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ABSTRACT 

Background and aims: The non-steroidal anti-inflammatory drug sulindac is an effective 

chemopreventive agent in sporadic colorectal cancer but its potential benefit in mismatch 

repair deficient cancers remains to be defined. We wanted to determine whether genetic 

defects that are relevant for colorectal cancer, such as Msh2 or p53 deficiency, would 

influence the efficiency of sulindac chemoprevention or increase the side effects. 

Methods: Msh2 or p53 deficient and wild type mice received feed containing 160-320 ppm 

sulindac for up to 25 weeks with or without a concurrent treatment with the carcinogen 

azoxymethane. Colon tissue was analysed by histopathology and molecular biology methods. 

Results: We show that sulindac prevented azoxymethane-induced distal colon tumours in all 

mice. In the proximal colon, however, sulindac induced new inflammatory lesions on the 

mucosal folds, which further developed into adenocarcinoma in up to 18-25% of the p53 or 

Msh2 deficient mice but rarely in wild type mice. This region in the proximal colon was 

characterised by a distinct profile of pro- and anti-inflammatory factors, which were 

modulated by the sulindac diet, including upregulation of Hypoxia Inducible Factor 1α and 

Macrophage Inflammatory Protein 2. 

Conclusions: These data show that the sulindac diet promotes carcinogenesis in the mouse 

proximal colon possibly through chronic inflammation. Sulindac has both beneficial and 

harmful effects in vivo, which are associated with different microenvironments within the 

colon of experimental mice. Deficiency for the Msh2 or p53 tumour suppressor genes 

increases the harmful side effects of long-term sulindac treatment in the mouse colon. 
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SUMMARY 

What is already known about this subject 

• NSAID sulindac prevents tumours in many animal models of colorectal cancer and 

has also shown some promise in clinical trials. 

• Long-term use of some NSAIDs is associated with significant gastrointestinal side 

effects. 

• There are conflicting reports on the efficacy of sulindac in ApcMin mice, raising 

questions as to whether certain germline or somatic gene defects reduce the efficiency 

of chemoprevention or increase the side effects. 

What are the new findings 

• We show that sulindac prevented carcinogenesis in the distal colon of wild type and 

p53 or mismatch repair deficient mice. 

• However sulindac induced new inflammatory lesions in the mouse proximal colon, 

which progressed to malignancy more frequently in p53 or mismatch repair deficient 

mice. 

• The premalignant changes started from mild surface damage in the colon epithelium, 

which progressed to chronic inflammation if the sulindac diet was maintained. 

• This region in the proximal colon was characterised by a distinct profile of pro- and 

anti-inflammatory factors, which were differentially modulated by the sulindac diet, 

including upregulation of MIP-2 and Hif1α.  

• Sulindac has both beneficial and harmful effects in vivo, which are associated with 

different microenvironments within the colon. 

How might it impact on clinical practice in the foreseeable future 

• It is unlikely that sulindac use in humans leads to as serious side effects as in the 

genetically modified Msh2 or p53 deficient mice. 
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INTRODUCTION 

The great potential of non-steroidal anti-inflammatory drugs (NSAIDs) in cancer 

chemoprevention has been recognised for decades.[1]  For example, in a recent clinical trial 

of aspirin in the Lynch syndrome, there was a long term reduction in the incidence of 

colorectal carcinoma after the trial had been concluded.[2,3] Lynch syndrome patients are 

carriers of DNA mismatch repair (MMR) gene mutations and have a high risk of developing 

recurrent tumours. The data on sulindac in the Lynch syndrome are limited, but short-term 

administration of sulindac increased epithelial cell proliferation in the proximal colon of 

MMR mutation carriers, raising concerns about its potential chemopreventive effect.[4] The 

NSAIDs celecoxib and rofecoxib reduced the risk of sporadic colorectal adenomas in clinical 

trials, but were associated with serious side effects, including cardiovascular problems or 

gastrointestinal ulcers, bleeding and obstructions.[5,6] Subsequently, rofecoxib was 

withdrawn from clinical use in arthritis but other NSAIDs are among the most commonly 

used medicines.  

It is now widely recognised that apart from gastroduodenal toxicity, NSAIDs also 

have significant side effects in the colon, such as non-specific, eosinophilic or ischemic 

colitis, ulcers, strictures and exacerbation of colonic diverticular disease.[7] This implies that 

NSAIDs can have diametrically opposed effects on the colon, chemoprevention of tumours 

on the one hand and induction or exacerbation of inflammation on the other. Chronic 

inflammation can lead to carcinogenesis, as is well known in chronic colitis and the dextran 

sodium sulfate mouse model of this disease.[8,9] 

The mechanism of NSAID chemoprevention and the cause of the side effects in vivo 

remain unclear. NSAIDs are highly effective in preventing tumour development in some 

animal models, such as the azoxymethane (AOM) model of colorectal cancer in rats and in 

p53∆/+ or p53∆/∆ mice.[10,11] Dietary sulindac also caused a significant decrease in the 
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number of polyps in ApcMin mice.[12] However, a subsequent study reported a decrease of 

tumour development in the small intestine of ApcMin mice but an increase of incidence, 

multiplicity and volume of tumours in the colon, especially in the caecum, with a sulindac 

diet.[13] In the Apc∆/+Msh2∆/∆ mice no difference was observed in the numbers of polyps or 

aberrant crypt foci (ACF) in the colon between mice receiving control diet, sulindac or a 

specific COX-2 inhibitor, MF-tricyclic.[14] 

Therefore, we wanted to determine whether genetic defects that are found in 

hereditary or sporadic colorectal cancer, such as the MMR or p53 deficiency, would 

influence the efficiency of sulindac chemoprevention in vivo, or increase the side effects of 

this treatment. We chose to use sulindac as it has been commonly used in mice and rats, and 

to compare its effect in wild type, Msh2∆/∆ and p53∆/∆ mice. Deficiency of the MSH2 gene 

causes a MMR defect, which is found in Lynch syndrome cancers and a subset of sporadic 

cancers, and p53 is a common defect in sporadic cancers. As neither the p53∆/∆ mice nor the 

Msh2∆/∆ mice develop spontaneous colorectal tumours, we used the carcinogen AOM to 

induce tumours in the distal colon. Although many features of AOM-induced tumours in wild 

type mice or rats are consistent with sporadic colorectal cancer in humans,[15] a striking 

discrepancy is the absence of both the p53 and Msh2 gene defects. Here, we have addressed 

this issue by using genetically modified strains, which allow separate assessment of each 

defect in the AOM model.  

 

MATERIALS AND METHODS 

Mouse lines 

HIF1αF/F were crossed with VILcre mice (B6.SJL-Tg(vil-cre)997Gum/J; Jackson 

Laboratories, Bar Harbor, Maine)[16,17] and heterozygous HIF1α∆/+ knockout mice to 

produce the test genotype VILcrecre/+HIF1α∆/F, which are deficient for HIF1α in the 
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intestinal epithelial cells (∆IEC), and the control genotype VILcre+/+HIF1α∆/F, which 

expresses HIF1α from the floxed (F) allele. Recombination efficiency in the colon was 

determined as previously described.[18] Msh2∆/∆, p53∆/∆, p53∆/+, and the corresponding wild 

type (WT) siblings were obtained by crossing heterozygotes.[19,20] All mice were on the 

C57Bl/6J background. 

 

Administration of AOM and sulindac 

Mice (8 weeks old) were given three weekly injections (15 mg/kg) of AOM (Sigma-

Aldrich, St Louis, MO) or vehicle (saline) only and feed containing either 160 (half) or 320 

ppm (full) sulindac (Sigma-Aldrich; Specialty Feeds, Glen Forrest, Western Australia) for 22 

weeks (started 2 weeks prior to AOM) or control feed.[10,11] Additional groups of mice 

received the sulindac diet without AOM treatment for 1-25 weeks. Colons were opened 

longitudinally and all distal tumours and proximal lesions, which were visible under a 

dissecting microscope, were counted and measured. The total surface area of tumours or 

lesions per mouse was determined as previously described.[21] A subset of colons were 

stained with 0.2% methylene blue for 4 min for the measurement of tumour/lesion 

dimensions. 

 

Histopathology analysis 

All visible lesions and tumours from each colon were biopsied for histopathology 

analysis together with biopsies of macroscopically normal tissue. The entire length of the 

biopsies was examined equivalent to 7-14 high power fields. The severity of inflammation 

was assessed over the entire area that was inflamed. All specimens, including untreated 

controls, were analysed by an anatomical pathologist (JED). Assessment was conducted 
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using blinded slides, and findings were peer-reviewed by a second pathologist for 

concordance.   

The features assessed included: acute and/or chronic inflammation, lymphoid 

aggregates, hyperplastic and /or degenerative changes of the surface epithelium, architectural 

distortion, fibrosis, and neoplasia, classified as epithelial dysplasia or adenocarcinoma. 

Dysplasia was graded as negative, indefinite for low-grade dysplasia, low-grade and high-

grade dysplasia according to the Riddell classification.[22] Only biopsies that show 

convincing neoplastic glands within a desmoplastic stroma extending beyond the muscularis 

mucosae were regarded as invasive adenocarcinoma. Some proximal colon biopsies with 

severe inflammation showed bland appearing displaced glands extending through the 

muscularis mucosae, which on occasion even showed some mucin distension associated with 

these glands. These were regarded as pseudoinvasion or lesions of colitis cystica profunda.  

Ulceration was defined as loss of the colonic mucosa associated with an acute 

inflammatory reaction extending at least through the muscularis mucosae. An erosion was 

defined as superficial ulceration that involved only the surface epithelium and superficial 

underlying lamina propria. Mild acute inflammation was arbitrarily defined as the presence of 

5-30 neutrophils per high power field in the mucosa. Mild chronic inflammation was 

arbitrarily defined as 30-200 chronic inflammatory cells in the superficial and deep lamina 

propria /high power field without significant distortion of the crypt architecture. Severe 

chronic inflammation involved >500 chronic inflammatory cells/high power field causing 

expansion of the lamina propria and extending at least into the submucosa. Hyperplastic 

change was defined as an increase in the number of epithelial cells in the lining mucosa often 

associated with a “frilly” appearance of the surface epithelium similar to hyperplastic polyps 

in the human colon. Number of apoptotic cells/crypt column was assessed from H&E stained 

colon sections as previously described,[13] based on morphological features, including cell 
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shrinkage, nuclear condensation and presence of apoptotic bodies. Minimum of 20 crypts (40 

crypt columns) were counted. 

 

mRNA and protein analysis 

The mucosal surface of the proximal lesions and the uninvolved tissue from 

proximal and distal colon was lightly scraped and snap frozen in liquid nitrogen for RNA 

extraction. Q-PCR reactions were performed using SYBRgreen, TaqMan assays (Applied 

Biosystems, Foster City, CA) or UPL assays (Roche Applied Science) on ABI Prism 7900-

HT Real Time PCR system (Applied Biosystems). For protein analysis snap frozen mouse 

tissues were homogenised in standard RIPA buffer and the resulting lysates analysed with 

western blotting (primary antibodies for cleaved caspase 3, 1:1000, #9661, BclxL, 1:1000, 

#2764, Bcl-2, 1:1000, #2870s, Cell Signaling Technology, Beverly, MA, Bax, 1:1000, sc-

493, p21, 1:500, sc-397-G, Santa Cruz Biotechnology, Santa Cruz, CA, and ß-actin, 1:10000, 

clone AC15, Sigma-Aldrich). 

 

Cell line analysis 

HCT15 cells (CCL-225™, ATCC, Manassas, VA, USA) were propagated in RPMI 

1640 media supplemented with FBS (10% (v/v), Thermotrace, Noble Park, VIC, Australia). 

Cells were incubated overnight in reduced serum conditions (0.2% FBS) and were stimulated 

with TNFα (Peprotech Inc., Rocky Hill, NJ) or sulindac sulfide (Sigma-Aldrich), dissolved in 

the vehicle control DMSO (Sigma-Aldrich). 

 

Immunohistochemistry 

Colon tissue was fixed in 10% formalin and embedded in paraffin following 

standard procedures. Sections were incubated with the following antibodies: HIF1α (1:100, 
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60 min, sc-8711, Santa Cruz Biotechnology, Santa Cruz, CA); Ki67 (1:200, 60 min, clone 

SP6, NeoMarkers, Fremont, CA). Positive and negative control for Hif1α was generated by 

incubating freshly isolated pieces of colon tissue in special media as previous described in 

hypoxic (1% oxygen) or normoxic conditions for 4 h.[23] Hif1α expression intensity (H 

score) was calculated by summing the products of the percentage of positively stained surface 

epithelial cells (0–100) and the staining intensity (1, 2 or 3). 

For analysis of hypoxia, mice were injected with 60 mg/kg pimonidazole HCl 

(Natural Pharmacia International, Burlington, MA), a well validated hypoxia marker,[24] and 

sacrificed after 3 h. Hypoxic areas of the colon were detected by incubating tissue sections 

with monoclonal antibody raised against pimonidazole (1:10, 40 min, Natural Pharmacia 

International). Antibody binding was visualized with the Animal Research Kit (ARK™, 

DAKO). Positive and negative controls were generated by incubating colon tissue with 

50µg/ml pimonidazole HCl for 2 h in hypoxic or normoxic conditions. 

 

Measurement of drug concentration in colon mucosa 

Colon mucosa was lightly scraped and snap frozen, then weighed and homogenised in liquid 

nitrogen. Sulindac and its metabolites, sulindac sulfone and sulindac sulfide, were extracted 

as previously described[25] and analysed with a Thermo Scientific Quantum Access triple 

quadrupole mass spectrometer coupled to a Thermo Scientific Accela UHPLC system 

(Thermo Fisher Scientific, Waltham, MA). Quantitation was performed using external 

calibration curves, corrected using the internal standard, piroxicam, 1ng/µl.  

 
 
Statistical analysis 

Gene/protein expression and sulindac metabolites in tissue were compared using t-tests, and 

the overall frequencies of neoplasia with Fisher’s Exact Test. Severity of inflammation, 
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numbers of apoptotic cells/crypt column, number/size of tumours or lesions and Bax/BclxL, 

Bax/Bcl2 ratios were compared using the Wilcoxon Mann Whitney test (StatXact 8, Cytel 

Software Corporation, Cambridge, MA). 

 

RESULTS 

Sulindac prevents carcinogenesis in the distal colon regardless of mouse genotype. 

Carcinogenesis was induced in the distal colon by administration of the carcinogen 

AOM (fig 1A-C), and both the Msh2∆/∆ and p53∆/∆ mice developed significantly more and 

larger tumours than their wild type (WT) littermates (p=0.035 and p=0.015, respectively). All 

mice receiving a diet containing sulindac developed fewer and smaller tumours and this 

effect was dose-dependent (fig 1B,C). Histopathology analysis showed that the sulindac 

treatment also reduced the frequency of neoplasia (fig 1D, supplementary table 1).  

 

Sulindac triggers carcinogenesis in the proximal colon. 

Examination of methylene blue stained colons revealed new lesions developing as a 

result of the sulindac diet in the mucosal folds of the proximal colon (fig 1E), in contrast with 

the AOM-induced tumours, which were located within 2 cm from the anus. Very few 

proximal lesions were detected when mice received AOM treatment alone, i.e. without 

sulindac diet, and both doses of sulindac treatment led to a highly significant increase in both 

the number and size of lesions in all genotypes including the WT (fig 1F,G). The 

macroscopic appearance ranged from obvious thickening of the mucosal folds to clearly 

defined flat lesions on the mucosal folds. Histopathology analysis revealed that the lesions 

ranged from acute and chronic inflammation through to dysplasia and invasive carcinoma 

(fig 1D, fig 2A-E). Adenocarcinoma was found in up to 25% of Msh2 and 18% of the p53 

deficient mice, but at the most in only one WT mouse in the sulindac-treated groups 



 12 

(supplementary table 1). Subsets of Msh2 or p53 deficient mice that did not receive the 

carcinogen AOM treatment also developed neoplasia in the proximal colon either with the 

full sulindac or the half sulindac diet (fig 1H, supplementary table 1). There was no statistical 

difference in the frequency of proximal adenocarcinoma between the groups that received 

AOM+sulindac or sulindac alone. This indicates that the effect of sulindac was not due to an 

interaction with AOM. There was very good agreement between the two pathologists for 

diagnosing adenocarcinoma (kappa = 0.969). 

We then carried out a systematic pathology comparison between the lesions and 

tumours in the proximal and distal colon and the surrounding uninvolved mucosa 

(supplementary tables 2-3). Hyperplastic changes were more common in the proximal lesions 

(up to 100%) than in the distal tumours (up to 25%). Mucinous adenocarcinomas and tissue 

ulceration were only found in the proximal colon. Tissue damage (erosion and ulceration) 

was more frequent in the lesions than surrounding uninvolved tissue in all genotype groups 

(p<0.0001) but was also found in the surrounding mucosa.  

 

Sulindac metabolites accumulate in the colon mucosa. 

Much of the water absorption from the bolus occurs at the mucosal folds in the 

proximal colon where the faecal material is still in semi-liquid form, while the faeces are 

solid in the distal colon. To test whether sulindac contained in the semi-liquid bolus causes a 

higher accumulation of drug in the proximal colon, we measured the concentrations of 

sulindac and its two metabolites, sulfide and sulfone in the mucosal lining. Sulindac 

concentration was low (fig 2F), whereas its derivatives accumulated at higher concentrations 

than the pro-drug. Sulfone and sulfide concentrations were marginally higher in the proximal 

colon than in the distal colon, but this was not statistically significant.  
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Premalignant proximal lesions develop in a defined region of the proximal colon.  

We treated additional groups of WT littermates from the p53 line with the full 

sulindac diet to analyse the development of the proximal premalignant lesions. Small lesions 

were visible under the dissecting microscope after 1 week but the lesions were significantly 

larger from 10-20 weeks, and the number of lesions per mouse increased at 20 and 25 weeks 

(supplementary fig 1). Histopathology analysis revealed infiltration of inflammatory cells as 

early as one week after sulindac treatment. Depth of inflammation in the lesions progressed 

from mucosal (1 week sulindac treatment) to transmural (25 weeks), as well as crypt damage 

from surface crypt and epithelium damage (1 week) to entire crypt and epithelium lost (25 

weeks, supplementary fig 1). Most lesions were found in a defined 1 cm region of the 

mucosal folds (fig 2G). This region was labelled as P2 in subsequent analyses. 

 

Sulindac-induced inflammation is associated with a slight increase of epithelial cell 

apoptosis  

Sulindac-associated carcinogenesis is associated with a decrease of apoptosis in the 

caecum of ApcMin mice.[13] We next determined if we could observe changes in the rate of 

apoptosis after sulindac treatment. There was a 8.3-fold increase in the number of apoptotic 

cells/crypt column in the lesions (p=0.05) and a 4-fold increase (p=0.08) in the surrounding 

tissue compared to WT mice receiving control food. This increase was not seen in the middle 

and distal colon in sulindac treated mice (supplementary table 4). Western blot analysis for 

the apoptotic marker cleaved caspase 3 also demonstrated a slight increase of apoptosis in the 

P2 region of sulindac treated mice (fig 3A). We next assessed pro- and anti-apoptotic markers 

Bax, Bcl-xL and Bcl-2 by western blot and qPCR analysis and determined the ratio of 

Bax/Bcl-xL and Bax/Bcl2, which can indicate changes in the sensitivity of cells to apoptosis. 
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These ratios remained similar in the mice treated with sulindac compared to control mice, 

with minor increases in the proximal colon (supplementary fig 2). Thus we did not observe a 

decrease but a slight increase of apoptosis, which may be explained by increased 

inflammation as previously reported in ulcerative and experimental colitis.[26,27] We also 

examined p21, which mediates the chemopreventive effect of sulindac in Apc1638+/- 

mice.[28] p21 expression was not significantly changed in the P2 region, but there was a 

small but significant increase in the distal colon (fig 3B).  

 

Sulindac modulates expression of pro-inflammatory genes in the colon. 

As colon neoplasia was clearly associated with the inflammatory lesions in sulindac 

fed mice, we next examined a panel of pro- and anti-inflammatory factors, which have been 

previously implicated in mouse models of colon inflammation, such as HIF1α and NFκB 

target genes. Constitutive expression of HIF1α augments inflammation in experimental 

colitis[29] and the NFκB pathway links inflammation and cancer in the AOM/DSS model of 

colitis.[9] We detected strong upregulation of HIF1α by sulindac in the lesions and in the 

uninvolved mucosa at the P2 region (fig 4A). Of the NFκB target genes,[9,29] the most 

striking effect was seen for MIP-2, IL1β and COX-2, which were very strongly upregulated 

by the sulindac diet in the lesions (fig 4A). A20 an anti-inflammatory and anti-apoptotic 

factor,[30] was slightly downregulated in the P2 region, but the expression of other NFkB 

target genes IL6, TNFα and ICAM was variable and they were not strongly upregulated by 

the sulindac diet (fig 4A). We also examined PECAM, which mediates transendothelial 

leukocyte migration in experimental colitis,[31] and found that it was slightly upregulated in 

the lesions. iNOS was upregulated by the sulindac diet only in the distal colon. 

As we observed strong MIP-2 upregulation in the mucosal lining throughout the 

colon in sulindac-treated mice, we next tested whether sulindac has the same effect in vitro 
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independent of inflammatory cells. MIP-2 is the mouse homolog of IL8, a chemokine that is 

overexpressed in many solid cancers and causes recruitment of infiltrating neutrophils to the 

tumour microenvironment.[32] We treated the COX-2 deficient human colon cancer cell line 

HCT15 with sulindac sulfide. This treatment resulted in nearly 40-fold upregulation of IL8 

but only 2-3 fold upregulation of TNFα and ICAM and had no effect on IL6 expression (fig 

4B). TNFα treatment of HCT15 cells was used as a positive control to demonstrate strong 

upregulation of IL8, ICAM and TNFα upon cytokine stimulation.[33] Therefore, we conclude 

that the sulindac diet can differentially modulate the expression of pro-inflammatory genes in 

the proximal and distal colon mucosa and that the sulindac-induced lesions have the highest 

expression of pro-inflammatory factors. 

 

Sulindac diet induces HIF1α  overexpression in the site susceptible to lesions. 

HIF1α is a transcription factor that regulates many aspects of cancer biology but can 

also function as a barrier protective factor in the colon.[18,34] HIF1α protein is rapidly 

degraded unless it is stabilised by pro-inflammatory cytokines or hypoxic conditions. 

Therefore, we next investigated if HIF1α protein was expressed in the lesions apart from its 

transcriptional upregulation. There was an increase of nuclear HIF1α protein expression in 

the lesions compared with the surrounding mucosa and the distal colon (fig 5A). The pattern 

of HIF1α overexpression was confined to the surface epithelium of sulindac-induced lesions. 

However, this overexpression was not accompanied by upregulation of the Hif1α responsive 

genes CD73 and ITF, which are important mediators of epithelial barrier protection. For 

CD73, there was a gradient of increasing expression from proximal to the distal colon, where 

CD73 was expressed more than 100-fold higher than in the P1 region (fig 5B). ITF also 

showed higher expression in the distal colon compared to the proximal colon.  
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 Mucosal damage was profound in the lesions and resulted in crypt elongation and 

increased cell proliferation as assessed by immunohistochemistry for the proliferation marker 

Ki67 compared to normal mucosa (fig 5C,E). Ki67 positive cells were found at the 

epithelium surface in the lesions, while in normal conditions they were confined to the 

proliferative zone of the crypt base. Many of the cells that were positive for HIF1α also 

stained positive for Ki67 (fig 5D arrows). We conclude that HIF1α is upregulated by the 

sulindac diet in the P2 region and that the HIF1α protein is stabilised in epithelial cells that 

have proliferative potential. 

Next we investigated if HIF1α protein expression at the site of the lesions was 

associated with hypoxia, as it has been suggested that NSAID-induced tissue ulceration 

observed in some patients is caused by reduced blood supply to the site of damage.[35] We 

used pimonidazole, a previously validated hypoxia marker and detected positive staining in 

the region of the mucosal folds, but also in the rectum and intermittently in other regions 

(supplementary fig 3). Similar pattern of hypoxia staining was seen in both sulindac fed and 

control mice. Since any variation in tissue collection or fixation can affect the staining 

intensity between different mice, it cannot be determined if sulindac increased hypoxia. 

However, it can be concluded that the site of the lesions was prone to hypoxia, but this was 

not the only region affected.  

 

Hif1α  expression is pro-inflammatory in the proximal colon lesions. 

To determine whether HIF1α has a pro-inflammatory rather than protective function 

in the proximal colon, we analysed mice deficient for HIF1α in the intestinal epithelial cells 

(IEC), VILcrecre/+ HIF1α∆/F (HIF1α∆/∆IEC) and the control genotype VILcre+/+ HIF1α∆/F 

(HIF1α∆/F), which has retained HIF1α expression in the colon epithelium from the floxed 

allele. Recombination efficiency was high for both the proximal (97%) and the distal (95%) 
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colon epithelium and there was a 20-fold decrease in HIF1α mRNA expression in the 

mucosa of HIF1α∆/∆IEC mice. The two groups developed similar numbers of macroscopic 

lesions with the sulindac diet, but there was a small but non-significant decrease in the total 

surface area of the lesions in HIF1α∆/∆IEC mice. The frequency of adenocarcinoma was 15.4% 

in HIF1α∆/F and 5.3% in HIF1α∆/∆IEC mice. There was significantly less inflammation in the 

HIF1α∆/∆IEC group (fig 6, supplementary fig 4) than in the sibling controls HIF1α∆/F, 

indicating that lack of HIF1α expression in the colon alleviates the inflammatory response 

caused by sulindac. This was seen in both the non-involved tissue (p=0.0006) and in the 

lesions (p=0.0039). This indicates that HIF1α expressed by epithelial cells may play a role in 

modulating the inflammatory response in this mouse model.  

 

DISCUSSION 

This study was designed to determine if sulindac chemoprevention was affected by 

genetic defects that are important in colorectal cancer, such as p53 deficiency or the MMR 

defect. We have shown that sulindac was as effective in preventing AOM-induced distal 

colon tumours on the background of Msh2 or p53 deficiency as in the WT mice. However, 

the sulindac treatment also caused side effects in the proximal colon, which were more 

pronounced in mice with Msh2 or p53 deficiency. These results are in agreement with a 

recent report of intestinal and proximal colon carcinogenesis in response to sulindac, in mice 

heterozygous for a mutant Apc or the MMR gene Mlh1.[36]  

It was striking that the sulindac-induced lesions were confined to a specific region 

(P2) of the proximal colon. Small lesions with inflammatory cell infiltration became visible 

after just one week of sulindac diet. These early lesions showed surface crypt and epithelium 

damage suggesting initial mucosal irritation by sulindac. This region may be more 

susceptible to mechanical surface irritation because most water absorption from the bolus is 
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completed at the mucosal folds. Although the lesions progressed to neoplasia more frequently 

in mice with Msh2 or p53 deficiency, the macroscopic lesions developed to a similar extent 

in all mice, including the WT. Therefore, the initial insult to the mucosa was similar in all 

mice, suggesting that these early lesions were premalignant regardless of the genetic 

background. Our model does not single out a specific gene that is responsible for the early 

tissue inflammation in the P2 region, but has identified a combination of factors that 

characterised its unique response to the sulindac diet.  

A number of genes were differentially expressed between different parts of the colon 

or further regulated by the sulindac diet in the P2 region, including upregulation of HIF1α , 

PECAM and the NFκB target genes MIP-2, IL1β and COX-2. MIP-2 was strongly 

upregulated throughout the colon in sulindac-treated animals, but was most prominent in the 

lesions of the P2 region. MIP-2 is the mouse homolog of chemokine IL8, which is emerging 

as a pro-cancer master regulator of several important pathways.[32] Here we have shown for 

the first time that sulindac also upregulates IL8 in human colorectal cancer cells in vitro. IL8 

is overexpressed in many solid cancers, where it causes recruitment of infiltrating neutrophils 

to the tumour microenvironment, and promotes proliferation of human colon cancer cells in 

vitro.[32,37] MIP-2 also increases neutrophil and lymphocyte recruitment in the mouse 

intestine and increases inflammation in the DSS model of colitis.[38,39] The active role of 

epithelial cells as modulators of the inflammatory process is now well accepted. In addition, 

we observed upregulation of PECAM in the lesions. PECAM is a cell adhesion factor 

involved in leukocyte migration, and promotes migration of blood monocytes to tissue, 

particularly at sites of inflammation, where they maturate to tissue macrophages.[31,40] It is 

unclear if PECAM is a tumour promoter but it is expressed in colorectal cancer cells.[41] 

Thus upregulation of both MIP-2 and PECAM is associated with the presence of infiltrating 

inflammatory cells in the lesions of the P2 region.  
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Pro-inflammatory factors IL1β and COX-2 were also upregulated in the lesions. It is 

now well accepted that IL1β is a tumour promoter[42] and that COX-2, which is 

overexpressed in colorectal cancer, plays a key role in intestinal polyp formation.[43] It was 

unexpected that there was a slight increase of apoptosis in the lesions, as apoptosis is a 

chemopreventive mechanism linked to sulindac. Also, sulindac-induced tumorigenesis was 

previously shown to be associated with decreased apoptosis in ApcMin mice [13]. As we did 

not compare the effect of sulindac on apoptosis in all genetic backgrounds, the significance of 

this is unclear. However, these results are consistent with the findings in ulcerative colitis, as 

well as in DSS-induced colitis, where increased epithelial cell proliferation is associated with 

increased apoptosis.[26,27] We also observed slight downregulation of A20 in the lesions, 

which is consistent with its role as a major anti-apoptotic and anti-inflammatory protein in a 

mouse model of experimental colitis.[30] Interestingly, we did not observe a change in p21 

levels with sulindac in the proximal colon, whereas there was significant upregulation of p21 

in the distal colon. The chemopreventive effect of sulindac in APC1638+/- mice is abolished 

with targeted inactivation of p21.[28] Therefore, our results are consistent with the role of 

p21-mediated chemoprevention by sulindac in the distal colon.  

A striking aspect of the proximal lesions in our study was upregulation of HIF1α by 

the sulindac diet in the P2 region and protein overexpression of HIF1α in proliferating 

epithelial cells expressing Ki67. HIF1α is a transcription factor that activates many genes 

involved in cancer biology, including angiogenesis, cell proliferation/survival, glucose 

metabolism and invasion.[34] Increased HIF1α signalling in the intestinal epithelial cells 

leads to a hyperinflammatory reaction in the mouse colon and its overexpression is a feature 

of serrated colon adenocarcinomas in humans.[29,44] HIF1α is degraded in normoxic 

conditions unless stabilised by pro-inflammatory cytokines, such as IL1β through the NFkB 

pathway. The HIF1α pathway has been described as a link between inflammation and 
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cancer[45,46] but the HIF1α∆/∆IEC mice used here were not informative regarding the role of 

HIF1α in cancer. The reduction of colon inflammation in these mice suggests that HIF1α has 

a pro-inflammatory function in the sulindac model of proximal carcinogenesis. This was 

consistent with our observation that the HIF1α responsive genes ITF and CD73 that have 

been implicated in barrier protection,[47,48] were unaffected by the sulindac diet.  

NFκB activated genes, in particular IL6, are important in chronic colitis associated 

cancer.[9] Here we could not show strong upregulation of IL6, TNFα or ICAM by sulindac, 

but other NFκB targets MIP-2, IL1, and COX-2 were upregulated in the proximal lesions. 

Therefore, it appears that colon carcinogenesis in sulindac-induced lesions is associated with 

a different profile of NFκB target gene expression compared to the AOM/DSS model of 

colitis.[9] However, the role of NFκB activation in the colon carcinogenesis in this model can 

only be conclusively determined by using mice that have a specific deletion of IKKβ in the 

colon.  

This study has implications for proximal colon carcinogenesis in general. It is well 

known that there are significant differences in the molecular, pathological and clinical 

characteristics of tumours found in the proximal compared with the distal colon. For 

example, high microsatellite instability, gene promoter methylation and mucinous tumours 

are more common in the proximal colon and are associated with the serrated neoplasia 

pathway.[49,50] The tumours induced by sulindac share some features with proximal 

cancers, such as hyperplastic changes and a mucinous phenotype. Furthermore, serrated 

carcinomas have a different gene expression profile when compared with conventional 

carcinomas, including upregulation of HIF1α.[44] Although it is unknown whether there is a 

comparable region in the human colon which is susceptible to sulindac-induced tumours, the 

sulindac model of cancer may be suitable for the further study of early proximal 

carcinogenesis. 
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In conclusion, this is the first report of a simultaneous carcinogenic and 

chemopreventive effect of sulindac in the mouse colon. The localised effect of sulindac in the 

proximal colon is associated with the development of inflammatory lesions, which progress 

into malignancy more rapidly in the absence of Msh2 or p53. Furthermore, we provide 

evidence that dietary sulindac can modulate gene expression in the colon epithelium and thus 

may affect the epithelial-inflammatory cell crosstalk and regulation of the inflammatory 

process. Further investigation is necessary to determine if long-term use of sulindac has 

procarcinogenic effects in humans. 
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FIGURE LEGENDS  

Figure 1. Sulindac feed reduces the number and size of tumours in the distal colon but 

induces new lesions in the proximal colon. 

(A) Location of tumours in the distal colon induced by AOM. 

(B) Reduction in the total surface area of tumours in p53∆/∆, p53∆/+, Msh2∆/∆ and 

corresponding WT siblings with increasing sulindac concentration (*p≤ 0.05, compared to 

AOM-only treated mice).  

(C) Mean number of distal colon tumours per mouse showing a decrease in the number of 

AOM induced tumours with the sulindac treatment (*p≤ 0.05, compared to AOM-only 

treated mice). 

(D) Frequency of colon neoplasia in p53∆/∆, p53∆/+, Msh2∆/∆ and corresponding WT siblings. 

Sulindac diet decreased the frequency of distal colon neoplasia in AOM treated mice, while 

increasing the frequency of neoplasia in the proximal colon.  

(E) Location of sulindac-induced lesions in the mouse proximal colon. 

(F) Measurement of the total surface area of the proximal lesions induced by the sulindac diet 

in p53∆/∆, p53∆/+, Msh2∆/∆ and their WT siblings (*p≤ 0.05, compared to AOM-only treated 

mice). 

(G) Mean number of proximal lesions per mouse showing increase in the number of lesions 

with the sulindac treatment (*p≤ 0.05, compared to AOM-only treated mice). 

(H) Frequency of colon neoplasia in p53∆/∆, p53∆/+, Msh2∆/∆ and corresponding WT siblings, 

receiving the sulindac diet without the AOM treatment. Individual frequencies of neoplastic 

changes, low- and high-grade dysplasia and adenocarcinoma are shown in supplementary 

table 1. 
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Figure 2. Proximal colon lesions induced by the sulindac diet progress from acute and 

chronic inflammation to adenocarcinoma. 

(A,B) H&E stained sections of macroscopically normal appearing proximal colon from 

sulindac-treated mice: low power photomicrographs showing mild hyperplasia of the 

epithelium and surface erosion (A&B, scale bars 100 µm); at higher power the area of 

erosion is characterised by a mixed inflammatory cell infiltrate and degenerative change of 

the surface epithelium without significant fibrosis (B insert, scale bar 20 µm). 

(C-E) H&E stained sections from ulcerated areas of the proximal colon from sulindac-treated 

mice: low power photomicrograph showing mucosal ulceration with early fibrosis (C, scale 

bar 200 µm; insert, scale bar 50 µm); well differentiated adenocarcinoma of the colon 

developing in an area of inflammation (D, scale bar 200 µm and insert, scale bar 50 µm); 

well differentiated mucinous adenocarcinoma of the colon developing in an area of 

inflammation (E, scale bar 200 µm and insert, scale bar 50 µm). 

(F) Quantification of sulindac and its sulfide and sulfone metabolites in the epithelium of the 

proximal and distal colon in seven sulindac fed mice (25 weeks). Error bars indicate SEM 

(*p≤ 0.05).  

(G) Schematic representation of the mouse colon. Most lesions are found in a well-defined 1 

cm section of the proximal colon, 2-3 cm from the caecum (P2). The sum of the lesion 

surface area per mouse is shown for the proximal and distal colon regions over 25 weeks of 

sulindac treatment. Error bars indicate SEM.  
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Figure 3.  Sulindac feed causes a slight increase of apoptosis in the mouse proximal 

colon. 

(A) Quantification of apoptosis (western blot analysis for cleaved caspase 3) in the two 

proximal colon regions (P1 and P2), middle (M) and distal (D) colon. Rate of apoptosis was 

higher in mice treated with sulindac compared to mice on control feed, particularly in the 

uninvolved region susceptible to sulindac induced lesions (P2; data for lesions not shown). 

WT mice received 320 ppm sulindac feed or control diet for 10 weeks. Relative activated 

caspase 3 expression in sulindac-treated animals is normalised to β-actin and is presented as a 

fold change to the corresponding colon region of control mice (3 mice per group). Error bars 

indicate SEM (*p≤ 0.05). 

(B) Western blot analysis for p21 expression in the colon mucosa of WT mice, treated with 

the control or 320 ppm sulindac diet for 10 weeks (7-8 per group). Relative p21 expression in 

sulindac-treated animals is normalised to β-actin and is presented as a fold change to the 

corresponding colon region of control mice. Error bars indicate SEM (*p≤ 0.05). 

 

Figure 4. Sulindac feed modulates the expression of pro-inflammatory genes in specific 

regions of the mouse colon. 

(A) qPCR analysis of Hif1α, MIP-2, IL1β, Cox-2, TNFα, IL6, ICAM1, iNOS, A20 and 

PECAM in the colon mucosa of control and sulindac treated WT mice (n=4). mRNA 

expression was normalised to the housekeeping gene rpl19. Graphs represent fold change 

except for IL6, where no expression was detected in the control mice. Error bars indicate 

SEM. Only statistically significant comparisons are shown (* p≤ 0.05).  

(B) qPCR analysis of  ICAM1, TNFα, IL6 and IL8 expression in HCT15 cells, unstimulated 

or stimulated with 50 µM sulindac sulfide or 20 ng/ml TNFα for 4 hours. Results are mean of 
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three independent experiments. mRNA expression was normalised to the housekeeping gene 

GAPDH. Error bars indicate SEM (* p≤ 0.05). 

  

Figure 5. Sulindac fed mice show stabilisation of HIF1α  protein in the inflammatory 

lesions (P2) developing in the mouse colon, where HIF1α  is expressed in Ki-67 positive 

epithelial cells.    

 (A) Immunohistochemistry analysis of Hif1α expression. Nuclear HIF-1α expression was 

increased in the surface epithelium of sulindac-induced lesions. Quantification of Hif1α IHC 

staining (H score) from sulindac treated WT mice. 

(B) qPCR analysis for ITF and CD73 mRNA expression normalised to Rpl 19 in the colon 

mucosa of control and sulindac treated WT mice. Error bars are SEM. Only statistically 

significant comparisons are shown (* p≤ 0.05). 

(C)  Immunohistochemistry analysis of the proliferation marker Ki67. Ki67 expression in 

normal colon (upper panel) is confined to the proliferative zone of the crypt base, but is found 

throughout sulindac-induced lesions (lower panel). Scale bars 50 µm. 

(D) Co-expression of Hif1α and Ki67 in serial sections of sulindac-induced lesions (red 

arrows). Scale bars 50 µm. 

(E) Quantification of the proliferative index, Ki67 in sulindac treated WT mice showing 

higher proliferation in lesions than the surrounding uninvolved mucosa. Bars represent mean 

percentage of crypt Ki67 positive cells. Error bars indicate SEM. 

 

Figure 6. Loss of Hif1α in the colon epithelium reduces sulindac-induced inflammation. 

(A) Total surface area of proximal lesions per mouse averaged per genotype in HIF1α∆/∆IEC 

and HIF1α∆/f mice receiving the sulindac diet. Error bars indicate SEM (p=NS).  
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(B) Histopathology assessment of inflammation in proximal lesions and uninvolved colon 

biopsies. Inflammation score is significantly reduced in HIF1α∆/∆IEC mice compared with 

HIF1α∆/f mice (p=0.0039, lesions; p=0.0006, uninvolved tissue). Bars indicate percentage of 

specimens in each inflammation category; 0= no inflammation, 1= mild, 2=moderate and 

3=severe inflammation. The inflammation scores for specific regions of the mouse colon are 

shown in supplementary figure 4.  

 

REFERENCES 
1 Gupta RA, Dubois RN. Colorectal cancer prevention and treatment by inhibition of 

cyclooxygenase-2. Nat Rev Cancer 2001;1:11-21. 
2 Burn J, Bishop DT, Mecklin JP, et al. Effect of aspirin or resistant starch on colorectal 

neoplasia in the Lynch syndrome. N Engl J Med 2008;359:2567-78. 
3 Burn J, Gerdes AM, Meckin JP, et al. Aspirin prevents cancer in Lynch syndrome. Eur 

J Cancer Supplement 2009;7(2):6000.  
4 Rijcken FE, Hollema H, van der Zee AG, et al. Sulindac treatment in hereditary non-

polyposis colorectal cancer. Eur J Cancer 2007;43:1251-6. 
5 Baron JA, Sandler RS, Bresalier RS, et al. A randomized trial of rofecoxib for the 

chemoprevention of colorectal adenomas. Gastroenterology 2006;131:1674-82. 
6 Bertagnolli MM, Eagle CJ, Zauber AG, et al. Five-year efficacy and safety analysis of 

the Adenoma Prevention with Celecoxib Trial. Cancer Prev Res (Phila Pa) 
2009;2:310-21. 

7 Thiefin G, Beaugerie L. Toxic effects of nonsteroidal antiinflammatory drugs on the 
small bowel, colon, and rectum. Joint Bone Spine 2005;72:286-94. 

8 Kohonen-Corish MR, Daniel JJ, te Riele H, et al. Susceptibility of Msh2-deficient 
mice to inflammation-associated colorectal tumours. Cancer Res 2002;62:2092-7. 

9 Greten FR, Eckmann L, Greten TF, et al. IKKbeta links inflammation and 
tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004;118:285-96. 

10 Rao CV, Rivenson A, Simi B, et al. Chemoprevention of colon carcinogenesis by 
sulindac, a nonsteroidal anti-inflammatory agent. Cancer Res 1995;55:1464-72. 

11 Hu Y, Le Leu RK, Young GP. Sulindac corrects defective apoptosis and suppresses 
azoxymethane-induced colonic oncogenesis in p53 knockout mice. Int J Cancer 
2005;116:870-5. 

12 Boolbol SK, Dannenberg AJ, Chadburn A, et al. Cyclooxygenase-2 overexpression and 
tumor formation are blocked by sulindac in a murine model of familial adenomatous 
polyposis. Cancer Res 1996;56:2556-60. 

13 Yang K, Fan K, Kurihara N, et al. Regional response leading to tumorigenesis after 
sulindac in small and large intestine of mice with Apc mutations. Carcinogenesis 
2003;24:605-11. 

14 Lal G, Ash C, Hay K, et al. Suppression of intestinal polyps in Msh2-deficient and 
non-Msh2-deficient multiple intestinal neoplasia mice by a specific cyclooxygenase-2 
inhibitor and by a dual cyclooxygenase-1/2 inhibitor. Cancer Res 2001;61:6131-6. 

15 Takahashi M, Wakabayashi K. Gene mutations and altered gene expression in 
azoxymethane-induced colon carcinogenesis in rodents. Cancer Sci 2004;95:475-80. 



 28 

16 Ryan HE, Lo J, Johnson RS. HIF-1 alpha is required for solid tumor formation and 
embryonic vascularization. Embo J 1998;17:3005-15. 

17 Madison BB, Dunbar L, Qiao XT, et al. Cis elements of the villin gene control 
expression in restricted domains of the vertical (crypt) and horizontal (duodenum, 
cecum) axes of the intestine. J Biol Chem 2002;277:33275-83. 

18 Karhausen J, Furuta GT, Tomaszewski JE, et al. Epithelial hypoxia-inducible factor-1 
is protective in murine experimental colitis. J Clin Invest 2004;114:1098-106. 

19 de Wind N, Dekker M, van Rossum A, et al. Mouse models for hereditary 
nonpolyposis colorectal cancer. Cancer Res 1998;58:248-55. 

20 Jacks T, Remington L, Williams BO, et al. Tumor spectrum analysis in p53-mutant 
mice. Curr Biol 1994;4:1-7. 

21 Young GP, McIntyre A, Albert V, et al. Wheat bran suppresses potato starch--
potentiated colorectal tumorigenesis at the aberrant crypt stage in a rat model. 
Gastroenterology 1996;110:508-14. 

22 Riddell RH. Premalignant and early malignant lesions in the gastrointestinal tract: 
definitions, terminology, and problems. Am J Gastroenterol 1996;91:864-72. 

23 Hinoi T, Akyol A, Theisen BK, et al. Mouse model of colonic adenoma-carcinoma 
progression based on somatic Apc inactivation. Cancer Res 2007;67:9721-30. 

24 Raleigh JA, Chou SC, Arteel GE, et al. Comparisons among pimonidazole binding, 
oxygen electrode measurements, and radiation response in C3H mouse tumors. Radiat 
Res 1999;151:580-9. 

25 Kapetanovic IM, Krishnaraj R, Martin-Jimenez T, et al. Effects of oral dosing 
paradigms (gavage versus diet) on pharmacokinetics and pharmacodynamics. Chem 
Biol Interact 2006;164:68-75. 

26 Iwamoto M, Koji T, Makiyama K, et al. Apoptosis of crypt epithelial cells in 
ulcerative colitis. J Pathol 1996;180:152-9. 

27 Vetuschi A, Latella G, Sferra R, et al. Increased proliferation and apoptosis of colonic 
epithelial cells in dextran sulfate sodium-induced colitis in rats. Dig Dis Sci 
2002;47:1447-57. 

28 Yang W, Velcich A, Mariadason J, et al. p21(WAF1/cip1) is an important determinant 
of intestinal cell response to sulindac in vitro and in vivo. Cancer Res 2001;61:6297-
302. 

29 Shah YM, Ito S, Morimura K, et al. Hypoxia-inducible factor augments experimental 
colitis through an MIF-dependent inflammatory signaling cascade. Gastroenterol 
2008;134:2036-48. 

30 Vereecke L, Sze M, Guire CM, et al. Enterocyte-specific A20 deficiency sensitizes to 
tumor necrosis factor-induced toxicity and experimental colitis. J Exp Med 
2010;207:1513-23. 

31 Rijcken E, Mennigen RB, Schaefer SD, et al. PECAM-1 (CD 31) mediates 
transendothelial leukocyte migration  in experimental colitis. Am J Physiol Gastrointest 
Liver Physiol 2007;293:G446–G452 

32 Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res 
2008;14:6735-41. 

33 Jung HC, Eckmann L, Yang SK, et al. A distinct array of proinflammatory cytokines 
is expressed in human colon epithelial cells in response to bacterial invasion. J Clin 
Invest 1995;95:55-65. 

34 Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003;3:721-32. 
35 Levi S, Shaw-Smith C. Non-steroidal anti-inflammatory drugs: how do they damage 

the gut? Br J Rheumatol 1994;33:605-12. 



 29 

36 Itano O, Yang K, Fan K, et al. Sulindac effects on inflammation and tumorigenesis in 
the intestine of mice with Apc and Mlh1 mutations. Carcinogenesis 2009;30:1923-6.  

37 Itoh Y, Joh T, Tanida S, et al. IL-8 promotes cell proliferation and migration through 
metalloproteinase-cleavage proHB-EGF in human colon carcinoma cells. Cytokine 
2005;29:275-82. 

38 Ohtsuka Y, Lee J, Stamm DS, et al. MIP-2 secreted by epithelial cells increases 
neutrophil and lymphocyte recruitment in the mouse intestine. Gut 2001;49:526-33. 

39 Ohtsuka Y, Sanderson IR. Dextran sulfate sodium-induced inflammation is enhanced 
by intestinal epithelial cell chemokine expression in mice. Pediatr Res 2003;53:143-7. 

40 Muller WA, Weigl SA, Deng X, et al. PECAM-1 is required for transendothelial 
migration of leukocytes. J Exp Med 1993;178:449-60. 

41 Tang DG, Chen YQ, Newman PJ, et al. Identification of PECAM-1 in solid tumor 
cells and its potential involvement in tumor cell adhesion to endothelium. J Biol Chem 
1993;268:22883-94. 

42 Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860-7. 
43 Oshima M, Dinchuk JE, Kargman SL, et al. Suppression of intestinal polyposis in Apc 

delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 1996;87:803-
9. 

44 Laiho P, Kokko A, Vanharanta S, et al. Serrated carcinomas form a subclass of 
colorectal cancer with distinct molecular basis. Oncogene 2007;26:312-20. 

45 Jung YJ, Isaacs JS, Lee S, et al. IL-1beta-mediated up-regulation of HIF-1alpha via an 
NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation 
and oncogenesis. Faseb J 2003;17:2115-7. 

46 Lu H, Ouyang W, Huang C. Inflammation, a key event in cancer development. Mol 
Cancer Res 2006;4:221-33. 

47 Furuta GT, Turner JR, Taylor CT, et al. Hypoxia-inducible factor 1-dependent 
induction of intestinal trefoil factor protects barrier function during hypoxia. J Exp Med 
2001;193:1027-34. 

48 Synnestvedt K, Furuta GT, Comerford KM, et al. Ecto-5'-nucleotidase (CD73) 
regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal 
epithelia. J Clin Invest 2002;110:993-1002. 

49 Iacopetta B. Are there two sides to colorectal cancer? Int J Cancer 2002;101:403-8. 
50 Jass JR, Whitehall VL, Young J, et al. Emerging concepts in colorectal neoplasia. 

Gastroenterology 2002;123:862-76. 
 





maijacorish
Text Box
Figure 2



maijacorish
Text Box
Figure 3





maijacorish
Text Box
Figure 5



maijacorish
Text Box
Figure 6




