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Abstract

Entity resolution (ER), which is the process of identifying records in one or several
data set(s) that refer to the same real-world entity, is an important task in improving
data quality and in data integration. In general, unique entity identifiers are not
available in real-world data sets. Therefore, identifying attributes such as names
and addresses are required to perform the ER process using approximate matching
techniques. Since many services in both the private and public sectors are moving
on-line, organizations increasingly require to perform real-time ER (with sub-second
response times) on query records that need to be matched with existing data sets.

Indexing is a major step in the ER process which aims to group similar records
together using a blocking key criterion to reduce the search space. Most existing
indexing techniques that are currently used with ER are static and can only be em-
ployed off-line with batch processing algorithms. A major aspect of achieving ER in
real-time is to develop novel efficient and effective dynamic indexing techniques that
allow dynamic updates and facilitate real-time matching.

In this thesis, we focus on the indexing step in the context of real-time ER. We
propose three dynamic indexing techniques and a blocking key learning algorithm
to be used with real-time ER. The first index (named DySimII) is a blocking-based
technique that is updated whenever a new query record arrives. We reduce the
size of DySimII by proposing a frequency-filtered alteration that only indexes the
most frequent attribute values. The second index (named DySNI) is a tree-based
dynamic indexing technique that is tailored for real-time ER. DySNI is based on the
sorted neighborhood method that is commonly used in ER. We investigate several
static and adaptive window approaches when retrieving candidate records. The third
index (named F-DySNI) is a multi-tree technique that uses multiple distinct trees in
the index data structure where each tree has a unique sorting key. The aim of F-
DySNI is to reduce the effects of errors and variations at the beginning of attribute
values that are used as sorting keys on matching quality. Finally, we propose an
unsupervised learning algorithm that automatically generates optimal blocking keys
for building indexes that are adequate for real-time ER.

We experimentally evaluate the proposed approaches using various real-world
data sets with millions of records and synthetic data sets with different data char-
acteristics. The results show that, for the growing sizes of our indexing solutions,
no appreciable increase occurs in both record insertion and query times. DySNI is
the fastest amongst the proposed solutions, while F-DySNI achieves better matching
quality. Compared to an existing indexing baseline, our proposed techniques achieve
better query times and matching quality. Moreover, our blocking key learning algo-
rithm achieves an average query time that is around two orders of magnitude faster
than an existing learning baseline while maintaining similar matching quality. Our
proposed solutions are therefore shown to be suitable for real-time ER.
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Chapter 1

Introduction

In this chapter we provide an introduction to the work presented in this thesis. We
describe the research problem in Sections 1.1 and 1.2, the research objectives in Sec-
tion 1.3, the methodology used to address the research problem in Section 1.4, and
the contributions of this research in Section 1.5. We then provide an outline of this
thesis in Section 1.6.

1.1 Research Problem

Massive amounts of data are being collected by most business and government or-
ganizations. Given that many of these organizations rely on information in their
day-to-day operations, the quality of the collected data has a direct impact on the
quality of the produced outcomes [10, 57, 82]. One important practice in improving
data quality is the task of identifying all records that refer to the same real-world
entity [33, 57, 82, 113]. This process is commonly known as entity resolution, data
matching, or record linkage, among other names [33, 82]. It can be applied to a single
or to multiple data sources. When applied to a single data source the process is
called de-duplication or duplicate detection [57, 113]. For the rest of this thesis we will
use the term entity resolution (ER).

A real-world entity can be a person, a product, a business, or any other object
that exists in the real world. Examples of multiple records in a data set representing
a single entity include a patient who is represented several times in a hospital data
set, a product that is inserted many times into an inventory list, or a voter who
is registered more than once in an election roll. These duplicates, if not removed
or merged, can lead to serious consequences for organizations or individuals. A
patient’s information could for example be dispersed between duplicated records
leaving medical staff unaware of the patient’s overall condition which can potentially
affect diagnosis and treatment, businesses could end up sending the same house hold
several copies of advertisement mail which leads to increased costs and annoyance to
customers receiving multiple copies, while duplicate records in an election roll can
lead to voting irregularities.

ER is related to general similarity search approaches, which involve finding sim-
ilar entities from unstructured data sets (such as emails, news articles, or scientific
publications) based on a collection of relevant features that are represented as points
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in high-dimensional attribute spaces [66]. However, such approaches are less suited
for structured data sets that contain well defined attributes with short values. If
unique entity identifiers (such as passport or social security numbers) are available
for structured data sets, matching records (detecting duplicates) can be achieved us-
ing SQL join statements. However, such identifiers are commonly not available, and
therefore ER approaches need to be employed [57, 113].

In general, the ER process (described below and in Chapter 2) is challenging
because unique entity identifiers are not available in the data sets that are to be
matched. In this case identifying attribute values (like first names, surnames, or ad-
dresses) need to be used to perform the matching process. Such attribute values are
often of low quality, as they can contain errors, or they might change over time [33].
Therefore, approximate similarity functions (like the edit distance, Jaccard, Jaro, and
Jaro-Winkler string similarity functions) are generally required to perform the ER
process [33, 57, 113].

ER aims at classifying pairs or groups of records into matches (records that are as-
sumed to correspond to the same entity) and non-matches (records that are assumed
to correspond to different entities). The ER process encompasses several steps [33]:
data preprocessing, which cleans and standardizes the data to be used; indexing, which
reduces the number of candidate records to be compared in detail; record comparison,
which compares candidate records in detail using a set of similarity functions; clas-
sification, where pairs or groups of compared records are classified into matches and
non-matches ; and finally, evaluation, where the efficiency and effectiveness of the ER
process are evaluated. This process is further described in Section 2.2.

Since many services in both the private and public sectors are moving on-line,
organizations increasingly require real-time ER (with sub-second response times) on
query records that need to be matched with existing data sets [51]. Example ap-
plications that could benefit from real-time ER include government social services
which need to identify individuals on the spot even if their social security number is
not available, police officers who need to identify suspect individuals within seconds
when they conduct an identity check using the suspect’s personal details, or applica-
tions for consumer credit where an individual’s credit history needs to be retrieved
and evaluated before a new loan can be approved.

Data sets used by most organizations are often not static, but rather dynamic, as
queries generally result in a record being modified, added, or even removed from
the data set. However, most current ER techniques are based on batch algorithms
that are only suitable for static data sets. Such algorithms compare and resolve all
records in one or more data set(s) rather than resolving those relating to a single
query record, and thus they are not suitable for real-time ER. Therefore, there is a
need to develop new techniques that support ER for large dynamic data sets that can
resolve streams of query records in real-time.

Indexing is a major step in the ER process, aimed at reducing the search space by
bringing similar records closer to each other using a blocking/sorting key criterion
(see Chapter 2). Most existing indexing techniques that are currently used with ER
are static and can only be used off-line. A major aspect of achieving ER in real-time
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is to develop novel efficient and effective dynamic indexing techniques that allow
dynamic updates and that facilitate real-time matching by generating a small number
of high-quality candidate records that are to be compared with a query record. Such
indexing techniques must consider both scalability and matching quality aspects [36].

• Efficiency and Scalability: This aspect ensures the ability of an ER technique
to match and resolve query records in sub-second times and to adapt with the
growing size of large data sets. This is challenging, since the potential number
of comparisons needed to match a query record with a data set is equal to
the size of that data set. These comparisons require computationally expensive
similarity functions [31, 82] which makes it challenging to employ ER technique
with larger data sets. Thus, indexing techniques need to address the fact that
real-world data sets are getting constantly larger every day.

• Effectiveness (or matching quality): Real-world data sets can contain errors
and variations, can change over time, or they can be incomplete [10, 36]. The
noise in the data makes the ER process more challenging. Indexing techniques,
which aim at bringing similar records closer to each other to reduce the search
space, are affected by such noise within the data. If an indexing technique is
not designed to consider noise within the data it can end up brining dissimilar
records closer to each other which will drop the quality of the results produced
in the ER process. Therefore, indexing techniques need to consider the fact that
real-world data sets are noisy, and they should address this issue to improve
the quality of their record matching capabilities.

In this study we focus on the indexing step of the ER process (see Chapter 2),
and develop novel dynamic indexing techniques that consider the efficiency and the
effectiveness aspects to allow matching of a query record with records in an existing
data set in real-time. Section 1.3 describes the objectives of our research in more
details, while the following section describes the formal definition of the real-time
ER problem.

1.2 Real-Time ER Problem

We assume that data set R = {r1, r2, . . . , r|R|} contains records of known entities. Each
ri ∈ R has a unique record identifier ri.id and an entity identifier ri.eid. Note that an
entity in R can be represented by one or several records. To indicate that record(s)
in R correspond to the same entity, they are given the same entity identifier. On
the other hand, to distinguish all records in R that represent a single entity, each
record is given a unique record identifier. A record ri in R is described by a set
of attributes, denoted as A = {a1, a2, . . . , a|A|}. All records in R are assumed to
have the same attribute structure. We also assume that a stream of query records
Q = {q1, q2, . . . , q|Q|} is to be matched with R. Each qj ∈ Q is given a unique
identifier qj.id 6= ri.id, ∀ri ∈ R; and has the same attribute structure A as the records
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in R. In addition, we assume that qj is given a new entity identifier if it has no
matching record(s) in R (i.e. no records that correspond to the same entity as qj). On
the other hand, if qj has matching record(s) in R, it is given the same entity identifier
as the matching record(s). We also assume that qj is to be added to R after it has
been resolved. The problem of real-time ER is defined as:

[Definition] 1.1 Real-time ER: For each query record qj in a query stream Q, find
the records in R that belong to the same entity as qj, denoted as the set Mqj , in
sub-second time, where Mqj = {ri | ri.eid = qj.eid, ri ∈ R}, Mqj ⊆ R, qj ∈ Q.

All steps in the traditional static ER process (described in Chapter 2) need to be
modified to allow real-time ER. Our focus is to address the indexing step of the ER
process.

1.3 Research Objectives

As described in the previous section, one of the main challenges of real-time ER is
the growing size of the collected data by many organizations. Performing a query
matching with such large data sets is challenging in real-time since the query po-
tentially has to be compared with all records in the data set. Indexing techniques
reduce the number of comparisons required in this matching process. The way in-
dexing techniques work is important and affects both the quality of the matching
results and the efficiency of the matching process.

Most indexing approaches proposed for ER in the literature fall into two main
categories: blocking-based approaches and sorting-based approaches (described in
Chapter 3). The majority of these techniques are not designed to work with real-time
ER [35, 33]. Therefore, the primary aim of this research concentrates on indexing
techniques that can be used for real-time ER. The following is a list of issues that this
study aims to address.

1. Blocking-based indexing techniques for real-time ER: Blocking-based index-
ing techniques are used widely in ER to reduce the comparison space required
to do the matching. Blocking-based techniques are based on inserting records
into blocks according to a blocking key criterion and only comparing records
that are in the same block. However, most of these techniques in their current
form assume static data sets and do not support query matching with dynamic
data sets in real-time. There is a need for blocking-based indexing techniques
that can be used with real-time ER. We address this issue in Chapter 5.

2. Sorting-based indexing techniques for real-time ER: Sorting-based indexing
techniques are also widely used in the indexing step of the ER process. They are
based on sorting records in a data set according to a sorting criterion and com-
paring only records within a sliding window [79]. Similar to blocking-based
techniques, most existing sorting-based indexing techniques assume static data



§1.4 Research Methodology 5

sets and do not support query matching with dynamic data sets in real-time.
Thus, new sorting-based indexing techniques need to be proposed to allow
their use with real-time ER. We address this issue in Chapter 6.

3. Improve matching quality of indexing techniques: Producing high quality
matching results is as important for real-time ER as is the efficiency of the pro-
posed indexing techniques. The quality of matching results is affected by how
an index technique works and what sorting/blocking keys are selected. For
example, sorting-based indexing techniques are sensitive to errors that occur
at the beginning of attribute values which affect the quality of the produced
results. Thus, it is important to consider how indexing techniques work and
aim to improve the quality of the produced results while considering efficiency
when proposing new indexing techniques. We address this issue in Chapter 7.

4. Automatic selection of blocking/sorting keys: Indexing aims at bringing sim-
ilar records closer to each other using a blocking/sorting key criterion (see
Chapter 2). Selecting blocking/sorting keys is crucial for the effectiveness and
efficiency of the real-time ER process. Traditional indexing techniques require
domain knowledge for optimal key selection. However, to make the ER process
less dependent on human domain knowledge, automatic selection of optimal
blocking keys is required. We address this issue in Chapter 8.

1.4 Research Methodology

An experimental methodology is followed in conducting our research by applying
the following steps (shown in Figure 1.1):

1. Initial exploration: In this step a general understanding of the ER process was
achieved by reading broadly in the literature which helped in recognizing the
research problem.

2. Problem definition: In this step a definition of the research problem was de-
veloped based on the preliminary study that was conducted in the initial ex-
ploration step.

3. Literature review: In this step an extensive exploration and examination of the
literature was conducted to better understand the area of the identified problem
and to review current approaches. This step helped in refining the problem,
identifying the aim of the research, and planning for possible solutions.

4. Solution design: Based on the problem definition and based on the review
of the literature, possible solutions were proposed. New algorithms were de-
signed to address the identified research problem.

5. Conceptual analysis: A theoretical analysis of the designed algorithms was
conducted during this step with regard to complexity, and estimation of the
number of comparisons required between a query record and data set’s records.
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Figure 1.1: The proposed research methodology

6. Prototype development: Prototypes of the proposed solutions were developed
to be used in the experimental evaluation.

7. Evaluation: The developed prototypes were experimentally evaluated using
real-world, and synthetic data sets to validate proposed algorithms.

1.5 Contributions of this Research

This thesis is concerned with real-time ER. It focuses on the indexing step of the ER
process (described in Chapter 2) and proposes several dynamic indexing techniques
that can be used for real-time ER. The thesis encompasses six main contributions:

1. A dynamic similarity-aware inverted indexing technique for real-time ER: As
discussed in Section 1.1, most existing ER techniques are static and work off-
line using batch algorithms that resolve all records in a data set. However, real-
time ER requires to resolve only records that are related to a single query record
in sub-second time. Thus, we propose a blocking-based dynamic indexing
technique that is updated whenever a new query record arrives; this results
in a dynamic up-to-date index that supports dynamic data and works well in
real-time. We also reduce the size of the index by proposing a frequency-filtered
alteration that removes uncommon attribute values and only indexes the most
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frequent ones, leading to only a slight drop in the quality of the matched query
records. This contribution is published in a workshop paper [131] and a revised
version is described in Chapter 5.

2. A dynamic sorted neighborhood indexing technique for real-time ER: The
sorted neighborhood method (described in Chapter 3), which sorts a data set
and compares records within a sliding window, has been successfully used for
ER of large static data sets. However, because it is based on static sorted arrays
and is designed for batch ER, it is not suitable for real-time ER on dynamic data
sets which are updated constantly. We propose a tree-based technique which
facilitates dynamic indexing based on the sorted neighborhood method that can
be used for real-time ER. We investigate several static and adaptive window ap-
proaches when retrieving candidate records. We also improve query matching
times by pre-calculating the similarities of attribute values between neighbor-
ing tree nodes, resulting in a reduction in matching times. The combined pro-
posed techniques lead to an effective dynamic indexing that works well with
real-time ER. This contribution is published in a conference paper [130] and a
revised version is described in Chapter 6.

3. A forest-based sorted neighborhood indexing technique for real-time ER: As
will be described in Chapter 3, sorting-based indexing techniques are sensitive
to changes and errors that occur at the beginning of attribute values that are
used as sorting keys. To overcome this problem we propose a forest-based in-
dexing technique that uses multiple distinct trees (as described in Chapter 7) in
the index data structure where each tree has a unique sorting key. We investi-
gate using single attribute values and concatenation of multiple attribute values
as sorting keys to examine which sorting keys are more suitable for real-time
ER. This technique showed a noticeable improvement in matching quality for
both single and concatenated sorting keys when using multiple trees with only
a small increase in query time. Our results show that multiple trees built using
concatenated attributes as sorting keys are more suitable for real-time ER than
single attribute values. This contribution is published in a conference poster
paper [128] and a revised version is described in Chapter 7.

4. A conceptual analysis of the three proposed indexing techniques: All pro-
posed indexing techniques are theoretically analyzed with regard to estimating
the expected number of record comparisons required by each technique. The
conceptual analysis for each technique can be found before the experimental
evaluation section in its corresponding chapter.

5. An unsupervised blocking key selection technique for real-time ER: As de-
scribed in Chapter 2, indexing is a crucial step in the ER process. It aims at
reducing the search space by bringing similar records closer to each other us-
ing one or more blocking/sorting key(s). Selecting these keys is crucial for the
effectiveness and efficiency of the real-time ER process. Traditional indexing
techniques require domain knowledge for optimal key selection. However, to
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make the ER process less dependent on human domain knowledge, automatic
selection of optimal blocking keys is required. We propose an unsupervised
learning technique that automatically selects optimal blocking keys for build-
ing indexes that can be used in real-time ER. We specifically learn multiple
keys to be used with the multi-tree sorted neighborhood indexing as described
in Chapter 7. This contribution is published in a conference paper [129] and a
revised version is described in Chapter 8.

6. A comprehensive evaluation for the proposed techniques: We conduct an
experimental evaluation of our proposed techniques using multiple large real-
world data sets and multiple synthetic data sets in terms of quality and effi-
ciency. We provide a comparative evaluation between our indexing approaches
and an existing indexing technique that is commonly used with ER [11, 34, 107].
Our unsupervised learning technique is also compared with a recently pro-
posed blocking key learning algorithm [89].

1.6 Thesis Outline

This thesis is structured as the following: In Chapter 2 we provide the background
about ER. Then, in Chapter 3, we present a review of the literature of existing index-
ing techniques that are used in the ER process. We describe the evaluation framework
that we use to evaluate the proposed approaches in Chapter 4. In Chapter 5 we pro-
pose a dynamic indexing technique that is based on standard blocking to be used
with real-time ER. Next, in Chapter 6 we propose a second indexing technique that
is based on the sorted neighborhood method to be used with real-time ER. We pro-
pose a third indexing technique in Chapter 7 that improves the matching quality of
the real-time ER process by using multiple trees and keys in the index data struc-
ture, and in Chapter 8 we propose an unsupervised learning technique that learns
blocking/sorting keys used for building indexes that are suitable for real-time ER.
In Chapter 9 we provide a comparative evaluation between the proposed algorithms
and several existing indexing techniques. Finally, Chapter 10 concludes the study,
summarizes the achieved results, and discusses the follow-on future work of this
research work.

1.7 Notation and Abbreviation

The following is a list of general notations and abbreviations used throughout this
thesis. Additional notations specific to individual chapters are introduced in the
relevant chapters.
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Table 1.1: A summary of general notations and abbreviations used in this thesis
R A data set of know entities
A A set of attributes {a1, a2, . . . , a|A|} for each ri ∈ R
Q A stream of query records
C A list of candidate records for a query qj
D An inverted index or disk-based data set table
Mqj A set of all records in R that belong to the same entity of a query qj
ri A record in R
qj A query in Q
n The size of data set R
sim(., .) A function used to calculate the similarity between two values (0 ≤ sim(., .) ≤ 1)
w Window size used to generate candidate records

SK A sorting key
SKV A sorting key value
BK A blocking key
BKV A blocking key value
DySimII A dynamic indexing technique that is based on the similarity aware inverted index (proposed

on Chapter 5)
DySimII-f A frequency-based DySimII that index only most frequent attribute values (proposed in

Chapter 5)
DySNI A dynamic indexing technique that is based on the sorted neighborhood method (proposed

in Chapter 6)
DySNI-f A DySNI that uses a fixed window approach to generate candidate records (proposed in

Chapter 6)
DySNI-s A DySNI that uses an adaptive window approach to generate candidate records, it is based

on using similarities between key values of nodes (proposed in Chapter 6)
DySNI-d A DySNI that uses an adaptive window approach to generate candidate records, it is based

on using number of duplicates within nodes (proposed in Chapter 6)
DySNI-c A DySNI that uses an adaptive window approach to generate candidate records, it is based

on using a controlled number of candidate records (proposed in Chapter 6)
F-DySNI A forest-based dynamic sorted neighborhood index that is based on using multiple distinct

trees in the index data structure (proposed in Chapter 7)
QGI A q-gram based index [11, 34, 107] that is used in ER (described in Chapter 4).
FDJ A a Fisher disjunctive algorithm that learns blocking keys (proposed by Kejriwal [89])



10 Introduction



Chapter 2

Background

In this chapter we present the basic background knowledge needed to understand
the research problem addressed in this thesis. We provide an overview of entity
resolution in Section 2.1, describe the different steps in the entity resolution process
in Section 2.2, and define real-time entity resolution problem in Section 2.3.

2.1 Entity Resolution Overview

Entity resolution (ER) is the process of identifying real world objects based on a
group of features [145]. Humans used ER techniques long time ago, even before
computers were invented. For example, hunters used animal footprints to identify
which animals are living in a certain region, doctors used bone shapes of some body
parts (like jaws and elbows) to determine the race of a human, and clerks used
information on records (in their hard copy format) to perform a manual cleaning to
remove duplicated records. However, since the development of computers, automatic
ER techniques started to rise and flourish.

In 1959, Howard Borden Newcombe [115] established the foundation for proba-
bilistic ER, which was then mathematically formalized for the first time by Fellegi
and Sunter [62] in 1969. In the middle of the twentieth century, people started using
computerized ER techniques in various fields [145]. Statistical and health organiza-
tions were among the first to use ER techniques extensively to enhance their opera-
tions [33, 165]. Since then, a substantial amount of research has been conducted in
the area of ER, and various ER techniques have been developed [57, 82, 33, 166]. In
this section we provide a brief overview of ER, its definition, benefits, applications,
and challenges.

2.1.1 Entity Resolution Definition

In the last decade, researchers from different fields have studied the problem of ER.
Statisticians and researchers in the health domain refer to the problem as record or
data linkage [1, 83, 112]. In the database domain it is referred to as merge/purge [79,
78, 80], data de-duplication [14, 76, 144], and instance identification [38, 108, 155]. In
the computer science domain it is referred to as data matching [33, 97, 140], record
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matching [28, 61, 151], reference reconciliation [49, 136, 137], entity resolution [22, 101,
142], and duplicate detection [81, 113, 120] or de-duplication [34, 93, 138]. We will use
the term entity resolution (ER) for the rest of this thesis.

Various scholars have defined the ER problem as follows. Newcombe et al. [115]
defined ER as �bringing together two or more separately recorded pieces of infor-
mation concerning a particular individual or family� , while Fellegi and Sunter [62]
described ER as �the problem of recognizing those records in two files which rep-
resent identical persons, objects, or events� . ER was also defined by Winkler [167]
as �the methodology of bringing together corresponding records from two or more
files or finding duplicates within files� , and by Elmagramid et al. [57] as �to identify
records in the same or different data sets that refer to the same real-world entity,
even if the records are not identical� . Usually, when the terms duplicate detection or
de-duplication are used, this refers to finding matches (duplicates) in a single data
set [33, 113].

We refer to ER as the problem of identifying different records in multiple data sets
that represent the same real-world entity. An entity could be any object that exists
in the real-world like a person, a product, a business or an organization. Having
duplicate records within data sets of businesses and organizations can affect the
quality of their provided services and outcomes [10, 57, 82]. Therefore, businesses
and organizations in various areas are increasingly using ER techniques to merge
duplicates and clean data sets to improve the quality of the data sets they are using.
More benefits of using ER are described next.

2.1.2 Benefits of Entity Resolution

Given that the process of collecting data is growing enormously within most organi-
zations, it is important for such organizations to manage and analyze their data to
accomplish their daily business operations effectively. Various data analysis, man-
agement, and mining tools are currently used to assist businesses and organizations
to better understand, perform, and improve their business operations [71]. Providing
such tools with dirty data (that contain errors and duplicates) could generate incor-
rect and misleading output [82]. ER techniques can be used to remove duplicate
records from data sets to improve the achieved benefits of such tools.

Moreover, a data warehouse, which is a decision support system, is important
for various businesses and organizations [71, 123]. It can provide organizations with
strategic information and historical data which enhance data analysis, reporting and
decision making [123]. A data warehouse generally requires integration of multiple
data sources into one clean and consistent information system [123]. The quality of
the source data has to be improved before loaded and integrated into a data ware-
house which can be achieved by cleaning and standardizing the integrated data via
ER techniques [127].
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2.1.3 Applications of Entity Resolution

Matching records that correspond to the same entities from different data sets has
been intensively used in various areas including health, national censuses, crime
and fraud prevention, and national elections. The following is a list of the main
application areas that use ER to improve their operations:

• Health services: Health services is one of the main areas that had an early start
in matching data between multiple resources [33]. In health services, personal
and medical information is collected each time a person comes into contact with
any health services (such as a doctor, a clinic, or an emergency department of
a hospital). If such information is matched between various health services, it
can be analyzed to improve the health system [148].

Matching records from different health services provides researchers with bet-
ter quality data, patients with improved services, and policy makers with more
reliable evidence to support their decision making [124]. Moreover, matching
health data improves the ability to detect adverse health trends, identify disease
outbreaks, detect health service problems (such as procedural or managerial is-
sues), and improve clinical practice [125].

Australia is one of the world leaders in health data matching. It established
the Health Services Research Linked Database program in Western Australia in
1995 [47]. Until 2003, this program has supplied data for 258 projects, which
produced 708 research outputs, including 172 journal articles. Moreover, the
matched data from the Western Australian data matching program was directly
responsible for various changes to policies and clinical practices [25]. In 2008 a
study was conducted to evaluate the research output based on using matched
health data from the Western Australian data matching program. It concluded
that matching data between different services in the heath domain can make a
substantial and quantifiable contribution to population health and policy devel-
opment [24]. Similar health data matching programs were founded in different
counties as well, including the UK, Canada, US and New Zealand [148].

• National statistical agencies: National statistical agencies (NSAs) are respon-
sible for collecting and publishing data related to various areas such as popu-
lation, economy, health, education, culture or politics [33]. Statistical data gen-
erated by NSAs are provided to governments, organizations or communities to
improve decision making, evaluation, and assessment procedures [33]. NSAs
have a long history of matching records when conducting statistical surveys
and developing data collections [163].

Matching records allows the reuse of existing data. For example, in 2006 the
Australian Bureau of Statistics1 required to produce an estimation about the
number of interstate migrations. However, there were no direct data sources
that could be used to measure interstate migrations and it was expensive to

1can be found at http://www.abs.gov.au/
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conduct a survey for that purpose [147]. Therefore, the Australian Bureau of
Statistics used a number of indirect administrative data sources to estimate
the number of interstate migrations, including electoral roll registration, fam-
ily allowance payments, and Medicare registration data from Medicare Aus-
tralia [147]. Matching existing data reduces costs, improves data quality, and
reduces the burden of conducting surveys [163].

The US Census Bureau was one of the first to adopt data matching techniques,
and it also had a key role in ER research [126, 161, 164]. Currently, most bureaus
of census, including the Australian Bureau of Statistics, apply data matching
techniques to improve the quality for their collected data.

• Fraud detection: Fraud is defined in the Oxford Dictionary as �criminal decep-
tion; the use of false representations to gain an unjust advantage� [116]. With
the rapid and enormous growth of modern technology, and with the fast com-
munication means currently available, fraud is increasing dramatically leading
to the loss of billions of dollars worldwide [21]. Many fraud detection prob-
lems involve very large data sets. For example, in the period of November 2011
to November 2012, around 1.9 billion credit card transactions were carried out
in Australia [132]. This large number of transactions shows the importance of
fraud detection. Assume that only 0.1% of these transactions were fraudulent,
this means that 1.9 million transactions will be affected by fraudsters only in
that year.

Currently, various information systems, statistics applications, and data mining
techniques are used for fraud detection in numerous businesses and organiza-
tions [30, 121]. ER techniques can be used to improve the quality of the data
used to enhance the performance of such data mining and statistical tools.
Moreover, ER can be used to match known fraudsters to other individuals in
the data. This should improve fraud detection since fraudsters rarely work in
isolation from each other [21].

• Other applications: ER has been applied in various other application areas.
Search engines [69] use ER techniques to identify documents that cover similar
topics. Many comparison shopping sites also take advantage of ER to iden-
tify similar products to be able to provide price comparisons successfully [17].
Digital libraries, on the other hand, identify similar articles to improve search-
ing facilities, and to de-duplicate their data sets [170]. De-duplication can also
be used in businesses to remove duplicate records from their customer mail-
ing lists, which will reduce the cost of sending advertisement mails to cus-
tomers [113]. Moreover, business partners can benefit from matching records
across their data sets to achieve successful business activities.
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2.1.4 Challenges of Entity Resolution

The aim of ER techniques is to identify all records in multiple data sources that refer
to the same real-world entity. In order to conduct the matching process between data
sets, ER has to compare all records within the data sets to find matching (duplicate)
records. Applying ER techniques involves two main challenges:

• Efficiency and scalability to large data sets: In order to match records from
multiple data sources all record pairs from the data sets have to be compared
in detail to identify matching records. The complexity of such comparisons is
quadratic in the size of the compared data sets and therefore not feasible. More-
over, the comparison process has to be conducted using approximate compari-
son functions to address the data quality challenge. Such comparison functions
are often computationally expensive and some have a computational complex-
ity that is quadratic in the length of the compared attribute values [33].

• Quality of the matching results: Most data sets do not have reliable unique
identifiers to distinguish different entities. To overcome this issue, ER tech-
niques use identifying attributes, like names and addresses, to identify differ-
ent records that represent the same real-world entity. However, such attributes
often contain variations and typographical errors [10] which makes distinguish-
ing different entities across data sets more challenging, and in turn affects the
quality and accuracy of the matching process.

ER techniques should aim to address the above challenges and provide effective and
efficient algorithms that produce high quality matching results efficiently, and they
should also scale to large data sets.

2.2 The Entity Resolution Process

The ER process encompasses five major steps as illustrated in Figure 2.1. Using clean
data sets is vital to improve the quality of the matching process. Therefore, the first
step in the ER process is to clean and standardize the data sets that are to be matched.
The second step, indexing, addresses the efficiency and scalability of the ER process
and aims at reducing the number of comparisons required to do the matching by
grouping similar records together and only comparing those that are likely to be
similar. Records that are grouped together in the indexing step move to the next
step, the comparison step, where a list of candidate record pairs is generated from
records within each group. These candidate pairs of records are compared using
various comparison functions [31, 82] and classified in the classification step into
`matches', `potential matches', or `non-matches'. The quality of the classified record
pairs is then assessed in the evaluation step. The various tasks in the ER process are
described in more details in the following sections.
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Figure 2.1: The steps of the ER process (taken from [33]).

2.2.1 Data Cleaning

Data quality was defined by Tayi and Ballou [146] as �fitness for use� which suggests
that data of a certain quality that is appropriate for one use could potentially not be
appropriate for another use. Many data quality dimensions have been identified in
previous research [10, 139, 154]. However, the data quality dimensions that have the
most influence on the ER process are: accuracy, consistency, and completeness [33, 113].
Accuracy is the extent to which data are correct, reliable, and free of error [113];
consistency is the extent to which several data are consistent and can be combined
without problems [82]; and completeness is the extent to which the data are complete
and have no missing values [33].

Most collected data in the real-world are dirty and can include errors, missing
values, or inconsistent values [10, 82]. Moreover, different data sources can have
different structures and formats [33, 127]. Earlier research has confirmed that data
quality is vital for the ER process and significantly affects its outcome [33, 82] and that
cleaning data makes it comparable and more usable [57]. Therefore, it is important
to clean data before it is used for ER. Several approaches can be applied to clean data
sets, the following are the main approaches that are commonly used to clean and
standardize the data in the first step of the ER process [57]:
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• Standardization: As discussed earlier, real-world data sets usually do not have
unique identifiers, which requires the use of identifying attributes like names
and addresses to perform the ER process. Before attribute values are used in
the matching process these attributes have to be converted into a standard form.
This standardization process is performed before carrying out the ER process to
improve the probability of finding matching records. Standardization usually
consists of removing unwanted characters, correcting spelling errors, expand-
ing abbreviations, and ensuring that the same coding systems and measuring
units are used across data sets [33, 127, 163].

• Parsing: Parsing aims at identifying and isolating individual components in
the standardized attribute values from the previous step into well-defined and
consistent components. One example of parsing would be to split personal
names into title, given name, and family name. Another example is to split
phone number into country code, area code, and phone number. Paring should
improve the process of data matching because it allows comparing individual
components rather than complex and long attribute values [33, 57, 163].

• Data transformation: In this step parsed and standardized attribute values are
converted into their proper and correct form. Common conversions in this step
include decoding encoded attribute values to their original form, range check-
ing, and dependency checking. Range checking, examines attribute values and
ensures that they fall within the expected range. Dependency checking, makes
sure that attribute values are consistent and have no conflict with others. An
example of dependency checking is to validate the name of a city and its post-
code if they are consistent, or if the street name and type are consistent. If
values are not consistent, this usually would be a data entry error and needs to
be corrected by changing one attribute value to be consistent. Data conversions
can either be automatically completed or it could be flagged to indicate that the
record contains some inconsistent values [33, 57, 127].

2.2.2 Indexing

After conducting cleaning and standardization in the previous step, the data sets are
ready to be matched. Assume that we need to perform the matching process for data
sets RA and RB. Each record from RA potentially has to be compared in detail with
all records from RB. The number of record pair comparisons required to complete
the matching process is equal to the product of the number of records in RA and
RB, as seen in Figure 2.2. The total number of record pair comparisons therefore
increases quadratically with the size of the matched data sets. Such comparisons are
usually accomplished using approximate comparison functions [31, 82] which are
often expensive. This can lead to a performance bottleneck [36] that makes matching
large data sets infeasible.
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Data set RA Data set RB

Number of comparisons =  |RA| x |RB|

Figure 2.2: The number of comparisons required to match two data sets in the traditional ER
process.

One way to overcome this problem is to reduce the number of compared record
pairs using indexing techniques [34]. The idea behind indexing is to bring similar
records closer to each other in order to compare only those that are more likely to be
a match, and avoid comparing records that are more likely to be a non-match. There
are two general forms of indexing techniques used with ER: blocking-based [34] and
sorting-based [79] techniques.

In blocking-based techniques, records are inserted into blocks according to a
blocking key criterion and subsequently only records that are in the same block
are compared. In the sorting-based techniques, all records are sorted using a sort-
ing key criterion, and then a window slides over the sorted records, comparing only
those records that are within the sliding window at any one time. Both blocking
and sorting keys are usually based on one or a concatenation of attribute values (e.g.
the concatenation of first name and surname values). More details about indexing
will be provided in Chapter 3. The output of the indexing step is a group of similar
records that are brought together in order to be compared in detail in the comparison
step, which is described next.

2.2.3 Comparison

After bringing similar records closer to each other (in the form of groups) in the
previous step, record pairs that are in the same group require more detailed compar-
ison to decide whether the records refer to the same real-world entity or not. This
comparison step is generally based on comparing several record attributes (i.e. iden-
tifying attributes such as first name, last name, address and date of birth, are usually
compared). Two types of comparisons can be applied:
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• Exact comparison: An exact comparison between two attributes gives a result
of 0 or 1, based on the values of the compared attributes. If the values of the
compared attributes are exactly the same, the similarity of those attributes will
be 1. On the other hand if the values of the compared attributes are not exactly
the same this will give 0. This type of comparison is generally used when the
data is clean and contain no typos and errors (which is not the case in most
real-world data sets).

• Approximate comparison: An approximate comparison between attribute val-
ues can be achieved by using either similarity measures (that measure how
much two values are similar to each other) or distance measures (that measure
how close two values are to each other). The normalized similarity between
two attribute values s1 and s2, denoted as sim(s1, s2), can have a value between
0 and 1. The higher the similarity between the compared values the more likely
these values are a match. Having a similarity of sim(s1, s2) = 1 indicates that s1
and s2 are exactly the same, while sim(s1, s2) = 0 indicates that the two values
are totally different. Moreover, the normalized distance between two values,
denoted as dis(s1, s2), has a value between 0 and 1. The larger the distance
between two values, the less likely they are a match. This means that a value of
dis(s1, s2) = 1 indicates that the compared values are different from each other,
while dis(s1, s2) = 0 indicates that the compared values are exactly the same.
There is an association between the distance and the similarity represented by
sim = 1 − dis. For a similarity measure to be associated with the distance
measure it has to fulfill the following properties of distance functions [33]:

dis(i, i) = 0.0 The distance from an object to itself is zero
dis(i, j) ≥ 0.0 The distance between two objects is non-negative
dis(i, j) = d(j, i) The distance between two objects is symmetric
dis(i, j) ≤ d(i, k) + d(k, j) Fulfill the triangular inequality

The triangular inequality states that the direct distance between two objects
is never greater than the combined distance when going through a third ob-
ject [35].

Since real-world data is dirty and often contain typographical errors and variations,
using exact comparison measures to perform the ER process likely causes the missing
of true matches. Therefore, approximate comparison functions should be used to
overcome the problem of finding matching records that have errors or variations in
their attribute values [31]. Various approximate comparison functions are used with
ER for the different data types, some are described below [33, 82, 113].

Edit distance is a comparison function that is also known as Levenshtein edit
distance [114]. It is defined as the minimum number of edit operations (i.e. charac-
ter insertion, deletion and replacements) that are required to convert one string into
another [114, 113]. This comparison function considers the compared values as a
whole and are not divided into tokens. It is widely used in practice, however, it has
a quadratic complexity and is not suitable when a whole part of the compared val-
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ues differs, for example when comparing 'John Smith' and 'Peter John Smith' [113].
Various extensions and modifications for the original edit distance function were de-
veloped to improve its efficiency and to allow different weights of different types of
edits. Extensions on the basic edit distance function can be found in [39, 70, 172]

Q-gram based function [11] compares two strings by first splitting the compared
strings into sub-strings of length q, which are called q-grams. For example, the gen-
erated q-grams for the string `dawoud', where q = 2, are: [`da', `aw' ,`wo', `ou', `ud'].
When comparing two attribute values, the generated q-gram sets for the two values
are compared with each other to find the number of common q-grams. The number
of common q-grams can be converted into a similarity using a coefficient method like
the Jaccard coefficient, Dice coefficient, and the Overlap coefficient [31].

Jaro [87] introduced an approximate comparison function that considers the lengths
of the two strings, the number of common characters, and the types of errors in those
strings (i.e. insertions, omissions, or transpositions). Transposition means two adja-
cent characters are swapped in the two strings, for example, in the strings `Sydney'
and `Sydeny' the `ne' from the first string is swapped in the second string to `en'.
Common characters between two strings are those that are equal and have positions
within the two strings that do not differ by more than half of the length of the shorter
string [113].

Winkler [162] improved Jaro’s comparison function, where he gives more im-
portance to agreement on the initial characters of the compared strings than to the
agreement on later characters. His idea was based on the results in [122] which con-
clude that the most reliable characters of a string are those at the beginning. Various
enhancements of the Jaro-Winkler function were proposed. A comparison between
variations is found in [171]. More approximate comparison functions are described
in [33, 113].

To summarize, all records that are grouped together within the same block (gen-
erated in the indexing step) are compared in the comparison step. This comparison
process includes comparing several attribute values for each record pair in the same
block. Each attribute will be given a numerical similarity value (using one of the
approximate comparison functions). The result will be a vector of similarity values
for each record pair in a block. These comparison vectors are the input for the classi-
fication step described next, where a decision will be made on whether a compared
record pair is a match or a non-match.

2.2.4 Classification

The comparison vectors (generated in the comparison step) are used in the classi-
fication step to classify record pairs into three classes: matches, non-matches, or
potential matches. A potential match indicates that it is not clear (based on the given
attribute values) if a record pair is a match or not. In this case, a manual classifica-
tion is required to finalize the classification of the record pair. Several classification
techniques are available and can be used in the ER process. These techniques can be
categorized into the following four main categories [33, 82]:
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• Threshold-based classification: In this classification technique, the similarity
values (i.e. comparison vector) for the attributes of a record pair are summed
into an overall similarity for the pair [33]. This overall similarity is then used for
classifying the pair into one of the three matching classes based on an upper (u)
and a lower (l) threshold. Record pairs with an overall similarity greater than
u are classified as matches, record pairs with an overall similarity less than l
are classified as non-matches, while record pairs with an overall similarity in
between the two thresholds are classified as potential matches.

A major drawback of this technique is that it does not consider how informative
each attribute is, and how each individual attribute can affect the classification
process. For example, the `first name' attribute might be more informative
to the matching process than the `suburb' attribute, but this technique treats
both attributes the same in regarding to classifying the record pair, and the
importance of each individual attribute is lost in the summation of all attributes
similarities. This drawback can be handled by giving weights to each individual
attribute before summing the similarities.

• Probabilistic classification: Since real-world data is dirty and contain typo-
graphical errors, missing values or variations it will affect the quality of the
matching process. To resolve this issue, the probabilistic approach considers
assigning different weights for different attributes when they are used to clas-
sify records into a match or non-match [33]. The likelihood of two records to be
classified as a match, non-match, or a potential match is based on the accumu-
lative weight of agreement or disagreement among attribute values of the com-
pared records. Assigning such weights generally depends on the characteristics
of the attribute values, their frequencies, and their approximate similarities. For
example, an attribute with a value that has high frequency in a data set (like
the first name `peter' for instance), is generally less discriminative than other
attribute values which are not frequent (like the surname `schwarzenegger' for
instance) and therefore, agreement weights should be adjusted according to
the frequencies of attribute values, and lower weights should be given for more
frequent attribute values [33].

• Rule-based classification: In this technique, the classification decision is based
on a set of rules (constraints). These rules are related to the similarities assigned
to each attribute value in the comparison vectors of the compared records (that
are generated in the comparison step). Individual rules can be built using a sin-
gle or multiple attribute values. The set of decision rules can be manually built,
based on domain knowledge, which is very time consuming. Alternatively
machine learning techniques [71, 111] can be used to learn the optimal set of
decision rules from a training data set. Examples on rule-based classification
techniques for ER include [101, 157].



22 Background

• Supervised and unsupervised classification: Data mining and machine learn-
ing are well researched areas. Many classification and clustering techniques
have been developed in the last decade [71]. These techniques can be used in
the classification step of the ER process. Classification techniques are grouped
into two major categories: supervised and unsupervised techniques. Super-
vised classification uses a training data set that contains record pairs and their
true classification status. This training data is used to train the classification
model to be able to classify the remaining unlabeled record pairs. The main
drawback with supervised classification is that generating training data sets is
difficult and costly. Unsupervised techniques, like clustering, do not require
training data sets. In clustering, similar record pairs that refer to the same
entity are grouped together in one cluster. [107]. Various supervised and unsu-
pervised classification techniques are detailed in [71, 168].

• Collective classification: The previously described techniques perform the
classification process based only on the similarities of the compared records
independently from all other records in the data set. However, collective clas-
sification techniques [15, 16, 81] also take the characteristics of other records
in the data set into consideration. These techniques are used for data sets that
have some relational information between its records, for example people who
share the same workplace, or articles that share the same co-authors. The idea
of these techniques is to use the relational information between the records
when building the decision model. Entity resolution that uses this technique is
known as collective entity resolution [15, 16]. Although classification that consid-
ers relational information gives better matching quality it is computationally
expensive and is currently not suitable for large data sets [33].

The output of the classification step is record pairs that are classified as matches, non-
matches, or potential matches. The records that are classified as potential matches
still need a clerical review to be given a final classification result. The quality of the
classified record pairs needs to be evaluated to observe how well the classification
model performed. The following section describes the evaluation of the ER process
in more details.

2.2.5 Evaluation

After conducting the ER process, it is important to know how successful the matching
process was. Some of the main issues to consider when evaluating an ER technique
include the quality of the matching results and the efficiency and scalability of the
ER technique. Quality relates to how many of the record pairs that were classified as
matches relate to a real-world entity [36]. Different measures are generally used for
evaluating the quality of the matched results in ER, including precision, recall, and
F-measure [36, 113]. Efficiency and scalability relates to how fast a technique is and
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how well it can adapt with being used with large data sets [36]. To evaluate the scal-
ability of an ER technique run time, the number of comparisons, and reduction ratio
are commonly used [36, 113]. More details bout evaluation measures are provided
in Chapter 4.

2.3 Real-Time Entity Resolution

The traditional ER process (described in Section 2.2) is generally based on batch pro-
cessing and runs off-line to match multiple static data sets. However, most businesses
and organizations are moving on-line where they have to provide their services to
their customers instantly. In addition, the data sets used by organizations are dy-
namic and are modified constantly. Organizations increasingly have to deal with a
stream of query records that include information about entities in their dynamic data
sets. These query records have to be matched with existing data sets and resolved
on-line using ER techniques. This process is referred to as real-time ER [33, 57, 113].

2.3.1 Real-Time Entity Resolution Overview

Similarity search approaches [50, 66, 74] aim at identifying similar entities within
unstructured data (like social media, web pages, and email). Such approaches are
not suitable for identifying entities in structured data sets [33]. Moreover, traditional
ER techniques (as described in Section 2.2) are designed to match multiple data
sets with each other (which means that for matching two data sets, each record
in the first data set has potentially to be compared with all records in the second
data set). Such traditional ER techniques are not suitable for real-time ER, therefore,
new techniques that are tailored for real-time ER are required. Real-time ER can be
defined as a query-based data matching process where a stream of query records
has to be resolved against records in one or more existing data set(s) in sub-second
time [33, 57, 113] (as illustrated in Figure 2.3). A formal definition of the real-time
ER problem is described in Section 1.2.

Real-time ER is required in many applications. One example application that
illustrates real-time ER on dynamic data sets is credit bureaus. A credit bureau is
responsible for maintaining a large data set that contains credit history for individ-
uals and businesses. If a person applies at a bank for a loan, the bank sends the
customer’s details to a credit bureau and requests a credit check. The credit bureau
has to match the customer’s details to their data set and if found, it will send the
customer’s credit history back to the bank. The bank’s decision of approving the
loan depends on the credit report received from the credit bureau. This process is
done in real-time, where the bank receives the response instantly.

Other examples include government social services which need to identify indi-
viduals on the spot even if their social security number is not available, police officers
who need to identify suspect individuals within seconds when they conduct an iden-
tity check using the suspect’s personal details, and on-line product comparison sites
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Query record Data set R

Number of comparisons = |R|

q

Figure 2.3: The number of comparisons required for query-based matching in the real-time
ER process

where the site has to eliminate duplicate results in real-time from the result list based
on the queries entered by customers.

The real-time ER process is challenging. On top of the challenges of traditional
ER discussed in Section 2.1.4, real-time ER approaches have to be very efficient
since query records have to be matched within sub-second time. In addition, ER
approaches have to take into consideration the fact that real-world data are dynamic
and that they grow and change constantly. The steps in the real-time ER process are
the same as in traditional ER, however, each step has to consider the fact that the
query matching process has to be conducted very efficiently (within a sub-second
time). The following section describes how the different steps of the ER process can
be conducted in real-time.

2.3.2 Real-Time Entity Resolution Process

For real-time ER, the various steps in the ER process (described in Section 2.2) have
to consider the fact that a query record has to be resolved in real-time. The following
is a description of how each step in the ER process can be carried out to facilitate
query-based matching with dynamic data sets in real-time.

1. Cleaning and standardization: Queries are usually generated using data en-
try forms that consumers fill and submit to an organization. Controlling the
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quality of the received queries is important for completing the matching pro-
cess effectively. A query with low quality data affects the matching results and
leads to low quality output. Therefore, it is important for an organization to
control the quality of received queries as much as possible. This involves two
main procedures.

First is controlling the data entry process before submitting the query. This can
be achieved by keeping the typed-in values to a minimum to reduce possible
errors and variations in the query records. For example, this includes using
select drop down menus, check boxes, and radio buttons instead of text fields
whenever is possible. If a text field is used, a validation check on the entered
values should be conducted before allowing the submission of the query. This
could include checking for empty fields, auto spelling checks, and consistency
checks between entered values.

Second is performing cleaning and standardization on the submitted query us-
ing the same model that an organization uses for cleaning its existing data set.
The cleaned and standardized query is then ready to be matched with records
within the existing data set. Cleaning and standardizing a query record be-
fore conducting the matching process with the existing data set is not generally
computationally expensive.

2. Indexing: Real-time ER requires using dynamic indexing techniques that can
be updated constantly and can handle resolving stream of query records in
real-time. The index is built using existing data sets, which can then be used
to resolve arriving query records. When a query record arrives, and after it is
cleaned (in the previous step), it will be inserted into the index to be resolved. A
list of ranked results are then sent to the requested user. This is different from
traditional ER where multiple data sets have to be matched and an index is
built only once for the matched data sets. If the data sets change, these changes
will not be included in the index unless it is re-built from scratch (off-line).

In real-time ER for dynamic data sets, indexing has to be fast enough to fa-
cilitate retrieving records from the index in sub-second time. Moreover, the
indexing technique should have the ability of adding new records to the exist-
ing index to facilitate working with dynamic data sets. Most available indexing
techniques work with batch processing (off-line) on static data sets, and are not
suitable for real-time ER with dynamic data sets.

3. Comparison: The comparison step is similar in both traditional (off-line) ER,
and real-time (on-line) ER. In traditional ER, a pair-wise comparison has to be
conducted for all records that are within the same block, while for real-time
ER, a query has to be compared with all records that are inserted into the same
block as the query record. The comparison step is achieved by using approx-
imate comparison functions (that are usually expensive). For real-time ER, we
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must always consider the complexity of the chosen comparison function. Since
speed is vital, comparison functions with less computational complexity should
be used.

4. Classification: We discussed earlier that the classification models used for
classifying record pairs into matches, non-matches, and potential matches are
based on the characteristics of the existing records (i.e. attribute values, fre-
quencies of attribute values, dependencies between attributes, or relationships
between attributes). Simple classification models (like threshold-based, rule-
based, and probabilistic classification models) that do not require additional
information about the matched data to be generated are more suitable to be
used in the real-time ER process. On the other hand, models that require gen-
erating new information about the matched data, such as re-training the model
or re-building relational models (e.g. supervised and collective classification
approaches) are less suitable for real-time ER.

However, to use such complex classification approaches with real-time ER, any
additional information about the data can be re-generated off-line on a regular
basis, while the matching process can be conducted on-line in real-time. For
example, if a supervised classification model was used, and the data set has
changed by adding more records with new characteristics, the classification
model has to be re-trained on the new data to be able to continue with the
classification process effectively. This training can be done off-line, then the
new trained classification model can be used in real-time with the ER process.

In summary, traditional ER techniques are designed to work with static data sets
based on using batch processing algorithms. Such approaches are not suitable for
conducting the ER process in real-time on dynamic data sets. Therefore, techniques
that can handle query-matching in real-time using dynamic data sets are required.
Indexing is the main step in the ER process that affects the efficiency of real-time ER
techniques as it reduces the search space. Fast and dynamic indexing techniques are
required to enable conducting the ER process in real-time.

2.4 Summary

In this chapter we provided an overview of the ER process, its definition, benefits,
applications, and challenges. In addition, we described the steps of the ER process
and provided a brief overview of real-time ER and its steps. Next we will provide
a review of the literature on existing techniques that are commonly used in ER for
indexing (which is an important step in ER that makes the matching process efficient
and suitable for real-time).
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Related work

In this chapter we review major indexing techniques that are used with entity reso-
lution. In Sections 3.2 and 3.3 we describe major blocking-based and sorting-based
indexing techniques, respectively. In Section 3.4 we discuss meta-blocking and in
Section 3.5 we describe recent real-time entity resolution techniques. In Section 3.6
we review blocking key learning approaches, and we summarize the chapter in Sec-
tion 3.7.

3.1 Introduction

As mentioned in Chapter 2, indexing is one of the most important steps in real-time
entity resolution (ER) as it reduces the search space which leads to reducing the
number of comparisons between records required in the comparison step. The idea
behind indexing is to bring similar records closer to each other to make it possible
to only compare those that are likely more similar. This reduction in the comparison
space gives the ER process the ability to adapt to larger data sets, and makes it
possible to perform the matching process in real-time.

Indexing techniques are also employed in the area of database systems to im-
prove the performance of search operations. Major indexing techniques in the area
of database systems include techniques based on hash-tables and tree data struc-
tures [77]. The main hashing-based indexing techniques include extensible hash-
ing [58], linear hashing [102], and partial-match hashing [135]; while the main tree-
based techniques include AVL trees [2] (which are usually used with main memory
indexing), B and B+ trees [40, 41] (which are mostly used with disk-based indexing),
and T-trees [99] (which evolved from AVL trees and B-trees and are commonly used
with main memory indexing). More details about indexing techniques that are used
with database systems can be found in [77]. Such data structures (like hash tables
and trees) can be used to build indexing techniques to be used with ER.

Moreover, information retrieval systems (IR) apply indexing techniques to im-
prove the efficiency of the retrieval process. Major indexing techniques that are used
in IR systems are based on utilizing suffix arrays or trees [67, 105, 150, 156] (that use
suffix substrings of text in a document to refer to that text in the index [105]) , sig-
nature files [59, 60, 91, 98] (which represent documents using bit-based fingerprints

27



28 Related work

that are generated using different hashing techniques such as Bloom filters [20]), and
inverted files [6, 9, 174] (a collection of lists, one per term, recording the identifiers of
the documents containing that term [174]). More details about indexing techniques
that are used in IR can be found in [9, 106, 174].

In addition, similarity search approaches apply indexing and filtering techniques
which aim at reducing the search space to improve the efficiency of similarity search
solutions. Various filtering techniques can be employed such as prefix filtering ap-
proaches [12, 29] (where records are filtered based on common prefix substrings),
signature filtering approaches [12] (where records are filtered based on fingerprints
generated using hashing methods), suffix filtering approaches [169] (where records
are filtered based on common suffix substrings), and positional filtering approaches
[96, 169] (that exploit the ordering of substrings in the compared records). Moreover,
combined filtering approaches is used such as the PPJoin [96, 169] algorithm that
combines both suffix and positional filtering to improve the efficiency of the search
process.

The indexing step in the ER process include two tasks: building the index, and
retrieving records from the index (generating candidate records) [34]. As for the
building task, the index is created by reading the records from the data sets to be
matched, then the records are stored in a data structure in a way that brings similar
records closer together (by grouping or sorting the records using indexes).

On the other hand, the aim of the retrieval step is to retrieve records that are
likely similar to each other (or similar to a query record in the case of real-time ER),
and generate the candidate record pairs to be compared in the comparison step of
the ER process. Various indexing techniques have been developed in previous years
(major techniques are surveyed in [34, 57, 96]). An indexing technique can fall into
one of two main categories (shown in Figure 3.1): blocking-based or sorting-based
techniques. The following sections provide a detailed description of some of the
main current indexing techniques that are used in ER.

3.2 Blocking Based Indexing

In blocking-based indexing, the basic idea is to group records into blocks, where
every block contain records that are likely to be similar. Records that are in the same
block are compared in the comparison step to be classified (in the classification step)
as matches and non-matches. Major indexing techniques that fall into this category
are described next:

3.2.1 Traditional Blocking

The traditional blocking was introduced in [62, 87]. In this technique records are
grouped together based on the value of one or combination of record attributes.
These attribute values are used to segregate records into blocks where each block
contains only similar records. For example, if a `Postcode' attribute is used as the
blocking key, each generated block will contain only records that have the same
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Postcode. The attributes that are used in the blocking process are called Blocking
Keys (BK). The aim of segregating records between blocks is to avoid comparing all
records in a data set, rather compare only records that are in the same block (which
are most likely to be similar). This will reduce the comparison space.

Data in the real world usually contain errors and variations. To make sure that
similar records fall into the same block even if they contain some errors or variations,
attribute values can be converted into phonetic codes [33] (using encoding functions)
before going through the blocking process. The aim of using such encoding functions
is to make sure that similar records with typographical errors and variations will be
inserted into the same blocks. Several encoding functions, like Soundex, Phonex,
and Double- Metaphone, can be used before blocking, such functions are described
in [33, 82].

The number of records that are inserted into each block depends on the frequency
distribution of the attribute values that are used as BKs [34]. For example, if the
family name attribute is selected as a BK, more frequent names (e.g. `Smith') will
have larger block sizes, while a less frequent name (e.g. `Herzog') will be in smaller
blocks. Large block sizes affect the efficiency and scalability of the ER process.

To avoid generating large block sizes Gu and Baxter [68] proposed an adaptive
blocking technique that aims at filtering large block sizes. The authors proposed two
filtering approaches; the first approach is based on the length of a filtering variable
that is used to remove record pairs that are unlikely to be a match from the list of
candidate records. If the difference between the length of the filtering variables of
record pairs is greater than a specific value these pairs are removed from the list of
candidate records. The second filtering approach is based on the count of common
bi-grams (sub-strings of length 2) between the filtering variables of record pairs. If
the number of common bi-grams in the filtering variables of record pairs is smaller
than a specific threshold, the corresponding record pairs are removed from the list
of candidate records. This approach managed to reduce the number of candidate
record pairs with the cost of a slight decrease in matching quality.

More recently, Fisher et al. [64] have addressed the issue of large block sizes by
proposing two iterative blocking approaches that control the size of the generated
blocks. The idea is to split large blocks and merge small blocks until all generated
blocks are within a specified size range. The first approach merges and splits blocks
based on the decreasing similarity of the generated blocks, while the second ap-
proach merges and splits blocks based on the increased size of the generated blocks.
This approach also managed to control (using a penalty function) the trade-off be-
tween the size and quality of the generated blocks.

Another issue to consider with traditional blocking is the quality of the attribute
values that are used as BKs. If the values of attributes selected as BKs have large
numbers of missing values or errors and variations, this can lead to inserting records
into the wrong blocks which affects the quality of the matching process. To over-
come this issue, multi-pass blocking [87] can be applied where multiple passes of
the blocking process are performed using different BKs to improve the quality of the
matching process. Iterative blocking [160] can also be applied where blocks are pro-
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Figure 3.1: Main categories of existing indexing techniques that are used with traditional ER.

cessed iteratively using multiple BKs. In this approach, matched (resolved) records
in blocks are distributed to other blocks and a record can be matched against mul-
tiple blocks which improves matching quality compared to disjoint methods (where
records are only inserted into one block).

Although multi-pass and iterative blocking techniques improves the effectiveness
of the ER process, they often affect the efficiency of the matching process because of
the increased number of comparison and the redundancy introduced in the gener-
ated list of record pairs. The redundancy problem was addressed in [117] and [95].
In [117] the authors identified and discard blocks with redundant comparisons, and
merged overlapping blocks which resulted in a block of fewer comparisons. Their
solution managed to discard redundant comparisons at the cost of quadratic space
complexity. Unlike [117], which works with non-distributed environments, the work
presented in [95] addresses the redundancy problem in a parallel environments for
MapReduce [46] (a data processing tool in a parallel environment) based approaches.
Their technique managed to efficiently identify redundant pairs which are not com-
pared at run-time.

For traditional blocking to be used with dynamic data sets, the data structures
used to build the index must have the ability to be updated (add, delete, or edit val-
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ues). This allows the blocks to dynamically grow when the data sets grow. To achieve
real-time ER using traditional blocking, the used data structures must facilitate fast
retrieval for records. In addition, block size must be small to make sure that the
number of generated candidate record pairs is small and record pair comparisons
can be handled in real-time. In Chapter 5 we propose a dynamic blocking-based
indexing technique that is updated whenever a new query record arrives to facilitate
query matching in real-time.

3.2.2 Q-gram Indexing

The idea behind the q-gram blocking technique, proposed in [11], is to convert the
value of the blocking key (BK) into a list of q-grams (sub-strings of length q). Based
on these generated lists of q-grams, each attribute is inserted into more than one
block to reduce the effect of errors that might occur in attribute values. The results
in [11] showed that the q-gram index outperformed the standard blocking and the
sorted neighborhood methods with regard to matching quality.

Following [11], Ferro et al. [63] proposed a disk-based ER approach using q-
grams. The authors presented an indexing technique that is based on a sorted list
of q-grams (q-gram array). For each record in the data set, all distinct q-grams are
generated and inserted into the sorted q-gram array (which is located in secondary
memory). Then a bitmap table is generated for every q-gram in main memory. These
bitmaps are used to perform the comparison and clustering steps. The results in [63]
showed that the time required to build the index is linear with the size of the data set
and the number of attributes. The results also showed that their approach achieved
slightly improved matching quality compared to the q-gram indexing approach from
[11] while improving the time required to build and query the index. The approach
also outperformed traditional blocking [62, 87] with regard to matching quality but
with the cost of efficiency reduction. A major drawback of this approach is the
memory size required to store all generated bit maps.

An identity matching system that is based on using q-gram indexing was pro-
posed in [8]. The authors aimed at improving the efficiency of the q-gram based
indexing technique [11] by pruning q-grams with high frequencies and those that
contain only one record. To perform the identity matching, their algorithm adds all
records from the data set into a pool of records P, then selects a random record rc

from P. Next a list of q-grams Q is generated for the blocking key value of rc. A prun-
ing parameter ld is then calculated for Q: ld = min(|Q|+ (max(|Q|) + min(|Q|)) ∗ td,
where td is a uniform term-centric threshold [8]. If |Q| < ld, then Q will be in-
cluded in the matching process. The parameter ld ensures that only a small number
of q-gram blocks are processed to improve matching efficiency. The results showed
that their approach outperformed another automatic identity matching system from
[153] (which uses the sorted neighborhood method [79] as an indexing technique)
with regards to effectiveness and efficiency.

Although q-gram based indexing achieves better quality blocking (i.e. more true
matches) than traditional blocking, it is computationally expensive [11]. This is be-
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cause the number of generated candidate record pairs will be larger than those gen-
erated using the traditional blocking technique. This makes using q-gram based
indexing techniques for real-time ER challenging.

3.2.3 Canopy Clustering

Canopy Clustering [107] is a technique that aims at speeding up the process of block-
ing records for large databases. This technique first inserts the data into overlapping
subsets called canopies, then these canopies are used to create the blocks that contain
the candidate records. This technique first builds an inverted index for the BK val-
ues of all records. Before BK values are inserted into the inverted index they must
be converted into a list of tokens (tokens can be q-grams or words). The generated
tokens are then used as keys in the inverted index; then all records from the database
are inserted into the inverted index based on the tokens of attribute values.

After adding all records from the database to the inverted index, overlapping
clusters (canopies) are generated by adding all records from the inverted index into
one set S. From S a record rcenter will be randomly selected and considered as the
center of a new canopy C. Then, the similarity between rcenter and all other records in
S are calculated using Jaccard or TF-IDF/cosine similarity [33]. All records that have
a similarity with rcenter that is above a low threshold tlow will be added into the canopy
C. Next, rcenter will be removed from S, along with all records within C that have a
similarity above a high threshold thigh, with thigh > tlow. This process will continue
until there are no more records left in S, where all records will be divided between
the clusters. Canopy clustering is shown to be scalable to large databases [107].

Christen [32] has modified this approach by replacing the two global thresholds
with two neighboring based parameters: nloose and ntight where ntight ≤ nloose. The
first parameter represents the number of record identifiers that are inserted into each
cluster while the second parameter represents the number of record identifiers that
are removed from the pool of candidate records in each step of the algorithm. This
modification resulted in generating blocks of similar sizes with a maximum size that
is known (which is equal to nloose). This approach has the drawback of missing
true matches if these two parameters were not set properly. However, the results in
[32] showed that the modified canopy clustering approach achieved better matching
quality compared to the original approach as proposed in [107].

3.2.4 Mapping Based Indexing

StringMap [88] is one of the major mapping-based indexing techniques. The idea in
this approach is to convert blocking key values into objects that are mapped into a
multidimensional Euclidean space. Then, similar objects are grouped into the same
cluster by applying a multidimensional similarity join in the Euclidean space. This
approach was modified in [3] by using two levels of mapping. The first level of
mapping is similar to [88] where blocking key values are mapped into a multidimen-
sional Euclidean space, followed by a second level of mapping into a second lower-
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dimensional metric space using edit distance. The authors applied a KD-tree and
a nearest neighbor-similarity approach to insure efficient matching. This approach
improved the speed of runtime by 30% to 60% compared to StringMap [88].

3.2.5 Hashing Based Indexing

Using hashing based indexing for similarity search was introduced in [66, 84] to
solve the problem of high-dimensionality (records with a high number of features
that could reach thousands) and to speed up similarity search in the approximate
nearest neighbor search problem [7].

Generally, Locality Sensitive Hashing (LSH) is a popular hashing approach that
is used to address indexing objects with high dimensionality [66, 84]. The basic idea
is to use LSH functions to hash records, where the values of attributes (features) are
converted into a set of binary numbers (bit-pattern). These patterns are then used to
group records into buckets (blocks) based on their hashed values. With LSH, records
that hash into the same bit-pattern are more likely to be similar. This means that
similar records have a high probability to fall into the same block [66, 84].

In context of ER, several hashing approaches have been proposed to improve the
efficiency of the matching process [86, 92, 104]. Kim and Lee [92] have proposed
an iterative locality sensitive hashing technique (I-LSH) that dynamically merges the
generated hash tables for quick and accurate blocking. The approach takes a data
set as input, then the I-LSH process iterates through the data set where it generates
LSH-based hash tables for the records from the data set and the I-LSH function
continues to reduce the size of these hash tables and the generated set of records
in each iteration until the generated tables achieve a reduction rate that is less than
a given threshold. The results in [92] showed that their approach achieved better
efficiency results while maintaining similar matching quality compared with several
other approaches (basic LSH [66], StringMap [100], and R-Swoosh [13]).

Ioannou and Papapetrou [86] proposed an ER approach that works with RDF rep-
resentations of sources on the Semantic Web, taking into consideration the semantics
and structure in the resource descriptions. Their approach employs an index that is
based on the LSH approach of [66] to avoid the need of large number of pairwise
similarity computations that is usually required to find matching entities. Their re-
sults show that for an RDF data set with 2,711,217 entity, an average query time of
less than 100 ms was achieved.

Malhotra et al. [104] proposed a parallel implementation of the ER process using
MapReduce [46]. The approach combines the iterative match-merge (IMM) approach
proposed in [13] with the standard LSH hashing from [23] for the purpose of improv-
ing the efficiency of the ER process. The approach managed to avoid unnecessary
comparisons to reduce the required query time. For a hashing-based indexing tech-

nique to be suitable for query matching on dynamic data sets, it should be able to
add hashed query records into the corresponding bucket in each hash table, retrieve
candidate records and conduct the matching process within sub-second time.
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3.3 Sorting Based Indexing

Sorting-based indexing techniques aim at bringing similar records closer to each
other by sorting all records in a data set based on a criterion which is usually the
value of one or more attributes. For instance, sorting a list of customers alphabetically
based on the value of their first name will bring customers with first names that start
with the same letter closer to each other. The aim is to then compare only records
that are most similar. Major sorting-based indexing techniques are described below.

3.3.1 Sorted Neighborhood Method

The idea behind the sorted neighborhood method (SNM), which was introduced
in [79, 80], is to sort the records in the compared data sources based on a sorting
value. This sorting value is one or several of the record attributes. Then a fixed
size window (w > 1) slides over the sorted records and only the records inside the
window at any one time are compared. This will reduce the number of compared
record pairs significantly.

This approach first merges the records from the compared data sets and loads all
records into a data structure (the original approach [79, 80] uses a static array). The
records in the array are sorted alphabetically based on a sorting key (i.e. an attribute
value). One thing to consider when selecting a sorting key is that the sorting will be
sensitive to the beginning of the sorting key values. This means if the sorting key
value contained an error at the beginning it will not be placed close to similar records.
To avoid this problem a multi-pass SNM approach can be used with different sorting
key [79] to independently run the SNM several times. For example, in the first run a
Surname attribute can be used, while in a second run a Suburb attribute can be used
as sorting key. Each of the two runs will generate a set of candidate records that are
merged. Then the transitive closure [33] is applied to those record pairs. The results
will contain the union of all unique record pairs discovered by all independent runs,
plus all record pairs that are found by applying the transitive closure. This approach
improves the matching quality with the cost of an increase in matching time.

Both single and multi-pass SNM can be modified to run in a parallel environment
to improve the efficiency of the SNM approaches. Kolb et al. [94] proposed an im-
plementation of both single and multi-pass SNM using the MapReduce programing
model [46]. The authors investigated the challenges and solutions of using MapRe-
duce to perform the ER process in parallel using the SNM. Their results showed that
single and multi-pass SNM can be parallelized with MapReduce to improve the effi-
ciency of the ER process. The complexity of single and multi-pass SNM is discussed
in details in [90].

Unlike blocking-based techniques, the number of candidate record pairs gener-
ated by the SNM is not affected by the frequency distribution of attribute values that
are used as sorting keys, and only depends on the size of the sliding window and
number of records in a database’. It is important to choose the optimal window size
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that finds as many true matches as possible. If the window size is too small, true
matches might be missed; while if it is too large unnecessary comparisons between
record pairs that are not similar might occur. This problem was addressed by dif-
ferent approaches [54, 109, 170] that use an adaptive window size instead of a fixed
one. These approaches are described in the following section.

The SNM in its current form is only suitable for indexing static data sets and
only works with ER techniques that match multiple data sets or a data set with itself.
In addition, it dose not work with real-time ER where streams of query records are
matched with an existing data set. However, in Chapter 6 we propose a dynamic
sorted neighborhood index (based on the traditional SNM) which can be used with
query-based matching for dynamic data sets to facilitate real-time ER, and in Chap-
ter 7 we propose a dynamic multi-tree index (based on the traditional multi-pass
SNM) which is tailored for real-time ER.

3.3.2 Adaptive Sorted Neighborhood Method

Because selecting an optimal window size that can achieve the best matching results
with a minimum number of comparisons is challenging, adaptive SNM techniques
can be used to avoid the need for manual tuning of the size of the window that is
used to generate the set of candidate records. Several adaptive SNM approaches have
been proposed [54, 109, 170].

Yan et al. [170] proposed an approach that adaptively adjust the boundaries of the
window used to generate the candidate records based on the similarities between the
values in the sorted list. This approach expands the window based on the distance
d between the first and last records in the initial window size. A distance that is
less than a specified threshold (d < θ), means that the records within the window
are close to each other and there is room for expanding the window size to include
more records. A distance that is d > θ means that the records within the window are
spares and the size of the window can be reduced to avoid unnecessary comparisons.
The results presented in [170] showed that their adaptive window approach achieves
better matching quality compared to the original fixed size window approach in [79].

Draisbach et al. [54] proposed another adaptive SNM that aims at addressing the
disadvantage of having a fixed size window. In this approach the expansion and re-
duction of the window size is based on the number of matches that are found within
the window. The more matches are found, the larger the window size becomes.
However, if no matches for a record are found in the window, this approach assumes
that there are no more matches (based on the fact that all records are sorted and
similar records are closer to each other), which means there is no need to increase
the size of the sliding window.

This approach has two modifications, the first modification starts with a fixed
size window w. Then the window size increases by one record as long as the ra-
tio between the number of detected duplicates d and the number of comparisons c
within the window w is equal or grater than a threshold 0 < θ ≤ 1. The second
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modification increases the window size by adding for each detected duplicate the
next w− 1 neighboring records of that duplicate even if the condition d

c ≥ θ does not
apply. The results presented in [54] showed that using the adaptive SNM is more
efficient than the original SNM from [79].

To improve the efficiency of the adaptive SNM techniques, they can be modified
to run in a parallel environment. Mestre et al. [109] proposed a parallelization of the
adaptive approach from [54] (the second approach described above) using MapRe-
duce [46]. They also compared their adaptive MapReduce-based SNM approach with
a state-of-the-art MapReduce-based SNM [94] that uses a fixed window size, their re-
sults showed that their adaptive MapReduce-based approach outperforms [94] with
regard to the overall execution time.

Similar to the original SNM, these adaptive approaches (described above) work
only with static data sets, where the index remains unchanged and new records
cannot be added. Although these approaches provide an adaptive and dynamic
window size that can change at run time, they only work with batch-processing
ER (where full data sets are matched with each other) but not with query-based
matching of dynamic data sets. Therefore, these approaches are not suitable for real-
time ER. In Chapter 6 we propose several adaptive window size approaches that are
tailored for query-based matching and that are shown to be suitable for real-time ER.

3.3.3 Progressive Sorted Neighborhood Method

Recently, Papenbrock et al. [120] proposed a progressive sorted neighborhood method
(PSNM) that aims at increasing the efficiency of the ER process and maximizing the
gain from the ER process by reporting most of the matching records earlier than tra-
ditional techniques [79, 80]. In the original SNM [79], the algorithm sorts the records
of a data set based on a sorting key, then a fixed size window slides over the whole
sorted records comparing only records within the window at any one time.

In the PSNM, after sorting the records within a data set, the sorted records are
divided into equal size partitions, the size of the partitions is calculated based on the
available main memory. Then, based on the intuition that records which are close to
each other, in the sorted records, are more likely to be matches than records that are
far a part from each other, the PSNM aims to compare the most promising records
(that are close to each other) in each partition first then the records that are far from
each other. This is achieved by first using a window of a small size (size two) for
each partition and the records within the window are compared. Then the window
size iteratively increases until it reaches a maximum size to find the less promising
records (that are far from each other) from each partition. The PSNM approach can
also dynamically change the execution order of the comparisons of the records based
on intermediate results.

The results presented in [120] showed that the PSNM can double the efficiency
over time of the original SNM [79]. The results also showed that the majority of the
matching records were reported early in the ER process.
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3.3.4 Sorted Blocks

Draisbach and Naumann in [52, 53] proposed a technique that presents a general-
ization of the traditional blocking and traditional SNM techniques where both tech-
niques can be adapted in a way that allows having the same number of comparisons
and the same pair comparisons (i.e. the same record pairs are compared).

In the traditional SNM the window starts at the beginning of the sorted list and
slides by one position each time, comparing all records within the window and re-
sulting in having overlapping sorted blocks. While in the sorted blocks technique,
the window slides forward by w positions resulting in non-overlapping sorted blocks.
This approach also allows controlling the overlap between the sorted blocks. The re-
sults in [52, 53] showed that the sorted blocks technique outperforms the adaptive
SNM proposed in [170] as it needs fewer number of pair comparisons to find the
same number of duplicates. The results also show that the traditional SNM performs
better than traditional blocking especially for small blocks.

The sorted block approach, as described in [52, 53], is designed for batch pro-
cessing ER algorithms where full and static data set(s) are matched to find duplicate
record and is not suitable for query-based matching that is needed for real-time ER.

3.3.5 Suffix Arrays

This approach is based on using a sorted suffix array [4] of all the subsequences of to-
kens that appear in a string. These tokens are used as blocking keys allowing records
to be inserted into different blocks. The suffix array approach aims at reducing the
effect of errors and variations at the beginning of a BK value.

In this technique, the BK value is converted into a set of possible suffixes. For
example, the string `yusuf' will generate the following suffixes: `yusuf', `usuf', `suf',
`uf',and `f'. The generated suffix strings will become keys in the suffix array index,
and records are inserted into the blocks of keys that are included in their attribute
values. This means that each record can be inserted into one or more blocks based
on its generated suffixes.

If the generated suffix is short (e.g. `f' from the above example), too many records
will be inserted in this block. To overcome this problem, two thresholds are used: the
first threshold is the minimum length of the generated suffixes lmin, and the second
threshold is the maximum block size bmax. Using the lmin threshold will remove the
large blocks that are generated for the shorter suffixes. Moreover, using the bmax

threshold aims at pruning larger block. Either by deleting all blocks that contain a
number of records that is larger than bmax, or by reducing the size of large blocks by
deleting records that have the longest original BK value.

Different variations of the original suffix array technique [4] have been proposed
such as [43, 44, 45]. De Vries et al. [44, 43] have proposed a robust suffix array
approach that groups the sorted generated blocks (generated from suffixes) using a
sliding window approach. Then, similar blocks are merged at marginal extra cost
resulting in a higher accuracy while retaining efficiency compared to the original
suffix array in [4]. The robust suffix array technique was extended in [45] where a
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disk-based technique that combines the suffix array approach and Bloom filters [20]
is presented. The aim of the Bloom filter is to act as filtering step to save disk read
operations which are required when building the index data structure. Their pre-
sented results showed that with Bloom filters the disk read operations were reduced
by up-to 70%.

A drawback of the suffix array is its sensitivity to errors and variation that oc-
curs at the end of the compared strings. This approach also generates more blocks
compared to traditional blocking which makes it more complex. In its current form
Suffix Array indexing works only with static databases, and once the index is built
it cannot change. However, if it is modified to insert new records into the generated
blocks using the original approach of creating suffixes then it can be used with dy-
namic databases. Suffix-based indexing is more complex than traditional blocking
and generates larger number of candidate records which makes it more challenging
to be used with real-time ER.

3.4 Meta-Blocking Techniques

Indexing techniques with overlapping blocks (such as suffix array, q-gram based in-
dexing, SNM, hashing-based indexing, and iterative blocking) aim at improving the
matching quality by inserting a record into multiple blocks. This process can cause
redundancy in the comparison step where record pairs are compared more than
once which affects the efficiency of the matching process. Meta-blocking approaches,
introduced in [118], can be used on top of any blocking (indexing) technique to over-
come this issue. It is considered as an intermediate step between generating the
blocks and matching record pairs within the generated blocks and aims at remov-
ing the redundancy that accompanies overlapping blocks (note that meta-blocking
does not replace but complements existing blocking techniques). The input for meta-
blocking approaches is a set of generated blocks (that are generated using any index-
ing technique with overlapping blocks) and the output is a new set of blocks with
fewer record pairs. The following meta-blocking techniques were recently proposed.

Papadakis et al. [118] have proposed a meta-blocking approach that aims at
improving the efficiency of indexing techniques that produces overlapping blocks.
This is achieved by discarding redundant comparisons for record pairs within the
generated blocks. Assuming a set of blocks, B, every record (from the blocks in
B) is mapped to a node in a blocking graph and every record pair (records that are
compared in at least one block) is linked with an edge. Redundant record pairs are
identified during the creation of the blocking graph. If a record pair is linked with
an edge in the graph they cannot be linked (to each other) again with a new edge.
Therefore, each record pair (mapped from B) will be linked with at most one edge
even if they occur multiple times in different blocks. The generated graph aims at
eliminating redundant comparisons without having an impact on the effectiveness
of the blocks.
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The authors improved the efficiency of the blocking graph by giving weights
to the edges between linked nodes, in a weight blocking graph, and then removing
record pairs with low weights at a small cost in recall. The results presented by
the authors showed that meta-blocking can improve the efficiency of the overlapping
blocks generated in the indexing step of the ER process. To improve the efficiency of
meta-blocking further, Efthymiou et al. [56] have proposed a parallelized variation of
the meta-blocking approach based on MapReduce [46]. A supervised meta-blocking
approach was proposed in [119] to enhance the performance of the unsupervised
meta-blocking from [118]. This approach replaces the edge weights with feature
vectors to generate a generalized blocking graph. The authors have proposed a set
of generic features that combine low extraction cost with high discriminatory (the
ability to distinguish between records).

Meta-blocking approaches are designed to reduce the number of record pairs
(number of comparisons) produced from static overlapping blocks (which are used
in batch processing ER). To be able to use meta-blocking with dynamic indexes in
real-time, the blocking graph has to be dynamic to facilitate the dynamic nature of
the blocks generated by indexing techniques that are used with real-time ER.

3.5 Techniques for Real-Time Entity Resolution

Existing ER techniques focus mainly on improving the accuracy and efficiency of the
ER process. However, the majority of these techniques are aimed at off-line entity
matching (using batched algorithms) of static databases.

The first query-time ER approach was based on a collective classification ap-
proach [16]. The idea behind this approach is to only use a subset of records in
a database for resolving queries, by extracting records related to a query and then
resolving this query using only these records. Although this approach can improve
matching quality, experiments showed an average time of 31.28 sec was needed on a
database with 831,991 records. Thus, this approach is not suitable for real-time ER,
nor it is scalable to large databases since it is computationally expensive.

Christen et al. [35] proposed a similarity-aware inverted indexing technique that
is suitable for real-time ER. The main idea behind this technique is to pre-calculate
similarities between attribute values that are in the same block. These pre-calculated
similarities are stored in main memory to be used later in the query matching pro-
cess. Avoiding similarity calculations at query time significantly reduces the time
required for matching a query record. This technique was shown to be two orders
of magnitude faster than standard blocking [62, 87], which makes it suitable for real-
time ER. However, this technique is static and once the index data structures are
created, new records and attribute values cannot be added to the index.

Another real-time ER approach that is also designed to work with static databases
was proposed by Dey et al. [48]. It is based on using a matching tree to limit the
amount of communication required for matching records between disparate databases
held at different locations, where a matching decision can be made without the need
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of comparing all attribute values between records. This approach was shown to
reduce the communication overhead, without affecting the matching quality.

Ioannou et al. [85] on the other hand proposed an approach that provides ER in
real-time for RDF dynamic databases. Their method is based on using links between
the entities in a database combined with a probabilistic database for resolving enti-
ties. The approach uses existing ER techniques to find possible matches of a query,
and instead of using these possible matches to make an off-line resolution decision,
it stores the possible matches alongside with a probability weight in a dynamic index
data structure. This stored information is then used at query time to perform ER in
real-time. The approach is reported to have an average time of 70 ms for a query
record on a database of 51,222 records. This query time is almost constant and does
not increase when the database get larger.

Another dynamic ER approach is proposed by Whang and Garcia-Molina [158]
that allows matching rules to evolve over time when new records become available.
This approach aims at using materialized ER results (which are a set of records that
are classified as matches) to save redundant work, and does not require running the
ER process from scratch. The authors report that this rule evolution approach can be
faster than the naive approach by up to several orders of magnitude [158].

Whang et al. [159] proposed a pay-as-you-go ER technique that can be used with
real-time ER. The authors build their technique on top of the indexing step (before
record comparison and classification steps). This approach propose the use of Hints
to give information on records that are likely to refer to the same real-world entity.
The aim is to order candidate record pairs (that are generated in the indexing step)
by the likelihood of a match. Then, in the comparison step, the records that are more
likely to be a match will be compared first. The results in [159] showed that using
Hints before the comparison step improves the ER process by finding the majority
of matching records within a fraction of the total runtime at the cost of an overhead
in time and space. However, the authors also proposed a trade-off between time
overhead and the benefit of using Hints.

Lately, Rezig et al. [133] proposed a general ER framework for on-line query-
matching which is based on iterative caching. The idea of their approach is to de-
duplicate and cache a set of frequently requested records that are obtained from dif-
ferent Web databases using sampling. These de-duplicated record pairs are used for
future reference when new queries arrive. When a new query arrives, it is matched
jointly with the cached record pairs and then it is added to the cache. The result
presented by the authors showed that their approach provides a fast and effective ER
framework that can be employed with on-line settings.

The techniques reviewed above provide general ER frameworks that can be used
in real-time. Nevertheless, none of those techniques (except the indexing technique
proposed in [35]) focuses on the indexing step of the ER process. However, as dis-
cussed in Sections 2.2.2 and 2.3.2, we believe that indexing is a vital step for the
real-time ER process, and creating new indexing techniques that are particularly de-
signed to work with real-time ER allows conducting the real-time ER process using
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existing classification and comparison techniques that are designed originally for tra-
ditional ER. In our research we focus on creating new and novel indexing techniques
that are tailored for real-time ER which is vital for making the matching process
efficient and suitable for real-time.

3.6 Automatic Techniques for Learning Blocking Keys

Selecting blocking and sorting keys is a critical aspect for the indexing step as it
affects the efficiency, scalability, and the quality of the ER process. An optimal block-
ing/sorting key aims at grouping similar records into the same block or closer to
each other in the sorted data sets [33] to include as many true matches as possible
while keeping the set of candidate record pairs as small as possible [33].

Real-world data sets are dirty and contain errors and variations which can affect
the process of selecting blocking/sorting keys. In addition, selecting optimal keys
can be domain dependent, and several potential blocking keys can be suitable over
multiple record attributes [17]. This makes manual blocking key selection challeng-
ing. Most existing indexing techniques (such those discussed in the above sections)
require manual blocking key selection by an expert. An alternative would be to learn
blocking/sorting keys automatically.

Various automatic techniques have been proposed that allow learning optimal
blocking/sorting keys based on supervised learning which requires the use of gold
standard data for training. The training data sets consist of record pairs that are
labeled as true matches or true non matches and can be used by the learning algo-
rithms, as examples, to find which keys achieve high quality blocks [33].

Bilenko et al. [18] proposed an approach that deals with the learning process as
an approximation problem that is based on the red-blue set cover problem [27]. The
authors investigated using a Disjunctive Normal Form [5] of different length keys to
be used in creating blocks. The aim was to discard blocking keys that cover many
negative pairs (that are classified as true non-matches in the training data set) and
to select keys that covers the most possible positive pairs (that are classified as true
matches in the training data set). The authors compared their learning algorithm
with the canopy clustering approach from [107] and the results showed that their
learning approach achieved better matching quality compared to canopy clustering
with the cost of an increase in the average matching time.

Michelson and Knoblock [110] proposed an approach for learning blocking schemes.
They defined a blocking scheme as a pair of an attribute and a comparison method.
Their aim was to learn which attributes are more suitable as blocking keys, and
which methods should be used for comparing these attributes. The authors used a
modified version of the Sequential Covering Algorithm which originally learns dis-
junctive sets of rules from labeled training data sets [111]. In their case, they have
learned a conjunction of blocking schemes (a combination of {attribute, method})
that maximize the reduction ratio (the ratio between the generated candidate record
pairs and all possible record pairs). Their algorithm automatically adds {attribute,
method} pairs to conjunctions until the reduction ratio stops improving. The results
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presented in [110] showed that their learning algorithm outperforms manual selec-
tion of blocking schemes produced by non-domain expert, and is comparable with
schemes selected manually by a domain expert with regard to matching quality and
efficiency.

Another supervised approach was recently proposed by Vogel and Naumann
[152]. The authors use unigrams of attribute values (i.e. a combination of single
characters from different attributes) as blocking keys. Both accuracy and efficiency
of the generated blocks are used to learn the set of optimal blocking keys. They also
improved their approach by taking the length of attribute values into consideration
when generating the unigrams to be used as keys.

Das Sarma et al. [42] proposed an automatic hierarchal tree-based blocking sys-
tem for ER that executes in a distributed setting (like the MapReuce framwork [46]).
Their work presents an automatic disjoint blocking function that partitions records in
a data set in a hierarchical fashion by successively applying blocking functions. The
hierarchical tree is build using training data, a set of blocking functions, and a block-
size estimates. Each leaf node in the tree corresponds to a block and the path (from
the root) to a node corresponds to a blocking function. An optimal blocking func-
tion is picked greedily by counting, for all blocking functions, the number of pairs
that get eliminated on choosing that blocking function. The blocking function that
minimize the number of eliminated pairs is selected. The authors compared their
approach with conjunctive blocking [18, 110] and the results show that the approach
proposed by Das Sarma et al. [42] outperforms conjunctive blocking with regard to
quality and efficiency.

All of the above automatic approaches require labeled training data. However,
such labeled data is not always available and is usually expensive to generate. To
overcome this problem, several unsupervised automatic blocking key selection tech-
niques have been developed [26, 65, 89, 103, 143].

Cao et al. [26] proposed employing unlabeled data generated using a sampling
technique alongside labeled data. The authors utilized a modified version of the se-
quential covering algorithm from [110] with the difference of having the unlabeled
data to be incorporated into the learning process in order to improve optimal key se-
lection. The authors compared their approach with the learning algorithm presented
in [110] and the results showed that using unlabeled data alongside labeled data in
the learning process can reduce the number of candidate matches.

Song and Heflin [143] proposed a general unsupervised automatic key selection
technique for structured data. The authors used two measures to select optimal keys:
discriminability (the ability to distinguish between different entities) and coverage
(the number of record pairs that evaluate to the same key value). The aim was to it-
eratively select a set of discriminating predicates (blocking keys) with high coverage.
They calculated an F1-score based on the two measures F1 = 2∗discriminality∗coverage

discriminality+coverage .
Keys with low discriminality are ignored and those with F1-score values that are
above a threshold α are considered for selection (the key with the highest F1-score
is selected). If there were no keys with F1-score that are above the threshold α the
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algorithm combines the key that has the highest discriminability with every other
key to form virtual keys instead of the old keys for the purpose of finding a suit-
able key. The authors compared their approach with automatic blocking techniques
[17, 110] and non-automatic techniques [169, 164] using three RDF data sets. The
results showed that their unsupervised blocking algorithm outperformed baselines
in two of the data sets with regards effectiveness and efficiency.

Kejriwal and Miranker [89] proposed an unsupervised algorithm for learning
blocking keys to be used with indexing techniques. The algorithm consists of two
phases. In the first phase, the algorithm generates a weakly labeled training data
set using a TF-IDF weighting scheme. In the second phase the algorithm uses the
generated labeled training data sets to learn the optimal blocking keys using a Fisher
discrimination criterion [55]. This Fisher score is used to select the optimal blocking
key (the key with the highest Fisher score). The algorithm considers key coverage
(which is defined as the number of record pairs that evaluate to the same key value)
when calculating Fisher scores and selecting optimal blocking keys. The authors
compared their learning algorithm to both unsupervised approaches presented in
[17] and [110] and the results showed that their approach outperformed the super-
vised blocking key learning approach proposed by Bilenko et al. [17].

Giang [65] proposed a technique that learns the blocking keys in context of the
classifier function that is used in the classification step of the ER process. The classi-
fier is used to generate labeled data. The author consider learning the blocking keys
as a Disjunctive Normal Form problem [5] and uses the Probably Approximately
Correct [73] approach to learn the blocking keys. The results in [65] showed that
their approach achieved comparable quality results with manual key selection by an
expert and faster execution time of around one order-of-magnitude.

Unlike the approaches described above (that considers learning blocks for entities
of similar types) Ma et al. [103] proposed an approach that is based on type seman-
tics, where the authors consider types and sub-types of entities when learning the
blocking keys for data from the web (for example the type product can have sub-
types such as a camera, an e-reader, a phone, etc). The idea was to learn specific keys
for specific sub-types of entities in the data to improve the quality of the matching
process. The authors compared their approach with other blocking techniques like
[85] and [143] and the results show that their approach improved the quality and
efficiency of the matching process.

Most available blocking key learning approaches mainly focus on the quality of
the generated blocks. However, a blocking key that can be used with real-time ER
must ensure that the generated blocks are small enough and are similar in size to be
able to resolve queries in real-time. In Chapter 8, we propose an automatic blocking
key selection technique that can be used for real-time ER. Our approach considers
the coverage, the maximum and average size, as well as the distribution of the sizes
of the generated blocks when learning the blocking keys.
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3.7 Summary

In this chapter we have provided a review of various existing indexing techniques
that are used in the ER process. The majority of these techniques are static and are de-
signed to work with batch processing ER where single/multiple static data source(s)
are matched. Such techniques are not suitable for query-based matching where a
query record is matched with dynamic data sets in real-time. Not much research has
been conducted on real-time ER, and few indexing techniques are available that are
specifically designed to work with real-time ER. There is a need for novel dynamic
indexing techniques that are tailored for real-time ER.

Moreover, available automatic blocking key selection techniques are not specif-
ically designed to learn blocking keys that are suitable for building indexes to be
used with real-time ER. Most existing automatic blocking key selection techniques
focus on the quality of the generated blocks when learning blocking keys. However,
to learn blocking keys that are suitable for use with real-time ER, the size and the
frequency distribution of the generated blocks have to be considered. There is a need
for new novel learning techniques that are specifically designed for learning keys
that are suitable for use with real-time ER.



Chapter 4

Evaluation Framework

In this chapter we provide a description for the framework that we use in evaluating
the approaches that we propose in Chapters 5 to 8. We first provide a description of
the used evaluation measures in Section 4.1. Then, in Section 4.2, we describe how
the record pair comparison and the classification steps are achieved. In Section 4.3 we
describe the baseline approaches that are compared with our proposed approaches,
and we describe the implementation environment and the data sets used to conduct
the experimental evaluation in Sections 4.4 and 4.5 respectively.

4.1 Evaluation Measures

It is important to evaluate any developed indexing techniques to examine if they are
suitable for use with real-time entity resolution (ER). We conduct our experimental
evaluation with regard to the challenges of real-time ER as (described in Chapter 2):
the quality (effectiveness), the scalability, and the efficiency of the ER process. The
measures that we use are described in the following:

1. Quality evaluation: When evaluating the matching quality of an ER approach,
two types of errors can be expected [36, 113]. The first error occurs when the
ER approach falsely classifies candidate record pairs as matches while they are
not actual true matches. These record pairs are called false positives (FP). The
second error occurs when the ER approach falsely classifies candidate record
pairs as non-matches while they are actual true matches. Theses record pairs
are called false negatives (FN). Moreover, record pairs that are classified as
matches and that are actual true matches are called true positives (TP), and
record pairs that are classified as non-matches and that are actual non-matches
are called true negatives (TN). For traditional static ER approaches, based on
these error types described (summarized in Figure 4.1), the quality of the clas-
sified record pairs is commonly evaluated using recall and precision [113]:

• Recall: The proportion of the actual true matches that have been classified
correctly [36], calculated as:

Recall =
|TP|

|TP|+ |FN| (4.1)

45
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All candidate record pairs

True matches

Classified matches

True positives

False negatives

False positives

True negatives

Figure 4.1: Types of errors in the ER process (taken from [113]).

• Precision: The proportion of the number of record pairs classified as
matches which are actual true matches [36], calculated as:

Precision =
|TP|

|TP|+ |FP| (4.2)

However, for real-time ER, when matching query records the ER approach gen-
erally returns the m top-matched records. These are selected from the set of
candidate records C that are generated in the indexing step and ranked in a
descending order based on the overall similarity with the query record as de-
scribed in Chapter 2. This means that the returned ranked list of matching
records, denoted as M, will always have a size of |M| ≤ m for all query records
(where m is the number of top-matched records that are returned from match-
ing a query record with the indexed data set). Thus, the precision value for a
query record can be calculated as |TP|/m. Because m is constant, this measure
will only reflect the number of the true positives that are found by the evaluated
approach.

Moreover, the average number of true duplicates for a query is often small
in relation to the number of records, including in the data sets that we use
in our evaluation experiments (see Table 4.1). Therefore, using the precision
measure for evaluating the quality is not useful in the case of real-time ER.
Instead, other measures like the mean reciprocal rank (which is commonly
used to evaluate information retrieval systems [75]) can be used to evaluate the
overall performance of the matching process:

• Mean reciprocal rank (MRR): An overall relevant performance measure
for the matching process. It calculates the average of the reciprocal of the
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rank (rki) of the first true matching record in the returned result set M for
each query record qj in a query stream Q as:

MRR =
1
|Q|

|Q|

∑
i=1

1
rki

(4.3)

For example, given the following query records:

Query Classified Matches First True Rank Reciprocal
Record Match Rank
peter peter, pedro, pete, polo peter 1 1/1
smith smart, mith, smith, smint smith 3 1/3
robert rob, robert, roby, roben robert 2 1/2

we calculate the MRR as (1 + 1/3 + 1/2)/3 = 0.61.

We will be using both recall and MRR to evaluate the quality of the matching
process of our proposed approaches.

2. Efficiency and scalability evaluation: For evaluating the efficiency and the
scalability of our proposed approaches we use two timing measures:

• Average insertion time: The average time required to insert a query record
into the index data structure.

• Average query time: The average time required to match a query record
with records in an existing index data structure.

To evaluate scalability we investigate the effect of the growing size of the in-
dexes (which are first build using a small number of records, then grow by
adding millions of record) on both average insertion and query times to exam-
ine whether or not the proposed indexes scale with large data sets.

4.2 Record Pair Comparison and Classification

As described in Chapter 2, after performing the indexing step, a record pair compar-
ison step is required to compare a query record qj ∈ Q (where Q is the stream of
query records to be matched) with all records in the set of candidate records C that
is generated in the indexing step. Then a classification step is required to classify all
records in C into matches and non-matches:

• Record pair comparison: We conduct the record pair comparison step by com-
paring attribute values of the compared record pairs. The Jaro-Winkler similar-
ity function is commonly used in ER techniques to compare string values. It is
specifically designed for comparing names (like persons or cities) [33]. We use
this function to compare all attributes with string values. The Levenshtein edit
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distance [114] calculates the minimum number of edit operations (i.e. character
insertion, deletion and replacements) that are required to convert one string
into another [114, 113] and is suitable for comparing short attribute values. We
use this function to compare all numerical values in our data sets such as the
`Postcode' and `Year' attributes.

• Classification: To classify candidate records in C into matches and non-matches,
an overall similarity between the query record qj and each ri ∈ C is produced
by calculating the sum of the similarities between all compared attribute val-
ues. The overall similarity is then normalized into a value between 0 and 1. A
record ri ∈ C is classified as a match with qj if the overall similarity between qj
and ri, denoted as sim(qj, ri), is above a threshold t, where 0 ≤ t ≤ 1. Records
that are classified as matches with qj are added to the set of returned matching
results M. Selecting a high value of t can lead to missing true matches while
selecting a low value of t can lead to falsely identifying true non-matching
records as matches. However, since the returned matching results in M are
ranked descending based on their similarities with the query record, and only
the m top-matches are returned, selecting a value of t that is not too low should
help to identify true matching records with less number of falsely identified
matches. In all our experiments we use a threshold value of t = 0.75 (unless
specified otherwise).

The pair comparison and classification details described above are used in our ER
process for all proposed and baseline approaches. Note that the comparison and the
classification steps are outside our research scope.

4.3 Baseline Approaches

As described in Chapter 1, in this thesis we focus on the indexing step of the ER
process. In the next four chapters we propose four different approaches that are
categorized into indexing and learning:

1. Indexing: In Chapters 5, 6 and 7 we propose three dynamic indexing tech-
niques that works with real-time ER. As discussed in the Chapter 3, most of
the available indexing techniques that are currently used to perform the ER
process are static and solely designed for batched matching algorithms which
work offline. This was a problem for selecting a proper baseline indexing tech-
nique that supports query-based matching which is required for real-time ER.
Therefore, we use a q-gram indexing (QGI) technique which we generated by
modifying the static indexing techniques from [11, 107] to produce a dynamic
index that can be use with real-time ER, as described below, and we used this
technique to compare with our proposed dynamic indexes.

The Q-Gram Indexing (QGI) technique is a q-gram based inverted index [11,
34, 107] that converts the attribute values of each record in a data set into a
list of q-grams (sub-strings of length q). Each unique q-gram becomes a key
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RecID Firstname Q-grams (q = 2)

r1 peter [‘pe’, ‘et’, ‘te’, ‘er’]

r2 smith [‘sm’, ‘mi’, ‘it’, ‘th’]

r3 pedro [‘pe’, ‘ed’, ‘dr’, ‘ro’]

r4 pete [‘pe’, ‘et’, ‘te’]

r1

QGI keys
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r4 A query record

Candidate records = {r1, r3} 

Figure 4.2: The Q-gram index (QGI) that is used as a baseline in Chapter 9.

in the inverted index where its corresponding value is the list of all records in
the data set that have this q-gram in their attribute values. To match a query
record with the q-gram inverted index, its attribute values are converted into a
q-gram list, then it is compared only with records that have a certain number of
common q-grams that achieve a minimum similarity threshold. The approach
returns a list of all records that have a Jaccard-based similarity [33] with the
query record that is greater than the minimum similarity threshold.

Figure 4.2 illustrate an example of the QGI approach. Assume that r4 is a query
record and it is required to be matched with the existing index from the figure
using an overall similarity threshold of t = 0.75. First, the `Firstname' attribute
value of r4 (`pete') will be converted into the following q-grams [`pe',`et', `te'].
Then, the record identifier r4 of the query record is inserted into the inverted
index by adding it to the value of all keys that are included in its q-gram list
(i.e. `pe', `et', and `te'). The list of candidate records (C), that will be compared
in detail with the query record, is generated by taking all the records that
have at least one common q-gram with the query record. From the example in
Figure 4.2 only r1, and r3 share common q-grams with the query record r4.
These records are then compared in detail with the query record r4 by using
the Jaccard-based similarity measure:

simjaccard(qj, ri) =
|Qgram(qj) ∩Qgram(ri)|
|Qgram(qj) ∪Qgram(ri)|

(4.4)

The jaccard similarity between the query record r4 and the candidate records
in C = {r1, r3} are calculated as follows: simjaccard(r4, r1) = 3/4 = 0.75, and
simjaccard(r4, r3) = 1/6 = 0.16. A record is considered a match if simjaccard(qj, ri)
≥ t. This means that only r1 is identified as a match to r4, when t = 0.75.
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2. Learning: In Chapter 8 we propose an unsupervised learning algorithm that
automatically selects optimal blocking keys for building indexes that can be
used in real-time ER. We compare our proposed blocking key learning algo-
rithm with the following baseline:

The Fisher DisJunctive (FDJ) technique is an unsupervised algorithm for learn-
ing blocking keys to be used with indexing techniques [89]. We selected the
recently proposed FDJ approach as our baseline since it was shown in [89] to
outperform two of the major supervised blocking key learning approaches pro-
posed by Bilenko et al. [17] and Michelson and Knoblock [110]. This baseline
algorithm consists of two phases. In the first phase, the algorithm generates a
weakly labeled training data set using a TF-IDF weighting scheme to calculate
the similarity between record pairs (rx, ry) ∈ R as follows. A lower and upper
thresholds 0 < l < u < 1 are used to generate the training data sets. Record
pairs (rx, ry) that have a TF-IDF similarity value sim(rx, ry) below l are labeled
as negative matches, and all pairs that have a TF-IDF value above u are labeled
as positive matches (how TF-IDF values are calculated is described in more
details in Chapter 8).

In the second phase the FDJ algorithm uses the generated labeled training
data sets to learn the optimal blocking keys using a Fisher discrimination cri-
terion [55]. This Fisher score is used to rank the candidate blocking keys, then
selects the optimal blocking key (the key with the highest Fisher score). The
FDJ algorithm only considers key coverage (which is defined as the number of
record pairs that evaluate to the same key value) when calculating Fisher scores
and selecting optimal blocking keys. More details about generating the training
data sets and the calculation of key coverage can be found in Chapter 8).

4.4 Implementation Environment

We implemented all proposed and baseline approaches using Python (version 2.7.3).
The evaluation experiments were conducted using a server with 128 GB of main
memory and two 6-core Intel Xeon CPUs that run at 2.4 GHz speed (only a single
core was used). To facilitate repeatability of our experiments, the prototype codes
and the synthetic data sets are available from the author.

4.5 Data Sets

To evaluate different aspects of our proposed approaches we used both real as well
as synthetic data sets. Table 4.1 summarizes these data sets.

• NC data set1: is a large real voter registration data set from the US state of
North Carolina (NC) that contains the names, addresses, and ages of around 8

1Available from: ftp://alt.ncsbe.gov/data/
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Table 4.1: Data sets summary. `No. Records' is the number of the records in a data set.
`No. Duplicates' is the number of records that are represented more than once in a data set.
`No. Entities' is the number of real-world entities that exist in the data set. `Ave Duplicates'
represents the average number of duplicates per entity in a data set. Note that each entity in
a data set can be represented by one or more records.

Data sets Provenance No. No. No. Ave
Records Duplicates Entities Duplicates

NC Real 7,997,234 150,089 7,847,145 3.0
CCA-1 Real 689,928 ?CNF CNF CNF
CCA-3 Real 2,064,823 CNF CNF CNF
CCA-10 Real 6,900,163 CNF CNF CNF
CCA-30 Real 20,708,303 CNF CNF CNF
Cora Real 1,295 1,183 112 23.3
DBLP/ACM Real 4,910 2,224 2,686 1.5

OZ-(1,2,3,4) Real (modified) 345,876 172,938 172,938 �3.5
Febrl-5 Synthetic 100,000 80,000 20,000 5.0
Febrl-10 Synthetic 100,000 90,000 10,000 10.0
Febrl-20 Synthetic 100,000 95,000 5,000 20.0

? CNF: Confidential � Unless specified otherwise

million voters, as well as their voter registration numbers (the used attributes
are `Firstname', `Surname', `City', and `Zipcode'). Each record has a time-stamp
attached which corresponds to the date a voter originally registered, or when
any of their details have changed. This data set therefore contains realistic
temporal information about a large number of people. We identified 142,673
individuals with two records, 3,566 with three, and 92 with four records in this
data set. This data set is used for scalability evaluation.

• CCA data set: is a confidential commercial data set which contains names and
addresses of tens of millions of individuals, as well as a log file of query records
against this data set. To evaluate the scalability of our proposed approaches,
we generated four subsets of different sizes by randomly selecting records from
the full CCA data set. The first subset (CCA-1) contains 689,928 data set records
and 50,190 query records, the second sebset (CCA-3) contains 2,064,823 data set
records and 151,343 query records, the third subset (CCA-10) contains 6,900,163
data set records and 504,226 query records, and the last subset (CCA-30) con-
tains 20,708,303 records and 1,513,233 query records. The number of records in
the larger subsets relative to CCA-1 is 3 times, 10 times, and 30 times, respec-
tively.

• OZ-x data sets: We generated four data sets with various corruption ratios
using the GeCo data generator and corrupter [149], for the purpose of investi-
gating the effect of having different levels of data quality in attribute values on
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matching quality. The four data sets each contains 345,876 records of personal
details (`Firstname', `Surname', `Suburb', and `Postcode') selected randomly
from a clean Australian telephone directory, and modified by adding duplicate
records that had randomly corrupted attribute values based on typing, scan-
ning, and OCR errors, or phonetic variations. `x' refers to the number of cor-
rupted attributes in the data set that we used ranging from OZ-1 to OZ-4. For
example, in OZ-1 the added duplicates have been corrupted by modifying only
one attribute while for OZ-4 added duplicates have been corrupted by modi-
fying all four attributes in a record. Each entity is represented on average by
3.5 duplicates. These data sets are used to evaluate the effect of how different
levels of noise (i.e. different data quality) in a data set affect the performance
of the proposed approaches.

• Febrl data sets: We generated three fully synthetic data sets where we specified
the average number of records per entity (person) using the Febrl data gener-
ator [37]. The three data sets each contains 100,000 records consisting of name
and address attributes. In the first data set (named Febrl-5) each entity is on
average represented by 5 records (with a maximum of 8 records per entity), in
the second data set (named Febrl-10) each entity is on average represented by
10 records (with a maximum of 15 records per entity), and in the third data set
(named Febrl-20) each entity is on average represented by 20 records, (with a
maximum of 30 records). Records were generated by first creating an `original'
record for an entity, followed by the application of various modifications to
generate `duplicate' records such as keyboard edits, phonetic and OCR modifi-
cations, and setting values to missing. These data sets are used to evaluate the
effect of having different number of duplicates in a data set on the proposed
approaches.

• Cora2 and DBLP/ACM [96]: Are both real-world bibliographic gold standard
data sets that are commonly used in ER research. Cora has 1,295 records and
112 entities (authors), while DBLP/ACM has 2,616/2,294 records and 2,686 en-
tities (authors). For both data sets, we used the following attributes to conduct
the ER process: `authors', `title', `venue' and `year'. These data sets are used
to evaluate the proposed blocking/sorting key selection algorithm as they are
commonly used in this area.

4.6 Summary
In this chapter we described the framework that is used in evaluating the proposed
approaches. We provided details on the evaluation measures, baselines, record pair
comparison, implementation environment, and data sets we will use. The next four
chapters describe the proposed approaches. We will empirically evaluate these ap-
proaches using the evaluation framework presented in this chapter.

2Available from: http://secondstring.sourceforge.net



Chapter 5

Dynamic Similarity-Aware Inverted
Index for Real-Time Entity
Resolution

As described in Chapter 3, there is a need for blocking-based indexing techniques
that work with real-time ER. In this chapter we propose a dynamic blocking-based
indexing technique that supports query-based matching in real-time. In Section 5.2
we summarize the notation that we use in this chapter. Then, we describe our pro-
posed approaches in Sections 5.3, and 5.4. In Section 5.5 we provide an analysis of
the proposed approach in terms of estimating the number of comparisons required
to match query records, and in Section 5.6 we describe the experimental evaluation.
Finally, we summarize our findings in Section 5.7.

5.1 Introduction

Blocking-based indexing techniques are commonly used in entity resolution (ER) [33]
to reduce the search space by grouping similar records together using a blocking key
criterion. However, as described in Chapter 3, most existing indexing techniques are
static and only work with traditional ER where two or more data sets are matched
off-line using batched processing algorithms. Such indexing techniques cannot be
used with real-time ER where a stream of query records needs to be matched with
an existing data set in real-time.

In this chapter we propose a dynamic indexing technique that works with real-
time ER on dynamic data sets. Our proposed technique is based on a similarity-aware
inverted index proposed in [35]. We first propose a dynamic inverted index (named
DySimII) that is updated after every query record, by adding arriving query records
into the index data structures, leaving the index up-to-date at all times. Because this
is a memory-based solution, it is important that the full index can fit into available
memory. This is challenging for large data sets; therefore, we propose a frequency-
based alteration (named DySimII-F) where we reduce the size of the index by only
inserting most frequent attribute values into the index data structures. The following
sub-sections describe the proposed approaches in more details.

53
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Table 5.1: Summary of the main notations used in this chapter
R A data set of records about known entities
A A set of attributes {a1, a2, . . . , a|A|} for each ri ∈ R
Q A stream of query records
C A list of candidate records for a query qj
D An inverted index or disk-based data set table
Mqj A set of all records in R that belong to the same entity of a query qj
ri A record in R
ri .id Unique identifier for ri
ri .eid Entity identifier for ri
qj A query record in Q
qj.id Unique identifier for qj
qj.eid Entity identifier for qj
n The size of data set R
sim(., .) A function used to calculate the similarity between two values (0 ≤ sim(., .) ≤ 1)
BK A blocking key that is used to partition records in R into blocks of similar records
BKV The blocking key value of an attribute ri .ah ∈ R.
b The number of the generated blocks using a certain BK.

5.2 Terminology and Notation

The following is a summary for the terminology and the notation that we use in this
chapter:

• Data set: We assume that data set R = {r1, r2, . . . , r|R|} contains records of
known entities (an entity can be a person, a product, a business or any other
object that exists in the real world). Each ri ∈ R has a unique record identifier
ri.id and an entity identifier ri.eid (note that several records in R can represent
the same entity). Records in R are described by a set of attributes, denoted as
A = {a1, a2, . . . , a|A|}. All records in R are assumed to have the same attribute
structure.

• Query stream: We assume that a stream of query records Q = {q1, q2, . . . , q|Q|}
is to be matched with R. Each qj ∈ Q is given a unique identifier qj.id 6=
ri.id, ∀ri ∈ R; and has the same attribute structure as records in R (including
the number of attributes, their order, and their data types). It is assumed that
qj is to be added to R after it has been resolved.

• Blocking Key: A blocking key (BK) is defined as the attribute(s) that are used
to group similar records in R together. To improve the quality of the gener-
ated blocks we use encoding function such as Soundex, Phonex, or Double-
Metaphone [33] to encode the attributes that are selected as BKs. Selecting the
BKs, and the encoding functions generally requires domain knowledge.

• Blocking key value: A blocking key value (BKV) for a record ri ∈ R is the
encoded value of the attribute ri.ah (where ah ∈ A) that is used as BK using
encoding functions [33]. The list of the encoding functions that are used to
encode the different attributes of ri is denoted as E = {ea1 , ea2 , . . . , ea|A|}.
For example, assume that the `Firstname' attribute from the example records
in Figure 5.2 is used as a BK, then the encoded value c = eah(ri.ah) of record
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Figure 5.1: The framework for the DySimII technique.

r1, with the first name value of `tony', will be `tn' using the Double-Metaphone
encoding function. A BKV can also be generated using the actual attribute
values without using encoding functions. However, the aim of using encoding
functions is to ensure that similar values are inserted into the same blocks even
if they have errors and variations [33]. Note that BKVs for a query record qj ∈ Q
are also generated as described above.

The problem of real-time ER is defined as: for each query record qj in a query
stream Q, find all the records in R that belong to the same entity as qj, denoted as the
set Mqj , in sub-second time, where Mqj = {ri | ri.eid = qj.eid, ri ∈ R}, Mqj ⊆ R, qj ∈
Q. Table 5.1 summarizes the notation that we use.

5.3 Overview of the Approach

The similarity-aware inverted index proposed in [35] is an indexing technique that
aims at providing real-time ER for a stream of query records. The main idea behind
this technique is to pre-calculate similarities between attribute values that are in the
same block. These pre-calculated similarities are stored in main memory to be used
later in the query matching process. Avoiding similarity calculations at query time
significantly reduces the time required for matching a query record. This technique
was shown to be two orders of magnitude faster than standard blocking [35], which
makes it suitable for real-time entity resolution.

However, this technique is static and once the index data structures are created,
new records and attribute values cannot be added to the index. Therefore, this index
dose not work with dynamic data sets. To overcome this limitation we propose a
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RecID Firstname DMPH*

r1 tony tn

r2 cathrine k0rn

r3 tony tn

r4 kathryn k0rn

r5 tonya tn

r6 cathrine k0rn

r7 linda lnt

r8 tonia tn

RI – record index 

BI – blocking index

SI – similarity index

cathrine kathryn tonyatonytonialinda
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Figure 5.2: The DySimII created from the example records in the table on the left. The
example records contain first name values, and their Double-Metaphone encodings are used
as BKVs. r6, r7 and r8 in the table illustrate the different cases for inserting an attribute value
to the index as described in Section 5.3.2.

dynamic similarity-aware inverted indexing technique (DySimII) that is more flexible
where values can be added to the index data structures whenever a new query record
is processed. The framework of the DySimII approach is illustrated in Figure 5.1.

5.3.1 Index Data Structure

The DySimII consists of three index data structures as shown in Figure. 5.2. The
first index, called the Block Index (BI), is an inverted index that stores unique at-
tribute values and their associated BKVs (generated using encoding techniques such
as Soundex, Phonex, or Double-Metaphone [33]). Keys of this index are the BKVs,
while each key points to a list of all attribute values that have this BKV. The second
index, called the Similarity Index (SI), stores the pre-calculated similarities between
attribute values that are in the same block (similarities are calculated using approx-
imate string comparison functions, denoted as sim(., .), such as Jaro-Winkler or Jac-
card [33]). Keys for the SI are unique attribute values, while each key points to a list
of pre-calculated similarities between this value and all other values that are in the
same block where 0 < sim(., .) < 1. Finally, the Record Index (RI) stores all unique
attribute values and their associated record identifiers. Keys of this index are the
unique attribute values, while each key points to a list of all record identifiers that
have the same attribute value.

The indexing process in DySimII is divided into two phases: a build phase, and a
query phase. In the build phase, a data set is loaded into main memory using the three
indexes described in [35]. Next, in the query phase, when a query record arrives, its
attribute values are inserted into the index data structures. Then, a list of all records
that share at least one block with the query record is generated and compared, in
detail, with the query record looking for matching records. Unlike the index in [35]
(which is static), our DySimII technique is more flexible since arriving query records
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Algorithm 5.1: DySimII – overall(R, A, E, S, Q)

Input:
- Data set: R
- Attributes used: A = {a1, a2, . . . , a|A|}
- Encoding functions: E = {ea1 , ea2 , . . . , ea|A|}
- Similarity functions: S = {sima1 , sima2 , . . . , sima|A|}
- Stream of query records: Q

Output:
- Record index: RI
- Similarity index: SI
- Block index: BI
- Ranked list of classified matches: M

1: RI := { }, SI := { }, BI := { }
2: for ri ∈ R do: // The build phase
3: for ah ∈ A do:
4: insert(ri .ah, ri .id, eah , simah , RI, SI, BI) // This method is described in Algorithm 5.2
5: for qj ∈ Q do: // The query phase
6: query(A, qj, eah , simah , RI, SI, BI) // This method is explained in Algorithm 5.3

are inserted into the index leading to an up-to-date index at all times. The following
sub-sections describe the build and the query phases of the DySimII technique.

5.3.2 Building the Index

The overall process of the DySimII technique is illustrated in Algorithm 5.1). We start
with three empty indexes (RI, SI, and BI), then unique attribute values for records
are added into the three indexes as described in [35]. Adding attribute values to the
inverted indexes is based on two cases: the first case occurs when an attribute value
is new and it does not exist in the inverted indexes (like r7 and r8 in Figure 5.2). The
second case occurs when an attribute value has been indexed previously and it exists
in the inverted indexes (like r6 in Figure 5.2).

1. New value: In this case, where an attribute value for a record (denoted as ri.ah)
is new, we first insert the value into the RI with its associated record identifier
ri.id. Then the encoded value for attribute ri.ah is calculated using an encoding
function eah() to decide into which block it should be added. If the block of
that encoded value c = eah(ri.ah) exists then the attribute value ri.ah will be
inserted into that block in the BI. Otherwise, a new block for the encoded value
c = eah(ri.ah) is created and this attribute value ri.ah is inserted into the newly
created block. If this value is added into an existing block, the similarities
between this new attribute value and all other values within this block are
calculated using an approximate string comparison function simah(., .). These
similarities are then stored in the SI.

For example, to insert r8 into the index, first we calculate the encoded value for
its attribute value as eah (`tonia') = `tn'. Because the encoded value `tn' exists in
the BI we only insert the record identifier r8 into the associated block with the
key value of `tn'. This block now includes three attribute values {`tonia', `tony',
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Algorithm 5.2: DySimII – insert(ri.ah, ri.id, eah , simah , RI, SI, BI)

Input:
- Attribute value: ri .ah
- Record identifier: ri .id
- The encoding function used with the inserted attribute: eah
- The similarity function used with the inserted attribute: simah
- Indexes: RI, SI, BI

Output:
- Updated indexes: RI, SI, BI

1: Append ri .id to RI[ri .ah] // Add the record identifier ri .id into RI
2: if ri .ah 6∈ SI then: // If the attribute value ri .ah is not indexed before
3: c := eah (ri .ah) // Generate the encoding value for ri .ah
4: b := BI[c] // From the BI, get the list of unique attribute values

// that have the same encoded value (c)
5: Append ri .ah to b // Add this attribute value ri .ah to b
6: BI[c] := b // Update the block index BI
7: Initialize inverted index list si := [ ]
8: for v ∈ b do:
9: s := simah (ri .ah, v) // Calculate the similarity between ri .ah and v
10: Append (v, s) to si // Add the pair (v, s) to si
11: oi := SI[v] // From the SI, get the pre-calculated similarities for v
12: Append (ri .ah, s) to oi
13: SI[v] := oi // Update the similarity index SI for v
14: SI[ri .ah] := si // Update the similarity index SI for ri .ah

and `tonya'}. The next step is to update both the RI and the SI by inserting the
value `tonia' and its record identifier r8 into the RI, and by pre-calculating the
similarity between `tonia' and all other values that are in the same block {`tony'
and `tonya'}, then add these similarities into the SI.

2. Indexed value: In this case, where an attribute value ri.ah has been indexed
previously, the only action needed is to add the identifier of this record ri.id
that holds this attribute value into the corresponding record list in the RI. For
example, to insert r6 into the index, first we calculate the encoded value for
its attribute value as eah (`cathrine') = `k0rn'. Because this value is indexed pre-
viously, there is no need to update the BI or the SI. The only thing needed
is to update the RI by adding the record identifier r7 into the corresponding
attribute value in theRI.

The process of loading and indexing attribute values will continue until the last
record in data set R is inserted into the index data structures. As a result we will
have three inverted indexes (BI, SI, and RI). In the original similarity-aware indexing
technique [35], building the indexes will stop at this point. If a new values arrive,
these values cannot be added to the indexes. However, this issue is handled in
DySimII allowing more values to be added to the indexes. When a query record
arrives, it is given a unique identifier qj.id, and its attribute values are encoded. The
steps described above will take place adding any new value to the previously built
index data structures.

The process of inserting a new attribute value ri.ah (shown in Algorithm 5.2)
requires the identifier of the record of this attribute, ri.id, the encoding function
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Algorithm 5.3: DySimII – query(A, qj, eah , simah , RI, SI, BI)

Input:
- Attributes used: A = {a1, a2, . . . , a|A|}
- Query record: qj ∈ Q
- The encoding function used with the inserted attribute: eah
- The similarity function used with the inserted attribute: simah
- Indexes: RI, SI, BI

Output:
- Ranked list of matches: M

1: Initialize M := [ ] // The list of ranked candidate matches
2: Assign qj a new unique identifier qj.id
3: for ah ∈ A do:
4: if qj.ah 6∈ RI then: // If the attribute value qj.ah is new
5: insert(qj.ah, qj.id, eah , simah , RI, SI, BI) // Insert qj.ah into RI, SI, BI (see Algorithm5.2)
6: else: // If value qj.ah is indexed before
7: Append qj.id to RI[qj.ah] // Add identifier qj.id into RI
8: ri := RI[qj.ah] // From the RI, get all identifiers for records that

// have the same attribute value as qj.ah
9: for ri .id ∈ ri do:
10: M[ri .id] := M[r.id] + 1.0 // Values in ri are exact (similarity =1.0)
11: si := SI[ri .ah] // From the SI, retrieve attribute values and their

// similarities that are in the same block as ri .ah
12: for (ri .ah, s) ∈ si do:
13: ri := RI[ri .ah] // From the RI, get identifiers for all records

// that are in the same block as ri .ah
14: for ri .id ∈ ri do:
15: M[ri .id] := M[ri .id] + s // Add similarities to accumulator M
16: Sort M descending based on similarity values

eah(.), the similarity comparison function simah(., .), and the inverted indexes RI, SI,
and BI as input. The process starts with inserting ri.id into the RI (line 1). If this
attribute value does not exist in the SI (line 2), the following steps are conducted.
First, the encoding value c = eah(ri.ah) is calculated and all other values in its block
are retrieved from the BI. The new value is then added into the inverted index list b
of this block, and the updated list is stored back into the BI (lines 3 to 6). Next the
similarities between the new attribute value ri.ah and all attribute values that already
exist in this block b are calculated (line 9), and inserted into both the new value’s
similarity list si (line 10) and the other value’s list oi (line 12). Finally, the similarity
list si of the new value ri.ah is added into the SI in line 14.

5.3.3 Querying the Index

In the query phase of the proposed DySimII approach, we add any new attribute
value from a query record into the indexes. Therefore, if the same attribute value
occurs in several query records the encoding and similarity computations that are
required to do the matching are performed only the first time it occurs. Algorithm 5.3
illustrates how a query is handled in the DySimII.

First an accumulator M, which is a data structure that contains record identifiers
and their similarities with the query record, is initialized (line 1). The query record
qj is then assigned a new unique identifier qj.id in line 2. Next, for every attribute
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Figure 5.3: The frequency distribution of attribute values for 30% of the NC data set (details
about NC data set can be found in Chapter 4).

value in the query, the algorithm checks if this value is in the RI (lines 3 and 4). If it
is not in the RI, then it will be inserted (in line 5) into the three indexes as described
in Algorithm 5.2. In lines 6 to 8, the identifiers ri.id of all other records that have
the same attribute value are retrieved and their similarities (exactly 1, as they have
the same attribute value) are added into the accumulator M (lines 9 and 10). A new
element for record identifier ri.id will be added to the accumulator if it does not
exist. Next, all other attribute values in the same block and their similarities with
the query attribute value are retrieved from the SI (line 11). For each of these values,
their record identifiers are retrieved from the RI and their similarities are added into
the accumulator (lines 12 to 15). Finally, in line 16, the accumulator is sorted such
that the records with largest similarities are located at the beginning, and this sorted
list is returned.

5.4 Frequency-Based Similarity-Aware Inverted Index

The DySimII technique is based on building the inverted indexes for all unique at-
tribute values in a data set. However, as seen in Figure 5.3 and in Table 5.2 the
majority of attribute values are uncommon and have low frequencies. For example,
for the `Firstname' attribute in Table 5.2 (b) around 68% of its attribute values occur
only once in the data set, and around 94% of attribute values have a frequency that
is less than 10 records in the data set.

Indexing such rare values might not be of use. For instance, the first name John in
the NC data set (described in Chapter 4) is a common name and it has a frequency of
34,141 (around 29% of the unique first names) in this data set, while a first name like
Juvena is uncommon and only occurs once (around 0.001% of the unique first names)
in the same data set. This suggests that the probability of receiving a query with
the first name value John is much higher than the probability of receiving a query
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Table 5.2: Table (a) illustrates a list of the top 10 most frequent first names and surnames for
30% of the NC data set (described in Chapter 4). The number (118,565) is the total number of
unique first names and (189,890) is the total number of unique surnames. Table (b) illustrates
the percentage of uncommon first names and surnames in 30% of the NC data set.

(a)

Firstname (118,565) Surname (189,890)

James 41,022 (35%) Smith 28,243 (15%)
Michael 37,536 (32%) Williams 23,247 (12%)
John 34,141 (29%) Johnson 22,100 (12%)
Robert 33,241 (28%) Jones 19,807 (10%)
William 31,918 (27%) Brown 16,256 (9%)
David 30,126 (25%) Davis 15,002 (8%)
Mary 22,993 (19%) Moore 10,968 (6%)
Christopher 20,590 (17%) Miller 10,254 (5%)
Jenifer 19,468 (16%) Wilson 10,254 (5%)
Charles 17,438 (15%) Harris 9,380 (5%)

(b)

Attribute Frequency = 1 Frequency <= 10

Firstname 67.72% 93.63%
Surname 47.14% 90.76%

with the value Juvena. Figure 5.3 illustrates the frequency distributions of the four
attributes that are in this data set (i.e. `Firstname', `Surname', `City', and `Zipcode').
It can be seen that only a small number of attribute values have a high frequency,
while most have low frequencies.

Many data sets that contain values such as personal details are found to have a
frequency distribution that follow Zipf’s law [173], which states that in a list of words
ranked according to their frequencies, the word at rank rk has a relative frequency
that corresponds to 1/rk. Distributions in which the relative frequency approximates
1/rkα are considered Zipfian, even if α 6= 1. This means that the number of uncom-
mon values in many data sets is large, and since these values are taking space in the
inverted index while they are not queried very often, we suggest filtering the index-
ing process by only adding to the index the most frequent attribute values. This will
reduce the size of the memory required to build the DySimII, and improve the ability
of storing larger data sets into the index data structures. Therefore, in this section,
we propose a frequency-based alteration (DySimII-F), where we investigate the effect
of indexing only x% of the most frequent attribute values where 0 < x% < 100. The
following sub-sections describes the build and the query phases of the DySimII-F.
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Algorithm 5.4: DySimII-F – overall(R, A, E, S, Q, F)

Input:
- Data set: R
- Attributes used: A = {a1, a2, . . . , a|A|}
- Encoding functions: E = {ea1 , ea2 , . . . , ea|A|}
- Similarity functions: S = {sima1 , sima2 , . . . , sima|A|}
- Stream of query records: Q
- List of most x% frequent attribute values: F

Output:
- Record index: RI
- Similarity index: SI
- Block index: BI
- Ranked list of classified matches: M

1: RI := { }, SI := { }, BI := { }
2: for ri ∈ R do: // The build phase
3: for ah ∈ A do:
4: if ah ∈ F then: // Only index attribute values that are among
5: insert(ri .ah, ri .id, eah , simah , RI, SI, BI) // the top x% of the most frequent values
6: for qj ∈ Q do: // The query phase is explained
7: query(A, qj, eah , simah , RI, SI, BI, F) // in Algorithm 5.5

5.4.1 Building the Frequency-Based Index

The difference in the build phase between DySimII and DySimII-F is that the later
indexes only values that are among the top x% of the most frequent attribute values
(see Algorithm 5.4). This requires a list of frequent attribute values (F), which can
be generated for example from an on-line telephone book. Before we add any value
into the index data structures, we check if this value is in the x% of most frequent
values (line 4). If this is the case, the value is added into the index data structures (as
described in Section 5.3.2), otherwise it will not (line 5). This process is expected to
reduce the size of the index structures since we are only indexing the most frequent
values. After building the index using only the top x% values, the index is ready to
process arriving query records as described next.

5.4.2 Querying the Frequency-Based Index

In the query phase of DySimII-F, illustrated in Algorithm 5.5, we only add the most
frequent attribute values to the index data structures. For queries with indexed
values (values that exist in the index), the query is processed exactly as described
in Section 5.3.3. As for queries with new values (that are not indexed earlier), if the
value is within the top x% of the most frequent values in F, the query is processed
as described in 5.3.3. On the other hand, if a query value is not frequent it will
be handled as described in the following paragraph and illustrated in Algorithm 5.5
lines 8 to 19.

We start by encoding this attribute value using the encoding function eah(qj.ah)
(line 9). Next, from the BI, we get a list of unique attribute values that have the same
encoding value as the query’s encoded value (e.i. are in the same block) (line 10).
Then, in lines 11 and 12, we calculate the similarity between the attribute values that
are with in the same block as the query attribute value. These unique values and
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their similarities with the query value are stored into a similarity list si (line 13). For
each of these values, their record identifiers are retrieved from the RI (line 15) and
their similarities are added into the accumulator (lines 16 and 17). Finally, in line
18, the accumulator is sorted such that the records with the largest similarities are
located at the beginning, and this sorted list is returned.

Algorithm 5.5: DySimII-F – query(A, qj, eah , simah , RI, SI, BI, F)

Input:
- Attributes used: A = {a1, a2, . . . , a|A|}
- Query record: qj ∈ Q
- The encoding function used with the inserted attribute: eah
- The similarity function used with the inserted attribute: simah
- Indexes: RI, SI, BI
- List of most x% frequent attribute values: F

Output:
- Ranked list of matches: M

1: Initialize M := [ ] // The list of ranked found matches
2: Initialize inverted index list si := [ ] // The list of calculated similarities
3: Assign qj a new unique identifier qj.id
4: for ah ∈ A do:
5: if qj.ah 6∈ RI then: // If the attribute value qj.ah is new
6: if ah ∈ F then: // Only index attribute values that are in
7: insert(qj.ah, qj.id, eah , simah , RI, SI, BI) // the top x% of the most frequent values
8: else: // If value qj.ah is not frequent
9: c := eah (qj.ah) // Generate the encoding value for qj.ah
10: b := BI[c] // Get the list of attribute values that

// have the same encoded value as (c)
11: for ri .ah ∈ b do:
12: s := simah (qj.ah, ri .ah) // Calculate the similarity between

// qj.ah and ri .ah that have the same
// encoded value (c)

13: Append (ri .ah, s) to si // Add the calculated similarities to si
14: for (ri .ah, s) ∈ si do:
15: ri := RI[ri .ah] // Get identifiers for all records that

// are in the same block as ri .ah
16: for ri .id ∈ ri do:
17: M[ri .id] := M[ri .id] + s // Add similarities to accumulator M
18: Sort M descending based on similarity values
19: Break
20: else: // If value qj.ah has been indexed before
21: Append qj.id to RI[qj.ah] // Add identifier qj.id into the RI
22: ri := RI[qj.ah] // Get all identifiers for records that

// have the same attribute value as qj.ah
23: for ri .id ∈ ri do:
24: M[ri .id] := M[r.id] + 1.0 // Values in ri are exact (similarity =1.0)
25: si := SI[ri .ah] // Retrieve attribute values and their

// that are in the same block as ri .ah
26: for (ri .ah, s) ∈ si do:
27: ri := RI[ri .ah] // Get identifiers for all records that

// are in the same block as ri .ah
28: for ri .id ∈ ri do:
29: M[ri .id] := M[ri .id] + s // Add similarities to accumulator M
30: Sort M descending based on similarity values
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5.5 Estimating the Number of Comparison Required for the
Proposed Approach

The comparison step in the ER process is usually the most time consuming step.
This is because of the expensive similarity calculations performed when comparing
the query record with the generated candidate records in details. Estimating the
number of comparisons required to match a query record with an existing data set
(with a certain size) beforehand gives users an insight into the expected run time
required to match query records. In this section, we provide a way of estimating the
number of generated candidate records using the DySimII approach.

The proposed DySimII approach groups similar attribute values into the same
block within the BI. For each attribute value inserted into the BI, a list of the identi-
fiers for all records that have the same attribute value is stored in the RI. Therefore,
the number of candidate records for a query value depends on the size of the block
(in the BI) where the query value is inserted, and the length of the list of identifiers
(from the RI) for each value within the block of that query value. For example, from
Figure 5.2 assume that we have a query record r9 that has the value `tonia'. The
number of the candidate records for this query r9 (that have the value `tonia') is cal-
culated by getting the length of identifier’s lists (from the RI) for each value in the
block `tn' (i.e. which has 3 values `tonia', `tony' and `tonya') without including the
record identifier of the query value. Thus, the list of candidate records includes four
records {r8, r1, r3, r5}.

To obtain a better understanding of the number of candidate record that will be
generated (using the DySimII approach) for a certain query record, we assume a uni-
form and a Zipfian frequency distributions of attribute values in a data set. Previous
work that estimated the number of candidate record pairs for several indexing tech-
niques also assumed these two distributions [34]. These two distributions will allow
us to provide lower and upper estimates of the number of candidate records that can
be expected when matching real-world data sets.

Assuming a uniform distribution for the frequency of the attribute values lead
to a uniform distribution of the generated record identifier lists in the RI (which
means that all lists in the RI have the same length), and a uniform distribution of
the generated blocks in the BI (which means that all blocks in the BI have the same
size). On the other hand, having a Zipfian distribution for the attribute values leads
to a Zipfian distribution for the identifier lists in the RI and the block sizes in the
BI. According to the Zipfian law [173], for a list of values ranked according their
frequencies, the frequency of any value is proportional to its rank in the ranked list
of values and can be estimated as 1/rk, where rk is the rank of a value.

For the DySimII data structures (described in Section 5.3.1), assuming a uniform
distribution for both the BI and the RI, the number of candidate records for a query
record is equal to the product of the size of a block in the BI and the size of an
identifier’s list in the RI. Note that we assume that all identifier’s lists in the RI have
the same length that is equal to n/r where n is the number of records in the data
set, and r is the number of the generated identifier lists in the RI (i.e. the number
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of unique attribute values in RI). We also assume that all block in the BI have the
same size that is equal to r/b where b is the number of the generated blocks in the
BI. Therefore, the number of candidate records C can be calculated as:

|C| = n
r
∗ r

b
(5.1)

which is equal to:

|C| = n
b

(5.2)

Assuming a Zipfian frequency distribution of the attribute values will lead to a
Zipfian distribution of the sizes of blocks in the BI, and a Zipfian distribution of the
length of the identifier lists in the RI. In this case, the number of candidate records
will not only be affected by the number of records n in the data set, the number
of the generated blocks b in the BI and the number of identifier lists in the RI, but
also by the size of the generated blocks in the BI (i.e. the number of values inserted
into a block) and the length of identifier list (from the RI) for all the values within
the block. Assuming we rank the generated blocks in the BI, denoted as Bi where
1 ≤ i ≤ b, according to their sizes (number of values in a block), the size SBi of a
block is calculated as:

SBi =
1/i

∑b
i=1(

1
i )
∗ r (5.3)

where the denominator is the Harmonic number of the partial harmonic sum [34].
Moreover, assuming that we rank the identifier lists (from the RI) Ri, 1 ≤ i ≤ r,
according to their length (number of record identifiers inserted into a list), the size
SRi of an identifier list can be calculated as:

SRi =
1/i

∑r
i=1(

1
i )
∗ n (5.4)

The maximum number of candidate records Sq for a query that is inserted into a
block in the BI which has the size SBi can be calculated as:

Sq =

i=SBi

∑
i=1

SRi (5.5)

To estimate the minimum and maximum numbers of candidate records for a
query qj we calculate Sq according to the illustration given in Figure 5.4. The maxi-
mum number of candidate records occurs when a query is inserted into the largest
block in BI, and the values in this block have the longest identifier list from RI. On
the other hand, the minimum number of candidate records occurs when a query
is inserted into the smallest block in BI, and values in this block have the shortest
identifier list from RI.
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Figure 5.4: Illustration of the situations where the maximum and minimum number of can-
didate records occurs for the DySimII assuming that the size of the record identifier lists in
the RI and the blocks in the BI follow the Zipfian distributions [173]. In this example, we
assume that the largest block size in BI has 4 values and the smallest has 1 value. Thus, the
maximum number of candidate records occurs when the values in the largest block (with 4
values) from BI have the longest identifiers lists from RI (the red lists). While the minimum
number of candidate records occurs when the values in the smallest block (with 1 value)
from BI has the shortest identifier list in RI (the green list)

5.6 Experimental Evaluation

In this section we describe the experiments conducted to evaluate the proposed
DySimII approach and its frequency-based alteration DySimII-F. The data sets used
in these experiments are summarized in Table 5.3. More detail about the data sets,
the evaluation measures, and the implementation environment are found in Chap-
ter 4. As described in Section 5.3.2, a list of encoding functions E is used to block
records within a data set. We use the Double-Metaphone [33] phonetic encoding al-
gorithm to encode all attributes (i.e. the encoding values are used as BKs). While for
the Zipcode/Postcode attribute we use the last three digits of the Zipcode/Postcode
value as a BK [35]. For the list of similarity functions S, we used the Jaro-Winlker
approximate string comparison function [33] for comparing all attribute values (see
Section 4.2), except for the Zipcode/Postcode attribute the similarity is calculated by
counting the number of matching digits between compared values [35].
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Table 5.3: Data sets summary (described in more details in Chapter 4).

Data set Type Number of records

30% of NC Real 2,399,170
CCA-1 Real 689,928
CCA-3 Real 2,064,823
CCA-10 Real 6,900,163
CCA-30 Real 20,708,303
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Figure 5.5: Plot (a) shows the average time required for inserting a single record into the
index. Plot (b) illustrates the average time required for querying the growing index. A subset
of 30% of the NC data set is used (M = Million).

5.6.1 Scalability of the Proposed Solution

In this set of experiments we evaluate whether the proposed DySimII scales to large
data sets while facilitating real-time ER. We measure the average time required to
insert a single record, and the average query time required to resolve a single query
record across the growing size of the index data structure (note that arriving query
records are inserted into the index data structure). These experiments are conducted
on 2,391,080 records from the NC data sets described in Chapter 4.

As can be seen from Figure 5.5 plot (a), the results show that the average insertion
times are not affected by the growing size of the index data structure (almost a
constant insertion time), while in plot (b), the query time increases sub-linearly as
the index becomes larger. The results also show that the average insertion time is
around 0.1 milliseconds (ms) for the growing size of the index, while the average
query time is between 10 to 100 (ms).

To investigate how the query time is affected with using larger data sets, we
conduct another set of scalability experiments on the different subsets of the CCA
data set (described in Chapter 4). The size of these subsets ranges between 689,928
records for the CCA-1 data set and 20,708,303 records for the CCA-30 data set. We
build an index using each of the CCA subsets, then we measure the average time
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Figure 5.6: Average query time for the different CCA subsets.
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Figure 5.7: Recall for the different query sets using the DySimII approach.

required to query the built indexes. The results (presented in Figure 5.6) show that
for the increasing size of the data set the average query time increases sub-linearly
yet it is still very fast with an average query time of 161 ms for a data set with over 20
million records. Note that we only use the NC and the CCA data sets for scalability
testing since they are larger in size compared to the other data sets described in
Section 4.5.

5.6.2 Effects of Having Corrupted Attribute Values in a Query Record on
the Quality of the Matching Process

The aim of this set of experiments is to investigate the effect of having different num-
bers of corrupted (modified) attribute values in a query record on the quality of the
matching process. We employ experimental settings that are similar to what is used
in [35]. We use 2,391,080 clean records (with no duplicates) from the NC data set to
build the index. From those clean records we randomly select 100 records that are
used to create five different sets of query records. The first query set (QS-0) is con-
structed by copying the exact values of the 100 records without any modification. The
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Table 5.4: Required memory for the DySimII approach for the different data sets

Data set Size Memory (MB)

30% of NC 2,399,170 3,588
CCA-1 689,928 797
CCA-3 2,064,823 2,337
CCA-10 6,900,163 7,874
CCA-30 20,708,303 23,915

second query set (QS-1) is constructed by manually corrupting only one attribute in
each query record in the base 100 selected query records (corruptions include adding,
deleting, modifying, or swapping characters in the attribute value). For the query set
(QS-2) two attributes are corrupted, for (QS-3) three attributes are corrupted, and
for QS-4 four attributes (all attributes in the record) are corrupted. These generated
query sets are used to query the built index (built with the clean records from the
NC data set). The results, presented in Figure 5.7, show (as expected) that recall val-
ues decrease with increasing the number of corrupted attributes in the query record.
For the QS-0 query set (with no corruptions), the DySimII achieved a recall value of
100%. However, for the other corrupted query sets the recall values achieved are:
98% for QS-1, 76% for QS-2, 59% for QS-3, and 40% for QS-4.

5.6.3 Required Memory Size

Table 5.4 shows the memory requirements for the DySimII approach for the differ-
ent data sets (these measures are produced using our experimental machine which
has 128 GB of main memory). As noted, the memory requirements increases with
the increase in the number of recored within a data set. However, for the largest
data set (CCA-30) which has more than 20 million records, the required memory for
building the index for the full data set is 23,913 MB. This required memory is only
around 18% of the amount available on the experimental machine, indicating that
our implementation would be viable even for much larger data sets. If the size of
the problem increased substantially relative to the physical memory, a possible ap-
proach is to prune low-frequency attributes from the index structures, as described
in Section 5.4. Another possible alternative is to retain the build indexes on disk(s)
and only load into main memory the block(s) that are related to the query record.
This option is to be investigated in future work.

5.6.4 Effects of Using Different Values of the Most Frequent Attributes
with DySimII-F on the Coverage of the Index

In this set of experiments, we evaluate the DySimII-F approach and investigate the
effect of pruning non-frequent attribute values from the index on the ratio between
the number of times an attribute value of a query is available in the index (indexed)
and the number of times that it is not available (new queries). We call this ratio
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Table 5.5: The coverage (the ratio between indexed and new queries) of the DySimII-F while
indexing only the top x% of most frequent attribute values.

x% of the most frequent attribute values

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

QS-0 0.73 0.85 0.92 0.95 0.98 0.98 0.99 0.99 0.99 1.00
QS-1 0.58 0.68 0.74 0.77 0.80 0.80 0.81 0.81 0.81 0.82
QS-2 0.42 0.50 0.54 0.58 0.60 0.61 0.61 0.61 0.62 0.63
QS-3 0.28 0.32 0.35 0.38 0.40 0.40 0.41 0.42 0.42 0.44
QS-4 0.12 0.15 0.17 0.20 0.21 0.21 0.22 0.23 0.24 0.25

in this chapter the coverage of the index. To conduct the experiments, we index the
most frequent x% of attribute values where x ranges from 10% to 100%. A value
of x = 10% means that only the most frequent 10% of the attribute values from
the NC data set are added to the index structures. We finally apply the DySimII-F
approach to investigate its effect on the coverage of the index. Table 5.5 shows that
the coverage of the index is very high for all values of x% for the QS-0 query set
(i.e. most arriving queries are covered by the index (already indexed)). For example
when we index only 30% of the most frequent attribute values from the NC voter
data set, 92% of the arriving queries are actually found in the index. However, for
the other query sets, the coverage value starts to decrease when more attribute values
are corrupted. This indicates that for dirty data sets (with errors and typos in more
than one attribute value) the DySimII-F will have a low coverage for arriving query
records.

5.6.5 Effects of Using Different Values of the Most Frequent Attribute
Values with DySimII-F on Recall

In this set of experiments, we evaluate the DySimII-F approach and investigate the
effect of pruning non-frequent attribute values from the index on recall. Similar to
the previous set of experiments, we index the top x% of the most frequent attribute
values where x ranges from 10% to 100%. Table 5.6 shows that recall drops only
slightly when we do not index all attribute values for the QS-0 query set. For exam-
ple, when we index 50% of the most frequent attribute values, the recall drops only
by 2%. The acceptability of this drop in recall depends on who is using the proposed
approach. For example, a 2% drop in recall might be acceptable for a general busi-
ness company, but not for a national security organization. For the other corrupted
query sets, the drop in recall ranges between 2% to 4% for when we index 50% of the
most frequent attribute values. For indexing only the top 10% of the most frequent
attribute values the recall drops 36% for the non-corrupted query set QS-0, while it
drops between 22% and 47% for the other corrupted query sets.
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Table 5.6: Recall for the DySimII-F approach

x% of the most frequent attribute values

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

QS-0 64 81 92 95 98 99 100 100 100 100
QS-1 51 74 87 90 94 96 97 97 98 98
QS-2 40 57 68 71 73 75 75 76 76 76
QS-3 29 45 51 57 58 59 59 59 60 60
QS-4 19 29 33 38 39 40 40 40 40 41
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Figure 5.8: The required memory to index x% of the most frequent attribute values using the
DySimII-F.

5.6.6 Effects of Using Different Values of the Most Frequent Attribute
Values with DySimII-F on Memory Requirements

In this set of experiments, we evaluate the DySimII-F approach and investigate the
effect of pruning non-frequent attribute values from the index on the memory re-
quired to build the index. We index the top x% of the most frequent attribute values
where x ranges from 10% to 100%. The results, presented in Figure 5.8, show that
memory requirements drop between 3 % to 23% for the different x% of the most
frequent attribute values that are indexed. This drop in memory can be useful when
indexing larger data sets.

5.7 Summary

In this chapter we proposed a dynamic similarity-aware inverted indexing technique
(DySimII) that can be used for real-time ER on large data sets. We also proposed a
frequency-based index (DySimII-F) that is aimed at improving the memory required
to build the index data structures by pruning non-frequent attribute values from
the index. The results from our experimental evaluation show that the proposed
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solution is scalable with large data sets since it has fast insertion and query times,
and since the growing size of the index does not affect the time required to insert
new records into the index data structures, and it only requires a slight increase in
the time required to resolve query records (more results about DySimII can be found
in Chapter 9).

The results also show that DySimII achieved high matching quality for data sets
with less noise (errors and typos), while the quality of the matching process dropped
for dirty data (with more errors and variations within attribute values). Moreover,
the results show that the DySimII-F improves the required memory size with only
a slight drop in recall values for data set with less noise while it did not perform
will with dirty data sets that have more errors and variation within attribute values.
Future research directions that can be extended from our work in this chapter are
to investigate how to improve the matching quality for data sets with dirty attribute
values, address the drop in recall for the F-DySimII, examine how to reduce the size
of the F-DySimII, investigate extending the F-DySimII to support disk-based indexing
to be used with larger data sets, and investigate the use of this approach in a parallel
environment.



Chapter 6

Dynamic Sorted Neighborhood
Index for Real-Time Entity
Resolution

Sorting-based indexing is very efficient compared to other indexing techniques [34]
and is commonly used in entity resolution. In this chapter we propose a dynamic
and efficient sorting-based indexing technique that works with real-time entity reso-
lution. We summarize the notation that we use in this chapter in Section 6.2. Then
in Sections 6.3 to 6.5 we provide a detailed description of the proposed approach,
and in Section 6.6 we analyze the proposed approach with regards to estimating
the required number of comparisons. We then evaluate the proposed approach in
Section 6.7, and summarize our findings in Section 6.8.

6.1 Introduction

The sorted neighborhood indexing method (SNM) [79] has been successfully used
with entity resolution (ER) of large static data sets. It was developed with the aim
of reducing the number of comparisons between candidate records in the process of
de-duplicating large data sets [79, 80]. The basic SNM (Figure 6.1 shows an example)
consists of the following steps: First, if multiple data sets are to be matched, they
are merged and a unique identifier is assigned to each record. Then, a sorting key
value is generated for every record in the merged data set. Next, the records are
sorted according to these sorting key values. Finally, a comparison step that consists
of a fixed-size window w (with w > 1) moves over the sorted records, and only
the records within the sliding window at any time are compared with each other.
Assuming the sorted data set contains n records, the sorting step of the SNM has a
complexity of O(n log(n)), while the comparison step is O(w× n) [79].

One of the main drawbacks of the SNM is its sensitivity to data quality of the
attributes used as sorting key values. Specifically, if a sorting key value has an error
at the beginning then its record will potentially not be placed close to similar records,
and therefore will likely be missed. For example, `christine' and `kristine' will likely
not be close to each other in the sorted array if a `Firstname' attribute is used as a

73
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RecID Firstname Surename City Zipcode

r1 percy smith new york 10007

r2 paul smith boston 02120

r3 robin stevens denver 80202

r4 pedro smith los angeles 90005

r5 abby bond new york 10007

r6 sally taylor los angeles 90002

r7 peter smith los angeles 90012

r8 sally taylor seattle 98168

r9 pedro smith bosten 02121

r10 peter smith los angelos 90002

Figure 6.1: The static sorted neighborhood method applied on the example table on the left
with a fixed window size of w = 5 and sorting key values consisting of the concatenation of
`Firstname' and `Surname' values.

sorting key. A commonly used approach to overcome this drawback is to run the
SNM several times using different sorting keys, followed by the calculation of the
transitive closure of the identified matching records [79, 80].

Another major drawback of the basic SNM is the fixed setting of the window size
w. If w is set too small, true matches are likely missed; on the other hand if it is too
large unnecessary comparisons between records are conducted. This problem has
recently been addressed by two approaches that adaptively adjust the window size
according to the characteristics of the sorting key values or data set records. One
approach expands the window size if sorting key values are similar with each other
according to a minimum similarity threshold [170], while an alternative approach
expands a window if a certain minimum number of records are classified as matches
within the current window [54]. Both of these approaches are described in more
details in Chapter 3.

The SNM in its current form (when using a fixed or an adaptive window size, or
when using several runs of different sorting keys) is only suitable for indexing static
data sets and for batch-oriented ER. Due to the static nature of the sorted array it
does not work for real-time ER applications where a stream of query records needs
to be matched against a data set consisting of entity records, and where these query
records are commonly inserted into the data set and the index data structure after
matching. Our proposed technique, described in Section 6.3, provides an indexing
technique that facilitates real-time ER, and can handle dynamic data sets.

6.2 Terminology and Notation

In this section we summarize the terminology and the notation used in this chapter:

• Data set: We assume that data set R = {r1, r2, . . . , r|R|} contains records of
known entities. Each ri ∈ R has a unique record identifier ri.id and an entity
identifier ri.eid. Records in R are described by a set of attributes, denoted as
A = {a1, a2, . . . , a|A|}. All records in R are assumed to have the same attribute
structure.
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Table 6.1: Summary of main notations used in this chapter
R A data set of records about known entities
A A set of attributes {a1, a2, . . . , a|A|} for each ri ∈ R
Q A stream of query records
C A list of candidate records for a query qj
D An inverted index or disk-based data set table
Mqj A set of all records in R that belong to the same entity of a query qj
ri A record in R
ri .id Unique identifier for ri
ri .eid Entity identifier for ri
qj A query record in Q
qj.id Unique identifier for qj
qj.eid Entity identifier for qj
n The size of data set R, n = |R|
sim(., .) A function used to calculate the similarity between two values (0 ≤ sim(., .) ≤ 1)
w Window size used to generate candidate records
SK The sorting key that is used to sort records in R
SKV The sorting key value of a record ri ∈ R
Ni A node in the index tree data structure
Nqj The node in the index tree data structure where qj is inserted
k The number of the nodes in the index tree data structure
δ A window expantion threshold that represents the allowed minimum number of candidate

records in a window (used with the DySNI-c approach that is described in Section 6.4.2).
θ A window expansion threshold that represent the similarity between keys of tree nodes (used

with the DySNI-s approach that is described in Section 6.4.3).
σ A window expansion threshold that represents the number of classified matches within a

window (used with the DySNI-d approach that is described in Section 6.4.4))

• Query stream: We assume that a stream of query records Q = {q1, q2, . . . , q|Q|}
is to be matched with R. Each qj ∈ Q is given a unique identifier qj.id 6=
ri.id, ∀ri ∈ R; and has the same attribute structure as records in R. It is assumed
that qj is to be added to R after it has been matched.

• Sorting Key: A sorting key (SK) is defined as the list of attributes that are
used to sort records in R alphabetically. SKs are usually generated by concate-
nating the attributes in the SK list. Selecting SKs generally requires domain
knowledge. We propose an automatic key selection algorithm in Chapter 8.

• Sorting key value: A sorting key value (SKV) of a record in R is the value
of the attributes used as SK for that record. For example, assuming that a
concatenation of the `Firstname' and `Surname' attributes from the example
records in Figure 6.1 is used as a SK, then the value `percysmith' would be the
SKV generated for r1.

The problem of real-time ER is defined as: for each query record qj in a query
stream Q, find all the records in R that belong to the same entity as qj, denoted as the
set Mqj , in sub-second time, where Mqj = {ri | ri.eid = qj.eid, ri ∈ R}, Mqj ⊆ R, qj ∈
Q. Table 6.1 summarizes the notation that we use.
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6.3 Overview of the Approach

The original SNM uses a static array data structure to store the SKV of all records in
the data sets that are to be deduplicated or matched [79]. However, a static array is
not suitable for dynamic data because each time a new record is added to the index
the existing elements in the array would need to be shifted to maintain the order,
leading to a worst case complexity of O(n), where n is the number of records in a
data set. Additionally, finding a certain SKV in a sorted array of length n elements
requires O(nlog(n)) steps (this includes sorting then searching the array).

Real-time ER on dynamic data sets requires an index data structure with efficient
searching, inserting, and retrieving capabilities. Search trees are more efficient than
sorted arrays [41] and are commonly used for indexing in different application do-
mains. We propose a tree-based dynamic sorted-neighborhood indexing (DySNI)
technique that works with real-time ER on dynamic data sets.

6.3.1 Index Data Structure

In this section we describe different possible tree data structures that potentially can
be used with our proposed approach.

• A basic binary search tree is a non-balanced tree data structure that consists of
nodes and edges to organize data in a hierarchical manner, where each node
can have 0, 1 to 2 child nodes. Every node in the tree has a unique key value
that is used for sorting the tree based on the following properties [41]. Let x
and y be nodes in the tree with different key values, i.e. x.key 6= y.key and y
being a child node of x, xL is the left sub-tree of x, and xR is the right sub-tree
of x: (1) i f y.key < x.key then y ∈ xL, (2) i f y.key > x.key then y ∈ xR. The
shape and the height of a basic binary search tree depend on the sequence of
the key values that are inserted into the tree. Because it is not a balanced tree,
the worst case time required for operations such as insertion of new nodes,
searching for certain key values, and retrieving the previous or next nodes, all
have a complexity of O(k), where k is the number of nodes in the tree.

• An AVL tree is a height balanced binary search tree where for each node in
the tree the difference between the heights of its left and right sub-trees never
exceeds 1 [2, 134, 141]. For a tree of size k nodes, the height of an AVL tree
never exceeds 1.44log(k). This height is sufficient for providing O(log(k)) time
for the following operations: insert new node, search for a node, and retrieve
next and previous nods in the worst case scenario [2, 134, 141].

• A braided AVL tree is a data structure that combines the properties of both
AVL trees and double-linked lists [134]. Each node in a braided AVL tree has a
link to its predecessor and successor nodes according to an alphabetical sorting
of the key values in the nodes. Because this data structure has the property of a
double-linked list, accessing the next and previous nodes for a given node only
requires O(1) steps.
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Table 6.2: Worst case time complexities for the different operations achieved using the dis-
cussed search trees. k is the number of nodes in a tree.

Operation Binary AVL Braided AVL B-Tree

Search O(k) O(log(k)) O(log(k)) O(log(k))
Insert O(k) O(log(k)) O(log(k)) O(log(k))
Get successor node O(k) O(log(k)) O(1) O(log(k))
Get predecessor node O(k) O(log(k)) O(1) O(log(k))

• A B-tree is a balanced search tree data structure that is designed to work with
secondary storage devices [41]. The difference between a B-tree and a binary
tree is that nodes in the former can have more than two children. A B-tree
of order m reduces the depth of a binary tree of k nodes to O(logmk), where
m is the maximum number of allowed children for each node. This means
that every node would have m children and m-1 keys. For example a B-tree of
order m = 10 allows having 106 keys in 6 levels, while a binary tree requires
20 levels to accommodate the same number of keys. However, when searching
for keys in a B-tree, we have to search through the m keys in each node which
reduces the gain from having fewer levels of nodes in the tree. Also, retrieving
the successor/predecessor keys in a B-tree requires a complexity of O(log(k))
if the successor/predecessor keys were in the next or previous nodes and not
in the same node of the query record. Similar to a braided AVL tree, a B-tree
can be extended with a double linked list to improve retrieving the next and
previous nodes (as in B+ tree [40] which is a B-tree that has a link between its
leaf nodes). A B+ tree is to be investigated in future work.

Table 6.2 summarizes the complexities of the different operations achieved by
the above described search trees. As can be seen, the characteristics of the braided
AVL tree make it highly suitable to be used with our proposed index, since this data
structure provides efficient retrieval times of neighboring nodes that are required to
generate the list of candidate records required to do the matching. Therefore, we use
a braided AVL tree in our solution. We define such a tree as:

[Definition 6.1] Braided Tree (BRT): is a balanced binary AVL tree where each
node in the tree has a link to its predecessor and successor nodes according to an
alphabetical sorting of the key values in the nodes. We denote a node in the BRT as
Ni = (skv, I, prev, next) (with 1 ≤ i ≤ k), where skv is a unique key value, I is the
list that contains the record identifiers attached to that node, and prev and next are
links to the predecessor and successor nodes, respectively. A node is denoted as Nqj

if a query record is inserted into the list I of that node. Figure 6.2 illustrates the BRT
generated based on the small example data set from Figure 6.1.

The aim of the DySNI is to dynamically index and resolve a stream of query
records in real-time. We assume we keep all records in the data set R unmodified
after they are created, since they can provide evidence about earlier queries on in-
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Figure 6.2: The dynamic sorted neighborhood index (DySNI) for the ten records from Fig-
ure 6.1 using a BRT tree data structure. The sorting key values are the concatenation of
`Firstname' and `Surname'.

Algorithm 6.1: DySNI – build(R, SK)

Input:
- Data set: R
- Sorting key: SK

Output:
- A BRT tree data structure that is filled with all ri ∈ R

1: B := createBRT( ) // Create an empty BRT tree data structure named B
2: for ri ∈ R do:
3: skv := B.generateKey(SK) // Generate a sorting key value for ri
4: Ni := B. f indTreeNode(skv) // Search for skv in B
5: if Ni == NULL then:
6: Ni := B.createNode(skv,ri .id) // Create a new node Ni with the key skv
7: B.insert(Ni) // Insert the created node Ni into B
8: else:
9: Append ri .id to Ni .I // Append record identifier ri .id into the list

// of record ids I of the tree node Ni
10: Return B // Return B which is filled with all ri ∈ R

dividual entities. An example application is applying for consumer credit where an
individual’s credit history needs to be retrieved and evaluated before a new loan can
be approved. Replacing records with their cleaned and merged versions will likely
result in a loss of accuracy, because details such as previous names or addresses of a
customer are lost.

The DySNI has an initial build phase where a certain number (possibly none) of
records from an existing data set are inserted into the BRT. The built index is then
used to generate candidate records to resolve query records during the query phase.
The DySNI is dynamic since query records can be added into the BRT as they arrive.

6.3.2 Building the Index

In this phase (shown in Algorithm 6.1), records are loaded from data set R to build
the index data structure using the BRT tree. First we start, in line 1, by creating an
empty BRT tree B. Then, for all the records in R we generate a SKV for each record
in R (line 3). The SKV become the key value skv that is used for creating the nodes
in the BRT tree.
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Algorithm 6.2: DySNI – query(B, qj, S, SK, w, D)

Input:
- The built BRT data structure: B
- Query record: qj
- Similarity functions: S
- Sorting key: SK
- Window size: w ≥ 1
- Data set table with complete records: D

Output:
- Ranked list of matches: M

1: skv := B.generateKey(SK, qj) // Generate a sorting key value for the query qj
2: Nqj := B. f indTreeNode(skv) // Search for skv in B
3: D[q.id] := qj // Insert the query record qj into D
4: if Nqj == NULL then :
5: Nqj := B.createNode(skv,qj.id) // Create a new node Nqj with the key skv
6: else:
7: Append qj.id to Nqj .I // Append record identifier qj.id into the list

// of record ids I of the tree node Nqj

8: C := B.generateWin(Nqj , S, w) // Generate the candidate records from neighboring
// nodes using a window size w

9: M := B.compareRecords(C, S, D, qj) // Compare query record qj with all candidate records in C
10: Sort M according to similarities
11: Return M

In line 4, we search the BRT for the generated skv. If skv has not been indexed
earlier, a new node is created and inserted into the BRT tree (lines 5-7). On the
other hand, if the skv already exists in the BRT (lines 8-9), we only append the
record identifier ri.id into the identifier’s list I of the node Ni with the same key
value skv. For example, node N1 in Figure 6.2 was generated when record r1 with
SKV `percysmith' was inserted into the empty index, while for record r8 with SKV
`sallytaylor' node N7 already exists in the BRT (the node was generated when record
r6 was inserted), and so the identifier r8 can be directly added to the list I of N7.

After having indexed all records in R, the index is ready for resolving query
records. The complete records in R with all attribute values are also indexed into an
inverted index or disk-based data set table D, where the actual attribute values of
records can be retrieved efficiently during the record comparison step, which is part
of the query matching process.

6.3.3 Querying the Index

In this phase (shown in Algorithm 6.2), a query record qj is matched against the built
index in real-time. We assume that all query records are added to the DySNI. When
a query record arrives, the first step is to generate the SKV for the record (line 1) and
a new unique record identifier qj.id is assigned to it (in the generateKey( ) function).
This SKV and qj.id are then inserted into the BRT in the same way as records were
inserted during the build phase (lines 4-7). qj is also added into D in line 3.

The window of neighboring nodes can now be created (line 8). The aim of this
step is to generate the candidate records that are to be compared with the query
record qj in more detail to find the matching records. The window of neighboring
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Figure 6.3: The set of candidate records generated using the fixed size window approach
(DySNI-f) for query record r10, as described in Section 6.4.1 using a window of size w = 1.

nodes can be created using different approaches that will be described in the follow-
ing section. However, in Algorithm 6.2 we are using the fixed window size approach
(described in Section 6.4.1). All record identifiers that are stored in the nodes within
the window are added to the candidate record set C. Whole records (for each record
identifier within C) are then retrieved from the inverted index or data set table D,
and the attributes of qj are compared with the retrieved records using similarity
comparison functions [33] appropriate to the content of each attribute (line 9). The
compared candidate records are sorted according to their overall similarities with the
query record (line 10) and are then returned in the list M

6.4 Generating the Window of Neighboring Nodes

To generate the window of neighboring nodes we propose fixed and adaptive win-
dow size approaches. The aim of using an adaptive window size is to limit the num-
ber of comparisons between the query and candidate records to only those records
that likely correspond to true matches. This issue was addressed for static SNM
by [170] where expanding the window is based on the similarities between SKVs, and
by [54] where expanding the window is based on the number of classified matches
within the window (both [170] and [54] are described in more details in Chapter 3).
In the following we describe one static and three adaptive window approaches.

6.4.1 Fixed Window Size (DySNI-f)

The original SNM is based on using a fixed size window w that corresponds to the
number of candidate records that fall inside the window at any one time. As our
DySNI approach is a tree-based index, and because all records that have the same
SKV are inserted into one node, we set the window as the number of neighboring tree
nodes in one direction (previous and next). With w ≥ 1 the number of neighboring
tree nodes in one direction of the query node Nqj , the total number of neighboring
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Figure 6.4: The set of candidate records generated using the candidate-based adaptive win-
dow approach (DySNI-c) described in Section 6.4.2 using a minimum total number of candi-
date returned records of δ = 6.

nodes to be visited when generating the candidate records will be 2w. A window of
size w = 0 refers to the query node Nqj only (the node where the qj is inserted).

For the index tree shown in Figure 6.3, assuming query record r10 has just
been inserted into the tree in node N6 with key value `petersmith', and assuming
a fixed window size w = 1 in each direction, the previous node N1 with key value
`percysmith' and the following (next) node N3 with key value `robinstevens', are in-
cluded into the window. The final set of candidate records for query record r10 using
this fixed window size approach is C = {r1, r3, r7}. Note that r7 is also included as
it is located in the same tree node as the query record (N6), and so it also needs to
be compared with the query record.

As this example illustrates, a fixed size window can lead to both unnecessary
comparisons with records in nodes that are unlikely to have a high enough similarity
to be matching with a given query record (like r3 from node N3), as well as missed
potential true matches that are outside the window (such as the records attached to
node N5) with key value `pedrosmith').

6.4.2 Candidate-Based Adaptive Window (DySNI-c)

This approach aims at matching a certain minimum number of candidate records
that can be processed within a certain period of time. In a real-time environment this
allows for a controlled number of candidate records to be returned for detailed com-
parisons. In practice, users can investigate different numbers of candidate records
to achieve the required maximum query time. The minimum total number of candi-
date records to be returned, δ, is used to stop window expansion regardless of the
similarities between SKVs.

The initial candidate record set C contains the records located in the query record’s
node. Then a decision on whether to expand the window on both sides or not is made
based on the following criterion. If the count of records at the query record’s node
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Figure 6.5: The set of candidate records generated using the similarity-based adaptive win-
dow approach (DySNI-s) described in Section 6.4.3 using a similarity threshold of θ = 0.6.

Nqj is greater than or equal to the minimum candidate threshold |C| >= δ, then no
expansion is required, and only records located at the query node are included in C.
On the other hand, if |C| < δ, then the window expands on both sides of the initial
node individually until |C| >= δ. The remaining number of records required for
the total candidate records to reach δ is calculated as χ = δ− |C|. A new expansion
threshold is set to dχ/2e for each side of the query node, and the window on each
side will continue expanding as long as the total number of candidate records from
that side is smaller than or equal to dχ/2e.

For example, in Figure 6.4, assume we set the minimum candidate threshold
δ = 6. After inserting query record r10 into the index, generating the window
of candidate records begins from the query node N6. The number of records in
N6 is |C| = 1 (C = {r7}). Because |C| <= δ, we calculate χ = 6 − 1 = 5, and
d5/2e = 3. We therefore need to add a minimum of 3 records from each side
to the candidate list to exceed δ before stopping the expansion process. We add
nodes N1 and N5 from the left side and N3 and N7 from the right side, resulting in
C = {r1, r3, r4, r6, r7, r8, r9}. Window expansion stopes at this point since |C| >= δ.

6.4.3 Similarity-Based Adaptive Window (DySNI-s)

This approach is based on [170] which uses the similarities between the SKVs in the
index to adjust the boundaries of the window. In the original static approach, the
window size w changes based on the similarities between SKVs, and the window
slides over the static array starting from the first to the last record in the index. In
our approach (shown in Algorithm 6.3), we adaptively expand a window on each
side of the tree node of a query record separately in each direction based on the
following steps. We initialize the window size in a direction as w = 0 (i.e. only
include the query node Nqj in the initial window). We expand the window in one
direction based on the similarity between the query node’s SKV and the SKV of the
previous (or next) nodes using an approximate string comparison function. If this
similarity is above a certain threshold θ then we expand the window by adding the
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Algorithm 6.3: DySNI-s - generateWin(Nqj , θ, S)

Input:
- Query node: Nqj

- Similarity threshold: θ
- Similarity function: S

Output:
- Candidate record set: C

// Window expansion in the (next) direction
1: C := Nqj .I // Add all record ids from Nqj .I into C
2: next_nd := Nqj .next // Get next node
3: while sim(Nqj .skv, next_nd.skv) > θ do :
4: C := C ∪ next_nd.I // Add all record ids from next_nd.I into C
5: next_nd := next_nd.next // Get next node

// Window expansion in the (previous) direction
6: prev_nd := Nqj .prev // Get previous node
7: while sim(Nqj .skv, prev_nd.skv) > θ do :
8: C := C ∪ prev_nd.I // Add all record ids from prev_nd.I into C
9: prev_nd := prev_nd.prev // Get previous node
10: Return C

record identifiers in this node’s list I and increase the window size w by 1. We repeat
this process until the calculated similarity between SKVs falls below θ. This approach
will only include tree nodes that are sufficiently similar to the records in the query
record’s tree node.

Based on Figure 6.5 and setting θ = 0.6, after inserting query record r10 into the
index, generating the window starts from the query node N6. To expand the win-
dow forwards (next), we compare the SKV of node N6 with the SKV `robinstevens'
of its next neighbor N3 using the Jaro-Winkler string comparison function [162].
This gives us a low value of sim(`petersmith',`robinstevens') = 0.0. Because 0.0 < θ

the window does not expand forward and the node N3 and its record identifier
list will not be included into the set of candidate records C. The same process
will take place in the node’s backwards (previous) direction. We get the SKV of
the previous node N1 and compare it to the SKV of the query node, which leads
to sim(`petersmith', `percysmith') = 0.89. Therefore N1 and its record identifier r1 is
added to C. The comparison process continues in this direction until we reach a simi-
larity that is less than θ. This occurs at node (N4) where sim(`abbybond',`petersmith') <
θ. This means all records in the nodes N5 and N2 are included into C. The final set
of candidate records is C = {r1, r2, r4, r7, r9}. As illustrated in this example, the
DySNI-s approach avoids unnecessary comparisons (like records in node N3) that
was included in the window using the DySNI-f approach and includes matches (like
records in nodes N5 and N2) that were missed using the DySNI-f approach.

6.4.4 Duplicate-Based Adaptive Window (DySNI-d)

This third adaptive approach is based on [54]. The authors used an adaptive window
size that grows or shrinks based on the number of classified matches that are found
within the window. The window slides over the static array starting from the first to
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Figure 6.6: The set of candidate records generated using the duplicate-based adaptive win-
dow approach (DySNI-d) described in Section 6.4.4 using an expansion threshold of σ = 0.6.

the last record in the index to match records in the whole data set. The more matches
are found, the larger the window size becomes. However, if no or only a small
number of matches for a query record are found in the window, then this approach
assumes that there are no more matches further away (based on the fact that all
records are sorted alphabetically according to a sorting key and similar records are
likely closer to each other), and therefore there is no need to increase the size of the
window. In our approach (shown in Algorithm 6.4), we adaptively expand a window
on each side of the query tree node based on the following steps.

When a query record arrives, and after it is inserted into the index data structure,
a window of initial fixed-size w ≥ 1 is generated. Note this is different from the initial
window size w = 0 for the similarity-based adaptive approach described before. A
window size w ≥ 1 is required because the duplicate-based approach needs to be
able to compare candidate records to get a set of matching and non-matching record
pairs. The query record is compared with all candidate records that are in the initial
window. Records that have a similarity above a certain threshold with the query
record are classified as matches, all others as non-matches. Assume that the number
of classified matches is m out of a total of c candidate records compared with the
query record, and assume that the expansion threshold (expansion ratio) is σ [54]. A
window is expanded to the next tree node if the following holds:

m
c
≥ σ (6.1)

In the same way as the similarity-based adaptive approach expands the window
in each direction independently, the duplicate-based approach also calculates Equa-
tion 6.1 independently in the forward (next) and backward (prev) direction (as shown
in Algorithm 6.4).
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Algorithm 6.4: DySNI-d - generateWin(qj, Nqj , w, S, σ)

Input:
- Query record: qj
- Query node: Nqj

- Initial window size: w ≥ 1
- Similarity functions: S
- Expansion threshold: σ

Output:
- Candidate record set: C

// Window expansion in the (next) direction
1: C := Nqj .I // Add record id’s I within Nqj to C
2: c_n := getNextCandidates(Nqj , w) // Get candidates from the next w nodes to Nqj

3: C := C ∪ c_n // Add candidates from the next w nodes to C
4: c_next := |c_n| // The number of candidates in the next direction
5: m_next := getNumMatches(c_n, qj, S) // The number of matches in the next direction
6: next_nd := Nq(j+w)

.next // Get the next node after w neighboring nodes
// from Nqj (in the next direction)

7: while m_next
c_next ≥ σ do : // Expand the window in the

// (next) direction while condition is true
8: C := C ∪ next_nd.I // Add record ids I of next_nd to C
9: next_nd := next_nd.next // Get the node in the next direction of next_nd
10: m_next := getNumMatches(next_nd, qj, S) // Get the number of matches in the new next_nd
11: c_next := getNumCandidates(next_nd) // Get the number of candidates in the new next_nd

// Window expansion in the (previous) direction
12: c_p := getPrevCandidates(Nqj , w) // Get candidates from the previous w nodes to Nqj

13: C := C ∪ c_p // Add candidates from the previous w nodes to C
14: c_prev := |c_p| // The number of candidates in the prev direction
15: m_prev := getNumMatches(c_p, qj, S) // The number of matches in the previous direction
16: prev_nd := Nq(j−w)

.prev // Get the previous node before w neighboring
// nodes from Nqj (in the previous direction)

17: while m_prev
c_prev ≥ σ do : // Expand the window from the

// (previous) direction while condition is true
18: C := C ∪ prev_nd.I // Add record ids I of prev_n to C
19: prev_nd := prev_nd.prev // Get the node in the previous direction of prev_nd
20: m_prev := getNumMatches(prev_nd, qj, S) // Get the number of matches in the new prev_nd
21: c_prev := getNumCandidates(prev_nd) // Get the number of candidates in the new prev_nd
22: Return C

Let us use the example in Figure 6.6, and assume that the initial window size
is w = 2, the expansion threshold σ = 0.6, and r10 is the query record. With
w = 2, the previous window will initially include two tree nodes (`percysmith' and
`pedrosmith') and the next window will also include two nodes (`robinstevens' and
`sallytaylor'). The query node has one candidate record r7 (which is not included
in the expansion ratio calculation), the window into the previous direction has three
candidate records {r1, r4, r9}, and the window into the next direction also has three
candidate records {r3, r6, r8}. Therefore, c = 3 in both directions.

As for the window expansion in the forward (next) direction, the window cannot
expand since the last node in the tree, N7, is already included in the initial window
size. However, the decision on whether the previous window needs to be expanded
or not depends on the number of matches found in the window based on Equa-
tion 6.1. Based on the full example records in Figure 6.1, assume that both r1 and
r4 are matching records (so number of matching records in the previous window is
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Figure 6.7: Example of the similarity-based dynamic sorted neighborhood index (SimDySNI)
for the ten records from the table in Figure 6.1. The sorting key values are the concatenation
of `Firstname' and `Surname' values, and the window size for pre-calculation of similarities
is set as w = 2. The pre-calculated similarities are generated using the Jaro-Winkler similarity
function [33].

m = 2). Because 2/3 ≥ σ, this means that the window will expand in the back-
ward (previous) direction to include N2. The expansion process will continue until
m/c < σ which is reached after including node N2 in the window. Therefore, the
final set of candidate records is C = {r1, r2, r3, r4, r6, r7, r8, r9}.

6.5 Similarity-Based Dynamic Sorted Neighborhood Index

The idea behind the similarity-based dynamic sorted neighborhood index (SimDySNI)
is to pre-calculate the similarities between the attribute values used to generate the
SKVs, and to store these similarities in the tree. These pre-calculated similarities
are used in the query phase to reduce the time required for the calculation of sim-
ilarities between records. A similarity-based BRT is used to build the index where
pre-calculated similarities are stored within nodes of the tree index.

[Definition 6.2] Similarity-based BRT (S-BRT): is a BRT tree with two extra lists
attached to its nodes as illustrated in Figure 6.7. These lists contain the pre-calculated
similarities for the neighboring nodes that are within the window (whether it is
a fixed or an adaptive window). A node in the SimDySNI index is denoted as
Ni = (skv, I, prev, next, Sp, Sn); where Sp and Sn are the lists of the pre-calculated
similarities between this node’s SKV and the SKVs of all neighboring nodes within
the window in the previous and following (next) directions respectively, while the
other node elements are the same as in Definition 1.

6.5.1 Build and similarity calculation phases

The build phase is the same as the build phase of the DySNI described in Sec-
tion 6.3.2. However, after the build phase finishes, a similarity calculation phase is
conducted where the pre-calculated similarity lists Sp and Sn are added into the built
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DySNI tree index. Both lists are ordered according to the distance of the neighboring
node from the query record’s node (i.e. the first element in these lists is the closest
neighboring node, and so on). The process of calculating similarities is conducted
for all nodes in the tree.

In this phase each node Ni in the tree is visited and the similarities between the
attributes that are used to generate this node’s SKV and the attribute values that
are used to generate the SKV of the neighboring nodes within the window (in both
the previous and next direction) are calculated using an approximate string similar-
ity function. The sum of the pre-calculated similarities of all attributes used as SK
are stored in the similarity lists Sp and Sn. For example, to calculate the similarity
between the SKVs `petersmith' and `percysmith', we first calculate the similarity be-
tween the first attribute values sim(`peter', `percy') = 0.7, then the similarity between
the second attribute values sim(`smith', `smith') = 1.0. The sum of those calculations
sum = 1.7 is then stored in the similarity lists.

The calculated similarities are stored into the lists Sp and Sn for each tree node.
Figure 6.7 gives an example for SimDySNI when using a fixed window of size w = 2
and the Jaro-Winkler similarity function [33]. The SimDySNI can be used with both
fixed and similarity-based adaptive window approaches. For the adaptive window
we continue calculating similarities with SKVs of neighboring nodes until the sim-
ilarity threshold is reached (as described in Section 6.4.3) which means that in this
case the pre-calculated lists can have different sizes for different nodes, while for a
fixed size window approach we always have the same size lists for all nodes that is
equal to w.

6.5.2 Query phase

In the query phase (shown in Algorithm 6.5) of the SimDySNI approach we benefit
from the pre-calculated similarities that are stored in each node to reduce the time
required to resolve a query. Querying the built index (from the build phase) is based
on two cases (as shown in Algorithm 6.5): the first case occurs when the SKV of a
query record qj is new and it has not been indexed earlier. The second case occurs
when the SKV of a query record qj has been indexed previously and it already exists
in the index data structure.

1. New SKV: In this case (lines 4-10), because the SKV of a query record qj is
new, we create a new node Nqj for this query and we resolve it using the origi-
nal DySNI approach as described in Section 6.3.3 (i.e. without benefiting from
any pre-calculated similarities). After resolving the query, we generate the two
pre-calculated similarity lists (i.e. Sp and Sn) for both directions for Nqj by cal-
culating the similarities for its w next and previous neighboring tree nodes (if
we are using a fixed size window) or until a similarity threshold is reached (if
we are using a similarity-based adaptive window) (line 8). Next, we update
the similarity lists for all w previous and next tree nodes of the newly inserted
tree node (lines 9-10). This step ensures that the pre-calculated similarities are
up-to-date at any time.
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Algorithm 6.5: SimDySNI (fixed window) – query(B, qj, S, SK, w, D )

Input:
- The built S-BRT data structure: B
- Query record: qj
- Similarity functions: S
- Sorting key attributes: SK
- Window size: w ≥ 1
- Database table with complete records: D

Output:
- Ranked list of matches: M

1: skv := generateKey(SK, qj) // Generate a sorting key skv for qj
2: Nqj := B. f indTreeNode(skv) // Search for skv in S-BRT
3: D[qj.id] := qj // Insert the query record qj into D

// New SKVs
4: if Nqj := NULL then :
5: Nqj := B.createNode(skv, qj.id) // Create a new node Nqj with the key skv
6: C := B.generateWin(Nqj , w) // Generate the candidate records from

// neighboring nodes using a window size w
7: M := B.compareRecords(C, S, D, qj) // Compare query record qj with all

// candidate records in C
8: B.preCalcNodeSimilarities(Nqj , w, S) // Calculate similarities for node Nqj

9: B.updateSimNextNodes(Nqj , w, S) // Calculate similarities for neighboring
// nodes in the next direction

10: B.updateSimPreviousNodes(Nqj , w, S) // Calculate similarities for neighboring
// nodes in the previous direction

// Indexed SKV
11: else:
12: Append qj.id to Nqj .I // Append record identifier qj.id into Nqj .I
13: C := Nqj .I ∪ Nqj .Get_I_ f rom_nxt_wind() // Generate candidate records

∪ Nqj .Get_I_ f rom_prv_wind()
14: M := B.comparePreCalcRec(C, S, D, qj) // Compare query record qj with all

// candidate records in C while benefiting
// from the stored pre-calculated similarities

15: Sort M according to similarities
16: Return M

2. Indexed SKV: In this case (lines 11-14), because the SKV of the query record
already exists in the S-BRT, there is no need to create a new node, and all
required pre-calculated similarities are ready for use. In this case a query can
benefit from using these similarities as described in the next paragraph.

To generate candidate records, we retrieve (from the inverted index or database
table D) all records that are stored in the tree nodes in the window. While the record
comparison process in the DySNI compares all attribute values between the query
and the candidate records to calculate an overall record similarity, in the SimDySNI
we only need to compare attributes that are not used in the SK. To calculate the
overall similarities between the query record and candidate records we retrieve the
pre-calculated similarities from the Sp and Sn lists, retrieve the corresponding records
from D using the record identifier lists of these tree nodes, and then calculate the sim-
ilarities of those attributes that are not used in the SK. Therefore, the more attributes
are used in a SK the more similarities can be pre-calculated, but at the cost of a larger
tree (as likely a larger number of distinct SKVs will be generated). In our experi-
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mental evaluation we investigate how different SK influence the amount of memory
required to build the index, the percentage of query records that benefit from the
pre-calculated similarities (i.e. indexed queries above), as well as the reduction in
comparison time that can be achieved.

The following example describes the query phase on the small example set of
records from Figure 6.1 and the index tree shown in Figure 6.7, and assuming that
query record r10 has just been inserted into the tree in node N6. We assume w = 2.
The candidate records for query record r10 are the records from the nodes stored in
the next and previous list of the query node N6. These are the records from nodes
N1 and N5 (previous), and N3 and N7 (next). The total set of candidate records for
query r10 will therefore be C = {r1, r3, r4, r6, r7, r8, r9}. To compare query r10 with
these candidate records we first retrieve the actual records from the inverted index
or database table D of record details, and for each candidate record we retrieve the
pre-calculated similarity from the SimDySNI index. For example, the pre-calculated
similarity between query record r10 and candidate record r1 is sim = 1.7 as retrieved
from the previous list of node N6. This similarity corresponds to the sum of the
pre-calculated Jaro-Winkler similarities of the `Firstname' and `Surname' attributes
(each is between 0 and 1). To calculate the overall similarity between r10 and r1
we only have to calculate the similarities for the `City' and the `Zipcode' attribute
values of these two records (the attributes that are not used as SKs), then these
calculated similarities are summed with the pre-calculated similarity of (1.7) that
is stored within the index. The overall similarity is then used to decide if a candidate
record is a match or non-match. As we show in Section 6.7, this process improves
query time by reducing the time required to calculate the overall similarity between
record pairs (which is achieved by pre-calculating the similarities of attributes that
are used as SKs).

6.6 Estimating the Number of Comparisons Required for the
Proposed Approach

As described in Section 5.5, the comparison step in the ER process is usually the most
time consuming step because of the calculations performed when candidate records
are compared. Thus, estimating the number of comparisons beforehand gives users
an insight into the expected run time required to match a query record with a data
set of a certain size. In this section, we provide a way of estimating the number of
generated candidate records using DySNI.

The DySNI approach groups records in the data set that have the same SKVs
into one tree node (i.e. block) of the index data structure. To estimate the number of
candidate record pairs that will be generated for a certain query record, we assume
two types of distributions that are common in attributes used for ER, namely the
uniform and Zipfian distributions.

As can be seen in Figure 6.8, the possible SKs that can be used to build the
index (using the different attributes in the NC data set described in Chapter 4) either
have a Zipfian like distribution (like `Firstname' and `Surname'), or a distribution
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Figure 6.8: Number of records in tree nodes generated using different SKVs for the NC data
set described in Chapter 4 (FN=Firstname, SN= Surname, Zip = Zipcode).

that is more similar to a uniform distribution (like the concatenation of ‘Surname,
`Firstname' and `Zipcode'). Other SKs have a distribution that falls somewhere in-
between these two distributions (like `Zipcode', and the concatenation of `Surname'
and `Firstname'). For this reason we will estimate the maximum and the minimum
number of comparisons based on uniform and Zipfian distributions (similar to what
we do in Chapter 5).

For a uniform distribution all nodes in the tree data structure are assumed to
have a uniform size of n/k, where n is the number of records in the data set and
k is the number of SKVs in the tree. Assuming the fixed size window approach,
the number of candidate records generated in this case will be affected only by the
number of nodes that are included in the generated window of size 2w + 1 (for a
fixed-window approach) and the number of records n in the data set. Therefore, the
estimated number of generated candidate records in C is:

|C| = n(2w + 1)
k

(6.2)

On the other hand, assuming a Zipfian frequency distribution of the SKVs will
lead to a Zipfian distribution of the sizes of tree nodes in the index. In this case,
the number of generated candidate records will not only be affected by the number
of nodes that are included in the window and the number of records n in the data
set, but also by the size of the window’s tree nodes (i.e. the number of records in
each node). Assuming we rank the tree nodes Ni, 1 ≤ i ≤ k, according to their sizes
(number of records in a node’s list I), the size of a node Si is calculated as:

Si =
1/i

∑k
i=1(

1
i )
∗ n, (6.3)
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where the denominator is the Harmonic number of the partial harmonic sum [34].
The number of candidate record Sw in a window that includes 2w + 1 nodes is then
calculated as:

Sw =
i+w

∑
i−w

Si (6.4)

To estimate the minimum and maximum numbers of candidate records for a query
qj generated using a fixed-size window approach (assuming window size w) we
calculate Sw according to the illustration given in Figure 6.9. The largest number
occurs when the 2w tree nodes that are neighbors of the query tree node are the 2w
largest tree nodes. On the other hand, the smallest number of candidates record are
generated if the query node Nqj is at either end of the tree, and the w neighboring
tree nodes are the smallest in size.

Figure 6.10 shows estimates of the minimum, average, and maximum number
of candidate records for increasing sizes of data sets based on Equations 6.3 and 6.4.
From the figure we can see that the maximum estimated number of candidate records
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Table 6.3: Data sets summary (described in more details in Chapter 4).

Data set Type Number of records Number of entities

30% of NC Real 2,399,170 2,282,834
OZ-1 Real-world (modified) 345,876 172,938
Febrl-5 Synthetic 100,000 20,000
Febrl-10 Synthetic 100,000 10,000
Febrl-20 Synthetic 100,000 5,000

increases linearly with the growing size of the data set, while the minimum estimated
number decreases with larger data sets, because the number of nodes k increases,
which leads to smaller numbers of records in each node.

Importantly, the average number of generated candidate records for the different
window sizes and number of tree nodes is constant with increasing data set size.
This indicates that on average the number of generated candidate records is not
affected by the increasing size of the index, which confirms the experimental results
in Figure 6.13 where the average query time is nearly constant with the growing size
of the index.

6.7 Experimental Evaluation

In this section we describe the experiments conducted to evaluate the proposed
DySNI approach and all its variations. The data sets used in these experiments (sum-
marized in Table 6.3), the evaluation measures, and the implementation environment
are all described in details in Chapter 4. To evaluate our approaches we conducted
several sets of experiments as described below. The SK used for conducting all of
the following experiments is the concatenation of `Surname+Firstname' attribute val-
ues. This SK is selected based on domain knowledge and experimental investigation
using different SKs. However, an automatic key selection approach is proposed in
Chapter 8.

6.7.1 Efficiency of Generating Candidate Records Using Different Tree
Data Structures

We evaluate the efficiency of the first three data structures described in Section 6.3.1
with regard to generating the candidate records by comparing the average time re-
quired to generate a list of candidate records in the query phase using the fixed size
window approach for different window sizes ranging from w = 1 to w = 10. The
results in Figure 6.11 illustrate that the braided AVL tree is more than three times
faster than the other two tree data structures for all evaluated window sizes. This
highlights that the double-linked list in the braided AVL tree significantly reduces
the time required to retrieve the candidate records for a given query record. All
remaining presented results are based on using a braided AVL tree (BRT) in the
DySNI.
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Figure 6.12: The estimated number of candidate records for the OZ-1 and 30% of the NC data
sets using Equation 6.4, compared with the measured number of candidate records required
for running DySNI-f (described in Section 6.4.1) on both the NC and OZ-1 data sets using a
concatenation of `Surname+Firstname' as SK for different window sizes.

6.7.2 Estimation of the Number of Candidate Records

We conduct this set of experiments to evaluate the estimation functions proposed in
Section 6.6. We collected the minimum, maximum, and average number of candidate
records used when running the DySNI-f approach on 30% of the NC data set (with
n = 2, 567, 638 and k = 1, 634, 650) and on the OZ-1 data set (with n = 345, 876
and k = 160, 058) using different window sizes (2 ≤ w ≤ 10). Then we used the
proposed estimation function (in Equation 6.4) to estimate the minimum, maximum,
and average number of candidate records required using the same values of n and k
of both the OZ-1 and NC data sets for window sizes (2 ≤ w ≤ 10) and plotted the
results in Figure 6.12.

The results show that the measured and the estimated average number of candi-
date records are highly similar in both the OZ-1 and the NC data sets. The results
also show that the measured minimum and maximum number of candidate records
fall within the estimated minimum and maximum number of candidates. This indi-
cates that Equation 6.2 can successfully estimate the number of candidate records for
both OZ-1 and NC data sets.
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Table 6.4: Number of nodes generated using various SKs for 30% of the NC data set with a
total number of records of n = 2, 567, 639. (FN=Firstname, SN= Surname, Zip = Zipcode).

SK Number of nodes (k)

FN 120,632
SN 194,090
Zip 508
SN + FN 1,634,650
SN + Zip 897,215
SN + FN + Zip 2,237,069

6.7.3 Effects of Using Different SKs on Index Size

We conducted an experiment on how using different SKs in building the index will
affect the tree size (number of nodes k in the tree), and the number of records in-
serted into tree nodes for the NC data set. Figure 6.8 and Table 6.4 show that using
single attribute values as SKs results in trees with smaller number of nodes (with
more records inserted into the nodes) while using several attributes to generate con-
catenated SKs results in larger trees with a smaller number of records being inserted
into each node. This experiment confirmed that using various SKs leads to k < n
and often k� n, especially for large data sets.

6.7.4 Scalability of the Proposed Solutions

In this set of experiments we evaluate whether the proposed DySNI scales to large
data sets while facilitating real-time ER. We measure the average time required to
insert a single record, and the average query time required to resolve a single query
record across the growing size of the index data structure. These experiments are
conducted on 2,399,170 records from the NC data sets. The four window approaches
(proposed in Section 6.4) for generating the set of candidate records are evaluated.
Threshold selection for the various proposed approaches is based on achieving sim-
ilar recall values (around 73%) and similar average number of comparisons (which
is the number of records compared with the query record in order to be resolved)
for all evaluated approaches. Note that the achieved recall value is affected by the
used thresholds. The affect of using different thresholds on the effectiveness and the
efficiency of the different window approaches is discussed in Section 6.7.5.

As can be seen from Figure 6.13, the results show that the average insertion times
are not affected by the growing size of the index data structure, while the query
time only increases slightly as the index becomes larger. The DySNI-s approach
is slower than the DySNI-d and DySNI-c adaptive approaches. This is due to the
fact that the calculation of similarities between SKVs is an overhead of the DySNI-s
approach that does not occur with the other two adaptive approaches. Additionally,
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Figure 6.13: Plot (a) shows the average time required for inserting a single record into the
index. Plot (b) illustrates the average time required for querying the growing index. A subset
of 30% of the NC data set is used (M = Million). All compared approaches give similar recall
values.

the different proposed approaches generate different sets of candidate records that
lead to different query times. However, the results show that the different variations
of the proposed DySNI approach achieve very fast average query times that range
between 0.02 and 3.0 milliseconds (ms) per query record.

For the insertion times achieved by the DySNI approach (shown in Figure 6.13),
the worst case complexity is equal to log(k), where k is the number of nodes (i.e.
unique key values) in the tree data structure. However, for personal information
data sets (which we used in our scalability experiments) the number of unique at-
tribute values is small. For instance, the number of unique values for the `Firstname'
attribute in 30% of the NC data set (2,399,170 records) is 120,632, for the `Surname'
attribute is 194,090, and for the `Zipcode' attribute is 508. This mean that if we, for
example, selected the `Firstname' attribute as a SK, the insertion times will flatten
after inserting 120,632 records into the index data structure because the value of k
will not increase more than 120,632 while inserting the remaining of the 2,399,170
records.

6.7.5 Effects of Using Different Thresholds on Quality and Efficiency

In this set of experiments we investigate the effect of using different window sizes
and thresholds on the quality of the obtained results and the efficiency of the ap-
proaches. The OZ-1 data set (with only one duplicate per record) is used for this set
of experiments.

• Fixed size window (DySNI-f): We investigate using different window sizes for
this approach by measuring recall and average query times required to resolve
query records. As shown in Figure 6.14 (a), recall values are improving with an
increase in window size since more records are compared with a query record.
Because the number of comparisons increases for larger window sizes, the time
required to resolve queries will also increase. This means, as one would expect,
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Figure 6.14: Recall and time measures achieved by the different DySNI window approaches.
All plots are generated using the OZ-1 data set. Each entity can have one duplicate.

that larger window sizes can achieve better recall values but at the cost of
increasing query time.

• Candidate-based adaptive window (DySNI-c): We investigate using different
minimum number of candidate records for the candidate-based adaptive win-
dow approach; the results in Figure 6.14 (b) show that the more candidate
records we have in the window the better recall values we get but with an
increase in the time required to resolve queries.

• Similarity-based adaptive window (DySNI-s): We investigate using different
similarity thresholds to expand the window on both sides for this adaptive
window approach. Figure 6.14 (c) shows that smaller threshold values achieve
better recall values but more time is required to resolve queries. This is be-
cause smaller similarity thresholds mean that more records are included in the
window which leads to better recall but larger query times.

• Duplicate-based adaptive window (DySNI-d): We investigate using different
expansion thresholds for the duplicate-based adaptive window approach. Fig-
ure 6.14 (d) shows that both recall and average query times are almost constant
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Figure 6.15: Recall and time measures for similarity and duplicate adaptive approaches using
the Febrl data sets. Note that the threshold is different between all approaches; for DySNI-s
it represents the similarity threshold between the SKV of the query’s node and neighboring
nodes, while for DySNI-d it represents the ratio between the found true matches and the
number of candidate records within the window.

when using different expansion thresholds. This means that the expansion of
the window is very limited. The reason for this is that each tree node in the
DySNI-d contains all records with the same SKV and most of the duplicates are
found in the node of the query record or its nearest neighboring nodes which
limits the expansion process for the duplicate-based approach to a very small
number of neighboring tree nodes. Therefore, the duplicate-based approach,
based on [54], is not suitable for DySNI.

6.7.6 Effects of Having Different Number of Duplicates

The aim of this set of experiments is to investigate the effect of the number of dupli-
cate records on recall, query times, and on the expansion of the adaptive window in
both the DySNI-s and DySNI-d approaches. These experiments are conducted using
the Febrl data sets described in Chapter 4. From the results shown in Figure 6.15 we
can see that in general the recall values achieved by the two adaptive approaches are
less than the recall values achieved in Figure 6.14 in the previous set of experiments.
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Figure 6.16: The average times required to compare a query record with a single candidate
record for the SimDySNI approach using different numbers of attributes as sorting keys on
the OZ-1 data set.

This is due to the fact that for the Febrl data sets the average number of duplicates
ranges between 5 and 20 per entity, while for the data set used in Figure 6.14 each
entity only has a maximum of one duplicate. Having a larger number of modified
duplicates in the data sets increases the chance of having an error in the first charac-
ter of the attribute value that is used as a SKV. Additionally, because the proposed
approach is based on sorting records alphabetically according to SKVs, this increases
the chance of having records located far away from other records that represent the
same entity in the index data structure. This issue can be resolved by building mul-
tiple trees using different SKVs (proposed in Chapter 7) to increase the chance of
having records that represent the same entities close to each other. However, from
the results we can see that the DySNI-s approach achieved better recall values than
the DySNI-d approach.

In addition, the results show that having a different number of duplicates in
the Febrl data sets does not affect window expansion for DySNI-d, and similar to
the results from the OZ-1 data set from the previous set of experiments, DySNI-
d still has very limited expansion in the adaptive window. Recall and query time
values are also almost constant, which confirms the findings from the previous set
of experiments where most of the found duplicates are located in the query record’s
node or its nearest neighboring nodes which limits the expansion process for the
DySNI-d approach to a very small number of neighboring tree nodes.

6.7.7 Effects of Pre-calculating Similarities on Comparison Time

Here we investigate how the SimDySNI is able to improve query time. First, we
measure the average time required to compare a query record with a single candidate
record for queries where a SKV has been indexed previously and already exists in the
index, using the SimDySNI approach (as shown in Algorithm 6.5) with a different
number of attributes being used as the SK. We ran the experiments using the OZ-1
data set with 1, 2 and 3 attributes used as SKs for different possible combinations
of the four attributes: `Firstname', `Surname', `Suburb', and `Postcode'. The average
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Table 6.5: The average total query time (in ms) for indexed queries (in Section 6.5.2) using
various SKs. The OZ-1 data set was used (FN=Firstname, SN= Surname, Post = Postcode).

SK DySNI SimDySNI Improvement

FN 108 60 44 %
SN 31 11 64 %
SN+FN 11 0.9 93 %
SN+FN+Post 10 0.8 92 %

comparison times over these combinations are shown in Figure 6.16. The results
show that for queries where the node is pre-existing, SimDySNI can significantly
reduce the time required to compare a query record with a single candidate record.
This improvement in time is almost linear with the number of attributes used in a
sorting key. The result show that for a one-attribute sorting key the reduction in the
comparison time is around 20%, for a two-attribute sorting key it is around 40%, and
for a three-attributes sorting key it can be up-to 70%.

Second, we measure the average total query time for indexed queries (where the
SKV of the query record already exists in the index) for both DySNI and SimDySNI
approaches. Table 6.5 presents the average overall query time required for indexed
queries using various SKVs for of the OZ-1 data set. The results show that using
SimDySNI for indexed queries has improved the overall average query time by 44%
to 93% for the various SKVs. Table 6.6 provides the percentages of both new and
indexed queries when using various SKs for the NC data set. Results show that
between 13% and 99% of arriving queries can benefit from query time improvement
by SimDySNI for indexed queries for the different SKs.

6.7.8 Required Memory Size

Table 6.6 shows the memory requirements of the BRT data structure used in the
DySNI approach, and the SBRT data structure used in the SimDySNI approach using
different sorting keys. As can be seen, with concatenated SKs the number of unique
SKVs increases significantly and therefore the size of the tree index structure also
grows. The additional overhead of the SimDySNI compared to the total amount of
memory required by the tree structure is negligible for small trees, but can be quite
significant for large trees.

6.7.9 General Discussion

The experimental results described in this chapter illustrate the effectiveness of DySNI.
The fast insertion and query times achieved by the approach, and the ability to fa-
cilitate querying of large and dynamic data sets makes it effective for real-time ER.
Moreover, SimDySNI improves query time by storing pre-calculated similarities be-
tween SKVs of neighboring nodes in the index, but at the cost of extra memory
requirement.
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Table 6.6: Required memory for different tree types using various SKs for 30% of the NC
data set. (FN=Firstname, SN= Surname, Zip = Zipcode).

SK Number New Indexed BRT S-BRT
of nodes SKVs(%) SKVs(%) (MB) (MB)

FN 120,632 5 95 74 98
SN 194,090 8 92 106 144
Zip 508 1 99 21 21
SN + FN 1,634,650 64 36 754 1,079
SN + Zip 897,215 35 65 420 598
SN + FN + Zip 2,237,069 87 13 1,130 1,614

The similarity-based (DySNI-s) window approach shows higher recall results
since the expansion decision in this approach depends on the similarities between
SKVs. Because these SKVs are sorted, neighboring nodes are likely to have similar
SKVs. The duplicate-based (DySNI-d) approach does not work effectively because in
DySNI all records with the same SKV are inserted into the same tree node which lim-
its window expansion and reduces quality of the achieved results. Candidate-based
adaptive windows (DySNI-c), on the other hand, can be used to control and limit the
number of comparisons to achieve lower query times by choosing a low minimum
number of candidates threshold. From the presented results we conclude that the
DySNI-s is suitable for applications that require high quality query matching results,
and DySNI-f and DySNI-c approaches can be used with applications that requires a
controlled time for resolving queries.

Moreover, our results illustrate that using the similarity-based SimDySNI reduces
the average comparison time between 20-70% (based on the number of attributes
used to generate SKV) while it increases the memory footprint between 13% and
40% for various SKs. All results confirm that the DySNI is well suited for use with
real-time ER where a stream of query records needs to be resolved against a large and
dynamic data set. However, like any sorting-based indexing technique, the DySNI
has the drawback of sensitivity to errors and variations at the beginning of SKVs.
This drawback is addressed in the next chapter where we propose a forest-based
index with multiple tree data structures that uses multiple distinct SKs to build the
index.

6.8 Summary

In this chapter we proposed a dynamic tree-based sorted neighborhood indexing
technique that can be used for real-time ER on large data sets. The technique was
shown to be scalable with large data sets as it has fast insertion and query times.
We improved query times by proposing a variation where we pre-calculate the sim-
ilarities between the attribute values that are used to generate the sorting key val-
ues. We investigated several approaches to generated candidate records using both a
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fixed size window and various adaptive window techniques. Our evaluation results
showed that both the fixed size window and the candidate-based adaptive window
approaches provide more control over the time used to resolve queries. We also
showed that the similarity-based adaptive window approach achieves better match-
ing quality at the cost of requiring more time to resolve queries.

Some future research directions that can be extended from our work in this chap-
ter include extend the proposed DySNI by using a combination of a B+ tree and an
AVL braided tree to create a disk-based memory solution that allows indexing of
very large data sets that do not fit into main memory, and explore how DySNI can
be integrated with classification and clustering techniques [72] to make the complete
ER pipeline applicable for real-time matching.
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Chapter 7

Forest-Based Dynamic Sorted
Neighborhood Index for Real-Time
Entity Resolution

As described in Chapter 3, sorting-based indexing techniques are sensitive to vari-
ations and errors that occur at the beginning of attribute values that are used as
sorting keys. To overcome this problem, in this chapter we propose a forest-based
indexing technique that uses multiple distinct trees in the index data structure where
each tree has a unique sorting key. In Section 7.2 we summarize the notation that we
use in this chapter. Then, we describe our proposed approach in Section 7.3, and in
Section 7.4 we analyze the approach with regard to estimating the number of com-
parisons that are required to resolve query records. We describe the experimental
evaluation that we use to evaluate the approach in Section 7.5, and summarize our
findings in Section 7.6.

7.1 Introduction

Sorting-based indexing techniques, whether static such as the sorted neighborhood
method (SNM) [79] or dynamic such as the dynamic sorted neighborhood index
(DySNI) proposed in Chapter 6, aim to reduce the search space by bringing similar
records closer to each other [33] and only comparing records that are within a cer-
tain distance from each other. This is achieved by sorting records within data sets
alphabetically using a sorting key criterion and then using a window of a certain size
to generate candidate records to be compared and matched. However, a major draw-
back of sorting-based techniques is their sensitivity towards errors and variations
that occur at the beginning of attribute values that are used as a sorting key. This can
potentially place similar records far away from each other in the index and can affect
the quality of the matching process.

This problem was addressed, for the static SNM, in [79] by running the indexing
process several times using different sorting keys. However, this technique is not
suitable for use with real-time entity resolution (ER) as it only works with batch

103
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Table 7.1: Summary of main notations used in this chapter
R A data set of records about known entities
A A set of attributes {a1, a2, . . . , a|A|} for each ri ∈ R
Q A stream of query records
C A list of candidate records for a query qj
D An inverted index or disk-based data set table
Mqj A set of all records in R that belong to the same entity of a query qj
ri A record in R
ri .id Unique identifier for ri
ri .eid Entity identifier for ri
qj A query in Q
qj.id Unique identifier for qj
qj.eid Entity identifier for qj
n The size of data set R
w Window size used to generate candidate records
SK The sorting key that is used to build a single tree
SKL The list of SKs that are used to build all trees in the index data structure
SKV The sorting key value of a record ri ∈ R
k The number of the nodes in the index tree data structure
t Number of trees in the index data structure

processing ER algorithms that match and resolve all records in one or more data
set(s) rather than resolving those relating to a single query record. In this chapter, we
propose a multiple tree dynamic indexing technique that is tailored for real-time ER.
The aim of this approach is to overcome the drawback discussed above and improve
the matching quality by reducing the effect of errors and variations that occur at the
beginning of attribute values that are used as sorting keys. We also investigate the
effect using different numbers of trees in the index data structure on its effectiveness
and efficiency. Moreover, we examine using different SKs to build the index data
structure and investigate which SKs are more suitable for use with real-time ER.

7.2 Terminology and Notation

In this section we summarize the terminology and the notation that we use in this
chapter:

• Data set: We assume that data set R = {r1, r2, . . . , r|R|} contains records of
known entities. Each ri ∈ R has a unique record identifier ri.id and an entity
identifier ri.eid. Records in R are described by a set of attributes, denoted as
A = {a1, a2, . . . , a|A|}. All records in R are assumed to have the same attribute
structure.

• Query stream: We assume that a stream of query records Q = {q1, q2, . . . , q|Q|}
is to be matched with R. Each qj ∈ Q is given a unique identifier qj.id 6=
ri.id, ∀ri ∈ R; and has the same attribute structure as records in R. It is assumed
that qj is to be added to R after it has been resolved.

• Sorting Key: A sorting key (SK) is defined as the list of attributes that are used
to sort records in R alphabetically. SKs are usually generated by concatenating
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Figure 7.1: The forest-based dynamic sorted neighborhood index (F-DySNI). t = 3 is the
number of trees used in the index. w = 2 is number of the nodes included in the window in
each side. SK1, Sk2, and Sk3 are the sorting keys used to build the trees in the index.

the attributes in the SK list. Selecting SKs generally requires domain knowl-
edge. However, we propose an automatic key selection algorithm in Chapter 8.

• Sorting key value: A sorting key value (SKV) of a record in R is the value of
the attributes used as SK for that record. For example, assume we have a record
with the following attribute values r = {Firstname = `john', Surname = `smith',
City = `sydney', Postcode = `2000'}, and assume that a concatenation of the
`Firstname' and `Surname' attributes is used as a SK, then the value `johnsmith'
will be the SKV generated for r.

The problem of real-time ER is defined as: for each query record qj in a query
stream Q, find all the records in R that belong to the same entity as qj, denoted as the
set Mqj , in sub-second time, where Mqj = {ri | ri.eid = qj.eid, ri ∈ R}, Mqj ⊆ R, qj ∈
Q. Our aim is to improve the quality of real-time ER. Table 7.1 summarizes the main
notation that we use in this chapter.

7.3 Overview of the Approach

The forest-based dynamic sorted neighborhood index (F-DySNI) is an index that
facilitates real-time ER and that can be used with dynamic data sets. The index
(illustrated in Figure 7.1) consists of multiple distinct trees where each tree is built
using a unique sorting key (SK) to help improve the quality of results in cases where
errors and variations occur at the beginning of attribute values. For example, assume
that we have the following two records in a data set, r1 = {`christine', `jones', `sydney',
`2000'}, and r2 = {`khristine', `jones', `sydney', `2010'}. If we construct the F-DySNI
index by building only one tree using the `Firstname' as a SK, these two records will
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not be inserted into the same tree node (or neighboring tree nodes) which means
that they will not be classified as matches. However, to improve this result, we can
build another two trees in the index using other SKs (e.g. the `Surname' and `City'
attributes). In this case, although records are not inserted into the same tree node in
the first tree (that uses the `Firstname' attribute as a SK), they will be inserted into the
same tree node in the other two trees (that uses the `Surname' and `City' attributes as
SKs). This means that these two records will be distinguished as candidate records
although they have an error at the beginning of their first name values. The following
sub-sections describe in more detail the data structure of the F-DySNI, and how it is
built and queried.

7.3.1 Index Data Structure

As shown in Figure 7.1, the F-DySNI consists of multiple distinct trees. A single tree
in the F-DySNI uses the same braided tree data structure (BRT) that is used in the
dynamic sorted neighboring index (DySNI) which is proposed in Chapter 6). A BRT
is a height balanced AVL braided search tree that combines the propriety of an AVL
tree and a double-linked lists where every tree node is linked to its predecessor and
successor nodes based on the alphabetical sorting of the key values of the tree nodes
(refer to Chapter 6 for more details on the structure of a BRT).

The difference between the structure of the DySNI and the F-DySNI is that the
later consists of multiple tree data structure for the purpose of improving the quality
of matching query results by using multiple unique SKs to build the different trees
in the index. The records in a data set are inserted into each tree in the index using
the SK that is used to build that tree. We define the data structure that we use to
construct the F-DySNI as:

[Definition 7.1] Multiple Braided Tree (M-BRT): is a multiple tree index that
consists of t distinct BRT trees (defined in Chapter 6), where t > 1 . Each tree in the
index uses a unique SK to sort records from data set R into its tree nodes. Therefore,
a record ri ∈ R will be inserted into each tree in the index data structure.

The F-DySNI has an initial build phase where a certain number (possibly none) of
records from an existing data set R are inserted into the M-BRT (i.e. a record ri ∈ R
is inserted into each tree in the M-BRT). Then, the built index is used to generate
candidate records to resolve query records during the query phase. The F-DySNI is
dynamic since query records are added into the M-BRT as they arrive. The build
and the query phases are described in more details in the following sub-sections.

7.3.2 Building the Index

Building a single tree in the F-DySNI is similar to the build phase of the DySNI
(described in Chapter 6). During the build phase of F-DySNI, illustrated in Algo-
rithm 7.1, we start (in line 1) by creating an empty M-BRT data structure that con-
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Algorithm 7.1: F-DySNI – build(R, t, SKL)

Input:
- Data set: R
- Number of trees: t
- List of sorting keys: SKL = [SK1, SK2, ..., SKt]

Output:
- A M-BRT data structure that contains t trees: Bb = { b1, b2, . . . , bt}, where bj is a single tree in Bb

1: Bb = createMBRT(t) // Create an empty M-BRT with t empty trees
2: for ri ∈ R do:
3: for SKj ∈ SKL do:
4: skv := generateKey(SKj) // Generate a sorting key value for ri
5: Ni := Bbj . f indTreeNode(skv) // Search for skv in Bbj

6: if Ni == NULL then:
7: Ni := Bbj .createNode(skv, ri .id) // Create a new node Ni with the key skv
8: Bbj .insert(Ni) // Insert the created node Ni into Bbj

9: else:
10: Append ri .id to Ni .I
11: Return Bb // Return the generated M-BRT which has t trees

// and which is filled with all ri ∈ R

tains t trees. Then, in lines 2 to 10, we insert each record from data set R into the
multiple t trees using the list of the unique SKs (SKL) that are used to build the dif-
ferent trees in the index. To insert a record ri into a single tree of the index we first
generate a SKV for ri (line 4) using the SK which is used to build that tree. Then,
we search for the generated SKV in the tree that we want to insert ri into (line 5).
If the SKV is not found in the tree (line 6), we create a new node with the record’s
identifier added to its identifier’s list (line 7) and insert this new node into the tree
data structure (line 8). On the other hand, if the generated SKV is found in the tree
(line 9) we only append the record’s identifier into the node that have the same SKV
(line 10). In the same way ri is inserted into the other trees in the index using the rest
of the SKs from the SKL. This process continues until all records from R are inserted
into the t trees of the index.

An example of using multiple SKs to build the F-DyNI data structure for a data
set that has the following attributes {`Firstname', `Surname', `Suburb', `Postcode'}
is to use the `Firstname' attribute as a SK to build the first tree in the index, the
`Surname' attribute to build a second tree, the `Postcode' attribute to build a third
tree, and so on. After all trees in the F-DySNI are built, it will be ready for resolving
queries as described next.

7.3.3 Querying the Index

In this phase, shown in Algorithm 7.2, a query record qj is first inserted into the
index data structure M-BRT and then it is matched in real-time against all trees that
were constructed in the build phase. As shown in the algorithm, for each SK in
the sorting key list that is used to build the F-DySNI we do the following (lines 3
to 11): we first generate the SKV for the query record qj in line 4. Then, in lines 5
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Algorithm 7.2: F-DySNI – query(Bb, qj, S, SKL, w, D)

Input:
- The built index data structure: Bb = { b1, b2, . . . , bt}
- Query record: qj
- Similarity functions: S
- Sorting key list: SKL = [SK1, SK2, ..., SKt]
- Window size: w ≥ 1
- Data set table with complete records: D

Output:
- Ranked list of matches: M

1: C := { } // Initialize the set of candidate records to be empty
2: D[q.id] := qj // Insert the query record qj into D
3: for SKj ∈ SKL do:
4: skv := generateKey(SK, qj) // Generate a sorting key value for the query qj
5: Nqj := Bbj . f indTreeNode(skv) // Search for skv in Bbj

6: if Nqj == NULL then:
7: Nqj := Bbj .createNode(skv, qj.id) // Create a new node Nqj with the key skv
8: else:
9: Append qj.id to Nqj .I
10: c:= Bbj .generateWin(Nqj , S, w) // Generate the candidate records from neighboring

// nodes using a window size w
11: C:= C + c // Add the candidate record generated from this

// tree to C
12: M :=Bbj .compareRecords(C, S, D, qj) // Compare query record qj with all candidate

// records in C and return found matches
13: Sort M according to similarities
14: Return M

to 9, we insert the query record qj into the tree (as described in the build phase in
Section 7.3.2). Next, in line 10, we create a window of nodes that are neighbors to the
query record qj (using any of the adaptive of fixed window approaches proposed in
Chapter 6), and in line 11 the candidate records generated from this tree are added to
a set of the overall candidate records (i.e. this set contains the candidate records that
are generated from all trees in the index). In line 12, the query record is compared
with all generated candidate records and the found matching records are added to
M which is then sorted in line 13.

The process of retrieving candidate records from a single tree in the F-DySNI is
similar to what was described in Chapter 6, which is achieved by using any of the
different proposed window approaches (fixed or adaptive). However, the candidate
records in the F-DySNI approach are retrieved from every tree each adding candi-
date records into the overall candidate record set C, which becomes the union of
candidates returned from the different trees. Then the query record qj is compared
with all unique records in C in detail using similarity comparison functions [33] in
the same way as is done in the DySNI. The process of merging the returned sorted
candidate records from each tree in the index has an overhead that is not present in
DySNI where only one tree is used.
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7.4 Estimating the Number of Comparisons Required for the
Proposed Approach

Estimating the number of candidate records that are required to resolve a query
record using a single tree is discussed in Section 6.6 assuming both a uniform and
a Zipfian [173] distributions of the frequency of attribute values in a data set. These
estimates (for both uniform and Zipfian distributions ) as given in Equations 6.2, 6.3
and 6.4 (in Chapter 6) also apply to F-DySNI since the difference between DySNI
and F-DySNI is that the latter has several distinct trees that are built using different
SKs. This implies that the estimated maximum number of candidate records will be
influenced by the number of trees in the index. The maximum number of candidate
records for F-DySNI assuming a uniform distribution can be calculated as:

|C| =
i=t

∑
i=1

n(2w + 1)
kti

(7.1)

where n is the number of records in data set R, w is the size of the window that is
used to generate the candidate records, kti is the number of nodes in a tree, and t is
the number trees in the F-DySNI data structure. As for the Zipfian distribution, the
maximum number of candidate records using multiple trees can be calculated as:

|C| =
i=t

∑
i=1

Swti
(7.2)

where t is the number of trees in the F-DySNI and Swti
is the number of candidate

records returned from a single tree, and how its calculated is described in Chapter 6.
In practice, for a certain query record, duplicate candidate records will likely be
returned from the different trees in the index, but only unique ones are compared in
detail with the query record. Thus, the number of unique candidate records returned
by all trees ranges between Swti

(which occurs when the all trees in the index return
the same candidate records) and ∑i=t

i=1 Swti
(which occurs when each tree in the index

returns unique candidate records). When estimating |C|, we assume getting unique
candidate records from each tree.

The process of merging the lists of returned sorted candidate records (using a
heap) from each tree in the index has an overhead of O(t ∗ Swtl

∗ log(t)), where Swtl
is the length of the longest list of the returned candidate record [41].

7.5 Experimental Evaluation

In this section we describe the experiments conducted to evaluate the proposed F-
DySNI approach. The data sets used in these experiments are summarized in Ta-
ble 7.2. More detail about the data sets, the evaluation measures, and the implemen-
tation environment are found in Chapter 4. To evaluate our approach we conducted
several sets of experiments described below.
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Table 7.2: Data sets summary (described in more details in Chapter 4).

Data set Type Number of records

NC Real 7,997,234
OZ-(1,2,3,4) Real (modified) 345,876
CCA-1 Real 689,928
CCA-3 Real 2,064,823
CCA-10 Real 6,900,163
CCA-30 Real 20,708,303

7.5.1 Effects of Using Multiple Trees and Different SK Combinations on
Quality and Efficiency

In this set of experiments we evaluate the effect of using multiple trees and the ef-
fect of using different SK combinations on recall and average query time. We run
the experiments several times using different numbers of trees (with one, two, and
three trees in the index). The SKs that we use to build the different trees in the index
include all possible single attributes (for example `Firstname', `Surname', `City', and
so on) and all possible combinations of concatenated pairs of attributes (for example
`Firstname+City', `Firstname+Surname', and so on). To generate the set of candidate
records we use the similarity-based adaptive window approach (described in Chap-
ter 6) with a similarity threshold between 0.5 and 1.0. The four OZ-(1,2,3,4) data sets
(with different corruption ratios) are used to conduct the experiments (details about
the data sets are found in Chapter 4). A single record in any of these data sets has
an average of 3.5 corrupted duplicates. The results for this set of experiments are
illustrated in Figure 7.2.

The results show that building more trees in the index increases recall values at
the cost of a slight increase in the average query time for all OZ data sets. Recall
values, when using three trees in the index compared to using a single tree, increase
between 42% and 136% for SKs that are generated using single attribute values,
and between 48% and 120% for SKs that are generated using concatenated attribute
values for the different OZ data sets. It is also noted that single attribute values
(such as `Firstname') achieve better recall values than concatenated attribute pairs
(such as `Firstname+Postcode'). This is because using single attributes as SKs results
in having nodes with large sizes which leads to having large number of candidate
records (which in turn increases recall values).

We can also see that although SKs generated from single attribute values give
better recall results they require longer time to resolve queries (nevertheless still
achieve the sub-second query time required for real-time ER). On the other hand, SKs
that are generated from a concatenation of two attribute values reduce the average
query time significantly and still achieve high recall values. Using multiple trees
allows using more strict SKs (like the concatenation of more than one attribute) to
build multiple trees with smaller node sizes while achieving high matching quality.
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Figure 7.2: Recall and query times achieved by the F-DySNI using different numbers of trees
on the OZ-(1,2,3,4) data sets. The data sets have various corruption ratios (refer to Chapter 4
for more details on the data sets). The similarity-based window approach described in Sec-
tion 6.4 is used to generate the candidate records based on the similarity between the SKs of
neighboring nodes using similarity thresholds between 0.5 and 1.0.
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Figure 7.3: Recall for the different OZ data sets with different corruption ratio using the F-
DySNI approach. The results include recall values for all possible SK combinations that are
generated using a concatenation of two attribute values (which are shown, in Section 7.5.1,
to be suitable for use with real-time ER ).

7.5.2 Effects of Having Corrupted Attribute Values in a Query Record on
the Quality of the Matching Process

The aim of this set of experiments is to investigate the effect of having different
number of corrupted (modified) attribute values in records on the quality of the
matching process. As one would expect, the results presented in Figure 7.3 show
that recall values decrease with increasing the number of corrupted attributes in the
query record. For the OZ-1 data set (with one corrupted attribute value), the F-DySNI
achieves (using three trees) an average recall value of around 90%. However, for the
other corrupted data sets the recall values achieved are around: 62% for OZ-2, 38%
for OZ-3, and 18% for OZ-4 (where all attributes values are corrupted).

It is important to note that although in general recall values are expected to be
lower for data sets with more corrupted attribute values, still, using multiple trees
achieved a significant increase in recall values. This is observed clearly in Figure 7.3
where the achieved recall values have increased by 48% for OZ-1, 97% for OZ-2,
116% for OZ-3, and 120% for OZ-4 when using three trees compared to recall values
achieved using only a single tree.

7.5.3 Scalability of the Proposed Solution

In this set of experiments we evaluate whether the proposed F-DySNI with a different
number of trees scales to large data sets while facilitating real-time ER. We measure
the average time required to insert a single record into the index data structure, and
the average time required to resolve a single query record across the growing size
of the index data structure. These experiments are conducted on the full NC data
set which contains around 8 million records (described in Chapter 4). The similarity-
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Figure 7.4: Plot (a) shows the average time required for inserting a single record into the
index using different number of trees. Plot (b) illustrates the average time required for query-
ing the growing index using different number of trees. The full NC data set (described in
Chapter 4) was used to build the indexes (M = Million).

based adaptive window approach (described in Chapter 6) is used to generate the set
of candidate records (since it achieved better quality results compared to the other
window approaches proposed in Chapter 6).

We run the experiments using different numbers of trees with different SKs based
on two concatenated attributes. First, we build an index using only one tree in the in-
dex data structure and we use a concatenation of the `Surname+Firsname' attributes
as a SK. Then we build another index with two trees in the index; the same SK from
the previous index is used to build the first tree and for the second tree we use a con-
catenation of the `Firstname+Surname' attributes as a SK. Finally, we build a third
index with three trees in its data structure using the same SKs from the previous
index to build the first two trees, and for its third tree we use a concatenation of
the `Firstname+City' attributes as a SK. The measured insertion and query times for
the three built indexes are plotted in Figure 7.4. We selected these SKs based on the
results achieved in the experiments described in Section 7.5.1 where we show that
SKs generated from the concatenation of two attribute values are more suitable for
real-time ER than SKs generated from single attribute values.

As can be seen from Figure 7.4, the results show that in plot (a) the average
insertion times using the various numbers of trees is not affected by the growing size
of the index data structure, while in plot (b), the results show that the average query
time only increases slightly as the index becomes larger. As expected, the results
show that using more trees increases the average insertion and query times, but the
achieved times are still very fast (around 1 ms and 15 ms insertion and query time,
respectively) when building three trees in the index.

To investigate how the query time is affected with using larger data sets, we
conduct another set of scalability experiments on the different subsets of the CCA
data set (described in Chapter 4). The size of these subsets ranges between 689,928
records for the CCA-1 data set and 20,708,303 records for the CCA-30 data set. We
build three indexes (with one, two, and three trees) using each of the CCA subsets,
then we measure the average time required to query the built indexes. The results
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Figure 7.5: Average query time for the different CCA subsets.

Table 7.3: Required memory (in MB) for the F-DySNI approach for the different data sets.
The SK `Firstname+Surname' is used to build the first tree, `Surname+Firstname' is used to
build the second tree, and `Surname+Postcode' is used to build the second tree.

Memory (MB)

Data set Size 1 Tree 2 Trees 3 Trees

NC 7,997,234 1,843 3,686 4,403
OZ-(1,2,3,4) 345,876 114 227 448
CCA-1 689,928 112 224 414
CCA-3 2,064,823 310 621 1,238
CCA-10 6,900,163 913 1,826 3,607
CCA-30 20,708,303 2,337 4,675 8,957

(presented in Figure 7.5) show that for the increasing size of the data set the average
query time increases sub-linearly yet it is still very fast with an average query time
of around 4 ms for a data set with over 20 million records.

7.5.4 Required Memory Size

Table 7.3 shows the memory requirements for the F-DySNI approach using one, two,
and three trees in the index data structure. The keys used for building the different
trees are `Firstname+Surname' for the first tree, `Surname+Firstname' for the second
tree, and `Surname+Postcode' for the third tree. These keys are selected based on
our results in Section 7.5.1 which confirms that SKs generated using concatenated
attribute values are more suitable for real-time ER than SKs generated using single
attribute values.
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As shown in Table 7.3, the memory requirements increases with the increase in
the number of the trees in the index (for all data sets). Moreover, it increases with the
increase in the number of records in the data set. However, for the largest data set
(CCA-30) which has more than 20 million records, the required memory for building
the index (with 3 trees) is 8,957 MB. This required memory is around 6.7% of the
amount of main memory available on the experimental machine (which is 128 GB),
indicating that our implementation would be viable even for much larger data sets.

7.6 Summary

We proposed a dynamic forest-based index that can be used for real-time ER. The
index uses multiple trees with different sorting keys to reduce the effect of errors and
variations at the beginning of attribute values on the quality of matching results. Our
evaluation shows that F-DySNI is scalable with respect to the size of large data sets
and that using multiple trees has a noticeable improvement on matching quality with
a small increase in query time when using sorting keys based on several concatenated
attribute values. The results also showed that sorting keys which are based on a
concatenation of more than one attribute value are more suitable for real-time ER as
they require shorter query times than sorting keys generated from single attribute
values while still achieving high matching accuracy.

As a follow-up to what we have presented in this chapter, we propose (in the next
chapter), an automatic key selection algorithm which selects sorting keys that are
suitable for real-time entity resolution without human intervention. Other research
directions that can follow our work in this chapter are to investigate the effect of
using secondary SKs (i.e. attribute values that are different than the SK used to
build the index tree) that sort records within tree nodes on the efficiency and the
effectivity of the DySNI, and to investigate how to parallelize the multiple-tree index
to improve its efficiency. Moreover, to investigate how our proposed approach can be
extended to work as a disk-based indexing solution to be used with larger data sets
that cannot fit into main memory. Further comparative evaluation can be conducted
to compare matching records produced by our proposed indexing technique with
different indexing techniques using the same data sets for individual query records.
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Chapter 8

Unsupervised Blocking Key
Selection for Real-Time Entity
Resolution

As described in Chapter 3, selecting blocking/sorting keys is crucial for the effective-
ness and efficiency of the real-time entity resolution process. Indexing techniques re-
quire domain knowledge for optimal key selection. However, to make the real-time
entity resolution process less dependent on human domain knowledge, automatic
selection of optimal blocking/sorting keys is required. In this chapter we propose an
unsupervised learning technique that automatically selects optimal blocking/sorting
keys for building indexes that can be used with real-time ER. We summarize the
notation that we use in this chapter is Section 8.2, then in Section 8.3 we provide a
detailed description of the proposed approach. In Section 8.4 we describe the ex-
perimental evaluation that we use to evaluate the proposed approach. Finally, we
summarize our findings in Section 8.5.

8.1 Introduction

Indexing is a vital step in the entity resolution (ER) process especially for large data
sets as it reduces the number of candidate records to be compared in detail to find
matching records. This can be achieved by two main approaches (as detailed in
Chapter 3). The first is to partition records in a data set into several blocks according
to a blocking key criterion, where only records that are inserted into the same block
are compared with each other [62]. The second approach is to sort the records in a
data set according to a sorting key criterion that brings similar records close to each
other, so that only records that are close to each other will be compared [79].

A good indexing technique should group similar records into one block or close
to each other in the index [34]. This depends mainly on the blocking/sorting key
used to partition/sort the records in a data set. An optimal key needs to find all true
matching records, while keeping to a minimum the number of true non-matching
records. However, an optimal key for one domain will likely not work for another
domain [34]. Moreover, an optimal key for traditional static ER with batch processing

117
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Table 8.1: Summary of the main notations used in this chapter
R A data set of records about known entities
A A set of attributes {a1, a2, . . . , a|A|} for each ri ∈ R
Q A stream of query records
Mqj A set of all records in R that belongs to the same entity of a query qj
ri A record in R
ri .id Unique record identifier for ri
ri .eid Entity identifier for ri
qj A query in Q
qj.id Unique record identifier for qj
qj.eid Entity identifier for qj
kh,l A blocking key that is consisting of a pair 〈ah, fl〉, which contains an attribute ah ∈ A and a

blocking function fl ∈ F
F A set of candidate blocking functions
K A set of candidate blocking keys
b A block of records that have the same blocking key value
Bh,l A set of all blocks generated using a blocking key kh,l on all records in R
TFIDF(., .) A weighting scheme used to calculate the similarity between two record pairs (ri , rx)
O A set of optimal blocking keys, where O ⊂ K
RU Unlabeled data set of record pairs
RN A negative training data set
RP A positive training data set
VP A blocking key vector generated from applying all keys in K on RP
VN A blocking key vector generated from applying all keys in K on RN
ut, lt An upper and lower thresholds where 0.0 < lt < ut < 0.1
ck The coverage of a blocking key
vk The variance of a blocking key
sb The size of a block (number of records within a block b)
ckk The overall score of a key

algorithms might not be suitable for real-time ER which requires small block sizes
to achieve fast query matching. Selecting an optimal key needs expert knowledge of
the nature of the data and the requirements of the domain.

To the best of our knowledge, there is no existing automatic blocking key selection
technique for indexing that considers real-time ER. Therefore, there is a need for
novel techniques that learn optimal keys for different real-time ER domains without
the need for manual intervention. In this chapter, we propose a general learning
technique that automatically selects optimal keys for building indexes to be used
with real-time ER in order to find matches in a data set effectively and efficiently. Our
approach can be used with different indexing techniques. We demonstrate how our
automatic key selection approach can be used with the F-DySNI indexing technique
proposed in Chapter 7 since it a dynamic indexing technique that is designed to work
with real-time ER.

8.2 Terminology and Notation

The following is a summary of the terminology and the notation that we use in this
chapter:

• Data set: We assume that data set R = {r1, r2, . . . , r|R|} contains records of
known entities. Each ri ∈ R has a unique record identifier ri.id and an entity
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identifier ri.eid. Records in R are described by a set of attributes, denoted as
A = {a1, a2, . . . , a|A|}. An attribute of ri is denoted as ri.ah where ah ∈ A. All
records in R are assumed to have the same attribute structure.

• Query stream: We assume that a stream of query records Q = {q1, q2, . . . , q|Q|}
is to be matched with R. Each qj ∈ Q is given a unique identifier qj.id 6=
ri.id, ∀ri ∈ R; and has the same attribute structure as records in R. It is assumed
that qj is to be added to R after it has been resolved.

• Blocking Key: A blocking key (BK), denoted as kh,l = 〈ah, fl〉, is a pair con-
sisting of an attribute ah ∈ A and a blocking function fl ∈ F, with F being the
set of candidate blocking functions. We assume the functions in F are manu-
ally selected by domain and ER experts. Examples of such functions include
exact value (isExact), same first character (sameFirst1Char), or same last three
characters (sameFirst3Char), and so on.

• Blocking key value: The blocking function fl is applied on attribute ah, and
the resulting value for a record ri is called a blocking key value (BKV) and
denoted as kh,l(ri) = fl(ri, ah). For example, for kh,l = 〈ah, fl〉, assume that
ah=`Firstname', fl = first3Char, and ri.ah = `peter', then the BKV that is gener-
ated from evaluation function fl(ri, ah), will be `pet'.

• Candidate blocking keys: The set of all candidate BKs selected by an expert,
denoted as K. K is generated by applying all fl ∈ F on all ah ∈ A. For example,
assume we have two attributes A = {`Firstname', `Surname'} in our data set,
and assume we have two blocking functions F = {sameFirst2Char,
sameFirst3Char}. Our list of candidate BKs will be:
K = {〈Firstname, sameFirst2Char〉, 〈Firstname, sameFirst3Char〉,

〈Surname, sameFirst2Char〉, 〈Surname, sameFirst2Char〉}.

• Block: A block b ∈ Bh,l is a set of records Rb ⊆ R where all ri ∈ Rb have the
same BKV: Rb = {ri ∈ R : kh,l(ri) = fl(ri, ah)}. Bh,l is the set of all blocks
generated by a BK kh,l on all records in R.

The problem of real-time ER is defined as: for each query record qj in a query stream
Q, find all the records in R that belong to the same entity as qj, denoted as the set Mqj ,
in sub-second time, where Mqj = {ri | ri.eid = qj.eid, ri ∈ R}, Mqj ⊆ R, qj ∈ Q. The
goal of this chapter is to automatically select blocking/sorting keys to build indexes
that can be used to carryout the real-time ER process efficiently and effectively. Table
8.1 summarizes the notation that we use.

8.3 Overview of the Approach

Current automatic BK selections algorithms (discussed in Chapter 3) do not learn
keys that are suitable for real-time ER. In real-time ER, the selected BK(s) should
generate block sizes within a controllable range to make sure that the number of
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Figure 8.1: Framework of the proposed automatic blocking key selection approach.

detailed comparisons needed to match a query record (qj) is within an allocated
time. Also, keys that generate blocks of similar sizes are more suitable for real-time
ER than keys that generate blocks of different sizes, as the time required to resolve
different query records will be similar [42].

In our work, we aim to learn a set of optimal blocking/sorting keys, O ⊂ K,
to perform ER and deliver high quality matching results in real-time. The selected
optimal keys can also be used with any multi-pass indexing technique [128] (where
the index is built several times using different blocking/sorting keys). Following [89],
our approach does not require existing training data sets to learn these optimal keys.

The overall framework of the proposed approach contains the following steps, as
illustrated in Figure 8.1. In step (1), we generate the set of candidate BKs K based
on domain knowledge. Then, we generate positive and negative training data sets
(RP and RN) in step (2). Both RP and RN are converted into a set of BK vectors (VP
and VN) as described in Section 8.3.2 to be used in the learning process. In step (3),
we employ the proposed learning algorithm using the generated BK vectors VP and
VN to select a set of optimal BKs O ⊂ K. In step (4), we use the optimal keys O
selected in the previous step to index (block) all records from data set R. Any real-
time indexing technique can be used for this step [128]. Finally, in step (5), we use
the index that was built in step (4) for matching arriving query records with records
within the index in real-time.

8.3.1 Generating Candidate Keys

The set of candidate keys K contains all keys which we select our optimal keys
from. The candidate BKs can differ based on the domain, the used indexing tech-
nique, and the data sets to be matched. Because we are evaluating our key selec-
tion algorithm using a sorted neighbourhood indexing technique [130] (as will be
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Algorithm 8.1: generateTrainingDS(R, A, ut, lt)
Input:
- Data set: R
- Set of attributes: A
- Upper threshold: ut
- Lower threshold: lt

Output:
- Set of positive pairs: RP
- Set of negative pairs: RN

1: RU := { }, RP := { }, RN := { } // Initialize the sets of unlabeled, positive,
// and negative record pairs to empty

2: B := { } // Initialize the set of generated blocks to empty
3: for ri ∈ R do:
4: for ah ∈ A do:
5: tokens := generateTokens(ah) // Tokenize attribute values
6: blks := generateBlocks(tokens) // Each token becomes a block
7: insertToBlocks(ri ,tokens) // Insert ri into all blocks that are

// the same as its generated tokens
8: B.add(blks) // Add generated blocks into B
9: stats = generateIDFStats(R, B) // Generate the TF-IDF statistics required to

// calculate the TF-IDF similarity in line 14
10: for b ∈ B do:
11: P := generatePairs(b) // Generate all possible record pairs from

// the records in b
12: RU .add(P) // Add P to the Unlabeled data set RU
13: for (rx , ry) ∈ RU do:
14: s := TFIDF(rx , ry) // Calculate TF-IDF similarity between (rx , ry)
15: if s ≥ ut then:
16: RP.add(rx , ry) // Add record pair (rx , ry) to RP
17: else if s ≤ lt then:
18: RN .add(rx , ry) // Add record pair (rx , ry) to RN
19: Return RP,RN // Return generated training data sets

discussed in Section 8.4), we generate a list of candidate BKs that capture the begin-
ning of attribute values. This is achieved by using the following blocking functions
F = {isExact, sameFirst1Char, sameFirst2Char, sameFirst3Char, sameFirst4Char,
sameFirst5Char, concatenatedIsExact} on all attributes in A. For data sets with long
attribute values we use the first 1 to 5 tokens (i.e. individual characters, separate
words, terms, or abbreviations) in the attribute value instead of characters as block-
ing functions (since attribute values contain multiple words). The generated set of
BKs K is given to the proposed learning algorithm (described in Section 8.3.3) to be
used in the learning process.

8.3.2 Generating Training Data Sets

In most practical applications of ER no training data sets (gold standard data) are
available. As an alternative, training data sets can be generated using classification
functions as in [65, 89]. In this step we use Kejriwal’s [89] approach to generate
weakly labeled training data sets using a TF-IDF weighting scheme to calculate the
similarity between record pairs (rx, ry) ∈ R as described in Algorithm 8.1.

We start the algorithm (lines 1 and 2) by initializing the sets of unlabeled record
pairs RU , positive record pairs RP (pairs that are classified as positive matches), and
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Figure 8.2: Generating training data sets for the proposed automatic blocking key selection
approach.

negative record pairs RN (pairs that are classified to non-matches) to be empty. We
also initialize the set B of all generated blocks to be empty. Then, in lines 3 to 7, we
convert attribute values for all ri ∈ R into tokens, and insert ri into all blocks that
corresponds to its generated tokens. We consider a token to be limited to its attribute;
this means that the same token generated from another attribute will be considered
as a different block.

It is important to mention that for data sets with short attribute values which
contain only one word we convert attribute values into q-grams (sub-strings of length
q) instead of words tokens, and the generated q-grams becomes the blocks that are
used to partition records in R. Then, in line 8, the new blocks (blks) generated for
an attribute value ah ∈ A are added to the set of all generated blocks B. After
tokanization of attribute values, and after generating all possible blocks B, in line 9,
we calculate the TF-IDF weights described in Equation 8.3 that is required to calculate
the TF-IDF similarity between record pairs. Next, in lines 10 to 12, we iterate through
all blocks in B and generate a set of all possible record pairs from the records in each
block. The generated record pairs are added into RU (a set of the unlabeled record
pairs).

The following step is to classify the record pairs in RU into positive and negative
pairs to generate the training data sets RP and RN . This is achieved by calculating
the TF-IDF similarity value (in line 14), denoted as TFIDF(., .), for all (rx, ry) ∈ RU
as follows [19, 89]:

TFIDF(rx, ry) = ∑
tkn∈rx∩ry

wt(rx, tkn) · wt(ry, tkn) (8.1)

where wt is:

wt(r, tkn) =
wt′(r, tkn)√

∑tkn∈r wt′(r, tkn)2
(8.2)
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Figure 8.3: An example on generating the blocking key vectors that are used in the process
of learning optimal blocking keys (described in Section 8.3.3) of the proposed automatic
blocking key selection approach.

and wt′ is:

wt′(r, tkn) = log(t fr,tkn + 1) · log(
|R|

d ftkn
+ 1) (8.3)

where rx ∩ ry is the set of common tokens between rx and ry, wt(r, tkn) is the nor-
malized TF-IDF weight for a token tkn in a record r, t fr,tkn is the term frequency of
tkn in r, |R| is the number of records in R, and d ftkn is the number of records in R
that contain the term tkn.

Then, in lines 15 to 18, an upper and a lower thresholds 0.0 < lt < ut < 1.0 are
used to generate the training data sets. We generate a positive training set RP ⊂
R where the similarity between record pairs is greater than or equal to the upper
threshold ut: RP = {rx, ry ∈ R : TFIDF(rx, ry) ≥ ut}; and a negative training set
RN ⊂ R where the similarity between record pairs is less than or equal to the lower
threshold lt: RN = {rx, ry ∈ R : TFIDF(rx, ry) ≤ lt} with RP ∩ RN = { }. Figure 8.2
illustrate how the training data sets are generated.

Both RP and RN are then converted into a set of blocking key vectors, VP and VN
respectively (to be used in the learning process), by applying all keys kh,l ∈ K on the
record pairs in RP and RN [89]. Each record pair is converted into a vector of Boolean
values (i.e. 0 or 1 bits), with one value for each candidate key kh,l ∈ K. If a record pair
(rx, ry) in RP or RN for a certain candidate key kh,l results in having the same key
value, i.e. kh,l(rx) = kh,l(ry), then the corresponding element in the pair’s vector is set
to 1 and the pair is said to be covered by this key. Otherwise, the corresponding vector
element is set to 0, and the pair is said to be uncovered by that key. An optimal key
should cover as many record pairs as possible from VP while keeping the number
of covered record pairs in VN to the minimum. Figure 8.3 illustrates an example on
how VP and VN are generated.

The generated set of key vectors VP and VN are then used in our key selection
algorithm to learn the optimal keys, as described in the following section. Alterna-
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tively, if a truth training set is available, step (2) of our framework is not required.
The rest of the steps of our framework are described in more detail in the following
sections.

8.3.3 Learning Optimal Keys

The indexing step of real-time ER should group similar records together while main-
taining small block sizes to be able to match query records in real-time. The BKs
used in the indexing step have an impact on the quality and efficiency of query
matching. To make sure that the keys we select are suitable for real-time ER we use
three criteria:

• Key coverage: The coverage c of a key kh,l that is applied on record pairs (rx, ry)
in data set R is defined as the number of record pairs that evaluate to the
same key value: ckh,l = |{rx, ry ∈ R : kh,l(rx) = kh,l(ry)}|. A key with a high
coverage value in VP, and a low coverage value in VN leads to grouping of
a high number of true positive matches into the blocks generated using that
key while having a small number of negative matches in the blocks. We use
the blocking key vectors VP and VN (described in Section 8.3.2) to measure the
coverage of a BK by calculating its Fisher score [89] as follows:

ck =
|VP|(µp,k − µk)

2 + |VN |(µn,k − µk)
2

|VP|σ2
p,k + |VN |σ2

n,k
(8.4)

where µp,k and µn,k are the mean of all binary bits generated from evaluating the
key kh,l ∈ K on all pairs in VP and VN respectively (for example, in Figure 8.3
the binary bits generated from evaluating k1 on all pairs in VP are {1, 1, 1, 0}).
σ2

p,k and σ2
n,k are the variance of corresponding binary bits of kh,l in VP and VN

respectively, and µk is the mean of the corresponding binary bits of key kh,l in
VP ∪VN . Note that a key will have a high Fisher score if it has high coverage in
VP and low coverage in VN . The aim of using this measure is to select keys that
produce high quality blocks (with mostly true matches, and only few negative
matches grouped within the generated blocks).

• Block Size: The size of a block b is the number of records that are inserted
into that block and it is denoted as sb = |Rb|. In this criterion we use two
measures: the maximum block size denoted as sb(max)

= max{sb : b ∈ Bh,l}, and
the average block size denoted as sb(ave)

= ave{sb : b ∈ Bh,l}. The aim of using
the size criterion is to control the number of candidate records that are required
to be compared with a query record within a desired time range.

• Distribution of blocks: For the set of blocks Bh,l generated from applying a
key kh,l on all records in data set R, the distribution of kh,l is measured by
calculating the variance vk of the sizes of all blocks in Bh,l (which reflects how
far the generated block sizes are spread) using:
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vk =
∑
|Bh,l |
b=1 (sb − µs)2

|Bh,l |
(8.5)

where sb is the size of a block b ∈ Bh,l , and Bh,l is the set of blocks generated
using the key kh,l . The mean of all block sizes in Bh,l is denoted as µs. A
variance value that is equal to 0.0 means that all generated blocks have exactly
the same size. For real-time ER it is better to generate blocks of similar sizes
(small variance in block sizes) where the time required to match a query record
is similar for different query records. Therefore, a BK is more suitable for real-
time ER if its variance of the sizes of the generated blocks is close to 0.0.

Based on the above description, an optimal blocking key is defined as follows:

[Definition] 8.1 Optimal blocking key: In a list of candidate blocking keys K, a
key ki ∈ K is an optimal key ko if it has a minimum overall score scki where ko =
min{scki : ki ∈ K}. A minimum scki score is achieved when the following criteria are
fulfilled:

vki(min)
= min{vki : ki ∈ K}

sbki(min)
= min{sbki

: ki ∈ K}
cpki(max)

= max{count(1) : ki(VP)
∈ VP}

cnki(min)
= min{count(1) : ki(VN )

∈ VN}

where vki is the distribution of the size of the blocks generated by evaluating ki, sbki
is the average block size generated by evaluating ki, cpki is the count of the record
pairs from VP that are covered by ki, and cnki is the count of the record pairs from
VN that are covered by ki.

Our learning algorithm (see Algorithm 8.2) automatically selects the list of op-
timal keys O based on the three criteria discussed above (key coverage, generated
block sizes, and distribution of block sizes) to ensure that the selected keys can be
used with real-time ER to provide matching results efficiently. We start the algorithm,
in line 1, by initializing the set of optimal keys to be empty. The set of valid keys
(Kv), and the scores (which holds the keys and their overall score) are also initialized
to be empty (lines 3 and 4). All keys that cover less than nm pairs in VN are added to
the set of valid keys Kv in lines 5 to 7, where nm is the maximum allowed number of
covered vectors from the negative key vectors VN . Then, in lines 8 to 11, for each key
in the set of valid keys Kv, if the key has a maximum block size sbmax that is greater
than the maximum allowed block size sm, it is removed from Kv. In lines 12 to 16, for
all keys left in Kv, we calculate an overall score sck to determine which keys should
be added to the optimal key list O based on the following equation:

sck = α · (1− ck) + β · sb(ave)k
+ (1− α− β) · vk (8.6)

where ck is the coverage of kh,l (as calculated in Equation 8.4), sb(ave)k
and vk are the

average block size and the variance between the block sizes, respectively. We assume
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that blocks are generated by applying the BK kh,l on all records in R. The aim is to
select a set of BKs that have high coverage, low average block size, and low variance
between block sizes (note that keys with large maximum block size sb(max) were
removed earlier from Kv in line 11). The parameters α and β are used to control the
weights of the three criteria based on the domain and application area. Each weight
parameter is a value between 0.0 and 1.0 where the sum of all weights is equal to
1.0. Regardless of the weight parameters used, the lower the overall score for a key
is, the more this key is suited for real-time ER. An example on how to calculate the
overall score sck is found in Example 8.1 at the end of this chapter.

After calculating the overall score sck for all keys in Kv, these scores are sorted
in an ascending order, since a lower overall score is better (line 17). The first key
in the overall score list is then added to the optimal key list O (lines 18 and 19).
In line 21, we remove all positive vectors that are covered by the selected optimal
key from VP because we want the selected keys to be complementary to each other
with regard to the coverage of the vectors in VP where each key covers different
positive vectors from VP. This should achieve better matching quality when using
the selected optimal keys in building the index that is used to resolve query records.
We also remove the selected optimal key from K (in line 22) since we need to select
distinct keys to be used for building the multiple trees in the index data structure.
This process continues until the required number of optimal keys lk is reached or
until there are no positive vectors left in VP. The selected optimal keys O are used to
build an index that is used to perform the ER process on data set R in real-time. An
example of calculations that are required to select the first optimal key using OZ-1
data set (described in Chapter 4) is found in Table 8.5 at the end of this chapter.

8.4 Experimental Evaluation

We evaluate our learning algorithm with regard to the efficiency and the effectiveness
of the selected BKs. The aim is to examine if the selected BKs are suitable for building
indexes that can by used with real-time ER. We also compare our algorithm with a
recent BK learning algorithm named (FDJ) proposed by Mayank Kejriwal and Daniel
P. Miranker [89]. The FDJ algorithm consists of two phases. In the first phase, it gen-
erates a weakly labeled training data sets as described in Section 8.3.2. In the second
phase, it uses the generated labeled training data sets to learn the optimal BKs using
a Fisher discrimination criterion [55]. This Fisher score is used to rank the candi-
date BKs, then the algorithm selects the optimal BK (the key with the highest Fisher
score). The FDJ algorithm only considers key coverage (described in Section 8.3.3)
when calculating Fisher scores and selecting optimal BKs.

We use the data sets summarized in Table 8.2 to conduct our evaluation experi-
ments. More information about these data sets can be found in Chapter 4. To conduct
the evaluation we use the keys selected by our approach and the keys selected by the
FDJ approach to build indexes (the keys selected by both approaches are summarized
in Table 8.3). Then, these indexes are used to resolve query records in real-time. The
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Algorithm 8.2: learnOptimalBK(VP, VN , K, nm, sm, t)
Input:
- Positive key vectors: VP
- Negative key vectors: VN
- Candidate blocking keys: K
- Maximum allowed covered vectors from negative key vectors: nm
- Maximum allowed block size: sm
- Number of blocking keys to be selected: lk

Output:
- Optimal blocking keys: O

1: O := { } // Initialize the set of optimal blocking keys
2: while i ≤ lk do: // lk is the number of optimal keys to be selected
3: Kv := { } // Initialize the set of valid keys
4: scores := [ ] // Initialize the list of keys and their scores
5: for k ∈ K do:
6: if k covers pairs in VN that are < nm then:
7: Kv.add(k) // Add k to the valid key list Kv
8: for k ∈ Kv do:
9: sb(max)

:= getMaxBlockSize(k) // Get the maximum block size for k
10: if sb(max)

> sm then: // Remove keys with large block size
11: Kv.remove(k)
12: for k ∈ Kv do:
13: vk := getVariance(k) // Get the variance for k
14: sb(ave)

:= getAveBlockSize(k) // Get the average block size for k
15: sck := calcScore(VP, VN , sb(ave)

, vk) // Calculate overall score for k
16: scores.append((k,sck)) // Append a pair of this key and its score (k,sck)

// to the list of scores
17: scores.sort( ) // Sort the list of scores ascending based

// on the score values
18: o := scores[0] // This optimal key has the lowest score value
19: O.add(o) // Add this optimal key to optimal key list
20: Vc := getCoveredPairs(k, VP) // Get pairs from VP that are covered by k
21: VP.remove(Vc) // Remove all pairs covered by k from VP
22: K.remove(o) // Remove the selected optimal key from K
23: i := i + 1
24: Return O // Return the optimal key list

F-DySNI (proposed in Chapter 7 and illustrated in Figure 8.4) is used for this pur-
pose. This is because the F-DySNI is a dynamic indexing technique that can be used
with real-time ER and since it performed better than the other proposed indexing
techniques as shown in Chapter 7. The index consists of multiple tree data structures
where each tree is built using a different key.

When a query record arrives it is inserted into all trees in the index. Then, in
each tree, a window of size w is used to generate a set of candidate records from
the tree node that contains the query record and the neighboring tree nodes that fall
within the window w. The query is then compared using an approximating string
similarity function [33] with the generated candidate records. Candidate records
with similarities above a specific threshold (we used a threshold of th = 0.75) are
considered to be matches. We use 50% of the records in each data set to build the
indexes, and the remaining records are used as query records. We have t = 3 trees in
the index, and we generate the candidate records using a window of size w = 2. Note
that any real-time indexing technique can be used in this experimental evaluation.
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Table 8.2: Data sets summary (described in more details in Chapter 4).

Data set Type Number of records Number of entities

10% of OZ-1 Real-world (modified) 34,588 30,292∗

Cora Real-world 1,295 112
DBLP/ACM Real-world 2,616/2,294 2,686
∗ With a maximum of one duplicate per entity

Table 8.3: Keys selected by the proposed and the FDJ approaches for the different data sets.

Proposed FDJ

OZ-1

〈(Firstname, Suburb), concatenatedIsExact〉 〈Firstname, sameFirst2Char〉
〈(Surname, Suburb), concatinatedIsExact〉 〈Surname, sameFirst2Char〉
〈(Surname, Postcode), concatinatedIsExact〉 〈Postcode, sameFirst3Char〉

Cora

〈(Authors, Venue), concatenatedIsExact〉 〈Authors, sameFirst2Token〉
〈(Title, Venue), concatenatedIsExact〉 〈Title, sameFirst2Token〉
〈(Authors, Year), concatenatedIsExact〉 〈Venue, sameFirst4Token〉

DBLP-ACM

〈(Authors, Year), concatenatedIsExact〉 〈Authors, sameFirst3Token〉
〈Title, sameFirst2Token〉 〈Title, sameFirst3Token〉
〈(Venue, Year), concatinatedIsExact〉 〈Venue, sameFirst3Token〉

For generating the training data sets (described in Section 8.3.2) all records in the
data sets (described in Table 8.2) are used. We use a lower threshold lt = 0.1 and
an upper threshold ut = 0.7 to weakly label record pairs into positive and negative
pairs. The generated training data sets are then used in our learning algorithm as
described in Section 8.3.3 to learn the optimal BKs O. We use nmax = 100 for the
maximum allowed number of covered vectors from VN , we use a maximum block
size of sm = 100, and for the weight parameters we use α = 0.2 and β = 0.4. Weights
and thresholds that we use are selected based on an experimental investigation of
using different values to achieve better average query time while maintaining similar
recall values compared to the baseline. We aim to investigate learning these values
to produce blocks with high quality and small size in our future work.

8.4.1 Efficiency of Selected Blocking Keys

To evaluate the efficiency of the BKs selected by our learning algorithm we use query
time (which is the time required to resolve a query record), number of candidate
records (which is the number of the generated candidate records that are required
to resolve a query record), and BK distribution (which is the frequency distribution
of the sizes of all blocks generated using a BK) as measures to examine whether our
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Figure 8.4: The F-DySNI used in the experimental evaluation. t = 3 is the number of trees
used in the index. w = 2 is number of the nodes included in the window in each side. k1, k2,
and k3 are the keys used to build the trees in the index.

proposed BK learning algorithm can learn BKs that are suitable for building indexes
to be used with real-time ER. We build the F-DySNI (as described above) first using
the keys selected by our algorithm, then using the keys selected by the FDJ. Then, we
perform real-time ER resolution using those two indexes to capture the results for
the measures described above and compare the values as follows:

The left plot in Figure 8.5 presents the query time required to resolve a single
query in milliseconds (ms). The results show that the BKs selected by our approach
improve the efficiency of query matching significantly. The selected keys using our
proposed approach achieve an average query time of 1.08, 7.82, and 9.29 ms for
the OZ-1, Cora, and DBLP-ACM respectively, while the selected keys using the FDJ
approach achieve an average query time of 206.0, 175.4, and 937.7 ms for OZ-1, Cora
and DBKP-ACM respectively. As can be seen from these values, our selected BKs are
around two orders of magnitude faster than the FDJ approach for the OZ-1 and the
DBLP/ACM data sets while around one order of magnitude faster for the Cora data
set. Note that these timing measures are produced while using the same indexing
technique, comparison functions, thresholds, and weights for the proposed and the
FDJ approaches. Also note that these results are achieved while maintaining the
quality of the matching process as will be described in Section 8.4.2.

The right plot in Figure 8.5 shows the distribution of the block sizes generated
using the keys selected by the proposed and the FDJ approaches on the OZ-1 data
set (the other two data sets were too small to clearly show how the blocks are dis-
tributed). The results show that the keys selected by our approach lead to block sizes
that do not exceed the maximum allowed block size. It also shows that the generated
blocks using our approach have similar sizes. In contrast, the keys selected by the
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Figure 8.5: Plot on the left shows time measures for the different data sets generated using the
keys selected by our approach (presented by the first, third, and fifth box plots) and the FDJ
approach (presented by the second, fourth, and sixth box plots). D/A refers to DBLP-ACM
and P refers to our proposed approach. Plot on the right shows the frequency distribution of
the sizes of the blocks generated using the BKs selected by the proposed approach (presented
by the solid lines) and the FDJ approach (presented by the dashed lines) on the OZ-1 data
set.

Table 8.4: Statistics for the number of candidate records generated using F-DySNI with t = 3
trees and a window w = 2. The keys selected by our learning approach and by the FDJ
approach are used to build the trees in the index.

OZ-1 Cora DBLP-ACM
Proposed FDJ Proposed FDJ Proposed FDJ

Average 10 2,041 28 274 30 2,643
Median 10 1,936 26 268 17 2,853
St.deviation 2 800 11 107 30 1,170
Minimum 6 162 10 54 10 13
Maximum 18 6,134 70 583 235 4,389

FDJ approach lead to blocks of various sizes. These results are also supported by Ta-
ble 8.4 where the standard deviation values (which measure the amount of variation
from the average) of the number of candidate records required using our selected
keys are small (compared to the values of the FDJ approach) for the three data sets.
This means that the block sizes tend to be close to the average block size.

Table 8.4 show various statistical measures for the number of candidate records
generated using the proposed and the FDJ approaches. It is clear from values in
the table that the proposed approach has decreased the number of candidate records
greatly which is the reason behind the significant drop in query times for the pro-
posed approach compared to the FDJ approach.

From the results discussed above, we can conclude that the BKs selected by our
BK learning algorithm can be used to build fast and efficient indexes that can be used
with real-time ER.
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Figure 8.6: Recall and MRR measures for the different data sets generated using the keys
selected by our approach and the FDJ approach.

8.4.2 Effectiveness of Selected Blocking Keys

To evaluate the effectiveness of the BKs selected by our learning algorithm we use
recall (which is the proportion of the actual true matches that have been classified
correctly) and the mean reciprocal rank (MRR) (which is the average of the reciprocal
of the rank of the first true matching record in the returned result) as measures to
examine whether our proposed BK learning algorithm can learn BKs that are suitable
for building indexes that can be used with real-time ER without affecting the quality
of the matching process (details about the used measures can be found in Chapter 4).

Figure 8.6 shows the recall and the MRR values that are measured when building
the F-DySNI using both BKs that are selected by our proposed learning algorithm
and by the FDJ algorithm. The results from the left plot if the figure show that our
approach achieves similar recall values compared to the FDJ approach. For both the
OZ-1 and the DBLP-ACM data sets our approach achieved the same recall value
as the FDJ, while it achieved a 5% lower recall value for the Cora data set. This is
because Cora contains entities with high frequency duplicates in the data set which
could lead to generating large block sizes when building the index. In our algorithm,
keys that generate blocks with a size that is above a maximum number of records sm

are removed from K during the key learning process which cause the drop in recall
values since the true matches that are within the removed large blocks are not found.
As for the MRR, our proposed learning algorithm achieved similar results as the FDJ
approach for the three different data sets used. From this we can conclude that our
approach managed to maintain the matching quality achieved by the FDK approach
while improving the query time significantly (around two orders of magnitude).

Notice that recall and MRR values achieved for the Cora and the PDBLP/ACM
data sets are lower than those achieved for the OZ data set for both the proposed
and FDJ techniques. The main reason for missing true matches for the Cora and
the DBLP/ACM data sets is the generated list of candidate keys. As discussed in
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Section 8.3.1, this list contains all keys which we select our optimal keys from and
can differ based on the domain, the indexing technique and the matched data sets.
The currently generated candidate keys did not work well with the bibliographic data
(which have long attribute values) in both Cora and PDBLP/ACM since the current
candidate keys are based on exact matching of tokens (i.e. individual characters,
separate words, terms, or abbreviations) generated from attribute values which lead
to missing a high number of true matches. The following example illustrates this
issue: Consider the following two records, that represent the same entity, from the
Cora data set:

Record ID Entity ID Authors

108 drucker1992 h. drucker, r. schapire, and p. simard,
109 drucker1992 drucker, h., schapire, r., simard, p.

and consider using the key <Authors, sameFirst2Tokens> to build the F-DySNI for
the Cora data set. In this case, these two records will not be inserted in the same
tree node and will not be considered as matching records. This is because the first
two tokens of the `Authors' attribute for both records are swapped. This issue can be
solved by carefully selecting candidate keys that consider the nature of long attribute
values of bibliographical data sets (for instance using the number of common to-
kens or n-grams in the attribute value to calculate a similarity between two records).
Investigating more possible candidate key functions is to be studied in future work.

8.5 Summary

In this chapter we proposed a general unsupervised blocking key selection algorithm
that automatically selects optimal BKs for building indexes that can be used with
real-time ER. Our algorithm takes into consideration both effectiveness and efficiency
of the real-time ER process when learning optimal keys. We evaluated our approach
using three real-world data sets and compared it with an existing automatic blocking
key selection technique. The results show that our approach can learn keys that are
suitable for real-time ER. The keys selected by our approach reduced query times
significantly while maintaining matching quality.

Some future research directions that can be extended from our work in this chap-
ter is to investigate how to automatically identify candidate blocking functions based
on the content of the data sets, investigate learning the weights that are used in our
key selection algorithm to produce blocks with high quality and small size, and com-
pare our proposed approach with other existing blocking key selection techniques.
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Example 8.1: To calculate an overall score for candidate blocking keys K = {k1, k2, k3},
assume that the average block size produced by each blocking key is B = {12, 5, 14}.
Also assume that the sets of blocking key vectors VP and VN presented in Figure
8.7 are generated from the positive and negative training data sets (as described in
Section 8.3.2). Figure 8.7 also shows the mean, and variance values calculated for
each blocking key in both vector sets (VP and VN) and in their union VP ∪VN .

k1 k2 k3

VP

1 1 0

0 1 0

1 1 1

VN

1 1 1

1 0 1

0 0 1

1 1 0

0 0 1

1 1 0

0 1 0

1 1 1

VP ∪ VN

k1 k2 k3 k1 k2 k3

µk,p 0.40 0.80 0.20

σk,p 0.24 0.16 0.16

σ2
k,p 0.05 0.02 0.02

µk,n 0.60 0.40 0.80

σk,n 0.24 0.24 0.16

σ2
k,n 0.05 0.05 0.02

µk 0.50 0.60 0.50

0 1 0

0 0 0

0 1 0

0 0 0

1 1 1

1 0 1

0 0 1

1 1 0

0 0 1

Figure 8.7: Blocking key vectors VP andVN that are used in Example 8.1 to calculate the
overall scores for the blocking keys K = {k1, k2, k3}. VP ∪ VN represents the union of both
key vectors.

Based on the vectors in Figure 8.7, we calculate the overall score sck for each
candidate blocking key in K using Equation 8.6 which relies on three criteria (key
coverage, average block size for the blocks generated by the key, and the distribution
of the size for the blocks generated using a blocking key). Moreover, assume having
the weight parameters α = 0.2 and β = 0.4. First we need to calculate the coverage
ck of each key using Equation 8.4 as follows:
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Key Key coverage (ck)

k1
5(0.4− 0.5)2 + 5(0.6− 0.5)2

5 ∗ 0.05 + 5 ∗ 0.05
= 0.2

k2
5(0.8− 0.6)2 + 5(0.4− 0.6)2

5 ∗ 0.02 + 5 ∗ 0.05
= 1.14

k3
5(0.2− 0.5)2 + 5(0.8− 0.5)2

5 ∗ 0.02 + 5 ∗ 0.02
= 4.5

We also calculated the distribution of blocks generated by each blocking key using
Equation 8.5, assuming the block sizes in the following table as follows:

Key Block Average block Distribution
sizes size (sb(ave)k

) of blocks (vk)

k1 10, 12, 15 12
(10− 12)2 + (12− 12)2 + (18− 12)2

3
= 13.3

k2 3, 5, 7 5
(5− 5)2 + (3− 5)2 + (7− 5)2

3
= 2.66

k3 10, 13, 20 14
(10− 14)2 + (13− 14)2 + (20− 14)2

3
= 17.6

Then we calculate the overall score sck using our proposed equation (see Equation
8.6), and weight parameters α = 0.2 and β = 0.4 as follows:

Key Coverage Average block Distribution Overall
(ck) size (sb(ave)k

) of blocks (vk) score

k1 0.2 12 13.3 10.29
k2 1.14 5 2.66 3.03
k3 4.5 10 17.6 11.94
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Table 8.5: List of candidate keys and their coverage (ck), average block size (sb), vari-
ance (vk), and overall score (sck) for the OZ-1 data set. Note that keys with smaller
overall scores are more suitable for real-time ER. The overall key score sck is calculated
using Equation 8.6. ck, sb, vk values are normalized into a value between 0 and 1 be-
fore calculating the overall key scores. The values in the table represent the calculations
required to select the first optimal key (which is highlighted in red bold font). Note
that after selecting the first optimal key it will be removed from the candidate key list
and all records covered by this key are also removed from the training data sets. To
select a second optimal key, all calculations are repeated for all remaining keys on the
new training data set (that does not include records covered by the first selected key).
The three keys selected by our approach at the end of the key selection iterations are:
〈(Firstname, Suburb), concatenatedIsExact〉, 〈(Surname, Suburb), concatenatedIsExact〉,
and 〈(Surname, Postcode), concatenatedIsExact〉.

No. Key ck sb vk sck

1 〈Firstname, isExact〉 9.28 4.24 4.33 0.59
2 〈Firstname, sameFirst1Char〉 84.32 1330.3 0.77 0.32
3 〈Firstname, sameFirst2Char〉 252.01 97.4 2.35 0.21
4 〈Firstname, sameFirst3Char〉 95.09 17.4 3.67 0.46
5 〈Firstname, sameFirst4Char〉 26.90 7.6 4.03 0.55
6 〈Firstname, sameFirst5Char〉 13.6 5.4 4.22 0.58
7 〈Surname, isExact〉 6.07 2.1 2.57 0.42
8 〈Surname, sameFirst1Char〉 38.16 1330.3 0.77 0.36
9 〈Surname, sameFirst2Char〉 54.89 95.02 1.78 0.32
10 〈Surname, sameFirst3Char〉 36.49 12.5 2.35 0.38
11 〈Surname, sameFirst4Char〉 18.26 4.02 2.59 0.41
12 〈Surname, sameFirst5Char〉 9.91 02.6 2.63 0.43
13 〈Suburb, isExact〉 10.53 3.93 1.78 0.34
14 〈Suburb, sameFirst1Char〉 27.33 1383.5 0.78 0.37
15 〈Suburb, sameFirst2Char〉 135.36 149.09 1.47 0.22
16 〈Suburb, sameFirst3Char〉 178.74 27.67 1.92 0.22
17 〈Suburb, sameFirst4Char〉 164.32 12.03 2.15 0.25
18 〈Suburb, sameFirst5Char〉 72.33 7.75 2.34 0.35
19 〈Postcode, isExact〉 12.10 11.94 1.33 0.30
20 〈Postcode, sameFirst1Char〉 7.95 3843.1 1.07 0.67
21 〈Postcode, sameFirst2Char〉 110.33 494.11 1.3 0.26
22 〈Postcode, sameFirst3Char〉 31.66 64.65 1.35 0.29
23 〈Postcode, sameFirst4Char〉 12.10 11.94 1.33 0.3
24 〈Postcode, sameFirst5Char〉 12.10 11.94 1.33 0.3
25 〈(Firstname, Surname), concatenatedIsExact〉 9.28 1.08 0.27 0.19
26 〈(Firstname, Suburb), concatenatedIsExact〉 9.28 1.08 0.27 0.19
27 〈(Firstname, Postcode), concatenatedIsExact〉 9.28 1.10 0.3 0.20
28 〈(Surname, Suburb), concatenatedIsExact〉 6.07 1.07 0.25 0.20
29 〈(Surname, Postcode), concatenatedIsExact〉 6.07 1.08 0.26 0.20
30 〈(Suburb, Postcode), concatenatedIsExact〉 10.53 2.87 1.78 0.34
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Chapter 9

Comparative Evaluation

In the previous chapters we have proposed several indexing techniques that are tai-
lored for real-time entity resolution, and one learning technique that automatically
selects blocking/sorting keys to be used with real-time entity resolution. In this
chapter, we comparatively evaluate the effectiveness and efficiency of the different
proposed solutions. In Section 9.2 we describe the comparative evaluation setup and
framework. In Section 9.3 we present the comparative evaluation results for the dif-
ferent indexing techniques and in Section 9.4 the results for the automatic blocking
key selection technique. Finally, we summarize our findings in Section 9.5.

9.1 Introduction

In Chapter 3, we identified the need for developing novel efficient indexing tech-
niques that are suitable for use with real-time entity resolution (ER) on dynamic
databases. We also identified the need for novel techniques that learn optimal block-
ing/sorting keys for different real-time ER domains without the need for human
intervention. We have addressed the first problem in Chapters 5, 6, and 7 by propos-
ing several efficient dynamic indexing techniques that are tailored for real-time ER.
In addition, we addressed the second problem in Chapter 8 by proposing a general
learning technique that automatically selects optimal keys for building indexes that
can be used with real-time ER.

In this chapter we provide an empirical comparative evaluation of the different
proposed solutions with regard to their effectiveness and efficiency. We first compare
our indexing solutions (presented in Chapters 5, 6, and 7) with a current indexing
technique that is used in ER [11, 34, 107] (as described in Section 4.3). Then, we com-
pare our automatic blocking/sorting key selection algorithm (proposed in Chapter 8)
with manual key selection that requires expert knowledge. The results of both evalu-
ations are presented in the following sections. Table 9.1 summarize the abbreviations
that we use in this Chapter.
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Table 9.1: Summary of abbreviations used in this chapter
DySimII The similarity-aware inverted index (proposed in Chapter 5)
DySNI The dynamic sorted neighborhood index (proposed in Chapter 6)
F-DySNI(2) The forest-based dynamic sorted neighborhood index / with 2 trees (proposed in Chapter 7)
F-DySNI(3) The forest-based dynamic sorted neighborhood index / with 3 trees (proposed in Chapter 7)
QGI Q-gram based indexing technique that is used in entity resolution (described in Chapter 4)

Table 9.2: Data sets summary. The selected data sets and why they are used are described in
more details in Section 4.5.

Data sets Provenance No. No. No. Ave
Records Duplicates Entities Duplicates

NC Real 7,997,234 150,089 7,847,145 3.0
OZ-(1,2,3,4) Real (modified) 345,876 172,938 172,938 3.5
Febrl-5 Synthetic 100,000 80,000 20,000 5.0
Febrl-10 Synthetic 100,000 90,000 10,000 10.0
Febrl-20 Synthetic 100,000 95,000 5,000 20.0

9.2 Comparative Evaluation Setup

To conduct the comparative evaluation we use a large real-world data set and several
synthetic data sets with different characteristic. Table 9.2 provides a summary for
the used data sets. We use the NC data set, which has around 8 million records,
to conduct the scalability evaluation of the compared techniques. The four OZ data
sets have an average of 3.5 duplicate per record, however, they differ in their corrup-
tion ratio. In OZ-1, duplicates have been corrupted by modifying only one of their
attributes, while in OZ-4 duplicates have been corrupted by modifying all of their
four attributes. These data sets are used to evaluate the effect of having different
number of corruption ratios on the quality of the various indexing techniques. On
the other hand, the three Febrl data sets differ in the average number of duplicates
for a single record. Febrl-(5,10,20) have an average of 5, 10, and 20 duplicates per
record respectively. These data sets are used to evaluate the effect of having different
number of duplicates on the quality of the evaluated techniques.

We use the average insertion and query times to evaluate the efficiency and scala-
bility of the different indexing techniques. In addition, we use recall (the proportion
of the actual true matches that have been classified correctly) and the mean recipro-
cal rank (MRR) (the average of the reciprocal of the rank of the first true matching
record in the returned result) to evaluate the matching quality. More details about
the data sets, the evaluation measures, the used baseline, and the implementation
environment are found in Chapter 4.



§9.3 Indexing Techniques 139

9.3 Indexing Techniques

In this section we comparatively evaluate all proposed indexing solutions together
with an indexing technique that is used in ER [11, 34, 107]. The compared tech-
niques include the similarity-aware inverted index proposed in Chapter 5 (labeled as
DySimII), the dynamic sorted neighborhood index proposed in Chapter 6 (labeled
as DySNI), the forest-based sorted neighborhood index using two and three trees
proposed in Chapter 7 (labeled as F-DySNI(2) and F-DySNI(3) respectively), and the
q-gram based index [11, 34, 107] described in Section 4.3 (labeled as QGI).

The QGI technique is a q-gram based inverted index [11, 34, 107] that converts
the attribute values of each record in a data set into a list of q-grams (sub-strings
of length q). Each unique q-gram becomes a key in the inverted index where its
corresponding value is the list of all records in a data set that have this q-gram in
their attribute values. More details on how the QGI approach operates are found in
Section 4.3.

9.3.1 Scalability

We comparatively evaluate the scalability of the different indexing techniques on the
NC data set (The CCA data sets are not used for scalability testing since the QGI
technique is shown to be slow to run on very large data sets). We measure the
average time required to insert a single record into an index data structure, and the
average query time required to resolve a single query record across the growing size
of the index structure. 10% of the NC data set is used to build the indexes, and
the rest of the records are considered as query records (note that query records are
inserted into the index upon arrival).

• DySimII: We use the Double-Metaphone [33] encoding function to encode the
attribute values when building the index as described in Section 5.3.2.

• DySNI: We use a concatenation of the `Surname' and `Firstname' attributes as
a sorting key (SK) to build the index data structure, and we use the similarity-
based adaptive window approach to generate the set of candidate records using
a similarity threshold of θ = 0.8, where 0 ≤ θ ≤ 1. Building the index and
generating the set of candidate records are described in detail in Sections 6.3.2
and 6.4.3 respectively. Note that we did not use single attribute values as SKs
because they are not suitable for real-time ER (based on the results presented
in Chapter 7).

• F-DySNI(2): We build two trees in the index data structure. For the first tree
we use the `Firstname+Surname' concatenation as a SK (the same SK used for
DySNI), and for the second tree we use the `Surname+Firstname' concatenation.
We use the same window approach and similarity threshold as in the DySNI to
generate the set of candidate records.
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Figure 9.1: Plots (a) and (b) show the average time required to insert a single record into the
index using the compared indexing techniques (the results are split over two plots to improve
readability). Plot (c) illustrates the average time required to query the growing index. The
results for the QGI technique are not complete because the technique was slow and it was
not feasible to finish running the experiment. The Full NC data set (described in Section 4.5)
is used to build the indexes (M = million).

• F-DySNI(3): We build three trees in the index data structure. For the first and
second trees we use the same SKs as in F-DySNI(2), and for the third tree we
use the `Firstname+City' concatenation as a SK. We use the same window ap-
proach and similarity threshold as in the DySNI to generate the set of candidate
records.

• QGI: We use q-grams of length q = 2 to convert the attribute values of each
record in the data set into a list of q-grams and each unique q-gram becomes
a key in the inverted index. How the index operates is explained in detail in
Section 4.3

Figure 9.1, illustrates the scalability results for all compared techniques. Note
that the results for the average query times for the QGI technique (in plot (c)) are not
complete as it was not feasible to run the ER process for the full 8 million records.
This is because the technique was slow and required high query times (an average of
around 1.5 seconds for the first 1.5 million records).

Plots (a) and (b) in Figure 9.1 present the average insertion time required by all
compared techniques (we split the results over two plots to improve readability).
The results show that the average insertion times for all compared techniques are
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not affected by the growing size of the index data structure (almost constant). The
average insertion times for the compared techniques ranges between 0.05 to 0.4 mil-
liseconds (ms). The DySimII achieves an average insertion time of around 0.4 ms, the
F-DySNI(3) around 0.1 ms, the F-DySNI(2) around 0.08 ms, and both DySNI and QGI
techniques achieve around 0.05 ms. The results presented in Figure 9.1 (a) and (b)
confirm that the process of inserting a record into the index data structure is scalable
to large data sets for the compared techniques.

The results for the average query times achieved by all compared techniques are
presented in Figure 9.1 (c). From the plot it is clear that the average query times
for all techniques increases sub-linearly as the index becomes larger. However, the
QGI technique has a high average query time (around 1.5 second) that makes it not
suitable for real-time ER and not scalable with large data sets.

The fastest technique was the DySNI, which achieved an average query time
of 1.15 ms, followed by the F-DySNI(2) and F-DySNI(3) techniques that achieved
an average query time of 1.9 ms and 15.7 ms respectively. The reason behind the
increase in query times when we use more trees in the index data structure is that
having more trees leads to an increase in the number of candidate records which
then leads to an increase in the average query time. The slowest among all proposed
solutions is the DySimII that achieved an average query time of 225 ms (although it
is the slowest, it is still fast enough to be used with real-time ER).

The presented results confirm that the proposed indexing techniques are suitable
for real-time ER (where query records need to be matched in sub-second times) and
are scalable to large data sets. The effectiveness and efficiency of the compared
techniques are evaluated next.

9.3.2 Effectiveness and Efficiency

We next evaluate the compared indexing techniques (DySimII, DySNI, F-DySNI(2),
F-DySNI(3), and QGI) with regard to their effectiveness (matching quality) and effi-
ciency using the OZ-x data sets (with different corruption ratios) and the Febrl data
sets (with different number of duplicates per entity). More details about the data sets
are found in Section 4.5.

We measure recall and MRR values to comparatively evaluate the effectiveness of
the compared techniques, and we measure the average query times to comparatively
evaluate the efficiency of the compared techniques. Details about this evaluation are
described in the following sub-sections.

9.3.2.1 The Effect of Having Different Corruption Ratios in a Data Set

In this set of experiments we evaluate the effect of having different error rates in
a data set on the effectiveness and efficiency of the compared indexing techniques.
We use the OZ-x data sets (with different corruption ratios) to conduct this set of
experiments. The settings used for running the different techniques are:
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Figure 9.2: Recall values for all compared indexing techniques using the OZ-x data sets. S
refers to using single attribute values as SKs and D refers to using a concatenation of two
attribute values as SKs. 1T refers to the DySNI which uses a single tree, 2T refers the F-
DySNI(2) which uses two trees, and 3T refers to the F-DySNI(3) which uses three trees. Note
that the threshold used to generate the plots is different between the techniques; for the
DySNI and F-DySNI it represents the similarity threshold between the SKV of the query’s
node and its neighboring nodes and it is used to generate the candidate records. For QGI the
threshold represents the minimum Jaccard similarity between a query record and a candidate
record and it is used to classify record pairs into matches and non-matches.

• DySimII: We use the Double-Metaphone [33] encoding function to encode the
attribute values when building the index as described in Section 5.3.2. We use
an overall similarity threshold of t = 0.75 to classify record pairs into matches
or non-matches.

• DySNI: We use all possible single attribute values as SKs and we refer to such
keys as (S). We also use all possible combinations of the concatenations of two
(double) attribute values as SKs and we refer to such keys as (D). We use the
similarity-based adaptive window approach to generate the candidate records
with all similarity thresholds between 0.5 ≤ θ ≤ 1.0. Moreover, we use an
overall similarity threshold of t = 0.75 to classify record pairs into matches and
non-matches.

• F-DySNI(2): The same settings from the DySNI apply for this technique but
with two trees in the index data structure. We use all possible key combi-
nations for the two trees for both single and double keys (generated from a
concatenation of two attribute values).
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Figure 9.3: MRR values for all compared indexing techniques using the OZ-x data sets. The
description in the caption of Figure 9.2 also applies here.

• F-DySNI(3): The same settings from the DySNI apply for this technique but
with three trees in the index data structure. All possible key combinations
for the three trees are used for both single and double keys (generated from a
concatenation of two attribute values).

• QGI: We use a q-gram of length q = 2 to convert the attribute values of each
record in a data set into a list of q-grams and each unique q-gram becomes a
key in the inverted index. We use a minimum Jacard similarity threshold that
is 0.5 ≤ t ≤ 1.0. Details about how the QGI operates are found in Section 4.3

Recall: We measure recall values for all compared approaches. The results, pre-
sented in Figure 9.2, show that recall values for all compared techniques, as one
would expect, are affected by the number of corrupted attribute values in the data
sets. Higher corruption ratios lead to lower recall values. All techniques achieved
better results on OZ-1 (where only one attribute value is corrupted) while the lowest
recall values are achieved on OZ-4 (where all attribute values are corrupted). For
example, the median of recall values achieved by the F-DySNI(3) technique using
double SKs (labeled as D-3T in the plots) has dropped from around 92% on OZ-1 to
around 17% on OZ-4 (a decrease by around 80%). A similar decrease in recall values
between OZ-1 to OZ-4 data sets apply to all compared techniques as well.

The F-DySNI(3), F-DySNI(2), and DySNI using single attribute values as SKs
achieved, respectively, the highest recall values compared to the other techniques.
However, as discussed in Section 7.5.1, and as will be discussed in Section 9.3.2.2,
although single attribute values when used as SKs achieve better recall values, they
are not suitable for real-time ER as they require longer times to match query records.
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As for using concatenated attribute values as SKs (double keys) with DySNI, F-
DySNI(2), and F-DySNI(3), they all achieve better recall values than both DySimII
and QGI. For example, for the OZ-1 data set the median of achieved recall values
for the F-DySNI(3) is around 92%, for F-DySNI(2) it is around 89%, and for DySNI
it is around 62%, while both DySimII and QGI techniques achieved a recall median
of around 40%. This is noticeable in all other OZ-x data sets as well. All proposed
techniques achieve better recall values than the QGI baseline for all OZ data sets
except for the OZ-2 where QGI achieves slightly better recall value than DySimII.
The DySimII technique did not perform well on the OZ data sets compared to other
proposed techniques. This is because, as discussed in Chapter 5, similar attribute
values with errors and variations are not inserted into the right blocks as they should
which increases the number of missed true matches.

MRR: We measure the MRR values for all compared techniques. The results,
presented in Figure 9.3, show that these MRR values are affected by the number of
corrupted attribute values in the data sets. Higher corruption ratios lead to lower
MRR values. All compared techniques achieve higher MRR values on the data set
with the lower corruption ratio (OZ-1), and lower MRR values on the data set with
the highest corruption ratio (OZ-4). For example the median MRR value for the F-
DySNI(3) technique using double SKs (labeled as D-3T in the plots) is around 0.99
on the OZ-1 data set. This median drops to around 0.24 on the OZ-4 (a decrease of
around 75%). This applies for the other approaches as well. All proposed techniques
achieve MRR values that are higher than the QGI technique for all OZ data sets. The
F-DySNI(3) technique achieves the highest MRR values, followed by F-DySNI(2),
DySNI, and DySimII.

Query times: We measure the average time required to match a query record
using the OZ-x data sets for all compared techniques. The results presented in Fig-
ure 9.4 show that all proposed techniques outperform the QGI technique with regard
to query times. The results also show that for DySNI and F-DySNI using single at-
tribute values as SKs requires longer query times (but still achieve the sub-second
query time required for real-time ER). However, using concatenated SKs (generated
from a concatenation of two attribute values) improves the time by more than one
order of magnitude (compared to single SKs). The fastest index among all compared
techniques is the DySNI when using concatenated SKs (labeled as D-1T in the plots),
followed by the F-DySNI(2) and F-DySNI(3). The reason behind the increase in query
times when we use more trees in the index (for the DySNI and F-DySNI) is that hav-
ing more trees leads to an increase in the number of candidate records which in turn
increases the average query time. The query time achieved by the DySimII technique
is similar to the median of the achieved query times by the F-DySNI(3), while QGI is
the slowest among all techniques.

A summary of the above results is presented in Figure 9.5 (the results include
using both single and double SKs for the DySNI and F-DySNI solutions). From this
figure we can summarize that all proposed indexing techniques achieve better av-
erage query times than the QGI technique. The DySimII is around two orders of
magnitude faster than the QGI, the DySNI is around one and a half orders of mag-



§9.3 Indexing Techniques 145

S-1T S-2T S-3T D-1T D-2T D-3T QGI DySimII
Methods

10-1

100

101

102

103

104
Q

u
e
ry

 T
im

e
 (

m
s)

Query-time for thresholds (0.5 to 1) using OZ-1 

S-1T S-2T S-3T D-1T D-2T D-3T QGI DySimII
Methods

10-1

100

101

102

103

104

Q
u
e
ry

 T
im

e
 (

m
s)

Query-time for thresholds (0.5 to 1) using OZ-2 

S-1T S-2T S-3T D-1T D-2T D-3T QGI DySimII
Methods

10-1

100

101

102

103

104

Q
u
e
ry

 T
im

e
 (

m
s)

Query-time for thresholds (0.5 to 1) using OZ-3 

S-1T S-2T S-3T D-1T D-2T D-3T QGI DySimII
Methods

10-1

100

101

102

103

104

Q
u
e
ry

 T
im

e
 (

m
s)

Query-time for thresholds (0.5 to 1) using OZ-4 

Figure 9.4: Query times for all compared indexing techniques using the OZ-x data sets. The
description in the caption of Figure 9.2 also applies here.
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Figure 9.5: Summary of the average recall, MRR, query time values for the different tech-
niques using the OZ-x data sets. The results for both DySNI and F-DySNI are generated
using all possible SK combinations (both single and concatenated attribute values).
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nitude faster, while the F-DySNI(3) is more than one orders of magnitude faster than
the QGI technique. The average query time achieved by the proposed techniques
ranges between 2 to 11 ms which is suitable for matching query records in real-time.

The figure also shows that the DySNI and F-DySNI(3) approaches outperform
QGI on all OZ data sets with regard to matching quality (recall and MRR), and that
the F-DySNI(3) achieves the highest quality results of all compared approaches. It
outperforms the QGI technique (with regard to recall values) by 28% to 57% for the
different OZ-x data sets, and by 22% to 50% with regard to MRR values. The F-
DySNI(3) technique is shown to perform better than all other compared approaches
on noisy data sets that contains errors and variations.

9.3.2.2 The Effect of Having Different Number of Duplicates in a Data Set

In the second set of experiments we evaluate the effect of having different number
of duplicate records in a data set on the effectiveness and efficiency of the compared
indexing techniques. We us the Febrl data sets (with different number of duplicates)
to conduct this set of experiments. More details about the Febrl data sets can be
found in Sections 4.5. The settings for building the DySimII and QGI techniques
are similar to the settings used in the previous section. For DySNI and F-DySNI
we also use the same settings as in the previous section but for the SKs we use
the `Firstname+Surname', the `Surname+Firstname', and the `Firstname+Postcode'
to build the first, second, and third trees in the indexes. We select these keys since
it was shown in the previous experiments that SKs generated from single attribute
values are not suitable for real-time ER.

Recall and MRR: We measure both recall and MRR values using the different
Febrl data sets. The results presented in Figure 9.6 show that all techniques achieve
similar quality (recall and MRR) results on the different Febrl data sets except for the
DySimII technique where its recall value drops from 32.1% on Febrl-5 to 12.6% on
Febrl-20 (a decrease by around 60%). The MRR values for the same approach are not
affected by the increase in number of duplicates.

The results, when using the Febrl data sets, also confirm the results in the pre-
vious sections (using the OZ-x data sets) since the F-DySNI(3) achieve the highest
median of recall values for all Febrl data sets, followed by F-DySNI(2) and DyDNI.
The DySimII technique did not perform well (with regard to recall) on all Febrl data
sets but achieved relatively good MRR results. For the median of the MRR values for
all approaches, the DySimII achieved the highest value followed by F-DySNI(3) and
f-DySNI(2).

Query times: We measure the average query time required to match a query
record using the Febrl data sets for all compared techniques. The results presented
in Figure 9.7 show that all proposed techniques outperform the QGI technique. The
results also show that the DySimII is the fastest among all compared techniques,
followed by the DySNI, F-DySNI(2), and F-DySNI(3) respectively .
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Figure 9.6: Recall and MRR values for all compared approaches using the Febrl data sets.
The similarity-based adaptive window approach is used to generate candidate records using
thresholds between 0.5 to 1.0.

A summary of all Febrl results is presented in Figure 9.8. From the figure we
can see that all proposed indexing solutions achieve better average query times than
the QGI technique. The DySimII is around two orders of magnitude faster than the
QGI, while the F-DySNI(3) is around one order of magnitude faster. Moreover, all
proposed solutions achieve better MRR values compared to the QGI technique for
all Febrl data sets. As for the average recall values, both F-DySNI(2) and F-DySNI(3)
outperform the QGI technique on all Febrl data sets while the DySimII outperform
QGI only on Febrl-5 as its recall values is affected by the increased number of dupli-
cates in the data sets.
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Figure 9.7: Average query times for all compared approaches on the Febrl data sets.

Febrl-5 Febrl-10 Febrl-20

Data set

0

20

40

60

80

100

R
e
ca

ll

Average recall (Febrl)
DySimII
DySNI

F-DySNI(2)
F-DySNI(3)

QGI

Febrl-5 Febrl-10 Febrl-20

Data set

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
e
a
n
 r

e
ci

p
ro

ca
l 
ra

n
k

Average MRR (Febrl)
DySimII
DySNI

F-DySNI(2)
F-DySNI(3)

QGI

Febrl-5 Febrl-10 Febrl-20

Data set

10-1

100

101

102

103

Q
u
e
ry

 t
im

e
 (

m
s)

Average query time (Febrl)
DySimII
DySNI

F-DySNI(2)
F-DySNI(3)

QGI

Figure 9.8: Summary of the average recall, MRR, query time values for the different tech-
niques using the Febrl data sets.
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From the presented results for both OZ-x and Febrl we can conclude that all pro-
posed techniques DySimII, DySNI, and F-DySNI are suitable for real-time ER as they
can match query records with sub-second times. However, DySNI achieves better
matching quality and efficiency results compared to DySimII. This is because unlike
the DySimII technique that generates larger block sizes (because of using encoded at-
tribute values as blocking keys), the DySNI technique is based on using a tree-based
index that generates small size nodes (blocks) when using suitable sorting keys (like
using a concatenation of attribute values). Moreover, the DySNI can generate candi-
date records based on the similarities between the neighboring nodes (blocks) which
lead to improving its matching quality.

The F-DySNI improves the matching quality achieved by the DySNI approach
with the cost of an increase in query times because it uses multiple trees with distinct
sorting keys. Using multiple trees improves matching quality as it reduces the effect
of having errors and variation at the beginning of attribute values that are used as
sorting keys. The increase in query times, for the F-DySNI, is caused by the increased
number of candidate records that are collected from multiple trees (unlike the DySNI
that have only a single tree and less number of candidate records).

9.4 Blocking Key Learning Technique

In Chapter 3 we identified the need for new novel techniques that learn optimal
blocking keys which can be used in the indexing step of real-time ER. We addressed
this problem in Chapter 8 by proposing a general automatic blocking/sorting key
selection algorithm that automatically selects blocking/sorting keys that are suitable
for building indexes to be used with real-time ER. We evaluated the proposed learn-
ing algorithm in Chapter 8 by comparing it with an existing state-of-the-art blocking
key learning algorithm [89]. The results from Chapter 8 showed that our approach
can learn keys that are suitable for real-time ER and that the keys selected by our ap-
proach reduced query times significantly (around one order of magnitude) compared
to the baseline [89] while maintaining matching quality.

In this section we compare our automatic key selection algorithm with manual
key selection based on expert knowledge. The aim of this evaluation is to inves-
tigate whether or not our automatic technique can substitute manual key selection
while achieving similar results. To conduct the comparison, we use the keys selected
manually by an expert and the keys selected by our automatic selection algorithm
(proposed in Chapter 8). We build an index using the keys selected automatically
by our learning approach, and a second index using the manually selected keys.
Then we conduct the real-time ER process on both built indexes and compare their
effectiveness and efficiency. We used both the OZ-1 and Febrl-5 data sets in this ex-
periment, where 50% of the records in the data sets are used to build two indexes and
the remaining 50% are considered as query records. The similarity-based adaptive
window approach (presented in Section 6.4.3) is used to generate candidate records
using similarity thresholds that range between 0.5 ≤ θ ≤ 1.0.
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Figure 9.9: Comparative results between manual and automatic key selection for the OZ-1
and Febrl-5 data sets. (A) refers to automatic keys while (M) refers to manual keys. The
F-DySNI technique is used with three trees. The similarity-based adaptive window approach
is used to generate the candidate records, and similarity thresholds that range between 0.5
and 1.0 are used. The keys selected manually by an expert for both data sets include:
`Firstname+Surname', `Surname+Firstname', and `Surname+Postcode'. Manual keys were
selected based on the results presented in Chapter 7 which confirmed that keys generated
from concatenated attribute values are more suitable for real-time ER than single attribute
values. The automatic keys (that were selected by our learning algorithm) for the OZ-1 data
set are `Firstname+Suburb', `Surname+Suburb', and `Surname+Postcode', and for the Febrl-5
data set they are `Firstname+suburb', `Surname+Suburb', and `Surname+Suburb' (details on
how automatic keys are selected are given in Chapter 8)

Figure 9.9 presents the recall, MRR, and query time values achieved by using
both automatic keys (selected by our learning algorithm) and manual keys (selected
by an expert) to build the indexes. Note that all other settings are exactly the same.
The results show that, for the OZ-1 data set, the automatic keys selected by our
learning algorithm slightly outperforms the keys selected manually with regard to
recall and MRR while maintaining similar query times. The results also show that
for the Febrl-5 data set the automatic keys selected by our learning algorithm slightly
outperforms the keys selected manually with regard to MRR and average query time
while achieving similar recall values.

The presented results confirm that our automatic blocking key selection algo-
rithm can reduce human intervention by substituting manual key selection while
maintaining the effectiveness and efficiency of the matching process.
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9.5 Summary

In this chapter we compared our proposed indexing solutions together with a q-
gram based indexing technique [11, 34, 107] that is used in ER, and we compared
our automatic blocking key selection technique with manual key selection that is
based on expert knowledge. The results presented in this chapter confirm that our
proposed indexing solutions are suitable for real-time ER and that they outperform
the q-gram based indexing technique. In addition, the results show that the F-DySNI
with multiple trees achieves better recall and MRR values on all data sets compared
to the other proposed solutions at the cost of a slight increase in query time. The
reason behind this increase is that more trees lead to an increase in the number
of candidate records to be compared with the query record. The DySimII did not
perform as good as the other two solutions (with regard to matching quality) as it
does not work well with noisy data sets that contains errors and variations. The F-
DySNI technique achieves the best results with regard to matching quality on noisy
data sets.

The results presented in this chapter also confirm that our blocking/sorting key
selection algorithm can successfully learn blocking/sorting keys that are suitable for
real-time ER. Our learning algorithm outperforms manual key selection (that selects
keys based on expert knowledge) with regard to matching quality while maintaining
similar efficiency results. The presented results confirm that our blocking/sorting
key selection algorithm can substitute human intervention that is required for man-
ually selecting blocking/sorting keys that are suitable for use with real-time ER.

The comparative evaluation of the different proposed techniques can be extended
in the future by using other data sets with different characteristics, for instance, data
sets with longer attribute values or data sets with attributes other than names and
addresses) to investigate if the developed indexing techniques are suitable for differ-
ent data sets. Moreover, additional indexing techniques from the literature, besides
the QGI, could be used as baselines and compared with the proposed approaches.
Another future evaluation extension is to experimentally investigate how the pro-
posed indexing techniques would handle receiving multiple query records during a
specific time interval (for instance one second interval).
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Chapter 10

Conclusions and Future Directions

In previous chapters we described the entity resolution process in general, identified
the problem of real-time entity resolution, where we need to match query records
with large and dynamic data sets in real-time, and we proposed various solutions
that address some of the challenges related with real-time entity resolution. In this
chapter we conclude the work presented in this thesis and provide possible future
research directions. Section 10.1 provides a summary of our conclusions. Sections
10.2 and 10.3 provide a summary of the contributions and future research directions.
Finally, Section 10.4, provides our closing remarks.

10.1 Conclusions

The work presented in this thesis addresses the problem of real-time entity resolu-
tion (ER) and focuses on the indexing step in particular. We have proposed three
dynamic indexing techniques that are tailored for real-time ER, and an automatic
blocking/sorting key selection technique that learns blocking/sorting keys that can
be used with real-time ER.

First, in Chapter 5, we proposed a dynamic similarity-aware inverted index (named
DySimII) which is a blocking-based indexing technique that is updated whenever a
new query record arrives to facilitate query matching in real-time. Then, in Chap-
ter 6, we proposed a dynamic sorted neighborhood index (named DySNI), which is
a tree-based indexing technique that is tailored for real-time ER. This technique uses
static and adaptive window approaches to retrieve candidate records. Moreover, in
Chapter 7 we proposed a forest-based sorted neighborhood index (named F-DySNI)
which is a multi-tree technique that is based on DySNI and uses multiple distinct
trees in the index data structure where each tree has a unique sorting key. Finally,
in Chapter 8, we proposed an unsupervised learning algorithm that automatically
selects optimal blocking/sorting keys for building indexes that are suitable for real-
time ER.

We conducted an empirical evaluation to evaluate the proposed indexing solu-
tions with regard to their efficiency and effectiveness. We used various real-world
data sets with millions of records and synthetic data sets with different data charac-
teristics. The results showed that, for the growing sizes of our indexing solutions, no
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appreciable increase occurs in both record insertion and query times. Record inser-
tion times were almost constant for the growing size of the index while query times
increased sub-linearly. Our proposed indexing solutions are shown to be scalable
with large data sets.

We compared our indexing solutions together with an existing q-gram based
indexing technique [11, 34, 107] (labeled as QGI) that is used in ER. Our solutions
outperformed the QGI with regard to their effectiveness and efficiency, and the QGI
technique was shown to be not suitable for real-time ER because of the long time
it requires to match query records. Amongst the proposed techniques the DySNI
(which consists of only one tree) was the fastest and it achieved an average query
time that is less than 3 ms for a data set with around 20 million records. F-DySNI,
using two and three trees in the index, achieved an average query time of around 3,
and 4 ms respectively, while the DySimII achieved an average of 161 ms for the same
data set.

As for matching quality, the F-DySNI outperformed the DySNI and DySimII ap-
proaches on all data sets. Including more trees in the F-DySNI data structure leads to
better matching quality with the cost of an increase in query times. This is because
having more trees leads to an increase in the number of candidate records which
then leads to an increase in the average query time. We aim to address the increase
in query times, when using multiple trees in future work by building and querying
the trees in the index data structure in parallel. The DySimII did not perform as good
as the DySNI and F-DySNI techniques with regard to matching quality and did not
work well with dirty data sets (that contain errors and variations). This problem is
to be addressed in future work were we aim to investigate how to improve matching
quality for dirty data sets in the ER process in general and for our proposed indexing
solutions in specific.

Moreover, we compared our blocking key learning algorithm with an existing
stat-of-the-art blocking key learning algorithm [89] and the results showed that our
learning solution achieved an average query time that is up to two orders of magni-
tude faster than the baseline while maintaining similar matching quality. The results
also showed that our algorithm can learn keys that are similar to those selected man-
ually by an expert where our keys slightly outperformed manual blocking keys with
regard to matching quality while maintaining similar query times.

Our proposed solutions are shown to be suitable for use with real-time ER. A
summary of the major contributions presented in this thesis and future directions
are described in the following sections.

10.2 Contribution Summary

This section provides a list of main contributions presented in this thesis:

1. Several efficient indexing techniques that are tailored for real-time ER: Based
on the identified need for novel efficient indexing techniques that are suitable
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for real-time ER we proposed three different dynamic indexing techniques that
are specifically designed to work with real-time ER.

• A similarity-aware inverted index: We proposed a dynamic index that is
based on the static inverted index from [35]. The aim of this technique is
to provide a dynamic index that can be used with real-time ER. We also
reduced the size of the index by proposing a frequency-filtered variation
that only indexes the most frequent attribute values.

• A sorted neighborhood index: We proposed a tree-based dynamic index
that is based on the sorted neighborhood method [80]. The aim of our tech-
nique is to provide a dynamic index that is suitable for query matching in
real-time. We investigated using various fixed and adaptive window tech-
niques for retrieving candidate records. We also proposed a variation that
aims to improve query matching times by pre-calculating the similarities
of attribute values between neighboring tree nodes.

• A forest-based sorted neighborhood index: We proposed a multi-tree
dynamic indexing technique that aims to improve the quality of query
matching by using multiple distinct trees in the index data structure. This
technique reduces the effects of errors and variations at the beginning of
attribute values (that are used as sorting keys) on matching quality. We
investigated using different numbers of trees and different sorting keys
with single attribute values and concatenation of multiple attribute values
to examine which sorting keys are more suitable for real-time ER.

• A conceptual analysis: We conducted a theoretical analysis of all pro-
posed indexing techniques with regard to estimating the expected number
of record comparisons required by each technique. The aim of this analy-
sis is to give users an insight into the expected run time required to match
a query record with a data set of a certain size.

2. A blocking key learning technique: We proposed a general unsupervised
learning technique that automatically selects optimal blocking/sorting keys
based on three criteria: key coverage (the number of record pairs that eval-
uate to the same key value), generated block sizes (the number of records that
are inserted into a block), and distribution of block sizes (the variance of the
sizes of all generated blocks) to ensure that the selected keys can be used with
real-time ER to provide matching results efficiently. Our technique can learn
multiple blocking/sorting keys that can be used with any multi-pass index-
ing technique (where several indexes are built using different blocking/sorting
keys). Note that our technique can also learn a single blocking/sorting key for
single runs of indexing techniques.

3. A comprehensive evaluation: We conducted an empirical evaluation using
multiple large real-world data sets and multiple synthetic data sets in terms
of quality and efficiency. The aim of our empirical evaluation is to examine if
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the proposed approaches are suitable for use with real-time ER. In addition, we
conducted a comparative evaluation between the different proposed techniques
and existing techniques that are currently used in ER.

10.3 Future Directions

The work presented in this thesis can be improved or extended in different ways as
described in the following:

1. Improve matching quality for data sets with dirty attribute values: Dirty data
sets can include errors, missing values, or inconsistent values [10, 82]. Errors
and variations in attribute values are usually caused by data entry errors or
changes in attribute values like changes in names and addresses. These errors
and variations can reduce the matching quality and cause incorrect classifica-
tion of record pairs [57]. Our experimental evaluation of the different proposed
indexing techniques showed that the quality of real-time ER is affected by how
dirty the queried data set is. Our results showed that the more dirty a queried
data set is, the lower the matching quality will be. It is important to investigate
how the quality of real-time query matching can be improved for data sets with
dirty attribute values.

2. Disk-based indexing techniques for real-time ER: All proposed indexing tech-
niques are memory-based techniques that require the index to reside in main
memory during the matching process. Although main memory capabilities
have increased substantially in recent years and can retain large indexes with
millions of records, as shown in our experimental evaluation, it is always im-
portant to have disk-based options that allow indexing of very large data sets
that do not fit into main memory. A possible research direction in the future
is to investigate using a combination of a B+ tree (that is usually used as a
desk-based indexing data structure) and the braided tree (BRT) proposed in
Chapter 6 (which can be used as a memory-based index) where the full data
set can be indexed on a hard desk using the B+ tree while the data required
for matching a stream of query records can reside in main memory (while it
is needed) using the DySNI or F-DySNI approaches as described in Chapters 6
and 7. This include investigating when, how, and what data can move from the
B+ tree on the hard desk to the BRT in main memory to enable the matching
process in real-time. Another research direction is to investigate enhancing the
DySimII approach to work as a disk-based index that can be used with larger
data sets. A possible approach is to investigate retaining the build indexes on
disk(s) and only load into main memory block(s) that are similar to the matched
query record.

3. Parallelize the indexing and record pairs comparison steps: The results pre-
sented in Chapters 7 and 9 confirm that using multiple trees with distinct sort-
ing keys in the F-DySNI improves the quality of query matching with the cost
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of an increase in query times. A possible solution to a avoid the increase in
insertion and query times (that is caused by using multiple trees in the in-
dex data structure) is to investigate using parallelized environment to process
query matching in real-time. The building phase, where the multiple trees
are constructed, can be distributed over multiple processors since each tree is
distinct and independent from other trees in the index data structure. In addi-
tion, querying the multiple trees in the index can be conducted independently
using multiple processors where a processor can be responsible for generat-
ing a set of candidate recored from a single tree. The overall set of candidate
records (which is generated from the union of candidate records returned from
all single trees) can then be compared with the query record to be classified
into matches and non-matches. Since the comparison step is computationally
expensive it can also be parallelized using multi-threading or multi-processing
to generate the final list of matching records. This process should improve av-
erage insertion and query times when using multiple trees in the index data
structure.

4. Investigate other steps in ER with regard to real-time ER: Since fast and dy-
namic indexing techniques are required to enable conducting the ER process in
real-time, our focus in this thesis was directed towards the indexing step of the
real-time ER process. However, it is important to investigate how other steps of
the ER process can be tailored to make the complete ER pipeline applicable for
real-time matching. We can investigate which of the existing comparison and
classification techniques are more suitable for use with real-time ER based on
their complexity and speed (Simple and fast techniques are more suitable for
real-time ER).

5. A fully automated blocking/sorting key selection: Our blocking key learning
algorithm automatically selects blocking/sorting keys from a list of candidate
blocking keys that is generated manually by an expert. Moreover, the algorithm
uses several weights that can be adjusted by an expert to produce keys that are
most suitable for real-time ER. A future research direction can be to investigate
how to automatically identify candidate blocking keys based on the content of
the data sets without human intervention. Different characteristics of data set
attributes (like completeness, frequency, accuracy, and so on) can be used to
automatically select candidate blocking keys. Another possible future research
direction is to learn the weights that are used in our key selection algorithm to
produce blocks with high quality and small size.

6. Investigate multiple entity types: The proposed indexing techniques in Chap-
ters 5, 6, and 7 assume dealing with data sets that contain one entity type only.
However, real-world data sets can have multiple entity types (for instance bib-
liographic data sets can have multiple entity types such as author, paper, and
venue entities). For future work, an investigation on how to extend the pro-
posed indexing techniques to handle multiple entity types can be conducted.
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10.4 Closing Remarks

The work presented in this thesis provides an insight into the importance of ER in
general, and into the role of the indexing step particularly in tolerating the real-
time ER process. We believe that the proposed techniques can be used in real world
scenarios where real-time ER is required.
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