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Abstract 

The world population is rising, placing increasing demands on food production.  One way 

to contribute to food security is by improving yields of staple crops like wheat. Yield can be 

calculated from the product of plant biomass and harvest index (the ratio of grain yield to 

above ground biomass). Since harvest index of wheat has already reached its maximum 

biological limit in some environments, attention is now focused on increasing crop 

biomass.  Efficient interception of photosynthetically active radiation and effective 

photosynthetic sugar production underpin yield, however, little breeding has been done for 

photosynthetic performance. Exploiting existing genetic variation for important 

photosynthetic traits such as photosynthetic capacity (Pc) and photosynthetic efficiency (Peff) 

will help to improve wheat yield. CO2 assimilation rate, which is a commonly measured 

parameter for assessing photosynthetic performance, is found to vary across wheat 

genotypes. Two additionally important parameters are Rubisco activity (Vcmax) and electron 

transport rate (J). There is much less information reported regarding genetic variation of 

these two latter parameters because measurements of CO2 response curves with gas 

exchange used to derive Vcmax and J are slow and unsuitable for rapid screening of many 

genotypes in the field. The two main objectives of this project were firstly, to find out if 

there is genetic variation for these important photosynthetic traits in wheat, and secondly, 

to develop a rapid method for screening photosynthetic and leaf attributes in different 

wheat genotypes. To deal with variable leaf temperatures in the field and accurately 

estimate Vcmax and J, improved values for the temperature dependence of several Rubisco 

kinetic parameters were needed. These temperature-dependencies were derived from 

measurements made under controlled conditions.  A method for rapidly estimating 

variation in Pc components Vcmax and J and in other photosynthetic traits was developed 

based on calibration of leaf reflectance spectra against photosynthetic parameters derived 

using conventional gas exchange, morphological (leaf mass per unit area, LMA) and 

chemical (nitrogen and chlorophyll per unit area) measurements of 76 wheat genotypes 

screened in several different environments. When observed data were compared against 

predictions from reflectance spectra, correlation coefficients (R2 values) of 0.62 for Vcmax25, 

0.71 (J), 0.89 (LMA) and 0.93 (Narea), were obtained. Reflectance spectra from an additional 

458 elite and landrace wheat genotypes were measured to further assess variation in 

photosynthetic traits. There were significant differences between wheat genotypes in Vcmax25 

per unit N, which is a good measure of Peff. Environment presented interaction with 

genotypes for Pc and Peff when measurements performed in glasshouse & field or in 
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Australia & Mexico were compared. In future, linking genotypic variation for 

photosynthetic traits to DNA-based genetic markers will permit even faster selection of 

genotypes in breeding. Reflectance spectra should be a good tool to accelerate 

identification and selection of wheat genotypes and detection of important genomic 

regions for photosynthetic capacity and efficiency in wheat. 
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1.1 FOOD SECURITY AND WHEAT YIELD 

At present, the world human population is approximately 7.3 billion, growing by an 

additional 83 million people per year. It is projected to reach 8.5 billion by 2030 and 9.7 

billion by 2050, and during this time the poorest countries will be the most susceptible to 

economic inequality and malnutrition (U.N., 2015). The increment in world population will 

increase the demand of basic commodities; people will need food, clothing, and different 

sources of energy to improve or maintain the living standard that this era provides.  Usually 

higher demand is associated with higher prices if the product is limited, and third world 

consumers have limited resources to cope with increased food prices. Similarly, if the yield 

of staple crops is affected negatively, it will be more difficult to afford them. Scenarios for 

2050, without considering climate change, predict that the demand in cereals in the world 

will increase between 42 to 59% and prices will rise between 13 to 30% (Reynolds, 2011; 

Fischer et al., 2014).  

One option to avoid a crisis in production of staple crops is to increment supply by 

increasing crop yield. Wheat (Triticum spp.) is a staple crop, widely consumed as bread, 

pasta, cereal, among other products, and it provides one-fifth of the total calories of the 

world’s population (FAO, 2010). To cope with increasing demand, farm yield (FY) needs 

to increase by 1.3% per annum (p.a.) to nearly double the current annual progress of 

~0.6% p.a. Wheat FY can vary from 1.8 to 8.6 t ha-1, but wheat potential yield (PY), yield 

obtained with good management (irrigation, fertilizers, pest and disease control) is much 

higher than FY and can vary from 2.6 to 10.9 t ha-1 (Fischer et al., 2014). Wheat yields can 

be improved by, narrowing the gap between FY and PY, and increasing PY per se. For 

example, the Yaqui Valley in Mexico (megaenvironment that is representative of more than 

40% of wheat production in developing countries) has a yield gap of 2.6 t ha-1, which can 

be improved with crop management. PY has been around 8±1 t ha-1 for 30 years (Figure 

1.1). By contrast, in Western Australia PY is only 2.6 8±1 t ha-1
 (Fischer et al., 2014) as 

production is limited by low rainfall. Therefore, to cope with the increasing food demand, 

research is needed to enable greater increase in PY. 
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Figure 1.1 Yield gap for wheat in the Yaqui Valley, Mexico between potential yield (PY) 
and farm yield (FY). The linear increment in PY from 1980-2010 is 28 kg ha-1year-1. FY 
plotted against year, and PY plotted against year of release. Modified from Fischer et al., 
2014. 
 

1.2 POTENTIAL YIELD 

In order to accelerate progress towards increasing wheat PY, research to increase both 

photosynthetic capacity and grain sink capacity is vital in breeding programs (Foulkes et al., 

2011). Potential Yield (PY), under optimal conditions, can be factored into three 

components: light interception (LI), radiation use efficiency (RUE) and harvest index (HI) 

(Reynolds et al., 2009; Reynolds et al., 2012b) (Equation 1.1): 

PY=LI × RUE × HI                                                   (1.1) 

LI is the sum of daily photosynthetically active radiation (PAR) intercepted by green tissue 

(MJ m-2), and RUE is the conversion of that radiation into biomass (g MJ-1) (Fischer et al., 

2014). Both variables are useful to describe how plants harvest light energy for the 

photosynthetic process and convert carbon dioxide into biomass.  

HI is the ratio of grain dry mass to total plant dry mass (above-ground biomass), and it has 

been closely associated with wheat yield improvement since the 1950’s (Austin et al., 1980; 

Hay, 1995).  HI measured in varieties released between 1950 and 1987 in Australia, Canada 

and England increased from 0.2 to 0.54 (Evans, 1993; Hay, 1995). In parallel, spring wheat 

yield progress from cultivars released from 1960 to 1990 increased ~0.88% p.a, which was 

correlated with increased kernel number per square meter. The main explanation for this is 

the introduction of the major Norin10 dwarfing genes via the introgression of the Rht1 and 

Rht2 genes (Hay, 1995; Sayre et al., 1997).  



General Introduction. Chapter 1 

22 
 

Some recent figures have shown that as wheat HI reached a maximum of 0.55, yield 

progress has slowed to ~0.6% p.a. (Fischer et al., 2014). Wheat HI of 0.5 has been reported 

to be the optimal ideotype for wheat to yield 16 t ha-1 (Berry et al., 2006). The physiological 

explanation for this is that plant structure constrains a balance between the weight of the 

grain versus the stems required to prevent lodging and to also support enough leaf area for 

photosynthesis. In this sense, it is has been suggested that to increase yield further, biomass 

also needs to be increased. 

CO2 enrichment experiments have shown that wheat yield can be increased by growth in 

higher CO2 concentrations (Ainsworth and Long, 2005). In addition, experimental 

manipulation of sources and sinks indicates that there are empty florets that can contribute 

to increase HI, but there is insufficient photosynthesis to form more fertile florets (Parry et 

al., 2011). Thus future research to increase PY needs to be focused on increasing crop 

biomass while maintaining HI (Hay, 1995). 

1.3 SOURCE AND SINK 

The source is the tissues where assimilates are generated as result of photosynthesis. The 

main sources of assimilate are leaves and some contribution of green stems and floral 

organs (Gifford and Evans, 1981). The flag leaf and the wheat ear are the main sources in 

wheat during grain filling (Sanchez-Bragado et al., 2014).  

The sink are tissues that demand assimilates from the source. The sink maybe be growing 

meristems, organ elongation or for storage organs such as the grain. The storage sink can 

be sucrose, carbohydrates, proteins or lipids (Gifford and Evans, 1981). The economic sink 

in wheat is the grain. The relationship between source and sink is essential for the 

formation of grain yield and to determine ways of increase it. 

Sink (growing organs) and source (photosynthetic tissues) work in unison with each other. 

It has been observed that crops may be either source or sink limited during grain filling 

(Rawson et al., 1976; Reynolds et al., 2005). The source and sink limitation may vary 

between species and with stage of development. In wheat crops source limitation is likely 

to occur during the period after flowering. At this time stems are elongating, spikes are 

growing and grain number is determined (Fischer, 1985). A source limitation also occurs 

during grain filling when conditions are unfavourable. Once grain number has been 

determined and conditions are favourable then crops may be sink limited if they have 

sufficient leaf area and photosynthesis to fill the grains (Borrás et al., 2004). 
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Transport of assimilates and interaction of source and sink is complex. Sinks can induce 

feedback or product-inhibition via signalling pathways (Patrick and Offler, 2001). The 

complexity of the sink-source relationship can be also be affected by environmental 

conditions that can modify leaf area, relative growth rate and will vary depending on 

whether plants are single or grown in a canopy (Gifford and Evans, 1981). 

The photosynthetic machinery must be considered during the entire life cycle and even the 

demand for carbon may vary during the lifecycle. For example, when florets in wheat start 

to develop, there are signals that determine the grain number in the spike (Foulkes et al., 

2011). This is when the photosynthetic machinery and the developing sink work in unison 

to determine yield potential via grain number as well as grain size. Therefore, 

photosynthesis, assimilate availability and allocation, phloem translocation of assimilates 

and water, spike photosynthesis, sink strength and floret fertility all need to be explored 

together to increase wheat yield (Patrick and Offler, 2001; Borrás et al., 2004; Foulkes et al., 

2011; Sanchez-Bragado et al., 2014). 

To meet future global food demand, there is a worldwide effort to increase yield potential in 

wheat. A key player in research for food security in wheat is The International Maize and 

Wheat Improvement Centre, known by its Spanish acronym, CIMMYT®. It is a not-for-

profit research and training organization with partners in over 100 countries. The centre 

works to sustainably increase the productivity of maize and wheat systems and thus ensure 

global food security and reduce poverty (www.cimmyt.org).  

In 2009, researchers in CIMMYT and collaborators around the world started a project to 

improve wheat yield (Reynolds et al., 2011b). The project was divided in three main themes 

1) increasing photosynthetic performance in wheat, 2) optimizing partitioning to grain yield 

while maintaining lodging resistance, and 3) breeding to accumulate yield potential traits in 

wheat. Results have been presented each year and published in proceedings papers (Reynolds 

et al., 2011b; Reynolds et al., 2012a; Reynolds and Braun, 2013; Reynolds et al., 2014; Reynolds 

et al., 2015). This project is part of Theme 1.  

1.4 PHOTOSYNTHETIC IMPROVEMENT 

Photosynthesis is the process by which green plants use solar energy to produce 

carbohydrates from CO2. The main enzyme of the process is Rubisco (ribulose-1,5-

bisphosphate carboxylase-oxygenase). Some of the carbohydrates are expected to be 

oxidized through dark respiration to yield CO2 and energy, while much of the carbon is 

converted into biomass. Net photosynthesis is the difference between gross photosynthesis 

http://www.cimmyt.org/
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and the sum of the rates of two respiratory processes: photorespiration and dark 

respiration (Olivier, 1998). 

Natural selection have been working over millions of years improving physiological traits 

such as photosynthetic capacity and efficiency in plants, and it is unlikely that artificial 

mutations in Rubisco increase photosynthesis without a trade-off, or that eliminating 

photorespiration in C3 plants could be trade-off-free (Denison, 2009). However, whereas 

the unit of selection is normally and individual plant during evolution, for crops it is the 

community of plants which is important and the way in which the community of plants can 

be as resource efficient as possible. A major challenge will therefore be to identify 

physiological processes which are robust at the crop level. 

C3 plants like wheat waste energy during photorespiration because the oxygenase reaction 

catalysed by Rubisco forms phosphoglycolate and metabolic effort is required to recycle 

the carbon skeleton (Peterhansel and Maurino, 2011). Photorespiration is reduced under 

elevated CO2 or in plants that use the C4 photosynthetic pathway. Consequently, C3 plants 

grown at high CO2 concentrations and C4 plants have a greater photosynthetic 

performance, biomass and yield than C3 plants grown at ambient CO2 (~380 ppm) 

(Ainsworth and Long, 2005). However, not all C3 plants evaluated responded similarly and 

it has been shown that the effect of CO2 fertilization can vary depending on environmental 

conditions (Slattery et al., 2013). 

In the last decade numerous approaches have been suggested to improve C3 

photosynthesis (Parry et al., 2011; Furbank et al., 2015; Ort et al., 2015). These approaches 

can be divided into two groups: 1) carbon uptake in the Calvin Cycle where Rubisco, CO2 

concentrating mechanism and photorespiration are the main targets for improvement, and 

2) light harvesting, that involves the interception of light at the canopy level, the use of 

photons for electron transport, leaf photoprotection when light interception exceeds the 

rate of utilisation and canopy architecture (Table 1.1).  

Many teams are working with genetic engineering to improve the two main steps of 

photosynthesis: carboxylation and light reactions. Even if these projects have a high impact 

when they are finished, they will require many years to deliver a crop ready to be 

implemented in the agriculture system.  
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Table 1.1 Summary of the main targets and approaches to improve C3 photosynthesis. 

Target  Main approaches 

Carbon dioxide uptake 

Rubisco  Rubisco affinity for CO2 and catalytic efficiency (Parry et al., 

2011; Parry et al., 2013) 

 Rubisco chaperones (Whitney et al., 2015) 

 Rubisco thermotolerance (Kumar et al., 2009; Scafaro et al., 2012) 

 Rubisco kinetics diversity (Galmés et al., 2014) 

CO2 concentrating 

mechanisms 

(CCMs) 

 Cyanobacterial bicarbonate transporters of carboxysomes in C3 

plants and aquaporin activity (Price et al., 2011) 

 Biochemical C4 pathways into C3 pathways (von Caemmerer et al., 

2012; Furbank et al., 2015) 

Photorespiration  Peroxisomes (Maurino and Peterhansel, 2010) 

 Genes that affect the normal photorespiratory cycle (Peterhansel 

et al., 2012) 

 Bacterial enzymes that recycle the photorespiratory products 

(Peterhansel and Maurino, 2011) 

Calvin cycle  Sedoheptulose-1,7- bisphosphatase to increase photosynthetic 

rate (Lefebvre et al., 2005)  

 Fructose 1,6-bisphosphate aldolase reduced photosynthetic rate 

and plant growth (Haake et al., 1999)  

Light harvesting 

Chlorophylls and 

photoprotection 

 Chlorophyll d and f  (Chen and Blankenship, 2011) 

 The xanthophyll cycle (Niyogi et al., 1998) 

Light interception  Leaf erectness and leaf angle in wheat (Isidro et al., 2012) 

 Canopy architecture (Deery et al., 2014) 

 Stay green (Derkx et al., 2012) 

 Biomass, RUE, LI and PAR (Reynolds et al., 2009; Reynolds et al., 

2011a) 

 

A good example of scaling up is the low impact of increasing Rubisco RNA abundance in 

soybean by 50% but it only  results in a 6% improvement in estimated grain yield when 

growing with fertilizer and a loss of 6% of estimated grain yield without additional nitrogen 

source (Sinclair et al., 2004). Possible trade-offs in photosynthesis must be taken into 

account when assessing the likely impact of higher photosynthesis on biomass and yield as 
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it depends on numerous factors, from sink-source interactions in plants to water and 

nutrient availability (Sadras and Richards, 2014). Furthermore, gains in plant energy 

conversion efficiency can be reduced by biotic and abiotic factors and crop management. 

Elevated [O3], water stress, temperature stress, and foliar damage reduce yields and limit 

the closure of the yield gap (Slattery et al., 2013). 

Scaling up from molecular biology to crop yield is a big jump as it depends on both a 

rational understanding of the process and visualising the big picture (Passioura, 1979). 

However, there have been many cases of scaling up from basic knowledge to an impact in 

agriculture (Sinclair et al., 2004). For example, the release to farmers of wheat genotypes 

with better water use efficiency selected using stable carbon isotope discrimination 

(Condon et al., 1987; Condon et al., 2002) or selection of durum wheat more resistant to 

salinity (Munns et al., 2003; Munns and Tester, 2008). Scaling up from leaf photosynthetic 

attributes to yield is complex as it depends on the sink-source relationship, environmental 

conditions, species dependent variation, limitations of measurements made in a single 

tissue, plant and crop factors. 

Not surprisingly, given the issues discussed above, some experiments with modern 

cultivars have often shown either tenuous or no correlation between CO2 assimilation rate 

and yield (Brinkman and Frey, 1978; Hart et al., 1978; Murthy and Singh, 1979; Gifford and 

Evans, 1981; Evans, 1993; Sadras et al., 2012).  However, improvements in yield are 

theoretically possible by increasing photosynthesis (Richards, 2000; Zhu et al., 2010). For 

example, soybean yield has been related to stomatal conductance and photosynthesis 

(Morrison et al., 1999; Jin et al., 2010). Rice yield potential was related to crop growth rate 

during late reproductive period and canopy photosynthesis (Takai et al., 2006), rice yield has 

also been related with canopy diffusive conductance (Horie et al., 2006) and yield showed a 

positive correlation with CO2 assimilation rate in cytochrome b6/f complex transgenic rice 

lines (Yamori et al., 2016). According to field and glasshouse experiments, increases in 

wheat yield across the years have been associated with improvements in RUE, CO2 

assimilation rate and stomatal conductance in the flag leaf (Shimshi and Ephrat, 1975; 

Reynolds et al., 1994; Watanabe et al., 1994; Fischer et al., 1998b; Gutierrez-Rodriguez et al., 

2000; Reynolds et al., 2000; Shearman et al., 2005; Sadras and Lawson, 2011).  

The evidence that photosynthetic traits have increased in modern genotypes provides 

incentives for further research to understand leaf-level photosynthesis and diversity in elite 

and landraces wheats. Part of this project focuses on detection of natural diversity, for CO2 

assimilation rate and other related traits. In this case Rubisco activity (Vcmax) and RuBP 
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regeneration rate (J) have been analysed through a knowledge of the stoichiometry in 

photosynthetic carbon reduction and they can be measured in the field (Farquhar et al., 

1980; von Caemmerer, 2000). However, few papers have been published analysing genetic 

variation for Vcmax and J in wheat (Driever et al., 2014; Jahan et al., 2014) and there is no 

published data for wheat measuring Vcmax and J diversity in the field. If we intend to use 

such derived traits for selecting wheat varieties with high RUE, it is necessary to compile 

more information about the genotypic variation for Vcmax and J and have a better 

understanding of these traits.  

 

 

1.5 GAS EXCHANGE TO ASSESS PHOTOSYNTHETIC PERFORMANCE IN 

PLANTS 

1.5.1 A:Ci curves and A:Cc curves 

Gas exchange can be used to understand the underlying physiology of photosynthesis in 

plants. Instruments such as the LI-6400XT Portable Photosynthesis system (LI-COR Inc., 

Lincoln, NE, USA) measure fluxes of CO2 and H2O diffusion through leaf stomata. CO2 is 

the main substrate for Rubisco in the Calvin Cycle. The difference between CO2 

concentration entering and exiting a chamber where the leaf is placed permits calculation of 

the CO2 assimilation rate by the leaf (A). The LI-COR is able to regulate different CO2 

concentrations around the leaf so that CO2 response curves can be measured.  

Knowing stomatal conductance (gs), the intercellular CO2 concentration (Ci) can be 

calculated such that A:Ci curves can be constructed (Figure 1.2). Since Rubisco 

carboxylation rate depends on the partial pressure of CO2 inside the chloroplast (Cc), one 

also needs to know the mesophyll conductance (gm) in leaves. This allows the construction 

of A:Cc curves (Figure 1.2). Cc takes into account the resistance to diffusion that CO2 

encounters between the intercellular airspaces and the chloroplast stroma as it diffuses 

through the cell wall membranes and aqueous phase to Rubisco.  
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Figure 1.2  CO2 assimilation rate, A, as a function of intercellular CO2, Ci, (diamonds) and 
chloroplastic CO2, Cc (circles) at 21% Oxygen, 25 °C. Model curves fitted to A are shown. 
Data from one flag leaf of Triticum aestivum cv. Mace. Flow rate 500 μmol s-1, irradiance 
1800 μmol quanta m-2 s-1. gm was assumed to be 0.55 mol m-2 s-1 bar-1. Transition from Vcmax 
to J limited curves occurred at A=28.5 μmol CO2 m-2 s-1 (horizontal arrow) and Cc=252 μbar 
and Ci=324 μbar (vertical arrows).  

 
The response curves can be used to estimate the velocity of carboxylation of Rubisco 

(Vcmax) and the RuBP regeneration or electron transport rate (J) based on the C3 

biochemical model (Farquhar et al., 1980). When net photosynthesis is positive, the 

intercellular CO2 partial pressure (Ci) is greater than that in the chloroplast (Cc). Using A:Cc 

curves to calculate Vcmax means that the initial slope is steeper than in A:Ci curves, which 

changes the range where Rubisco activity or RuBP regeneration are the rate limitation. It is 

expected that the estimation of Vcmax and J in the leaf will be more realistic by using Cc 

(Figure 1.2.).  

A is a commonly measured parameter for assessing photosynthetic performance; it is 

found to vary among wheat genotypes and has been related to wheat yield (Reynolds et al., 

1994; Fischer et al., 1998b; Gutierrez-Rodriguez et al., 2000; Reynolds et al., 2000). 

However, A is strongly dependent upon gs (Condon et al., 2004). A can be high because the 

genotype has high biochemical capacity or because it has high gs or a leaf can have high 

capacity but be measured when gs was low (Figure 1.3). For this reason, Vcmax and J are 

more robust traits than A to study photosynthetic capacity in plants. 
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Figure 1.3 CO2 assimilation rate, A, depends on stomatal conductance, gs, for a leaf with a 
certain Vcmax and J. Point (a) has the same A as (b) but with a lower gs and requires a higher 
Vcmax and J capacity. 

 

1.5.2 Meaning of Vcmax and J 

Calculations and detailed stoichiometry of Vcmax and J have been widely described in the 

biochemical model of leaf photosynthesis for C3 plants  (Farquhar et al., 1980; von 

Caemmerer, 2000).  The model is based on the Calvin cycle and the electron transport 

chain taking into account photorespiration and Rubisco kinetics using the Michaelis-

Menten equation.   

The biochemical model assumes stoichiometries for carboxylation, oxygenation and 

electron transport. During carboxylation, one molecule of RuBP yields two molecules of 3-

phosphoglycerate (PGA). For oxygenation, one molecule of RuBP produces one molecule 

of PGA and one molecule of 2-phosphoglycolate, which is recycled in the photorespiratory 

cycle to produce 0.5 molecules of PGA. During thylakoid electron transport, the reduction 

of NADP+ to NADPH + H+ requires the transfer of two electrons, which in turn requires 

four photons, two to each photosystem (von Caemmerer, 2000). 

In the C3 biochemical model of leaf photosynthesis two main equations describe the 

process: one, the maximum velocity of Rubisco (ribulose-1,5-bisphosphate carboxylase-

oxygenase) carboxylation (Vcmax) and two, the electron transport rate (J) needed for RuBP  

(ribulose-1,5-bisphosphate) regeneration. The response of A at different CO2 partial 

pressures (C) is used to derive values for the variables Vcmax, J and Rd by assuming values for 

several Rubisco kinetic parameters (Equations 1.2 and 1.3).  
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𝐴 =
𝑽𝒄𝒎𝒂𝒙(𝐶−Γ∗)

𝐶+𝐾𝑐(1+
𝑂

𝐾𝑜
)

− 𝑅𝑑                                       (1.2) 

𝐴 =
𝑱(𝐶−Γ∗)

4𝐶+8Γ∗
− 𝑅𝑑                                          (1.3) 

The equations are based on the Michaelis-Menten equation. For plant leaves it is necessary 

to consider carboxylation and oxygenation, which requires the O2 partial pressure, O, the 

Michaelis-Menten constants for CO2 and O2, Kc and Ko respectively, and Γ* that is the 

chloroplastic CO2 partial pressure at which the rate of carboxylation equals the rate of 

photorespiratory CO2 release. Because instruments routinely measure net assimilation of 

CO2, non-photorespiratory CO2 release by mitochondrial respiration (Rd) is also needed. 

Vcmax and J are key photosynthetic traits for a leaf. In biological terms, Vcmax represents the 

maximum rate of carboxylation by Rubisco. Figuratively, Vcmax has been compared to the 

power of a car engine; a car with more cylinders will have a higher capacity and more power.  

In the case of J, in biological terms, it represents the rate at which energy from the sun is 

used by the leaf for photosynthesis. J is the electron transport rate which enables the 

regeneration of RuBP. Sunlight captured by the leaf pigments is converted into chemical 

energy in the chloroplast splitting H2O molecules which generate electrons that flow 

through photosystem II and I to produce NADPH and ATP that are used in the 

regeneration of RuBP in the Calvin Cycle. Continuing the alternative analogue, J can be 

seen as petrol for a car, the energy that makes the engine to work.  

Photosynthetic measurements are extensively used to calculate Vcmax and J in plant 

physiology and ecophysiology. However, a tool that allows a greater number of individuals 

to be measured for photosynthetic performance is still needed.  

1.6 LEAF REFLECTANCE TO ASSESS PHOTOSYNTHETIC PERFORMANCE IN 

PLANTS 

Reflection is ‘the redirection of a beam of radiation when it encounters a boundary’. The 

beam can be reflected coherently as happens with a mirror or can be scattered by unequal 

surfaces. The beam is electromagnetic radiation, which because of the time spent travelling 

in magnetic and electric fields can be seen as electromagnetic waves. A wavelength 

measured in meters is the distance between adjacent wave crests from the electromagnetic 

wave, and frequency measured in cycles is the number of waves that go across a certain 
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point in one second. Electromagnetic waves from all frequencies form the electromagnetic 

spectrum (Jones and Vaughan, 2010). Some regions of the spectrum are: Far (vacuum) 

ultraviolet (UV) (10-180 nm), Near UV (180-350 nm), visible (VIS) (350-770 nm) (Ingle 

and Crouch, 1988). Photosynthetically Active Radiation is defined from 400 to 700 nm 

(McCree, 1971). 

Reflectance from the first part of the electromagnetic spectrum has been related to 

xanthophylls, chlorophylls, and water in plants (Figure 1.4.a), and the red edge in the 

derivative of reflectance is commonly related to photosynthesis (Figure 1.4.b) (Peñuelas 

and Filella, 1998). 

The IR region is commonly divided in to three bands: near infrared (770-1300), short wave 

infrared 1 (SWIR1) region (1300-1900 nm), and short wave infrared 2 (SWIR2) region 

(1900-2500 nm). Research in this part of the spectrum has increased because hyperspectral 

cameras and radiometers can more easily measure the full spectrum, 350-2500 nm and 

secondly because the information has been useful. IR spectra measured in leaves have been 

correlated with photosynthetic parameters (Vcmax and J) (Serbin et al., 2012), and have been 

used to predict carbon, nitrogen and phosphorus in leaf extracts (Gillon et al., 1999). Other 

uses are in imaging, for example vision at night (Figure 1.5).  

 
Figure 1.4 Reflectance (a) and the first derivative of reflectance (b) spectra for typical 
healthy leaves. The main wavelengths used in physiological reflectance indices are 
indicated: 430 and 445 nm for carotenoids; 531 and 570 nm for xanthophylls; 550–680 nm 
and `red-edge' position for chlorophyll; 700–800 nm for brown pigments; 800 and 900 nm as 
structural reference wavelengths; 970 nm for water; and 800–900 nm and 680 nm for green 
biomass’ (Peñuelas and Filella, 1998). 
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Figure 1.5 The same photo taken during the night using (a) a normal camera (b) using a 
SWIR camera. http://www.sensorsinc.com/gallery/images.  

 

1.6.1 Measuring reflectance from a canopy 

Reflection from vegetation has been measured with radiometers and images from satellites 

for global vegetation programs which began in 1972 with the multi-spectral satellite 

LANDSAT 1. Reflectance has been used to estimate terrestrial photosynthesis and light 

use efficiency from vegetation because it is the source of primary production on the planet 

(Grace et al., 2007). Numerous vegetation indices (VI) using the visible and infrared region 

of the spectrum have been proposed to measure chlorophyll in vegetation (Zarco-Tejada et 

al., 2001). The most successful are the photochemical reflectance index (PRI) and the 

normalized difference vegetation index (NDVI). PRI is correlated with the xanthophyll 

cycle which protects plants from photodamage, and uses reflectance from the visible region 

at 531 and 570 nm (Gamon et al., 1992). NDVI is used to track active photosynthesis in the 

biomass of a plant canopy using reflectance in the visible and infrared region of the 

electromagnetic spectrum (Tucker, 1979). 

More recently, measurements of the full spectrum from 350-1000 nm or 350-2500 nm 

depending on the instrument have been used to estimate leaf chemical properties and leaf 

dry mass per area (LMA). For instance, high spectral resolution remote sensing from 

Airborne Visible Infrared Imaging Spectrometer (AVIRIS) has successfully predicted leaf 

chemical properties and leaf mass per area (LMA) from a tropical forest using the partial 

least square regression (PLSR) (Asner and Martin, 2008; Asner et al., 2009; Asner et al., 

2011a; Asner et al., 2011b). Leaf nitrogen, chlorophyll a and b, carotenoids, LMA and 

assimilation of CO2 have also been predicted from spectral reflectance at canopy level. 

Correlations of predictions varied from R2=0.49 for Amax to R2=0.9 for LMA (Doughty et 

al., 2011). 

http://www.sensorsinc.com/gallery/images
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1.6.2 Measuring reflectance from a leaf 

One advantage of measuring leaf reflectance is that the spectra are not too contaminated by 

reflectance from the soil and the atmosphere. Both of these factors can complicate the 

usefulness of canopy reflectance spectra. Leaf measurements are important because they 

have allowed scaling up to canopy level and provide a link to biochemical measurements in 

the laboratory. 

Reflectance measurements of leaves have been reported since 1929. In 1961, a colorimeter 

with a reflectance attachment was used to measure the percentage of 625 nm light that was 

reflected. This value showed a high correlation with chlorophyll content in soybean and 

Valencia orange leaves, thus providing a useful indicator of chlorophyll content in leaves 

(Benedict and Swidler, 1961).  A chlorophyll-meter based on transmittance of 670 and 750 

nm, correlated strongly (0.998) with chlorophyll content. Consequently, this method was 

developed for estimating the deepness of green colour and the chlorophyll content per unit 

area of the leaves (Inada, 1963).  Nowadays, there are several portable leaf chlorophyll 

meters available in the market, such as the Minolta SPAD chlorophyll meter. SPAD 

measures the chlorophyll content via light transmittance through absorbance of red light at 

650 nm and infrared light 940 nm, it is hand-held battery portable and there is a model that 

permit to save the information and download in the computer (Mullan and Mullan, 2012).  

Following from the success of remote sensing at the canopy level, hyperspectral reflectance 

has been developed for predicting physiological and biochemical leaf parameters at leaf 

level.  Successful predictions of photosynthetic parameters have been obtained for tropical 

trees, aspen, cotton and soybean (Doughty et al., 2011; Serbin et al., 2012; Ainsworth et al., 

2014), and nitrogen content and LMA in wheat (Ecarnot et al., 2013). These examples show 

the potential of using hyperspectral reflectance (350-2500 nm) to screen wheat for 

photosynthetic parameters. 

1.7 THESIS AIM AND OUTLINE 

It is now possible to calculate Rubisco activity (Vcmax) and electron transport rate (J) and 

these can serve as main traits to study photosynthetic diversity in wheat. The first objective 

was to determine variation in photosynthetic parameters using panels of elite wheat lines. 

Secondly, as the determination of these parameters is slow, the second objective was to 

develop a new method using hyperspectral reflectance to predict multiple traits.  

This thesis is composed of conventional methods and hyperspectral reflectance to study 

and understand photosynthetic diversity in wheat. The first part is based on the 
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biochemical model of leaf photosynthesis for C3 plants and gas exchange measurements.  

In Chapter 2, the kinetic constants that are used in the biochemical model were adapted for 

wheat. In Chapter 3 further understanding of Vcmax and Rubisco content measured in vitro 

were considered to analyse diversity of Vcmax in four sets of wheat genotypes: two 

experiments in the glasshouse in Australia, one experiment in the field in Mexico and other 

experiment in the field in Australia. Among others traits, J, leaf dry mass per unit area and 

leaf nitrogen were considered in each experiment. Statistical comparisons across wheat 

genotypes, environments and plant stage were used to understand diversity of the traits 

measured. 

The second part of the thesis explores hyperspectral reflectance as a rapid tool to measure 

photosynthetic traits. Chapter 4 presents the methodology used to measure reflectance in 

wheat and the analysis of the partial least square regression (PLSR). Validation of the 

method for Vcmax, J, LMA, Narea, SPAD (as surrogate of chlorophyll content) and 

chlorophylls is shown in Chapter 5. Chapter 6 gives two examples where the models 

derived in the validations are used to predict J, LMA and Narea in two new set of elite and 

landrace wheat genotypes. Finally, Chapter 7 presents a synthesis of the main findings of 

the thesis and possibilities for future research. 
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CHAPTER 2 

Biochemical model of C3 photosynthesis 

applied to wheat at different temperatures 

 

Temperature controlled cabinet. Research School of Biology. ANU. Canberra, Australia, 2014 

 

 

 

Chapter 2 Biochemical model of C3 photosynthesis applied to 

wheat at different temperatures 

 



Chapter 2. Biochemical model of C3 photosynthesis applied to wheat at different temperatures 

36 
 

2.1 ABSTRACT 

In this study, the effect of temperature on estimating Vcmax25 with the C3 photosynthesis 

model is analysed for wheat. Plants were evaluated under controlled conditions in a growth 

cabinet and in the field at different temperatures. In the cabinet, measurements were made 

in 2 and 21 % O2 to constrain the fitting. The fitting of observed CO2 response curves 

measured in the cabinet began by assuming some of the kinetic constants. The activation 

energy (E) for Rd from tobacco was assumed and corroborated from observed data. Then, 

the initial slope from the CO2 response curve was used to calculate the CO2 compensation 

point (Γ), from which Γ* was predicted. E for Vcmax for wheat was assumed from the 

literature. Values for Kc and Ko at 25 °C were assumed from tobacco. Values of E for Kc, Ko 

and Vomax were found along with values for Vcmax and Rd at 25 °C which minimised two 

variances, namely  Γ* and the assimilation rates measured at low CO2 concentrations across 

all temperatures and both oxygen concentrations. Several new kinetic constants are 

proposed for wheat. These constants were tested on CO2 response curves measured on 

wheat genotypes in the field at different temperatures during the course of a day. The new 

kinetics constants improved the fitting of curves measured at different temperatures.  

2.2 INTRODUCTION 

The biochemical model of leaf photosynthesis for C3 plants is widely used in plant 

physiology to calculate the maximum velocity of Rubisco (ribulose-1,5-bisphosphate 

carboxylase-oxygenase) carboxylation in vivo (Vcmax) and electron transport rate (J) or rate of 

RuBP  (ribulose-1,5-bisphosphate) regeneration (Equations 2.1 and 2.2). The model using 

kinetic parameters derived from tobacco (Nicotiana tabacum) has been applied to many 

species measured at 25 °C. To adjust the kinetic parameters to different leaf temperatures, 

the Arrhenius equation (Equation 2.9) has been used. As CO2 response curves measured in 

the field for this project were obtained at different leaf temperatures (Figure 2.1), it was 

deemed necessary to verify that this did not bias the estimated values of Vcmax and J.  

The temperature range for good photosynthetic performance for cold adapted plants is 

from 0 to 30 ºC and for warm adapted plants between 15 and 45 ºC (Sage and Kubien, 

2007). At the beginning of this project, it was assumed that Vcmax25 could be calculated with 

the Arrhenius equation from measurements of wheat measured in the field between 20 and 

34 ºC. However, it became apparent when analysing repeated measurements on the same 

leaf through a day that this was not the case.  
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Figure 2.1  Leaf temperature for wheat plants measured in the glasshouse (Aus1 and Aus2) 
and in the field (Aus3 and Mex). Genotype details are given in Chapter 3. Symbols are the 
average of the repetitions, and error bars represent the standard error from the same 
repetitions.  

 

Temperature affects plant performance and photosynthesis in a variety of ways. High 

temperatures can affect Rubisco, Rubisco activase, Rubisco activation state and membrane 

fluidity. It has been shown that the catalytic turnover of Rubisco (kcat) from C3 plants 

increases at least 6 times from 16 to 40 ºC, while the  affinity for CO2 decreases (Sage, 

2002). 

When deriving estimates of Vcmax from gas exchange measurements, one requires the 

kinetic parameters Kc and Ko which are the Michaelis-Menten constants for carboxylation 

and oxygenation respectively, and Vomax that is the maximum velocity of oxygenation (von 

Caemmerer, 2000). To account for different leaf temperatures, activation energies for each 

parameter are also required. Using values and activation energies for Vomax, Kc and Ko from 

tobacco and Atriplex glabriuscula, predictions of CO2 assimilation rate for Chenopodium album 

were higher than the observed data, particularly at high CO2 concentrations (Sage, 2002). 

This suggests that the kinetic constants for C. album may differ from those of tobacco. 

Therefore, it was concluded that activation energies for Rubisco kinetic constants needed 

to be derived in order to calculate Vcmax25 from the field measurements of wheat carried out 

here.  

Rubisco is a bifunctional enzyme catalysing reactions with both CO2 and O2. In order to 

assess the oxygenase parameters, CO2 response curves were measured under two O2 

concentrations and a range of temperatures for each leaf. Analysis of curves obtained under 

low O2 (2%) permits us to derive Kc, while curves measured at ambient O2 (21%) reflect the 
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apparent affinity when oxygen is competitively inhibiting the carboxylase (von Caemmerer, 

2000). By making measurements under two O2 concentrations, it is possible to derive the 

temperature responses of both Kc and Ko. Although studies using photosynthetic kinetic 

parameters have been reported for wheat (Table 2.1), no study provides a complete set of 

information such as available for tobacco (Bernacchi et al., 2001; Bernacchi et al., 2002). The 

activation energy for Vcmax in tobacco has been shown to be between 64.8 (Badger and 

Collatz, 1977) and 65.33 kJ mol-1 (Bernacchi et al., 2001). For wheat, a value of 63 kJ mol-1 

was obtained (Evans, 1986) and has been assumed here. The activation energy for 

respiration in tobacco is 46.39 kJ mol-1 (Bernacchi et al., 2001). However, it is likely that this 

varies between species (Atkin and Tjoelker, 2003). Consequently, some experiments were 

carried out to corroborate this value for wheat. 

Table 2.1 In vitro Michaelis-Menten constants for Rubisco in wheat, triticale, tobacco and 
rice. 

Species Kc Value at 25°C 
(μbar) 

Ko Value at 25°C 
(μbar) 

Reference 

Triticum aestivum 335±24 304±30 (Makino et al., 1988)  

291±10 194±30 (Cousins et al., 2010) 

326±27 271±26 (Carmo-Silva et al., 2010) 

308.4±3 328.6±6 (Galmés et al., 2014) 

488±12 343±10 (Prins et al., 2016) 

Triticale 482±72 305±4 (Prins et al., 2016) 

Nicotiana 

tabacum 

272.38 165.82 (Bernacchi et al., 2002) 

259 179 (von Caemmerer et al., 1994) 

Oryza sativa 239 266 (Makino et al., 1988) 

E: Activation Energy. Solubility for CO2 of 0.0334 mol (L bar-1) and for O2 of 0.00126 mol (L bar)-1 were used 
to convert Kc and Ko values from concentrations to partial pressures. 

Temperature can also affect the fluidity of membranes and the functioning of protein 

complexes within them (Sage and Kubien, 2007). The temperature dependence of 

mesophyll conductance (gm) should also be considered in the calculations of Vcmax and J 

(Sage and Kubien, 2007). Unlike for tobacco, the temperature response of gm for wheat is 

modest from 15 ºC to 40 ºC (Equation 2.5) (von Caemmerer and Evans, 2015). 

Since in vitro Rubisco measurements are laborious, kinetics constants have been derived in 

vivo using CO2 response curves for tobacco (von Caemmerer et al., 1994; Bernacchi et al., 

2001). It was decided to pursue the same approach for wheat measuring CO2 response 

curves at different temperatures and different O2 concentrations. 



Biochemical model of C3 photosynthesis applied to wheat at different temperatures. Chapter 2 

39 
 

The main purpose of this chapter is to derive a set of kinetic constants for wheat Rubisco 

that can be used to fit Equation 2.1 to provide more accurate calculations of Vcmax25 from 

measurements made under variable temperatures.  

2.3 MATERIALS AND METHODS 

2.3.1 Experiments and gas exchange measurements 

Results are organised in two experiments described below: Cabinet and Aus3T. For these 

experiments, gas exchange was measured on the flag leaf of wheat using a LI-6400XT 

Portable Photosynthesis system (LI-COR Inc., Lincoln, NE, USA). The air flow rate was 

500 μmol s-1 with an irradiance of 1800 μmol quanta m-2 s-1. The CO2 concentration used 

refers to the inlet gas. 

a) Cabinet 

For the Cabinet experiment, three wheat genotypes (Merinda, Espada and Mace) and 

one triticale genotype (Hawkeye) were chosen from previous experiments where they 

represented the entire range of variability in photosynthetic efficiency for the genotypes 

measured (see section 3.4.2.2). 

The four genotypes were sown on August 11th, 2014. Each genotype was sown in three 

pots of 5 L with 75:25 loam:vermiculite soil mix containing basal fertilizer and grown in a 

glasshouse with temperature 25/15 °C (day/night) at CSIRO Black Mountain, Canberra, 

Australia (-35.271875, 149.113982). Plants emerged on August 18th, 2014 and were thinned 

to two plants per pot about one week later.  

Gas exchange was measured on flag leaves from September 25th to October 15th, 2014 

when the plants were close to anthesis, GS59-60 (Zadoks et al., 1974). On the morning of 

the measurement, they were transferred from the glasshouse to a controlled environment 

cabinet (Thermoline Scientific Model-TRIL/SL) and light intensity 200 μmol quanta m-2 s-1 

in the facilities of the Research School of Biology in the Australian National University 

(ANU), Canberra (-35.277078, 149.116686). Plants were well irrigated before and through 

the experiment to avoid water stress. Temperature required for each measurement was 

adjusted in the cabinet and in the leaf temperature mode of the LI-COR that was used to 

measure CO2 response curves. The initial conditions were 21% O2 concentration, 15 °C 

leaf temperature and 400 μmol CO2 mol-1. When 2% O2 was used, it was obtained by 

mixing N2 and O2 using mass flow controllers (Omega Engineering Inc. Stamfort, CT, 
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USA). The LI-COR prompt was set to 2% O2 in order to obtain correct gas exchange 

calculations. 

Six plants of Merinda (V34) were measured at 51, 52 and 53 DAE with leaf temperatures 

of 15, 25, 30, 35 °C. At each temperature, CO2 response curves were measured at 21% and 

then 2 % O2 using 50, 100, 150, 200, 250 and 400 μmol CO2 mol-1. The lights on the LI-

COR chamber were turned off after the last CO2 response curve was measured, and dark 

respiration was recorded 30 minutes later. For two plants, respiration was recorded at 

decreasing temperatures of 35, 30 and 25 °C. In four plants, it was recorded at decreasing 

temperatures of 35, 30, 25, 20, 15°C and then at increasing temperatures of 15, 20, 25, 30 

and 35 °C at 400 μmol CO2 mol-1 and 21 % O2.  

Two plants of Espada (V25) were measured at 39 and another plant at 50 DAE with 

increasing leaf temperatures of 15, 30, 35 °C. At each temperature, CO2 response curves 

were measured at 21% and then 2 % O2 using 50, 100, 150, 200, 250 and 400 μmol CO2 

mol-1. For two plants, dark respiration was recorded after 30 minutes at decreasing 

temperatures of 35, 25 and 15 °C at 400 μmol CO2 mol-1 and 21 %O2.  

Five plants of Mace (V32) were measured at 57 and 59 DAE and four plants of Hawkeye 

(V27) were measured at 58 and 59 DAE. For each leaf, CO2 response curves were 

measured at leaf temperatures of 15, 20, 25, 30 and 35 °C in 21% O2 and 50, 100, 150, 200, 

250, 400, 600, 800, 1000 and 1200 μmol CO2 mol-1. After the last curve, the lights on the 

LI-COR chamber were turned off, and dark respiration was recorded 30 minutes later at 

decreasing temperatures of 35, 30 and 25 °C at 400 μmol CO2 mol-1 and 21 % O2.   

b) Field (Aus3T) 

Field experiment Aus3 is described in detail in Chapter 3 section 3.3.1 and Table 3.1. In 

experiment Aus3T, four wheat genotypes: V45, V57, V62 and V66 (Table 3.3) from Aus3 

were selected to measure temperature responses of leaf gas exchange on December 17th, 

2013 when plants were 75 DAE, and flowering nearly completed, approximately at GS69. 

The measurements were made on three different plants from one plot of each genotype. 

Field air temperature was recorded with the head of the LI-COR opened. Block 

temperature was set to approximate the field air temperature; resulting leaf temperature and 

block temperature were recorded during the experiment (A1). For each leaf, CO2 response 

curves were measured using 150, 250, 400, 600, 800 and 1200 μmol CO2 mol-1.  
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2.3.2 Calculations of Vcmax, J and mesophyll conductance 

Results from the Cabinet experiment were used to derive Rubisco kinetic constants. 

Therefore, calculations for the gm and adjustments to calculate Rubisco activity (Vcmax) and 

the electron transport rate (J) will be described during the chapter.  

For experiment Aus3T, the maximum Rubisco activity at 25 ºC (Vcmax25) and J were 

calculated using the kinetic constants obtained in this chapter (Table 2.2) and the leaf 

biochemical model of photosynthesis (Farquhar et al., 1980). The average rate of CO2 

assimilation (A) of all genotypes (Experiments: Aus1, Aus2, Aus3 and Mex from Chapter 

3) was 25 μmol CO2 m
-2 s-1, with a mean intercellular CO2 (Ci) of 260 μmol CO2 mol-1 (A260) 

when measured under ambient CO2. A260 was interpolated from the line relating CO2 

assimilation rate to intercellular CO2 concentrations between 50 and 400 μmol CO2 mol-1 

for each leaf and subsequently used to estimate gm (Equation 2.4).  

2.3.3 Equations 

CO2 assimilation rate (A, μmol CO2 m
-2 s-1) and the chloroplastic CO2 partial pressure, 

μmol mol-1 (Cc) are used to build the CO2 response curve (Chapter 1, Figure 1.2). The 

velocity of carboxylation (Vcmax, μmol CO2 m
-2 s-1), is derived from the initial slope which 

depends on the Michaelis-Menten constants for CO2 and O2 (Kc and Ko μbar and mbar, 

respectively), the O2 partial pressure (O, 197 mbar) and the chloroplastic CO2 partial 

pressure at which the rate of carboxylation equals the rate of photorespiratory CO2 release 

(Γ*, μbar). Rubisco limited CO2 assimilation rate is expressed as 

𝐴 =
𝑉𝑐𝑚𝑎𝑥(𝐶𝑐−Γ∗)

𝐶𝑐+𝐾𝑐(1+
𝑂

𝐾𝑜
)

− 𝑅𝑑                                                        (2.1) 

where  Rd is the mitochondrial respiration (μmol CO2 m
-2 s-1) (von Caemmerer, 2000).  

The second part of the CO2 response curve is used to infer the electron transport rate (J, 

μmol e- m-2 s-1), expressed as 

𝐴 =
𝐽(𝐶𝑐−Γ∗)

4𝐶𝑐+8Γ∗
− 𝑅𝑑                                                              (2.2) 

The chloroplastic CO2 partial pressure (Cc, μmol) used in equations (2.1 and 2.2) is derived 

from the intercellular CO2 partial pressure (Ci, μbar), A and the mesophyll conductance 

(gm, mol m-2 s-1 bar-1) from the following equation (2.3) 

𝐶𝐶 = 𝐶𝑖 −
𝐴

gm
                                                                (2.3)  
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To a first approximation, gm varies in direct proportion to photosynthetic capacity (von 

Caemmerer and Evans, 1991). Therefore, the value assumed for gm for each leaf was 

derived by linear scaling to the rate of CO2 assimilation at a common Ci of 260 μmol mol-1 

(A260) using the following equation:  

gm = gm,avg ∗
𝐴260

25
                               (2.4) 

Where gm,avg, (0.55 mol m-2 s-1 bar-1) was based on the average of six different plants of 

triticale variety Hawkeye measured with carbon isotope techniques that combine tunable 

diode laser spectroscopy and gas exchange (Evans and von Caemmerer, 2013) at CSIRO 

Black Mountain  (0.55 mol m-2 s-1 bar-1, Estavillo et al.,  – unpublished data). This is similar 

to other values for wheat (Tazoe et al., 2011; von Caemmerer and Evans, 2015). The value 

of 25 (μmol CO2 m
-2 s-1) on the denominator was the average A from all genotypes at 25 

ºC.  

CO2 response curves were measured at different leaf temperatures. A linear response of gm 

to leaf temperature (von Caemmerer and Evans, 2015) is given by equation 2.5: 

gmT = gm,25 (0.0094𝑇 + 0.786)                                              (2.5) 

The chloroplastic CO2 partial pressure at which the rate of carboxylation equals the rate of 

photorespiratory CO2 release (Γ*, μbar) depends on the ratio of the velocities of 

oxygenation (Vomax, μmol O2 m
-2 s-1) and carboxylation (Vcmax).   

Γ∗ =
𝑉𝑜𝑚𝑎𝑥𝐾𝑐𝑂

2𝑉𝑐𝑚𝑎𝑥𝐾𝑜
                                       (2.6) 

A value of 0.22 was assumed for the ratio Vomax/Vcmax at 25 ºC as has been used in tobacco 

and wheat (von Caemmerer, 2000; Cousins et al., 2010). 

The observed CO2 compensation point (Γ) was calculated from a line fitted to the 

measurements made in 50 and 100 μmol mol-1 inlet CO2 concentrations:  

Γ = 𝐶𝑐50 − 𝐴50
(𝐶𝑐100−𝐶𝑐50)

(𝐴100−𝐴50)
                                           (2.7) 

 

This value was used to calculate a value for observed Γ* (Γ*,obs) as follows (von Caemmerer 

et al., 1994):  

Γ∗,obs = Γ (1 −
𝑅𝑑

𝑉𝑐𝑚𝑎𝑥
) − [

𝐾𝑐(1+
𝑂

𝐾𝑜
)𝑅𝑑

𝑉𝑐𝑚𝑎𝑥
]                                          (2.8) 
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The temperature response function used for Kc, Ko, Vcmax, Vomax, Rd, and Γ* is given by: 

𝑃 = 𝑃25 𝑒
(

𝐸(𝑇−25)

𝑅∙298∙(𝑇+273.15)
)
                                       (2.9) 

where P is the parameter value at leaf temperature T (°C), P25 is the value of the parameter 

at 25 °C, E is the activation energy (kJ mol-1) and R is the universal gas constant 8.314 J 

mol-1 K-1. 

To fit observed data with equation 2.1, six main parameters were used: Rd, Γ*, Vcmax, Kc, Ko 

and Vomax. The photosynthetic model requires a value at 25 °C (value25) and an activation 

energy (E) for each parameter. Several values were assumed from the literature: E for Rd 

46.39 kJ mol-1 (section 2.4.1.1), value25 for Γ* (Bernacchi et al., 2002), E for Vcmax in wheat 

of 63 kJ mol-1 (Evans, 1986), value25 for Kc and Ko from tobacco (Bernacchi et al., 2001; 

Bernacchi et al., 2002) and Vomax/Vcmax at 25 ºC of 0.22 (von Caemmerer, 2000; Cousins et 

al., 2010). The value of Γ*,obs from Eq. 2.8 provided an additional constraint for the fitting 

routine by comparing it to Γ*new calculated using Equation 2.6 at each temperature and 

oxygen condition with Kc, Ko, Vomax and Vcmax adjusted to each temperature with Equation 

2.9. During the fitting for each leaf, the value25 of Rubisco capacity (Vcmax25) and 

respiration (Rd) together with E for Kc and Ko were found.  

2.4 RESULTS 

CO2 response curves at different temperatures were measured under two different O2 

concentrations to enable the derivation of Rubisco kinetic parameters for wheat. The first 

group of experiments was carried out in controlled conditions from which a new set of 

kinetic constants for wheat was obtained. The second group of experiments were used to 

validate the kinetic constants using CO2 response curves measured at different 

temperatures in the field. 

2.4.1 Leaf model prediction of in vivo photosynthesis in wheat 

In order to understand the effect of temperature on the calculations of Vcmax , experiments 

in the cabinet at 21 and 2% O2 were performed, focused on the initial slope of CO2 

response curves. Values of Vcmax and J derived from gas exchange measurements and the 

model fitted to them depend on photosynthetic kinetic constants that have been assumed 

in the model. The most frequent kinetic constants used to fit the photosynthetic model 

have been derived from Atriplex glabriuscula and Nicotiana tabacum (Table 2.2.a and 2.2.b). 

However, using these kinetic constants, the modelled response did not describe the wheat 

CO2 response curve observed at different temperatures and oxygen concentrations (Figure 
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2.2.a and 2.2.b.). The observed A measured in vivo with gas exchange did not correspond to 

predictions made using the model (Equation 2.1 and 2.2) with kinetic constants from Table 

2.2.a. Using kinetic constants obtained by Bernacchi, 2001 & 2002 derived from tobacco 

(Table 2.2.b, Figure 2.2.b), improved the fitting but there were still inconsistences, 

especially at 2% O2. The fitting was substantially improved by deriving new activation 

energies (Table 2.2.c, Figure 2.2.c). 

Table 2.2 The kinetic constants used to model CO2 assimilation rate in Figure 2.2 a, b & c. 
Kinetic constants/Specie (a) N. tabacum2,4 

    A. glabriuscula1 

(b) N. tabacum (c) New 

     constants  

     for wheat 

Kc  Value at 25°C (μbar) 2592 272.384 2724 

E (kJ mol-1)  59.41 80.994  93.72±2.56 

Ko Value at 25°C (mbar) 1792 165.824 166 

E (kJ mol-1)  361 23.724  33.6±5.96 

Γ*  Value at 25°C (μbar) 37.434 37.434  37.746 

E (kJ mol-1) 24.464 24.464  24.426 

Vcmax 

 

Value at 25°C (μmol 

m-2 s-1) 

134 113.9 117.5 

E (kJ mol-1)  64.81 65.33  635 

 Vomax E (kJ mol-1) 65.86 32.58+ 27.1±4.86 

 

Rd  

Value at 25°C (μmol 

m-2 s-1) 

1.37 1.27 1.14 

E (kJ mol-1) 46.393 46.393  46.393 

References 1(Badger and Collatz, 1977) 
2(von Caemmerer et al., 1994) 

3(Bernacchi et al., 2001) 

4(Bernacchi et al., 2002) 

5(Evans, 1986) 
6This report, n=6 

E: Activation Energy; +Vomax calculated from Bernacchi et al. (2002) constants. Vcmax and Rd values at 25 °C belong to 

each plot.  

 

Figure 2.2 CO2 assimilation rate, A, as a function of chloroplastic CO2, Cc, at two different 
O2 concentrations (Open symbols, 2% O2; Closed symbols 21% O2) and four temperatures 
(square 15 °C, diamond 25 °C, triangle 30 °C, circle 35 °C). Symbols are the observed A 
from one leaf of Triticum aestivum cv. Merinda. Lines are the predicted A using each 
column of kinetic constants from table 2.2. Cc was calculated from Equation 2.3, the 
assumed value of mesophyll conductance, gm, from Equation 2.4 and the temperature 
dependence of gm,25 from Equation 2.5. Flow rate 500 μmol s-1, irradiance 1800 μmol quanta 
m-2 s-1 and 50, 100, 150, 200 and 250 μmol CO2 mol-1 of CO2 reference. 
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2.4.1.1 Kinetic constants for respiration  

From the literature a similar value of E for Rd has been observed in tobacco and wheat 

(Evans, 1986; Bernacchi et al., 2001). In order to confirm this, dark respiration (Rdark) in 

leaves of wheat was measured at 15, 20, 25, 30 & 35 °C and fitted using E= 46.39 kJ mol-1 

(Table 2.2). This activation energy derived from Tobacco matches that observed here for 

wheat dark respiration (Figure 2.3). The temperature response was similar whether 

obtained with increasing or decreasing temperatures (not shown). We assume the 

temperature dependency for Rd is the same as that for dark respiration. 

 
Figure 2.3 The temperature response of dark respiration, Rdark, for flag leaves of Triticum 
aestivum cv. Espada, Hawkeye, Mace and Merinda. Each point is the mean of three to six 
leaves. The error bars are the standard error from the leaves measured. Each leaf was 
measured after a CO2 response curve and 30 minutes of darkness, at five temperatures from 
15 °C to 35 °C. The line is the predicted respiration from 10 °C to 40 °C using Equation 2.9, 

E=46.39 kJ mol-1, R=8.314 J mol-1 K-1, Rdark(25  ̊C) = 1.2 μmol CO2 m-2 s-1
.  Flow rate of 500 μmol 

s-1 and at 400 μmol CO2 mol-1 for inlet CO2.  

 

2.4.1.2 Kinetic constants for the compensation point  

Two important points can be extracted from the initial slope of the CO2 response curve: Γ, 

where the curve crosses the x axis (A = 0), and Γ*,  the CO2 partial pressure on the curve 

when A = -Rd (von Caemmerer, 2000). From the observed CO2 response curves measured 

on Merinda, at 15 °C, 25 °C, 30 °C and 35 °C, at 21 and 2 % O2 (Figure 2.2.), a line fitted 

to the first two points was used to calculate Γ (Equation 2.7), and then Γ* observed (Γ*obs) 

using Equation 2.8, assuming that E of Vcmax in wheat is 63 kJ mol-1 (Evans, 1986), E of Rd 

is 46.39 kJ mol-1 (section 2.4.1.1), and value25 for Kc and Ko from Bernacchi et al. (2001,  

2002). 

Under 21% O2, the observed CO2 compensation point, Γ, closely matched that observed 

for tobacco (Figure 2.4.a). However, under 2% O2 the observed Γ was slightly less than 

that predicted using tobacco Rubisco kinetic parameter values. 
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Figure 2.4  Temperature dependence of the CO2 compensation point in 2 and 21% O2. 

a) CO2 compensation point when A=0. Circles are the observed Γ derived from six A:Ci 
curves from flag leaves of Triticum aestivum cv. Merinda (Equation 2.8). Dashed lines are 

Γ calculated with kinetic constants from Bernacchi et al. 2002 (Equation 2.7). 

b) CO2 photocompensation point when A= -Rd, the solid lines are Γ*new calculated from the 
new kinetic constants. 

 

The average value for the CO2 photocompensation point,  Γ*new, from six plants of Merinda 

measured at 21 % O2 and 25 °C was 35.4±0.41 μbar using an atmospheric partial pressure 

for Canberra of 938 mbar. When adjusted to sea level (oxygen partial pressure 210 mbar), 

this equates to 37.74 μbar. The value of E for Γ* was obtained by summing E for Vomax and 

Kc, and subtracting E for Vcmax and Ko after the fitting (24.4 kJ mol-1, Table 2.2.c). This value 

is similar to that reported for tobacco (Table 2.2.b). Thus, the value and temperature 

dependence of the CO2 photocompensation point appears to be similar between wheat and 

tobacco. 

2.4.1.3 Fitting observed values in the model 

Minimising the variance between Γ*obs and Γ*new helped to constrain the solution of the 

fitting which also tried to minimise the variance between A observed and predicted at each 

temperature and both oxygen concentrations using Equation 2.1. This procedure was 

repeated for six different plants of Merinda. The average activation energies for Kc and Ko 

obtained from Merinda (Table 2.2.c) were then used to fit data collected from other 

genotypes (Mace, Hawkeye and Espada) at different temperatures in the cabinet to assess 

their general validity.  
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Figure 2.5 CO2 assimilation rate, A, as a function of chloroplastic CO2, Cc a) and 
intercellular CO2, Ci  b), in 21% oxygen at five different leaf temperatures (Square 15 °C, 
cross 20 °C, diamond 25 °C, triangle 30 °C, circle 35 °C). Model curves are A predicted with 
the new kinetic constants in Table 2.2.c. Symbols are the observed A of one flag leaf from 

Triticum aestivum cv. Mace. Flow rate 500 mol s-1, irradiance 1800 μmol quanta m-2 s-1. Cc 
was calculated from Equation 2.3. 

 

The ability of the new constants to fit CO2 response curves is illustrated in Figure 2.5. Two 

versions are shown. The fundamental data obtained from the LI6400 (A:Ci) are shown in 

panel b), whereas A:Cc curves are shown in panel a) because it was necessary to include gm 

when fitting Equations 2.1, 2.2, 2.3, 2.4 and 2.5. The initial slope of the CO2 response 

curves is used to derive Vcmax, which increases at higher temperatures. For example, from 

A:Cc curves, Vcmax was 50, 78, 121, 184 and 277 μmol CO2 m
-2 s-1 at 15, 20, 25, 30, 35 ºC 

respectively (Figure 2.5). As temperatures increase, the affinity of Rubisco for CO2 

decreases such that the initial slope changes little. The increase in respiration rate also 

contributes to the increase in Γ at higher temperatures. At high CO2 partial pressures, the 

RuBP regeneration limited rate increased by 30% from 15 to 30 ºC before declining at 35 

ºC. The transition from a Rubisco to an RuBP regeneration limitation happens at a lower 

chloroplastic CO2 partial pressure (230 to 250 μbar) compared to intercellular CO2 partial 

pressure (240 to 280 μbar), but did not vary greatly with temperature. 

 

2.4.2 Assessing the new kinetics constants for wheat in the field 

The new parameters (Table 2.2.c) were used to fit A:Cc curves obtained in the field 

(Aus2T). The model curves could be fitted well to the observed data (one example shown 

in Figure 2.6). 
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Figure 2.6 CO2 assimilation rate, A, of a wheat leaf (V45) measured in the field as a function 
of chloroplastic CO2, Cc; a) Full A:Cc curve at 26 and 32 °C; b) Initial slope at different 
temperatures (diamond 26 °C, asterisk 28 °C, triangle 30 °C, circle 32 °C). The lines predict 
A with the new kinetic constants of Table 2.2.c.  Flow rate 500 μmol s-1, irradiance 1800 
μmol quanta m-2 s-1 and 21% O2. 

 

2.4.2.1 Vcmax trends for wheat in the field and in controlled conditions 

Genotypes measured in Aus3T and in the cabinet were used to assess the validity in 

estimating Vcmax at 21% oxygen at different temperatures.  

First, values for Vcmax and Rd were sought that minimised variance between observed and 

modelled rates predicted using Equation 2.1 with the new kinetic parameters. Vcmax25 was 

calculated using Equation 2.9 from each curve measured at different leaf temperatures. To 

avoid possible effects of declining Rubisco activation at temperatures higher than 30 °C, 

only values derived from leaf temperatures up to 30 °C were used (15 to 30 °C in the  

cabinet and 25 to 30 °C in Aus3T) to calculate the baseline of 100%. 

Second, two ways of calculating Vcmax were used and compared: 

1. Vcmax fitted using measurements from multiple temperatures and the new kinetic 

constants: 

Values for Vcmax25 and Rd were sought by fitting the model at each temperature (15, 20, 25, 

30 and 35 °C) using the new kinetic constants (Table 2.2.c), which will be called Vcmax(new). 

2. Vcmax fitted at each temperature using Bernacchi constants: 

Values for Vcmax25 and Rd were sought by fitting the model at each temperature (15, 20, 25, 

30 and 35 °C) using tobacco kinetic constants (Table 2.2.b), which will be called Vcmax(Bernacchi). 
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Figure 2.7 Assessing the stability of Vcmax25 estimated for a leaf measured at multiple 
temperatures either under controlled conditions (cabinet) or the field (Aus3T). Values of 
Vcmax were derived using the new kinetic constants (closed symbols) or tobacco kinetic 
constants (Bernacchi et al., 2001; Bernacchi et al., 2002) (open symbols) at each 
temperature and then converted to Vcmax25 using equation 2.9. Error bars are the standard 
error from repetitions, which are described in Materials and Methods. 

 

Ideally one should obtain the same value for Vcmax25 regardless of the temperature used 

during the measurement. The baseline of 100% represented the mean value from curves 

measured up to and including 30°C. Relative values of Vcmax(new) and Vcmax(Bernacchi) are shown in 

Figure 2.7. In both cases, the estimate of Vcmax25 tended to decline as measurement 

temperature increases. However, Vcmax(new) shows less deviation with temperature than 

Vcmax(Bernacchi) (generally ±5% and  ±20%, respectively). The deviations appear to be greater 

when measured in the field (Aus3T) compared to measurements made in controlled 

conditions (cabinet).  The decreased variation in Vcmax25  using the new constants should 

improve estimation of Vcmax from field data that in some cases was obtained at leaf 

temperatures greater than 25 °C. 

2.4.2.2 Changes in A, Vcmax and J at different temperatures 

Leaf temperature affects A, Vcmax and J differently. In the cabinet, A showed a broad peak 

with a maximum near 20 °C (Figure 2.8.a). By contrast, values for Vcmax and J obtained 

from A:Cc curves with the new constants show quite strong temperature responses (Figure 

2.8.c). J increased from 15 to 30 °C and then decreased, while Vcmax increased up to the 

maximum temperature measurement, 32 °C in the field and 35 °C in the cabinet. In the 

field and in the cabinet J and Vcmax crossed over at 30 °C.  
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Figure 2.8 Temperature response of a) CO2 assimilation rate, A, b) A predicted from Vcmax 
(Wc), Equation 2.1, or J (Wj), Equation 2.2,  c) Rubisco carboxylation rate, Vcmax (red) and 
electron transport rate, J, (blue) calculated with the new constants. Mean of three flag 
leaves from different plants of Triticum aestivum V45 measured in Aus3T through a day 
with leaf temperature increasing from 26 to 32 °C (closed symbols). Mean of five flag leaves 
measured in the cabinet from different plants of T. aestivum cv. Mace with leaf 
temperature increasing from 15 to 35 °C (open symbols). a) measured when inlet CO2 was 
400 μmol CO2 mol-1, b) predicted from chloroplastic CO2 and Equations 2.1 or 2.2, with gm 
calculated from Equation 2.4, c)Vcmax and J  derived from CO2 response curves (Figure 2.5 
and 2.6) were used to predict A (Wc and Wj, respectively).  

 

The predicted assimilation rates from A:Cc curves assuming Rubisco or RuBP regeneration 

limitation (Equations 2.1 and 2.2, respectively) were remarkably similar (Figure 2.8.b), but 

apparently cross from being Rubisco limited below 30 °C to being RuBP regeneration 

limited above 30 °C in the cabinet. In the field, A was apparently Rubisco limited between 

26 and 32 °C in part because of a reduction in chloroplastic CO2. Both Vcmax and J were 

greater for field-grown leaves than for leaves from plants grown in the glasshouse for the 

cabinet measurements. The modelled values for A predicted in Figure 2.8 reflect the 

observed rates (Figure 2.8.a.) reasonably well. 
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2.5 DISCUSSION 

The estimate of Vcmax from CO2 response curves depends on the values assumed for the 

kinetic parameters of Rubisco. As there are few complete sets of values, it is common to 

assume those determined for tobacco (Bernacchi et al., 2001; Bernacchi et al., 2002). 

However, it became apparent that using these values from tobacco to analyse wheat 

measured at different temperatures was problematic. Consequently a detailed 

characterisation of CO2 response curves measured under a range of temperatures and two 

oxygen concentrations was undertaken.  

This chapter highlights the importance of adjusting the biochemical model by using kinetic 

parameters derived for wheat. The new parameters were compared against repeated 

photosynthetic measurements across a range of leaf temperatures measured in the field or 

growth cabinet. The new parameter values improved the ability to derive an estimate of 

Vcmax from A:Ci curves measured in the field at leaf temperatures other than 25 °C 

compared to when activation energies from tobacco were assumed.  

2.5.1 Rubisco kinetic constants for wheat 

Some kinetic constants from tobacco calculated in vivo helped to fit observed data for 

wheat in vivo. In vitro value25 for Kc and Ko in wheat differ from those obtained in vivo in 

tobacco, mainly for Ko. In vitro Ko for wheat is reported as 304 μbar (Makino et al., 1988) and 

328 μbar (Galmés et al., 2014) while value25 of Kc for tobacco is half lower than in vitro 

values (166 μbar). Reports for Kc and Ko measured in vitro for different species, make it 

difficult to select the set of value25 and E that should be used in the fittings, and an 

inadequate choice could result in poor predictions (Table 2.2.a). A common way to derive 

Vcmax and J is with a published spreadsheet in excel (Sharkey et al., 2007) which  uses kinetic 

constants obtained in vivo from tobacco (Bernacchi et al., 2001; Bernacchi et al., 2002). 

Previously, value25 had been reported for Kc, Ko, * and kcat based on analysis of CO2 

response curves of transgenic  tobacco which had reduced Rubisco content (von 

Caemmerer et al., 1994). The spreadsheet with that set of kinetic constants has been used in 

most of the higher plants, assuming that all the plants have the same mechanism for CO2 

assimilation. In part it is true, since prediction of A at 25, 30 and 35 ºC were acceptable 

when the kinetic constants from Bernacchi et al., 2001 & 2002 were used to predict 

observed data from wheat (Table 2.2.b). However, there were some inconsistencies in the 

fitting that were fixed for wheat. The new E of Kc and Ko for wheat increased and Vomax 

decreased in comparison with tobacco. We fixed the value of E for Vcmax for wheat at 63 kJ 
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mol-1  (Evans, 1986) which is slightly less than that for tobacco, 65.3 kJ mol-1 (Bernacchi et 

al., 2001). Perhaps these differences are normal since it has been reported that E for kcatc in 

vitro varies from 48 to 72 kJ mol-1 across crops (soybean, rice, cotton, tobacco, tomato, 

spinach, wheat) and E of kcatc in vitro for wheat is higher than for tobacco (Galmes et al., 

2015). As well, E of kcatc in vitro from land plants showed a positive correlation with the 

optimum growth temperature and Rubisco specificity factor (Sc/o) (Galmes et al., 2015). 

Tobacco is from warmer environments than wheat and the temperature required for 

optimal growth is higher (25 and 20 ºC, respectively), which could relate to the differences 

in E of Kc and Ko obtained in this experiment.   

It is also reported that the specificity factor (Sc/o) in vitro for tobacco is 82 and 107 mol mol-

1 for wheat (Parry et al., 1989; Whitney et al., 2009). Interestingly, the assumed value25 for 

Kc and Ko helped to solve the rest of the kinetic parameters in wheat where Γ* resulted in 

almost similar values (Table 2.2). Γ* reflects Sc/o in vivo. The discrepancy of Sc/o in vitro and in 

vivo need more work to understand the two different answers.  

2.5.2 Effect of temperature on estimating Vcmax25  

Vcmax calculated with the new constants for wheat varied at increasing temperature (15, 20, 

25, 30, 35 ºC, Vcmax of 50, 78, 121, 184, 277 μmol CO2 m
-2 s-1 respectively, Figure 2.5) and 

during the day temperatures can vary from 23 to 34 ºC (Figure 2.1), for this reason 

conversion to value25 (Vcmax) is important analysing Rubisco activity for field 

measurements. However, measurements at temperature higher than 30 ºC should be 

reconsidered in wheat because the wheat growth and Rubisco could be affected. The 

optimum growth temperature in wheat during anthesis and grain filling is 20 ºC and the 

maximum cardinal temperature (when wheat can recover) is 31 ºC at anthesis and 35.4 ºC 

during grain filling (Porter and Gawith, 1999). Measuring in the field (experiments Aus3 

and Mex) the highest temperatures were during anthesis and grain filling between noon 

and early afternoon. Short periods of heat may not detrimentally affect wheat plants when 

grown under good management and with irrigation. Thus it should be possible to obtain 

Vcmax25 from Vcmax derived at higher temperatures from plants when they are grown under 

yield potential conditions. However, when high temperatures are expected in the field, it 

would be better to restrict gas exchange measurements to the morning.   

In the case of Rubisco, activation state can be affected by CO2 concentrations and 

temperature. In fitting the model for C3 photosynthesis to calculate Vcmax, a full Rubisco 

activation state was assumed. However, in sweet potato, it has been shown that the 
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Rubisco activation state varies depending on CO2 concentration. It is higher at low CO2 

(Ci=140 μbar) and lower at high CO2 concentrations (Ci=500 μbar). Rubisco activation 

state also decreased at temperatures above 30 ºC.  When measured at ambient CO2 (Ci=250 

μbar), activation state decreased from the highest value of 85 % at 30 ºC to 65 % at 40 ºC 

(Sage and Kubien, 2007). Two ideas can be extracted from this information. First, we may 

have underestimated Vcmax if Rubisco was not fully activated. Second, plants growing in the 

field are subjected to variation in temperature. If this altered the activation state of Rubisco, 

then Vcmax derived from field surveys could be confounded by temperature.  

For wheat, gm did not increase greatly at higher temperatures (von Caemmerer and Evans, 

2015), but the ability of Rubisco to select CO2 over O2 decreases such that photorespiration 

increases from 25 to 35 ºC (Figure 2.3). It was possible to fit CO2 response curves at 35 ºC 

to calculate Vcmax25 in wheat and by making measurements under both 2% and 21% O2, we 

were able to untangle the changes in carboxylation and oxygenation as temperature varied. 

Nevertheless, measurements from plants that have been exposed to 30 to 35 ºC for a long 

time need to be used with caution and one needs to be aware that when deriving Rubisco 

activity, certain assumptions are required.  

2.5.3 Effect of temperature in respiration  

Respiration occurs in the mitochondria, and it is the process by which plants consume O2 

and release CO2. Respiration increases with increasing temperature. At temperatures 

around 5 °C, enzymes have lower maximum catalytic activity and membranes are less 

flexible, both of which could reduce respiratory flux. At 25°C, enzymatic performance and 

availability of substrates both increase compared to that at 5°C and membranes are more 

flexible. These changes help to increase the flux through respiration. However, at higher 

temperatures, membranes became very fluid, the activity of some enzymes decrease and 

substrates may become limited, all of which affect the respiration flux (Atkin and Tjoelker, 

2003). In Figure 2.3, dark respiration rate per unit leaf area increased with increasing 

temperature almost doubling from 25 to 35 ºC. Increasing respiration has also been 

observed for Spinacia oleracea L. cv. Torai grown at 15/10 °C and 30/25 °C (Yamori et al., 

2005).  

2.6 CONCLUSIONS 

Vcmax and J are valuable traits to be considered when comparing photosynthetic 

performance between wheat lines. In this chapter, Rubisco kinetic constants from tobacco 

were combined with several new kinetic constants appropriate for wheat in order to 
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calculate Vcmax from CO2 response curves measured in the field at different temperatures. 

The new constants will be useful to reduce environmental error when calculating Vcmax for 

leaf temperatures ranging from 15 to 35 °C. However, data from plants grown for long 

periods of heat should be considered separately because Rubisco activation state can 

decline at high temperature. The new kinetic parameters derived in this chapter provide 

appropriate values for wheat such that analysis will no longer need to assume values 

derived from tobacco.  
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3.1 ABSTRACT 

This study uses basic physiological mechanisms to understand photosynthetic capacity 

(Vcmax25 and J) and efficiency (Vcmax25/Narea) in wheat to analyse genotypic diversity in 

relation to fertilizer, plant stage and environment. Four experiments (Aus1, Aus2, Aus3 

and Mex) were carried out to investigate genetic variation for Vcmax25, J, and Vcmax25/Narea in 

wheat with complementary traits (A, gs, Ci/Ca, LMA and Narea). Genotypes for Aus1 and 

Aus2 were grown in the glasshouse with two fertilizer levels. Genotypes for Aus3 and 

Mex experiments were measured in the field in Australia and Mexico respectively; Mex 

genotypes were measured at two plant stages. Results showed that Vcmax25 and J are robust 

parameters to assess photosynthetic capacity since they did not depend on gs or grain filling 

and Vcmax25 was positively correlated with Rubisco measured in vitro. The main nitrogen 

effect and development stage did not influence the ranking of genotypes for Vcmax25, J and 

Vcmax25/Narea. However, growing conditions and geographical location affected ranking of 

the genotypes. There was significant genotypic variation in most of the experiments for 

Vcmax25, J and Vcmax25/Narea, except for genotypes measured in Mexico.  

3.2 INTRODUCTION 

The efficiency of crop production has been defined in thermodynamic terms as the ratio of 

energy output (carbohydrate) to energy input (solar radiation), which is given by the slope 

of the relationship between dry matter production and intercepted radiation (g MJ-1) 

(Monteith, 1977). This parameter is also termed radiation use efficiency (RUE) and its 

importance is evident in the link with biomass and yield (Equation 1.1).  Evidence from 

modelling and CO2 enrichment suggests that RUE of wheat could be increased ~50% with 

improvement in photosynthetic traits (Reynolds et al., 2012b). In the past, assimilation rate 

(A) has been used to assess photosynthesis in wheat. Some studies have shown diversity in 

A across wheat genotypes and a positive, minimum or no correlation with yield or with 

modern wheat genotypes (Murthy et al., 1979; Reynolds et al., 1994; Fischer et al., 1998b; 

Gutierrez-Rodriguez et al., 2000; Reynolds et al., 2000; Sadras et al., 2012).  

Two additionally important parameters to assess photosynthetic performance are Rubisco 

activity (Vcmax) and electron transport rate (J). These parameters can be extracted by 

modelling the physiological response of leaves to CO2 and light (Farquhar et al., 1980). 

While these parameters require more than a single point measurement of A, they have 

proven to be robust traits to assess photosynthetic capacity in C3 plants since they do not 

depend on stomatal conductance (gs) as is the case for simple measurements of A (Condon 

et al., 2004). In the last 20 years Vcmax and J have become common parameters used in plant 
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physiology and ecophysiology, probably because of the availability of portable tools to 

assess A in the field (Long et al., 1996) . However, few papers have been published 

analysing genetic variation for Vcmax and J in wheat (Driever et al., 2014; Jahan et al., 2014) 

and these measurements were done in isolation from other important leaf parameters. If 

we intend to use such derived traits for selecting wheat varieties with high RUE, it is 

necessary to compile more information about the genotypic variation for Vcmax and J and 

have a better understanding of these traits. At present there is no published data for wheat 

analysing genotypic variation for photosynthetic capacity and efficiency using Vcmax and J 

measured in the field. 

Leaf nitrogen is also relevant to the study photosynthetic performance because around 

30% of leaf nitrogen from a C3 sun plant is invested in CO2 fixation and 23% directly in 

Rubisco protein (Evans and Seemann, 1989). It has also been observed that while A is 

positively correlated with leaf nitrogen, there is variation in A for a given leaf nitrogen 

content (Evans, 1989). These data indicate that higher leaf nitrogen does not always 

indicate higher photosynthetic capacity. Carboxylation efficiency (carboxylase activity per 

unit of leaf nitrogen) has been used to detect variation in photosynthetic performance 

between two Triticum species (Evans and Seemann, 1984). Therefore, it will be useful to 

analyse Vcmax an indicator of Rubisco activity, as a function on leaf nitrogen per unit area 

(Vcmax/Narea), which is termed photosynthetic efficiency in this study.  

This chapter analyses photosynthetic capacity (Pc) defined as the amount of investment in 

photosynthetic machinery per unit leaf area (i.e.Vcmax and J) when photosynthesis is not 

limited by water, light or nitrogen, and photosynthetic efficiency (Peff) as the photosynthetic 

carbon gain in the leaf per unit of nitrogen invested per unit leaf area. The chapter analyses 

genotypic variation for these metrics of photosynthetic performance from two 

perspectives. Firstly, analysing photosynthesis from plant physiological and biochemical 

mechanisms and secondly assessing photosynthetic diversity under different conditions. 

Determining the physiological mechanisms underlying variation in photosynthetic traits will 

permit us to understand the relationship between leaf biochemistry and leaf anatomy; in 

this case by measuring leaf dry mass per unit area (LMA). LMA is the ratio between leaf dry 

mass and leaf area, and correlates with the leaf lamina thickness. LMA comprises different 

leaf compounds from non-structural and structural carbohydrates, proteins, lignin, lipids, 

minerals, organic acids, and the density of epidermal cells and mesophyll cells which 

contain a large number of chloroplasts. High LMA can be due to a thick leaf and/or high 

leaf density, and a higher chloroplast area (Poorter et al., 2009).  
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Assessing photosynthetic diversity under different conditions will help to understand Pc and 

Peff in relation to genotypic variation, plant stage and environment. Complementary 

measurements such as gs and the ratio of internal to atmospheric CO2 concentration 

(Ci/Ca) are used here to assess the water exchange in leaves (Evans and von Caemmerer, 

1996; Condon et al., 2004). SPAD is used as a rapidly measured non-destructive surrogate 

for chlorophyll content (Konica Minolta, 2009-2013). In some cases yield component traits 

were measured to have a better understanding of plant life cycle and phenology as longer 

duration of photosynthetic activity can also be related to prolonged demand for grain filling 

(Evans, 1993). 

The objectives of this chapter are to analyse photosynthetic variation between elite wheat 

genotypes at the leaf level. Vcmax and J will be evaluated to assess Pc considering A as 

conventional trait to assess photosynthesis. Vcmax/Narea as a trait to assess Peff will be 

explored and analysed across different wheat genotypes. Environmental conditions will be 

tested to understand the factors that influence Pc and Peff across the elite wheat genotypes. 

3.3 MATERIALS AND METHODS 

3.3.1 Experiments 

Results were organised in four experiments (Table 3.1). Experiment Aus1 was set up in a 

glasshouse at CSIRO Black Mountain, Canberra (-35.271875, 149.113982), from March 31st 

to June 30th 2012, artificial light was used in June to extend the photoperiod to 16 h and 

temperature was controlled to 25/15 °C (day/night). Two seeds were sown in cylindrical 

pots of 1.06 L (15 × 5cm) with 75:25 loam:vermiculite containing basal fertilizer, and one 

plant per pot was kept for the experiment which was organized in a randomized block 

design, three blocks representing each repetition for the high nitrogen treatment (+N) and 

other three blocks for the low nitrogen treatment (-N). Extra fertilizer Thrive (~300 mL 

per pot of 1.77g L-1N:27%, P:5.5%, K:9%) was applied each week for +N treatment until 

83 DAE. A severe low nitrogen treatment was obtained irrigating the pots with water 

without fertilizer 1.5 month before measurements. Plant emergence was on April 8th. 23 

days after emergence (DAE) and the flag leaf was measured at anthesis (GS58-69) from 73 

to 83 DAE. The collection of plants used in this experiment is called the “early vigour set” 

and it was measured at anthesis so the acronym used for these data is EVA (“early vigour 

anthesis”); further information is described in the germplasm section. Six to seven 

genotypes per day at similar plant stage with three repetitions were measured and sampled. 

Details of traits are in section 3.3.4. 
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Table 3.1 Details of experiments 

Set of genotypes Description 
Key measurements 

Stage Traits 

Aus1 = Glasshouse experiment. CSIRO Black Mountain, Australia (2012) 

EVA(-N),(+N) 

 

16 genotypes 

3 repetitions 

Low/high N 

Anthesis  

73-83 DAE 

A, Vcmax25, J 

SPAD, Narea 

Aus2 = Glasshouse experiment. CSIRO Black Mountain, Australia (2012) 

BYPB(-N),(+N) 

 

30 genotypes 

2 repetitions 

Low/high N 

Pre-anthesis  

48-56 DAE 

A, Vcmax25, J 

SPAD, Narea 

 

Aus3 = Field experiment. GES-CSIRO, Australia (2013) 

BYPB 28 genotypes 

4 repetitions 

Pre-anthesis  

46-54 DAE 

A, Vcmax25, J 

SPAD, Narea 

EVA 

 

2 genotypes 

4 repetitions 

Anthesis  

62-67 DAE 

A, Vcmax25,  J 

SPAD, Narea 

CA 

 

21 genotypes 

4 repetitions 

Anthesis   

60-67 DAE 

A, Vcmax25, J 

SPAD, Narea 

Mex = Field experiment. CENEB-CIMMYT, Mexico (2012-2013) 

CB 

 

30 genotypes 

3 repetitions 

Pre-anthesis  

67-82 DAE 

A, Vcmax25, Jg, Jf 

SPAD, Nmass 

CA 

 

30 genotypes 

3 repetitions 

Anthesis   

88-103DAE 

A, Vcmax25, Jg, Jf 

SPAD, Nmass, Narea 
EV= Early vigour set; BYP= BUNYIP set; C= CIMCOG set. B= before anthesis (pre-anthesis); A= anthesis.        DAE= 

Days after emergence. See text for traits abbreviations. 

Experiment Aus2 was carried out in a glasshouse at CSIRO Black Mountain, Canberra (-

35.271875, 149.113982), from October 12th to December 11th 2012, and temperature was 

controlled to 25/15 °C (day/night). Three seeds were sown in pots of 5 L with 75:25 

loam:vermiculite soil mix containing basal fertilizer, and two plants per pot were kept for 

the experiment which was organized in a randomized block design, two blocks 

representing each repetition for the high nitrogen treatment (+N) and one block for the 

low nitrogen treatment (-N). For the +N treatments extra fertilizer Aquasol (~300 mL per 

pot of 1.77g L-1N:23%, P:4%, K:18%) was applied every  three days from 41 days after 

emergence (DAE) to 56 DAE. Treatment –N was less severe than Aus1, it was obtained 

irrigating the plants with water without fertilizer 10 days before measurements. Plant 

emergence was on October 17th and the flag leaf was measured before anthesis (GS49-57) 

from 48 to 56 DAE. Measurements were done in one plant per pot for +N and in the two 

plants per for –N. The collection of plants used in this experiment is called BUNYIP and it 

was measured before anthesis so the acronym used is BYPB. Details of germplasm used 
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are below in section 3.3.2. Six to ten genotypes per day at similar plant stage with two 

repetitions were measured and sampled.  

Experiment Aus3 was carried out in the field at CSIRO Experimental Station at Ginninderra 

(GES), Australia (-35.199837, 149.090898) from September 25th to December 17th, 2013. The 

emergence of plants was on October 4th, 2013. From 1 to 75 DAE the average maximum 

from daily temperature (Figure 3.1) was 22.4 °C and the minimum 7.7 °C, in total 142 mm 

of rain and an accumulative thermal time of 1,126.8 °C. CA and EVA subsets of wheat 

genotypes were sown in the same experimental design of two randomized blocks. Each block 

was subdivided into 30 plots (5 × 6). Next to this experimental design, another experimental 

design of two randomized blocks for the BYPB collection was sown. In this case, each block 

was subdivided into 42 plots (7 × 6). Each plot for both experimental designs was 5 m × 1.8 

m. It contained a single genotype sown in 10 rows, 18 cm apart, and approximately 200 plants 

m-2. Plots were fertilized and irrigated optimally in all conditions. The BYPB subset of wheat 

genotypes was measured in the flag leaf before anthesis (GS40-55) from 46-54 DAE where 

the maximum temperature reached was 28.3 °C and the minimum 5.4 °C. When EVA (GS69, 

62-67 DAE) and CA (GS56-69, 60-67 DAE) subset of wheat genotypes were measured, the 

maximum temperature reached was 32.2 °C and the minimum 4.3 °C. Measurements and 

sampling were done twice in two plots, resulting in 4 repetitions for 4 to 5 genotypes per day 

that were at similar plant stage. In this experiment many plants were at the same stage at the 

same time and fewer wheat genotypes could be measured: 2 wheat genotypes from EVA, 20 

wheat genotypes and 6 triticale genotypes from BYPB, and 22 wheat genotypes from CA. 

They are marked with asterisk in tables 3.2 and 3.3. Details of germplasm used are in section 

3.3.2. 

Experiment Mex was carried out in the field at Centro Experimental Norman E. Borlaug 

(CENEB) research station, located in the Yaqui Valley, Sonora, Mexico (27.370837, -

109.930362) for a winter-spring cycle. The sowing was on November 23rd, 2012 and the 

harvest on April 30th and May 2nd 2013 (150 and 152 DAE respectively). Plant emergence 

was on 2nd, December, 2012. From the 1 to 138 DAE, the average maximum temperature 

from daily temperature (Figure 3.1) was 26 °C and the minimum 8.3 °C, in total 15.38 mm 

of rain and an accumulative thermal time of 2,364.6 °C. Plants were organised in a 

randomised 5 × 6 lattice experimental design with three repetitions. Each repetition (10 × 

3 plots) enclosed two subdivisions of 5 × 3 plots. Each plot (2.4 m × 8.5 m) contained a 

single genotype sown in 6 rows, two beds in the middle with two rows each and two beds 

in the edges with one row of the same genotype, the second row in the edges corresponded 
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to the next genotype or a filling genotype. Beds followed the system 56-24, where 56 cm is 

the furrow width and 24 cm is the raised bed width. Plants were grown under optimal 

management in the field. There were in total five auxiliary irrigations, the total 500 mm of 

water applied. First fertilization was at soil preparation with 50 kg ha-1 of N and 50 kg ha-1 

of P and a second fertilization in the first irrigation of 150 kg ha-1 of N. The CB subset of 

wheat genotypes was measured in the flag leaf before anthesis (GS49-57) from 67 to 82 

DAE, where the maximum temperature reached was 29.7 °C and the minimum 1.5 °C. The 

CA subset of wheat genotypes was measured in the flag leaf at anthesis (GS60-69) from 88 

to 103 DAE, where the maximum temperature reached was 32.1 °C and the minimum 2.5 

°C. Measurements and sampling were done in one plant per plot; 3 to 6 genotypes per day 

were measured at similar plant stage with 3 repetitions.  

 

Figure 3.1 Meteorological conditions in Obregon, Mexico and Ginninderra, Australia. Daily 

observations from days after emergence (DAE) during measurements in Australia (1-75 

DAE) and in Mexico (1-38 DAE). Minimum and high temperature in pink, precipitation in 

blue bars, minimum and maximum humidity (white circles) and solar radiation in red. 
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3.3.2 Germplasm 

As described three sets of wheat/triticale genotypes were used in these experiments (Table 

3.2).  

Table 3.2 List of wheat genotypes used for early vigour and BUNYIP set. 

Early Vigour (EV) BUNYIP (BYP) 

Gen Name Type Gen Name Type Gen Name Type 

V1 Bencubbin BW *V15 Abacus T *V31 Kosciusko T 

V2 Halberd BW *V16 Axe BW *V32 Mace BW 

V3 K1056 BW *V17 Bogong T *V33 Magenta BW 

V4 Nacozari BW *V18 Bolac BW *V34 Merinda BW 

V5 Oasis BW *V19 Canobolas T *V35 Pastor BW 

V6 Sunstar BW *V20 Caparoi DW *V36 Scout BW 

V7 W010311 BW *V21 Chopper T *V37 Speedee T 

*V8 W020308 BW *V22 Derrimut BW *V38 Spitfire BW 

*V9 W100104 BW *V23 Drysdale BW *V39 Super Seri BW 

V10 W130114 BW *V24 Emu Rock BW *V40 Tahara T 

V11 W170316 BW *V25 Espada BW *V41 Weebil BW 

V12 W210308 BW V26 H45 BW V42 Yenda BW 

V13 W610501 BW *V27 Hawkeye T V43 Zebu BW 

V14 W650208 BW *V28 Hunter BW V44 Zulu DW 

V75 Quarrion BW *V29 Hyperno DW    

V76 Pitic BW *V30 Jaywick T    

T, Triticale genotypes. DW, Durum wheat. BW, Bread wheat. *Genotypes measured in the field in Australia (Aus3). 

 

(1) Early Vigour (EV) set consisted of 16 wheat genotypes from CSIRO in Australia. 

Genotypes from V1 to V6, V75 and V76 have shown differences in photosynthesis in 

previous experiments and genotypes from V7 to V14 are characterized to have greater 

embryo, fast leaf area development and low leaf mass area. (2) A subset of the Best and 

Unreleased Yield Potential (BUNYIP) that contains 21 wheat genotypes and 9 triticale 

genotypes with high yield in Australia. (3) CIMMYT Core Germplasm (CIMCOG) 

Subset II has 30 wheat genotypes selected at CIMMYT (International Maize and Wheat 

Improvement Center) for high yield (Table 3.3). Acronym for BUNYIP will be ‘BYP’, for 

CIMCOG will be ‘C’ and for Early Vigour will be ‘EV’. An additional letter will be added to 

each acronym, ‘B’ meaning before anthesis, and ‘A’ meaning anthesis.  
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Table 3.3 List of wheat genotypes used for CIMCOG Subset II. 

CIMCOG Subset II (C) 

Gen Type Name 

*V45 BW BABAX/LR42//BABAX/3/VORB 

V46 BW BACANORA T 88 

*V47 BW BCN/RIALTO 

V48 BW BECARD/KACHU 

V49 BW BRBT1*2/KIRITATI 

*V50 BW SAUAL/4/CROC_1/AE.SQUARROSA (205)//KAUZ/3/ATTILA/5/SAUAL 

V51 BW SAUAL/WHEAR//SAUAL 

*V52 BW CMH79A.955/4/AGA/3/4*SN64/CNO67//INIA66/5/NAC/6/RIALTO 

*V53 WD CIRNO  C 2008 

*V54 BW CNO79//PF70354/MUS/3/PASTOR/4/BAV92*2/5/FH6-1-7 

*V55 BW CROC_1/AE.SQUARROSA(205)//BORL95/3/PRL/SARA//TSI/VEE#5/4/FRET2 

V56 BW KINGBIRD #1//INQALAB 91*2/TUKURU 

*V57 BW MILAN/KAUZ//PRINIA/3/BAV92 

V58 BW PAVON F 76 

*V59 BW PBW343*2/KUKUNA*2//FRTL/PIFED 

*V60 BW PFAU/SERI.1B//AMAD/3/WAXWING 

*V61 BW SERI M 82 

*V62 BW SIETE CERROS T66 

*V63 BW SOKOLL//PBW343*2/KUKUNA/3/ATTILA/PASTOR 

*V64 BW TACUPETO F2001/SAUAL/4/BABAX/LR42//BABAX*2/3/KURUKU 

*V65 BW TACUPETO F2001/BRAMBLING*2//KACHU 

*V66 BW TC870344/GUI//TEMPORALERA M 87/AGR/3/2*WBLL1 

*V67 BW TRAP#1/BOW/3/VEE/PJN//2*TUI/4/BAV92/RAYON/5/KACHU 

*V68 BW UP2338*2/4/SNI/TRAP#1/3/KAUZ*2/TRAP//KAUZ/5/MILAN/KAUZ// 
CHIL/CHUM18/6/UP2338*2/4/SNI/TRAP#1/3/KAUZ*2/TRAP//KAUZ 

*V69 BW BECARD 

V70 BW WBLL1*2/KURUKU*2/5/REH/HARE//2*BCN/3/CROC_1/AE.SQUARROSA(213) 
//PGO/4/HUITES 

*V71 BW YAV_3/SCO//JO69/CRA/3/YAV79/4/AE.SQUARROSA(498)/5/LINE1073/6/ 
KAUZ*2/4/CAR//KAL/BB/3/NAC/5/KAUZ/7/KRONSTAD F2004/8/KAUZ 
/PASTOR//PBW343 

*V72 BW BECARD 

*V73 BW KFA/3/PFAU/WEAVER//BRAMBLING/4/PFAU/WEAVER*2//BRAMBLING 

V74 BW WBLL1*2/4/BABAX/LR42//BABAX/3/BABAX/LR42//BABAX 

T, Triticale genotypes. DW, Durum wheat. BW, Bread wheat. *Genotypes measured in Australia (Aus3). 

3.3.3 Developmental stages 

The Zadoks scale was used to describe the growth stages (GS) of wheat (Zadoks et al., 

1974). The first day after emergence (DAE) is considered at GS10, when at least 50% of 

the seedlings showed the first lamina in the soil surface. Here, before anthesis (B) or pre-

anthesis refers to booting and heading stage between GS41-57. After anthesis (A) refers to 

Anthesis +7 days sampling, this stage is important because the spike reaches the maximum 

dry weight, the grain weight is insignificant and the water soluble carbohydrate reserves in 

stem are at their peak (Pask, 2012). In some cases measurements at anthesis were done at 
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the end of heading and up to 10 days after anthesis between GS56-69.  In the experiments 

section, GS details are specified for each experiment. 

3.3.4 Traits measured 

Gas exchange was measured with a LICOR LI-6400XT infrared gas analyser (LI-COR Inc., 

Lincoln, NE, USA); the 6 cm2 rectangular head was used for experiments Aus1, Aus2 and 

Aus3, and the 2 cm2 circular head from the fluorescence head (Li-6400-40; LI-COR Inc.) for 

the Mex experiment. Gas exchange was used to measure the photosynthetic rate at 400 inlet 

μmol CO2 mol-1 (A), stomatal conductance (gs), the  of internal to atmospheric CO2 

concentration (Ci/Ca ) and CO2 response curves to obtain the maximum Rubisco activity at 

25 ºC (Vcmax25) and the electron transport rate (J or Jg). Vcmax25 and J were calculated, using the 

kinetic constants obtained in Chapter 2 and the leaf biochemical model of photosynthesis 

(Farquhar et al., 1980). In Mex experiments, electron transport rate (Jf) was measured with 

the fluorescence chamber at 400 inlet μmol CO2 mol-1. SPAD-502 chlorophyll meter 

(Minolta Camera Co., Ltd, Japan) was used as a surrogate for chlorophyll content (Mullan 

and Mullan, 2012) to measure flag leaves. 

Flag leaves measured for gas exchange experiments Aus1, Aus2 and Aus3 were sampled 

three centimetres up and down from the chamber to determine leaf mass area and nitrogen 

content. Area of the leaf samples was calculated from a digital photo using the program 

ImageJ 1.47v. Samples were dried then for 48h at 70°C and weighed to obtain leaf mass 

area (LMA, g m-2). Nitrogen concentration, Nmass (N mg g-1) was determined on the same 

samples by flow injection analysis (QuikChem® Method, Lachat Instruments, CO. USA) 

after the Kjeldahl digestion of leaves at the Australian National University (ANU). For 

Mex experiments, a complete flag leaf was measured using a leaf area meter (LI3050A/4; 

LICOR, Lincoln, NE), then, dried for 48h at 70°C and weighed to obtain leaf mass area 

(LMA, g m-2). Nitrogen concentration, Nmass (N mg g-1) was determined at CIMMYT Batan, 

Mexico with the Technicon AutoAnalyzer II method, where samples are digested and 

analysed in the Technicon AutoAnalyzer (Galicia et al., 2008). Nmass and LMA were used to 

calculate nitrogen per leaf area Narea (N g m-2).  

Rubisco content in vitro was measured for genotypes Espada, Merinda, Mace, Drysdale and 

Hawkeye measured in the cabinet (see Chapter 2), Aus2 and Aus3 experiments. 

Immediately following gas exchange measurements, the piece of leaf that was in the LI-

6400XT chamber was frozen in liquid nitrogen and stored at -80 °C for later determination 

of Rubisco content. Rubisco content in vitro was quantified from frozen leaf samples. 

About 0.25 cm2 of leaf tissue was ground in a Ten Broek homogenizer in 1 mL of ice-cold 
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extraction buffer (50mM Epps-NaOH pH 8.0, 1mM EDTA, 1%(w/v) PVPP, 10mM 

MgCl2, 10mM NaHCO3, 10mM 1M DTT, 0.01% Triton) with 5μL of plant protease 

inhibitor cocktail Sigma, and centrifuged at 17,000g for 5 min at 4 °C. 25μL of the 

supernatant liquid plus 75μL extraction buffer were mixed and incubated with 1μL 14C- 

labelled carboxy arabinitol-1,5-bisphosphate (CABP) at room temperature. After more than 

30 min, [14C]CABP bound to Rubisco was separated from free [14C]CABP using gel 

filtration through 0.7 × 27 cm columns of Sephadex G-50 fine, equilibrated with 20 mM 

Bicine-NaOH buffer, pH 8, containing 75 mM NaCl. Fractions with Rubisco-CABP 

complexes were collected and [14C]CABP was determined by liquid scintillation using a 

Liquid Scintillation Analyzer, Tri-Carb 2800TR from Perkin Elmer. 

Vcmax25/Narea was used to represent photosynthetic efficiency (Peff). A, Vcmax25 and J were used 

to represent photosynthetic capacity (Pc). LMA, Nmass, Narea and SPAD were used to 

understand leaf structure. 

3.3.5 Gas exchange measurements details 

The flow rate in the CO2 chamber of the Li-Cor was set at 500 μmol s-1 for the 6 cm2 head 

and 350 μmol s-1 for the 2 cm2 head, irradiance at 1800 μmol quanta m-2 s-1, and block 

temperature at 25 °C. However, at high temperatures, it was difficult to control 

temperature resulting in higher leaf temperature. Full CO2 response curves were measured 

in all experiments. The inlet CO2 was modified each experiment depending on the place 

and conditions of measurements, since there was a trade-off of time and the number of 

points to use to increase the accuracy of the fitting. In some cases a higher inlet CO2 was 

used to get saturation levels. The inlet CO2 for each experiment is underline below: 

o EVA-Aus1: 50, 100, 250, 400, 800 μmol CO2 mol-1. 

o BYPB-Aus2: 50, 100, 250, 400, 800 μmol CO2 mol-1. 

o CB-Mex: 50, 150, 400, 800 μmol CO2 mol-1. 

o CA-Mex: 50, 100, 250, 400, 600, 800 μmol CO2 mol-1. 

o BYPB-Aus3: 50, 100, 250, 400, 800 μmol CO2 mol-1. 

o EVA and CA-Field-Aus3: 50, 150, 250, 400, 600, 800, 1200 μmol CO2 mol-1. 

Mesophyll conductance (gm) was based on the average of 6 different plants from the 

triticale Hawkeye measured with carbon isotope techniques that combine tunable diode 

laser spectroscopy and gas exchange at CSIRO Black Mountain, resulting in 0.55 mol m-2 s-

1 bar-1 (Estavillo et al., – unpublished data). This value also agrees with measurements done 

in wheat genotypes (von Caemmerer and Evans, 2014). 0.55 mol m-2 s-1 bar-1 was divided 
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by the average of assimilation rate of all genotypes measured in all experiments (Aus1, 

Aus2, Aus3 and Mex), A=25 μmol CO2 m
-2 s-1, which corresponded to Ci = 260 μmol 

CO2 mol-1 and to the 400 inlet μmol CO2 mol-1. In order to know A at intracellular CO2 

(Ci) of 260 μmol CO2 mol-1 (A260) for  each CO2 response curve a linear regression from 50 

to 400 inlet μmol CO2 mol-1 for was used. The final formula used is: gm= (0.55/25)*A260 

(Details in Chapter 2). 

3.3.6 Yield components  

Yield components were measured in the experiment Mex after wheat physiological 

maturity following CIMMYT protocols (Pietragalla and Pask, 2012). Yield (Mg ha-1) was 

calculated from a subsample of grain harvested in 4.8 m2 and dried. Harvest Index, HI is 

the ratio of grain dry weight from 100 spikes and the total plant dry weight. Biomass at 

maturity BMM (Mg ha-1) was calculated from HI/Yield. Biomass at flowering, BMF (Mg 

ha-1) was obtained from dry biomass sampled in 4.8 m2 when plants were flowering, GS61-

62.  

Growth Rate, GR (g m-2 day-1) is calculated as the difference between the dry biomass after 

anthesis (GS61+7 days) and the dry biomass before anthesis (GS41), divided by the days 

from this period, because gas exchange measurements were made during this period. 

Biomass was sampled using plants from 50 cm transects from four furrows of two beds in 

the middle of the plot (0.8 m2). 

Days to flowering (DTF) are the number of days after seedlings emergence at flowering, 

GS61-62. Percentage Grain Filling, PGF (%) = (DTM-DTF)/DTM *100. DTM is he 

number of days after seedlings emergence to physiological maturity. Physiological maturity 

is considered at GS87 when the grain reaches the maximum dry weight and it becomes 

viable. 

3.3.7 Statistical analysis  

The analysis of variance (ANOVA), Tukey’s HSD test and the Pearson correlations for 

phenotypic correlations were carried out with the package Agricolae in R statistical software, 

version 3.1.3 (2015-03-09) (de Mendiburu, 2015). Pearson correlations were calculated from 

the mean of each genotype (Tables 3.9, 3.11, A6, A8, A10). 
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3.4 RESULTS 

3.4.1 Experimental overview 

This section shows the ranges of traits measured in four experiments, Aus1, Aus2, Aus3 

and Mex (Figure 3.2, Figures A2-A3, see section 3.3.1). The data will be used to analyse 

photosynthetic capacity and efficiency, starting with the basic leaf mechanisms in 

photosynthesis, and then analysing leaf-photosynthetic diversity for each set of wheat 

genotypes, EVA, BUNYIP and CIMCOG. 

 
Figure 3.2 Experimental overview. A, gs, Ci/Ca, Vcmax25, J, Vcmax25/Narea , SPAD, Narea and 
LMA in Early vigour set, EV (pink); BUNYIP set, BYP (purple); and CIMCOG set, C 
(blue) grown in different environments and measured at different stages as described in 
Table 3.1. Boxplots represent the distribution of the data. The coloured section is the 
interquartile range (IQR), representing 50% of the data. The lower IQR edge is the point at 
25% of the data. The middle black point is the mean and the line the median. The upper 
IQR edge is the 75% point. The whiskers are 1.5 times IQR, showing the minimum and 
maximum data. Blue circles are outliers. 
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3.4.2    Mechanistic understanding of photosynthesis in wheat 

The velocity of carboxylation (Vcmax) represents Rubisco activity in vivo inferred from non-

destructive measurements on living plants, but it can also be measured in vitro from leaf 

samples. Rubisco is present in leaves as an abundant component of chloroplasts and 

chloroplast and Rubisco account for a high percentage of leaf nitrogen. Anatomical 

parameters such as leaf mass per unit dry area (LMA) can reflect high leaf 

density/thickness and higher chloroplast area. For this reason, in this section Rubisco in 

vivo and Rubisco in vitro are analysed as a function of LMA and nitrogen per leaf area (Narea).  

 

3.4.2.1 Rubisco in vivo 

When LMA and Vcmax25 were compared across genotypes, a large range for Vcmax25 was 

observed over a relatively small range of LMA (Figure 3.3.a). Plants grown with low 

nitrogen (EVA -N_Aus1) seemed to have similar leaf density/thickness as the high 

nitrogen treatment (EVA +N_Aus1). Similar behaviour was observed for BYPB -N_Aus2 

and BYPB +N_Aus2. These observations raise the question of whether Rubisco 

measured in vitro behaves similarly at high and low fertilizer treatment. 

 

 

Figure 3.3 Vcmax25 as a function of a) leaf mass area (LMA), and b) nitrogen (Narea) for wheat 
genotypes grown in different environments and measured at different stages as described 
in Table 3.1. Symbols represent means of each genotype. The arrow represents the diversity 
of Vcmax25 for a given LMA or Narea. 
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At low leaf N, there was a positive correlation between Vcmax25 and Narea, but at higher 

nitrogen content the correlation was low, which suggests that there is significant variability 

in Vcmax25 for a given nitrogen investment at high leaf nitrogen contents per unit leaf area 

(Figure 3.3.b). Potentially, this parameter, Vcmax25/Narea, could be used to uncouple 

measurements of Vcmax25 from leaf nitrogen, and this trait is used to explore photosynthetic 

efficiency (Peff) across wheat genotypes. 

3.4.2.2 Rubisco in vitro 

Four wheat genotypes and one triticale genotype from the BYPB set were selected based 

on Peff (Vcmax25/Narea) to measure leaf Rubisco in vitro (by the CABP binding assay). 

Genotypes from EVA and BYPB were ranked based on the mean of repetitions. For the 

BYPB set, the means were considered from genotypes measured in the glasshouse (Aus2) 

and field (Aus3) (Figure 3.4).  

 

Figure 3.4 Diversity of photosynthetic efficiency represented by Vcmax25/Narea of the early 
vigour set (EVA +N_Aus1) and BUNYIP Set measured in the glasshouse (BYPB 
+N_Aus2) and in the field (BYPB_Aus3). Genotypes labelled were selected for Rubisco in 
vitro measurements of Rubisco. Genotypes were ranked based on the mean of repetitions. 
For the BYPB set, the means were considered from genotypes measured in the glasshouse 
(Aus2) and field (Aus3). 
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The BYPB set was measured in the cabinet (see Chapter 2), in the glasshouse with two 

levels of nitrogen (Aus2), and in the field (Aus3) so genotypes from this set were chosen to 

measure leaf Rubisco in vitro. The genotypes (Espada, Merinda, Mace, Drysdale and 

Hawkeye) were selected to cover the range between EVA and BYPB, from lower to higher 

Vcmax25/Narea (Figure 3.4). 

Measurements of Rubisco in vitro (CABP binding) were compared to Rubisco in vivo 

(Vcmax25) and related to LMA and Narea using leaf samples from genotypes measured in the 

growth cabinet, glasshouse, and field. 

Vcmax25 showed a positive relationship with Rubisco in vitro although it was not directly 

proportional. Consequently, Vcmax25 per Rubisco declined as Rubisco content per unit leaf 

area increased (Figure 3.5).  

Results of this experiment show that LMA did not correlate with the Rubisco content in 

vitro. Rubisco content varied almost threefold while LMA varied between 45.8 to 65 g m-2 

(Figure 3.6.a). This confirms the relationship within a given experiment already shown in  

Figure 3.3.a. Leaf nitrogen showed a positive correlation with Rubisco in vitro and diversity 

for a given Narea (Figure 3.6.b), in general similar to Vcmax25 (Figure 3.3.b).  

 

 
Figure 3.5 Maximum carboxylation rate in-vivo (Vcmax25) as a function of leaf Rubisco 
content. Genotypes sampled in the cabinet, glasshouse and field, n=41. The shaded band 
indicates the level of uncertainty of the regression line. 
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Figure 3.6 Leaf Rubisco content as a function of a. leaf mass area (LMA), b. leaf nitrogen 
per area (Narea). Data from four wheat genotypes and a triticale measured and sampled in 
the cabinet, glasshouse and field, n=41.  

 

From Vcmax25, representing the carboxylation of Rubisco in vivo, and Rubisco catalytic sites in 

vitro representing Rubisco content, it is possible to calculate the catalytic turnover rate for 

Rubisco carboxylation (kcatc). This is shown for each genotype in relation to the leaf 

nitrogen content (Figure 3.7). Even if these five genotypes represent the extremes from 

EVA and BYPB set, it was difficult to distinguish genetic diversity for kcatc. Overall, kcatc was 

not affected by fertilizer treatment. However, kcatc was reduced in Espada samples from 

fertilized compared to unfertilized plants and when comparing kcatc in relation to leaf 

nitrogen, Espada, Mace and Merinda showed a tendency for kcatc to decrease at higher Narea. 

Drysdale and Hawkeye showed no trend with Narea.  

 

 
Figure 3.7 Catalytic turnover rate of Rubisco carboxylation (kcatc) as a function of nitrogen 
per leaf area (Narea) in four wheat genotypes and a triticale (Hawkeye). Black dot are plants 
without fertilizer. Blue dots are plants with fertilizer. Samples from plants grown in the 
glasshouse or in the field are not differentiated. Dotted line is tobacco kcatc 3.5 mol 
CO2(molsites)-1s-1 at 25 °C in vivo (von Caemmerer, 2000). 
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In summary both in vivo and in vitro measurements of Rubisco showed that Rubisco is not 

correlated with LMA. This indicates that anatomical constraints have flexibility to enable 

significant variation in Rubisco content. Regardless of whether Rubisco was derived from 

gas exchange measurements (Figure 3.3.b) or quantified in vitro (Figure 3.6.b). Rubisco is 

strongly related with leaf nitrogen. It seems that there is variation in Rubisco activity per 

unit leaf nitrogen Vcmax25/Narea that can be exploited. Vcmax25/Narea can be used as one 

measure of photosynthetic efficiency. However, no evident differences in kcatc were detected 

across 5 genotypes selected on the basis variation in Vcmax25/Narea. 

3.4.3 Genetic diversity in wheat photosynthesis 

This section evaluate genetic diversity in wheat photosynthesis at leaf level and the factors 

(plant stage, nitrogen, and environment) that influence photosynthetic diversity across 

genotypes. Because the focus of this project was to analyse genetic variation for 

photosynthetic performance, this section is divided by the sets of genotypes measured: 

Early Vigour set, BUNYIP and then CIMCOG. 

3.4.3.1 Early vigour set wheat genotypes (EVA) 

Half of this germplasm set are wheat genotypes selected for early vigour and the other half 

are elite wheat genotypes. In this section we are interested in determining if there is 

diversity in photosynthetic traits across early vigour genotypes and elite genotypes, and if 

strong fertilizer treatment in the glasshouse affects photosynthetic performance.  

Nitrogen treatment had a highly significant effect on all variables measured (Table 3.4). The 

unfertilized treatment reduced A, gs, Vcmax25, J, Narea, SPAD and LMA while Vcmax25/Narea and 

Ci/Ca increased. Most of the traits were significantly different across genotypes in the 

ANOVA, and they were also analysed with Tukey’s HSD test (A5). Interaction G × N was 

not significant for gas exchange derived traits, but G × E was significant for LMA, Narea 

and SPAD (Table 3.4). 

For experiment Aus1, A correlated positively with gs, Vcmax25, J, Narea, SPAD and LMA , so 

that genotypes with high photosynthetic rates had a high maximum velocity of 

carboxylation, electron transport rate, nitrogen content, chlorophyll content and leaf mass 

area. Numerous positive correlations were observed among them e.g. Vcmax25 correlated 

positively with J, Narea, SPAD and LMA (A6).  
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Table 3.4 EVA set, experiment Aus1. Means from 16 wheat genotypes and 3 repetitions per 
nitrogen treatment, ANOVA residual standard error (SE) with DF=15. Coefficient of 
variation percentage (CV%). 

Traits Means    ANOVA P-value 

 -N +N SE CV%  Genotype Nitrogen G × N 

A (μmol CO2 m-2 s-1) 11.8 22.6 4 23  0.04 ≤0.001 0.3 
gs (mol H2O m-2 s-1) 0.3 0.46 0.12 32  0.04 ≤0.001 0.4 
Ci/Ca   
(μmol CO2 mol air-1) 

0.8 0.74 0.04 4.6  0.06 ≤0.001 0.2 

Vcmax25 (μmol CO2 m-2 s-1) 62 127 20.6 21.6  0.03 ≤0.001 0.4 
J (μmol e- m-2 s-1) 94 188 28.7 20.3  0.04 ≤0.001 0.1 
Vcmax25/Narea  
(μmol m-2 s-1(gN-1)) 

74.6 60.2 13 19.3  0.02 ≤0.001 0.8 

Narea (N g m-2) 0.84 2.1 0.25 16.7  ≤0.001 ≤0.001 0.05 
SPAD 26.6 43.9 4.8 13.7  0.002 ≤0.001 0.005 
LMA (g m-2) 39.9 42.9 4.4 10.6  ≤0.001 0.002 0.08 

 

3.4.3.2 BUNYIP wheat genotypes (BYPB) 

BUNYIP wheat genotypes are characterized by very high yield in Australia, but some 

genotypes have not been released as varieties due to other deleterious traits. The objective 

of this experiment is to find out if there is variation in photosynthetic traits and related 

traits to photosynthesis in elite wheat genotypes for Australia. In this case BYPB was 

evaluated twice: one with a fertilizer treatment in the glasshouse, and second measurements 

from high fertilizer treatment in the glasshouse were compared with the same genotypes 

grown in the field. 

3.4.3.2.1 Effect of fertilizer in BYPB genotypes 

–N and +N treatments were less radical than with the Aus1 experiment in order to 

generate a medium range of photosynthetic and related parameters. Significant effects of 

fertilizer treatment on genotypes were still detected in all variables except for gs (Table 3.5). 

–N treatment reduced A, Vcmax25, J, Narea, SPAD and LMA, and increased Vcmax25/Narea. Ci/Ca 

was similar in both nitrogen treatments. Interaction of G × N was not significant for any 

trait. 

As with Aus1, A correlated positively with gs, Vcmax25 and J, so that genotypes with high 

photosynthetic rate had a high maximum velocity of carboxylation and electron transport 

rate. J was positively correlated with Narea and Vcmax25 (A8). 
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Table 3.5 BYPB set, experiment Aus2. Means from 21 wheat and 9 triticale genotypes with 
2 repetitions per nitrogen treatment with standard deviation (SD) and coefficient of 
variation percentage (CV%). ANOVA degrees of freedom =29.   

Traits Means    ANOVA P-value 

 -N +N SE CV%  Genotype Nitrogen G × N 

A (μmol CO2 m-2 s-1) 26.7 30 2.24 7.9  0.003 ≤0.001 0.1 

gs (mol H2O m-2 s-1) 0.71 0.72 0.16 22  0.09 0.5 0.3 

Ci/Ca  
(μmol CO2 mol air-1) 

0.78 0.76 0.03 4.6  0.2 ≤0.001 0.5 

Vcmax25 (μmol CO2 m-2 s-1) 133 160 14.2 9.7  0.04 ≤0.001 0.5 
J (μmol e- m-2 s-1) 190 219 15.3 7.5  ≤0.001 ≤0.001 0.2 
Vcmax25/Narea  
(μmol m-2 s-1(gN-1)) 

67 58 5.6 9  ≤0.001 ≤0.001 0.2 

Narea (N g m-2) 2 2.8 0.18 7.7  ≤0.001 ≤0.001 0.1 
SPAD 48.2 51.3 2.7 5.5  ≤0.001 ≤0.001 0.9 
LMA (g m-2) 51 54.7 2.9 5.4  ≤0.001 ≤0.001 0.1 

 

3.4.3.2.2 Comparison of BYPB genotypes measured in glasshouse and field 

Experiments in the field are important since they are close to the real world environment 

for wheat production, in a canopy with unconstrained root growth. In order to compare 

the effect on plant behaviour growing in pots in a glasshouse and in the field, the BUNYIP 

set was measured in the field (Aus3) and compared with the same wheat genotypes grown 

and measured in the glasshouse (+N Aus2). Significant differences in the effects of 

growing environment were detected for most of the variables. J and LMA were higher in 

the field than in the glasshouse.  A, gs and Ci/Ca were lower in the field. Vcmax25, 

Vcmax25/Narea, Narea and SPAD were similar in both environments (Table 3.6.). All traits 

showed significant differences across genotypes, when analysed with Tukey’s HSD test 

(A9). G × E interaction was significant for gs, Ci/Ca , Vcmax25 , J, Vcmax25/Narea  and LMA. 

Table 3.6 BYPB set measured in glasshouse (+N_Aus2) and in the field (Aus3). Means 
from 17 wheat and 9 triticale genotypes, 2 repetitions in +N_Aus2 and 4 repetitions in Aus3. 
ANOVA residual standard error (SE) with DF=25. Coefficient of variation (CV%). 

Traits Means    ANOVA P-value 

 +N_Aus2 Aus3 SE CV%  Genotype Env G × E 

A (μmol CO2 m-2 s-1) 30.1 27.3 2.6 9  ≤0.001 ≤0.001 0.1 

gs (mol H2O m-2 s-1) 0.72 0.46 0.14 25.8  0.05 ≤0.001 0.003 

Ci/Ca   
(μmol CO2 mol air-1) 

0.76 0.68 0.05 6.5  0.05 ≤0.001 0.001 

Vcmax25 (μmol CO2 m-2 s-1) 161 165 16 9.7  ≤0.001 0.15 0.004 
J (μmol e- m-2 s-1) 221 246 17.3 7.3  ≤0.001 ≤0.001 0.004 
Vcmax25/Narea  
(μmol m-2 s-1(gN-1)) 

57.8 58.3 7 12.2  ≤0.001 0.7 0.002 

Narea (N g m-2) 2.8 2.9 0.25 8.9  ≤0.001 0.26 0.2 
SPAD 51.4 52.4 2.65 5  ≤0.001 0.01 0.4 
LMA (g m-2) 55 63.4 3.7 6  ≤0.001 ≤0.001 0.004 
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When there is a significant G × E interaction, it is important to make one correlation for 

each environment to see if any trait has a different behaviour at given environment. 

Despite G × E being significantly different, one correlation including measurements in 

glasshouse and field could explain the trend of correlations between traits. A correlated 

positively with gs, Ci/Ca , Vcmax25, J and Narea, so genotypes with high photosynthetic rate had 

high gs, intercellular CO2, velocity of carboxylation, electron transport rate and nitrogen 

content. Vcmax25 and J correlated positively with Narea (A10). 

3.4.3.3 CIMCOG wheat genotypes (C) 

CIMCOG wheat genotypes are elite genotypes from CIMMYT. Two experiments were 

carried out to evaluate photosynthetic diversity for the CIMCOG set. One analysed the 

plant stages, before anthesis (CB) and at anthesis (CA) from genotypes grown in the field in 

Mexico. The second analysed the same genotypes grown in the field in Mexico and in 

Australia at anthesis. Because usually there is interest in the relationship between 

photosynthetic traits and yield components, some yield components traits were included in 

the former experiment. 

3.4.3.3.1 Effect of development stage from CIMCOG genotypes 

The CIMCOG subset of wheat genotypes were compared when measured in the field 

before anthesis (CB_Mex) and at anthesis (CA_Mex). Plant stage had a significant effect 

on A, gs, Vcmax25 and SPAD. A, gs, Vcmax25 and Jg had higher values before anthesis than at 

anthesis. In contrast, SPAD values were lower before anthesis than at anthesis. Ci/Ca, Jg 

(electron transport rate from gas exchange), Jf (electron transport rate from fluorescence) 

and Nmass were similar in the two plant stages. Unfortunately, LMA data are missing in this 

experiment so Vcmax25/Narea was not calculated. There were highly significant differences 

across genotypes for A, gs, Ci/Ca, Jg, SPAD and for the yield components. However, Vcmax25, 

Jf, and Nmass were not significant (Table 3.7). Significant traits between genotypes in the 

ANOVA test were analysed with Tukey’s HSD test (A11). G × E interaction was not 

significant for any trait. 

The CIMCOG panel is the only set of wheat genotypes where growing traits and yield 

components were measured. The analysis of variance showed that there were significant 

differences across genotypes for all the traits (Table 3.8). The Tukey’s HSD test show the 

ranking of genotypes (A11 and A12). 
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Table 3.7 CIMCOG set measured before anthesis (CB_ Mex) and after anthesis (CA_Mex). 
The mean is calculated from 30 wheat genotypes and 3 repetitions. ANOVA-Lattice 
residual standard error (SE) with DF=29. Coefficient of variation (CV%). 

Traits Mean    P-value 

 CB CA SE CV%  Gen Stage G × S 

A (μmol CO2 m-2 s-1) 31.5 27.5 3.7 12.8  ≤0.001 ≤0.001 0.3 

gs (mol H2O m-2 s-1) 0.42 0.36 0.1 28.0  ≤0.001 0.003 0.6 

Ci/Ca   
(μmol CO2 mol air-1) 

0.6 0.6 0.06 9.3  ≤0.001 0.8 0.6 

Vcmax25 (μmol CO2 m-2 s-1) 249 189 41.5 18.9  0.4 ≤0.001 0.8 
Jg (μmol e- m-2 s-1) 278 276 24.6 8.9  0.03 0.1 0.2 
Jf (μmol e- m-2 s-1) 231 225 36.0 15.6  0.7 0.6 0.2 
Nmass (mg g-1) 41 42.2 4.8 11.4  0.4 0.2 0.4 
SPAD 46.2 50 2.2 4.5  ≤0.001 ≤0.001 0.6 
Vcmax25/Narea  
(μmol m-2 s-1(gN-1)) 

 69.7    0.35   

Jg: electron transport rate from gas exchange; Jf: electron transport rate from fluorescence 

Table 3.8 Growing traits and yield components of CIMCOG set (Mex). The mean is 
calculated from 30 wheat genotypes and 3 repetitions. ANOVA-Lattice residual standard 
error (SE) with DF=29. 

Traits  Mex SE   P-value 
Gen  

Growth Rate, GR  
(g m-2 per day) 

19.3 5.1  0.05 

Days to flowering (DTF) 86.5 1.3  ≤0.001 
Biomass at flowering, BMF (Mg ha-1) 9.4 1  ≤0.001 
Percentage Grain Filling, PGF (%) 33.1 1  ≤0.001 
Biomass at maturity, BMM (Mg ha-1) 14 0.069  0.003 
Yield (Mg ha-1) 6.98 0.32  ≤0.001 
Harvest Index, HI 0.5 0.014  ≤0.001 

 

A correlated positively with gs, Ci/Ca, Vcmax25 and Jg (Table 3.9). From yield components, A, 

gs and Ci/Ca  had a positive correlation with percentage of grain filling (PGF), but negative 

correlation with biomass at flowering (BMF) and days to flowering (DTF), so genotypes 

with high photosynthetic rate, gs and intercellular CO2 had a longer period of time to fill 

the grain, faster flowering and less biomass at flowering. Interestingly, unlike A, Vcmax25 was 

not influenced by flowering time as A did. Electron transport rate from gas exchange, Jg, 

correlated positively with growth rate (GR), but not electron transport rate from 

fluorescence, Jf. GR had a positive correlation between Nmass, so plants that grew faster 

before anthesis to anthesis accumulated more nitrogen. Yield did not correlate with any 

variable, but HI correlated positively with SPAD. 
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Table 3.9 Phenotypic correlation between traits from CB_ Mex and CA_Mex. Traits with 
significant correlations: ***P≤ 0.001; **P≤ 0.01; *P≤ 0.06. DF=28. 

 gs Ci/Ca  Vcmax25 Jg Jf Nmass SPAD 

A 0.92*** 0.79***  0.55**  0.47**  -0.02 -0.32  0.13 

gs 1.00 0.94***  0.26 0.18  0.03 -0.36*  0.19 

Ci/Ca   1.00  0.03 -0.06  0.07 -0.38*  0.11 

Vcmax25     1.00   0.82***  -0.31 -0.12  0.04 

Jg     1.00  -0.14  0.20  0.12 

Jf      1.00  -0.03 -0.17 

Nmass       1.00  0.07 

SPAD        1.00 

Yield components 

 GR DTF BMF PGF  BMM Yield HI 

A  0.08 -0.76*** -0.61***    0.64*** -0.08 -0.10  -0.03 

gs -0.13 -0.81*** -0.69***   0.75*** -0.07 -0.11 -0.07  

Ci/Ca  -0.23 -0.77*** -0.60***   0.68*** -0.12 -0.26 -0.20  

Vcmax25  0.34  0.18 -0.21   0.22 -0.09  0.10  0.24 

Jg  0.46*  0.01 -0.23    0.08 -0.09  0.22   0.39 

Jf  -0.18  0.08 -0.25  -0.18  0.05  0.01  0.05  

Nmass  0.37*  0.49*  0.26   -0.33  0.15  0.26   0.17 

SPAD  0.31 -0.28 -0.35   0.32 -0.15  0.18   0.40*  

 

3.4.3.3.2 Comparison of CIMCOG genotypes measured in the field in Australia and 

in Mexico 

Experiment Aus3 and Mex provide an opportunity to assess the effect of geographical 

location on photosynthetic performance in wheat. The ANOVA table shows that the 

location and genotypes were significantly different for all traits. Genotypes were ranked 

using Tukey’s HSD test (A13). A, Vcmax25, J, Vcmax25/Narea were higher in genotypes measured 

in Mexico (CA_Mex) than in genotypes measured in Australia (CA_Aus3). In contrast, 

Narea, SPAD and LMA were higher in CA_Aus3. The G × E interaction was significant for 

all traits except for Narea and SPAD (Table 3.10). 

Table 3.10 CIMCOG set, experiments Aus3 and Mex. Mean from 20 wheat genotypes, 4 
repetitions for Aus3 and 3 repetitions for Mex. ANOVA residual standard error (SE) with 
DF=19. Coefficient of variation (CV%). 

Variable Means    ANOVA P-value 

 Aus3 Mex SE CV%  Genotype Env G × E 

A (μmol CO2 m-2 s-1) 24 28 3.8 14.7  ≤0.001 ≤0.001 ≤0.001 

gs (mol H2O m-2 s-1) 0.39 0.38 0.1 27.9  ≤0.001 0.04 ≤0.001 

Ci/Ca   
(μmol CO2 mol air-1) 

0.67 0.64 0.05 7.4  ≤0.001 ≤0.001 ≤0.001 

Vcmax25 (μmol CO2 m-2 s-1) 148 188 20.7 12.7  ≤0.001 ≤0.001 0.02 
J (μmol e- m-2 s-1) 230 274 26.4 10.7  ≤0.001 ≤0.001 0.008 
Vcmax25/Narea  
(μmol m-2 s-1(gN-1)) 

43.5 68.8 6.9 13.1  ≤0.001 ≤0.001 0.003 

Narea (N g m-2) 3.4 2.7 0.3 8.8  ≤0.001 ≤0.001 0.3 
SPAD 55.8 49.8 2.6 4.9  ≤0.001 ≤0.001 0.7 
LMA (g m-2) 75 65 4.3 6  ≤0.001 ≤0.001 0.006 

 



Chapter 3. Genetic variation for photosynthetic capacity and efficiency in wheat 

78 
 

G × E was significant for most of the traits, for this reason two phenotypic correlations 

were used to understand the relationship between traits in each location. The main 

differences found in the two locations were the correlations from LMA, Narea, Vcmax25 and J. 

In Mex, LMA and Narea were negatively correlated with A and gs but not significant in 

Aus3. LMA was positively correlated with SPAD in Aus3 but not in Mex. Vcmax25 and J had 

a positive correlation with gs in Aus3 but not in Mex, and the correlation between Vcmax25 

or J with A was stronger in Aus3 than in Mex (Table 3.11).  

Table 3.11 Phenotypic correlation between traits from CA_ Aus3 and CA_Mex. P-value 
≤0.05.Traits with significant correlations: ***P≤ 0.001; **P≤ 0.01; *P≤ 0.06. DF=18.   

CA_Aus3 

 gs Ci/Ca  Vcmax25 J Narea SPAD LMA 

A  0.91***   0.80***   0.84***  0.72*** -0.32 -0.13  -0.19 

gs  1.00   0.94***   0.61**  0.43* -0.28  0.04  -0.06 

Ci/Ca    1.00   0.38  0.20 -0.28 -0.03  -0.10 

Vcmax25     1.00  0.91*** -0.18 -0.12  -0.21 

J     1.00 -0.25 -0.31  -0.25 

Narea      1.00  0.36   0.59** 

SPAD        1.00   0.60** 

CA_Mex 

 gs Ci/Ca  Vcmax25 J Narea SPAD LMA 

A   0.94***    0.79***    0.52*  0.55* -0.45*  0.03  -0.53* 

gs   1.00    0.94***   0.34  0.33 -0.47* -0.08  -0.56** 

Ci/Ca     1.00   0.16  0.12 -0.41 -0.12  -0.54* 

Vcmax25     1.00  0.92***  0.34  0.23  0.19 

J     1.00  0.28  0.29  0.10 

Narea      1.00  0.18   0.85*** 

SPAD       1.00   0.12 

 

In summary, there was no significant G × E interaction for fertilizer treatment or for plant 

stage of development. However, there was G × E interaction when glasshouse vs field, and 

Australia vs Mexico were compared. Photosynthetic rate was correlated with short 

flowering time, a longer period of grain filling and reduced biomass at flowering in the 

CIMCOG set. There was variation for photosynthetic parameters in the Early Vigour, 

BUNYIP and CIMCOG sets measured in Australia, but there were not always highly 

significant differences between genotypes. There was no statistical difference across 

genotypes of the CIMCOG set for Vcmax25 was measured in Mexico. 

3.5 DISCUSSION 

In general there was significant genetic variation for photosynthetic traits across the 

genotypes measured, parameters considering that all these genotypes are high yielding 

wheats. Since the main focus of this project was to analyse genotypic variation for 

photosynthetic capacity and efficiency, this discussion addresses: A. the mechanisms 
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responsible for the ranking of wheat genotypes; B. the bases for the small genotypic 

variation for Vcmax25 in the Mexico experiments, C. the trends in photosynthetic efficiency 

measured in Australia and Mexico and finally D. a general reflection on how to scale up 

from low level traits to yield. 

3.5.1 Factors that did not affect the ranking of genotypes for photosynthetic 

capacity and efficiency 

Two external factors did not change the ranking of genotypes for the photosynthetic traits: 

The fertilizer treatments and the plant development stage. 

There was no interaction between genotypes and fertilizer treatments for A, Vcmax25, J and 

Vcmax25/Narea (Table 3.4 and 3.5), despite the observation that nitrogen can strongly 

influence these traits. In this project +N increased A, Vcmax25 and J and conversely –N 

reduced these values, which agrees with previous observations in wheat where A increases 

at higher nitrogen contents until a plateau is reached (Evans, 1983). Field experiments in 

the literature agree with the absence of genotype × nitrogen interaction observed here. It 

has been suggested that favourable nutrition, particularly nitrogen commonly applied 

during breeding, will indirectly apply a selection pressure for high photosynthesis and leaf 

area as a result of the maximum crop growth rate (Richards, 2000). 

In this project, there was no interaction between genotypes and development stage (G × S) 

for A, Vcmax25, J and Vcmax25/Narea (Table 3.7). In measurements reported for A in the field at 

Tlaltizapán, Mexico, significant low G × S (P≤0.02) was observed in 16 wheat cultivars, 

and the interaction (G × S) did not affect the ranking of the genotypes (Reynolds et al., 

2000). In the current experiment A and Vcmax25 were higher before anthesis, GS49-57 

(CB_Mex) than after anthesis, GS60-69 (CA_Mex) (Table 3.7). Although measurements 

from the Tlaltizapán experiment were made at an earlier stage, A was also higher in 

booting (GS37-49) than in anthesis (GS55-70) (Reynolds et al., 2000). Similar observations 

have been reported for wheat at the Yaqui Valley, Mexico where A tended to be higher 

before anthesis (GS39-62) than at anthesis (GS71-77) (Fischer et al., 1998a). It is known 

that environmental conditions can influence plant energy conversion efficiency (Slattery et 

al., 2013), and usually temperature is higher after anthesis than before anthesis during the 

growth cycle of wheat growing in the field. The maximum temperature when CB_Mex 

was measured was 29.7 C and for CA_Mex this was 32.1 C (Figure 3.1). However, Ci/Ca 

was similar in the two developmental stages (Table 3.7) and plants that showed low 

stomatal conductance were remove from the analysis. Solar irradiance was higher when 

CA_Mex was measured than when CB_Mex was measured (Figure 3.1), probably A and 
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Vcmax25 were lower after anthesis than before anthesis because after anthesis the solar energy 

was dissipated into heat for photoprotection to maintain the photochemistry (Baker, 2008), 

Jg and Jf were not significant different by plant stage (Table 3.7), but CO2 assimilation and 

Rubisco activity was compromised. 

After anthesis wheat plants start to reallocate assimilates for the future grains, the plant is 

larger and requires more assimilates to continue growing spikes for other tillers, shoots and 

roots (Lupton, 1966; King et al., 1967). Low A and Vcmax25 after anthesis than before 

anthesis can be also due to the compromise of the source and sink relationship, 

translocation of sugars, hormones and other factors (Wardlaw and Moncur, 1976).  

Interestingly, there were not significant interaction between CB_Mex and CA_Mex and 

ranking of genotypes at both plant stages seem to be relatively similar. 

These observations suggest that while attention needs to be paid to developmental stage 

and nutrition treatment of material when screening for photosynthetic traits, ranking may 

be relatively robust across a range of stages and nitrogen levels. 

3.5.2 Factors that affected the ranking of genotypes for photosynthetic 

capacity and efficiency 

There was significant G × E interaction for Vcmax25, J and Vcmax25/Narea when glasshouse vs 

field were compared (Table 3.6). However, when Vcmax25/Narea was plotted using the mean 

of both glasshouse and field measurements, it was possible to differentiate genotypes with 

higher and lower Vcmax25/Narea (Figure 3.4). One phenotypic correlation table could explain 

both environment conditions (A10). In this experiment, although some data from the 

glasshouse can be translated in to the field, it is still important to be aware that ranking of 

genotypes may change due to environment.  

J and LMA were significantly different for G × E interaction (E: glasshouse vs field) and 

both traits were reduced when were measured in the glasshouse (Table 3.6). Possibly some 

genotypes were affected by the lower light intensity in the glasshouse which is generally 

lower than in the field due to light absorption, but also from being grown at a different 

time of the year. Sun leaves are thicker than shaded leaves (Terashima et al., 2006) and 

LMA is commonly affected by growth irradiance. Plants grown in the field have more light 

which may lead to increased chloroplast surface area, chlorophyll and Rubisco content and 

consequently greater photosynthetic capacity (Nishio et al., 1993; Evans et al., 1999). When 

measuring different sets of genotypes to determine variation in electron transport rate and 

leaf structure, it is important to take into account such G × E interaction, because genetic 
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potential for J and LMA measured in the glasshouse could be underestimated and as 

mentioned before, more measurements in the field are required to understand plant 

physiology (Slattery et al., 2013). 

There was also G × E interaction for A, Vcmax25, J and Vcmax25/Narea when Australia vs 

Mexico were compared (Table 3.10). This is not surprising and literature reports on 13 

wheat genotypes analysed for A showed significant variation between different locations 

(Sadras et al., 2012). When the two phenotypic correlations (CA_Aus3 and CA_Mex) were 

separated, it was possible to observe three main aspects: 1) A had a lower correlation with 

Vcmax25 and J in Mexico than in Australia (Table 3.11). 2) In Mexico, Vcmax25 measured in the 

CIMCOG set did not show diversity across wheat genotypes but there was diversity for A 

and Jg (Table 3.7). Moreover, there was genetic variation for Vcmax25 for the CIMCOG Set in 

Australia. 3) In Mexico LMA and Narea were negatively correlated with A (Table 3.11, 

CA_Mex). This behaviour and the environmental drivers responsible of this variation are 

discussed in the next section. 

3.5.3 Understanding photosynthetic performance measured at different 

geographical locations 

In order to further explore the differences between A/Vcmax25 correlation measured in 

Australia (0.84) and in Mexico (0.52) (Table 3.11), all data were re-plotted (Figure 3.8). 

Immediately, two factors become obvious which could underpin the poor correlation 

between A and Vcmax25 for genotypes measured in Mexico.  

 

Figure 3.8 Assimilation rate (A) as a function of velocity of carboxylation (Vcmax25) for wheat 
genotypes grown in different environments and measured at different stages as described 
in Table 3.1. Symbols are the mean of the traits. Circles delimit the general behaviour of 
CB_Mex and CA_Mex wheat genotypes. 
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First, genotypes measured before anthesis (CB_Mex) had a higher variation in Vcmax25 for a 

small range of A (Figure 3.8, symbol “×”). As suggested in the literature, A depends on 

stomatal sensitivity and this is the reason Ci/Ca has been used to select water-use efficient 

wheat genotypes (Condon et al., 2004). The present study supports this relationship, where 

gs was highly correlated with A in all experiments (Table 3.12). For experiments in Mexico, 

the mean of Ci/Ca was 0.6 (Table 3.7) and in general correlated positively with A (Table 

3.12). In the plot (Figure 3.8) it can also be seen that some genotypes with low A had high 

Vcmax25. This could be explained by some genotypes displaying low A caused by stomatal 

closure, while in reality their Rubisco capacity was higher, as evidenced by high Vcmax25. This 

could explain the low correlation between A and Vcmax25 for CB, CA_Mex (Table 3.12). 

Table 3.12 Summary of phenotypic correlations with photosynthetic rate (A). Taken from 
genotypic means from Tables A6, A8, A10, 3.9 and A13. 

 gs Ci/Ca  Vcmax25 J 

Aus1 0.84*** -0.04 0.97*** 0.92*** 

Aus2 0.64*** 0.21 0.90*** 0.79*** 

+NAus2 &Aus3 0.83*** 0.4* 0.82*** 0.87*** 

CA_Aus3 0.91*** 0.80*** 0.84*** 0.72*** 

CA_Mex 0.94*** 0.79*** 0.52* 0.55* 

CB, CA_Mex 0.92*** 0.79*** 0.55** 0.47** 

 

Second, genotypes measured at anthesis (CA_Mex) had higher variation in A for a small 

range of Vcmax25 (Figure 3.8). This leads to the same explanation from CB_Mex. Genotypes 

with low A closed their stomata, inferred from their low gs, but it does not mean that these 

leaves had lower Rubisco capacity. This confirms that Vcmax25 is not as sensitive to gs as a 

simple measurement of A and it is a more robust trait to assess Rubisco capacity, as has 

been suggested decades ago (Farquhar and Sharkey, 1982). Probably this issue of stomatal 

limitation is more evident during anthesis than before anthesis because temperature was 

higher after anthesis (Figure 2.1), and even if the plants were grown under potential yield, 

measurements in the afternoon and high temperatures caused stomatal closure. The utility 

of Vcmax25 as a metric for Pc is also supported by the strong correlation between Vcmax25 and 

Rubisco measured in vitro (Figure 3.5). Perhaps the question that needs further attention is 

why Vcmax25 and Rubisco in vitro have a curvilinear trend (Figure 3.5). 

In Mexico, Vcmax25 did not show significant diversity across wheat genotypes but there was 

diversity for J and A (Table 3.7). It is possible that the Mexican environment in which 

these lines were selected and then measured did not permit expression of genetic variation 

in Vcmax25 or Rubisco levels. This could be to nitrogen leaching that has been reported in 

that region, because 75% of the nitrogen fertilizer is applied before planting that can be lost 
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in the first post-planting irrigation (Riley et al., 2001). If there was not enough nitrogen in 

the soil for plant development, perhaps it was not enough nitrogen allocated to leaves, 

avoiding the maximum quantity of Rubisco protein into leaves and grain (Hawkesford 

2013). However, under these conditions, it seems that there is scope for genetic variation in 

the electron transport rate (Jg) (Table 3.7).  

A was also positively related with short flowering time and longer period of grain filling 

(Table 3.9), which could be related to sink strength. It has been shown that A changes 

relatively rapidly depending on the demand from grain filling, and A can drop when sink 

activity from vegetative growth shows before grains start to grow (King et al., 1967; Evans 

and Dunstone, 1970; Evans, 1993).  In these experiments (CA_Aus and CA_Mex) A was 

measured 7 to 10 days after anthesis.  Some genotypes may have started grain filling earlier 

than others potentially leading to differences in A due to sink demand. Therefore, while A 

was representative of the photosynthetically active leaves in a given period from anthesis to 

grain filling, it may not represent the general genetic potential for photosynthetic capacity, 

as assessed by Vcmax25. Further research is needed to understand the relationship between 

Vcmax25 and sink strength. 

There was significant genetic variation for Vcmax25 measured in the CIMCOG Set in 

Australia. The genotypes were not as vigorous as in Mexico, even if it was attempted to 

grow the plants under high yield potential conditions; during anthesis temperatures were 

high, conditions that limited the maximum plant development and could affect expression 

of maximum Rubisco carboxylation for all genotypes. In regard to potential environmental 

differences, Mexico belongs to wheat mega- environment 1 and Australia to wheat mega-

environment 4 (Fischer et al., 2014). Potentially, these genotypes may have reacted to 

differences in environmental factors such as photoperiod or light intensity (which are the 

main differences between the two geographical locations) giving more scope for expression 

of genotypic diversity in photosynthetic traits in Australia. Differences in photoperiod were 

observed during wheat selection to increase wheat yield from the middle of Mexico to the 

north of Mexico (Borlaug, 2007). Solar radiation was higher in Australia than in Mexico 

(Figure 3.1). Perhaps, such differences influenced changes in leaf size, thickness and leaf 

nitrogen content.  

Interestingly Narea, LMA and SPAD were lower for genotypes grown in Mexico (CA_Mex) 

than in Australia (CA_Aus3). Probably different trade-off between leaf structure and 

photosynthetic traits occurred.  For example, in some plants, electron transport is reduced 

under low irradiance, but it is compensated by investing of more nitrogen in pigment 
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protein complexes (Evans, 1989). Also in an experiment comparing a low and a high level 

of nitrogen nutrition in spinach, at the highest nitrogen level there was an increase of 

electron transport capacity despite maintaining the same proportion (24%) of thylakoid 

nitrogen compared to the low nitrogen treatment, and the excess of nitrogen from the high 

nitrogen treatment was allocated to the soluble protein (Terashima and Evans, 1988).  

Plants were bigger with larger leaf area evident in Mexico compared to Australia 

(unfortunately leaf size was not measured in both locations). Perhaps in Mexico, genotypes 

had a larger leaf area surface that compensated for a thinner leaf. Having a thin leaf may 

have limited the chlorophyll and nitrogen per unit leaf area basis. In contrast, plants in 

Australia increased chloroplast surface with higher LMA to compensate the reduction of 

leaf size, allowing higher Narea, but it was not enough to increase Rubisco activity.  

3.5.4 Understanding photosynthetic efficiency 

Photosynthetic efficiency, Vcmax25/Narea, was higher in Mexico than in Australia (Figure 3.9). 

As mention before, wheat genotypes grown in Mexico had a larger leaf area surface than 

those grown in Australia. Probably, environmental conditions (Figure 3.1) and management 

resulted in larger leaves and hence in less nitrogen and chlorophyll per leaf area (Table 

3.10). Potentially, leaf plasticity may have reacted to environmental conditions and PY 

management that allowed higher Vcmax25/Narea in Mexico than in Australia. 

These results showed that 20% reduction in Narea and 10% reduction in SPAD of Mex 

genotypes in relation to Aus3 genotypes did not penalise photosynthetic capacity. Perhaps, 

bigger leaves which were more transparent allowed more light go through the canopy. 

Further experiments regarding photosynthetic capacity and efficiency in the canopy level 

would be necessary in the future to avoid the limitations of measuring a single organ of the 

plant, as has been shown in soybean. In soybean(Glycine max L.),  a near-isogenic line 

Clarky11 has approximately 30% lower chlorophyll content than the wild-type Clark but 

similar CO2 assimilation rate per unit leaf area. It was suggested that canopy CO2 

assimilation rate was higher in Clarky11 than Clark because photosynthetic photon flux 

could penetrate better in the canopy (Pettigrew et al., 1989). However, the greater 

chlorophyll reduction will inevitably decrease A. Scaling of Vcmax and photosynthetic 

efficiency can be confounded by pleiotropic effects that will affect the conversion 

efficiency for biomass and yield (Slattery, 2014). 
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Figure 3.9 Diversity for photosynthetic efficiency (Vcmax25/Narea) from wheat genotypes of 
CIMCOG set measured at anthesis in Mexico (CA_Mex) and Australia (CA_Aus3). 
Symbols are the mean of the repetition, the error bar the standard error. Genotypes are 
ranked from the mean of each genotype including both environments (Aus3 and Mex). 

 

Four Triticum aestivum and one of the Triticale genotypes from the BYPB set selected to 

cover a range of 46 genotypes for Vcmax25/Narea (Figure 3.4) showed similar catalytic 

turnover rate of Rubisco carboxylation (kcat) (Figure 3.7). Perhaps variation was minimised 

because Vcmax was normalized to 25 °C. Genotypic variation was more apparent in different 

Triticeae species when measurements were done at 35 °C  than 25 °C (Prins et al., 2014).  

The parameter Vcmax25/Narea was found to be a good way to evaluate carboxylation 

efficiency as was proposed previously (Evans and Seemann, 1984). It could facilitate the 

selection of plants with higher Vcmax25 without requiring an increase in leaf nitrogen and also 

normalizes for leaf age related differences in N. 

3.5.5 Scaling up from low level traits to yield 

In this study, reversing the “reductionist” approach in order to scale up (Passioura, 2010) 

showed no correlation between photosynthetic traits and yield or HI (Table 3.9). This is 

similar to early research when A was compared with yield across modern high-yielding 

cultivars (Brinkman and Frey, 1978; Hart et al., 1978; Murthy and Singh, 1979; Gifford and 
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Evans, 1981; Evans, 1993; Sadras et al., 2012). Possible reasons why scaling up from flag 

leaf photosynthesis to yield seem to fail are: 

1) Too few measurements. A correlated with yield when A was measured often 

(Reynolds et al., 1994; Fischer et al., 1998b; Gutierrez-Rodriguez et al., 2000; 

Reynolds et al., 2000). The A:Ci curves used to calculate Vcmax25 and J take a long 

time to measure with gas exchange. Consequently, in this research only one or two 

measurements were done in the plant cycle. More frequent measurements in more 

leaves during the plant cycle are probably necessary to determine the accumulated 

assimilate and this should potentially be compared with plant biomass as a first 

approximation of assimilates use in the plant. 

2) Time of measurements. Consideration should be given to the developmental stage 

when the measurement of Vcmax25 and J are most likely to influence yield. For wheat 

grown under optimal conditions, photosynthesis may be more important from 10-

15 days before flowering because this is the period when the steam is growing, the 

grain number is set and the most of the florets are growing (Fischer, 1985). Further 

analysis should be done for Vcmax25 and J over a diurnal cycle, and over the course of 

longer periods during growth to see weather spot measurements can be related over 

a day, a week or weeks of measurements. 

3) Canopy photosynthesis and remobilisation from other sinks (such as stems) were 

ignored. In this research, spot measurements were made in the upper most flag leaf. 

Thus, no account was made for photosynthesis from the spike, from lower leaves, 

for variation in leaf area, on leaf area duration or in canopy stature. It has been 

shown that wheat spikes make an important contribution to assimilate supply 

during grain filling (Sanchez-Bragado et al., 2014) and that remobilisation of 

carbohydrates stored in the stem pre-anthesis also plays a key role in grain filling 

(Asseng and van Herwaarden, 2003). 

4) Photosynthesis from source tissue could be used differently in each genotype. 

Photosynthesis is the sole source of energy to plants for growing roots, stems, 

leaves, spikes and grains (King et al., 1967). However, each wheat genotype may 

have different sink demands and in this research it was unknown exactly how 

assimilates were used by the plant: i.e. in respiration, dissipation via heat, growth 

and development or temporary storage.  

5) Yield is the product of LI, RUE and HI (Equation 1.1). Photosynthesis is related to 

RUE but LI and HI can also be major drivers of yield and were not uniform across 

all genotypes analysed here. HI, the ratio between grain and biomass, has been a 
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major breeding target for yield and even if there is increased availability of source 

carbon (i.e. biomass), but the grain sink is low, yield will not be correlated with 

photosynthetic capacity due to lack of optimisation of partitioning. Source-sink 

relationships need to be take into account since crops may be either source or sink 

limited across different developmental stages and during grain filling (Rawson et al., 

1976; Reynolds et al., 2005). 

 

3.6 CONCLUSIONS 

Vcmax25, J and Vcmax25/Narea are shown here to be robust traits with which to assess genotypic 

variation in photosynthetic performance in wheat; they are not highly influenced by gs or 

by sink strength during grain filling. Vcmax25/Narea can be used to select for photosynthetic 

efficiency, since Vcmax25/Narea normalizes Rubisco activity for leaf nitrogen content that can 

vary with leaf age and nitrogen availability and split the clustering observed when only 

Vcmax25 is used. 

While statistically significant differences across genotypes were not always found for 

photosynthetic traits, sufficient diversity in photosynthetic capacity and efficiency was 

found. In general, nitrogen applications and plant stage did not change the ranking of 

genotypes. However, environmental conditions can modify plant plasticity and 

photosynthetic traits. 

Understanding and exploiting photosynthetic variation in plants is still challenging given 

our inability to currently monitor daily photosynthetic performance in plants during the 

whole plant cycle, in multiple leaves or in a complete canopy in field conditions.  Rapid 

methods to assess photosynthetic parameters are still required. 
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4.1 ABSTRACT 

This study investigates whether hyperspectral reflectance analysed with partial least squares 

regression (PLSR) or leaf reflectance at a smaller number of wavelengths could be used to 

predict Vcmax25. The Aus1 experiment that comprises 16 wheat genotypes, three repetitions 

and two fertilizer levels was used to measure leaf reflectance and to test if discrete 

wavelengths or analysis of the full spectrum is required to predict Vcmax25. Results showed 

that Vcmax25 could not be predicted from just a few wavelengths. However, it can be 

predicted from hyperspectral reflectance (400 to 2500 nm) analysed with the PLSR. This 

chapter describes a protocol for measuring leaf hyperspectral reflectance in wheat and 

describes the use of PLSR to predict Vcmax25 from hyperspectral reflectance.  

4.2 INTRODUCTION 

Photosynthetic parameters such as maximum Rubisco activity at 25 ºC (Vcmax25) and 

electron transport rate (J) describe the underlying biochemical potential for photosynthesis 

of a leaf. However, Vcmax25 and J are derived from CO2 response curves which take at least 

20 minutes to measure with the LI-COR. This is not suitable if one wishes to screen large 

populations. A tool that allows prediction of photosynthetic traits and other physiological 

parameters more rapidly and without destroying the leaf could enable selection of 

genotypes with improved photosynthetic performance. This chapter explores hyperspectral 

reflectance as a potential approach to facilitate physiological measurements in wheat 

populations. 

There is a large body of historical knowledge that supports the idea that hyperspectral 

reflectance could be used to predict photosynthetic parameters. One of the first analyses of 

reflectance in leaves has been for determining chlorophyll and the subsequent development 

of a chlorophyll meter based on leaf reflectance (SPAD).  This resulted in the development 

of the SPAD meter which uses transmittance and absorbance of red light at 560 nm and 

infrared light at 940 nm to predict leaf chlorophyll content (Benedict and Swidler, 1961; 

Inada, 1963, 1985; Mullan and Mullan, 2012). Furthermore, numerous indexes based on 

wavelengths in the visible and infrared part of the electromagnetic spectrum have been 

used in remote sensing to predict amounts of vegetation, biochemical leaf components and 

physiological traits. For example, vegetation index (VI), transformed vegetation index 

(TVI) and normalized difference vegetative index (NDVI) are used to monitor vegetation 

using red, infrared and near-infrared regions of the electromagnetic spectrum to measure 

relative greennes, foliage development, sencescence, biomass and chlorophyll content 

(Tucker, 1979). Water index (WI) is used to infer water content from reflectance at 900 and 
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970 nm (Peñuelas et al., 1997). Photochemical reflectance index (PRI) is used to determine 

photosynthetic radiation-use efficiency using reflectance at 531 and 570 nm (Gamon et al., 

1992; Peñuelas et al., 2011). 

Since Vcmax and J have been widely adopted in ecophysiology and plant physiology to 

represent photosynthetic performance in trees and crops, some teams have predicted these 

parameters using either a small or broader region of the electromagnetic spectrum at leaf 

and canopy level. For instance, the index λRE taken from the red edge position of the 

spectra measured in tree leaves (Quercus rubra and Betula papyrifera) has been correlated with 

Vcmax and J (Dillen et al., 2012). Sixteen wavelengths have been proposed to predict Vcmax25 

(Serbin et al., 2012) but also using the full reflectance spectrum of 400 to 2500 nm and 

partial least square regression (PLSR) Vcmax25 and J were accurately predicted in 159 species 

of tropical trees at canopy level, and in aspen, cotton and soybean at leaf level (Doughty et 

al., 2011; Serbin et al., 2012; Ainsworth et al., 2014). Full length reflectance spectra and 

PLSR has also been used in wheat to predict nitrogen content and leaf mass dry area 

(LMA) (Ecarnot et al., 2013). Consequently, measuring discrete wavelengths or combining 

hyperspectral reflectance spectra with PLSR to predict multiple traits seemed to be 

promising approach to accelerate the assessment of photosynthetic properties of wheat in 

the field. 

One hyperspectral reflectance scan results in 2150 reflectance measurements, one for each 

wavelength from 350 to 2500 nm, that need to be correlated with one observation such as 

Vcmax. This means that there are 24650 variables and one observation and the observation 

can correlate with multiple variables. One method that can deal with these types of data 

and is highly used in chemometrics is PLSR. It has been used in multiple disciplines to 

solve the problem of dimensionality and multicollinearity such an approach has been used 

to predict the density of drawn poly(ethylene terephthalate) (PET) yarns from reflectance 

measured with Raman spectroscopy (Swierenga et al., 1999), quality of olive oil and octanes 

from petrol (Kalivas, 1997; Mevik and Wehrens, 2007), soluble sugars and cell wall 

composition in Sorghum bicolor (Martin et al., 2013). Consequently, this approach is explored 

in this chapter for its ability to predict photosynthetic traits in wheat leaves. 

One objective of this chapter is to develop a method that accurately and reproducibly 

measures reflectance from wheat leaves. Since combining leaf reflectance with PLSR has 

already been used to predict photosynthetic traits in trees, cotton and soybean, the next 

objective was to evaluate the potential of using particular wavelengths versus hyperspectral 

reflectance with PLSR to predict Vcmax25 in wheat. 
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4.3 MATERIALS AND METHODS 

4.3.1 Plant Material and experiment conditions 

In order to have a wide range of reflectance spectra, a gradient of leaf greenness was 

obtained by imposing two levels of fertilization on the early vigour set of wheat genotypes 

(EVA, +N, -N) described in Chapter 3, Experiment Aus1.  

4.3.2 Traits measured 

Gas exchange was measured with a LICOR LI-6400XT infrared gas analyser (LI-COR Inc., 

Lincoln, NE, USA) with the 6 cm2 rectangular head. The flow rate in the CO2 chamber of 

the Li-Cor was set at 500 μmol s-1, irradiance at 1800 μmol quanta m-2 s-1, and block 

temperature at 25 °C. Gas exchange was used to measure the photosynthetic rate at 400 

μmol inlet CO2 mol-1 (A). The CO2 response curve was set to 400, then 50, 100, 250, 400, 

800, 400 μmol inlet CO2 mol-1. The initial slope of the CO2 response curve was used to 

calculate Vcmax25 and J with the kinetic parameters obtained in Chapter 2 and the leaf 

biochemical model of photosynthesis (Farquhar et al., 1980). Mesophyll conductance (gm) 

was calculated with the formula gm= (0.55/25)*A260 (Equation 2.4, Chapter 2). Wheat flag 

leaves were measured with a SPAD-502 chlorophyll meter (Minolta Camera Co., Ltd, 

Japan) to provide a rapid estimate of chlorophyll content (Mullan and Mullan, 2012). 

4.3.3 Hyperspectral reflectance 

Reflectance spectra were measured with a FieldSpec® 3  (Analytical Spectral Devices, 

Boulder, CO, USA) spectroradiometer which measures visible and infrared portions of the 

spectrum (350-2500 nm) coupled via a fibre optic cable to the RTS-3ZC Integrating Sphere 

or to a leaf-clip device, all pieces from Analytical Spectral Devices, Inc., ASD. 

The integrating sphere is coated with a highly reflective Zenith diffuse polymer such that 

light reflected from a sample is evenly diffused and can be measured at one point 

(www.asdi.com). To calibrate this experiment the light source was placed in the port ‘A’, 

the white reference was placed in ports ‘B’ and ‘C’, whilst the port ‘D’ remained closed. 

Then, the leaf was placed in port ‘C’ with the light trap behind to measure leaf reflectance 

(Figure 4.1). 

http://www.asdi.com/
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Figure 4.1 Diagram of the integrating sphere.  

The leaf-clip looks like a gun with a trigger lock/release grip. It has a two-sided rotating 

plate that is behind the sample, one side is white and the other is black. A light source 

within the leaf-clip shines onto the sample and reflected light is collected by a fibre optic 

cable connected to the spectroradiometer (www.asdi.com). In this experiment the white 

side of the plate was always used to calibrate the instrument and when measuring 

transmittance and reflectance. The black side of the plate was used when measuring 

reflectance (Figure 4.2). 

 After gas exchange measurements in experiment Aus1 (see Chapter 3), reflectance was 

measured with the leaf-clip twice. First, reflectance was measured from the same part of 

the leaf where gas exchange was measured, even if the window of the leaf-clip was not 

covered completely. Second, depending on the leaf length, a 3-5 cm long sector of the tip 

of the leaf was cut, and then the leaf pieces were held together with a homemade frame and 

clips to present leaf material covering all the window of the leaf-clip. If the leaf was too 

narrow a third section was used (see Results of this chapter).  

 

Figure 4.2 Reflectance measurement a) diagram of a leaf-clip showing the light reflected by 
the leaf into the fibreoptic cable, b) the ASD is below the computer which receives the 
reflected light through the fibre optic cable and then, transmits the signal to the laptop. 

 

http://www.asdi.com/
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4.3.4 Main instructions used in the Partial Least Squares Regression 

To build the calibration model, partial least squares regression fitted with the orthogonal 

scores algorithm was used in the script as follows: 

pVc25 = plsr(Vcmax25 ~ Reflectance, scale=F, ncomp=30, validation="LOO",  

data=train data) 

where pVc25 is the model that will predict the trait, plsr is the command to perform partial 

least squares regression, fitted with the orthogonal scores algorithm.Vcmax25 is the trait 

observed (Y). Reflectance is the reflectance measured corresponding at each Y (X). Scale 

is used to standardise the variables. In our case this was not used, so FALSE was used in 

the script. ncomp is the number of components that will be run in the regression. The 

number 30 was used in the first instance because sometimes more than 20 components 

give the best predictions. validation="LOO" is a cross-validation called ‘Leave-One-Out’. 

Details of the formula and options have been described by the ‘pls’ authors (Mevik and 

Wehrens, 2007). 

Extraction of predicted data was done using this script: 

predict(pVc25, newdata = test data, ncomp=5, type="response") 

where predict is the command from plsr to predict the trait based in the information 

provided in the parenthesis, pVc25 is the model generated before to predict Vcmax25, 

newdata directs the program to use the reflectance of the test data, ncomp is the number 

of component selected before with RMSEP in the cross validation, type can be either 

‘response’, to extract the predicted trait, or ‘scores’ to extract the scores. 

 

4.4 RESULTS 

The ASD FieldSpec 3 spectroradiometer was tested as a means to quickly determine 

photosynthetic parameters, by comparing leaf reflectance data with gas exchange derived in 

wheat leaves. Given the long narrow leaves of wheat, we first evaluated the accessory 

devices available for the FieldSpec 3 and how these devices could be adapted to the narrow 

leaves of wheat. This information was used to develop a protocol suitable for wheat leaves 

that was reliable. Secondly, a range of PLSR methods were explored to obtain the best 

predictive algorithms to predict photosynthetic parameters. 
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4.4.1 Measuring hyperspectral reflectance in wheat leaves 

The ASD FieldSpec 3 spectroradiometer has a fibre optic cable which collects the light 

reflected from the sample and focuses it on a detector. The optic fibre can be coupled to 

different devices that can be used to measure at leaf or canopy level. In this case we were 

interested in leaf level measurements and compared two accessory devices, an integrating 

sphere and a leaf-clip (Figure 4.1, 4.2 and 4.3).  

 
Figure 4.3 a) Integrating sphere, b) Leaf-clip. In both cases, one cable is the fibre optic that 
is conected to the spectroradiometer and the other is the power for the light source (see 
section 4.3). 

4.4.1.1 Integrating sphere  

The advantage of the sphere is that its small aperture (~ 5 mm diameter) allows 

measurements on just a small section of the wheat leaf blade between the leaf edge and 

mid-vein, avoiding the potentially problematic increased light scatter caused by the mid-

vein (Figure 4.4). Two disadvantages were encountered with the sphere. Firstly,  reflectance 

measurements in the short wave infrared 2 (SWIR2) band from 1900 to 2500 were poorly 

resolved (Figure 4.5); possible due to the coating used on the sphere’s internal surface and 

a potential problem discussed later. Also, the set up and calibration of the sphere are 

complex and time consuming, making it less attractive for rapid field use. 

 
Figure 4.4 Measuring reflectance with the ASD fieldspec 3 coupled to the integrating 
sphere in a flag leaf of wheat. 
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Figure 4.5 Reflectance measured in Figure 4.4. The short wave infrared 2 from 1900 to 2500 
nm is the noisiest region. 

 

4.4.1.2 Leaf-clip 

When using the leaf-clip we found that there was much less noise in the reflectance 

measurements over the whole range of wavelengths (Figure 4.6.a). It was quicker and it was 

much easier to calibrate than the integrating sphere and easier to manage in the field than 

the sphere. The disadvantages were that the aperture is bigger than the width of most of 

the wheat leaves, which affects the reproducibility between leaves. Also, if more than 40 

seconds was spent taking the measurement, heat from the light source could damage the 

leaf or can cause sufficient water to evaporate that it condense on the window, leading to 

greater variance in the reflectance measurements. Even though there was no apparent noise 

in the reflectance measurements, there was a discontinuity at 1000 nm and at 1800 nm 

because of the switch between the detectors used to measure the three wavebands. Given 

the ease of use of the leaf-clip in the field, it was decided to develop this measuring system 

further for wheat leaf measurements. 

 

4.4.1.2.1 Aperture of the leaf-clip 

Reflectance spectra were compared using one leaf partially covering the aperture of the 

leaf-clip and two pieces of leaf arranged so that they completely covered the window of the 

leaf-clip. Standard error was substantially higher for the former (Figure 4.6.b.), so a 

protocol was established that used two leaves for measurements.  
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Figure 4.6 a) Average and b) standard error (S.E) of reflectance obtained using the leaf-clip 
when a single leaf did not completely cover the aperture and when two leaves were 
arranged to completely cover the aperture. S.E. from three measurements on the same leaf. 

 

4.4.1.2.2 Background panel of the leaf-clip 

Using the leaf-clip, there is an option to measure reflectance, with a black background, or 

transmittance, with a white background where light passes through the leaf and is reflected 

back to the detector by passing through the leaf again. In order to compare these spectra, 

two genotypes were chosen: genotype V8 (W020308) at low nitrogen with low A and 

SPAD, and genotype V3 (K1056) at high nitrogen, with high A and SPAD (Table 4.1). 

Two pieces of leaf were used to measure reflectance and transmittance because by covering 

the aperture, more consistent spectra were obtained. To achieve this, a section 4 – 5 cm 

from the tip of the leaf was cut and placed parallel with the rest of the leaf using a 

homemade frame and two clips (Figure 4.7). 

Table 4.1 Rate of CO2 assimilation (A) and SPAD from wheat genotypes V8 and V3. 

Genotype Experiment Repetition SPAD units A (μmol CO2 m
-2 s-1) 

V8 EVA(-N)_Aus1 1 
2 
3 

21.0 
22.7 
16.8 

9.80 
7.54 
5.22 

V3 EVA(+N)_Aus1 1 
2 
3 

47.3 
49.6 
46.8 

28.18 
24.60 
25.35 
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Figure 4.7 Two pieces of a leaf from wheat genotypes V8 (EVA –N) and V3 (EVA +N). 

Transmittance produced higher values than reflectance (Figure 4.8). In the case of 

reflectance, light collected by the fibre-optic cable, detected by the radiometer and recorded 

in the computer is only that reflected from the leaf, since transmitted light is absorbed by 

the black background (Figure 4.2). By contrast, a white background will reflect transmitted 

light that will pass back through the leaf again and emerge to combine with the reflected 

light.  Both types of measurements, reflectance and transmittance, were tested to determine 

the potential to predict photosynthetic parameters (see Section 4.4.2.2).  

 
Figure 4.8 Reflectance (black background) in solid lines and transmittance (white 
blackground) in dots. Wheat genotype V3 (green) and wheat genotype V8 (purple).  

 

4.4.1.2.3 Refining the reflectance measurements 

Even though two pieces of leaf had been shown to work better than one in the leaf-clip, it 

takes a considerable time to put two leaves together to measure reflectance. To overcome 

this problem, a mask was built so that the field of view in the leaf-clip could be covered 

with a single piece of leaf. The aperture through the black mask was designed based on the 

field of view provided in the manual, using 1.15 cm drill entering at an angle. Thin foam 

gasket was placed on the mask to avoid damaging the leaf when closing the leaf-clip (Figure 

4.9). By only needing to use a single leaf, the mask enabled measurements to be made 

faster. 
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Figure 4.9 Measuring reflectance a) using two pieces of leaf, b) using one leaf, and c) the 
mask used to reduce the aperture size. 

 

Reflectance spectra were compared using two pieces of leaf arranged to cover the window 

of the leaf-clip or using a single leaf measured with the mask adapted to the leaf-clip. It was 

found that using the mask reduced the standard error compared to when two pieces of leaf 

were used without the mask (Figure 4.10).  

 

Figure 4.10 Standard error (S.E.) measuring one leaf of wheat with the leaf-clip and the 
mask and standard error measuring with two leaves without the mask. S.E. from three 
measurements in the same leaf. 

4.4.1.2.4 Computer settings 

In order to avoid damage to leaves caused by heat from the source light or error in the 

reflectance measurements caused by condensation in the leaf-clip, measurements time was 

set to 10 s. Over a 10 s period, one scan of 100 reflectance spectra averaged is captured. In 

the glasshouse experiment Aus1, the calibration and three scans (of 100 reflectance spectra 

averaged) measured in the same leaf took in total 55 s. 

In the computer, in the section Control < Adjust Configuration < spectrum, dark current 

and white reference were set to 100 in Aus1. Later in the field experiments it was realised 

that the time could be reduced, hence dark current and white reference were subsequently 

set to 3s. The calibration and three scans (of 30 reflectance spectra averaged) measured in 
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the same leaf took 15 to 20 s (see Chapter 5 and 6). Reflectance was saved using the space 

bar of the lap top after three scans were completed.  

4.4.2 Predicting photosynthetic parameters for wheat from hyperspectral 

reflectance 

Up to this time, the best evidence for using reflectance spectrometry to predict 

photosynthetic parameters (Vcmax and J) with the ASD Field Spec leaf-clip had come from 

reflectance measurements in aspen and cotton using the partial least square regression 

(PLSR) calibration. Results from those experiments identified a certain number of 

wavelengths which were used to build equations to predict Vcmax and J (Serbin et al., 2012). 

In this section both the analysis and a calibration set derived from wheat germplasm were 

tested to predict Vcmax in wheat. 

4.4.2.1 Using reflectance wavelength to predict photosynthetic parameters 

Serbin et al., 2012 identified 13 important wavelengths to predict Vcmax (Equation 4.1).  

        (4.1) 

We tried to apply equation 4.1 to predict Vcmax using reflectance spectra data measured on 

wheat from the Aus1 experiment using two pieces of leaf together. The predictions of Vcmax 

using equation 4.1 correlated negatively with Vcmax derived from CO2 response curves, 

(Figure 4.11.b). From these results, it was concluded that the wavelengths identified for 

aspen were not suitable for wheat. Consequently, we returned to the initial procedure that 

the authors used to predict Vcmax in aspen, which involves partial least squares regression 

using the full reflectance spectrum (400 to 2400 nm).  

 

Figure 4.11  a) Predictions of Vcmax for aspen leaves from Serbin et al., 2012, and b) 
predictions of Vcmax for wheat using the wavelengths and Equation 4.2 and reflectance data 
from EVA_Aus1 experiment. 
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4.4.2.2 Using hyperspectral reflectance to predict photosynthetic parameters 

In their work Serbin et al., 2012 used PLSR to predict Vcmax, J, leaf mass per unit area and 

nitrogen in aspen and cotton leaves. Since equation 4.1 clearly did not work for wheat, it 

was decided to use PLSR to analyse reflectance spectra obtained from experiment Aus1. 

For the first attempt to understand PLSR, the four types of spectra explained before were 

used: One leaf partially covering the aperture of the leaf-clip or two pieces of leaf covering 

the aperture, in both cases two spectra were obtained using either the white or the black 

background panel (section 4.4.1.2.2).  

The analysis was performed following the tutorial of the ‘pls’ package ‘Principal 

Component and Partial Least Squares Regression in R’ (Mevik and Wehrens, 2007) under 

R software version 2.15.0. Two repetitions from the Aus1 experiment were used as a 

training set and one repetition was used as the test set.  

Preliminary results showed good correlations predicting SPAD, Vcmax and J (Figure 4.12). 

Vcmax and J had higher R2 when the two pieces of leaves were measured at the same time 

and their R2 was similar when transmittance or reflectance was measured. This confirmed 

that measuring two leaves gave better results than measuring one leaf without the mask, 

and that the mask will be needed for future measurements. The correlations were similar 

regardless of whether a black or white background was used to obtain the spectra. 

 

Figure 4.12 Correlations between observed and predicted SPAD, Vcmax and J from 
experiment Aus1. Two repetitions were used to train the PLSR and one repetition was 
predicted for comparison against the observed value. One leaf (1) and two pieces of leaf (2) 
were used to measure transmittance with the white background panel (w) and reflectance 
with the black background panel (b) of the leaf-clip. 

 

Once PLSR showed positive results, the preliminary results predicting SPAD, Vcmax and J 

with the PLSR were used to optimize future measurements and to improve the method. 

From a review of the literature the black background is more commonly used (Serbin et al., 

2012; Ainsworth et al., 2014), so it was decided to use the black background to measure leaf 
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reflectance. The next step was to clean the reflectance data to eliminate outliers that can 

result in inaccurate predictions. 

The spectrum of the standard error of reflectance across the full spectral range plotted 

(Figure 4.6.b) from one leaf measured also previously clearly shows the jump that occurs at 

1000 nm. Usually, the discontinuity at 1800 nm is less noticeable. In order to correct these 

discontinuities, a jump correction to re-align the spectrum was done at 1000 nm and 1800 

nm with the software Spectral Analysis and Management System, version 3.2 from the 

University of California, Davis, USA.  

Spectra with very low or high reflectance values could be potential outliers and give 

erroneous predictions, so the outliers were removed if reflectance was less than 0.35 and 

more than 0.6 at 800 nm. As well, to avoid potential noise from the edges of the spectra, 

only the band from 400 nm to 2400 nm was used (Figure 4.13). After cleaning the 

reflectance data with the jump correction and removing outliers, the reflectance data was 

ready to use in the PLSR. 

 
Figure 4.13 Detection of outliers in reflectance measurements. Arrows show the range 0.35 
and 0.6 reflectance crossing at 800 nm. The spectrum out of this range was rejected. 

4.4.2.3 Analysis of Aus1 experiments 

Once the most evident outliers were eliminated, the reflectance spectra obtained in 

experiment Aus1 showed substantial variation in shape (Figure 4.14). For example, in the 

visible range and from 2000 nm to 2500 nm, leaves from the –N treatment had higher 

reflectance than those from the +N treatment. Signal of noise in this region measured with 

the integrating sphere was unacceptably high (Figure 4.5) and is one of the reasons why the 

integrating sphere was deemed not be useful for predicting physiological traits with PLSR 

when using the full potential wavelength range of reflectance spectra. 
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Figure 4.14 Reflectance measurements from Aus1 experiment EVA –N in yellow and EVA 
+N in purple. 

 

To build a model with PLSR one needs a set of data to calibrate the fitting procedure, 

which is called the ‘training data’. ‘Training data’ comprises the observed values for the 

trait of interest (eg. Vcmax25), each with their respective reflectance spectrum. The trait value 

and reflectance spectra are used to calibrate the model for best fit. A second set of data, the 

test data, is used to validate the fit. The test data has two components: First, the model 

obtained from the training data is used to predict the trait from each reflectance spectrum. 

Then the predicted trait value is compared with the observed value to validate the model. 

In this case the training data used repetitions 1 and 2 from Aus1 experiment. The test data 

came from repetition 3.   

In this case the script was set to calculate 30 components because it gives more 

opportunity to find the model that best predicts the trait. In general, the number of 

components refers to the number of models generated with the PLSR (See section 4.3.4). 

In order to choose the best number of components to be used in the predictions, the ‘plsr’ 

package creates a plot showing the Root Mean Square Error of Prediction (RMSEP) using 

two types of validation: cross-validation (CV) that is the ordinary CV estimate and adjCV 

which is a bias-corrected CV estimate. Both validations gave the same result (Mevik and 

Cederkvist, 2004; Mevik and Wehrens, 2007). The lowest error is associated with the best 

prediction and in this case 5 components had the lowest RMSEP (Figure 4.15) explaining 

81.33% of the variance.  
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Figure 4.15 Root mean square error of prediction (RMSEP) of Vcmax25 for 30 components or 
30 models. CV is the cross-validation and adjCV is a bias-corrected CV estimate. 

 

The fifth model (5 components) generates one loading for each wavelength (in this case 

2000 loadings), which are used to generate scores for the new reflectance measurements. 

These scores are then used to generate new scores for the predicted trait (pVcmax25). The 

latter scores and loadings are used to generate the predicted trait. The ‘pls’ package uses the 

loadings and scores to calculate the regression coefficients (Figure 4.16).  By multiplying 

each regression coefficient by its reflectance value and summing these together with an 

intercept, the predicted trait value is obtained.   

 

Figure 4.16 a) Loading value and b) regression coefficients from the PLSR model for Vcmax25 
using 5 components.  

 

The PLSR generated 30 models, however the fifth model (5 components) had the lowest 

RMSEP (Figure 4.15), hence the model from 5 components was the best at predicting 

Vcmax25. The R2 for the correlation between Vcmax25 predicted and Vcmax25 observed (calculated 

from the CO2 response curves) using five components was 0.69 (Figure 4.17). 
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Figure 4.17 Validation of Vcmax25 predictions using five components for Aus1 experiment, 
repetition 3, n=31. 

 

Can the prediction from figure 4.17 be improved?. When the test data were used to 

calculate RMSEP and not the CV, the number of components changed. In this case it was 

reduced to three components (Figure 4.18). This means that actually the third model 

predicted Vcmax25 better for this set of data. This was confirmed with a higher R2 for the 

correlation between Vcmax25 observed and Vcmax25 predicted using three components (R2 

=0.77), than the model using five components (R2 =0.69) (Figure 4.19).  

 

Figure 4.18 Root mean square error of prediction (RMSEP) of Vcmax25 for 30 components. 
CV is the cross-validation and Test/Val are the test data.  

 

These results suggest that the cross-validation assessment for predicting the test data was 

inaccurate because, another model predicted the test data better. It is probable that in this 

test data the model with 5 components did not generate the best predictions, however, the 

result was still reasonable. 
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Figure 4.19 Validation of Vcmax25 predictions using 3 components for Aus1 experiment, 
repetition three, n=31. 

In the next chapter more number of data will be used to select the number of components 

of the models for Vcmax25, J, LMA, Narea, SPAD and chlorophyll. 

4.5 DISCUSSION 

4.5.1 Changes in reflectance 

Even to the naked eye it was clear that nitrogen fertilizer treatment changed the leaf hue 

from green in +N plants to light green in –N plants (Figure 4.7). In addition to changes in 

the visible region and near infrared (IR) edge (400 nm to 740 nm), reflectance changed 

considerably in the short wave infrared region (SWIR) from 1400 to 2500 nm. These 

regions also changed considerably when reflectance was measured in dry and senescent 

leaves when nitrogen levels in the leaf were low (Ecarnot et al., 2013). These changes of leaf 

hue agree with previous studies with cereals to determine important wavelengths to predict 

leaf chlorophyll. Reflectance at wavelengths from 500 to 650 nm decreased with increasing 

chlorophyll content per unit area (Inada, 1963, 1985). Nowadays, SPAD is in common use 

for this purpose and uses 940 nm and 650 nm wavelengths to predict chlorophyll content 

(Konica Minolta, 2009-2013), and chlorophylls are also estimated with reflectance indexes 

using wavelengths at 550, 675, 700 and 750 nm at CIMMYT (Pietragalla et al., 2012). The 

Photochemical Reflectance Index (PRI) uses wavelengths at 531 and 570 nm and has been 

used to track stress in plants because it is related to the dissipation of excess absorbed 

energy by xanthophylls which is not used in photosynthesis and by consequence is 

negatively correlated with light use efficiency (Peñuelas et al., 2011).  

In this study using hyperspectral reflectance, the regression coefficients using 5 

components for Vcmax25 revealed outstanding peaks and regions at 400, 530, 650-700, 1240 

and 1580 nm (Figure 4.13). Some of these wavelengths are located in the visible region but 

there is also an important region in the SWIR as has been detected in aspen, cotton and 
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soybean (Serbin et al., 2012; Ainsworth et al., 2014). It is possible that these discrete 

wavelengths may have predictive power in wheat and this will be examined in the following 

chapter. 

4.5.2 Challenges selecting the model for predictions 

PLSR can generate multiple models; for a given training set and one challenge remains in 

how to choose the best model. Selecting the model from PLSR was done using the lowest, 

Root Mean Square Error of the prediction (RMSEP) from leave one out-cross validation 

(LOO-CV). LOO-CV generates artificial data from the training data to try to predict the 

behaviour of the test data, and then RMSEP is used to choose the model that best 

predicted the best the new artificial data. In this project, these artificial data indicated that 

the model with 5 components was the best to predict Vcmax25. However, when the real test 

data were used, it was shown that 3 components fitted the test data better (Figure 4.18). 

There are two parts of the predictions that could be improved: the prediction of the 

artificial data from the LOO-CV and the method to choose the model or number of 

components to use (in this case RMSEP). Until this moment LOO-CV is the best option 

to use, since it uses a continuous iteration to create artificial test data. In fact, both LOO-

CV and RMSEP are highly used in chemometrics, giving very accurate predictions (Kalivas, 

1997; Swierenga et al., 1999; Mevik and Wehrens, 2007; Martin et al., 2013). Probably the 

quality of this prediction is due to measuring optically homogenous solutions such as oil, 

petrol or sugars which is much easier than measuring a leaf. The light reflected by a leaf can 

be scattered, absorbed and reflected from different depths within a leaf, depending on the 

leaf thickness (Markwell et al., 1995; Jones and Vaughan, 2010), causing noise in the spectra. 

With leaves, a further challenge results from the leaf surface, which contains water, waxes, 

veins and trichomes.  

In the literature, alternatives to RMSEP have been reported, for choosing the best model 

to use in PLSR predictions.  The predicted residual sum of squares (PRESS) is an 

alternative algorithm that has been used to select a model or number of components 

generated from the PLSR LOO-CV from reflectance measured in plants (Feret et al., 2011; 

Serbin et al., 2012; Ainsworth et al., 2014; Serbin et al., 2014). PRESS uses the training data 

to predict new values; it takes each predictor aside sequentially and estimates the model 

each time with the error generated from the data point removed. PRESS is automatic, 

unlike RMSEP which requires that the user look for the lowest value. PRESS does this 

itself. Its orthogonal design makes it computationally affordable and efficient (Chen et al., 



Chapter 4. Can reflectance spectra be used to predict photosynthetic characters in wheat? 

108 
 

2004). Thus, future models can be selected with both the RMSEP and PRESS minimized 

and they will be used in the next chapter to calibrate the traits. 

4.6 CONCLUSIONS 

Reflectance spectra can be used to predict photosynthetic traits in wheat. The protocol 

developed in this chapter proposes to use reflectance measurements from 400 to 2400 nm, 

since changes in reflectance occur in both at the visible and infrared regions of the 

electromagnetic spectrum and better results were obtained than using a smaller number of 

discrete wavelengths. 

A measurement can be made in 3 s with a leaf-clip attached to the spectroradiometer. For 

narrow leaves it is recommended to use a mask that creates a small aperture thereby 

reducing the standard error across measurements. A foam gasket stuck to the mask avoided 

damaging the leaves when placed in the leaf clip as well as preventing stray light from 

interfering. A pre-treatment of the spectra also eliminated outliers due to low signal 

intensity. During the analysis of the reflectance spectra, it is recommended that both 

RMSEP and PRESS be used to select the number of components in the PLSR LOO-CV. 
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5.1 ABSTRACT 

This study investigates whether having a larger number of observations helps to determine 

the best models to predict Vcmax, Vcmax25, J, Narea, SPAD, LMA and Vcmax25/Narea from 

hyperspectral reflectance and partial least square regression (PLSR). Aus1, Aus2, Aus3 and 

Mex experiments were used to calibrate the model for each trait in the PLSR, and Root 

Mean Square Error of Prediction (RMSEP) and the Predicted Residual Sum of Squares 

(PRESS) were used to select the model for each trait. SPAD values were calibrated against 

direct measurements of chlorophyll content. Reflectance spectra were used to predict both 

SPAD and chlorophyll content. Using all experiments to calibrate the PLSR with RMSEP 

and PRESS improved the choice of a model to accurately predict each trait. In the 

validation, when observed data were compared against predictions from reflectance 

spectra, correlation coefficients (R2 values) of 0.62 for Vcmax25, 0.71 (J), 0.82 (SPAD), 0.77 

(Chlorophyll content), 0.89 (LMA) and 0.93 (Narea), were obtained. Potential regions of the 

spectra were identified to help mechanistically understand how the model predicts each 

trait. 

5.2 INTRODUCTION 

Screening large populations in the field for phenotypic variation is challenging when 

measuring photosynthetic parameters and traits requiring destructive harvesting. One 

conclusion from Chapter 3 is that an accurate detection of genetic variation for 

photosynthetic parameters requires multiple measurements between leaves of the same 

plant, between plants and during the plant life cycle. In order to detect and understand 

genetic variation in crops, it is important to develop reliable and fast phenotyping tools that 

act as a bridge between genomics, plant function and agricultural traits (Furbank and 

Tester, 2011).  

Leaf chemical properties such as nitrogen, chlorophyll a and b, carotenoids and leaf mass 

per unit area (LMA) from trees and crops have successfully predicted from hyperspectral 

reflectance and the partial least square regression (PLSR) (Asner and Martin, 2008; 

Townsend et al., 2008; Asner et al., 2009; Asner et al., 2011a; Asner et al., 2011b; Doughty et 

al., 2011; Ecarnot et al., 2013). The same method has been used to predict photosynthetic 

parameters such as Vcmax and J, in tropical trees, aspen, cotton and soybean (Doughty et al., 

2011; Serbin et al., 2012; Ainsworth et al., 2014). 

PLSR is a more robust analysis than the classical multiple regression and principal 

component regression model (Geladi and Kowalski, 1986). PLSR is a method that 
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correlates a variable with multiple measured values, in this case, reflectance values at many 

wavelengths. To deal with this dimensionality problem it uses a latent decomposition 

(components) of the response matrix and the predictor matrix. In this process, matrices 

including linear combinations (scores), loadings and random errors are created. Scores and 

loadings used to create the regression coefficients that basically represent the model that is 

used to predict the traits (Mevik and Wehrens, 2007). PLSR consists of two steps: 

calibration (training) and prediction (test). This chapter shows both steps for each trait 

measured. 

It is possible to calculate many PLSR’s because there are a number of possible solutions. 

However some models only describe noise, so for this reason the cross validation aproach 

“leave one out” (LOO-CV) is used with Square Error of Prediction (RMSEP) and the 

Predicted Residual Sum of Squares (PRESS). RMSEP and PRESS find the smaller error or 

residual across the number of components, which is a criteria that evaluates the predictive 

power of the model and permits the identification of the best model to predict the test data 

(Geladi and Kowalski, 1986). 

There have been several attempts to detect key wavelengths involved in predicting the 

traits. In Chapter 4, sixteen wavelengths proposed in the literature review to predict Vcmax in 

aspen (Serbin et al., 2012) were used unsuccessfully to predict Vcmax in wheat. Therefore, the 

models obtained in this study would need to be analysed further for their utility in other 

species. 

The objective of this study was to calibrate and test predictions for Vcmax, Vcmax25, J, Narea, 

SPAD, Chlorophyll content, LMA and Vcmax25/Narea obtained from hyperspectral 

reflectance and PLSR analysis from measurements collected from wheat in four 

experiments (Aus1, Aus2, Aus3 and Mex). 

5.3 MATERIALS AND METHODS 

5.3.1 Plant Material and experiment conditions 

The germplasm and experiments used in this chapter have been described in detail in 

Chapter 3 (Tables 3.1, 3.2, 3.3). The first glasshouse experiment, Aus1, was designed to 

achieve a range in leaf colour with a drastic reduction of nitrogen levels in one treatment 

and high fertilizer in the other treatment. The second glasshouse experiment, Aus2, was 

also designed to vary nitrogen, but over a shorter treatment duration which resulted in 

smaller differences in leaf nitrogen content per unit leaf area and photosynthetic 

parameters. Field experiments Aus3 and Mex were designed to test if reflectance can 
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differentiate between wheat genotypes grown under moderate fertilization and to evaluate 

if the ASD FieldSpec®3 can be used in the field to screen quickly for traits that could be 

important in breeding for improved photosynthetic performance.  

In order to calibrate the SPAD chlorophyll meter against chlorophyll content, another 

experiment was performed. This experiment was called Sun and Shade (S&S).  Experiment 

S&S was carried out in a glasshouse at CSIRO Black Mountain, Canberra (-35.271875, 

149.113982), where temperature was controlled to 25/15 °C (day/night). Six seeds of each 

wheat genotype (Table 5.1) were sown in pots of 5 L with 50:50 loam:vermiculite soil mix 

containing basal fertilizer on December 22nd, 2011. The day of emergence (DAE) was on 

December 26th, and during the following week the plants were thinned to keep 3 plants per 

pot. The experiment was organized in a randomized block design, 4 blocks with 10 wheat 

genotypes, one genotype per pot. At 10 DAE, when the plants had 2.5 leaves, two blocks 

were kept under usual glasshouse sun conditions (900 to 1250 μmol quanta m-2 s-1) and two 

blocks were shaded (230-300 μmol quanta m-2 s-1).  

Table 5.1 List of wheat genotypes used in the S&S experiment. Some genotypes are shared 
in experiments described in Chapter 3. 

Names Acronym Characteristics 

Sunstar  V6 (Table 3.2) Condon et al., 1990 

Hartog (Pavon 76)  V58 (Table 3.3) CIMMYT Historic (Condon et al., 1990) 

Seri M82  V61 (Table 3.3) CIMMYT Historic 

Siete Cerros 66  V62 (Table 3.3) CIMMYT Historic 

Bd 912 V77 Bodallin + Semi-dwarf + Tin gene; Very high LMA 

Bodallin V78 Tall, low LMA 

Chinese Spring V79 Tall, low LMA  

Red Egyptian V80 Semi-dwarf, low LMA 

Songlen V81 Parent of DH crossed with Sundor 

Sundor V82 Condon et al., 1990 

 

5.3.2 Traits evaluated 

The traits measured have been described in Chapter 3 (Section 3.3.4 and Figure 3.2). The 

traits that will be used in this chapter are: the maximum Rubisco activity (Vcmax), the 

maximum Rubisco activity at 25 ºC (Vcmax25), the electron transport rate (J), nitrogen 

content per unit leaf area (Narea) , Vcmax25/Narea, leaf mass per unit area (LMA), SPAD (as 

surrogate of chlorophyll content) and reflectance. SPAD and reflectance were measured 

after the CO2 response curves in the same region of the flag leaf. In the glasshouse (Aus1 
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and Aus2), immediately following measurements, the leaf was sampled for destructive 

analysis. In the field (Aus3 and Mex), leaves were sampled in the afternoon after all 

measurements were finished to avoid plant dehydration.  

5.3.3  Calibration of SPAD against extracted chlorophyll  

Leaf transmittance with a SPAD-502 chlorophyll meter (Minolta Camera Co., Ltd, Japan) 

was measured in the middle of wheat leaves in the S&S experiment at three plant 

developmental stages: 1) At 33 DAE, GS39-41, measurements were performed in one 

block of each treatment in three different plants of each pot, in the fifth to eighth leaf of 

the main shoot. 2) At 61 DAE, around GS75, 13 days after anthesis, measurements were 

performed in one plant per plot in the four blocks using the flag leaf except for the 

genotype Chinese Spring that was around GS30 (its vegetative stage was longer than the 

rest of the genotypes). 3) At 74 DAE, around GS87 when plants were approaching 

maturity, measurements were made using the flag leaf of three wheat genotypes (Hartog, 

Sunstar and Bodallin). After SPAD measurements, four 1 cm lengths of leaf were cut, their 

width was measured, each fresh piece was weighed, wrapped in foil, put in liquid nitrogen 

and stored at -80 ºC for later chlorophyll determination in the laboratory. For the 

chlorophyll extraction, 1mL of N,N-Dimethylformamide (DMF) was added to an 

eppendorf tube (1.5mL) to cover the 1 cm leaf sample. Tubes with resuspended samples 

were kept 2-4 days at 4°C under a foil cover and shaken in an orbital shaker during the last 

24 h. When leaves were looking white-transparent, 800 μL of the solution was placed in a 

quartz cuvette and measured with a UV-VIS spectrophotometer V-650 (JASCO 

International Co., Ltd.) at 647 nm and 664 nm using fresh DMF as a blank. Chloropyll a 

and b were calculated with the following equations (Porra et al., 1989): Chl a = 12.00 A664 – 

3.11 A647. Chl b = 20.78 A647 – 4.88 A664. Chls a+b= 17.67A647 + 7.12 A664, where A664 and 

A647 are the absorbance values at 664 and 647 nm respectively. 

An exponential curve was fitted between the SPAD-502 chlorophyll meter (Minolta 

Camera Co., Ltd, Japan) values and chlorophyll content measured in the S&S experiment 

as suggested before (Markwell et al., 1995). The fitting was made with the function 

nonlinear least squares (nls) in R (https://stat.ethz.ch/R-manual/R-

devel/library/stats/html/nls.html) to estimate a and b of the exponential equation. After 

seven iterations a = 0.11964088 and b = 0.03551441 (Equation 5.1 and Figure 5.1). 

𝐶ℎ𝑙 = 0.12 𝑒0.036𝑥                                                    (5.1) 
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where x is the SPAD-502 chlorophyll meter value and Chl is the chlorophyll content per 

unit leaf area (mmol m-2). This equation allows conversion of SPAD values measured in 

Aus1, Aus2, Aus3 and Mex experiments into chlorophyll content. 

 

Figure 5.1 Correlation between leaf chlorophyll content (Chl) and SPAD-502 meter values 
measured with wheat at different days after emergence (DAE) (Equation 5.1).  

5.3.4 Reflectance measurements and statistical analysis 

Reflectance spectra were measured with FieldSpec®3 (Analytical Spectral Devices, 

Boulder, CO, USA) spectroradiometer full length (350-2500 nm) coupled via the fibre 

optic cable to a leaf clip with an internal light source and with two panels, a white panel 

used for instrument calibration and a black panel used for measurements (Analytical 

Spectral Devices, Boulder, CO, USA). A mask was used to reduce the leaf-clip aperture to 

an elliptic area of 1.264 cm2 (1.1 × 1.4 cm) suitable for wheat leaves, a circular gasket of 2 

cm diameter edge to edge and 3 mm thick was pasted to the mask to avoid leaf damage and 

to eliminate potential for external light to enter through the edges. The calibration and 

three scans (of 100 reflectance spectra averaged) measured in the same leaf took 55 s in 

Aus1 experiment. In Aus2, Aus3 and Mex experiments the calibration and three scans (of 

30 reflectance spectra averaged) measured in the same leaf took 15 to 20 s. In Aus1 

reflectance was measured without the mask using two pieces of leaf measured in the 

horizontal position without the mask (perpendicular to the clip of the leaf –clip). In Aus2, 

Aus3 and Mex each leaf was placed vertically (parallel to the clip of the leaf-clip), which 

helped to speed the measurements in the field. In all experiments, 3 readings from SPAD 

were averaged per leaf lamina. In experiments Aus1 and Mex one reflectance measurement 

was made per leaf lamina, two in Aus2, and three in Aus3, which were averaged. The leaf 

lamina repetitions are independent from the experimental design repetitions. 

For pre-treatment of the spectra, first, two different jump corrections were applied to the 

reflectance measurements because two different ASD FieldSpec®3 spectroradiometer were 
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used, one in Australia and the other in Mexico. Reflectance measured with the FieldSpec in 

Australia was corrected at 1000 nm and 1800 nm. Reflectance measured with the FieldSpec 

in Mexico was corrected at 1000 nm and 1830 nm. Spectra with reflectance lower than 0.35 

and higher than 0.6 at 800 nm were removed because an earlier analysis had shown these to 

be outliers.  

Analysis of the reflectance data was performed using the ‘pls’ package ‘Principal 

Component and Partial Least Squares Regression in R’ (Mevik and Wehrens, 2007) under 

R software version 2.15.0. The training data and the test data were split between repetitions 

of experiments (Table 5.2). The number of components used in the regression model fitted 

to the reflectance data was based in the smaller root mean square error (RMSEP) and the 

smaller predicted residual sum of squares (PRESS). 

Table 5.2 Training data and test data from experiments used in the PLSR model. 
Glasshouse (GH). Fertilized plants (+N), not fertilized (-N). Repetition (Rep). Number of 
genotypes used (Gen). Experiment (Exp). 

 

*CB_Mex measurements were only used for SPAD and chlorophyll content predictions and 
validations. LMA and Narea were not measured. As Vcmax25 and J were calculated from only a few 
points in the CO2 curve it was decided not to include these data.  

 

5.4 RESULTS 

In Chapter 4, experiment Aus1 was used to evaluate prediction of Vcmax25. The results 

obtained helped to refine the method used in the subsequent experiments. In Aus1, it was 

shown that two models to predict Vcmax25 could be successfully applied (3 and 5 

components), so the same analysis was repeated here using Aus1, Aus2, Aus3 and Mex 

experiments (Table 5.2). These results are discussed in this chapter in order to determine 

Exp (Gen) Training data Test data 

Aus1 (16) GH(+N) Rep 1 & 2 

GH(-N) Rep 1 & 2 

GH(+N) Rep 3 

GH(-N) Rep 3 

Aus2 (30) GH(+N) Rep 1 

GH(-N) Rep 1 

GH(+N) Rep 2 

GH(-N) Rep 2 

Aus3 (2) 

Aus3 (26) 

Aus3 (20) 

Field EVA Rep 1 & 2  

Field BYPB Rep 1 & 2 

Field CA Rep 1 & 2 

Field EVA Rep 3 & 4  

Field BYPB Rep 3 & 4 

Field CA Rep 3 & 4 

Mex (30) 

Mex (30)* 

Field CA Rep 1 & 2 

Field CB Rep 1 & 2* 

Field CA Rep 3 

Field CB Rep 3* 
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the best model to predict each trait: Vcmax, Vcmax25, J, LMA, Narea, Vcmax25/Narea, SPAD and 

chlorophyll content. As LMA and Narea were not measured in CB_Mex experiment they 

were only predicted.  

5.4.1 New model for Vcmax25 

In Chapter 4, experiment Aus1 was used to predict Vcmax25. A model using 5 components 

chosen with the lowest Root Mean Square Error of Prediction (RMSEP) from cross-

validation leaf-one-out (LOO-CV) data was not the best model for predicting the test data. 

A better fit of the test data was obtained using 3 components (Figure 4.18). In this chapter 

it was expected that more data would help determine how to choose the best model. 

Therefore, data from Aus1, Aus2, Aus3 and Mex experiments have been used to re-

calibrate the model to predict Vcmax25 (Table 5.2).  

Cross validation (LOO-CV) generates an ‘artificial test data’ based on the training data. The 

LOO-CV data were used to choose the best model from 30 generated with PLSR to 

predict Vcmax25 using the RMSEP. RMSEP was lowest in the model with 18 components, 

which means that this model will give the best prediction of Vcmax25. If the original data 

were tested with RMSEP instead of the ‘artificial test data’ the result was the same with the 

model generated with 18 components giving the best prediction. Perhaps the larger amount 

of data helped to generate a more accurate LOO-CV data from which to choose the best 

model to predict the original data. 

In chapter 4, it was suggested that the Predicted Residual Sum of Squares (PRESS) could 

be an alternative method to RMSEP. Therefore, both methods were tested to predict 

Vcmax25. The result showed that both RMSEP and PRESS selected the same model to 

predict Vcmax25 and both methods showed that 18 components gave the highest R2 (Figure 

5.2). 

For each of the other traits evaluated, the test data RMSEP was minimal with a different 

number of components, although their impact in the coefficient of determination was 

minimal. For example: 18 components were selected from LOO-CV data to predict J, 

reaching R2=0.71, whereas 19 components were selected using the original test data 

reaching R2=0.7. 
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Figure 5.2 Root Mean Square Error of Prediction (RMSEP), Predicted Residual Sum of 
Squares (PRESS) and the coefficient of determination of Vcmax25 for up to 30 components. 
CV is the cross-validation data and Test/Val are the test data to validate the model.  

 

PLSR generates loadings used to create scores for each wavelength. Both loadings and 

scores are used to generate a group of regression coefficients for each model. These will be 

different in a model with one component compared to a model with 18 components. The 

loading and the regression coefficients for Vcmax25 from the model using 18 components 

resulted in more peaks with higher value coefficients (Figure 5.3) than those generated in 

experiment Aus1 for the same trait (Figure 4.16).  

PLSR was applied for other traits, and one model from the initial 30 models was selected 

from LOO-CV data with both RMSEP and PRESS. The number of components was 

different for each trait: Vcmax (23 components), Vcmax25 (18 components), J (18 components), 

LMA (21 components), Narea (21 components), Vcmax25/Narea (13 components), and SPAD 

(16 components). Therefore, each trait had its own model with its own loadings and scores 

to generate the regression coefficients.  

Regression coefficients to predict each trait were calculated from the training data for that 

trait (Table 5.2). The regression coefficients and the intercept are the most useful results, 

because these specify the model for predicting each trait from each reflectance spectrum. 

Given a reflectance spectrum (400 to 2400 nm) for a leaf, it is possible to predict any trait 

that has been calibrated. The predicted value for a given trait is calculated from the sum of 

the products of factors by reflectance value for each wavelength plus the intercept. 
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Figure 5.3 a) Reflectance from Aus1, Aus2, Aus3 and CB_Mex experiments. The solid line 
is the mean and the range is given by the blue shading. b) Loadings and c) regression 
coefficients of the model for Vcmax25 with 18 components.  

 

5.4.2 Predictions and validation of traits 

The models chosen for each trait from the training data was validated against the test data. 

One or two repetitions were used for the training data and the remaining repetitions were 

used as the test data (Table 5.2).  

Predictions for Vcmax had a higher coefficient of determination than Vcmax25 (Figure 5.4). 

This could be associated with the fact that the range in Vcmax (25 to 400 μmol CO2 m
-2 s-1) 

was greater than for Vcmax25 (23 to 280 μmol CO2 m
-2 s-1), but both predictions fall about the 

1:1 line.  The residuals between observed data and predictions were larger for Vcmax than 

Vcmax25. For Vcmax25 there was a positive trend in the residuals, within each experimental 

group, while for Vcmax the residuals were more uniformly dispersed.  Positive trends in the 

residuals show bias, by contrast a null plot (with no particular pattern apparent) means 

unbiased data and that the model used is adequate (Fox and Weisberg, 2011).  

In the case of J, predictions fell about the 1:1 line and the coefficient of determination was 

higher (R2=0.71) than for Vcmax and Vcmax25 (Figure 5.4). Again there was a positive trend 

evident in the residuals within several of the experimental groups. 
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Predictions for Narea, LMA and SPAD had higher coefficients of determination than for the 

photosynthetic parameters and observations were aligned to the 1:1 line (Figure 5.5). For 

these traits, the residuals were smaller and showed no underlying trends. 

 

 

 
Figure 5.4 Validation of predictions and residuals for a), b) Vcmax (23 components, 
RMSEP=27.8), c), d) Vcmax25 (18 components, RMSEP=18.3) and e), f) J (18 components, 
RMSEP=20.3).  

 



Chapter 5. Validation of reflectance spectra for predicting the main photosynthetic characters in wheat 

120 
 

 
 

 

 

 
Figure 5.5 Validation of predictions and residuals for a), b) Narea (21 components, 
RMSEP=0.18), c), d) LMA (21 components, RMSEP=3.4) and e), f) SPAD (16 components, 
RMSEP=2.8). Note: SPAD was predicted using CB_Mex too. 
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Each SPAD value was used to calculate a chlorophyll content from which a PLSR model 

was generated to predict chlorophyll content rather than SPAD value from reflectance 

spectra measured in Aus1, Aus2, Aus3 and Mex experiments. The chlorophyll content 

calculated from SPAD was predicted and validated with PLSR (Figure 5.6). The coefficient 

of determination was slightly less that obtained for the SPAD model (R2=0.77 vs R2=0.82). 

The residuals were relatively evenly dispersed. Consequently, with this model it is possible 

to also predict the actual chlorophyll content from the reflectance spectrum. 

Vcmax25/Narea was used in Chapter 3 to analyse photosynthetic efficiency. The ratio itself 

could be predicted with points falling about the 1:1 line (Figure 5.7). Curiously, the 

coefficient of determination was higher (R2=0.49) than when the ratio was calculated using 

a ratio of values of Vcmax25 and Narea (R
2=0.13) predicted separately (Figures 5.4.c and 5.5.a). 

However, as the residuals showed a distinct positive trend within each experiment (Figure 

5.7.b), this indicated that the method struggles to completely capture this parameter. 

 

 

Figure 5.6 a) Validation of predictions and b) residuals for chlorophyll content (19 
components, RMSEP=0.08). The legend is in Figure 5.5. 
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Figure 5.7  a) Validation of predictions and b) residuals for Vcmax25/Narea (13 components, 
RMSEP=9.2). 

 

Even if different models had the same number of components, this does not mean that 

these models are identical since they were trained with different data. For example, the 

models predicting LMA and Narea were both chosen using 21 components but each one 

predicts a different trait value. 

Another way to compare the range of observed and predicted data is with box plots. In 

general, the range from predictions was similar to or slightly less than the range for 

observed data. For instance, Narea Aus1 (+N) showed a smaller distribution in the predicted 

data than in the observed data, even though the mean was similar (Figure 5.8). 

Hyperspectral reflectance was measured in all experiments, and one big advantage is that 

multiple traits can be predicted in retrospect, having the model for those traits. Leaf area 

was not measured in CB_Mex experiment, so LMA and Narea were missing. Nevertheless, 

using the reflectance measured in CB_Mex experiment and the model generated 

previously with the other experiments, LMA and Narea were predicted for the genotypes of 

CB_Mex experiment.  
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Figure 5.8 Summary of the ranges in LMA and Narea between genotypes in each 
experiment. Ranges were either predicted for each trait from reflectance spectra or 
represent the true range observed. As LMA was not measured in CB_Mex, Narea can only be 
predicted for these genotypes using a reflectance model. 

 

5.4.3 Regression coefficients  

The models used to predict each trait are described as the regression coefficient for each 

wavelength and an intercept. A high value for the regression coefficient occurs when that 

wavelength strongly influences the model. Raw regression coefficients used for the 

predictions and validations (Figures 5.4, 5.5 and 5.7) are shown to reveal important peaks 

(Figure 5.9). The patterns in the regression coefficients varied between traits, and it was 

difficult to detect significant regions. Interesting regions were highlighted based on the size 

of the peak and when differing between traits (Figure 5.9): 

 Vcmax      400-460, 1390-1430, 1870-1910, 2263-2333 nm 

 Vcmax25  400-460, ~550, ~700, ~1067, ~1130, 1390-1430, 1680-1880, 2040-2380 nm 

 J           ~405, 537-570, ~700, ~1067, 1390-1430, 1680-1880, 2040-2380 nm 

 Narea    400-430, 1600-1700, 2050-2380 nm 

 LMA   400-430, 1600-1700, 1870-1930, 2240-2500 nm 

 SPAD 400-1750, 1320-1400, 1750-1900, 2050-2380 nm 

 Vcmax25/Narea  500-730, 1300-1400, 1670-1760 nm 

The green waveband in figure 5.9 (900 to 1100 nm) is highlighted because the coefficients 

within that region have small values but they vary from being negative for Vcmax25, J and 

Vcmax25/Narea to being positive for Narea, LMA and SPAD. 
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Figure 5.9 Regression coefficients for Vcmax, Vcmax25, J, Narea, LMA, SPAD and Vcmax25/Narea. 
Blue bands represent outstanding peaks while values in the green band differ between 
photosynthetic and morphological traits. 
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5.5 DISCUSSION 

5.5.1 Important wavelength points in the spectra 

From the literature some regions of the electromagnetic spectrum have been correlated 

with important plant physiological traits. Therefore, the spectral regions which were highly 

weighted in this study for prediction of LMA, Narea, Vcmax and J were compared with the 

regions determined in other studies. 

Some experiments indicate that the visible region (VIS, 400-700 nm) (Doughty et al., 2011; 

Serbin et al., 2012) or the region from 400-1450 are important for predicting LMA (Ecarnot 

et al., 2013). From the current work with wheat, while those regions are important, the 

short wave infrared (SWIR) region seems to be more important (Figure 5.9, LMA). 

Perhaps, reflectance is integrating the information of cellulose, proteins, starch and 

nitrogen that have been located before in leaves in the SWIR region (Curran, 1989). 

The VIS region and the red edge (RE, 690-740 nm 700-740 nm) have been found to be 

important in predicting nitrogen content (Dillen et al., 2012) and nitrogen concentration 

(Doughty et al., 2011; Serbin et al., 2012; Ecarnot et al., 2013). The VIS-RE region was 

confirmed here as important, but again the SWIR region looks to be more important 

(Figure 5.9, Narea). The SWIR region has also been identified in other studies (Serbin et al., 

2012; Ecarnot et al., 2013). 

Fewer regions were associated with Vcmax in this project than for Vcmax25. Some regions 

overlapped: 400-460 nm, 1390-1430 nm and 2263-2333 nm. Some regions associated with 

Vcmax25 in this study are similar to regions detected in soybean and aspen (Ainsworth et al., 

2014): 550, 700-750, 1400-1430 and 2200 in soybean and 2210 in aspen (Serbin et al., 2012). 

These regions could be important for predicting Vcmax25 across species. The advantage of 

identifying fewer and specific wavelengths for a given trait is that it may enable the 

construction of a lighter, cheaper spectroradiometer specific for measuring Vcmax25. 

Regression coefficients for J from measurements in aspen and cotton indicated 44 

important wavelengths across the whole spectrum (Serbin et al., 2012). This large number 

increases the probability of matching wavelengths selected in this study and makes it more 

difficult to establish a trend. The best conclusion from this comparison is that the whole 

spectrum, including the SWIR, region is required to predict J (Table 5.3). Interestingly, 

comparing predictions of J with predictions of Vcmax25 revealed similar regions except for 

the negative peak around 1130 nm for Vcmax25, which was not relevant to aspen (Serbin et 

al., 2012). 
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Table 5.3 Summary of the coefficients of determination for each model and important 
spectral regions for each trait.   

Plant material and 
source 

1Vcmax 
2Vcmax25 
3Vcmax30 

J LMA Nmass (%) Narea 4Chl a, b 
5SPAD 
6Chl NDI 

159 tropical plants 
(Doughty et al., 2011) 

10.39 0.52 0.9 0.83  40.66-0.67 

  ~750, 
~2250 

~750, 
~2250 

 ~750, 
~2250 

Aspen, Cotton 
(Serbin et al., 2012) 

0.89 0.93 0.95 0.89   

495-710 
1510-1935 

2210, 
2405, 
2490 

465-710 
>1095 

545 
705-955 
>1245 

505-855 
1690-1995 

2115, 
2470, 
2480 

  

Red oak, paper birch 
(Dillen et al., 2012) 

10.76 0.57   0.67 60.87 

λRE 
692-740 

λRE 
 

  λRE 
 

λRE 
 

Wheat 
(Ecarnot et al., 2013) 

  0.94 0.94   

  400-1450 
 

450-780 
1180-1280 

>1700 

  

Soybean 
(Ainsworth et al., 2014) 

20.88      

~550 
640-670 

~750 
1400-2200 

     

9 Food crops e.g. 
Avocado, oat, grape 
(Serbin et al., 2015) 

30.94      

400-700  
743  

1150-1300  
>1300  

     

This study 
Wheat/Triticale 
 

10.62 
20.68 

0.71 0.89  0.93 50.82 

See text      

 

Regression coefficients for Vcmax25/Narea showed less noise than the coefficients from other 

traits and interestingly, the larger correlations were found in the visible region and the red 

edge (Figure 5.9, Vcmax25/Narea), and from 1300 to 1400 nm, similar to SPAD. The 

regression coefficients for Vcmax25/Narea showed a significant contribution near ~1700 nm 

which was also heavily weighted for the models of both Vcmax25 and Narea. Further analysis of 

the coefficients predicting Vcmax25, Narea and Vcmax25/Narea is needed to understand which 

features in reflectance spectra are most important. 
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5.5.2 Validation of predictions and future application of reflectance spectra 

Results from the validation performed in this study (Figures 5.4 and 5.5) showed 

coefficients of determination within the ranges from other published predictions using 

reflectance (Table 5.3).   

Stronger correlations were obtained for Narea and LMA compared to photosynthetic traits, 

which agree with measurements collected from multiple environments, nitrogen levels and 

different wheat species by Ecarnot et al. (2013). The results from this study are important 

since the plants evaluated were high yielding wheat and triticale many of which are 

currently used by farmers around the world. Moreover, even if low nitrogen treatments are 

removed from the correlation, it remains high (Narea R
2=0.8, LMA R2=0.87). This means 

that hyperspectral leaf reflectance can act as rapid surrogate method suitable for use in the 

field which can replace destructive analyses. It was able to differentiate subtle differences 

between genotypes in leaf nitrogen and leaf thickness/density present in plants growing 

under high yield conditions. 

The correlations between model predictions from reflectance and both SPAD and 

chlorophyll content were high (R2=0.82 and 0.77), in agreement biochemical extraction 

(Doughty et al., 2011) or from Chlorophyll Normalized Difference Index (Chl NDI) (Dillen 

et al., 2012). In this study SPAD was calibrated against chlorophyll content quantified in 

leaf extracts and extrapolated to all experiments using an exponential equation as proposed 

before (Markwell et al., 1995). Reflectance predictions for SPAD showed that reflectance 

can successfully be used to predict chlorophylls and probably other pigments as has been 

done for carotenoids (Asner et al., 2011a; Doughty et al., 2011). 

Vcmax had a higher coefficient of determination than Vcmax25 (R
2=0.68 vs 0.62) (Figure 5.4). 

The simplest explanation for this is that the dispersion of Vcmax was bigger than for Vcmax25 

due to variability of temperature during the measurements. Reflectance should represent 

the composition of the material rather than the rate of a reaction. Consequently, one might 

expect that Vcmax25 should be the more valid model than that predicting Vcmax. In Chapter 2, 

Vcmax was normalized to 25 ºC (Vcmax25), which reduced the dispersion of the data and 

probably the smaller range made it harder to predict this trait in fertilized plants. The 

residuals showed a positive trend which indicates bias in the predictions. However, the 

results do indicate that leaf reflectance could be used to select tails for Vcmax25 from large 

populations and then small numbers of genotypes could be measured in detail by gas 

exchange or other low throughput approaches. Moreover, reflectance measurements will 

facilitate making more measurements during the plant life cycle and on more leaves within 
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plants, which can reduce error assessing genotypic variation of Vcmax25 and J. In addition, 

reflectance using imaging spectroscopy has also shown potential for predicting Vcmax at the 

canopy level (Serbin et al., 2015), which would provide an opportunity for even further 

collection on large numbers of leaves. 

Predictions of J showed a high coefficient of determination (Figure 5.4). Part of this may 

be associated with the fact that J was not corrected for variation in leaf temperature. In 

Chapter 2 it was shown that J did not vary as much as Vcmax with temperature, so perhaps 

correction for temperature is not essential over the range encountered here. J also showed a 

positive trend in residuals, but similar to Vcmax25 its prediction from reflectance 

measurements will help to obtain multiple measurements in a faster way to select tails that 

can be analysed with more accurate tools. 

Interestingly, Vcmax25/Narea was predicted with a higher coefficient of determination directly 

than predicting each trait separately and then calculating the ratio. It may be that the Narea 

and Vcmax25 had an additive effect in training the model more accurately. The coefficient of 

determination was not too high, but it should be considered that Vcmax25 was normalized for 

temperature and now for leaf nitrogen, so even with an R2 of 0.49 (Figure 5.7), the 

prediction of this ratio has potential to determine photosynthetic efficiency. 

Reflectance spectroscopy at leaf and canopy level appears to have great potential in 

predicting leaf chemistry and other traits such as carotenoids, water, phosphorus (Asner 

and Martin, 2008; Doughty et al., 2011) carbon content, δ15N, lignin (acid-digestible lignin), 

fibre (acid-digestible fibre) and cellulose (Serbin et al., 2014). SPAD has been used in 

numerous experiments as chlorophyll surrogate (Giunta et al., 2002; Lopes and Reynolds, 

2012; Hamblin et al., 2014) 

5.6 CONCLUSIONS 

In summary, it is demonstrated that hyperspectral reflectance has the power to predict 

Vcmax, Vcmax25, J, Narea, SPAD, LMA and Vcmax25/Narea in leaves of plants grown in the 

glasshouse or field, in Mexico and in Australia. The strongest predictions were obtained for 

Narea and LMA.  

Potential regions of the spectra were identified to help understand how the model predicts 

each trait. However, further refinements of the models may be possible. 

Hyperspectral reflectance has the potential to predict more variables underpinning 

photosynthesis, such as carotenoids or photoprotection. 
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Hyperspectral reflectance provides an opportunity to screen for genotypic variability in 

breeding programs and it may be possible to apply the method at the scale of the canopy 

level with hyperspectral imaging. The method could contribute towards efforts to monitor 

how crop physiology deals with climate change. 
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CHAPTER 6 

Applying reflectance spectra to screen and 

select genotypes in a new set of wheat 

genotypes 

 

Centro Experimental Norman E. Borlaug, Cd. Obregón, Mexico. 2013. 
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6.1 ABSTRACT 

This study investigates if the models predicting Vcmax, Vcmax25, J, Narea, SPAD, LMA and 

Vcmax25/Narea with hyperspectral reflectance and partial least square regression (PLSR) can be 

used in different elite wheat populations and wheat landraces other than those used to train 

the model. Two new sets of genotypes were measured twice. The first set consisted of 

duplicated measures of 216 wheat genotypes that are candidates for CIMCOG II. 

Reflectance and SPAD were measured on the first occasion from which twelve genotypes 

were chosen for more detailed measurement. Reflectance, SPAD and J800 were obtained 

from the second measurement. The second set of genotypes consisted of 230 wheat 

landraces and 5 elite wheat genotypes. Again reflectance and SPAD were measured in the 

first survey. From this, 21 wheat landraces and 2 elite wheat genotypes were measured for 

reflectance, SPAD, J800, LMA and Narea during a second survey. Previously constructed 

models using hyperspectral reflectance were able to make useful predictions for J800 and 

more accurate predictions for SPAD, LMA and Narea. 

6.2 INTRODUCTION 

Precision agriculture uses images from satellites to optimize crop management in the field; 

this technology helps to predict yield, trace soil components and detect nutrient 

deficiencies in plants. This can have a huge impact controlling and adding management of 

inputs during the crop cycle. Most of the image analysis uses the normalized difference 

vegetation index (NDVI). NDVI is based on specific wavelengths from the visible part of 

the electromagnetic spectrum (400 to 700 nm) normalised to the near infrared part of the 

spectrum (700 to 1100 nm). It has been used to assess leaf area index, ground cover and 

plant responses to photosynthetically active radiation (Lee et al., 2010; Mulla, 2013). 

Instruments able to measure a wider spectrum (350 to 2500 nm) have the potential to 

contribute to precision agriculture and breeding programs, not only for stress or nutrient 

deficiency, but also predicting other physiological and biochemical traits in plants, in order 

to explore genotypic variation. 

In Chapter 4, we adapted the ASD FieldSpec 3 spectroradiometer to measure hyperspectral 

reflectance of wheat leaves. In Chapter 5, the statistical model and algorithm for predicting 

several parameters from the spectra were established. We validated 6 models to predict 6 

traits: three photosynthetic traits, Rubisco activity (Vcmax25), electron transport rate (J) and 

Vcmax25/Narea, and three traits to evaluate leaf structure and composition, leaf mass per unit 

area (LMA), chlorophyll (SPAD) and leaf nitrogen content per unit area (Narea).  
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The models based on hyperspectral reflectance were validated in Chapter 5. Because other 

teams have been able to predict photosynthetic parameters in tropical trees, aspen, cotton 

and soybean (Doughty et al., 2011; Serbin et al., 2012; Ainsworth et al., 2014), and nitrogen 

content and LMA in wheat (Ecarnot et al., 2013), we expect that these models can be 

applied to diverse wheat genotypes measured in the field. In this chapter, we explore 

whether the models generated in Chapter 5 work with genotypes that did not contribute to 

their development. We also trialled using hyperspectral reflectance to rapidly screen plants 

in order to select a subset of wheat genotypes for more detailed gas exchange analysis. 

6.3 MATERIALS AND METHODS 

6.3.1 Plant material  

Two new sets of wheat genotypes were used in this chapter: 1) Candidates of CIMCOG II 

(CC). This set comprised 216 elite wheat genotypes plus seven wheat genotypes from 

CIMCOG Subset II (Mex experiment) in total giving 223 wheat genotypes (A14). They 

were sown in 2012-2013 winter-spring cycle to select a new set of elite wheat genotypes in 

CIMMYT. 2) Wheat landraces (L) from the CIMMYT’s ‘Spikes Germplasm Bank’. 230 

wheat landraces (Figure 6.1), plus five elite wheat genotypes including two from the Mex 

experiment, giving 235 wheat genotypes in total (A15).  

 

Figure 6.1 a) Some wheat landraces can be taller than me (1.60 m), b) Tall landraces are 
susceptible to lodging, so they were supported with wooden sticks in the field plots. 

6.3.2 Experiment conditions 

CC and L genotypes were sown near the plots from the Mex experiment (Chapter 3). 

These new sets of wheat were grown in the field at Centro Experimental Norman E. Borlaug 

(CENEB) research station, located in the Yaqui Valley, Sonora, Mexico (27.370837, -

109.930362) for a winter-spring cycle. The sowing was on November 23rd, 2012 and plant 
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emergence was on 2nd December 2012. From 1 to 138 DAE, the average maximum 

temperature was 26 °C and the minimum 8.3 °C, with an accumulative thermal time of 

2,364.6 °C and 15.38 mm of rainfall.  Plots in both sets of wheat genotypes were 2 m long 

× 1.6 m, each one contained two beds arranged in the 24-56 system (24 cm distance 

between rows on a bed and 56 cm is the distance between rows across a furrow width).   

CC plants were arranged in the field in 20 × 22 plots plus 6 plots in the 23rd row of plots to 

give 446 plots in total, the whole experiment comprised two randomized blocks.  

L plants were sown in a band of 5 × 54 plots. From these 270 plots, 230 plots contained 

single landrace wheat genotypes and 40 plots contained elite wheats (checks), placed after 

every ten landrace plots. The checks were V522 × 10, V65 × 5, V68 × 5, V290 × 10 and 

V291 × 10 repetitions.  

In general, plants were grown under optimal management in the field. The first fertilization 

was at soil preparation with 50 kg ha-1 of N and 50 kg ha-1 of P and a second fertilization in 

the first irrigation of 150 kg ha-1 of N. However, during the measurements (110 to 117 

DAE) some plants showed water stress due to high temperatures, 28±2 °C (Figure 3.1).  

6.3.3 Measurements 

The experiment of this chapter is called Mex2, and the measurements were done in two 

main steps:  

1) Survey: CC and L flag leaves were measured for reflectance and SPAD on all plots 

including repetitions and checks.  For CC (n=440) plants were from 101 to 103 DAE, 

which was 15 days after anthesis on average. For L plants (n=270) plants were 110 to 111 

DAE, which for 22 genotypes was the period from 7 days before anthesis to anthesis, with 

the remainder of the genotypes being from 1 to 36 days after anthesis.  

2) Second measurement (S): After the survey, 12 CC genotypes and 23 L genotypes were 

selected and measured a second time (details of the selection will be described in Results). 

The measurements were done on different plants of the same genotype. In the second 

measurement, CCS genotypes were measured at 114 DAE (12 genotypes with four 

repetitions, two plants per plot) and LS at 117 DAE (21 genotypes with two repetitions, 

the checks V177 with six repetitions and V523 with four repetitions, two plants per plot) 

for reflectance, SPAD and photosynthetic rate at 400 and 800 inlet μmol CO2 mol-1. LS 

genotypes were also sampled to calculate leaf mass area (LMA) and leaf nitrogen content 
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per unit leaf area (Narea). The additional ‘S’ to CC and L refers to the second time of 

measurements. 

6.3.4 Traits 

Reflectance spectra (350-2500 nm) were measured with a FieldSpec®3 spectroradiometer 

(Analytical Spectral Devices, Boulder, CO, USA) coupled to a leaf-clip with an internal 

light source by a fibre optic cable. The leaf-clip had two panels, a white panel used for 

instrument calibration and a black panel used for measurements (Analytical Spectral 

Devices, Boulder, CO, USA). A mask was used to reduce the leaf-clip aperture to an elliptic 

area of 1.264 cm2 (1.1 × 1.4 cm), a circular gasket of 2 cm diameter edge to edge and 3 mm 

thick was pasted to the mask to prevent leaf damage and entrance of external light through 

the edges. Each measurement lasted 9 to 12 s, with the leaf placed vertically (parallel to the 

handle of the leaf-clip). For each leaf, three readings from a SPAD-502 chlorophyll meter 

(Minolta Camera Co., Ltd, Japan) were averaged per leaf lamina and one reflectance 

measurement was made. 

In this survey, we wanted to screen the maximum number of genotypes, so no gas 

exchange measurements were made. Having identified a subset of genotypes, gas exchange 

was subsequently measured at two CO2 concentrations in a 2 cm2 leaf area enclosed within 

a LI-6400XT instrument (LI-COR Inc., Lincoln, NE, USA) with the fluorescence head (Li-

6400-40; LI-COR Inc.). The airflow rate in the system was 400 μmol s-1 with an irradiance 

of 1800 μmol quanta m-2 s-1. Gas exchange was used to measure the photosynthetic rate 

(A) at 400 and 800 inlet μmol CO2 mol-1. Electron transport rate (J) was calculated with 

equation 6.1 and gas exchange measurements, which assumes RuBP (ribulose-1,5-

bisphosphate) regeneration rate is limiting (von Caemmerer, 2000). In this case, we were 

interested in fast measurements, so only one high CO2 concentration was used for the 

calculation of J and mitochondrial respiration was ignored.  

𝐽 =
𝐴800(4𝐶𝑐,800+8𝛤∗ )

𝐶𝑐,800−𝛤∗
                                              (6.1) 

where A800 is the CO2 assimilation rate measured at 800 inlet μmol CO2 mol-1. Cc,800 is the 

chloroplastic CO2 partial pressure calculated from measurements made with an inlet CO2 

concentration of 800 μmol CO2 mol-1.  

The chloroplastic CO2 partial pressure (Equation 6.2) and the chloroplastic CO2 partial 

pressure at which the rate of carboxylation equals the rate of photorespiratory CO2 release 
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was adjusted to leaf temperature using the Arrhenius equation (Equation 6.3). Information 

about activation energy and values at 25 ºC used are described in Chapter 2. 

𝐶𝑐,800 = 𝐶𝑖,800 −
𝐴800

gm
                                              (6.2) 

Ci,800 is the intercellular CO2 partial pressure, μbar, when measured with an inlet CO2 

concentration of 800 μmol CO2 mol-1 and mesophyll conductance at 25 ºC (gm) was 

assumed to be 0.55 mol m-2 s-1 bar-1. 

𝛤∗ = 𝛤∗25  
𝑂

210
 𝑒

(
𝐸(𝑇−25)

𝑅298.15(𝑇+273.15)
)
                                              (6.3) 

Γ* is the chloroplastic CO2 partial pressure at which the rate of carboxylation equals the 

rate of photorespiratory CO2 release, at 25 °C, Γ*25=37.74 μbar (Table 2.2, Chapter 2). E is 

the activation energy of Γ*, 24.42 kJ mol-1. T is the leaf temperature. In this case the 

average T of all measured leaves was used, 31.42 °C for CCS genotypes and 32.8 °C for LS 

genotypes. R is the gas constant 8.314 J mol-1 K-1 and O is the O2 partial pressure, which at 

sea level and standard pressure is 210 mbar. 

There was not enough time to measure CO2 response curves, so J calculated from gas 

exchange (Jg) was compared with that calculated from chlorophyll fluorescence (Jf) 

(Equation 6.4).  

𝐽𝑓 = (
𝐹𝑚′−𝐹′

𝐹𝑚′
) 𝑓𝐼 ∝𝑙𝑒𝑎𝑓                                                 (6.4) 

where Fm’ is the maximal fluorescence in the light and F’ is the steady state of fluorescence 

in the light, prime (‘) is used because the fluorescence parameters are determined on leaves 

that have experienced actinic light, f is the fraction of absorbed quanta that is used by 

photosystem II, assumed to be 0.5. I is the incident flux density, 1800 μmol quanta m-2 s-1 

and αleaf is leaf absorbance, assumed to be 0.85 (LI-COR, 2011). 

Electron transport rate (Jf) was calculated from fluorescence measurements at 800 inlet 

μmol CO2 mol-1. Stomatal conductance (gs) was low; therefore data with gs lower than 0.1 

mol H2O m-2 s-1 were removed. gs of LS and CCS varied from 0.1 to 0.55 mol H2O m-2 s-1. Jg 

and Jf showed a good relationship (R2=0.76) (Figure 6.2).  Jg is used here to differentiate 

from Jf calculated from fluorescence otherwise Jg will be called J. 
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Figure 6.2 Comparison between two methods to calculate electron transport rate in wheat. 
Jf calculated from fluorescence as function of Jg calculated from gas exchange 
measurements and equation 6.1 for CCS (yellow diamond) and LS (black diamond) wheat 
genotypes. Dashed line represents the 1:1. 

 

Leaf area was measured on a complete flag leaf using a leaf area meter (LI3050A/4; 

LICOR, Lincoln, NE). Then, the samples were dried for 48h at 70°C and weighed to 

obtain leaf mass per unit area (LMA, g m-2). Nitrogen concentration, Nmass (mgN g-1) was 

determined at CIMMYT Batan, Mexico, where samples were digested and analysed with a 

Technicon AutoAnalyzer (Galicia et al., 2008). Nmass and LMA were used to calculate 

nitrogen per leaf area Narea (gN m-2).  

6.3.5 Statistical analysis of predictions using reflectance 

The selection of CCS and LS from the survey was done predicting SPAD and J with the 

partial least square regression (PLSR) following the tutorial of the ‘pls’ package ‘Principal 

Component and Partial Least Squares Regression in R’ (Mevik and Wehrens, 2007). The 

selection of a subset of genotypes was done rapidly so as to be able to return to the field to 

make more detailed measurements.  

The training model in March 2013 was constructed from one repetition of the glasshouse 

measurements in Australia (Aus2, Chapter 3) because they were the data available at that 

time. Subsequently, the reflectance spectra measured for CC, CCS, L and LS were 

reanalysed in 2015 to predict SPAD, J, Rubisco activity (Vcmax25), LMA, Narea and 

Vcmax25/Narea. This prediction followed the steps of the validation of the models in Chapter 

5. First, jump corrections at 1000 and 1830 nm were made and spectra with reflectance 

lower than 0.35 and higher than 0.6 at 800 nm were removed. Then the ‘pls’ package 

‘Principal Component and Partial Least Squares Regression in R’ (Mevik and Wehrens, 

2007) under R software version 3.1.3 was run. The training data from Chapter 5 (Table 5.2) 
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were used to generate the same model. The same number of components were used to 

generate the same coefficients from Chapter 5, Vcmax25 (18), J (18), Narea (21), LMA (21) and 

SPAD (16).  None of the spectra measured in Mex2 were used to train the model. Seven 

wheat genotypes from Mex experiment (V45, V48, V53, V65, V68, V72, V74) were 

repeated, but the plots of Mex2 experiment were different and specific for the Mex2 

experiment. 

6.4 RESULTS 

First, reflectance was measured in a survey of 458 elite wheat genotypes and landraces to 

predict the traits. After that, for a subset of landraces and elite wheat genotypes, reflectance 

was measured a second time together with other traits using established methods to 

validate the predictions.  

6.4.1 Elite wheats 

The set of elite wheat genotypes, Candidates to CIMCOG II (CC_Mex2) were surveyed 

for reflectance and SPAD. Predictions of SPAD overlapped the range observed in 

experiments from Chapter 5 (Figure 6.3.a). From these results, 12 genotypes were chosen 

to measure a second time which encompassed the full range of SPAD values (Figure 6.3.b).  

 

 
Figure 6.3 Comparison of SPAD predicted from reflectance using the model developed in 
Chapter 5 and actual SPAD measurements. a) Observations from experiments of chapter 5 
and CC_Mex2, the R2 includes all the points of the plot, b) 12 genotypes selected to 
measure a second time (solid points), each dot is the mean of two repetitions for the 223 
genotypes. 
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In the second measurement (CCS_Mex2), predictions of electron transport rate (J) 

overlapped the range observed in Chapter 5 (Figure 6.4).  

These measurements (CC and CCS) were the first attempt in the project to use reflectance 

to screen many genotypes and then select some of them for further analysis. This gave an 

indication of the number of genotypes that could be measured in a survey. Having this 

information, we planned a second experiment to screen wheat landraces and validate the 

hyperspectral reflectance by measuring more traits.  

 

Figure 6.4 Comparison of electron transport rate (J) predicted from reflectance using the 
model developed in Chapter 5 and J observed for CCS_Mex2 genotypes. The R2 include all 
the points of the plot. The dashed line represents the 1:1. 

 

6.4.2 Landrace wheats 

Wheat Landraces (L_Mex2) are domesticated wheats but not selected intensively for high 

yield. This set also included five elite wheats to add diversity and provide checks.  First, 235 

L_Mex2 wheat genotypes were screened in a survey for reflectance and SPAD. Predictions 

of SPAD also overlapped the range observed in experiments from Chapter 5, and the 

correlation was slightly better for L_Mex2 (R2=0.74) compared to CC_Mex2 (R2=0.66) 

genotypes (Figure 6.5 and 6.3.a).  
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Figure 6.5 Comparison of SPAD predicted from reflectance using the model developed in 
Chapter 5 and actual SPAD measurements for the wheat landraces set (L_Mex2), the R2 
include all the points of the plot. The dashed line represents the 1:1. 

At the time the reflectance survey of 235 wheat landraces was made, their phenological 

development ranged from seven days before to 36 days after flowering (Figure 6.6.a). 

Consequently, it was decided to select plants between six and nine days after flowering 

because the spike reaches its maximum dry weight around seven days after anthesis, the 

grain weight is insignificant and the water soluble carbohydrate reserves in stem are at their 

peak (Pask, 2012). The observed SPAD reading measured during the survey was compared 

against J predicted from reflectance model. 29 wheat genotypes between six and nine days 

after anthesis were dispersed within the whole range of measurements. From these 29, 21 

wheat landraces and two elite wheats (checks) were chosen for more detailed 

measurements (Figure 6.6.b.). 

 

Figure 6.6 a) Histogram of the days after flowering (DAF) when the landraces were 
surveyed for reflectance, the star marks 5-10 DAF b) predicted J from the model derived in 
Chapter 5 shown in relation to observed SPAD. A subset of 23 wheat genotypes were 
selected based on their flowering time (6-9 DAF) from 235 wheat genotypes measured in 
the first survey.  
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The plot of observed SPAD versus predicted J for the subset of L_Mex2 genotypes 

measured in the survey and again six days after the survey, LS_Mex2 are shown in Figure 

6.7. Comparing the first and second measurements, we observed that in general landrace 

wheats had increased SPAD and J in the second measurement, while the elite genotypes 

maintained SPAD values and reduced J (V523 and V177). The changes between the first 

and the second measurement show that trait values for genotypes can vary a lot in a few 

days. The spread in values for each check genotype indicates the number of replicates 

needed to achieve a given precision. It is also interesting that the correlation between J and 

SPAD is not high. 

 

Figure 6.7 Relationship between J predicted and SPAD for a subset of 21 wheat landraces 
and 2 elite genotypes a) measured in the first survey (L), each dot is one repetition, 
genotypes V177 and V523 are elite genotypes with 10 repetitions each, b) six days after the 
survey (LS), black dots represent the mean of two repetitions while 6 and 4 repetitions are 
shown for V177 and V523, respectively.  

 

When predicted J was compared against observed J, there was a tendency for predicted J to 

exceed observed J (Figure 6.8). Predicted and observed values of J fall largely within the 

range observed from Chapter 5 for fertilized plants. The model predicted J less well for 

landraces (LS_Mex2, R2=0.4, Figure 6.8) compared to elite genotypes (CCS_Mex2, 

R2=0.5, Figure 6.4). LMA and Narea predicted from reflectance models developed in 

Chapter 5 both correlated strongly with observed values (Figure 6.9).  

 



Chapter 6. Applying reflectance spectra to screen and select genotypes in a new set of wheat genotypes 

142 
 

 
Figure 6.8 J predicted from reflectance measurements as function of J calculated from gas 
exchange and equation 6.1. Black diamonds represent LS_Mex2 superimposed over the 
data used to validate the model in Chapter 5.   

 

 
Figure 6.9 Validation of predictions using reflectance with the models derived in Chapter 5 
against observed data for wheat a) LMA and b) Narea (21 genotypes with two repetitions, 
check V177 with six repetitions and V523 with four repetitions for LS). There were 295 
observations in total for LMA and Narea. 

 

6.4.3 Predicting all traits 

Reflectance spectra were also used to predict Vcmax25 and Vcmax25/Narea. The genotypic range 

for each character is compared against data collected from the Mex experiments elite 

wheat genotypes from CIMCOG Subset II before anthesis (CB_Mex) and after anthesis 

(CA_Mex), see Chapters 3 and 5. The L_Mex2 set of wheat genotypes showed the biggest 

variation in all traits. For Vcmax25, J and Vcmax25/Narea, the Mex experiments showed less 

variation than the Mex2 experiments. All sets of wheat genotypes had similar ranges for 
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LMA and different ranges for Narea and SPAD. Also shown are the ranges for the selected 

subsets LS_Mex2 and CCS_Mex2. Mean values for Vcmax25, J and Vcmax25/Narea all increased 

while the range narrowed for LS compared to L. By contrast, mean values for Vcmax25, J and 

Narea all decreased for CCS compared to CC. 

J increased in the second measurement, LS_Mex2 (Figure 6.7), and the predictions reveal 

that for most of these genotypes, Vcmax25, J and Vcmax25/Narea also increased, while LMA, Narea 

and SPAD remained similar in both measurements (Figure 6.10). 

Elite genotypes from LS_Mex2 showed a decrease in J (Figure 6.7.b), which agrees with 

predictions from CCS_Mex2. These elite genotypes reduced Vcmax25 and J in the second 

measurement, and interestingly Vcmax25/Narea remained similar between occasions. Narea was 

also lower in the second measurement, but LMA and SPAD increased (Figure 6.10).  

 
Figure 6.10 Ranges of Vcmax25, J, Vcmax25/Narea, LMA, Narea and SPAD predicted from 
reflectance measurements and the models generated in Chapter 5 for 6 different groups of 
wheat genotypes (CB, CA, L, LS, CC, CCS). 

 

6.5 DISCUSSION 

This chapter demonstrates that hyperspectral reflectance can be used in the field to rapidly 

screen for photosynthetic, leaf structure and composition traits. Importantly, the models 

generated in Chapter 5 were able to predict traits for novel genotypes that were not used in 

their construction. This screening method allowed us to rapidly select genotypes in the 
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same season in which they were measured, while biochemical analysis and gas exchange can 

take much longer and require many more resources to produce similar results.   

6.5.1 Predicting traits for novel wheat genotypes that were not used for 

model derivation 

Models derived from a combination of several sets of wheat genotypes were tested on 

genotypes which had not been used to develop the models in Chapter 5. Results revealed 

that it is possible to screen for Vcmax25, J, Vcmax25/Narea, LMA, Narea and SPAD using 

reflectance. The best predictions were obtained for LMA and Narea.  Interestingly, models 

derived from aspen and cotton were able to predict leaf nitrogen concentration and LMA 

from reflectance measured on soybean (Ainsworth et al., 2014). It would be useful to 

compare the models derived here for wheat with those derived from aspen and cotton.  

It is still difficult to define the size and composition of the germplasm training set required 

to build a robust model with 2,000 wavelengths while balancing good prediction against 

‘over fitting’. In this project with wheat, 282 measurements were used to build the model to 

predict LMA, Narea and SPAD, and 262 measurements to predict Vcmax25, J, Vcmax25/Narea. 

These models performed well at predicting traits in 223 novel elite wheat genotypes and 

235 novel wheat landraces. In another experiment with wheat, Ecarnot et al., (2013) used 

reflectance to predict LMA and Narea, using a calibration obtained from a diverse collection 

of wheats measured under multiple conditions and environments (Ecarnot et al., 2013). By 

contrast, it seems that the calibration for aspen required fewer observations (Serbin et al., 

2012). However, in this study a strong driver of variation was environmental treatment 

rather than genetic variation. Further analysis comparing different sizes of training sets to 

construct the models is required. 

In the second measurement, gas exchange was used to validate predictions of J. The 

correlation between observed J and predicted J in Mex2 was relatively poor with R2=0.4-

0.5 (Figure 6.4 and 6.8). During the second measurement, mean leaf temperature was 32 ºC 

and many plants showed low gs (average of 0.23 mol H2O m-2 s-1) suggesting that plants 

were stressed on the day of measurements. Both of these factors could influence 

calculations of J with gas exchange. There is likely to be genetic variation for gm between 

elite wheats and wheat landraces as found by Jahan et al., 2014 or between leaves with 

different photosynthetic capacity (von Caemmerer and Evans, 1991). We assumed a 

constant gm of 0.55 mol m-2 s-1 bar-1 for all wheat genotypes in these surveys, but because 

the measurements were made at high ambient CO2 concentrations (800 ppm), the error 

introduced by this assumption was thought to be small. While J could also be estimated 
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from chlorophyll fluorescence, the need to surround the leaf with a high CO2 

concentration would mean that each measurement was more complicated and time 

consuming. Wheat landraces are a source of diversity that needs to be explored more 

intensively in the future. 

At present we are satisfied with the calibration of the models, which provide adequate 

estimates for six different traits from a single hyperspectral reflectance measurement. Other 

instruments target only one trait such as SPAD for chlorophylls (Konica Minolta, 2009-

2013) or FluorPen to estimate electron transport rate from chlorophyll fluorescence.  

However, choosing the best method to screen genotypes for photosynthetic traits will 

depend on the objectives of the experiment, and whether the data is used simply to rank 

genotypes or provide more precise quantitative data.  

6.5.2 Leaf spectroscopy 

Spectroscopy has been used widely to quantify particular molecules. For example the 

wavelengths 647 nm and 664 nm are routinely used to calculate chloropyll a and b in N,N-

Dimethylformamide as the aqueous solvent (Porra et al., 1989). Extractions of leaf tissue 

for lab-based spectroscopy is much more time consuming than measuring hyperspectral 

reflectance in vivo. 

Leaf spectroscopy is easy to use in the field because it is quick and it is a non-destructive 

method. For instance, the SPAD-502, uses absorbance measurements at 660 and 940 nm, 

and has been widely used in the field to assess chlorophyll content and leaf nitrogen in 

wheat (Giunta et al., 2002; Sadras et al., 2012; Hamblin et al., 2014). The CCM-200 hand-

held chlorophyll meter from Opti-Sciences, based on absorbance at 650 and 940 nm, has 

also been used to estimate chlorophyll content in Quercus and sugar maple leaves (Cate and 

Perkins, 2003; Silla et al., 2010). Comparisons between SPAD meter, CCM meter, 

reflectance indexes such as first derivative of the reflectance spectrum at 730 nm (D730) and 

reflectance integral index (NII) have all shown good correlations with chlorophyll content 

(Richardson et al., 2002) meaning that leaf spectroscopy has a huge potential for measuring 

in the field. Now, using hyperspectral reflectance as done in this project with the 

FieldSpec®3 spectroradiometer, more physiological plant features can be assessed in the 

field and correlated with the actual value of the trait. This technique has been applied in 

aspen, cotton and soybean (Serbin et al., 2012; Ainsworth et al., 2014) so the method clearly 

has widespread potential for use in other crops and trees. It is possible that the models 

generated in this project can be applied to similar grasses and crops such as rice and barley. 
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Reflectance is already utilised in precision agriculture. For example, Green SeekerTM 

(NTech Industries, Ukiah. CA, USA) is a commercial sensor that determines the 

normalized difference vegetation index (NDVI) from canopy reflectance in the visible and 

near infra-red part of the spectrum. It is used extensively in first world farming and even by 

farmers in Africa to determine when to apply fertilizer (Kim K, 2015). New technology 

allows measurements from a wider spectral band that can potentially capture the signature 

of more leaf traits and predict their values. As more teams explore hyperspectral reflectance 

for crop management, ecosystems management and landscape ecology (Jones and 

Vaughan, 2010), predictive power will improve as demonstrated by the estimation of 

nitrogen in forest canopies (Smith et al., 2003).  

Leaf biochemistry based reflectance measurements definitely have great potential for 

agricultural use in breeding programs to select for genetic diversity, and for this reason 

more research is needed in this field to improve the power of the technique and instrument 

affordability. 

6.6 CONCLUSIONS 

Hyperspectral reflectance modelling of wheat leaves accurately predicted Vcmax25, J, LMA, 

Narea, SPAD and Vcmax25/Narea in previously uncharacterised wheat germplasm. This method 

predicts multiple variables related to photosynthetic performance with one measurement, 

giving high accuracy for SPAD, LMA and Narea. This method is faster and cheaper than 

sending samples for biochemical analysis in laboratories, and shows promise for future 

application in crop breeding, agronomy and in crop physiology research. 
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7.1 OVERVIEW OF THE THESIS 

Improving photosynthesis has the potential to increase biomass and yield in wheat 

(Reynolds et al., 2012b; Evans, 2013; Furbank et al., 2015). One way to improve 

photosynthetic traits is exploiting existing photosynthetic diversity (Parry et al., 2011). The 

major objective of this study was to identify if there is photosynthetic diversity in wheat, 

particularly in the context of whether enough diversity exist to support breeding strategies 

for crop improvement. The biochemical model of leaf photosynthesis was optimised for 

wheat, which permitted calculation of important photosynthetic components such as 

Rubisco activity and electron transport rate. Photosynthetic diversity was assessed with 

conventional methods in 67 wheat and 9 triticale genotypes where Vcmax25, J and 

Vcmax25/Narea were important traits describing photosynthetic capacity and efficiency. Since it 

is known that assessing photosynthetic traits with conventional methods can be slow, the 

next major objective was to explore a promising technique, hyperspectral leaf reflectance, 

to screen photosynthetic capacity and efficiency in wheat. Measurements of reflectance are 

faster than conventional methods such as gas exchange or leaf nitrogen. The method was 

able to predict Vcmax25, J, LMA, Narea, Vcmax25/Narea and SPAD from one reflectance 

measurement. The models generated to predict these traits were used to screen 223 elite 

and 235 landrace wheat genotypes. Hyperspectral leaf reflectance has a future to measure 

physiological and biochemical leaf traits in high throughput and the method can still be 

improved. 

7.2 UNDERSTANDING PHOTOSYNTHETIC DIVERSITY 

Phenotyping has become relevant to correlate with markers in recombinant inbreed 

populations to detect quantitative trait loci (QTLs) or for marker assisted selection (MAS). 

Thus, detection of photosynthetic diversity can help breeding programs to select genotypes 

with higher photosynthetic capacity and efficiency and detect QTLs. This study revealed 

genetic variation for photosynthetic traits in wheat; however, assessing photosynthesis in 

plants is complex. The leaf per ser is complex and it is vulnerable to environmental factors. 

The leaf is the organ used by plants to harvest sunlight and where the photosynthetic 

process takes place. The leaf dry mass per unit area (LMA) is a trait that reflects the carbon 

cost of constructing leaf surface. It relates to the overall structure that contains the 

different photosynthetic components such as chloroplasts and Rubisco protein. Rubisco is 

the main enzyme of the photosynthetic process in the Calvin Cycle and accounts for a 

significant proportion of leaf nitrogen. Thus, LMA may set an upper limit to the quantity 

of photosynthetic machinery and nitrogen in a given leaf area. Leaf structure also 
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influences diffusion of CO2 from stomata to Rubisco. Consequently, stomatal conductance 

(gs) and mesophyll conductance (gm) are important traits when assessing photosynthetic 

capacity. Rubisco activity and activation state are important for understanding Rubisco 

carboxylation, and they change with radiation, CO2 concentration and temperature. Not 

only CO2 limits Rubisco carboxylation. RuBP is the other substrate of Rubisco and RuBP 

regeneration in the Calvin Cycle requires the electron transport chain to convert light into 

chemical energy. Thylakoid composition and the Calvin cycle enzymes are both influenced 

by radiation and leaf nitrogen. Limitations in the photosynthetic machinery can vary across 

wheat genotypes making it difficult to correlate directly with harvest index and yield. 

However, there is no doubt that leaves are the essential plant organ that produces sugars 

which are used for growth and yield (Figure 7.1).  

 
Figure 7.1 Diagram showing relationships between key photosynthetic attributes. Leaves 
are the main photosynthetic organ in wheat that provides sugars to the grain.  

 

7.3 ASSESSING PHOTOSYNTHETIC DIVERSITY 

The first question is to determine the traits that can be used to assess photosynthesis in 

plants. Photosynthetic rate (A) has been a trait commonly measured in wheat (Fischer et al., 

1998b; Gutierrez-Rodriguez et al., 2000; Reynolds et al., 2000). However, it is highly 

dependent on gs (Condon et al., 2004). The velocity of carboxylation (Vcmax25) and the 

electron transport rate (J) calculated from A at different CO2 concentrations at saturated 

light can be determined independently from gs and thus potentially provide robust traits to 

assess photosynthetic diversity (Wong et al., 1979; Farquhar and Sharkey, 1982).  
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Results from this study showed that Vcmax25 and Rubisco measured in vitro were positively 

correlated (Figure 3.4). However, the R2 of the linear relationship between Rubisco in vitro 

and Vcmax25 was relatively low (R2=0.52). Similarly, in previous studies, the initial slope of 

A/Ci curves were positively related to Rubisco measured in vitro in Phaseolus vulgaris and 

wheat (von Caemmerer and Farquhar, 1981; von Caemmerer and Evans, 1991). It has been 

suggested that this relationship may be curvilinear. An extreme example of this was 

observed for an unbranching apple (Cheng and Fuchigami, 2000). This curvilinear 

relationship may be related to gm and Rubisco activation state. This is documented below. 

7.4 MESOPHYLL CONDUCTANCE IS IMPORTANT TO ASSESS Vcmax25 

Mesophyll conductance, previously called CO2 transfer conductance, is the conductance to 

CO2 diffusion from intercellular airspaces to the sites of CO2 fixation in the chloroplast 

stroma and influences the estimation of Vcmax25 (Evans and von Caemmerer, 1996; Scafaro 

et al., 2011; Evans and von Caemmerer, 2013). In this thesis, gm has been scaled in direct 

proportion to assimilation rate at a given Ci (details in Chapter 2).  Perhaps, the relationship 

between Vcmax25 and Rubisco in vitro would be linear if the gm of each genotype would be 

measured. It has been reported that gm varies between plant species (von Caemmerer and 

Evans, 2015) and in wheat can vary from 0.2 to 0.6 mol m-2 s-1 bar-1 (von Caemmerer and 

Evans, 1991; Jahan et al., 2014), which can influence Vcmax25 specially when gm is lower than 

0.3 mol m-2 s-1 bar-1 (Figure 7.2). In a recent experiment, genetic diversity for Vcmax and J 

was observed between eleven wheat genotypes when gm was used in the calculations (Jahan 

et al., 2014). Greater variability in Vcmax25 may have been found in this study if it had been 

possible to also measure gm. 

 

Figure 7.2  Velocity of carboxylation at 25 °C (Vcmax25) as a function of assumed mesophyll 
conductance (gm) from an A:Cc curve measured in Triticum aestivum cv. Mace. 
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For some species such as tobacco, gm is very responsive to temperature, increasing three 

fold from 10 to 40 ºC. By contrast, gm for wheat was rather unresponsive to leaf 

temperature (von Caemmerer and Evans, 2015). It has been shown that gm also changes 

depending on leaf nitrogen (von Caemmerer and Evans, 1991), but the underlying 

mechanism has yet to be conclusively explained. Mesophyll conductance has been related 

to the surface area of chloroplasts exposed to intercellular airspace (Evans et al., 1994) and 

aquaporins have been implicated (Kaldenhoff and Fischer, 2006; Uehlein et al., 2008). 

In wheat, gm seems to be more affected by leaf nitrogen content than by leaf temperature, 

which could be relevant analysing photosynthetic performance in the field. In this study 

genotypes measured in the field in Mexico had lower leaf nitrogen than genotypes in 

Australia (Figure 3.1). A deeper experiment regarding leaf nitrogen in different wheat 

varieties including elite and landraces genotypes would help to understand the effect of gm 

on wheat photosynthetic performance.  

7.5 IS CHANGING RUBISCO ACTIVATION CONTRIBUTING TO THE 

OBSERVED TEMPERATURE RESPONSE? 

Rubisco activity varies with temperature and could be due to either E (activation energies) 

involved in the carboxylation and oxygenation process and/or changing Rubisco activation 

state. The relationship between Vcmax25 and leaf nitrogen (Figure 3.2) could be confounded 

by changing activation state. 

A curvilinear relationship was observed between Vcmax25 and Rubisco measured in vitro 

(Figure 3.4). It was assumed that Rubisco was fully activated when deriving Vcmax25 from gas 

exchange. However, since Rubisco activation state changes depending on environmental 

factors such as radiation, CO2, temperature and leaf nitrogen availability, the assumption of 

full activation may be invalid in some instances. This could easily be tested by appropriate 

sampling and assay in future work.  

In this study, measurements were taken in 1800 μmol quanta m-2 s-1 which is in the light 

saturated region for wheat. However, it is known that Rubisco activation state varies with 

irradiance. Initial Rubisco activity increases considerably when the light is turned on to 300 

or 600 μmol quanta m-2 s-1 (Parry et al., 1997; Parry et al., 2013). Maximal Rubisco activity 

can also be reduced at high light intensity. Therefore, measuring after acclimation to 

different environments is likely to result in variability in Rubisco activation. To understand 

the impact of irradiance on apparent photosynthetic capacity in different wheat genotypes 
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growing in different environments, such as Mexico versus Australia, further experiments 

need to be undertaken. 

Rubisco activity also changes depending on CO2 concentration. CO2 assimilation (A) also 

rises curvilinearly at increasing CO2 concentrations, A increases faster up to ~380 μbar 

intercellular CO2 partial pressure then it increases slightly as shown in the A:Ci curves (see 

von Caemmerer 2000). In sweet potato, Rubisco activation state reached a maximum of 

~90% of full activation at 140 μbar intercellular CO2 partial pressure at 25 ºC. It then 

decreased to ~75% of Rubisco activation state at 500 μbar intercellular CO2 partial 

pressure showing a higher RuBP consumption than RuBP regeneration (Sage and Kubien, 

2007). Atmospheric CO2 is relatively stable compared to irradiance or temperature the 

wheat growing environments, but it should be considered when determining 

photosynthetic capacity in wheat for future climates because CO2 concentrations continue 

to increase. 

A curvilinear relationship between the initial slope of the A:Ci curve as function of leaf 

nitrogen has previously been observed for wheat, reflecting a range of values for the initial 

slope at given leaf nitrogen (Evans and Seemann, 1984). It has also been suggested that 

Rubisco activation state can be reduced in at high leaf nitrogen content in wheat (Machler 

et al., 1988). This could be related to the lower Vcmax25 and higher Narea measured in Australia 

(CA_Aus3) than genotypes measured in Mexico (CA_Mex) (Figure 3.3). Further 

experiments evaluating Rubisco activity and Rubisco state at different leaf nitrogen levels 

are required in wheat. 

Rubisco activation state is the ratio of initial Rubisco activity to total Rubisco activity. 

Rubisco activase is one type of chaperone involved in the catalytic activity of Rubisco  

(Portis, 2003). It has been shown that Rubisco activation state and Rubisco activase activity 

change with changes in temperature. In general, Rubisco activation state, Rubisco activase 

activity  and CO2 assimilation rise slightly at increasing temperatures and then decrease 

drastically from 30 to 40 ºC depending on the species, their native growing environment 

and water status (Crafts-Brandner and Salvucci, 2000; Yamori et al., 2006; Carmo-Silva and 

Salvucci, 2011, 2012; Parry et al., 2013). In this project, activation energies for Vc, Kc and Ko 

were modified to assess Vcmax at 25 ºC inferred from measurements at different 

temperatures (Chapter 2). The newly derived activation energies helped to improve the 

fitting at different temperatures. However, it is possible that instead of activation energy 

being incorrect, the assumption of full Rubisco activation state could be wrong at 

temperatures greater than 30 ºC. Further analysis of Rubisco kinetics in wheat at different 
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temperatures is required to validate the assumption made here. To improve photosynthesis 

modelling, a better understanding of how Rubisco activation state changes with 

temperature is needed (Salvucci and Crafts-Brandner, 2004). Temperature and 

photosynthesis are key factors for future research related to climate change. 

The current study provides an adjustment in the calculations of Vcmax25 that can be used 

with other physiological traits (J, LMA, Narea, SPAD) in selection of wheat genotypes with 

high photosynthetic capacity and efficiency. However, understanding the main enzyme of 

photosynthesis, Rubisco, in different environments is complex because Rubisco activity 

changes with irradiance, CO2 concentration, leaf nitrogen content and temperature. For 

this reason more experiments are required to understand the effect of these traits on 

photosynthetic capacity in wheat to improve the accuracy and value of screens for 

photosynthetic traits. 

7.6 HYPERSPECTRAL REFLECTANCE PREDICTING MULTIPLE 

PHYSIOLOGICAL AND BIOCHEMICAL TRAITS 

Hyperspectral leaf reflectance combined with partial least square regression (PLSR) 

modelling was able to predict the following traits: Vcmax25, J, LMA, Narea and SPAD (Chapter 

5). The method is fast and multiple variables can be predicted from one reflectance 

measurement. In addition, the method is not static; it can be improved for future 

measurements and applied to other crops. 

Firstly, in evaluating the advantages and disadvantages of this method, it would have been 

better to have a lighter instrument. This may be possible if a narrower part of the spectrum 

or a reduced number of wavelengths is needed because it would be possible to design a 

light weight, cheaper instrument with a fixed, more restricted number of wavelengths.  

Using the full length spectrum (350 to 2500 nm) has proven to give good predictions for 

Vcmax25, J, LMA, Narea, leaf transpiration, carotenes, chlorophylls (Asner et al., 2011a; Asner et 

al., 2011b; Serbin et al., 2012; Ainsworth et al., 2014; Wang and Jin, 2015), and specific 

regions have been proposed to predict this traits. More recently, it has been proposed to 

combine tree regression models, PLSR, Random Forest (RFR) and Support Vector 

Machine regression (SVMR), to detect spectral bands. This multi-method ensemble was 

shown to be robust selecting spectral bands for chlorophyll, dry matter and water 

(Feilhauer et al., 2015). Thus, it will be interesting to apply the multi-method ensembles to 

the data obtained in this study for wheat in order to select the most important bands and 

wavelengths for Vcmax25, J, LMA, Narea and SPAD. As well, bands selected for chlorophylls 
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calculated from SPAD could be compared with the bands obtained by Feilhauer et al., 2015 

from 1267 data sets from numerous species, mainly trees. 

In order to better understand leaf reflectance, it would be interesting to explore more 

broadly spectroscopy in leaves. A relevant technique for such analyses is infrared 

absorption and Raman scattering. This method has been used to track molecular vibrations 

that give accurate information on actual chemical structures. Raman spectroscopy and 

Raman imaging have been used in plants to relate cell wall components, metabolites, 

organic and inorganic substances with bands of the electromagnetic spectra. Infrared and 

Raman spectroscopy have been used to characterise plant cuticles for polysaccharides, 

phenols, water, etc (Gierlinger and Schwanninger, 2007; Gierlinger et al., 2012; Heredia-

Guerrero et al., 2014). In tomato a portable spectrometer coupled to a micro-videocamera 

and a confocal Raman microscope was used in vivo to detect lycopenes and carotenoids 

(Trebolazabala et al., 2013). Since Rubisco protein is present at high levels present in plant 

leaves, it will be interesting to explore if Rubisco protein can be quantified with Raman 

spectroscopy. Perhaps, in the future interesting peaks for Rubisco content or Vcmax25 

detected with hyperspectral reflectance and PLSR can be tested with Raman spectroscopy 

to more accurately quantify Rubisco protein. 

Hyperspectral reflectance and PLSR has been widely applied in ecology with success. 

Therefore, this method can also been applied in agriculture and pre-breeding selection for 

biochemical and physiological traits in other crops. It has been shown that a model for leaf 

nitrogen generated from aspen trees reflectance measurements could be applied in soybean 

(Ainsworth and Long, 2005). It would be interesting to test the models obtained in this 

study (Chapter 5) in other Graminae such as rice or barley to see if the models or some 

models work with similar leaf anatomy, and in other crops with different leaf anatomy and 

photosynthetic pathways such as sorghum.  

Hyperspectral reflectance and PLSR will enable larger populations to be screened for 

photosynthetic characters which can be combined with molecular markers to find regions 

in the plant genome related to the phenotypic character (QTLs, quantitative trait loci). 

Subsequently a smaller part of the genome can be studied with fine mapping to identify 

smaller regions of interest or genes (Collard et al., 2005). The hyperspectral reflectance 

approach is also starting to be implemented in imaging spectroscopy to predict 

photosynthetic traits, leaf nitrogen and leaf dry mass area in forest and crops (Serbin et al., 

2014; Serbin et al., 2015). Therefore, this method has a future to rapidly screen for 
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phenotypes that can be used to find QTLs and in marker assisted selection (Collard and 

Mackill, 2008).  

7.7 CONCLUDING REMARKS 

This thesis analysed photosynthesis from biochemistry to leaf physiology. It provides the 

bases to understand photosynthetic diversity in wheat at the leaf level, but further 

experiments at the canopy level are required to provide the link to crop biomass 

production. 

Reflectance is a technique that can be used to measure photosynthetic and other leaf traits 

in the field. The next step is to evaluate Vcmax25 and J in segregating populations to 

determine the variability and heritability of the traits and to identify markers that would 

enable their selection. This would then enable exploration of the relationships between the 

traits and biomass and yield with the aim of ultimately providing a new objective for 

incorporation into breeding programs. 
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Appendix  

Table Chapter 2 

A 1 Protocol followed to measure temperature CO2 response curves in the field. 

Genotype Rep/Plant LI-COR Time 
Field Temp  

°C 
Leaf Temp 

°C 
Block Temp 

°C 

Curves at 26 °C 

V45 

1 #3 09:00 21.9 24.6 25 

2 #3 09:28 - 25.8 25 

3 #3 09:53 - 25.7 25 

V62 

1 #4 09:09 22.3 24.4 25 

2 #4 09:36 - 25.7 25 

3 #4 09:59 - 26.1 25 

V57 

1 #4 10:24 - 26.5 25 

2 #4 10:45 - 26.8 25 

3 #4 11:10 - 27.1 25 

V66 

1 #3 10:14 - 26.3 25 

2 #3 10:37 - 26.6 25 

3 #3 11:02 - 26.9 25 

Curves at 28 °C 

V45 

1 #3 11:38 25.9 27.4 25 

2 #3 12:17 - 27.5 25 

3 #3 12:37 - 27.9 25 

V62 

1 #4 12:01 - 27.2 25 

2 #4 12:23 - 27.3 25 

3 #4 12:44 - 28.0 25 

V57 
1 #4 13:09 - 28.4 25 

2 #4 13:29 - 28.2 25 

V66 
1 #3 12:57 - 28.2 25 

2 #3 13:22 - 29.0 26 

Curves at 30 °C 

V45 

1 #3 13:51 28.3 29.6 28 

2 #3 14:10 - 31.1 28 

3 #3 14:29 - 29.9 28 

V62 

1 #4 13:58 27.7 29.9 28 

2 #4 14:16 - 29.7 28 

3 #4 14:36 - 29.8 28 

V57 
1 #4 15:00 29.6 30.3 28 

2 #4 15:22 - 30.1 28 

V66 
1 #3 14:57 29.4 30.4 28 

2 #3 15:16 - 30.4 28 

Curves at 32 °C 

V45 

1 #3 15:37 30.8 31.6 30 

2 #3 15:59 - 33.3 30 

3 #3 16:18 - 32.3 30 

V62 1 #4 15:44 29.7 31.5 30 
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Figures Chapter 3 

 

A 2  Variation in Assimilation rate (A380), stomatal conductance (gs) and  of intercellular to 
ambient CO2 partial pressure (Ci/Ca) for BUNYIP set in glasshouse (circles), 30 genotypes, 
2 repetitions; BUNYIP set in the field (asterisks), 28 genotypes, 4 repetitions; CIMCOG set 
in Australia (closed triangles), 20 genotypes, 2-8 repetitions; CIMCOG set in Mexico (open 
triangles), 30 genotypes, 1-3 repetitions; Early vigour set in glasshouse (squares), 16 
genotypes, 3 repetitions; Early vigour in the field (plus sign), 2 genotypes, 4 repetitions.  
Symbols are the average of the repetitions, and error bars represent the standard error from 
the same repetitions.  
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A 3 Variation in velocity of carboxylation (Vcmax) at 25 °C, electron transport rate from gas 
exchange (J), and  Vcmax at 25 °C Narea

-1  for BUNYIP set in glasshouse (circles), 30 
genotypes, 2 repetitions; BUNYIP set in the field (asterisks), 28 genotypes, 4 repetitions; 
CIMCOG set in Australia (closed triangles), 20 genotypes, 2-8 repetitions; CIMCOG set in 
Mexico (open triangles), 30 genotypes, 1-3 repetitions; Early vigour set in glasshouse 
(squares), 16 genotypes, 3 repetitions; Early vigour in the field (plus sign), 2 genotypes, 4 
repetitions.  Symbols are the average of the repetitions, and error bars represent the 
standard error from the same repetitions.  
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A 4 Variation in Nitrogen (Narea), chlorophylls content (SPAD units) and leaf dry mass per 
area (LMA) for BUNYIP set in glasshouse (circles), 30 genotypes, 2 repetitions; BUNYIP 
set in the field (asterisks), 28 genotypes, 4 repetitions; CIMCOG set in Australia (closed 
triangles), 20 genotypes, 2-8 repetitions; CIMCOG set in Mexico (open triangles), 30 
genotypes, 1-3 repetitions; Early vigour set in glasshouse (squares), 16 genotypes, 3 
repetitions; Early vigour in the field (plus sign), 2 genotypes, 4 repetitions.  Symbols are the 
average of the repetitions, and error bars represent the standard error from the same 
repetitions.  
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Tables Chapter 3 

 
A 5 Genotypes, means and Tukey’s HSD test (P<0.08) for traits that showed P-value ≤0.06 
between genotypes in the ANOVA test of the experiment EVA (±N)_Aus1, n=6. Means 
with the same letter are not significantly different. Honest Significant Difference (HSD). 

A Ci/Ca Vcmax25 J 
V14 22.0 a V9 0.80 a V14 116.7 a V14 173.7 a 
V4 20.7 ab V6 0.78 ab V4 111.6 ab V75 163.0 ab 
V3 20.4 ab V3 0.78 ab V3 108.5 ab V4 160.8 ab 
V11 18.3 abc V4 0.78 ab V5 101.0 ab V3 159.4 ab 
V1 17.6 abc V2 0.77 ab V1 98.9 ab V11 147.9 ab 
V6 17.5 abc V8 0.77 ab V11 97.9 ab V12 143.0 ab 
V12 17.3 abc V10 0.77 ab V10 97.6 ab V5 141.7 ab 
V10 17.3 abc V14 0.77 ab V6 97.6 ab V6 141.5 ab 
V75 17.2 abc V12 0.77 ab V75 96.9 ab V1 140.9 ab 
V5 17.1 abc V7 0.76 ab V12 95.9 ab V76 139.0 ab 
V76 16.6 abc V11 0.76 ab V76 92.1 ab V10 134.9 ab 
V7 16.2 bc V1 0.76 ab V7 91.5 ab V7 134.1 ab 
V13 15.9 bc V13 0.76 ab V13 84.8 ab V13 133.9 ab 
V2 15.0 c V76 0.75 ab V2 83.7 ab V2 117.9 ab 
V8 13.9 c V5 0.74 ab V9 73.0 ab V9 115.8 ab 
V9 13.0 c V75 0.71 b V8 72.8 b V8 113.9 b 

Vcmax25/Narea  Narea SPAD 

V75 88.08 a V14 2.06 a V12 41.30 a 
V76 73.12 ab V12 1.69 ab V14 40.56 ab 
V4 72.92 ab V7 1.65 abc V3 39.38 ab 
V1 72.65 ab V3 1.65 abc V6 38.26 abc 
V10 72.59 ab V6 1.61 abc V4 37.42 abc 
V11 72.55 ab V4 1.55 abc V7 36.40 abc 
V5 71.23 ab V5 1.49 bc V5 35.52 abc 
V3 68.04 ab V11 1.45 bc V13 35.08 abc 
V6 67.36 ab V13 1.45 bc V10 34.53 abc 
V13 62.74 ab V76 1.42 bc V1 34.47 abc 
V2 61.30 b V1 1.42 bc V11 33.60 abc 
V7 61.02 b V10 1.41 bc V2 33.27 abc 
V12 60.51 b V2 1.38 bc V76 32.56 abc 
V14 58.67 b V9 1.34 bc V9 32.40 abc 
V9 58.54 b V8 1.29 bc V75 30.60 bc 
V8 57.63 b V75 1.12 c V8 29.28 c 

 

A 6 Phenotypic correlation between traits from experiment Aus1. Traits with significant 
correlations: ***P≤ 0.001; **P≤ 0.01; *P≤ 0.055. DF=14. 

 gs Ci/Ca  Vcmax25 J Narea SPAD LMA 

A 0.84*** -0.04 0.97*** 0.92*** 0.65** 0.67*** 0.53* 

gs 1.00 0.49* 0.77*** 0.63** 0.78*** 0.77*** 0.49* 

Ci/Ca   1.00 -0.14 -0.32* 0.37 0.32 0.11 

Vcmax25   1.00 0.91*** 0.61** 0.68* 0.49* 

J    1.00 0.49* 0.54* 0.49* 

Narea     1.00 0.87*** 0.61* 

SPAD      1.00 0.67** 
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A 7 Genotypes, means and Tukey’s HSD test (P<0.05) for traits that showed P-value ≤0.05 
between genotypes in the ANOVA test of the experiment BYP(±N)_Aus2, n=4. Means 
with the same letter are not significantly different. 

A Vcmax25 (P<0.09) J Vcmax25/Narea  
V40 32.0  a V44 168.38 a V28 231    a V27 75.1   a 
V20 31.1 ab V20 163.69 ab V44 228   ab V31 68.9  ab 
V44 30.9 ab V32 157.35 ab V20 226  abc V20 68.8  ab 
V28 30.4 ab V40 156.35 ab V40 222 abcd V24 68.6  ab 
V19 29.8 ab V34 155.47 ab V43 221 abcd V33 68.0 abc 
V30 29.7 ab V28 155.43 ab V34 219 abcd V26 67.5 abc 
V38 29.6 ab V19 152.68 ab V18 217 abcd V34 65.8 abc 
V43 29.6 ab V27 152.38 ab V39 214 abcd V17 65.2 abc 
V34 29.2 ab V24 152.13 ab V29 210 abcd V21 64.9 abc 
V18 29.2 ab V17 151.68 ab V24 209 abcd V44 64.8 abc 
V27 29.1 ab V38 150.34 ab V19 207 abcd V19 64.8 abc 
V17 29.0 ab V39 150.02 ab V38 206 abcd V32 63.7 abc 
V39 28.8 ab V29 148.95 ab V27 206 abcd V35 63.3 abc 
V32 28.7 ab V30 148.59 ab V41 205 abcd V18 62.0 abc 
V24 28.6 ab V18 148.04 ab V32 205 abcd V29 61.7 abc 
V29 28.6 ab V43 146.51 ab V23 205 abcd V28 61.2 abc 
V35 28.3 ab V15 145.23 ab V17 204 abcd V22 61.1 abc 
V33 28.2 ab V33 142.76 ab V21 200 abcd V40 60.8 abc 
V21 27.9 ab V35 142.34 ab V33 197 abcd V15 60.7 abc 
V26 27.5 ab V41 141.18 ab V25 196 abcd V30 60.5 abc 
V41 27.5 ab V31 141.06 ab V30 196 abcd V42 59.8 abc 
V15 27.5 ab V21 140.89 ab V35 195 abcd V39 58.3  bc 
V31 27.2 ab V26 139.14 ab V15 195 abcd V16 58.3  bc 
V37 26.4 ab V22 137.30 ab V37 193 abcd V38 58.2  bc 
V22 26.3 ab V23 136.20 ab V36 192 abcd V36 58.1  bc 
V36 26.1 ab V25 136.14 ab V22 190 abcd V23 57.7  bc 
V16 26.0 ab V36 136.12 ab V26 187  bcd V37 56.3  bc 
V23 25.8 ab V37 133.81 ab V16 185   cd V43 55.8  bc 
V42 25.8 ab V16 132.77 ab V42 185   cd V25 53.4  bc 
V25 25.5  b V42 130.97 b V31 181    d V41 52.7   c 

Narea SPAD LMA 

V41 2.69      a V40 55.5     a V17 57.8   a 
V38 2.64     ab V19 53.8    ab V15 56.6  ab 
V44 2.64     ab V25 53.3   abc V19 56.3  ab 
V43 2.64     ab V17 53.1   abc V44 55.5  ab 
V25 2.61    abc V15 52.8  abcd V43 55.2  ab 
V28 2.60    abc V29 52.3  abcd V29 55.1  ab 
V39 2.60    abc V20 52.1  abcd V41 54.9  ab 
V40 2.59   abcd V30 52.1  abcd V35 54.8  ab 
V32 2.49  abcde V38 52.0  abcd V23 54.8  ab 
V30 2.47  abcde V16 51.6  abcd V18 54.5  ab 
V15 2.47  abcde V37 51.3  abcd V30 54.2  ab 
V20 2.44  abcde V27 51.1  abcd V25 53.7  ab 
V29 2.44  abcde V44 51.0  abcd V37 53.7  ab 
V18 2.43  abcde V32 50.4  abcd V28 53.5  ab 
V36 2.41  abcde V39 50.2  abcd V39 52.9  ab 
V19 2.41  abcde V21 50.2  abcd V38 52.7  ab 
V37 2.37  abcde V31 49.9  abcd V22 52.6  ab 
V34 2.36  abcde V23 49.0  abcd V40 52.2  ab 
V17 2.35  abcde V43 48.6  abcd V27 52.1  ab 
V23 2.34  abcde V24 48.4  abcd V24 51.9 abc 
V16 2.32  abcde V28 47.7   bcd V16 51.6 abc 
V22 2.32  abcde V41 47.6   bcd V34 51.5 abc 
V35 2.31  abcde V36 46.5   bcd V31 51.1 abc 
V24 2.26  abcde V26 46.4   bcd V36 50.9 abc 
V42 2.22  abcde V33 46.4   bcd V20 50.7 abc 
V21 2.19  abcde V22 46.4   bcd V21 50.6 abc 
V33 2.16   bcde V34 46.0    cd V26 50.3 abc 
V26 2.09    cde V18 45.9    cd V32 49.7  bc 
V31 2.07     de V42 45.5     d V42 48.9  bc 
V27 2.02      e V35 45.4     d V33 44.1   c 
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A 8 Phenotypic correlation between traits from experiment Aus2. Traits with significant 
correlations: ***P≤ 0.001; **P≤ 0.01; *P≤ 0.04. DF=28 

 gs Ci/Ca  Vcmax25 J Narea SPAD LMA 

A 0.64***     0.21    0.90***   0.79***   0.34  0.33  0.16 

gs 1.00     0.84***   0.32   0.24  -0.05  0.31 -0.01 

Ci/Ca      1.00   -0.13  -0.22  -0.31  0.14 -0.10 

Vcmax25     1.00   0.81***   0.35 0.33  0.18 

J     1.00   0.56 ** 0.17  0.26 

Narea       1.00  0.30 0.47** 

SPAD      1.00  0.38* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix - Chapter 3 

176 
 

A 9 Genotypes, means and Tukey’s HSD test (P<0.05) for traits that showed P-value ≤0.05 
between genotypes in the ANOVA test of the experiment BYP(+N)_Aus2 and BYP_Aus3, 
n=26. Means with the same letter are not significantly different. 

A Vcmax25 J Vcmax25/Narea  
V20 32.5     a V43 204     a V43  274        a V31 68.8   a 
V32 31.6    ab V29 182    ab V23  267       ab V27 66.3  ab 
V29 31.4    ab V41 177   abc V29  259      abc V43 64.6 abc 
V23 31.3    ab V23 175  abcd V17  255     abcd V29 63.0 abc 
V43 31.0   abc V39 174  abcd V41  253    abcde V15 62.0 abc 
V44 30.3  abcd V15 174 abcde V28  251    abcde V44 61.6 abc 
V17 30.2  abcd V32 173 abcde V20  250    abcde V35 61.3 abc 
V28 30.1  abcd V17 172 abcde V38  247   abcdef V39 61.2 abc 
V38 29.4  abcd V44 172 abcde V44  246  abcdefg V28 60.7 abc 
V34 29.1 abcde V31 172 abcde V39  245  abcdefg V23 60.3 abc 
V30 28.9 abcde V38 171 abcde V34  241  abcdefg V17 60.2 abc 
V41 28.7 abcde V20 171 abcde V15  241 abcdefgh V37 58.5 abc 
V36 28.2 abcde V28 168  bcde V36  236  bcdefgh V32 58.1 abc 
V31 28.1 abcde V34 162  bcde V30  234  bcdefgh V20 57.8 abc 
V39 28.0 abcde V35 162  bcde V32  233  bcdefgh V19 57.3 abc 
V15 27.7 abcde V30 161  bcde V19  231  bcdefgh V41 56.8 abc 
V33 27.0 abcde V36 160  bcde V25  231  bcdefgh V30 56.1 abc 
V25 26.8 abcde V27 155  bcde V35  228   cdefgh V34 56.1 abc 
V35 26.8  bcde V33 155  bcde V33  227   cdefgh V38 56.1 abc 
V19 26.7  bcde V19 155  bcde V31  226   cdefgh V36 54.5 abc 
V27 26.6  bcde V25 149  bcde V18  224   cdefgh V24 53.2 abc 
V18 25.5   cde V16 146  bcde V27  220    defgh V33 53.0  bc 
V21 24.9    de V37 144   cde V21  216     efgh V16 52.0  bc 
V37 24.6    de V24 142   cde V37  208      fgh V25 50.8  bc 
V24 24.2    de V18 141    de V24  206       gh V18 50.3   c 
V16 23.4     e V21 138     e V16  200        h V21 49.6   c 

Narea SPAD LMA 

V43  3.16   a V17 56.5    a V21 65.3     a 
V41  3.12   a V20 56.4    a V17 65.1    ab 
V38  3.07   a V44 55.3   ab V43 64.3   abc 
V32  3.00  ab V30 54.2  abc V29 64.3   abc 
V20  2.97  ab V21 53.9  abc V44 64.2   abc 
V33  2.96  ab V25 53.9  abc V15 63.3  abcd 
V36  2.93  ab V32 53.5  abc V41 62.9  abcd 
V25  2.93 abc V38 53.2  abc V19 62.5  abcd 
V23  2.92 abc V16 53.1  abc V20 61.9  abcd 
V34  2.91 abc V19 53.0  abc V18 61.3  abcd 
V29  2.90 abc V29 53.0  abc V38 61.2  abcd 
V30  2.87 abc V37 52.8 abcd V23 61.1  abcd 
V17  2.86 abc V43 52.7 abcd V16 60.1  abcd 
V39  2.86 abc V15 52.6 abcd V36 59.6  abcd 
V21  2.85 abc V27 52.5 abcd V25 59.5  abcd 
V18  2.84 abc V41 52.2 abcd V31 59.4  abcd 
V15  2.84 abc V31 52.1 abcd V35 59.3  abcd 
V16  2.82 abc V33 51.7 abcd V30 59.0  abcd 
V28  2.81 abc V39 51.4 abcd V34 58.6  abcd 
V44  2.80 abc V36 50.4  bcd V32 57.8  abcd 
V19  2.73 abc V23 50.2  bcd V28 57.3  abcd 
V24  2.68 abc V24 49.3  bcd V37 57.3  abcd 
V35  2.65 abc V18 49.3  bcd V33 57.0   bcd 
V31  2.51  bc V34 48.9   cd V27 57.0    cd 
V37  2.47  bc V28 48.4   cd V24 56.8    cd 
V27  2.35   c V35 46.9    d V39 55.7     d 

 
A 10 Phenotypic correlation between traits from experiment BYPB(+N)_Aus2 and 
BYPB_Aus3. Traits with significant correlations: ***P≤ 0.001; **P≤ 0.01; *P≤ 0.05. DF=24. 

 gs Ci/Ca  Vcmax25 J Narea SPAD LMA 

A 0.83***   0.40*   0.82*** 0.87***    0.50**  0.27    0.29 

gs 1.00   0.76***   0.62*** 0.58**   0.20  0.37    0.12 

Ci/Ca     1.00   0.09 0.10  -0.11  0.38   -0.15 

Vcmax25    1.00 0.87***    0.46* 0.16    0.33 

J    1.00    0.60**  0.13    0.44* 

Narea       1.00  0.17    0.39* 

SPAD      1.00    0.48* 
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A 11 Genotypes, means and Tukey’s HSD test (P<0.06) for some traits of experiments CB_ 
Mex and CA_Mex, n=7. Means with the same letter are not significantly different. 

A gs Ci/Ca  Jg 
V69 33.10 a V55 0.52 a V55 0.70 a V48 304.84 a 
V55 33.06 a V69 0.50 a V66 0.69 a V49 296.45 a 
V66 32.89 a V66 0.50 a V69 0.69 a V56 293.21 ab 
V65 32.45 ab V60 0.48 ab V60 0.69 a V59 292.03 ab 
V54 31.50 ab V53 0.47 ab V63 0.68 ab V61 288.92 ab 
V49 31.21 ab V65 0.46 ab V65 0.67 ab V67 288.49 ab 
V46 31.18 ab V62 0.46 ab V64 0.66 ab V70 287.87 ab 
V61 31.05 ab V63 0.44 ab V68 0.66 ab V69 285.96 ab 
V72 30.95 ab V64 0.43 ab V62 0.65 ab V72 285.22 ab 
V60 30.92 ab V49 0.42 ab V53 0.65 ab V53 284.74 ab 
V62 30.78 ab V54 0.41 ab V49 0.64 ab V46 284.44 ab 
V45 30.63 ab V45 0.41 ab V46 0.64 ab V45 281.82 ab 
V64 30.43 ab V46 0.40 ab V57 0.64 ab V54 281.32 ab 
V67 30.37 ab V57 0.40 ab V45 0.64 ab V55 279.53 ab 
V53 30.29 ab V72 0.39 ab V54 0.64 ab V50 276.57 abc 
V63 30.17 ab V61 0.39 ab V58 0.64 ab V74 273.71 abc 
V59 29.20 ab V68 0.37 ab V72 0.63 ab V65 273.68 abc 
V57 29.11 ab V67 0.36 ab V51 0.63 ab V66 272.86 abc 
V58 28.05 abc V58 0.35 ab V61 0.63 ab V64 272.65 abc 
V48 27.79 abc V51 0.35 ab V67 0.61 ab V52 272.36 abc 
V74 27.58 abc V59 0.34 ab V59 0.60 ab V47 271.71 abc 
V51 27.56 abc V48 0.33 ab V52 0.59 ab V60 269.77 abc 
V73 26.39 abc V73 0.31 ab V73 0.59 ab V57 267.78 abc 
V56 26.33 abc V74 0.30 ab V48 0.59 ab V58 267.36 abc 
V68 25.46 abc V56 0.29 ab V74 0.58 ab V63 265.92 abc 
V50 25.46 abc V50 0.27 ab V56 0.57 ab V73 262.84 abc 
V52 23.60 abc V52 0.26 ab V50 0.57 ab V62 260.81 abc 
V70 23.25 bc V47 0.24 ab V71 0.56 ab V51 260.63 abc 
V47 23.06 bc V70 0.23 b V47 0.56 ab V68 243.91 bc 
V71 18.47 c V71 0.20 b V70 0.54 b V71 225.72 c 

SPAD BMF PGF DTF 

V53 55.33 a V47 12.1    a V60 40.5       a V47 100    a 
V49 53.88 ab V74 12.0    a V57 38.1      ab V70 95   ab 
V64 51.56 abc V50 11.8   ab V55 37.5     abc V56 95  abc 
V69 51.00 abcd V73 11.5   ab V53 37.4     abc V50 94   bc 
V47 49.80 abcde V52 11.2  abc V54 35.3     bcd V52 94   bc 
V57 49.73 bcde V70 10.6  abc V62 35.2     bcd V48 93   bc 
V65 49.58 bcde V68 10.5  abc V49 35.1     bcd V74 93   bc 
V54 49.55 bcde V56 10.5  abc V64 34.2     cde V68 92  bcd 
V62 49.48 bcde V63 10.0  abc V59 34.0     def V73 91  cde 
V60 49.17 cde V58 10.0  abc V69 34.0     def V71 90 cdef 
V58 49.07 cde V67 9.8  abc V72 33.5    defg V65 87 defg 
V51 48.40 cde V72 9.5  abc V66 33.2  defgh V61 87  efg 
V48 48.36 cde V71 9.4  abc V65 33.0  defgh V51 87   fg 
V61 48.03 cde V64 9.4  abc V61 32.9  defgh V58 87   fg 
V70 47.83 cde V48 9.3  abc V51 32.8  defgh V63 86   fg 
V71 47.73 cdef V51 9.2  abc V45 32.6 defghi V45 86    g 
V45 47.37 cdef V45 9.1  abc V63 32.6 defghi V46 86    g 
V59 47.23 cdef V66 9.1  abc V67 31.7  efghij V67 86    g 
V50 47.00 cdef V54 9.1  abc V46 31.7  efghij V72 86    g 
V52 46.90 cdef V69 9.0  abc V73 31.4  efghij V59 85   gh 
V74 46.78 cdef V65 9.0  abc V58 31.4  efghij V64 85   gh 
V66 46.65 def V57 8.7  abc V52 30.9 efghijk V66 84   gh 
V72 46.65 def V61 8.5  abc V48 30.9  fghijk V54 84  ghi 
V68 46.47 def V46 8.5  abc V74 30.5   ghijk V69 84  ghi 
V67 46.45 def V59 8.4  abc V71 30.5   ghijk V49 81   hi 
V46 46.18 def V60 8.3   bc V50 30.1   ghijk V53 81   hi 
V73 46.03 ef V62 8.3   bc V56 29.6    hijk V55 80    i 
V56 44.83 ef V49 8.1   bc V68 29.0     ijk V57 80    i 
V63 44.52 ef V55 8.0    c V70 28.9      jk V62 80    i 
V55 42.36 f V53 7.0    c V47 27.5       k V60 73    j 
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A 12 Genotypes, means and Tukey’s HSD test (P<0.05) for some traits of experiments CB_ 
Mex and CA_Mex, n=7. Means with the same letter are not significantly different. 

Yield HI BMM 

V53 7.9 a V53 0.55 a V74 15.0 a 
V73 7.4 ab V61 0.53 ab V64 14.9 a 
V64 7.4 ab V60 0.52 abc V73 14.9 ab 
V56 7.4 ab V48 0.52 abc V54 14.7 abc 
V74 7.3 ab V46 0.52 abc V56 14.6 abc 
V65 7.3 ab V59 0.52 abc V45 14.5 abc 
V60 7.3 ab V52 0.52 abcd V68 14.5 abc 
V54 7.2 ab V51 0.51 abcd V65 14.5 abc 
V47 7.2 ab V49 0.51 abcd V47 14.4 abc 
V48 7.1 ab V69 0.51 bcd V67 14.4 abc 
V59 7.1 ab V56 0.50 bcd V72 14.3 abc 
V50 7.1 ab V65 0.50 bcd V53 14.3 abc 
V70 7.1 ab V70 0.50 bcd V50 14.3 abc 
V67 7.0 ab V50 0.50 bcd V71 14.2 abc 
V71 7.0 ab V73 0.50 bcd V55 14.2 abc 
V72 7.0 ab V47 0.50 bcd V70 14.1 abc 
V55 7.0 ab V71 0.49 bcd V60 14.0 abc 
V46 6.9 ab V64 0.49 bcd V63 14.0 abc 
V68 6.9 abc V55 0.49 bcd V57 13.9 abc 
V69 6.9 abc V54 0.49 bcd V48 13.8 abc 
V45 6.8 bc V67 0.49 bcd V59 13.7 abc 
V49 6.8 bc V72 0.49 bcd V66 13.6 abc 
V52 6.8 bc V74 0.49 bcd V69 13.5 abc 
V51 6.7 bc V66 0.49 bcd V46 13.5 abc 
V57 6.7 bc V57 0.48 cd V62 13.4 abc 
V61 6.7 bc V62 0.48 cd V49 13.3 abc 
V66 6.6 bc V68 0.48 cd V51 13.2 abc 
V62 6.5 bc V45 0.47 d V52 13.2 abc 
V63 6.4 bc V58 0.47 d V58 12.7 bc 
V58 5.9 c V63 0.46 d V61 12.6 c 
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A 13 Genotypes, means and Tukey’s HSD test (P<0.05) for traits that showed P-value ≤0.05 
between genotypes in the ANOVA test of the experiment CA_Aus3 and CA_Mex, n=7. 
Means with the same letter are not significantly different. 

A gs Ci/Ca  
V55 31.2     a V55 0.56    a V55 0.72  a 
V57 30.5     a V65 0.54    a V65 0.71  a 
V65 30.3     a V57 0.53    a V57 0.71  a 
V54 28.4    ab V52 0.49   ab V52 0.71  a 
V63 28.2    ab V62 0.46   ab V62 0.70  a 
V66 27.8    ab V45 0.45  abc V60 0.69  a 
V60 27.8    ab V47 0.45  abc V45 0.68  a 
V45 27.6    ab V66 0.44  abc V47 0.67  a 
V62 26.8    ab V60 0.44  abc V64 0.67  a 
V59 26.5    ab V54 0.42  abc V54 0.67  a 
V52 26.3   abc V50 0.42  abc V50 0.66  a 
V47 26.2   abc V59 0.38 abcd V66 0.66  a 
V68 25.6   abc V63 0.37 abcd V61 0.65  a 
V50 25.4  abcd V61 0.35 abcd V59 0.65  a 
V61 25.0  abcd V64 0.35 abcd V63 0.64 ab 
V67 24.4  abcd V68 0.35 abcd V67 0.64 ab 
V64 23.7  abcd V67 0.33  bcd V68 0.64 ab 
V69 23.2   bcd V69 0.31  bcd V69 0.64 ab 
V71 19.1    cd V71 0.26   cd V71 0.63 ab 
V53 18.5     d V53 0.20    d V53 0.56  b 

Vcmax25 J Vcmax25/Narea  
V63 181.88 a V63 273.115 a V63 67.52 a 
V54 180.75 a V68 266.27 a V55 66.95 a 
V55 178.26 a V66 265.65 a V45 59.57 ab 
V66 175.74 a V54 264.75 a V60 58.74 ab 
V65 175.61 a V59 263.39 a V57 57.30 abc 
V57 175.49 a V55 263.18 a V62 57.30 abc 
V45 175.13 a V57 261.98 a V59 57.01 abc 
V59 172.86 a V65 259.90 a V65 56.30 abc 
V68 170.78 a V45 258.51 a V66 56.18 abc 
V47 170.59 a V47 250.41 ab V61 54.62 abc 
V52 166.09 ab V61 249.74 ab V54 54.20 abc 
V60 165.27 ab V60 246.35 ab V47 53.48 abc 
V62 164.87 ab V52 245.54 ab V50 52.55 abcd 
V67 158.76 ab V67 240.38 ab V68 51.70 bcd 
V69 157.56 ab V50 236.45 ab V67 49.25 bcd 
V61 155.14 ab V69 235.02 ab V69 47.57 bcd 
V50 154.17 ab V62 233.93 ab V64 47.39 bcd 
V64 149.37 ab V64 230.61 ab V53 45.38 cd 
V53 148.00 ab V53 226.67 ab V52 45.01 cd 
V71 127.18 b V71 211.38 b V71 40.20 d 

Narea SPAD LMA 

V52 3.7     a V53 59.9    a V53 83.4     a 
V69 3.4    ab V69 57.4   ab V52 82.7    ab 
V53 3.4   abc V52 57.2  abc V47 81.0   abc 
V54 3.4  abcd V47 55.9 abcd V68 75.2   bcd 
V67 3.4  abcd V50 54.9  bcd V66 74.2   bcd 
V68 3.4  abcd V61 54.5  bcd V50 73.9   bcd 
V64 3.2 abcde V64 54.4  bcd V54 73.7   bcd 
V47 3.2 abcde V54 54.1 bcde V65 73.2    cd 
V71 3.2 abcde V66 53.8 bcde V67 73.1    cd 
V65 3.2 abcde V60 53.7 bcde V64 72.3    de 
V66 3.2 abcde V57 53.6 bcde V59 70.4   def 
V57 3.1 abcde V65 53.4 bcde V45 70.0  defg 
V59 3.1 abcde V62 52.7  cde V69 69.6  defg 
V45 3.0  bcde V67 51.7   de V71 68.8  defg 
V62 3.0  bcde V59 51.5   de V57 67.2  defg 
V50 3.0  bcde V45 51.5   de V62 64.4   efg 
V60 2.9   cde V68 51.4   de V60 63.2    fg 
V61 2.9    de V71 49.6   ef V63 62.8    fg 
V63 2.7     e V63 48.6   ef V55 62.7    fg 
V55 2.7     e V55 44.7    f V61 62.2     g 
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Tables Chapter 6 

 

A 14 List of wheat genotypes used for Candidates to CIMCOG II (CC), CCS marked with *. 
No Gen CROSS NAME 

1 V77 BABAX/LR42//BABAX/3/ER2000 

2 V78 SOKOLL/3/PASTOR//HXL7573/2*BAU 

3 V79 PASTOR//HXL7573/2*BAU/3/SOKOLL/WBLL1 

4 V80 CHEN/AEGILOPS SQUARROSA (TAUS)//BCN/3/BAV92/4/BERKUT 

5 V81 CHRZ//BOW/CROW/3/WBLL1/4/CROC_1/AE.SQUARROSA (213)//PGO 

6 V82 SOKOLL//SUNCO/2*PASTOR 

7 V83 MTRWA92.161/PRINIA/5/SERI*3//RL6010/4*YR/3/PASTOR/4/BAV92 

8 V84 PSN/BOW//MILAN/3/2*BERKUT 

9 V85 GK ARON/AG SECO 7846//2180/4/2*MILAN/KAUZ//PRINIA/3/BAV92 

10 V86 WBLL1*2/BRAMBLING 

11 V87 FRET2*2/BRAMBLING 

12 V88 PRL/2*PASTOR/4/CHOIX/STAR/3/HE1/3*CNO79//2*SERI 

13 V89 CHEWINK #1 

14 V90 CHYAKHURA 

15 V91 WHEAR/KUKUNA/3/C80.1/3*BATAVIA//2*WBLL1 

16 V92 SAAR/WBLL1 

17 V93 TRCH*2/3/C80.1/3*QT4118//3*PASTOR 

18 V94 SHA7/VEE#5/5/VEE#8//JUP/BJY/3/F3.71/TRM/4/2*WEAVER/6/SKAUZ/PARUS 
//PARUS 

19 V95 QUAIU 

20 V96 CNDO/R143//ENTE/MEXI_2/3/AEGILOPS SQUARROSA (TAUS)/4/WEAVER/5/PICUS 
/6/TROST/7/TACUPETO F2001 

21 V97 PBW343*2/KUKUNA*2//YANAC 

22 V98 MUNAL #1 

23 V99 WHEAR//INQALAB 91*2/TUKURU 

24 V100 CNDO/R143//ENTE/MEXI_2/3/AEGILOPS SQUARROSA (TAUS)/4/WEAVER 
/5/2*PASTOR/6/SKAUZ/PARUS//PARUS 

25 V101 PICAFLOR #2 

26 V102 NELOKI 

27 V103 ATTILA*2/PBW65/6/PVN//CAR422/ANA/5/BOW/CROW//BUC/PVN/3/YR/4 
/TRAP#1/7/ATTILA/2*PASTOR 

28 V104 WHEAR//2*PRL/2*PASTOR 

29 V105 WAXWING/6/PVN//CAR422/ANA/5/BOW/CROW//BUC/PVN/3/YR/4/TRAP#1 

30 V106 WBLL1/KUKUNA//TACUPETO F2001/3/BAJ #1 

31 V107 FRET2*2/4/SNI/TRAP#1/3/KAUZ*2/TRAP//KAUZ/5/PFAU/WEAVER//BRAMBLING 

32 V108 KACHU/SAUAL 

33 V109 ATTILA/3*BCN//BAV92/3/TILHI/5/BAV92/3/PRL/SARA//TSI/VEE#5/4/CROC_1 
/AE.SQUARROSA (224)//2*OPATA 

34 V110 FRET2*2/4/SNI/TRAP#1/3/KAUZ*2/TRAP//KAUZ/5/PARUS/6/FRET2*2/KUKUNA 

35 V111 TRCH/SRTU//KACHU 

36 V112 SERI.1B//KAUZ/HEVO/3/AMAD*2/4/KIRITATI 

37 V113 PBW343*2/KUKUNA//SRTU/3/PBW343*2/KHVAKI 

38 V114 BABAX/LR42//BABAX/3/BABAX/LR42//BABAX/4/T.DICOCCON PI94625 
/AE.SQUARROSA (372)//3*PASTOR/5/T.DICOCCON PI94625/AE.SQUARROSA (372) 
//3*PASTOR 

39 V115 FRET2*2/4/SNI/TRAP#1/3/KAUZ*2/TRAP//KAUZ/5/ONIX 
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40 V116 ONIX/4/MILAN/KAUZ//PRINIA/3/BAV92 

41 V117 ACHTAR/4/MILAN/KAUZ//PRINIA/3/BAV92 

42 V118 MILAN/KAUZ//PRINIA/3/BAV92/4/ATTILA/BAV92//PASTOR/5/CNO79//PF70354 
/MUS/3/PASTOR/4/BAV92 

43 *V119 GK ARON/AG SECO 7846//2180/4/2*MILAN/KAUZ//PRINIA/3/BAV92 

44 V120 SOKOLL/ROLF07 

45 V121 BOW/VEE/5/ND/VG9144//KAL/BB/3/YACO/4/CHIL/6/CASKOR/3/CROC_1 
/AE.SQUARROSA (224)//OPATA/7/PASTOR//MILAN/KAUZ/3/BAV92 

46 V122 ATTILA*2/PBW65*2//KACHU 

47 V123 KACHU #1/KIRITATI//KACHU 

48 V124 SAUAL/YANAC//SAUAL 

49 V125 ATTILA*2/PBW65*2//MURGA 

50 *V126 ATTILA*2/PBW65*2/4/BOW/NKT//CBRD/3/CBRD 

51 V127 PAURAQ/SUP152 

52 V128 WBLL1*2/BRAMBLING/5/BABAX/LR42//BABAX*2/4/SNI/TRAP#1/3/KAUZ*2 
/TRAP//KAUZ 

53 V129 ALTAR 84/AE.SQUARROSA (221)//3*BORL95/3/URES/JUN//KAUZ/4/WBLL1/5/MUTUS 

54 V130 TRCH/HUIRIVIS #1 

55 V131 SUP152/HUIRIVIS #1 

56 V132 WAXBILL 

57 *V133 KFA/2*KACHU 

58 V134 UP2338*2/4/SNI/TRAP#1/3/KAUZ*2/TRAP//KAUZ/5/MILAN/KAUZ//CHIL/CHUM18 
/6/UP2338*2/4/SNI/TRAP#1/3/KAUZ*2/TRAP//KAUZ 

59 V135 NAC/TH.AC//3*PVN/3/MIRLO/BUC/4/2*PASTOR/5/KACHU/6/KACHU 

60 *V136 FRANCOLIN #1/WBLL1 

61 V137 TECUE #1/2*WAXWING 

62 V138 KANZ*4/KS85-8-4//KUKUNA/3/KANZ 

63 *V139 REEDLING #1 

64 V140 PRL/2*PASTOR*2//FH6-1-7 

65 V141 ATTILA*2/PBW65*2//MURGA 

66 V142 ROLF07*2/5/FCT/3/GOV/AZ//MUS/4/DOVE/BUC 

67 V143 BAJ #1/3/KIRITATI//ATTILA*2/PASTOR 

68 V144 ALTAR 84/AE.SQUARROSA (221)//3*BORL95/3/URES/JUN//KAUZ/4/WBLL1/5/KACHU 
/6/KIRITATI//PBW65/2*SERI.1B 

69 V145 BECARD/QUAIU #1 

70 V146 BLOUK #1 

71 V147 LOCAL CHECK 

72 V148 BCN/RIALTO//ROLF07 

73 V149 BCN/RIALTO//ROLF07 

74 V150 BCN/WBLL1//ROLF07 

75 V151 BCN/WBLL1//ROLF07 

76 V152 BECARD(CGSS01B00063T-099Y-099M-099M-099Y-099M-45Y-0B) 

77 V153 C80.1/3*QT4118//KAUZ/RAYON/3/2*TRCH/7/CMH79A.955/4/AGA/3/4*SN64/CNO67 
//INIA66/5/NAC/6/RIALTO 

78 V154 C80.1/3*QT4118//KAUZ/RAYON/3/2*TRCH/7/CMH79A.955/4/AGA/3/4*SN64/CNO67 
//INIA66/5/NAC/6/RIALTO/8/WBLL1*2/KURUKU 

79 *V155 C80.1/3*QT4118//KAUZ/RAYON/3/2*TRCH/7/CMH79A.955/4/AGA/3/4*SN64/CNO67 
//INIA66/5/NAC/6/RIALTO/8/WBLL1*2/KURUKU 

80 V156 C80.1/3*QT4118//KAUZ/RAYON/3/2*TRCH/7/CMH79A.955/4/AGA/3/4*SN64/CNO67 
//INIA66/5/NAC/6/RIALTO/8/WBLL1*2/KURUKU 

81 V157 C80.1/3*QT4118//KAUZ/RAYON/3/2*TRCH/7/CMH79A.955/4/AGA/3/4*SN64/CNO67 
//INIA66/5/NAC/6/RIALTO/8/WBLL1*2/KURUKU 
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82 V158 C80.1/3*QT4118//KAUZ/RAYON/3/2*TRCH/7/CMH79A.955/4/AGA/3/4*SN64/CNO67 
//INIA66/5/NAC/6/RIALTO/8/WBLL1*2/KURUKU 

83 V159 C80.1/3*QT4118//KAUZ/RAYON/3/2*TRCH/7/CMH79A.955/4/AGA/3/4*SN64/CNO67 
//INIA66/5/NAC/6/RIALTO/8/WBLL1*2/KURUKU 

84 V160 C80.1/3*QT4118//KAUZ/RAYON/3/2*TRCH/7/CMH79A.955/4/AGA/3/4*SN64/CNO67 
//INIA66/5/NAC/6/RIALTO/8/WBLL1*2/KURUKU 

85 V161 CMH79A.955/4/AGA/3/4*SN64/CNO67//INIA66/5/NAC/6/RIALTO/7/BCN/WBLL1 
/8/C80.1/3*QT4118//KAUZ/RAYON/3/2*TRCH 

86 V162 CMH79A.955/4/AGA/3/4*SN64/CNO67//INIA66/5/NAC/6/RIALTO/7/BCN/WBLL1 
/8/C80.1/3*QT4118//KAUZ/RAYON/3/2*TRCH 

87 V163 CMH79A.955/4/AGA/3/4*SN64/CNO67//INIA66/5/NAC/6/RIALTO/7/ROLF07 

88 V164 CMH79A.955/4/AGA/3/4*SN64/CNO67//INIA66/5/NAC/6/RIALTO/7/ROLF07 

89 V165 CMH79A.955/4/AGA/3/4*SN64/CNO67//INIA66/5/NAC/6/RIALTO/7/ROLF07 

90 V166 NL623/W-78//ROLF07 

91 V167 QUAIU 

92 V168 SERI/BAV92/7/CMH79A.955/4/AGA/3/4*SN64/CNO67//INIA66/5/NAC/6/RIALTO 
/8/WBLL1*2/KURUKU 

93 V169 SERI/BAV92/7/CMH79A.955/4/AGA/3/4*SN64/CNO67//INIA66/5/NAC/6/RIALTO 
/8/WBLL1*2/KURUKU 

94 V170 SERI/BAV92/7/CMH79A.955/4/AGA/3/4*SN64/CNO67//INIA66/5/NAC/6/RIALTO 
/8/WBLL1*2/KURUKU 

95 V171 WBLL1*2/KUKUNA 

96 V172 LOCAL CHECK 

97 V173 WBLL1//YANGLING SHAANXI/ESDA/3/ROLF07 

98 V174 WBLL1//YANGLING SHAANXI/ESDA/3/ROLF07 

99 V175 BCN/WBLL1 

100 V176 WHEAR/KUKUNA/3/C80.1/3*BATAVIA//2*WBLL1 

101 V177 SOKOLL 

102 V178 VARIS 

103 V179 THELIN#2//ATTILA*2/PASTOR/3/PRL/2*PASTOR 

104 V180 THELIN/2*WBLL1 

105 V181 WBLL1*2/BRAMBLING 

106 V182 PLATA_6/GREEN_17//SNITAN/4/YAZI_1/AKAKI_4//SOMAT_3/3/AUK/GUIL//GREEN 

107 V183 YAV79/4/ARMENT//SRN_3/NIGRIS_4/3/CANELO_9.1/5/MINIMUS/COMB DUCK_2 
//CHAM_3/3/GREEN_19 

108 V184 BABAX/KS93U76//BABAX/3/ATTILA/3*BCN//TOBA97/4/WBLL1*2/KURUKU 

109 *V185 SILK_3/DIPPER_6/3/ACO89/DUKEM_4//5*ACO89/4/PLATA_7/ILBOR_1//SOMAT_3 

110 V186 TADIZ/9/USDA595/3/D67.3/RABI//CRA/4/ALO/5/HUI/YAV_1/6/ARDENTE/7/HUI 
/YAV79/8/POD_9 

111 V187 CNDO/VEE//CELTA/3/PATA_2/6/ARAM_7//CREX/ALLA/5/ENTE/MEXI_2 
//HUI/4/YAV_1/3/LD357E/2*TC60//JO69/9/USDA595/3/D67.3/RABI//CRA/4/ 
ALO/5/HUI/YAV_1/6/ARDENTE/7/HUI/YAV79/8/POD_9 

112 V188 GEMA C2004*2/ACO89 

113 V189 SNITAN*2/RBC 

114 V190 TACUPETO F2001/BRAMBLING*2//KACHU 

115 V191 KACHU #1/3/C80.1/3*BATAVIA//2*WBLL1/4/KACHU 

116 V192 SAUAL/WHEAR//SAUAL 

117 V193 KACHU #1/4/CROC_1/AE.SQUARROSA (205)//KAUZ/3/SASIA/5/KACHU 

118 V194 TACUPETO F2001/SAUAL//BLOUK #1 
 

119 V195 TACUPETO F2001/6/CNDO/R143//ENTE/MEXI_2/3/AEGILOPS SQUARROSA (TAUS) 
/4/WEAVER/5/PASTOR/7/ROLF07 

120 V196 KACHU/3/PRINIA/PASTOR//HUITES 

121 V197 WBLL1*2/4/SNI/TRAP#1/3/KAUZ*2/TRAP//KAUZ/5/KACHU #1 

122 V198 TRCH/5/REH/HARE//2*BCN/3/CROC_1/AE.SQUARROSA (213)//PGO/4/HUITES 
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123 *V199 ALD/COC//URES/5/VEE/LIRA//BOW/3/BCN/4/KAUZ/6/SAUAL 
 

124 V200 ALD/CEP75630//CEP75234/PT7219/3/BUC/BJY/4/CBRD/5/TNMU/PF85487 
/6/PBW343*2/KUKUNA/7/CNO79//PF70354/MUS/3/PASTOR/4/BAV92 

125 V201 ATTILA*2//CHIL/BUC*2/3/KUKUNA 

126 V202 PARSI 

127 V203 SIVAND 

128 V204 PISHTAZ 

129 V205 M-88-3 

130 V206 M-88-5 

131 V207 M-88-6 

132 V208 M-88-13 

133 V209 M-89-6 

134 V210 S-78-11 

135 V211 S-89-8 

136 V212 S-89-12 

137 V213 S-89-14 

138 V214 S-87-7 

139 V215 S-87-5 

140 V216 S-87-6 

141 V217 ATTILA//ARVAND 1/GLEN 

142 V218 N-85-5 

143 V219 MILAN//KA/BEZ1/3/TAJAN 

144 V220 N-88-5 

145 V221 N-88-20 

146 *V222 N-89-6 

147 V223 N-89-4 

148 V224 VL 804 

149 V225 HS 507 

150 *V226 VL 892 

151 V227 HS 490 

152 V228 VL 829 

153 V229 HPW 251 

154 V230 HS 375 

155 V231 UP 2338 

156 V232 WH 542 

157 V233 HD2687 

158 V234 PBW343 

159 V235 DBW 17 

160 V236 PBW 502 

161 V237 PBW 550 

162 V238 HD 2967 

163 V239 DPW 621-50 

164 V240 PDW 291 

165 V241 PDW 314 

166 *V242 WHD 943 

167 V243 PBW-373 
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168 *V244 RAJ3765 

169 V245 UP2425 

170 V246 DBW 16 

171 V247 WH 1021 

172 V248 PBW 590 

173 V249 WH 1080 

174 V250 K 9107 

175 V251 HUW468 

176 V252 HD2733 

177 V253 CBW 38 

178 V254 K 0307 

179 V255 DBW 39 

180 V256 HUW 234 

181 V257 NW 2036 

182 V258 HW2045 

183 V259 DBW 14 

184 V260 HD 2985 

185 V261 HD 2888 

186 V262 HI 1544 

187 V263 GW 322 

188 V264 GW 366 

189 V265 LOK 1 

190 V266 MPO 1215 

191 V267 GW 173 

192 V268 HD 2864 

193 V269 HD 2932 

194 V270 MP 4010 

195 V271 HI 1500 

196 V272 HI 1531 

197 V273 HW2004 

198 V274 HD 4672 

199 V275 RAJ 4037 

200 V276 MACS 6222 

201 V277 NIDW 295 

202 V278 RAJ 4083 

203 V279 NIAW34 

204 V280 HD 2781 

205 V281 AKDW 2997-16 

206 V282 HD 2987 

207 V283 COW (W) 1 

208 V284 RAJ 3077 

209 V285 KRL 210 

210 V286 KRL 19 

211 V287 DDK 1009 

212 V288 DDK 1029 

213 V289 MACS 2971 
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214 V290 MACS 2496 

215 V291 MACS 2846 

216 V292 ROELFS F2007 

217 V72 BECARD(CGSS01B00063T-099Y-099M-099M-099Y-099M-9Y-0B) 

218 V48 BECARD/KACHU 

219 V45 BABAX/LR42//BABAX/3/VORB 

220 V74 WBLL1*2/4/BABAX/LR42//BABAX/3/BABAX/LR42//BABAX 

221 V65 TACUPETO F2001/BRAMBLING*2//KACHU 

222 V53 CIRNO C 2008 

223 V68 UP2338*2/4/SNI/TRAP#1/3/KAUZ*2/TRAP//KAUZ/5/MILAN/KAUZ//CHIL 
/CHUM18/6/UP2338*2/4/SNI/TRAP#1/3/KAUZ*2/TRAP//KAUZ 
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A 15 List of wheat genotypes used for wheat landraces (L). LS marked with *. 

No Gen CROSS NAME No Gen CROSS NAME 

1 V293 MEX94.10.47 46 V338 HGO94.11.2.26 

2 V294 PBL94.14.66 47 V339 HGO94.11.2.43 

3 *V295 HGO94.5.34 48 V340 HGO94.12.1.102 

4 *V296 HGO94.3.13 49 V341 MEX94.1.6 

5 *V297 MEX94.30.11 50 V342 MEX94.1.9 

6 V298 MEX94.28.17 51 V343 HGO94.12.2.5 

7 V299 MEX94.27.2.47 52 V344 HGO94.12.2.7 

8 V300 MEX94.27.1.5 53 *V345 MEX94.1.28 

9 V301 PUB94.16.87 54 V346 MEX94.2.32 

10 V302 PUB94.16.49 55 V347 MEX94.7.49 

11 V303 PUB94.15.1.18 56 *V348 MEX94.10.50 

12 V304 MEX94.25.113 57 V349 MEX94.7.71 

13 V305 CHIH95.3.52 58 V350 MEX94.9.11 

14 V306 CHIH95.5.29 59 V351 MEX94.11.53 

15 V307 MEX94.19.109 60 V352 MEX94.12.1.131 

16 V308 MICH89.4.18 61 V353 MEX94.12.2.40 

17 V309 QRO95.3.28 62 V354 MEX94.12.2.52 

18 V310 QRO95.4.55 63 V355 MEX94.13.1.70 

19 V311 MEX95.9.27 64 V356 MEX94.13.1.134 

20 V312 MEX95.9.49 65 V357 MEX94.15.36 

21 V313 MEX95.9.95 66 V358 MEX94.19.47 

22 V314 MICH95.3.1.12 67 V359 MEX94.18.42 

23 V315 MICH95.5.3 68 V360 MEX94.20.1.84 

24 V316 QRO95.1.59 69 V361 MEX94.21.16 

25 V317 PBL94.12.2.2 70 V362 MEX94.22.18 

26 V318 PBL94.12.7 71 V363 MEX94.22.27 

27 V319 PBL94.12.12.2 72 V364 MEX94.22.32 

28 V320 PBL94.12.15.3 73 V365 MEX94.22.48 

29 V321 PBL94.14.23 74 V366 MEX94.22.64 

30 V322 QRO94.2.109 75 V367 MEX94.22.93 

31 V323 HGO94.1.18 76 V368 MEX94.22.109 

32 V324 HGO94.3.67 77 V369 MEX94.23.35 

33 V325 GTO94.1.6 78 V370 MEX94.23.39 

34 V326 HGO94.4.1 79 V371 MEX94.23.41 

35 V327 HGO94.5.75 80 V372 MEX94.23.53 

36 V328 HGO94.7.1.4 81 V373 MEX94.23.75 

37 V329 HGO94.8.74 82 V374 MEX94.23.92 

38 V330 HGO94.8.114 83 *V375 MEX94.24.18 

39 V331 HGO94.8.119 84 *V376 MEX94.24.25 

40 V332 HGO94.8.123 85 V377 MEX94.25.42 

41 V333 HGO94.8.126 86 V378 MEX94.25.50 

42 V334 HGO94.9.1.23 87 V379 MEX94.25.70 

43 V335 HGO94.9.2.13 88 V380 PUB94.16.37 

44 V336 HGO94.11.1.46 89 V381 PUB94.16.53 

45 V337 HGO94.11.1.15 90 V382 PUB94.16.82 
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91 V383 PUB94.16.119 138 *V430 COAH94.8.21 

92 V384 PUB94.16.132 139 V431 MICH89.1.4 

93 *V385 PUB94.16.201 140 V432 MICH89.1.7 

94 V386 MEX94.26.138 141 V433 MEX92.1.1.64 

95 *V387 MEX94.27.2.54 142 V434 CHIH96.4 

96 *V388 MEX94.29.60 143 V435 CHIH96.4 

97 V389 GTO95.1.29 144 V436 CHIH96.4 

98 V390 GTO95.1.38 145 V437 CHIH96.4 

99 V391 GTO95.1.8 146 V438 CHIH96.4 

100 V392 MICH95.6.40 147 V439 CHIH96.4 

101 V393 CHIH95.1.18 148 V440 CHIH96.4 

102 *V394 CHIH95.3.9 149 V441 CHIH96.4 

103 V395 CHIH95.4.11 150 V442 CHIH96.7 

104 V396 CHIH95.5.24 151 V443 CHIH96.4 

105 V397 CHIH95.4.28 152 V444 CHIH96.4 

106 V398 CHIH95.9.31 153 *V445 CHIH96.7 

107 V399 CHIH95.9.66 154 V446 CHIH96.7 

108 V400 CHIH95.10.42 155 V447 CHIH96.7 

109 V401 CHIH95.10.82 156 V448 CHIH96.7 

110 V402 TXL92.1.1.3 157 V449 CHIH96.7 

111 V403 TXL92.6.1.8 158 *V450 CHIH96.7 

112 V404 MEX92.1.1.12 159 V451 CHIH96.7 

113 V405 OAX93.6.1 160 V452 OAX96.1 

114 V406 OAX93.6.35 161 V453 IWA 8600940 

115 V407 OAX93.6.74 162 V454 IWA 8614151 

116 V408 TOL93.2.4 163 V455 IWA 8607291 

117 V409 OAX93.17.7 164 *V456 IWA 8607721 

118 V410 OAX93.16.19 165 V457 IWA8608280 

119 V411 OAX93.16.23 166 V458 IWA 8608839 

120 V412 OAX93.17.4 167 *V459 IWA8608858 

121 V413 OAX93.21.22 168 V460 IWA 8608910 

122 V414 OAX93.20.12 169 V461 IWA8613344 

123 V415 OAX93.21.55 170 V462 IWA8613464 

124 V416 OAX93.22.24 171 V463 IWA8613552 

125 V417 OAX93.25.40 172 V464 IWA8603061 

126 V418 OAX93.25.12 173 V465 IWA8604640 

127 V419 OAX94.22 174 V466 IWA8606995 

128 V420 PUE94.5 175 *V467 IWA8608862 

129 V421 PUE94.7 176 V468 IWA8609366 

130 *V422 PUE94.8 177 *V469 IWA8612352 

131 V423 COAH94.1.48 178 V470 IWA8613272 

132 V424 COAH94.1.107 179 V471 IWA8613600 

133 V425 COAH94.1.181 180 V472 CM-64239 

134 *V426 COAH94.2.38 181 V473 CHU MEH 3 

135 V427 COAH94.6.92 182 *V474 HONG HUA MAI 

136 V428 COAH94.7.31 183 V475 LAHN 
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137 V429 COAH94.6.96 184 V476 W38 

185 V477 HGO94.9.1.37 230 V520 LANDRACE BV12 236 

186 V478 GLENLEA 231 V521 LANDRACE BV12 237 

187 V479 MONDEGO 232 V522 LANDRACE BV12 238 

188 V480 SRMA/TUI//PASTOR 233 *V523 WEEBIL 1 

189 V481 HGO94.9.1.10 234 *V177 SOKOLL 

190 V482 ROELFS F2007 235 V292 ROELFS 

191 V483 CHIH95.5.37    

192 V484 MEX94.19.88    

193 V485 CHIH95.10.61    

194 V486 CHIH95.10.67    

195 V487 QRO95.1.80    

196 V488 LARGO DURO_CWI53571    

197 V489 CItr 9107    

198 V490 COAH94.2.50    

199 V491 COAH94.5.34    

200 V492 COAH94.6.10    

201 V493 MEX94.12.2.64    

202 V494 LANDRACE BV12 210    

203 V495 MEX94.25.32    

204 V496 LANDRACE BV12 212    

205 V497 LANDRACE BV12 213    

206 V498 LANDRACE BV12 214    

207 V499 LANDRACE BV12 215    

208 V500 LANDRACE BV12 216    

209 V501 LANDRACE BV12 217    

210 V502 LANDRACE BV12 218    

211 V503 LANDRACE BV12 219    

212 V504 LANDRACE BV12 220    

213 V505 LANDRACE BV12 221    

214 V506 LANDRACE BV12 222    

215 V507 LANDRACE BV12 223    

216 V508 LANDRACE BV12 224    

217 V509 LANDRACE BV12 225    

218 V510 LANDRACE BV12 226    

219 V511 LANDRACE BV12 227    

220 V512 LANDRACE BV12 228    

221 V513 LANDRACE BV12 229 

222 V514 LANDRACE BV12 230 

223 V515 LANDRACE BV12 231    

224 V516 LANDRACE BV12 232    

225 V517 LANDRACE BV12 233    

226 V518 LANDRACE BV12 234    

227 V519 LANDRACE BV12 235    

228 V65 TACUPETO F2001/BRAMBLING*2//KACHU 
229 V68 UP2338*2/4/SNI/TRAP#1/3/KAUZ*2/TRAP//KAUZ/5/MILAN 

/KAUZ//CHIL/CHUM18/6/UP2338*2/4/SNI/TRAP#1/3/KAUZ*2/TRAP//KAUZ 
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