Competing nonlinearities in quadratic nonlinear waveguide arrays
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We demonstrate experimentally the existence of competing focusing and defocusing nonlinearities in a dou-
ble resonant system with quadratic nonlinear response. We use an array of periodically-poled coupled optical
waveguides and observe inhibition of the nonlinear beam self-action independent on power. This inhibition is
demonstrated in both regimes of normal and anomalous beam diffraction.
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Nonlinear optics is a broad field of research that explores
wave phenomena at high light intensities. Particular in-
terest is devoted to spatial nonlinear effects arising due
to intensity-dependent phase shifts accumulated with
propagation in the medium. Typically, beam focusing or
defocusing is observed for positive or negative sign of the
nonlinearity, respectively. If an optical system, however,
exhibits so-called competing nonlinearities a laser beam
can experience simultaneously focusing and defocusing,
depending on the light intensity. The competition of fo-
cusing and defocusing for different parts of the beam
can lead to a rich variety of effects, such as stable vortex
beams [1] and liquid light [2]. However, such competing
type nonlinearities, where the focusing and defocusing
nonlinear phase shifts can cancel each other, are difficult
to achieve in natural materials.

One possible approach is to combine fast and slow non-
linear responses, such as quadratic and photorefractive
nonlinearities [3]. However, this combination requires a
subtle balance between pulse peak and average beam
powers, and no experimental demonstration of nonlin-
ear phase shift cancellation has been reported, so far.
Other approaches have focused on the implementation
of competing cubic-quintic [4] or quadratic-cubic nonlin-
earities [5]. The latter system provides a realistic way to
achieve competing nonlinearities due to the fact that a
combined x(® — x(®) response appears intrinsically in in-
homogeneous quasi phase matching (QPM) gratings [6].
Theoretical studies of this system have shown that its
behaviour is qualitatively different from media with a
pure quadratic response, due to the presence of nonlinear
phase cancellation [7]. Still experimental results demon-
strating the effect of nonlinear phase cancellation due to
competing nonlinearities are missing. Here, we employ
a periodic system with a dual-resonant quadratic type
nonlinearity and report on the observation of nonlinear
phase shift cancellation due to competition. By using
the diffraction engineering of the periodic structure [8]

we show that nonlinear phase cancellation is possible in
both regimes of normal and anomalous diffraction.

The competing nonlinearities are realized in an array
of periodically-poled waveguides in a z-cut lithium nio-
bate crystal [9]. The waveguides support multiple second
harmonic (SH) modes at wavelengths of ~ 750 nm, which
are coupled to the fundamental wave (FW) of a wave-
length of ~ 1500 nm by quadratic nonlinear interactions.
The presence of several SH modes is crucial for observa-
tion of competing nonlinearities since it provides various
second harmonic generation (SHG) resonances. We show
that as a result of these multiple resonances spatial ef-
fects that arise due to nonlinear phase shifts are strongly
modified in a certain wavelength range.

The used waveguide array is periodically poled to ful-
fill the phase matching (PM) condition: A3 = 28FW —
BSH 427 /AQPM = () where BFW/SH are the propagation
constants of the participating waveguide modes, Af3 is
the phase mismatch, and AQPM = 16.803 pm is the pe-
riod of the QPM grating.

For nonzero phase mismatches, nonlinear phase shifts
of the dominant FW component occur due to cascad-
ing of different frequency-mixing processes [10, 11]. In
a single waveguide, the phase shift induced by a single
FW-SH-interaction can be approximated by ¢éni, (2) =
o ns (2') BPdz’ with the wavenumber 3 and the guided
power P. The effective nonlinear refractive index n$f is
determined as [12]

neﬁ — ngf [1 — Cos (Aﬁzﬂ ( )
> (0/0) A8 1= (0 PAGR) sin? (A52/2)]

where yog is the effective nonlinearity of the quadratic
interaction and w is the frequency of the FH component.
This approximation holds if (4XgHP/Aﬂ2) < 1, which
is true if the PM condition is not exactly met. The ef-
fective Kerr-type nonlinearity induced by the nonlinear
phase shift of the FW wave is focusing/defocusing for
wavelengths above/below a SHG resonance. In waveg-
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Fig. 1. (Color online) (a) Calculated phase mismatch for the
FWoo mode in a sample of L = 71lmm. The circles show the
interaction with the SH fundamental mode and the double
resonance considered here. (b) Measurement of the SH output
power of a single waveguide in dependence on the FW input
wavelength and profiles of the (c) SHoz and (d) SHig modes
intensity distributions.
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Fig. 2. (Color online) (a) Calculated FW phase shift cor-
responding to wavelengths of cancellation (@careellation) " the
maximum phase shift at the SHip resonance (®™%*), and at
a wavelength 2 nm above this resonance where the two phase
shifts are added (®*44%°") (b) Measured SH output power at
wavelengths corresponding to (a), showing strong nonlinear
interaction at the cancellation wavelength.

uide arrays with only one SHG resonance this effective
nonlinearity supports quadratic spatial solitons [13, 14].

As shown earlier some PM resonances with higher or-
der SH modes can be in close proximity to each other
at wavelengths around 1500nm [15]. This was also con-
firmed for our system by numerical calculations of the
PM condition [Fig. 1(a)] and measurements of the SH
signal versus the FW wavelength, shown in Fig. 1(b). We
find two SH resonances of equal strength, where the FW
(FWyo) is phase matched to the higher order SH modes
SHio [Fig. 1(d)] and SHyg [Fig. 1(c)] at wavelengths of
Arw = 1502.6 nm and 1500.5 nm, respectively.

Since the two participating orthogonal SH modes do
not interact directly with each other, they both indepen-
dently impose phase shifts on the FW wave. In the wave-
length region between the two resonances, these phase
shifts possess different signs, because the wavevector mis-
match has different signs for both interactions. This leads
directly to competition of the two effective nonlinear-
ities induced by the SHG resonances. In Fig. 2(a) we
show the sum of the phase shifts affecting the FW in
dependence on the input power for three different wave-

lengths. Since the nonlinear resonances in our sample
are of equal strength the phase shifts induced by both
resonances have the same absolute value but different
signs in the middle of the wavelength interval between
the QPM wavelengths. Here the sum of the phase shifts
is zero for all input powers. In Fig. 2(b) we show that
at the wavelength of phase shift cancellation we still see
strong SHG stemming from both resonances although we
are not in the phase matched regime.

For different strengths of the nonlinear interactions
the wavelength of smallest phase shift moves towards
the weaker resonance. However, absolute cancellation of
the phase shifts can only be achieved for longer and not
exactly phasematched propagation. Then the oscillating
and power dependent terms of Eq. 1 can be neglected.

We note that the nonlinear phase shift could also be
trivially suppressed either for large phase mismatch or
at the PM wavelength. In the former scenario the nonlin-
earity is totally absent, while in the latter one no phase
shifting process happens due to the lack of back con-
version to the FW component. Hence, in these cases the
absence of nonlinear phase shifts is not due to competing
nonlinearities.

The considerations presented above neglect the cou-
pling between the waveguides of a waveguide array. How-
ever, the given predictions are still correct since the non-
linear coupling will be the dominating effect for our ex-
perimental parameters.

To show the effect of the vanishing nonlinear phase
shift experimentally, we excite the array with 7 ps pulses
of an elliptical FW beam, approximately 4 waveguides
wide, polarized along the c-axis of the crystal. We then
monitor the output intensity patterns of the array for
different wavelengths and peak powers. Peak powers are
defined as the sum of the peak powers in the individual
waveguides. As a representative parameter to describe
the beam we chose the width of the output pattern,
which was calculated as the transverse second moment
from the intensities of the waveguides. In Fig. 3(a) the
measured beam width is plotted as a function of wave-
length and peak power coupled into the array. The SHG-
resonances are indicated by the two lines at 1500.5 nm
and 1502.6 nm. Similar to earlier studies on single reso-
nant quadratic interaction [14], we observe a narrowing
of the beam due to the formation of discrete quadratic
solitons at wavelengths above both resonances. In this
wavelength region the two nonlinearities are focusing.
In contrast both nonlinearities are defocusing at wave-
lengths below the resonances, leading to nonlinear broad-
ening of the beam. For wavelengths between the two
SHG resonances, the induced nonlinearities have differ-
ent signs, enabling competition and cancellation of phase
shifts. Hence we observe the inhibition of the nonlinear
self-action of the beam and consequently the beam width
stays the same for all experimentally accessible powers.
In Fig. 3(b) the output intensity profiles at a wavelength
of 1501.6 nm are plotted as a function of power to con-
firm the constant beam profile.
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Fig. 3. (Color online) (a) Output beam width for normal
excitation, normalized to the linear output at 1498 nm. The
PM wavelengths are indicated by solid lines. (b) Power inde-
pendent output pattern at 1501.6 nm [dotted line in (a)].
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Fig. 4. (Color online) (a) Output beam width for staggered
excitation, normalized to the linear output at 1498 nm. The
PM wavelengths are indicated by solid lines. b) Power inde-
pendent output pattern at 1502.3 nm [dotted line in (a)].

An important feature of the waveguide array is the
change of sign of diffraction when the input beam is in-
clined to the Bragg angle [8,16]. However, even though
the diffraction is inverted for this type of excitation, we
observe a qualitatively similar situation [see Fig. 4(a)].
In this case, the QPM wavelengths are shifted due to the
curvature of the transmission bands. In the wavelength
regions above and below the two resonances, the changes
of the beam width have a reversed sign compared to the
findings in Fig. 3(a). Between the resonances, however,
we again observe a region of power independent propa-
gation, as seen in Fig. 4(b). The small deviations of the
beam width and the shift of the cancellation region with
increased power are caused by additional phase shifts.
These are generated by the excitation of the FWy; mode
and the resulting weak nondegenerated mixing of FHyg
and FHy; to the SHyps modes.

In conclusion, we have proved experimentally the can-
cellation of nonlinear phase shifts due to competing non-
linearities in a system with double resonant quadratic
nonlinearity. At the regime of phase shift cancellation the
propagation of the FW beam is independent on power
over the experimentally available power levels. We be-
lieve, that a similar effect may occur in other double-
resonant system, such as a two-dimensional QPM struc-
ture with non-collinear phase matching [17]. In such a

system, however, the beam would also experience strong
transverse shifts at the output.
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