{array}{llllllllll}57 & 55 & 39 & 45 & 35 & 33 & 37\end{array}$
4	$\begin{array}{lllllllllllllllllllll}30 & 36 & 28 & 26 & 18 & 21 & 8\end{array}$	31.3231381515611	
5	$\begin{array}{llllllllll}41 & 37 & 18 & 32 & 24 & 27 & 22\end{array}$		
6	$1928 \quad 21 \quad 29 \quad 22179$		

(continued on next page)

TABLE 5 (continued)

						D U	R	A	T			I	N	M	I L		I	S		0	N D	S					
				70										90									200				
			ETT	ER	P0	SITI	TON					LET	TEP	P Po	OSIT	Io					LET	TE	R	P0	SI	ION	
SUBJECT		1	2	3	4	5	6		7		1	2	3	4	5	6		7		1	2	3		4	5	6	7
1		45	55	47	42	45	32					55	53	39	37	45					58	56	55	55	51	40	54
2		45	56	47	36	30	26				5	55	50	41	40	29				7	56	54	4	3	52	35	53
3	58	85	55	46	50	30	33	28				58	52	54	37	38	3				60	56	58	58	49	53	49
4		35	50	43	38	32	33					54	45	44	28	37					56	55	5	5	47	32	
5		34	47	32	42	34	24	3				52	39	46	36	34	4				57	50	46	6	46	41	
6	44	44	49	32	41	28	32				51	54	47	52	34	39					59	56	56		46	46	

APPENDIX 3

TABLE 1: THE NUMBERS OF CORRECT AND INCORRECT RESPONSES FOR EACH SUBJECT AND CONDITION

ALL TRIALS

$$
\begin{aligned}
& C=\text { correct } \\
& I=\text { incorrect }
\end{aligned}
$$

SUBJECT	PRIOR EXPERIENCE OF COMPARATOR WORD (SECONDS)					
	0		1		11	
	C	I	0	1	c	1
1	39	16	45	10	45	7
2	33	19	40	15	37	18
3	38	17	38	14	38	17
4	31	21	40	15	31	24
5	40	15	43	12	42	10
6	29	26	35	17	42	13
7	42	13	54	1	47	5
8	35	1.7	41.	14	42	13
9	37	18	43	9	40	15
10	34	18	41.	14	35	20
11.	36	19	35	20	24	28
1.2	32	23	41	11.	44	11.

TABLE 2: THE NUMBERS OF CORRECT AND INCORRECT RESPONSES FOR EACH SUBJECT AND CONDITION
'SAME: TRTALS
$\mathrm{C}=$ coxrect.
$I=$ incorxect ,

SUBJECT	PRIOR EXPERIENCE OF COMPARATOR WORD (SECONDS)					
	0		1		11	
	C	I	C	I	c	I
1	24	5	27	2	26	2
2	17	11	27	2	27	2
3	26	3	26	2	24	5
4	20	8	21.	8	24	5
5	25	4	27	2	26	2
6	16	13	19	9	26	3
7	18	11	28	1	26	2
8	20	8	24	5	27	2
9	18	1.1	25	3	22	7
10	20	8	25	4	24	5
11	22	7	23	6	17	11.
1.2	1.4	15	22	6	27	2

TABLE 3: THF NUMBERS OF CORRECT AND INCORRECT RESPONSES FOR EACH SUBTECT AND CONDITION
'DIF'FERENT' TRIALS
$\mathrm{C}=$ correct.
$I=$ incorrect.

SUBJECT	PRTOR EXPERIENCE OF COMPARATOR WORD (SECONDS)					
	0		1		11	
	C	I	c	I	C	I
1	15	11	18	8	19	5
2	16	8	13	13	10	16
3	12	14	12	12	14	12
4	11	13	19	7	7	19
5	15	11.	16	10	16	8
6	13	13	16	8	16	10
7	24	2	26	0	21.	3
8	15	9	17	9	15	11
9	19	7	1.8	6	18	8
10	14	10	16	10	11	15
1.1	14	12	12	14	7	17
12	18	8	1.9	5	17	9

APPENDIX 4

EXPERIMENT 4

TABLE 1: NUMBERS OF CORRECT AND INCORRECT RESPONSES FOR EACH SUBJECT AND CONDITION

ALL TRIALS
$C=$ correct.
$I=$ incorrect.

SUBJECT	NUMBER OF ALTERNATIVE COMPARATOR WORDS					
	2×1.07		4		1	
	C	I	C	I	C	I
1.	23	1.2	33	5	32	6
2	16	20	31.	6	32	4
3	24	12	25	12	33	5
4	25	11	37	2	33	6
5	29	9	33	5	35	2
6	18	17	18	20	26	14
7	27	8	31	7	33	5
8	21	15	27	10	28	8
9	33	3	30	7	33	5
10	24	1.2	34	5	37	2
11.	26	1.2	34	4	28	9
12	25	10	30	8	36	4

TABLE 2: THE NUMBERS OF CORRECT AND INCORRECT RESPONSES FOR EAGH SUBJECT AND CONDITION
'SAME: TRIALS
$\mathrm{c}=$ correct.
$I=$ incorrect.

SUBJECT	NUMBER OF ALTERNATTVE COMPARATOR WORDS					
	2×10^{7}		4		1.	
	c	I	C	I	C	I
1	13	4	19	1	19	0
2	6	11	15	4	16	3
3	9	10	15	8	15	3
4	17	2	21.	0	17	1.
5	1.6	2	16	3	18	1
6	7	9	11	7	16	4
7	13	4	15	5	18	1
8	14	3	18	1	18	1.
9	17	2	20	3	15	3
10	13	6	19	2	17	1
1.1	10	8	19	0	19	0
12	12	4	15	3	18	2

(Appendix 4)

TABLE 3: THE NUMBER OF CORRECT AND TNCORRECT RESPONSES FOR EACH SUTBECT AND CONDTTION
:DTFEERENT: TRTALS
$C=$ correct.
$I=$ incorreot.

APPENDIX 5

EXPERTMENT 2
LETTER POSTTION EFFECTS

TABLE 1: THE PROPORTTONS OF INCORRECT RESPONSES ON
'DIFEERENT' TRLALS SHOWN ACCORDING TO THE LETTER POSTTION AT WHICH THE CHANGE OCCURRED

Display durations 50,55 , and 60 milliseconds combined.

HFD CONDTTION

SUBJECT	LETTER			POSITION			
	1	2	3	4	5	6	7
1	. 06	. 36	. 28	. 21	. 16	. 22	.30
2	. 13	. 04	. 05	. 17	. 14	- 34	- 38
3	.03	. 06	. 53	. 05	. 15	. 07	- 13
4	. 44	. 20	. 29	. 31	. 69	. 59	. 56
5	. 20	. 67	. 21	. 52	. 48	. 57	. 32
6	. 48	. 61	. 28	. 23	. 44	. 04	.30

TABLE 2: THE PROPORTIONS OF INCORRECT RESPONSES ON DIFFERENT TRTALS SHOWN ACCORDTNG TO THE LETTER POSITION AT WHICH THE CHANGE OCCURRED

Display durations 50 , 55, and 60 milliw seconds combined.

LFD CONDITION

	L E T T E R	P	0	$S I$	T	I	0	N
	1	2	3	4	5	6	7	
1	.19	.32	.24	.53	.54	.71	.43	
2	.00	.00	.14	.69	.52	.62	.67	
3	.13	.24	.58	.50	.60	.92	.73	
4	.36	.50	.65	.83	.73	.63	.81	
5	.22	.44	.50	.71	.75	.58	.61	
6	.42	.29	.48	.56	.40	.78	.63	

APPENDIX 6

EXPERTMENT 5

TABLE 1: THE NUMBERS OE CORREOT AND TNCORRECT $\frac{\text { RESPONSES IN THE HFL CONDTTION HOR }}{\text { EACH SUBJECT AND ISI }}$
$C=$ correct $\quad I=$ incorrect.
Same $=$ 'same' trials. Diff $=$ 'different' trials.

SUBJECT		INTER-STIMULUS TNTERVAL (MILLISECONDS)							
		0				40			
		Word 1		Word 2		Word 1		Word 2	
		same	Diff	same	Diff	same	Diff	same	Diff
I.	C	13	23	17	25	18	20	14	21
	I	11	6	1.1	1	5	10	12	5
2	C	14	1.9	19	21	18	19	17	24
	I	10	11	8	6	10	8	10	4
3	C	13	26	21	22	17	27	16	15
	I	12	2	6	6	6	5	12	9
4	C	16	17	22	16	22	19	22	1.9
	T	9	1.1	8	10	3	10	5	9
		100				300			
1	C	18	24	11	24	12	28	16	26
	I	8	2	13	5	1.2	1.	12	2
2	C	15	26	18	17	23	25	17	22
	I	7	4	1.1	9	3	5	12	3
3	C	16	23	20	22	17	30	21	21.
	I	9	4	7	6	6	1.	6	4
4	C	21	24	21	1.4	27	20	19	18
	I	3	6	8	12	1	8	7	9

BIBLTOGRAPHY

Barton, M.I.
Goodglass, H. and
Shai, A.

Blackwel1, H.R.

Blake, R.R. and Vandexplas, J.M.

Bower, T.G.R.

Bricker: P.D, and Chapanis, A.

Broadbent, D.E.

Brown. C.R. and
Rubenstein, H.

Brown, W, P,

Differential recognition of tachistoscoptcally presented English and Hebrew words in right and Ieft visual fields. Percept, mot. Skil1s, 1965. 20. 431-4.37.

Psychophysical thresholds: expertmental studies of methods of measurement. Ann Arbor: Univer. of Michigan Press, (Eng: Res. Bull. No.36.) 1953. (As cited in Dember; 1960.)

The effect of premrecognition hypotheses on veridical recognition thresholds in auditory perception.
J. Personal, $1950-51,12$, 95-115.

Visual selection: Scanning vs filtering, Psychon, Sci=, 1965 , 3, 561-562.

Do incorrectly perceived tachistoscopic stimuli convey some information? Psychol. Rev, $1953,60,181-188$.

Flow of information within the organism. I. verb. Learn. rexb. Bebav., $1963,2,34 \times 39$,

Test of response bias explanation of wordmerequency effect. Science, 1961, 133. 280-281.

Conceptions of perceptual defence. Brit. J. Psychol. Monograph Supplements. 35, 1961 .

Bruner, J.s.	Personality dynamics and the process of perceiving, In Blake, R.R. and Ramsey, G.V. (Eds.) Perception: an approach to personality. New York: Ronald. 1951.
Bryden, M.P,	Tachistoscopic recognition, handedness, and cerebral dominance, Neuropsychologia, 1965 , 2, 1-8.
Cattell, J.McK.	The time it takes to see and name objects. Mind, 1886(a), 11. 63-65.
Cattell, J.Mck.	The time taken up by the cerebral operations. Mind, 1886(b), 11, 377-392.
Crosland, H.R.	Letter-position effects in the range of attention experiment, as affected by the number of letters in each exposure. J. exp. Psycho1., 1931, 14, $477-507$.
Dember, W.N.	The psychology of perception. New York: Holt, 1960.
Dornbush, R.L. and Winnick, W.A.	Right-Ieft differences in tachistoscopic identification of paralogs as a function of oxder of approximation to English letter sequence. Percept, mot. Skilis, 1965, 20, 1222-1224.
Fantz, R.L.	Ontogeny of perception. In Schrier, A.M., Harlow, H.F. and Stollnitz, F. (Eds.) Behaviour of nonhuman primates.
	$\frac{\text { Modern research trends. }}{\text { New York: Academic Press, }} \frac{\text { Vol. } 2}{1965}$

Forgays, D.G.	The development of differential word recognition. $\frac{\text { J. exp. Psycho1 }}{165-168 .} 1953,45$.
Forrest, D.W.	Auditory familiarity as a determinant of visual threshold. Amer. I, Psychol, $1957,20,634-636$.
Freud, S:	The interpretation of dreams. (1900): In The basic writings New York: Modern Library 1938. See especially $\mathrm{pp} .488=490$.
Gibson, E.J.	Perceptual learning. Ann. Rev. Psycho1. $1963,14,29-50$.
Glanville, A.D. and Dallenbach, K.M.	The range of attention, Amer, $\frac{\text { J. Psychol }}{207-236}, 1929,41$,
Goldiamond, I,	Indicators of perception: I, Subliminal perception, subception, unconscious perception: An analysis in terms of psychophysical. indicator methodology. $\frac{\text { Psychol. Bul1 }}{373-41.1} .1958 .55$
Goldiamond, I. and Hawkins, W.F.	Vexiexversuch: The 1 g g relationship between wordfrequency and recognation obtained in the absence of stimulus words. Psycho1. $1958,56,457-463$.
Goldstein, M.J.	A test of the response probability theory of perceptual defense, $\frac{3}{23-28 .}$ Psycho1. $1962,63,23-2$. Psycho1. , 1962

Goldstein, M.J. and Ratleff, J。	Relationship between frequency of usage and ease of recognttion with response bias controlled. Percept, mot. Ski11s, 1961, 13. 171-177.
Gomulicki, B.R.	The development and present status of the trace theory of memory, Bxit, J, Psychol. Monograpli Supplements, 29. 2953.
Haber, R.N.	Effect of priar knowledge of the stimulus on wordrecognition processes: $\frac{J}{282 \mathrm{exp} 286}, \mathrm{Psycho1}, 1965,69$
Hake, H.W. and Rodwan, A.s.	Perception and recognition In Sidowski, J.B. (Ed.) Experimental methods and instrumentation in psychology. New York: MoGraw-Hil1, 1966.
Harcum, EaR. and Filion, R.D.L.	Effects of stimulus reversals on lateral dominance in word recognition. $\frac{\text { Percept. mot. }}{\text { Skills, } 1963,17,779-794 .}$
Harcum, E.R. and Finkel. M, E.	Explanation of Mishkin and Forgays ${ }^{\text {P }}$ result as a direotional-reading confilot. Canad. I. Psychol.: 1963. 17. 224-234.
Harcurn, E.R. and Jones, M.L.	Lettex recognition within words flashed left and right of fixation. Science, 1962, 138. $444-445$.
Havens, Ls L. and Foote, W.E.	The effect of competition on visual duration threshold and its independence of stimulus fxequency, J. exp. Psycho1., 1963. 65, 6-11.

Hebb, D.O.	The organization of behaviour, New York: Wiley, 1949.
Herom, W.	Perception as a function of retinal locus and attention. Amer. U. Psycho1. $1957,70$. 38-48.
Howes, D.	On the interpretation of word frequency as a variable affecting speed of recognition. J. exp. Psycho1., 1954, 48, 106-112.
Hube1, D.H.	The visual cortex of the brain. Scientific American. 1963. 209, No. 5, 54-62.
Kempler, B. and Wiener, Ma	Pexsonality and perception in the recognition threshold paradigm. Psychol. Rev. , $1963,20,349-356$.
Kempler, B and Wiener, M.	Personality-perception: Characteristic response to available part-mes. J. Pers., 1964, 32, 57-74.
Kimura, D.	Cerebral dominance and the perception of verbal stimuli. Canad. J. Psychol., 1961, 15, 166-171.
King-Ellison, P. and Jenkins, J.J.	The durational threshold of visual recognition as a function of word frequency. Amer. J. Psycho1. 1954, 26. 700-703.
Lachman, R, and Tuttie, A.V.	```Approximations to English (AE) and short-term memory: construction or storage? J. exp. Psychol.: 1965, 20, 386-393.```

Leeper, R.	A study of a neglected portion of the field of learning
	development of sensory
	organization. J.

Mishkin, M. and Forgays, D.G.	Word recognition as a function of retinal locus. $\frac{J . e x p . ~}{43-48 .}$ Psychol. $1952,43, \frac{4}{4-4}$
Mooney, C.M.	Recognition of novel visual configurations with and without eye movements. J. exp. Psycho1. $1958,56,133-138$.
Morton, J.	The effects of context upon speed of reading, eye movements and eye voice span. Quart. J. exp. Psycho1. 1964, 16. 340-354.
Neisser, U.	An experimental distinction between perceptual process and verbal response. I. exp. Psycho1., $1954,47,399-402$.
Orbach, J.	Retinal locus as a factor in the recognition of visually perceived words. Amer. I. Psychol., 1952, 65,555-562.
Pillsbury, W.B.	$\begin{aligned} & \text { A study in apperception. } \frac{\text { Amer. }}{\text { J. Psychol } . ~} 1897,8,315-393 \text {. } \\ & \text { J. } \end{aligned}$
Portnoy, S., Portnoy, M, and Salzinger, K.	Perception as a function of association value with response bias controlled. I. Exp. Psycho1. $1964,68,316-320$.
Postmarn, L.	Pexception and learming. In S. Koch (Ed.), Psycholoey: A study of a sclence. Vol.5. New York: McGraw-Hi11, 1963. 30-113.
Postman, L. and Conger, B .	Verbal habits and the visual recognition of words. Science. 1954, 112, 671-673.
Postman, L. and Rau, L.	Retention as a function of the method of measurement. U. Calif. Publ. Psychal., 1957, 8, 217-270.

Postman, L. and
Rosenzweig, M.R.

Pylyshyn, Z.W.

Ryan, T.A.

Scheffé, H.

Smock, C.D. and
Kanfer; F.H.

Solomon, R.L. and
Postman, L.

Spence; J.T.

Spence, K.W.

Sperling, G.

Sperling, G.

Practice and transfer in visual and auditory recognition of verbal stimuli. Amer. I. Psycho1., 1956, 69. 209-226.

The effect of a brief interpolated task on shortterm retention. Canad. J. Psycho1. : 1965, 12, 280-287.

The experiment as the unit
for computing rates of error. Psycho1. Bu11., 1962, 59. 301-305.

The analysis of variance. New York: Wiley, 1959.

Response bias and perception. J. exp. Psychol. 1961: 62, 158-163.

Frequency of usage as a determinant of recognition thresholds for words. J. exp. Psychol. 1952, 43. 195-201.

Contribution of response bias to recognition thresholds.
J. abnorm. soc. Psychol. $1963,66,339-344$.

Behaviour Theory and Conditioning. New Haven: Yale Univer. Press, 1956.

The infomation available in brief visual presentations. Psychol. Monogx. 1960, 74, No. 11 (Whole No.498).

A model for visual memory tasks. Human Factors, 1963, 5, 19-31.

Sprague, R.L.	Effects of differential trainile on tachistoscopic recognition thresholds. J. exp. Psychol. 1959, 58, 227-231.
Stewart, D*	$\begin{aligned} & \text { Elements of the philosophy of the } \\ & \text { human mind, London: Cadell } \\ & \text { and Davies; } 1802 . \end{aligned}$
Sumby, W.H. and Pollack, Y.	$\begin{aligned} & \frac{\text { Short-time processing of }}{\text { information }} \text { HFORL Rept. } \\ & \text { TR }-54-6 . ~ 1954 . \\ & (\text { As cited by Morton, } 1964 .) \end{aligned}$
```Taylor, J.A., Rosenfeldt, D.C. and Schulz, R.W.```	The relationship between word frequency and perceptibility with a forced-choice technique. I. abnorm. soc. Psychol. 1961, 62. 491-496.
Tenrace, H.S.	The effects of retinal locus and attention in the perception of words. I. exp. Psychol. $1959,58,382-385$.
Thorndike, E.L. and Lorge, $I$.	The teacher's word book of 30,000 words. New York:   Bureau of Publications: Teachers College, 1944 .
Tinker, M.A.	```Visual apprehension and perception in reading. Psychol: Bul1: 1929: 26, 223- 240.```
Treisman, A.M.	Selective attention in man. $\frac{\text { Brit. med. Bu11 }}{\text { No. }, 12-16} \cdot 1964,20,$
Von Senden, M.	Space and sight. London: Methuen. 1960.
Weissman, S.L. and Crockett, $W$. $H$.	Intersensory transfer of verbal material. Amer. J. Psychol. 1957. 20, 283-285.


Weisstein, N.	Backwaxd masking and models of perceptual processing. (To appear in I. exp. Psychol., 1966).
Wilson, W.	A note on the inconsistency inherent in the necessity to perform multiple comparisons. Psycho1. Bu11., 1962, 59. 296-300.
Winnick, W.A. and Dornbush, R.L.	Prem and postmexposure processes in tachistoscopic identification. Percept. mot. Skil1s. 1965, 20, 107-113.
Wohlwill, J.F.	$\begin{aligned} & \text { Developmental studies of } \\ & \text { perception, Psychol. Bul1., } \\ & 1960,27,249-288 . \end{aligned}$
Wohlwill, J.F.	Perceptual learning. Ann, Rev. Psychol. $1966,17,201-292$.
Woodworth, R.S.	Experimental Psychology. New York: Holt, 1938.
Zajone, R.B. and Nieuwenhuyse, B.	Relationship between word frequency and recognition: perceptual process of response bias? J. exp. Psychol. 1964, 67, 276 m 285.


[^0]:    1 Takei and Company Limited, Tokyo, Japan.

[^1]:    1 It is important to remember that the noise field was displayed during the ISI.

[^2]:    (Appendix

