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It has recently been discovered that the optical analog of a gradient echo, in an optically thick material, could
form the basis of an optical memory that is both completely efficient and noise-free. Here we present analytical
calculations showing that this is the case. There is close analogy between the operation of the memory and an
optical system with two beam splitters. We can use this analogy to calculate efficiencies as a function of optical
depth for a number of quantum memory schemes based on controlled inhomogeneous broadening. In particu-
lar, we show that multiple switching leads to a net 100% retrieval efficiency for the optical gradient echo even
in the optically thin case.
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I. INTRODUCTION

The ability to store and recall quantum states of light as
coherences in atomic media is currently being actively pur-
sued. Such quantum memories would find use in both
optical-based quantum computation �1� and long-distance
quantum communication �2�.

Many of the current quantum memory approaches involve
the use of three-level atomic systems, and store quantum
information between two quasiground states �3–7�. Quantum
states have been stored and recalled using this approach
�3,8–10�. Three-level schemes are particularly well suited to
gaseous atomic systems. Significant optical depths can be
obtained using allowed transitions and long coherence times
can be obtained for the ground-state coherences. Rare-earth-
ion-doped solids at cryogenic temperatures have much
higher atom densities and allow reasonable optical thickness
to be obtained from ensembles of weak oscillators. These
weak oscillators can have correspondingly long coherence
times. This means that approaches involving only two-level
atoms can be considered. Sangouard et al. �11� showed that
in principle 54% efficiency can be achieved from a con-
trolled reversible inhomogeneous broadening �CRIB� echo
�5,6� with two-level atoms, in the case where the broadening
mechanism is “transverse,” that is, not correlated with posi-
tion along the optical path. The efficiency was limited by
reabsorption; as the sample is made more optically thick, as
is required to absorb the input pulse, more of the echo gets
absorbed before it can make it out of the sample. Shortly
afterward it was shown that the optical gradient echo or “lon-
gitudinal” CRIB echo �12�, the only CRIB echo that has so
far been reported experimentally, did not suffer from reab-
sorption problems and offered noise-free, potentially 100%

efficient storage �13�. An attractive property of these echo-
based techniques is that the time-bandwidth product scales
better with optical depth �2,14�. Indeed, storage and recall of
multiple pulses has been demonstrated for CRIB echo
memories �15� but this has proved difficult for electromag-
netically induced transparency �EIT�.

Following on from �13�, here we present an analytic
theory of the optical gradient echo �longitudinal CRIB� echo.
Analytic solutions of the Maxwell-Bloch equations are de-
rived for a pulse of light interacting with an ensemble of
atoms, where the resonant frequency of the atoms varies lin-
early with the propagation distance. After the input pulse, the
atomic coherence dephases due to the different resonant fre-
quencies of the atomic ensemble. If the detuning of each of
the atoms is reversed the ensemble rephases and produces an
echo. In the case where the medium is optically thick the
echo is totally efficient. We show close analogy between a
gradient echo memory and a pair of beam splitters. We use
this analogy to calculate the efficiency of the longitudinal
echo for optically thin samples. Reversal of the inhomoge-
neous broadening multiple times can be easily considered
using this analogy as can the operation of a number of
memories placed one after the other in the beam path. Trans-
verse inhomogeneous broadening can also be treated using
the same approach. This is because transverse broadening of
a collection of atoms can be modeled by a large number of
optically thin longitudinally broadened collections placed
one after the other. In this manner we reproduce previous
results for the efficiency of transverse CRIB echoes �11� but
extend the treatment to the case of multiple reversals of the
broadening.

II. THEORY

We consider the interaction of a collection of two-level
atoms with a light field where a detuning of the atoms that is*jevon.longdell@otago.ac.nz
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linearly dependent on their position can be introduced. We
shall assume that the area of the incoming pulses is much
less than that of a � pulse. This enables us to treat the atoms
as harmonic oscillators. Before the detunings of the ions are
flipped, the Maxwell-Bloch equations in the frame at the
speed of light are �16�

�

�t
��z,t� = − ��

2
+ i�z���z,t� + igE�z,t� , �1�

�

�z
E�z,t� = iN��z,t� , �2�

where E represents the slowly varying envelope of the opti-
cal field, � the polarization of the atoms, N the atomic den-
sity, g the atomic transition coupling strength, � the decay
rate from the excited state, and �z the detuning from reso-
nance. We shall assume that the process happens fast com-
pared to the atomic decay rate and will take �=0.

In order to retrieve the light pulse, the detuning of the
atoms is flipped. The Maxwell-Bloch equations describing
the dynamics are the same as above except the sign of the
i�z term in �1� is flipped, leading to �with �=0�

�

�t
��z,t� = + i�z��z,t� + igE�z,t� , �3�

�

�z
E�z,t� = iN��z,t� . �4�

As mentioned above, although the treatment here is clas-
sical, the linearity of Eqs. �1�–�4� ensures that exactly the
same analysis would be valid for operator-valued � and E.
The only added noise in the output pulses will be the vacuum
noise added to preserve commutation relations in much the
same way as light interacting with a beam splitter. Our re-
sults will thus hold for quantum-mechanical fields also.

The domain over which these equations will be solved is
illustrated in Fig. 1. The boundary conditions are the input
pulse E�z=−z0 , t�= f in�t� and the initial state of the atoms.
We shall assume that the atoms start in their ground state so
that ��z , t=−��=0. By propagating forward in both z and t
from these boundary conditions, one could determine the f
inal state of the atoms and the light exiting the sample at z
=z0. Ideally, the procedure would result in an output pulse
E�z= +z0 , t�= fout�t� that has the same energy and is closely
related to the input pulse, and at the end of the process all the
atoms would be left in their ground states, ��z , t= +��=0. It
should be noted that we are dealing with the situation where
there is no decay of the atomic states, so in order for ��z , t
= +��=0 the atoms must be left in their ground states at the
end of the retrieval process; this cannot happen via decay of
the atomic states.

Rather than propagating forward all the way from our
boundary conditions at z=−z0 and t=−� to arrive at expres-
sions for z=z0 and t= +�, we will take a different approach
that makes better use of the symmetry of the situation. We
first solve for the behavior in region A using the boundary
conditions ��z , t=−��=0 and E�z=−z0 , t�0�= f in

− �t�. This
analysis will give us expressions for E and � at the time

when the detunings are flipped ���z , t=0� and E�z , t=0�� as
well as an expression for the light that leaves the sample
before the field is flipped �E�z= +z0 , t�0�= fout−�t��.

We then carry out what turns out to be a very similar
analysis. Working in region B, we start with an arbitrary
form output pulse �E�z= +z0 , t�0�= fout+�t�� and the require-
ment that the atoms end up in their ground states ���z , t
=��=0� and then we work out what is needed from the other
two boundary conditions E�z=−z0 , t�0� and (��z , t
=0� ,E�z , t=0�) in order for these outcomes to occur. By
comparing these required boundary conditions with those
that actually occur, we show that in the case of an optically
thick sample the storage is completely efficient. For the case
of an optically thin sample we can calculate how efficient the
process will be.

The analysis of the behavior in region A is as follows.
First Eq. �1� is integrated to give

�a�z,t� = ig�
−�

t

dt�e−i�z�t−t��Ea�z,t��

= ig�
−�

�

dt�H�t − t��e−i�z�t−t��Ea�z,t��; �5�

here H denotes the Heaviside step function. The above ex-
pression is in the form of a convolution, and taking the Fou-
rier transform gives a product

�a�z,	� = igEa�z,	�� 1

i�	 + �z�
+ �
�	 + �z�� , �6�

Substituting this in Eq. �2� we get

�zEa�z,	� = − gN� 1

i�	 + �z�
+ �
�	 + �z��Ea�z,	� . �7�

Integrating this equation, we have

FIG. 1. The domain over which the Maxwell-Bloch equations
are solved. Each horizontal slice represents one position in the
sample of atoms as a function of time. The light enters the sample at
z=−z0 and leaves at z= +z0. The dotted line represents the point in
time at which the detunings of the ions are flipped. In region A the
dynamics are described by Eqs. �1� and �2�, in region B by Eqs. �3�
and �4�.
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Ea�z,	� = Ea�z = − z0,	�exp �
−z0

z

dz�

− gN� 1

i�	 + �z��
+ �
�	 + �z���

= Fin
−�	�exp�− ���H�	 + �z� − H�	 + �z0��	

�
 	 + �z

	 + �z0

 i�

, �8�

where �=gN /�.
It can be seen that the amplitude of each spectral compo-

nent is attenuated by a factor exp�−��� after traveling past
the position in the sample where it is resonant with the at-
oms. It also receives a phase shift as it travels through the
sample.

We make the assumption that the spectral coverage of the
sample is large compared to the optical depth. That is, for
each frequency of interest, 	, in our input signal we have
�	�z0 in which case our expression for Ea�z ,	� takes the
form

Ea�z,	� = Fin
−�	�exp�− ��H�	 + �z��
	 + �z

�z0

 i�

. �9�

Substituting z= +z0 in the above equation, one finds that
the transmitted pulse is equal to the the incident pulse mul-
tiplied by an attenuation factor exp�−���, i.e.,

fout
− �t� = f in

− �t�e−�� �10�

In the limit of large � no light is transmitted and all remains
in the material during the period t�0.

Integration of Eq. �9� with respect to 	 gives an expres-
sion for Ea�z , t=0� in the form of a convolution. Fourier
transforming along the spatial coordinate, we get

Ea�k,t = 0� = − f in
−�−

k

�
�sgn�k��
 k

�

−1+i�

��i��

� �
 k

�

cosh���

2
� +

k

�
sinh���

2
�� . �11�

Here f in�k /�� is the input field at the time �=k /� and ���� is
the gamma function. An expression for � at the time the field
was flipped can easily be obtained from the above result
along with Eq. �2�.

We now turn our attention to region B and calculate �b
and Eb in that region subject to our desired boundary condi-
tions �b�z , t=��=0, Eb�z=z0 , t�= fout

+ �t�. The output field
fout

+ �t� is at this stage undetermined.
Solution of Eq. �3� subject to the output condition

�b�z , t=��=0 gives

�b�z,t� = ig�
+�

t

dt�ei�z�t−t��Eb�z,t��

= − ig�
−�

�

dt�H�t� − t�e−i�z�t�−t�Eb�z,t�� . �12�

Fourier transformation gives

�b�z,	� = − igEb�z,	�� i

�	 − �z�
+ �
�	 − �z�� . �13�

Substituting this in Eq. �4� and integrating, we get

Eb�z,	� = Eb�z = z0,	�exp

��
+z0

z

dz�gN� i

�	 − �z��
+ �
�	 − �z���

= Fout
+ �	�exp�− ���H�	 − �z�

− H�	 − �z0��	
 	 − �z

	 − �z0

 i�

. �14�

In a similar manner as in region A, in the limit of large z0 this
can be approximated as

Eb�z,	� = Fout
+ �	�exp�− ��H�	 − �z��
	 − �z

�z0

 i�

.

�15�

From the above expression Eb�z=−z0 , t� can be calculated,
resulting in

f in
+ �t� = fout

+ �t�e−��. �16�

Also from Eq. �15� one can find an expression for Eb�k , t
=0�:

E�k,t = 0� = fout
+ �−

k

�
�sgn�k��
 k

�

−1−i�

��− i��

��
 k

�

cosh���

2
� +

k

�
sinh���

2
�� . �17�

Equations �16� and �17� give conditions that, if satisfied,
will lead to a particular output pulse fout

+ �t� and all the atoms
will be left in the ground state at the end of the process. So
long as we apply an auxiliary input pulse, given by Eq. �16�,
a comparison of Eqs. �11� and �17� tells us that we will have
an output pulse related to our input pulse by

fout
+ �t� = − f in

− �− t�t2i� ��i��
��− i��

. �18�

Because t2i���i�� /��−i�� has a modulus of 1 for all t, it
can be seen that the envelope of the output pulse is a time-
reversed version of the input. The practical usefulness of the
memory would of course be greatly hampered by the need
for this auxiliary input pulse, which must be an attenuated
copy of the output pulse applied at the same time as the
output pulse. However, in the situation where the sample is
optically thick, exp�−���1, the required input pulse is
zero. To arrive at Eq. �18� one only needs to ensure that the
values for E match; the values for � for t=0 will then also
match because of Eqs. �2� and �4�.

The phase between the input pulse and the output pulse
changes across the pulse by 2� ln�tend / tstart�, where tstart and
tend are the start and end times for the output pulse. This will
be a modest phase shift in most situations where the memory
might be used. A value for � of 2 would provide sufficient
optical depth for 99.999% efficiency; with this and
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tend / tstart=2 the phase shift across the pulse would be less
than �. This phase shift could be corrected for by some
time-dependent change in the optical path length, for in-
stance a mirror mounted on a piezo or an electro-optic phase
modulator. Alternately, two memories could be used in se-
ries, with the initial frequency gradients opposite for each
memory; the phase shifts of the two memories would then
cancel.

III. EFFICIENCY AND BEAM SPLITTER ANALOGS

The fact that we can still get the desired output pulse with
an optically thin sample by applying an auxiliary input pulse
may not be all that helpful in the practical operation of the
memory. It does, however, along with the linearity of the
differential equations, enable one to determine the effect of
the memory in the optically thin regime. The difference be-
tween the true output pulse when working in the optically
thin regime and in the ideal case is equal to the effect of
applying the auxiliary pulse alone. There is a close analogy
between the operation of the memory in the finite optical
depth regime and a beam splitter. An optical beam splitter
takes pairs of optical modes and outputs linear combinations
of these modes. The action of the memory for both times t
�0 and t�0 can be reduced to that of a beam splitter, as
illustrated in Fig. 2. Each of the two beam splitters has two
input and two output ports. For the left-hand beam splitter
the bottom input port is labeled f in

− �t� and the mode of inter-
est is the temporal mode of the optical wave packet that we
wish to store. The top, output port of the left-hand beam
splitter, labeled fout

− �t�, represents the light that is transmitted
through the sample. From Eq. �10�, we can see that this
transmitted light has the same temporal mode as the input
light and that the amplitude transmittivity of our analog
beam splitter will be exp�−���. The left-hand input port and
the right-hand output ports of the two beam splitters are not
optical modes, but instead the beam splitter acts on, and
produces, “polariton” excitations that have both an atomic
and an optical component. Like the polaritons considered in

electromagnetically induced transparency �17� these are
combinations of photon and atom excitations. Unlike EIT
polaritons, optical gradient polaritons propagate in reciprocal
space, to higher spatial frequencies, rather than traveling
through the atomic medium �14�.

The left-hand port of the left-hand beam splitter repre-
sents the initial state of the optical field in the sample and the
atoms before the input pulse is applied for the case of our
memory; during the operation of the memory this state will
be a vacuum state. The right-hand output mode of the first
beam splitter represents the mode of the excitation in the
sample at the time the field is switched on �t=0�. The optical
component of mode function is given by Eq. �11� and the
atomic part can be found from Eq. �2�. One explanation for
why the memory works is that the output polariton mode
from the left-hand beam splitter, which represents the �t
�0� evolution, matches the input polariton mode for the
right-hand beam splitter, which represents the �t�0� evolu-
tion.

In order to have an efficient memory we would require
excitation fed into the f in

− �t� port of the network, shown in
Fig. 2, to be directed entirely to the fout

+ �t� port. This requires
high reflectivity for our analog beam splitters, or, equiva-
lently, large optical depth. The beam splitter analogy easily
enables calculation of the efficiency of the echo process as a

FIG. 3. Network of analog beam splitters relevant to a trans-
verse CRIB memory modeled as a large number of optically thin
gradient echo memories.

Detuning
flip

FIG. 2. Optical gradient echo memory represented as a pair of
beam splitters. The bold arrows represent the flow of energy in the
optically thick case. The spatial and temporal modes that corre-
spond to each port of the beam splitter are discussed in the text.
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function of optical depth. Because both beam splitters have
an amplitude transmittivity of exp�−��� we end up with ef-
ficiency for the echo given by

�Efficiency� = �1 − exp�− 2����2.

This result agrees with the numerical simulations we have
presented previously �13�. From the beam splitter analog one
can also see immediately where the rest of the incident en-
ergy goes: exp�−2��� was transmitted by the sample and
exp�−2����1−exp�−2���� remains in the sample.

IV. TRANSVERSE BROADENING AND MULTIPLE
SWITCHING

Initial theoretical treatments of the efficiency of two-level
controlled reversible inhomogeneous broadening echoes �11�
investigated situations where the controlled detunings of the
ions were not correlated with the position of the atom. Such
transverse broadening would arise from a microscopic broad-
ening mechanism. This situation can be modeled by a large
number of optically thin gradient echo submemories in se-
ries. The relevant network of analog beam splitters is shown
in Fig. 3. If there are M submemories, the transmitted input
pulse will be attenuated by exp�−2��M�. There are M paths
a photon can take from the input pulse f in

− �t� to the output
pulse fout

+ �t�, each of which involves two reflections and M
−1 transmissions from our analog beam splitters. Because
the echo from each submemory combines in phase with that
from the previous memory, these paths all combine construc-
tively to give an efficiency for the echo of M2�1

−exp�−2����2exp�−2���M −1��. Taking the limit where
each submemory is optically thin �� small�, we arrive at an
efficiency for the memory with microscopic broadening,

�Efficiency� = 4�2�2M2 exp�− 2��M� = d2e−d.

Here d=2��M is the optical depth �the logarithm of the
ratio of the energies of the incident and transmitted pulses�.
This result is the same as that derived in �11� by solution of
the Maxwell-Bloch equations.

Another situation to which our beam splitter analogy can
be applied is multiple switching of the broadening, for both
longitudinal and transverse broadenings. If the broadening is
switched in polarity after the first echo, the excitation re-
maining in the sample will again be rephased, leading to
another echo. Multiple echoes of the original input pulse can
be created in this way. The analog beam splitter network
for multiple switching in a gradient echo is shown in
Fig. 4. From this network one can see that the fraction
of the input energy coming out in the kth echo is
�1−exp�−2����2exp�−2���k−1��. From the beam splitter
network, it can be seen that with multiple switching the en-
ergy eventually leaves the sample either as a transmitted
pulse or as one of the echoes. The efficiencies of the echoes
as a function of � are plotted in Fig. 5.

The beam splitter analogy can be extended further to the
case of multiple switching from a system with microscopic
broadening. The network of analog beam splitters in this

FIG. 4. Network of analog
beam splitters relevant to an opti-
cal gradient echo memory where
the field is switched a number of
times.
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FIG. 5. �Color online� Echo efficiency for an optical gradient
echo as a function of �, showing the effect of multiple switching.
The ratio of the energies of the input and transmitted pulse is given
by exp�−2���.
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FIG. 6. �Color online� Echo efficiency as a function of optical
depth for transverse broadening CRIB echo, showing the effects of
multiple switching. As is shown in the figure, efficiencies signifi-
cantly greater than 54% can be achieved with multiple switching,
but 100% efficiency is approached relatively slowly as the number
of echoes increases. Approximately 100 echoes are needed to
achieve greater than 90% efficiency.
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situation is similar to Fig. 3 but with a two-dimensional array
of beam splitters. The amplitude of each of the multiple ech-
oes can be calculated by summing the amplitudes of all the
possible paths through the beam splitter network. This leads
to the following expression for the portion of the incident
energy that is output as the pth echo:

ep = tM+p
�
k=1

p �p − 1

k − 1
� 1

k!
�−

r2

t2 �k
2

.

Here r=1−exp�−2��� and t=exp�−��� are the amplitude
transmission and reflection coefficients of the analog beam
splitters. Taking the limit of a large number of optically thin
memories, we get the following expression for the efficiency
of the pth echo:

ep = exp�− d�
�
k=1

p �p − 1

k − 1
� 1

k!
�− d�k
2

,

where d is the optical depth. As is shown in Fig. 6, combined
efficiencies significantly greater than 54% can be achieved
with multiple switching.

V. CONCLUSION

In conclusion, we have presented an analytic treatment of
the optical gradient echo, or longitudinal CRIB echo. We
have shown that it is completely efficient in the case of large
optical depth and that recall efficiencies of 100% can also be
obtained for optically thin samples by multiple switching. By
modeling a system with transverse CRIB by a large number
of optically thin gradients can calculate echo efficiencies in
this case also, as has been shown elsewhere, the maximum
echo efficiency is 4 /e2�54%. Multiple switching can im-
prove this overall efficiency, with efficiencies of greater than
90% possible for the sum of the first 100 echoes.
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