On Cauchy–Mirimanoff and related polynomials

Paul M. Nanninga

May 2013

A thesis submitted for the degree of Doctor of Philosophy of The Australian National University
Dedication

For Helen, Nick, Lilly and Meg
Declaration

The work in this thesis is my own except where otherwise stated.

Paul M. Nanninga
Acknowledgements

My thanks are extended to Prof. Murray Batchelor and Prof. Markus Hegland who provided essential support and advice during this study. Helpful comments were also made by Dr Keith Matthews and Dr John Campbell.
Abstract

The focus of this thesis is to investigate the Cauchy–Mirimanoff polynomials E_n and their close relatives R_n, S_n and T_n, with an emphasis on irreducibility. The Cauchy–Mirimanoff polynomials were first identified and studied by Cauchy and Liouville in 1839 in relation to Fermat’s Last Theorem, but it was Mirimanoff in 1903 who first proposed their irreducibility over \mathbb{Q} for n a prime number. None of the standard irreducibility criteria apply directly, for example Helou showed E_n is always reducible modulo any prime for all odd $n \geq 9$. Computing irreducibility is problematic as the largest coefficients grow rapidly with n. The difficulty of the problem is apparent since it remains unresolved after more than 100 years. Helou, Filaseta and Beukers in 1997, Tzermias in 2007 and 2012, Irick in 2010 and Lynch in 2012 have progressed the area using a range of methods, but this thesis describes an alternative original method and it is used to generalize some of the earlier results. In essence the method uses proven properties of the polynomials to reveal an inconsistency in the 2–adic or 3–adic valuation of their coefficients, depending on the polynomial under consideration.

After proving several properties of the polynomials the new method is used here to prove that R_m, S_m, T_m are irreducible over \mathbb{Q} for odd $m \geq 3$, and E_n, R_n, S_n are irreducible over \mathbb{Q}, for $n = 2^q m$, $q = 1, 2, 3, 4, 5$, and $m \geq 1$ odd. And using the same approach it is proved that $E_{3^q m}$ is irreducible over \mathbb{Q} for $q = 1, 2, 3, 4$ and for any odd $m \geq 1$, not divisible by 3. It is likely the results could be extended to higher values of q. It is proved that for most odd n, assuming E_n is reducible over \mathbb{Q}, E_n is proportional to the product of two primitive irreducible polynomials over \mathbb{Z}, both of which share all 6 of the automorphisms of E_n.

Mirimanoff’s conjecture is also investigated. Tzermias has shown E_p is irre-
ducible for every prime p less than 1,000, and by considering a decomposed form of E_p this result is extended here to all primes less than 10,000. Several new irreducibility criteria and theorems relating to the number and size of factors over \mathbb{Q} are proved including some based on the approach of Schönemann which are shown to be effective.

A good approximation to all the roots of E_n (for odd and even n) is proved. For n a prime this is used to prove an upper bound on the number of factors of E_n over \mathbb{Q}. Using the estimate it is shown that for large n the roots take the form of simple linear fractional functions of the n’th roots of unity.

The Newton polygon of E_n is studied for composite n. Using this it is shown that if p is any prime divisor of n, then E_n is always reducible over the field of p–adics \mathbb{Q}_p. Irreducible factors in $\mathbb{Q}_p[x]$ of E_n, R_n, S_n, T_n, are identified for $n = Kp^r$, where p is any prime, with $1 \leq K \leq p - 1$ and $r \geq 1$. A complete factoring of E_n into irreducibles in $\mathbb{Q}_p[x]$ is given for $n = 2p^r$. Similar results are proved for R_n, S_n and T_n.

The thesis concludes with some possible future directions.
Contents

Dedication i
Declaration iii
Acknowledgements v
Abstract vii

1 Introduction 1
1.1 Background ... 1
1.2 Principal results ... 2

2 Cauchy–Mirimanoff and related polynomials 9
2.1 Introduction ... 9
2.2 The polynomials E_n, R_n, S_n and T_n 10
2.3 Irreducibility of E_n, R_n, S_n and T_n in $\mathbb{Q}[x]$ 17

3 Irreducibility of Cauchy–Mirimanoff polynomials E_{6k+3} 25
3.1 Introduction ... 25
3.2 Further properties of E_n for odd n 26
3.3 Irreducibility of E_n in $\mathbb{Q}[x]$ for $n = 6k + 3$ 33

4 On Mirimanoff’s conjecture 39
4.1 Introduction ... 39
4.2 Irreducibility of C_p for prime $p \geq 5$ 41
4.3 Irreducibility of D_p for prime $p \geq 5$ 45
4.4 Factors of D_p in $\mathbb{Q}[t]$ 47
4.5 Schönenmann’s approach applied to D_p 53

5 Locating the roots of E_n, R_n, S_n and T_n 59
 5.1 Introduction .. 59
 5.2 Location of the roots of E_n for odd n 60
 5.3 Location of the roots of E_n for even n 65
 5.4 Location of the roots of R_n, S_n and T_n 73

6 Factors of E_n, R_n, S_n and T_n in $\mathbb{Q}_p[x]$, for composite n 77
 6.1 Introduction .. 77
 6.2 Factors of E_n in $\mathbb{Q}_p[x]$ for composite n 78
 6.3 Factors of R_n, S_n and T_n in $\mathbb{Q}_p[x]$ for composite n 88

Future directions .. 91

Appendix A Explicit coefficients for Cauchy–Mirimanoff and related polynomials 95
 A.1 Coefficients of E_n .. 95
 A.2 Coefficients of R_n .. 98
 A.3 Coefficients of S_n .. 98
 A.4 Coefficients of T_n .. 98

Appendix B Irreducibility of D_p in $\mathbb{Q}[t]$ for all primes $11 \leq p < 10,000$ 101